
Proceedings on Privacy Enhancing Technologies ; 2019 (1):68–86

Ruben Recabarren* and Bogdan Carbunar

Tithonus: A Bitcoin Based Censorship Resilient
System
Abstract: Providing reliable and surreptitious commu-
nications is difficult in the presence of adaptive and
resourceful state level censors. In this paper we intro-
duce Tithonus, a framework that builds on the Bitcoin
blockchain and network to provide censorship-resistant
communication mechanisms. In contrast to previous ap-
proaches, we do not rely solely on the slow and expen-
sive blockchain consensus mechanism but instead fully
exploit Bitcoin’s peer-to-peer gossip protocol. We de-
velop adaptive, fast and cost effective data communica-
tion solutions that camouflage client requests into in-
conspicuous Bitcoin transactions. We propose solutions
to securely request and transfer content, with unob-
servability and censorship resistance, and free, pay-per-
access and subscription based payment options. When
compared to state-of-the-art Bitcoin writing solutions,
Tithonus reduces the cost of transferring data to cen-
sored clients by 2 orders of magnitude and increases the
goodput by 3 to 5 orders of magnitude. We show that
Tithonus client initiated transactions are hard to de-
tect, while server initiated transactions cannot be cen-
sored without creating split world problems to the Bit-
coin blockchain.

Keywords: Censorship resilient communications, covert
channels, cryptocurrencies, Bitcoin

DOI 10.2478/popets-2019-0005
Received 2018-05-31; revised 2018-09-15; accepted 2018-09-16.

1 Introduction
Evading Internet censorship is difficult in the presence
of state level censors that continuously adapt and em-
ploy state of the art technologies [1–5] to e.g., block IP
addresses, perform deep packet inspection, and corrupt
protocols including BGP hijacking [6] and DNS manip-

*Corresponding Author: Ruben Recabarren:
Florida Int’l University, Miami, FL 33199, E-mail: recabar-
ren@gmail.com
Bogdan Carbunar: Florida Int’l University, Miami, FL
33199, E-mail: carbunar@gmail.com

ulation [7]. In this paper we propose a new approach
to bypass such censors, that exploits the distributed re-
silience of the Bitcoin cryptocurrency, and the substan-
tial collateral damage [8–10] inflicted by blocking access
to or tampering with its blockchain and network.

We introduce Tithonus1, a framework that lever-
ages Bitcoin transactions to provide unobservable and
censorship-resistant communications, and financially re-
ward participation.

We survey transaction-based Bitcoin blockchain
writing mechanisms, and show that their high cost and
low bitrate make them unsuitable for censorship re-
silient communications. Instead, we observe that trans-
actions do not need to reach the blockchain in order
to communicate data, and leverage the Bitcoin network
to propagate and receive transactions in seconds. We
reduce the fees paid in such swift transactions, to the
level where they are valid and unobservable by censors.
To further improve the goodput of Tithonus commu-
nications and reduce their observability, we document,
correct, extend and implement staged transactions.

We introduce new techniques to transmit messages
of arbitrary size written into multiple Tithonus transac-
tions, that preserve their sequence and unobservability.
Unlike previous solutions like Catena [11] and Block-
stack [12] that use the immutability and unequivocation
of the blockchain to persist data, we delegate security to
a higher layer and use the blockchain in its most insecure
form. This enables our proposed hidden sequencing tech-
niques to achieve significantly lower costs and higher
goodput than state of the art solutions, and prevent a
monitoring censor from learning relationships between
data units of the same message.

Tithonus provides mechanisms to bootstrap trust
and establish secure channels, and enables clients to ac-
cess both static and dynamic censored content with flex-
ible payment options. Tithonus minimizes the number
and size of client initiated messages, and camouflages
them into popular Bitcoin transactions.

Further, we propose an altruistic directory ap-
proach, where clients find and download blockchain-
persisted, static content for free, with unobservability,

1 Titan who was granted eternal life but not eternal youth.

Tithonus: A Bitcoin Based Censorship Resilient System 69

uncensorability and integrity assurances. We introduce
an on-demand, pay-per-access solution, where clients se-
curely request and pay for new content, with unob-
servability and censorship resilience, while the Tithonus
server communicates and caches content, with uncen-
sorability and integrity assurances.

The Bitcoin infrastructure used for Tithonus com-
munications renders ineffective censorship that uses IP
blocking and network protocol manipulation. We reveal
however that the Bitcoin network has a significant num-
ber of non-conformant nodes in countries with known
censorship practices. We show that Tithonus is robust to
such nodes, and this robustness is not affected by the use
of low fee transactions, in the absence of congestion. As
a consequence, Tithonus is able to provide an optimally
cheap solution within a given cryptocurrency ecosys-
tem. Furthermore, our experiments show that Tithonus
is practical when considering the reach and number of
Bitcoin nodes available in censored countries.

The use of payments enables communications
through the Bitcoin ecosystem, provides incentives for
the Tithonus service operation, and prevents DoS at-
tacks. Our evaluation is done on the cryptocurrency
with the highest market share, thus the hardest to cen-
sor but also the most expensive. In summary, we intro-
duce the following contributions:
– Communications over Bitcoin’s gossip proto-

col. We are the first to propose the use of Bitcoin’s
gossip protocol as a direct medium to exchange arbi-
trary information instead of relying on the slow and
more expensive blockchain consensus mechanism.

– Bitcoin based censorship circumvention. We
are the first to leverage the collateral damage in-
flicted by blocking Bitcoin, and the intrinsic censor-
ship resistance of its blockchain and network, to de-
velop censorship resilient communication solutions.

– Tithonus. We develop secure, fast and cost effec-
tive solutions to communicate data between cen-
sored areas and the free world with censorship resis-
tance and unobservability. We devise techniques to
embed arbitrary encrypted data indistinguishable
from public keys in Bitcoin transactions.

– Prototype implementation. We implemented
Tithonus infrastructure components in Python.
When compared to state-of-the-art Blockchain writ-
ing solutions, Tithonus reduces the cost of sending
data to Bitcoin nodes in censored countries, by 2
orders of magnitude, and increases the writing ef-
ficiency 3 fold, resulting in a goodput increase of
between 3-5 orders of magnitude. When using the

lowest fee, 1/8 of the nodes in censored countries
relayed Tithonus transactions in under 5s.

2 Background
Bitcoin transactions. We briefly describe the compo-
nents of a Bitcoin transaction, some of which are used to
store Tithonus data, see Section2.1. A Bitcoin transac-
tion (see Figure 1 for an illustration) consists of a series
of inputs and outputs that follow a set of rules. An in-
put consists of (1) a pointer to a previous transaction
that contains a funding output, (2) an offset pointing
to the specific output on the funding transaction, and
(3) a script (called the scriptSig script) used to verify
that a user is authorized to spend the balance. An out-
put consists of (1) a value that is to be transferred from
the sum of values specified on the list of inputs and (2)
a script (called the scriptPubKey script) that specifies
how to claim the transferred value in future transac-
tions. The transaction is invalid if the sum of the values
from the inputs is smaller than or equal to the sum of
the outputs. The balance after subtracting the output
values is considered to be the miner fee.

2.1 Blockchain Writing

We survey relevant solutions for writing in Bitcoin
transactions, which are persisted into the blockchain.
Overwriting destination addresses. One of the first
studied blockchain writing solutions [13] used the out-
put address bytes in the scriptPubKey to store arbi-
trary data. Two types of contracts are most commonly
used for this: Pay-to-PubkeyHash (p2pkh) and Pay-to-
Script-Hash (p2sh). The p2pkh writing method (used
by e.g., Apertus [14]) uses the 20 bytes of a destination
address to store arbitrary data. Similarly, the output
overloading of a p2sh transaction allows for the over-
writing of the redeeming script hash (20 bytes) Since
this is arbitrary data, redeeming this output becomes
highly unlikely.
Overwriting destination public keys. A similar
technique overwrites public keys instead of destination
addresses, using an old Bitcoin contract, the Pay-To-
PubKey (not the Pay-To-PubKey Hash). While this
script is now considered obsolete, it is still valid and
accepted by some miners. Depending on the use of com-
pressed or uncompressed public keys, this technique can
insert 33 or 65 bytes of effective payload data.

Tithonus: A Bitcoin Based Censorship Resilient System 70

Fig. 1. Pay-To-Script-Hash (p2sh) transaction with scriptSig
overloading (1,635 bytes). A preparing transaction prepares the
spending of the redeeming transaction, that overloads scriptSig.

55.16%

13.50%

12.62%

 5.58%
 4.23%
 8.92%

53.70%

15.16%

13.09%

 6.14%
 3.79%
 8.12%

54.79%

13.59%

11.51%

 7.55%
 3.48%
 9.09%

56.66%

11.75%

10.89%

 7.19%
 2.71%
10.79%

0%

25%

50%

75%

100%

Aug−Nov ’16 Dec−Jan ’17 Feb−Apr ’17 May−Aug ’17

F
re

q
u

e
n

c
y

Input (and Output) Types
Other p2sh, p2sh p2sh, p2pkh
p2pkh p2pkh, p2sh p2pkh, p2pkh

Fig. 2. Input (and output) type distribution between August 2016
and August 2017. Tithonus leverages the observation that p2pkh
and p2sh inputs and outputs are the most frequent, to generate
transactions that do not stand out.

OP_RETURN. This writing technique, used by
Blockstack [12] and Catena [11] to prevent equivoca-
tion, requires the use of an OP_RETURN opcode in
a scriptPubKey script, which marks the transaction as
invalid. Thus, its outputs are un-spendable, and imme-
diately prunable from the Bitcoin un-spent transaction
set. Officially, this contract allows for writing 80 bytes
after the OP_RETURN opcode.
Overwriting input scripts. A writing technique
which we call staged transactions, has been docu-
mented [15], to exploit the large script in p2sh inputs.
It consists of two transactions, see Figure 1. The first,
“staging” transaction has a p2sh output that specifies
the hash of its redeeming script. In a second, “writ-
ing” transaction, the input script provides a redeem-
Script that satisfies the staging transaction’s conditions.
The redeeming script along with the whole scriptSig
can then be used to store data. Figure 1 shows the use
of a construct that simply pushes data to the virtual
machine stack. However, other constructions are possi-
ble including using a MULTISIG script, that allows for

any m out of n signatures to claim the corresponding
balance. The outputs of the writing transaction can be
p2pkh, OP_RETURN or another p2sh (see above).
Input and output type distribution. Figure 2 shows
the distribution of the input types (identical to the dis-
tribution of output types) in transactions mined be-
tween August 2016 and August 2017. p2pkh inputs and
outputs are the most frequent, especially in transactions
with 2 p2pkh inputs or outputs. p2sh inputs and out-
puts are the next most popular ones. Thus, in order to
embed data into transactions that are indistinguishable
from regular Bitcoin transactions, a solution needs to
use a mix of such inputs and outputs.

For a more detailed discussion on these writing tech-
niques see for instance Sward et al. [16].

2.2 Bitcoin Network

The backbone of the Bitcoin network interconnects par-
ticipating devices using a TCP/IP based protocol. Each
node uses hardcoded rules to find other nodes, create
outgoing connections to and optionally accept incoming
connections from peers that participate in the network.
Peers opportunistically exchange information about the
Bitcoin system using specific messages.

The inv (inventory) message, is used to communi-
cate information (i.e., hashes) about all new transac-
tions and blocks in the network. A receiving full node
needs to request further information for all previously
unseen objects received from peers, by issuing a getdata
message. However, nodes (e.g., light nodes) that are not
equipped with enough resources to handle large volumes
of object information, can use messages designed to in-
stall Bloom filters. Once a Bloom filter is installed, the
relaying node only sends matching object information
to the receiving node.

Each node in the network maintains a mempool,
a local version of the memory pool containing uncon-
firmed transactions. Nodes use the mempool message
to request the contents of the receiving node’s mem-
ory pool of transactions. In our experiments, we use the
mempool message along with Bloom filters in order to
efficiently check the reach of our messaging transactions.

3 System and Adversary Model
We consider a system that consists of several partici-
pants, see Figure 3 for an illustration. The user runs a
Tithonus client and a Bitcoin node, to retrieve informa-
tion from a target destination, e.g., content publisher.

Tithonus: A Bitcoin Based Censorship Resilient System 71

Fig. 3. Illustration of system and adversary model. The Tithonus
server leverages the Bitcoin network and blockchain, to provide
censored clients with access to news, and bootstrapping infor-
mation for other censorship resistance tools (source code, bridge
IPs). The censor can control Bitcoin nodes and filter detected
suspicious transactions.

We assume that the user has control over her computer
and can install arbitrary software. The node is only ini-
tially needed in order to access the Bitcoin network and
blockchain, and retrieve the Tithonus client and key-
ing material. However, we recommend the use of a full
Bitcoin node even when the Tithonus client is not in
use. Security reasons that we describe in the following
sections are the basis for this recommendation. If stor-
age and computational resources are a concern, the user
may choose to sacrifice provable security for convenience
and only “simulate” the use of a Bitcoin full node. This
option may be susceptible to problems similar to the
ones described by Houmansadr et al. in [17].

The censor is able to control (inspect, inject, sup-
press) the Internet communications of users within an
area, e.g., country. The censor can fingerprint des-
tination IPs, message contents and protocol seman-
tics. We assume that censored clients cannot use other
censorship-resistant tools. We assume that the censor is
not willing to block or significantly hinder cryptocur-
rency use, and does not have the resources to modify
or suppress access to any part of the blockchain, i.e., it
does not control a majority of the network hashrate.

We assume that the target destination does not
participate in censorship evasion efforts. Instead, the
Tithonus service, located outside of the censored area,
communicates with clients to assist them in connecting
to target destinations. We assume a single Tithonus ser-
vice, that may control multiple servers. We assume that
the Tithonus service and its servers are trusted to fol-
low the protocol and not perform Sybil, DoS or packet
dropping attacks. We assume that the censor cannot
identify the IPs of nodes used by Tithonus, and cannot
eclipse [18] the Bitcoin nodes controlled by Tithonus.

Further, the external server can use anonymiz-
ers, e.g. Tor, when contacting exchange web-servers

but never to perform Bitcoin transactions. This policy
avoids issues arising from using Bitcoin over Tor [19].

We assume that the censor is aware of Tithonus,
and can register any number of clients. In the following,
we seek to protect only the communications of Tithonus
clients whose devices have not been corrupted (e.g., in-
stalled malware on) by the censor.

C-nodes. We assume a censor who controls and
deploys c-nodes, Bitcoin nodes that can monitor events
propagated through the network. We introduce the c-
node filter attack, where the censor allows censored
nodes to only connect to peers inside the censored area,
but not to nodes outside the censored area. C-nodes
can connect to outside nodes, and their purpose is to
detect and hinder Tithonus transactions. However, we
assume that such disruptions are only directed towards
interfering with the Tithonus system (e.g., corrupt in-
formation communicated through Tithonus, degrade its
performance, including DoS attacks), and therefore ac-
tively avoid causing disruptions to the Bitcoin network.

We further consider a powerful censor that attempts
indirect user identification by correlating Tithonus ac-
tions with transactions originated within the censored
region. For this, the censor needs to deploy snooping
c-nodes, honest-but-curious nodes outside the censored
region. Otherwise, if the censor is not allowed to place
nodes outside the censored area, an incredibly simple
countermeasure against such snooping nodes would be
to avoid peering with nodes within the censored region.
Snooping c-nodes may try to peer with Tithonus nodes
and collect transaction timestamps or spending patterns
for later analysis.

Thus, we consider an adversary who is both internal
and external. Specifically, the adversary is able to both
(1) observe and control the entire network within the
censored area, and (2) deploy nodes on the uncensored
area, but not eclipse the Tithonus service.
DoS and packet dropping attacks. We further con-
sider adversaries that launch denial of service (DoS) at-
tacks against Tithonus, e.g., through excessive spuri-
ous/incomplete requests. However, since we assume an
adversary unwilling to disrupt the Bitcoin network, we
consider indiscriminate packet dropping attacks to be
outside our threat model as we assume an adversary
unwilling to disrupt the Bitcoin network.

3.1 Solution Requirements

We distinguish two directions of communication, the in-
to-out communications are from censored clients (in) to

Tithonus: A Bitcoin Based Censorship Resilient System 72

Fig. 4. Tithonus communication protocol stack. Each layer uses
the layers below to: communicate data units efficiently, trans-
fer data of arbitrary size, establish secure channels, request and
retrieve content. The application layer uses Tithonus to provide
access to censored news, and other censorship resistance tools.

the Tithonus server (out), while out-to-in communica-
tion are on the reverse direction.

We seek to build a Bitcoin based censorship-
resistant system that satisfies several properties. Un-
observability: The censor is unable to detect commu-
nications between the user and the publisher, even if it
inspects the packets sent and received by the user, their
size, timing and destination. Unblockability: The cen-
sor is unable or unwilling to block communications be-
tween the user and the publisher, even if it is able to
identify such communications. Availability: The solu-
tion is resilient to DoS attacks. Communication in-
tegrity. The censor is unable to modify the commu-
nications between the user and the target destination.
Ease of deployment: The solution is easy to bootstrap
and deploy, and does not require altruistic participation.
Performance: The solution minimizes costs and max-
imizes goodput.

4 Tithonus
Overview. Most writing solutions surveyed in Sec-
tion 2.1 have a high per-byte cost of communication
(see § 6.1), and low goodput, as a transaction needs to
wait around 10 minutes until it can be mined into the
blockchain. We introduce solutions that reduce the time
and per-byte cost of transmitting data through Bitcoin
transactions. In the following, we use data unit, to de-
note data that can be transmitted in a single transac-
tion, and sender and receiver to refer to the communi-
cating parties (censored client and Tithonus server).

Algorithm 1 scriptSig of p2sh input of the writing
transaction in the staged transaction writing method.
Lines 4-6 are the redeemScript.
1.P2SH.scriptSig(data)
2. OP_PUSHDATA2 data.getNext(520)
3. OP_PUSHDATA2 data.getNext(520)
4. OP_PUSHDATA2 data.getNext(520)
5. OP_PUSHDATA1 % push next 2 lines, 79 bytes
6. OP_PUSH data.getNext(75)
7. OP_2DROP OP_2DROP OP_TRUE

We organize Tithonus into 5 layers, see Figure 4.
The unit layer embeds data units into transactions, see
Section 2.1. The transport layer optimizes transaction
fees choices as to minimize the latency and cost per byte
of content transmitted depending on the communication
needs. The chaining layer communicates messages of ar-
bitrary size. The security layer sets up the Tithonus root
of trust, registers clients and establishes secure com-
munication channels with the server. The content fetch
layer enables clients to securely retrieve desired content
through Tithonus. Tithonus provides access to static
and dynamic content, with free, pay-per-access and sub-
scription based payment options. As is the case for lay-
ering architectures [20], each module within a layer is
independently combined with a module in a layer above
it. For instance, Tithonus can use the Multisig construct
from the Unit Layer with the On-Chain module from the
Transport Layer.
Design choices. To avoid detection and censorship,
client initiated requests need to have minimal size, and
fit in a minimal number of transactions, of popular type.
To prevent DoS attacks, each client request needs to be
backed by previously deposited user funds.

4.1 Unit Layer

Making sense of staged transactions. Staged trans-
actions described in Section 2.1 have never been prop-
erly documented, and older methods are likely no longer
valid. For instance, previous documentation mentions
that one can write up to 10,000 bytes in an input script
while only 1,650 are effectively possible [21]. Further,
Bitcoin often implements new standard rules that mod-
ify the validity of new transactions. In its latest imple-
mentation: (1) The writer can only push 520 bytes at
a time on the Bitcoin virtual machine stack. (2) The
input script can only be 1,650 bytes in total, thus one
can push a bit over 3 chunks of 520 bytes, but the last
push operation needs to be the redeemScript in a p2sh
redeeming transaction. (3) The redeemScript needs to
empty the stack and push a true value before exiting.

Tithonus: A Bitcoin Based Censorship Resilient System 73

Algorithm 1 presents the writing transaction’s
scriptSig script of the staged transaction writing
method (§ 2.1). The first three lines push on the stack
the first three 520 byte chunks of data. Lines 5-7 are
the redeemScript, that is first pushed on the stack (line
5), then pushes the last chunk of 75 remaining bytes of
data (line 6) and then executes two double drop oper-
ations that consume a total of 4 items from the stack.
The final operation pushes a TRUE value on the stack
for the script to finish successfully (line 7). This script-
Sig writes data units of up to 1,635 (i.e., 3 × 520 + 75)
effective bytes.
Multisig p2sh construct. The writing technique de-
scribed above is easily detectable (transactions with
large input script sizes are uncommon), making it suit-
able for uncensorable, out-to-in communications only.
We propose now an inconspicuous, in-to-out alterna-
tive that uses a “MULTISIG” pattern in the redeem-
ing script to conceal Tithonus transactions among nor-
mal m-out-of-n multi-signature p2sh transactions. For
Tithonus, we choose a 1-3 MULTISIG construct as
it was traditionally the most common type of multi-
signature transaction [22]. However, since the popular-
ity of these constructs may change over time, Tithonus
needs to be able to adapt to such changes. As a con-
sequence, we describe techniques that are applicable to
any MULTISIG construct but use the 1-3 MULTISIG
as an example. In a 1-3 MULTISIG construct, the re-
deemScript contains placeholders for 3 public keys au-
thorized to redeem the staging transaction. In a normal
transaction, the rest of the scriptSig contains a valid sig-
nature corresponding to any one of these public keys. In
a Tithonus transaction, the other two public key place-
holders are instead filled with arbitrary payload data.
Compressed Bitcoin public keys are 33 bytes (including
1 prefix type byte). However, these keys correspond to
points of an elliptic curve, thus are distinguishable from
encrypted data.

Embedding encrypted data on public keys.
To generate elliptic curve points indistinguishable from
random strings, we use ideas similar to the ones de-
scribed by Bernstein et al. [23]. Specifically, for curve
secp256k1, we propose the use of the left most signif-
icant 28 bytes to encode our encrypted data D, with
the exception of the ciphertext 2224 − 1 which has a
negligible probability of occurrence. We pick a random
4-byte string R, smaller than 0xFFFFFC2F. Thus, we
get x = D, R, a 32-byte candidate for the elliptic curve
point’s x-coordinate that is smaller than p, the prime
used by sec256pk1.

We then calculate w = x3 + 7 and check if it is a
quadratic residue (QR) in Fp. We choose random R val-
ues and repeat this process until w ∈ QR(Fp). Since
a random string has a 1/2 chance of being a QR for
secp256k1’s prime field, the expected number of trials
is 2. Once we have found a suitable w, we use the cor-
responding x = D, R value as the x-coordinate of the
elliptic curve public key. We use x with a prefix of either
0x02 or 0x03 to signal that this is the compressed repre-
sentation of the public key. Thus, this procedure embeds
28 bytes of encrypted data indistinguishable from an el-
liptic curve public key. A proof sketch of this claim is
provided in section 5.

4.2 Transport Layer

Swift transactions. The goal of the Bitcoin network is
to distribute newly created transactions to all the Bit-
coin nodes across the world (§ 2.2). Thus, a receiver who
runs a node does not need to wait until the transaction
is mined into the blockchain, in order to access it. How-
ever, before propagating a new transaction to its peers,
each node verifies its validity, i.e., that (1) the transac-
tion fee equals or exceeds 1 satoshi per byte and (2) the
value of each output exceeds 3 times the transaction fee.

We leverage these observations to propose a low
cost, low latency swift transaction communication solu-
tion, that works with all of the communication methods
above and of § 2. Swift transactions use minimal trans-
action fee rates and values sent to non-data storing out-
puts (e.g., p2pkh outputs, see § 2.1). Swift transactions
achieve low latencies as nodes controlled by Tithonus
clients and the server will receive such transactions as
they are propagated through the Bitcoin network, well
before they are mined into the blockchain.
On-Chain transactions. The advantages of swift
transactions are fully exploited only when the user is
online. For asynchronous cases, on-chain transactions
can increase the transaction fee to secure the data in
the blockchain as soon as possible. This increases the
chances that the user can access the information when
they are online. On-chain transactions thus trade costs
for highly reliable communications.

4.3 Chaining Layer

The chaining layer sends messages of arbitrary sizes, by
signaling the message length, and the location and or-
der of transactions storing individual data units sent
through the unit layer. Solutions like Catena [11] and

Tithonus: A Bitcoin Based Censorship Resilient System 74

Blockstack [12], are unsuitable to provide efficient cen-
sorship resilient communications.

We propose a hidden sequencing solution to ad-
dress these problems. The sender needs to embed into
each data unit, the type of data (e.g., DATA, DIR,
CERT, CREG, REQ) written by the layers above, see
§ 4.4 and 4.5). The sender prefixes each of these data
units with a 4 byte sequence number SEQ, that spec-
ifies the order of the data unit within the content. In
the content’s first data unit, the sender also includes a
4 byte LEN value, which specifies the number of data
units in the content. If the content fetch layer specifies a
key, the sender uses it to encrypt each unit. The sender
writes each data unit into a swift transaction, e.g., in
the p2sh input of a staged transaction, or a p2pkh out-
put (see § 4.1 and 2.1), then injects all transactions in
the Bitcoin network, in parallel. The sender can process
multiple contents simultaneously, using a locally stored,
atomically accessed SEQ variable.

The receiver needs the 32 byte id of the transaction
that stores the first data unit, and optionally, a decryp-
tion key. He recovers the SEQ and LEN values from
the first unit, then accesses (and optionally decrypts)
all p2sh inputs and p2pkh outputs of transactions in
the mempool and nearby blocks in the blockchain, un-
til he recovers all LEN − 1 subsequent SEQ numbered
data units (see § 4.4 and 4.5 for more details).

4.4 Security Layer
The security layer enables clients to establish trust, and
to register and establish secure communication channels
with the Tithonus service.

While suspicious out-to-in transactions cannot be
blocked, as they will eventually be persisted in the
blockchain (§ 6), high numbers of client posted transac-
tions are intrinsically suspicious and can be discovered
and blocked by a c-node filtering censor (§ 3). Thus, in
the following, we seek to minimize the number of trans-
actions posted by clients.
Setup. The Tithonus service creates a self signed public
key certificate and uses the chaining layer to publish the
certificate on the Bitcoin blockchain (data units of type
CERT, see § 4.3 and Figure 5). We call this the root
certificate. While an adversary may also write a certifi-
cate impersonating Tithonus, the root Tithonus certifi-
cate is the oldest one. Let pkT and skT be the public
and private keys of the Tithonus service. The certifi-
cate specifies the key agreement, key derivation, hash,
symmetric encryption and message authentication code
functions used (e.g., ANSI X9.63 [24]). The certificate

also includes a random tag value Ttag and a standard
fee rate, i.e., price in satoshis per written byte, for re-
sponding to client requests.

Tithonus publishes new certificates periodically, see
Figure 5 for an illustration. A new certificate is signed
with the private key of the previous certificate. The
client is responsible for finding all the certificates, start-
ing from the oldest to the newest one, and verifying the
chain of trust. For simplicity, the Tithonus certificate
also includes a SEQ number, set to 0 for the root.

Further, we use the chaining layer to write the
Tithonus client on the blockchain. This allows censored
users to download the client with as little information
as the id of the first transaction storing it.
Client registration. Upon startup, a client C inside
the censored area follows ECIES [25] to establish a ses-
sion key with the Tithonus server through an encrypted
client registration (CREG) message. Specifically, the
client generates a private key skC ∈R Z∗n and a pub-
lic key pkC = skCG, where G and n are as specified
in secp256k1. It then generates a Rijndael (28B block
mode) encryption key K1 and a hashing key K2, us-
ing the KDF specified in the Tithonus certificate with
input Sx, where (Sx, Sy) = skCpkT is a point on the el-
liptic curve (shared secret) and pkT is the public key of
the Tithonus server. C then generates a random session
tag identifier RCT to identify subsequent communica-
tions with the Tithonus server, and a “payment” Bit-
coin address with public and private keys pkfee, skfee.
The client sends to the Tithonus server, the message:

pkC , EK1(Ttag, CREG, RCT , skfee, padding)

where CREG is a 1 byte long header type that differen-
tiates client registration messages from other Tithonus
communications. If the client needs to re-register (e.g.,
this procedure fails), the client needs to generate new
keys to avoid observable duplicates. The AES encryp-
tion uses a function of pkC as initialization vector. When
using ECIES, without padding, this message is 98B
long, assuming a Ttag and RCT size of 16B each, skfee

of 32B, pkC of 33B compressed form, and CREG of 1B.
The client camouflages this message into 2 staged

multisig p2sh transactions (§ 4.1), where each staging
transaction has 2 outputs, of type “p2pkh, p2sh”. Fig-
ure 2 (Section 2.1) shows that such transactions are the
second most popular, thus do not stand out. Further, a
client registers infrequently. We write the above message
into the redeeming script sections of the p2sh inputs.
Each of these inputs has a net capacity for storing 2 *
28 bytes (§ 4.1, MULTISIG script). However, the pkC

(33 bytes) element is stored in one of the MULTISIG

Tithonus: A Bitcoin Based Censorship Resilient System 75

addresses, leaving 28 bytes available in one of the p2sh
inputs. The second p2sh provides another 56 bytes for
a total of 84 bytes available for the second part of the
CREG message. Thus, the random padding needs to be
19B (84 - 65) long.

The staging transactions have two p2pkh outputs.
The first output is used to fund the second staging trans-
action thus links the 2 transactions. The second output
contains the fee (in satoshi), which needs to cover the
server’s expenses to write the reply in the blockchain.

To identify client registration messages, the
Tithonus server processes all pairs of p2pkh;p2sh trans-
actions. Let T be a pair of writing transactions with
p2sh inputs I1 and I2, and outputs O1 and O2. The
server concatenates the 4 unused public keys placehold-
ers from I1 and I2 (132B), reads the first 33B as can-
didate pkC , strips the prefix bytes from the remain-
ing 3 public key placeholders, generates candidate point
(Sx, Sy) = pkCskT , then uses it as input for the KDF
function to construct candidate keys K1 and K2. The
server decrypts the remaining 84B (99B - 3 prefix bytes
- 12 random pad bytes) using K1. If the result does not
start with (Ttag, CREG), the server drops the transac-
tion, as it is either not a CREG message or is corrupted.
Otherwise, the server recovers from the decrypted mes-
sage the session tag RCT and the private key skfee.

The server uses skfee to compute the public key
pkfee. It then compares H(pkfee) against the public key
hash value stored in the p2sh output O2 of transac-
tion pair T . If the verification fails, the server drops the
transaction. Otherwise, the server uses skfee to redeem
the fee from O2, and creates a record for client C:

R[C] = [pkC , K1, K2, RCT , HK2(RCT , c), c = 1, credit]

R[C] contains the session and hashing keys, the fresh
session tag, the message count denoting how many mes-
sages it has exchanged with the client, and the balance
it has redeemed from the user’s payment. The server
updates R[C] each time it processes a message to/from
client C: it increments c, decrements credit and updates
the tag HK2(RCT , c).

Tithonus allows clients to register multiple times,
creating additional records for new pkfee keys. This pre-
vents observability, by reducing the amount of repeated
deposits to the same payment account. It also prevents
Tithonus from learning detailed, client request profiles.

4.5 Content Fetch Layer

Clients use the content fetch layer to request and fetch
censored content. We introduce solutions to fetch static

Fig. 5. Altruistic directory organization. Client reads all certificate
(CERT) transactions and verifies the chain of trust. Client then
reads all directory entry (DIR) transactions and verifies that they
are signed with the certificate that was valid when they were
issued. DIR entries point to the first DATA transaction storing
the content, which is sequenced by SEQ numbers.

and dynamic content, with free, pay-per-access and sub-
scription based payments.
Altruistic directory: free, static content. The al-
truistic directory solution, illustrated in Figure 5, allows
clients to access censored content that is considered by
Tithonus to be of public interest, e.g., the source code
of other censorship-resistant systems (CRS), news ar-
ticles, for free. Content is written in cleartext on the
blockchain. Its authenticity is ensured through a sig-
nature with the most recent Tithonus private key. The
client can fetch content listed in the altruistic directory
without needing to register with the server (see § 4.4).

Specifically, for each new piece of content that
Tithonus decides to distribute for free, the server uses a
two-step process. First, use the chaining layer to write
the compressed content into the blockchain (data units
of type DATA, see bottom part of Figure 5). As con-
sumers for this content can not be expected to be online
at the time of publishing, swift transactions are inade-
quate and the On-Chain transport module is preferable.
Second, the server generates a new directory entry, that
contains (1) a description of the content, (2) the id of
the leading transaction in the blockchain, that stores
the first data unit of the content, and (3) the Tithonus
signature over the previous fields, with the most recent
Tithonus private key (middle layer in Figure 5). It then
uses the chaining layer to write this new directory entry
into the blockchain, as data units of type DIR.

The client needs to retrieve and reconstruct the en-
tire directory. To reduce the need of clients to parse each
Bitcoin transaction looking for DIR entries, the server
can write DIR entries into transactions using a specific
input Bitcoin, included in the Tithonus certificate. The
client then needs to only retrieve and parse a subset

Tithonus: A Bitcoin Based Censorship Resilient System 76

of the transactions to retrieve DIR entries. The client
verifies the authenticity of DIR entries: the signature in
each entry was generated using the public key stored in
the Tithonus certificate that was valid when the DIR’s
block was mined into the blockchain.

If the client wants to fetch a specific content listed
in a DIR entry, it retrieves the id of the first trans-
action that stores the content’s DATA units, from its
DIR entry, then uses the chaining layer to read the con-
tent from the blockchain (§ 4.3). The client monitors the
blockchain to identify newly added directory entries.
On-demand, pay-per-access. We propose a content
fetching approach where the client can unobservably
request new content, then fetch it with confidentiality
and integrity assurances, while the server can charge for
writing new content, and cache popular content, thus re-
duce the cost and observability of subsequent requests.
A client requests content through a REQ-type message:

HK2(RCT , c + +), EK1(Ttag, REQ, SEL, URI),

where HK2(RCT , c) is used to denote a fresh session tag
for client C, c being C’s message counter. c + + signi-
fies that the counter is incremented by both the client
and the server after processing this message. REQ is a
1B message type (request). SEL is an 8B selector tu-
ple (offset, length) that requests a specific offset (4B)
and length (4B) of the content. URI is the null-padded
pointer to the content, which could be a known site (e.g.,
www.bbc.com) or a tinyurl returned by the server for a
previous request (e.g., Google search results). The client
uses 2 staged multisig p2sh transactions as in the client
registration, where the staging transaction has 2 outputs
(p2sh; p2pkh). The client camouflages the above mes-
sage into the p2sh inputs (112B). The HK2(RCT , c + +)
is embedded in the first 28B of one of the p2sh inputs
with 8 bytes of random padding. Thus, since Ttag, REQ

and SEL require a total of 25B, the null-padded URI

can be up to 59 bytes long (84 - 25). Just as in the case
of the client registration, the first p2pkh output is used
as a link to the second staging transaction while the
second p2pkh is not used. The reason for choosing this
transaction type is that it is the second most popular,
accounting for ≈ 19% of all transactions when count-
ing p2sh;p2pkh and p2pkh;p2sh inputs and outputs, see
Figure 2.

To identify REQ messages, the server processes
each pair of p2sh; p2pkh output transactions linked
by the first p2pkh output. For each candidate pair,
the server extracts the first 28B from the first p2sh
input and concatenates the remaining 28 byte chunks
of the remaining p2sh inputs. It then looks up the

first 20B (HK2(RCT , c)) of the result, among the ses-
sion tags of all hosted clients (§ 4.4). When it finds
a match, the server increments the client’s c count,
recovers C’s K1 key and decrypts the remaining 84B
(EK1(Ttag, REQ, SEL, URI)). The server checks the
user’s record balance, then fetches the content at the
specified URI, determines the cost fee required to send
it through Tithonus (e.g., based on content size, whether
it is cached or not, predicted popularity, see below) and
sends the following reply:

Ttag, HK2(RCT , c + +), EK1(fee, RESP), rev(Ttag)

The response is embedded in a chain of p2sh staged
transactions, each storing 1,635 bytes (§ 4.1). The an-
swer’s length is dependent on the available user’s bal-
ance. If this balance is insufficient, the server answers
only the number of bytes covered by the balance starting
at the specified offset. Otherwise, the request is ignored.
The client needs to process all transactions chains mar-
shalled by a Ttag and its reverse (rev(Ttag)), both in
the mempool and newly posted in the blockchain, in or-
der to identify the server reply. Once a reply is identified
by the HK2(RCT , c++) tag, the client decrypts the rest
of the chain and retrieves the requested content.
Subscription based access. Tithonus can convert
the altruistic directory and cached content fetch solu-
tions into subscription based solutions, to provide ac-
cess to dynamic content, e.g, news services, RSS feeds.
The client subscribes interest in published content (e.g.,
through a URI as above), and transfers funds to the
Tithonus server. The server periodically accesses the
content, publishes updates using the chaining layer,
then updates the client’s balance. The server may charge
less per update if multiple clients subscribed to this con-
tent. The subscription can be update or time based, i.e.,
the client pays per update or time unit. For this, the
service encrypts content with a key that it distributes
(encrypted) to subscribed clients. The key can change
after each update, or periodically (e.g., once per day).

5 Analysis
In this section we analyze the ability of Tithonus to
satisfy the requirements outlined in Section 3.1.
Unobservability. In the following we analyze the abil-
ity of Tithonus to protect the user’s unobservable access
to out-to-in communication and to ensure the indistin-
guishability of in-to-out requests.
Access to out-to-in communications. User nodes
need to exhibit full node functionality thus can ac-

www.bbc.com

Tithonus: A Bitcoin Based Censorship Resilient System 77

cess free content published using the altruistic directory
method, in an unobservable manner: Full Bitcoin nodes
can only function if they fetch the entire blockchain,
thus clients can just access the blockchain to read and
verify the Tithonus public key certificate chain and the
altruistic directory, then recover the desired content, all
written in the blockchain. Thus, the Bitcoin ecosystem
separates clients from the Tithonus service, providing
potential for anonymity. Client nodes download the en-
tire blockchain. Thus, the altruistic directory is equiv-
alent to the trivial solution to the PIR problem, and
requires no direct client contact with the Tithonus ser-
vice. In the on-demand, pay-per-access solution, clients
identify only through a random public key. Clients can
register multiple public keys (i.e., pseudo-identities), to
prevent the server from building and de-anonymizing
profiles.

For the staged transactions issued for the client reg-
istration, cached content fetch and subscription based
access method, we use the proposed patterns (e.g.
p2pkh, p2sh inputs and outputs) only as templates:
Tithonus camouflages client issued protocol messages in
popular transaction types, whose distributions change
overtime. While, currently, such transactions account
for 20% of Bitcoin transactions, see Section 6, Tithonus
adds inputs or outputs depending on the evolution of
these changes but preserves the use of the underlying
barebones transaction pattern.

Tithonus restricts the amount of content that a
client can request per time unit (e.g., per day) to a
value consistent with that of regular Bitcoin users. In
addition, Payments issued by clients cannot be traced
to the Tithonus service if at least one of the exchanges
employed by the server does not collude with the censor.
Indistinguishability of in-to-out requests. This
communication type makes use of multisig p2sh trans-
actions embeddings (Section 4.1). Since this embedding
directly uses the encryption output of a Rjindael cipher,
its correctness follows from the correctness of the Rjin-
dael algorithm [26]. We include a proof sketch that the
Tithonus multisig p2sh constructs are indistinguishable
from regular multisig p2sh transactions, in Appendix A.
Unblockability. The system’s resilience to censorship
is based on the unwillingness of the censor to affect the
Bitcoin ecosystem’s normal functioning, which stems
from reasons ranging from economic to technical. We
detail these reasons in § 7.
Availability. The Tithonus server does not expose a
traditional communication end-point, thus its service is
not vulnerable to traditional DoS attacks based on ex-
cessive spurious/incomplete requests. All Tithonus re-

quests need to be paid upfront and thus any increase
on the number of requests is met with more resources
afforded by the corresponding request fees. These fees
can also include operation, maintenance and profit fees
for the Tithonus service, converting a DoS attack into a
wealth transfer from the attacker to the Tithonus infras-
tructure. A censor that floods the Bitcoin network with
Tithonus transactions to exhaust its resources, will fur-
ther lead to congestion and transaction fee rate spikes,
thus disrupt the entire Bitcoin ecosystem, including e.g.,
e-commerce merchants and their customers.
Communication integrity. The client authenticates
the Tithonus server through its ability to decrypt mes-
sages encrypted with the public key advertised in the
Tithonus certificate. The client also verifies that spe-
cific messages (e.g., DIR entries) are signed with the pri-
vate key of the Tithonus server. The server verifies that
the client has provided the funds required to send back
the replies through the Bitcoin network or blockchain.
Both the client and the server use special fields in mes-
sages exchanged, to verify their integrity and authen-
ticity. Further, the chaining layer preserves the order of
the data units, and the use of erasure codes can provide
resilience to data filtering.
Ease of deployment. Tithonus users only need to
know the 32 bytes of the transaction id that stores the
first data unit of the Tithonus client source code, in or-
der to first fetch the source code, then compile and run
it. Alternatively, a small Tithonus client bootstrapper
can perform these operations.
Performance. Tithonus uses minimal values for trans-
action fess and adapts them according to the commu-
nication need (swift or on-chain transactions). In addi-
tion, the use of staged transactions maximizes the pay-
load data output under the current Bitcoin transaction
rules. Next, we evaluate the performance of Tithonus.

6 Evaluation
Ethical considerations. In our experiments, we did
not interact with humans. We have only collected the
country of location of nodes, and times when they were
online. In the following we discuss the potential burden
placed by Tithonus on Bitcoin miners and clients.
Burden on miners. Given the high costs of the mining
hardware, electricity and overall maintenance, the main
motivation for miner participation is financial. Tithonus
does not add to these costs. For out-to-in communi-
cation, Tithonus transactions even add financial incen-
tives to miners. Other blockchain-writing services, e.g.,

Tithonus: A Bitcoin Based Censorship Resilient System 78

Catena, Apertus, place a similar burden on miners and
clients. Thus, Tithonus does not expose them to any
additional risk not already accepted by them. This is
an inherent side effect of collateral damage-based solu-
tions. In fact, mining activity has increased exponen-
tially [27] despite the continued implementation of such
un-anticipated uses of the blockchain.
Burden on clients. Users who run light clients, that
do not fully participate on the gossip protocol, are un-
burdened by Tithonus transactions. Only clients that
run “full nodes” are impacted by Tithonus. While their
motivation to do so is transitively financial (i.e., to sup-
port miners who make a profit from mining them), we
admit that Tithonus may place an unwanted burden on
purely altruistic full nodes. In this respect, Tithonus is
similar to other collateral damage based CRS systems
that e.g., use domain fronting or CDN caches.

6.1 Tithonus Certificate
We have written the first Tithonus certificate (714
bytes in compressed form) using a staged transaction
(§ 4.1). The resulting transaction is available at https:
//tinyurl.com/y8u4avu6. The cost was 1000 satoshis
(1.117 sat/byte fee rate, i.e. almost min rate) to write
an 895 bytes transaction containing the certificate. The
p2sh input includes a small accompanying script that
extracts the zip file from the raw transaction:

echo rawTxn | dd skip = 47 bs = 2 count = 714 |

sed ′s/4cc0//′ | xxd − r − p > tithonus_cert.zip

The transaction made it to the blockchain in ≈ 7 mins.

6.2 Swift Transactions
We implemented components of the Tithonus infras-
tructure using 790 Python loc. We have prepared 8
p2pkh transactions with one input and two outputs.
We have issued 4 types of transactions, each assigned
a transaction fee of 1, 2, 4, and 8 times the minimum
transaction rate fee of 1 satoshi/byte.

We downloaded a list of 924 Bitcoin nodes’ IP ad-
dresses from earn.com from the 35 countries with least
freedom of press according to reporters without borders
(rsf.org). Only 12 of these countries had Bitcoin nodes
that accepted incoming connections (“server nodes”).
We use these nodes’ relay times to estimate the time
for a Tithonus message to spread across the network.
However, Tithonus does not require server nodes for op-
eration. Tithonus is usable as long as the censor allows
at least “client” nodes that peer to other “server nodes”

0

10

20

30

40

BY CN EG IR KZ LA MX RU SA SG TR VN

R
e
la

y
 t
im

e
 (

s
e
c
)

Fig. 6. Violins show the probability density of relay times (for all
1-8 fee txns) over the nodes in each of 12 censored countries.

(outside or inside the censored region). We initiated a
connection with these server nodes inside censor areas.
We were able to maintain connections to 530 nodes over
the entire duration of the experiment, i.e., 24 hours, by
answering ping messages but ignoring other commands.

We set up a sentinel node to connect to all these 530
nodes, added Bloom filters encoding our transactions,
into all these nodes, and waited to receive our transac-
tions with a voluntary inv message. We used mempool
messages to retrieve the contents of non-relaying nodes’
mempool and verify they never received them.

We have set up a default installation of the Bitcoin
reference client and allowed it to connect to 8 peers
outside the censored countries. We injected our trans-
actions from this node. We used the interval between
the time when the sentinel node received a transaction,
and the time when the transaction was injected into the
network as an upper bound on the time our transaction
took to reach its destination.

526 nodes relayed at least one of our transactions
(99.24%), and 509 nodes relayed all 4 transactions. Half
of the nodes received our transactions in less than 5s and
90% of the nodes received them in under 20s. Figure 6
shows the distributions of relay times over the nodes in
each of 12 censored countries. Most nodes in countries
like China and Russia (who have the most nodes) relay
the transactions in under 5s, but have a few nodes who
take longer than 30s (but under 50s). All the nodes in
the other countries relay our transactions in under 25s.

A censored client will receive a transaction if at least
one of its peers receives it. To understand the ability of
a censored node to receive low fee transactions, we plot
the number of nodes per country that relay each of the
1-8 fee transactions. Figure 7 plots these numbers for
CN, RU and the other 10 censored countries together,
that relay our transactions in 5s or less. We see a linear

https://tinyurl.com/y8u4avu6
https://tinyurl.com/y8u4avu6

Tithonus: A Bitcoin Based Censorship Resilient System 79

40

60

80

100

1 2 4 8
Transaction fee rate (satoshis/byte)

N
o
d
e
s
 w

it
h
 r

e
la

y
 t
im

e
 <

=
 5

 s
e
c

CN
RU
IR+

Fig. 7. Number of nodes in China, Russia and the other 10 cen-
sored countries together, that relay transactions in 5 seconds or
less. Even at the lowest fee, 41.8% of the Chinese nodes and 45%
of the Russian nodes relay the transaction.

0

10

20

30

40

1 2 4 8
Transaction fee rate (satoshis/byte)

R
e
la

y
 t
im

e
 (

s
e
c
)

Fig. 8. Violins show the probability density of the relay time as a
function of the transaction fee rate, over all the nodes in the 12
censored countries. We observe a decrease in relay times with the
transaction fee. The median is 6s over all transaction fees.

increase in the number of CN and RU nodes who relay
transactions, as a function of the transaction fee.
Swift transaction’s reliability and speed. Even
at the lowest fee, 41.8% nodes in China and 45% in
Russia relay the transaction in under 5 secs. Thus, if
the Tithonus client connects to 8 random peers in any
of these countries, it will receive even the lowest fee
transactions with high probability in under 5 secs (e.g.,
98.68% = 1− (1− 41.8%)8 in China).

Further, we have evaluated the ability of an increase
in the transaction fee to reduce the relay time of a mes-
sage. Figure 8 shows the probability density of the relay
times over all the nodes in the 12 censored countries,
for each of the 4 transaction fee rate types. The median
relay time remains constant at 6s when the transaction
fee rate increases from 1 to 8 satoshis per byte. This sug-
gests no advantage in reducing relay times by increasing
transaction fee rates in this interval.

6.3 The Price of Free Speech

The cost of out-to-in communications. We have
used Tithonus to send a 13,804B file (Tithonus logo)
to nodes in the 12 censored countries. The file fit into 9
staged transactions, using a single p2sh input per trans-
action, and the minimum transaction fee rate (1 sat/B).

We used the same setup as in the previous experi-
ment and obtained similar results in terms of reliability.
Figure 9 shows the probability distributions of the relay
times of each of the 9 transactions, along with the time
it took each transaction to be mined into the blockchain.
All 9 transactions were permanently recorded in the
blockchain, in at most 1.8 hours. This result suggests
that filtering swift transactions is a useless censorship
strategy: censorship only delays their delivery. In addi-
tion, selective filtering may harm pools and miners who
do not mine these transactions [28].

Further, the total cost of writing the 9 transactions
on the blockchain was 14,722 satoshi, which includes 8
transactions of size 1,656 bytes and 1 transaction of size
1,474 bytes. At current prices (1 BTC ≈ $6,080), the
Tithonus cost of sending the 14KB file was $0.90.
Tithonus cost for an average web user. We con-
sider now a scenario where the user accesses a news arti-
cle of an average of 1,200 words [29]. Assuming an aver-
age of 6 characters per word [30], the total size of 7.2KB
would require Tithonus to send 7.2 * 1.07 = 7.7KB, i.e.,
including transaction overheads. Therefore, the price to
write this to the blockchain is 7,704 satoshis or $0.47 (at
the current rate of $6,080 per BTC).
The cost of in-to-out communications. The client
registration process requires the creation of two multi-
sig transactions for the registration process. Each sub-
sequent resource request message requires 2 additional
multisig transactions (§ 4.4). A p2sh multi-signature
transaction with 2 outputs (p2sh, p2pkh) has a size of
395 bytes. We leverage the estimates from [31] in or-
der to determine a fee per byte that would allow our
transactions to blend in with other p2sh-multisig trans-
actions. The median fee per byte over the last 24 hours
at the time of writing is 9 satoshi/B. Thus, the user
needs to pay a total of 7,110 satoshi (≈ $0.38 at the
current conversion rate) to register, and for each subse-
quent content request message.
Tithonus vs. VPN costs. We now evaluate Tithonus’
costs per expected request latency against those of a
VPN. Table 1 summarizes our comparison. The top rows
show the costs and latencies of the pay-per access and
subscription modes of Tithonus. These costs assume the
current median transaction fee rate according to [31]

Tithonus: A Bitcoin Based Censorship Resilient System 80

Table 1. Tithonus vs. VPN in-to-out cost and latency
from China, with separate conversation and communi-
cation setup phases.

Communication Setup Request Communication Download Download Download
Service Cost Cost Setup Time Req. Time Resp. Time Total Time

Pay-per-Access $0.38 $0.38 10 min. 3-5s 3-5s 6-10s
Subscription $0.38 $0.38 - 3-5s 3-5s 6-10s

HideMyAss $6.99 ∞ 60–180 min. ∞ ∞ ∞
PureVPN (VPN) $4.91 ∞ 2–60 min. ∞ ∞ ∞

for unobservability. In § 6.2 we showed that increas-
ing the fee rate for out-to-in communication has no ef-
fect on the speed at which swift transactions are prop-
agated through the Bitcoin network. Further, for semi-
interactive/concurrent communication (e.g., on-demand
pay-per-access), the user is expected to be online at the
time of the request. Thus, for this use case, there is re-
ally no need to wait for transactions to appear in the
blockchain (see Table 2 in the appendix). In fact, we
have also shown (§ 6.2) that having to resort to the
blockchain because of a missing swift transaction is a
low probability event (0.0132 in China).

To compare against VPN costs, we have not con-
sidered services that claim to provide only directional,
i.e., in-to-out, communications (e.g., NordVPN, Viper-
VPN and ExpressVPN): since we are not in a censored
country, we cannot verify their claims. Instead, we have
focused on two popular VPN providers, HideMyAss
and PureVPN, that publicize dual communication ser-
vices (both in-to-out and out-to-in) for China, similar
to Tithonus. The monthly costs for HideMyAss [32] and
PureVPN [33] services at publication time are $6.99 and
$4.91 respectively. Communication setup (payment ver-
ification and account activation) requires 60–90 min for
PureVPN and 2–60 min for HideMyAss.

Surprisingly, we found that despite the service be-
ing openly publicized on their webpage, the access from
within China and from the outside into China was ef-
fectively blocked. Customer support blamed the Great
Firewall of China (GFW) and was unable to provide
an expected resolution time. They in fact recommended
asking for a refund which led us to believe this is not a
temporary problem. Thus, the expected latency for us-
ing their service is∞, and, since the number of requests
per month that are available under any service plan is 0,
the cost per request turns out to also be∞, see Table 1.

6.4 Tithonus Client Computing Overhead

We used a 32-bit system with an Intel® Xeon® Gold
6126 CPU @ 2.60GHz with 8GB RAM to estimate
the Tithonus client overhead. The time to retrieve the
Tithonus root certificate from the 200GB blockchain,

10
1

10
2

10
3

chunk1 chunk2 chunk3 chunk4 chunk5 chunk6 chunk7 chunk8 chunk9

T
im

e
 (

s
e
c
)

Fig. 9. Distribution of relay times by nodes in 12 most censored
countries, and blockchain arrival times for 9 transactions carrying
the Tithonus logo. Swift transactions are relayed by responding
nodes in less than 40 seconds while all transactions eventually
make it to the blockchain in less than 1.8 hours.

using simple string matching, was 15m.36sec. When
equipped with the Bitcoin client and the specific trans-
action id, this time however becomes 4ms.

Depending on key sizes, in the on-demand, pay-per-
access content fetch solution, a client can process 38.8–
57.26 thousand Tithonus txn/sec with a CPU utilization
of about 0.05%. Similarly, client registration and con-
tent request messages achieve a speed of 1.2–1.67 mil-
lion Tithonus txn/sec. Further, for the altruistic direc-
tory and subscription service, our system achieved 2,850
ECDSA signature verifications per second. For compar-
ison, the maximum transaction rate ever processed by
the Bitcoin network is 20 txn/sec.

6.5 Tithonus Performance Comparisons

We now compare Tithonus with state of the art Blochain
writing and censorship resistance solutions.
Comparison with Catena. In the experiment of §
6.3, the writing efficiency of our staged transactions is
0.93 (ratio of data bytes to total bytes). For the same
file, Catena [11] requires 172 transactions of size 282
bytes and 1 transaction of size 246, whose total size is
48,750 bytes, for a writing efficiency of 0.28. At their
recommended rate of 70 satoshi/byte, the total cost of
writing with Catena is 3,412,500 satoshi, or $207.48.
Thus, Tithonus reduces the cost of sending information
through the Bitcoin blockchain, by 2 orders of magni-
tude (231 times cheaper), and increases the writing ef-
ficiency by a factor of 3.

Further, the time for all Catena transactions to
reach the blockchain amounts to around 1,730 minutes
(28.8 hours), as a transaction can be written only af-
ter all the previous ones have been confirmed in the
blockchain. The 9 Tithonus transactions took only 3.3s
to be relayed by 1/8 of the good nodes in China, and

Tithonus: A Bitcoin Based Censorship Resilient System 81

they were all mined in the blockchain in under 1.8 hours.
Thus, Tithonus improves on the transmission speed of
a 14KB file by between 3 to 5 orders of magnitude (961
to 34,600 times faster). Tithonus achieves a goodput of
4,601 B/s compared with Catena’s 0.13 B/s.
Comparison with Tor. We deployed a VM with a
paid VPN service that tunnels all traffic from our lab in
the US to the Shanghai province in China. This infras-
tructure simulates a real life censored user. Since the
Tor download page is censored, we assume that the Tor
user found an acceptable and secure alternative way to
download Tor, e.g., using Tithonus.

We tried all available Tor transports (obfs3, obfs4,
meek, fte, scramblesuit) and only meek-azure was able
to bootstrap enough relays to establish a circuit con-
nection. In our experiments, this bootstrapping process
lasted around 1.3 hours. In comparison, the communi-
cation setup for the pay-per-access mode in Tithonus
requires 10–30 min (1–3 confirmations) until the first
cryptocurrency exchange credits the Tithonus account
[34]. The meek pluggable transport uses the infrastruc-
ture of large third parties to inflict collateral damage to
censorship attempts. Such domain fronting-based solu-
tions depend on centralized third party collaboration,
thus are not reliable (as recently evidenced by Google
suddenly disabling its support [35]). A Tor user may ob-
tain this bootstrapping information through Tithonus.

Subsequently, we have used Tor to download the
Tithonus logo (13,804 Bytes) several times using differ-
ent circuits on each trial, and obtained download times
ranging between 10 to 15s. The VPN overhead, which
we measured using the ping tool with a payload of 13408
Bytes, was only 192 ms. Thus, Tor’s 10-15 sec result sug-
gests a 5 fold performance decrease when compared to
Tithonus.
Comparison with Collage. Collage [36] is a CRS that
uses sites that host user-generated content to commu-
nicate hidden messages. A user embeds messages into
cover traffic and posts them as content on a site. Unlike
Tithonus, Collage communications are free. However,
the latency and goodput of Tithonus are better: Col-
lage required 9 jpeg photos to store 23 KB of data and
took 1 minute to retrieve them. In contrast Tithonus
achieves a 93% storage efficiency and 3-5 seconds to
retrieve (from China!) a comparable amount of bytes.

6.6 Non-Conformant Nodes

To understand why in the above experiments, only a
fraction of Bitcoin nodes relayed our transactions, we
have studied the advertised banners of the 1,526 con-

93.24 %

91.3 %
57.59 %

12.84 %
23.35 %43.01 %

51.45 %

0

200

400

600

800

CN RU SG IR+

N
u

m
b

e
r

o
f

N
o

d
e

s

BitcoinUnlimited:1.0.1−1.0.3

BUCash:1.1.1−1.1.2

BitCore:0.14.1.6−0.15.0.1

Other

SuperBitcoin:0.16.0.2

Bitcoin ABC:0.14.6−0.16.1

Satoshi−0.8.1−1.14.5(2x)

Fig. 10. Distributions of Bitcoin node client types in 12 countries
with least freedom of press. The only client expected to relay
Tithonus transaction is the Satoshi client (Bitcoin Core fork).
China has the lowest percentage of such clients, but still higher in
absolute value than any of the other countries.

tacted nodes. We have observed 67 total unique ban-
ners, which we grouped into 7 categories, including an
“Other” category that contains banners with small rep-
resentation (under 10 nodes).

The only nodes that can be expected to relay
Tithonus transactions are the Bitcoin Core (Satoshi)-
compatible clients. The rest of the clients, such as, Bit-
coin Cash, Bitcoin Gold, etc. have incompatible and
independent blockchains. Thus, we consider all other
nodes to be non-conformant, as they compete with the
Satoshi nodes: they accept connections from Satoshi
clients but do not relay Bitcoin nor Tithonus trans-
actions. A Tithonus node that peers with such non-
conformant (Bitcoin forking) nodes may be more vul-
nerable to c-node filtering attacks, and even eclipse at-
tacks. Specifically, non-conformant nodes affect not only
Tithonus but also the distribution of regular Bitcoin
Core transactions. This occurs because Bitcoin Core
nodes waste outgoing connection slots (only 8 available
by default) when peering with nodes that effectively re-
duce their reachability and connectivity to the Bitcoin
network. However, we note that even in the presence of
a large percentage of non-conformant nodes, Tithonus
transactions were relayed by a large number (99.24%)
of conformant nodes in censored countries.

Figure 10 shows the distribution of the advertised
Bitcoin node types for the 1,526 nodes, over the top 3
censored countries in terms of node population and the
remaining 9 as a whole. China has the highest percent-
age of non-conformant nodes, followed by Singapore.
China is dominated by the Bitcoin Cash (ABC) client.
The number of Satoshi nodes in China exceeds those in
Russia, where they form the vast majority of nodes.

Tithonus: A Bitcoin Based Censorship Resilient System 82

7 Discussion and Limitations
Limitations of Tithonus. Tithonus is expensive, un-
suitable for low-latency interactive communications,
and limits the amount of content that can be requested
per time unit. Tithonus is suitable when other solutions
are blocked (e.g., VPNs [37–39]) or their detectability
may expose the user. Tithonus can be used to boot-
strap other censorship-resistant systems, e.g., to down-
load their source code or communicate Tor bridge IPs.

Tithonus communications are stored in the
blockchain, where they can be accessed and decrypted
by an adversary at a later time. However, Tithonus mes-
sages do not include client information. To attribute
such messages to the source clients, an adversary would
also need to monitor and record client communications,
in which case the blockchain provides no advantage.
Payment obfuscation. The content fetch solutions
described in § 4.5 require the client to transfer funds
to an address, then enable the Tithonus service to re-
deem those funds. However, the server cannot just trans-
fer the funds to a Tithonus controlled address or im-
mediately spend the funds on an identifiable resource
(e.g., through a transaction that uses as inputs multiple
such addresses). Such actions would inform the censor
about the identities of clients who use Tithonus. To ad-
dress this vulnerability, the Tithonus server makes use of
cryptocurrency exchanges that break the connection be-
tween the coins spent and the resource obtained. Since
some of these exchanges could be in collusion or have
been compromised by the censor, the Tithonus server
needs to chain the use of several exchanges before per-
forming the final use of the funds. Specifically, the funds
are transferred to one exchange and traded to several
different cryptocurrencies before being transferred to
another exchange. Depending on the desired confirma-
tion speed, transferring funds to an exchange currently
incurs a Bitcoin transaction fee of 200-600 satoshis. In
addition, trading operations have a cost of around 2%
of the transaction nominal value.
Censorship resilience. The cost of blocking Bitcoin
may be too large even for the most powerful cen-
sors. Censors may have invested heavily in cryptocur-
rencies [40] or have mining advantages over competi-
tors [41], thus may be reluctant to block cryptocur-
rencies. A censor who is unwilling to completely block
the use of Bitcoin will be unable to prevent out-to-in
communications from reaching the blockchain, thus cen-
sored clients (see § 6.3).

Censoring in-to-out transactions suspected of being
part of Tithonus can split the blockchain, as it will lead
to inconsistent mempools and different blocks for inside
and outside miners [28]. The inherent false positive rate
of any filtering algorithm will also lead to the censor
blocking valid transactions. Tithonus seeks to increase
this FPR, by making its transactions blend in Bitcoin.
We also found evidence that the default Bitcoin node
policy to select peers actively resists such attacks. In
Section 6.2 we show that even when 70% of the nodes in
the censored area are non-conformant, Tithonus trans-
actions reach most benign nodes in less than 19 seconds.

Further, we note that an adversary could exploit
knowledge that the censor blocks Tithonus transactions
(even if he allows their hashes) to deploy double spend-
ing attacks against users within the censored area. For
instance, an adversary outside the censored area could
issue a transaction to pay an “outside” service, that
mimics Tithonus staged transactions. The censor would
then prevent this transaction from reaching services in
the censored area. The adversary then double spends
the input address of this staged transaction, by issuing
a legitimate (no Tithonus payload) transaction from it
that pays a service within the censored area. Since the
service did not see the first transaction, it will accept
the second one.
Middleman blockchain attack. In an effort to rem-
edy the shortcomings of the previous attack, the cen-
sor could attempt forcing censored users to make use
of a censor-controlled blockchain accessing service. The
goal of this attack would be to prevent censored nodes
from directly accessing an uncensored version of the
blockchain. Instead, censored nodes would need to con-
tact this blockchain accessing service, “the middleman”,
to fetch blockchain information and perform transaction
and block verifications. The middleman would then be
able to, e.g., prevent access to the blocks containing
Tithonus data but still answer queries about the state
of the Bitcoin network.

Such a service would however make participants in-
side the censored area vulnerable to attacks, e.g., dou-
ble spending with merchants within the censored region.
Specifically, attackers could attempt to exploit the in-
herent racing condition that arises from the time the
middleman nodes receive a to-be censored transaction
and a query from a user inside the censored region. In
addition, the middleman service nodes would have to
be publicly and easily identifiable for censored users to
use them. This visibility makes them easy targets to at-
tacks, e.g., DoS, selective malicious information feeding
and even total eclipsing.

Tithonus: A Bitcoin Based Censorship Resilient System 83

Bitcoin provides resilience to such attacks by incen-
tivizing a diverse and distributed ecosystem of nodes.
The middleman blockchain attack reduces this diver-
sity and thus reduces the security of its participants, as
studied by Decker and Wattenhofer [28].

Malleability concerns. Since its creation, the
Bitcoin ecosystem has struggled with the problem of
transaction malleability. Thus, Tithonus transactions
are also malleable. This vulnerability could pose prob-
lems for staged transactions that require integrity pro-
tections when sent simultaneously. However, in order
for a censor to perform a “malleability + rushing”
attack on Tithonus, it needs to win a race against
the rest of the honest Bitcoin network and prevent
un-tainted Tithonus-issued writing transactions from
reaching their intended clients. Such a DoS attack could
be easier achieved by direct filtering. However, such ac-
tions would harm the Bitcoin ecosystem and miners in-
side the censored area [28], placing this attack outside
of our threat model.

8 Related Work
Blockchain based censorship resistance. Wachs
et al. [42] have evaluated the feasibility of building a
censorship resilient, privacy preserving domain name
system. Tomescu and Devadas [11] proposed Catena,
a blockchain-based non-equivocation solution. Catena
uses transaction chains where each transaction has two
outputs, one that stores data into an unspendable
OP_RETURN output and one that is spent in the fol-
lowing transaction in the chain. Catena transactions are
easy to fingerprint by the censor and have lower goodput
and a higher price than Tithonus (§ 6).
Proxy based and decoy routing censorship re-
sistance. Tithonus imposes higher costs and latency
than existing VPN services. However, VPNs are easy to
block, with countries like China [37, 38] and Russia [39]
curtailing access to VPNs. Decoy routing deploys re-
lay stations to routers of participating ISPs and lever-
ages covert channels (see below) to hide information
inside requests to an overt destination, which is then
detected and processed by a relay station. Decoy rout-
ing leverages collateral damage assumptions (see next)
to prevent censorship. Many decoy routing systems are
vulnerable to latency analysis and website fingerprint-
ing attacks. Bocovich and Goldberg [43] addressed this
problem through a decoy routing solution that mimics
access to an uncensored site.

Both proxy based solutions and decoy routing use
intermediate participants to route traffic. Similar to

Tithonus, intermediaries increase communication la-
tency. Further, both decoy routing and proxy based
CRS assume voluntary participation of multiple partic-
ipants. Tithonus provides financial incentives for partic-
ipation. Tithonus can be used to distribute IPs of Tor
bridges, but does not prevent a censor from discovering
and blocking them.
High collateral damage CRS. Emerging solutions
attempt to bypass such attacks, by leveraging the un-
willingness of censors to block access to infrastructure
providing large scale access to benign resources. For in-
stance, Holowczak and Houmansadr [8] found that the
Chinese firewall does not block IPs of CDN providers
that store censored content, as they also store large
amounts of benign content. However, Zolfaghari and
Houmansadr [9] found that CDN based CRS (e.g.,
CacheBrowser [8]) can leak the identity of destination
websites and are vulnerable to website fingerprinting at-
tacks. They designed CDNReaper, a CDN-aware based
CRS that addresses these attacks, e.g., by processing
the requested censored content.

Fifield et al. [10] further proposed domain fronting,
that sets up circumvention proxies on web services that
share IP addresses with other benign services. While
blocking all such IPs (including CDN IPs) is possible
to a powerful censor, it would block access to content
considered benign and even useful to the censor.
Mimicry and tunneling based CRS. Mohajeri et
al. [44] proposed SkypeMorph, a mimicry based CRS
that morphs Tor traffic to resemble the characteristics
of Skype calls. Houmansadr et al. [45] introduced Free-
Wave, a CRS that modulates censored traffic into acous-
tic signals which it tunnels over VoIP (i.e., Skype) con-
nections. Unlike Tithonus, SkypeMorph and FreeWave
communications are free. However, payments provide in-
centives for running the Tithonus service, and resilience
against DoS attacks. Tor can be blocked even when
using SkypeMorph, since a censor impersonating valid
users can discover and block Tor bridges. SkypeMorph is
vulnerable to packet drop attacks. In contrast, filtering
attacks do not impact Tithonus when the censor does
not want to affect Bitcoin usage.

9 Conclusions
We introduced Tithonus, a new CRS built on the Bit-
coin network and blockchain. We develop solutions for
Tithonus clients to fetch censored data of arbitrary size,
that are 2 orders of magnitude cheaper and 3-5 orders
of magnitude faster than state of the art Bitcoin writ-
ing solutions. Tithonus is robust even in the presence

Tithonus: A Bitcoin Based Censorship Resilient System 84

of non-conformant nodes, and this robustness is not af-
fected by the use of low fee transactions, in the absence
of congestion. Thus, Tithonus is able to provide an op-
timally cheap solution within a given cryptocurrency
ecosystem. Tithonus is practical when considering its
reach of Bitcoin nodes available in censored countries.

10 Acknowledgments
We thank the shepherd and the anonymous reviewers for
their excellent feedback. This research was supported by
NSF grant CNS-1526494.

References
[1] William R Marczak, John Scott-Railton, Morgan Marquis-

Boire, and Vern Paxson. When Governments Hack Op-
ponents: A Look at Actors and Technology. In USENIX
Security Symposium, pages 511–525, 2014.

[2] Robert Lemos. Blue Coat Appliances Used by Govern-
ments to Monitor, Censor Web Traffic. https://tinyurl.com/
ycjmy63o, 2013.

[3] Somini Sengupta. Group Says It Has New Evidence
of Cisco’s Misdeeds in China. New York Times, https:
//tinyurl.com/3qgd73f, September 2011.

[4] FinFisher. Wikipedia, https://en.wikipedia.org/wiki/
FinFisher.

[5] HackingTeam. Wikipedia, https://en.wikipedia.org/wiki/
Hacking_Team.

[6] Doug Madory. Iran Leaks Censorship via BGP Hijacks.
https://dyn.com/blog/iran-leaks-censorship-via-bgp-
hijacks/, 2017.

[7] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feam-
ster, Nick Weaver, and Vern Paxson. Global measurement
of dns manipulation. In Proceedings of the 26th USENIX
Security Symposium, 2017.

[8] John Holowczak and Amir Houmansadr. CacheBrowser: By-
passing Chinese Censorship Without Proxies Using Cached
Content. In Proceedings of the ACM Conference on Com-
puter and Communications Security, pages 70–83, 2015.

[9] Hadi Zolfaghari and Amir Houmansadr. Practical censorship
evasion leveraging content delivery networks. In Proceedings
of the ACM Conference on Computer and Communications
Security, pages 1715–1726, 2016.

[10] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and
Vern Paxson. Blocking-resistant communication through
domain fronting. Proceedings on Privacy Enhancing Tech-
nologies, 2015(2):46–64, 2015.

[11] Alin Tomescu and Srinivas Devadas. Catena: Efficient Non-
equivocation via Bitcoin. In Proceedings of IEEE Symposium
on Security and Privacy, pages 393–409, 2017.

[12] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J. Freed-
man. Blockstack: A Global Naming and Storage System
Secured by Blockchains. In Proceedings of the Usenix An-
nual Technical Conference, pages 181–194, 2016.

[13] Len Sassman tribute by Dan Kaminsky. http://
www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-

hat-usa-2011.
[14] Apertus 0.3.17-beta. Archive data on your favorite

blockchains. http://apertus.io/.
[15] Input Writing example by Peter Todd. https://github.com/

petertodd/python-bitcoinlib/blob/master/examples/publish-
text.py.

[16] Andrew Sward, Ivy Vecna, and Forrest Stonedahl. Data
insertion in bitcoin’s blockchain. Ledger, 3, 2018.

[17] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov.
The parrot is dead: Observing unobservable network com-
munications. In 2013 IEEE Symposium on Security and
Privacy, pages 65–79. IEEE, 2013.

[18] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon
Goldberg. Eclipse attacks on bitcoin’s peer-to-peer network.
In USENIX Security Symposium, pages 129–144, 2015.

[19] Alex Biryukov and Ivan Pustogarov. Bitcoin over tor isn’t a
good idea. In Security and Privacy (SP), 2015 IEEE Sympo-
sium on, pages 122–134. IEEE, 2015.

[20] D. D. Clark and D. L. Tennenhouse. Architectural consid-
erations for a new generation of protocols. In Proceedings
of the ACM Symposium on Communications Architectures
&Amp; Protocols, SIGCOMM ’90, pages 200–208, New
York, NY, USA, 1990. ACM.

[21] Effective ScriptSig Size. https://github.com/bitcoin/
bitcoin/blob/0.16/src/policy/policy.cpp#L108.

[22] A Survey of Bitcoin Transaction Types. http://
www.quantabytes.com/articles/tx_survey.html.

[23] Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and
Tanja Lange. Elligator: Elliptic-curve points indistinguishable
from uniform random strings. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications
security, pages 967–980. ACM, 2013.

[24] ANSI X9.63. Public Key Cryptography for the Financial
Services Industry: Key Agreement and Key Transport Using
Elliptic Curve Cryptography. American National Standards
Institute, 2001.

[25] Victor Shoup. A proposal for an ISO standard for public key
encryption (version 2.1). IACR E-Print Archive, 2001.

[26] Jianjun Duan, Joe Hurd, Guodong Li, Scott Owens, Konrad
Slind, and Junxing Zhang. Functional correctness proofs of
encryption algorithms. In International Conference on Logic
for Programming Artificial Intelligence and Reasoning, pages
519–533. Springer, 2005.

[27] Bitcoin hashrate. https://www.blockchain.com/en/charts/
hash-rate?timespan=all.

[28] Christian Decker and Roger Wattenhofer. Information prop-
agation in the bitcoin network. In Peer-to-Peer Computing
(P2P), 2013 IEEE Thirteenth International Conference on,
pages 1–10. IEEE, 2013.

[29] NY Times Newspaper Article (average word count). http:
//answers.google.com/answers/threadview/id/709596.html.

[30] English Letter Frequency Counts. http://norvig.com/
mayzner.html.

[31] Bitcoin fee from earn.com. https://bitcoinfees.earn.com/.
[32] Choose your HMA! price plan. https://

www.hidemyass.com/en-us/pricing.
[33] PureVPN pricing. https://www.purevpn.com/order.
[34] Confirmation times for Cryptocurrency deposits at

Bitfinex. https://support.bitfinex.com/hc/en-us/articles/
115003291405-Where-is-my-cryptocurrency-deposit-or-

https://tinyurl.com/ycjmy63o
https://tinyurl.com/ycjmy63o
https://tinyurl.com/3qgd73f
https://tinyurl.com/3qgd73f
https://en.wikipedia.org/wiki/FinFisher
https://en.wikipedia.org/wiki/FinFisher
https://en.wikipedia.org/wiki/Hacking_Team
https://en.wikipedia.org/wiki/Hacking_Team
https://dyn.com/blog/iran-leaks-censorship-via-bgp-hijacks/
https://dyn.com/blog/iran-leaks-censorship-via-bgp-hijacks/
http://www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011
http://www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011
http://www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011
http://apertus.io/
https://github.com/petertodd/python-bitcoinlib/blob/master/examples/publish-text.py
https://github.com/petertodd/python-bitcoinlib/blob/master/examples/publish-text.py
https://github.com/petertodd/python-bitcoinlib/blob/master/examples/publish-text.py
https://github.com/bitcoin/bitcoin/blob/0.16/src/policy/policy.cpp#L108
https://github.com/bitcoin/bitcoin/blob/0.16/src/policy/policy.cpp#L108
http://www.quantabytes.com/articles/tx_survey.html
http://www.quantabytes.com/articles/tx_survey.html
https://www.blockchain.com/en/charts/hash-rate?timespan=all
https://www.blockchain.com/en/charts/hash-rate?timespan=all
http://answers.google.com/answers/threadview/id/709596.html
http://answers.google.com/answers/threadview/id/709596.html
http://norvig.com/mayzner.html
http://norvig.com/mayzner.html
https://bitcoinfees.earn.com/
https://www.hidemyass.com/en-us/pricing
https://www.hidemyass.com/en-us/pricing
https://www.purevpn.com/order
https://support.bitfinex.com/hc/en-us/articles/115003291405-Where-is-my-cryptocurrency-deposit-or-withdrawal-
https://support.bitfinex.com/hc/en-us/articles/115003291405-Where-is-my-cryptocurrency-deposit-or-withdrawal-

Tithonus: A Bitcoin Based Censorship Resilient System 85

withdrawal-.
[35] Alternative methods to download Tor Browser. https://

arstechnica.com/information-technology/2018/04/google-
disables-domain-fronting-capability-used-to-evade-censors/.

[36] Sam Burnett, Nick Feamster, and Santosh Vempala. Chip-
ping away at censorship firewalls with user-generated con-
tent. In USENIX Security Symposium, pages 463–468.
Washington, DC, 2010.

[37] Charlie Osborne. China cracks down on ’unauthorized’
VPNs. https://www.zdnet.com/article/china-cracks-down-
on-unauthorized-vpns/, 2017.

[38] Jake Smith. Apple removes VPN apps from China App
Store to comply with government. https://www.zdnet.com/
article/apple-pulls-vpns-from-china-app-store/, 2017.

[39] Andy. Russia Blocks 50 VPNs & Anonymizers in Telegram
Crackdown, Viber Next. https://torrentfreak.com/russia-
blocks-50-vpns-anonymizers-in-telegram-crackdown-viber-
next-180504/, May 2018.

[40] Maximum Script Size. https://spectrum.ieee.org/
computing/networks/why-the-biggest-bitcoin-mines-are-
in-china.

[41] Maximum Script Size. https://arxiv.org/ftp/arxiv/papers/
1604/1604.00575.pdf.

[42] Matthias Wachs, Martin Schanzenbach, and Christian
Grothoff. A censorship-resistant, privacy-enhancing and
fully decentralized name system. In International Confer-
ence on Cryptology and Network Security, pages 127–142.
Springer, 2014.

[43] Cecylia Bocovich and Ian Goldberg. Slitheen: Perfectly
imitated decoy routing through traffic replacement. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1702–1714, 2016.

[44] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Der-
akhshani, and Ian Goldberg. Skypemorph: Protocol obfusca-
tion for tor bridges. In Proceedings of the ACM Conference
on Computer and Communications Security, pages 97–108,
2012.

[45] Amir Houmansadr, Thomas J Riedl, Nikita Borisov, and
Andrew C Singer. I want my voice to be heard: Ip over
voice-over-ip for unobservable censorship circumvention. In
Proceedings of NDSS, 2013.

[46] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael.
1999.

A Proof Sketch of
Indistinguishability of
In-To-Out Requests

We introduce the following indistinguishability game,
played by a challenger and an adversary. First, the ad-
versary chooses a message M and sends it to the chal-
lenger. The challenger encrypts M and takes the left-
most 28 bytes of the result to generate D. He then ran-
domly picks a bit b. If b = 0, the challenger generates

and outputs a regular compressed public key. If b = 1,
he embeds D in a public key as described in Section
4.1 and outputs the embedding instead. The adversary
then outputs a guess b′ for the challenger’s bit b. The
adversary wins if b′ = b with probability non-negligibly
higher than 1/2.

We observe that to prove that the Tithonus multisig
p2sh constructs are indistinguishable from regular mul-
tisig p2sh transactions, it suffices to show that our pro-
cedure for embedding encrypted data (§ 4.1) produces
outputs that are indistinguishable from a compressed
elliptic curve public key. This sufficiency claim follows
from the fact that a our p2sh construct simply con-
sists of two of these embeddings and a real public key,
whereas a regular p2sh Bitcoin transaction consists of 3
real public keys. Thus, if each of these embeddings are
indistinguishable from public keys, our construct and
regular p2sh transactions must be indistinguishable as
well.

To see that our embeddings are indistinguishable
from a compressed elliptic curve public key, we observe
that by definition, a compressed public key consists of
the prefix 0x02/0x03 followed by any random number x̃

that satisfies the following conditions C:
– x̃ is smaller than 0xFF...EFFFFFC2F (the 32 byte

prime p used in Bitcoin’s sec256pk1),
– x̃ satisfies w̃ = x̃3 + 7 (the elliptic curve equation

used in Bitcoin’s sec256pk1), where:
– w̃ is a quadratic residue (QR) in Fp.

In addition, by construction, our embedding consists
of the prefix 0x02/0x03, followed by x = D, R such that:
– D is smaller than 0xFF...FF (2224 − 1) and R is

smaller than 0xFFFFFC2F, so that x is smaller
than the prime p,

– x also satisfies w = x3 + 7, where:
– w is also a QR in Fp.

Thus, to establish indistinguishability all we need
to show is that x = D, R is indistinguishable from a
random number x̃ that satisfies conditions C. To this
end, we notice that, since R is a random number, if an
adversary is able to differentiate between x and x̃, then
she would also be able to differentiate between D and
a random number. Such an adversary would then also
have a non-negligible advantage in differentiating the
output of the Rjindael algorithm and a random number.
Although there is in fact no proof that Rjindael is indeed
a secure PRF, this is a generalized assumption about the
Rjindael cipher [46].

Finally, we observe that unspent keys in Tithonus
multisig p2sh transactions are not suspicious: Bitcoin

https://support.bitfinex.com/hc/en-us/articles/115003291405-Where-is-my-cryptocurrency-deposit-or-withdrawal-
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors/
https://www.zdnet.com/article/china-cracks-down-on-unauthorized-vpns/
https://www.zdnet.com/article/china-cracks-down-on-unauthorized-vpns/
https://www.zdnet.com/article/apple-pulls-vpns-from-china-app-store/
https://www.zdnet.com/article/apple-pulls-vpns-from-china-app-store/
https://torrentfreak.com/russia-blocks-50-vpns-anonymizers-in-telegram-crackdown-viber-next-180504/
https://torrentfreak.com/russia-blocks-50-vpns-anonymizers-in-telegram-crackdown-viber-next-180504/
https://torrentfreak.com/russia-blocks-50-vpns-anonymizers-in-telegram-crackdown-viber-next-180504/
https://spectrum.ieee.org/computing/networks/why-the-biggest-bitcoin-mines-are-in-china
https://spectrum.ieee.org/computing/networks/why-the-biggest-bitcoin-mines-are-in-china
https://spectrum.ieee.org/computing/networks/why-the-biggest-bitcoin-mines-are-in-china
https://arxiv.org/ftp/arxiv/papers/1604/1604.00575.pdf
https://arxiv.org/ftp/arxiv/papers/1604/1604.00575.pdf

Tithonus: A Bitcoin Based Censorship Resilient System 86

recommends that users do not reuse addresses, to pre-
vent linkability attacks.

B Tithonus Fees

Table 2. Tithonus economic costs for different fee rates.
The current median transaction fee is 9 Sat/byte. We
emphasize (bold) the recommended fees. The rest
of the fee values are not recommended since they
provide no advantage to Tithonus users. Monetary
costs are displayed at current Bitcoin price (1 BTC ≈
$6,080).

Tithonus txn type 1 Sat/byte 4 Sat/byte 9 sat/byte 16 sat/byte

Out-to-in (14KB file) $0.90 $3.58 $8.06 $14.32
Avg. News Article Cost $0.94 $3.75 $8.43 $7.49
In-to-out (Reg) $0.10 $0.38 $0.86 $1.54
In-to-out (Request) $0.10 $0.38 $0.86 $1.54

The calculations presented in Section 6.3 select the
minimum fee rate that achieves the fastest on-chain time
according to [31] (currently at 9 sat/byte). Table 2 pro-
vides details for Tithonus transaction costs for different
Bitcoin fee rates, including the minimum, the current
Bitcoin median transaction fee (9 sat/byte), and other
fees that are not recommended and that provide no ad-
vantage to users.

	Tithonus: A Bitcoin Based Censorship Resilient System
	1 Introduction
	2 Background
	2.1 Blockchain Writing
	2.2 Bitcoin Network

	3 System and Adversary Model
	3.1 Solution Requirements

	4 Tithonus
	4.1 Unit Layer
	4.2 Transport Layer
	4.3 Chaining Layer
	4.4 Security Layer
	4.5 Content Fetch Layer

	5 Analysis
	6 Evaluation
	6.1 Tithonus Certificate
	6.2 Swift Transactions
	6.3 The Price of Free Speech
	6.4 Tithonus Client Computing Overhead
	6.5 Tithonus Performance Comparisons
	6.6 Non-Conformant Nodes

	7 Discussion and Limitations
	8 Related Work
	9 Conclusions
	10 Acknowledgments
	A Proof Sketch of Indistinguishability of In-To-Out Requests
	B Tithonus Fees

