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Abstract: Motivated by the problem of data breaches,
we formalize a notion of security for dynamic struc-
tured encryption (STE) schemes that guarantees secu-
rity against a snapshot adversary; that is, an adver-
sary that receives a copy of the encrypted structure
at various times but does not see the transcripts re-
lated to any queries. In particular, we focus on the
construction of dynamic encrypted multi-maps which
are used to build efficient searchable symmetric en-
cryption schemes, graph encryption schemes and en-
crypted relational databases. Interestingly, we show that
a form of snapshot security we refer to as breach re-
sistance implies previously-studied notions such as a
(weaker version) of history independence and write-
only obliviousness. Moreover, we initiate the study of
dual-secure dynamic STE constructions: schemes that
are forward-private against a persistent adversary and
breach-resistant against a snapshot adversary. The no-
tion of forward privacy guarantees that updates to the
encrypted structure do not reveal their association to
any query made in the past. As a concrete instantia-
tion, we propose a new dual-secure dynamic multi-map
encryption scheme that outperforms all existing con-
structions; including schemes that are not dual-secure.
Our construction has query complexity that grows with
the selectivity of the query and the number of deletes
since the client executed a linear-time rebuild proto-
col which can be de-amortized. We implemented our
scheme (with the de-amortized rebuild protocol) and
evaluated its concrete efficiency empirically. Our exper-
iments show that it is highly efficient with queries taking
less than 1 microsecond per label/value pair.
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1 Introduction
The constant occurrence of data breaches has generated
a lot of interest from academia, industry and govern-
ment in the subject of encrypted search and, in par-
ticular, in encrypted databases (EDB). Because EDBs
can protect data at all times—even in use—they in-
herently provide stronger security and privacy guaran-
tees than standard database systems. There are several
ways in which a data breach can occur: (1) the server
that runs the database system is compromised; (2) the
database itself is somehow exfiltrated; and (3) the appli-
cation is compromised and the database is retrieved us-
ing the standard database interface. The first threat can
be modeled as a persistent adversary that controls the
database server at all times. The second can be captured
by a snapshot adversary that only gets a copy of the
database at specific points in time. Note that the third
cannot be addressed using cryptographic techniques be-
cause once the adversary compromises the application
and gets its credentials, it is indistinguishable from the
application.

Encrypted search solutions have traditionally been
designed to address persistent adversaries with the un-
derstanding that security against a persistent adversary
implies security against snapshot adversaries. While this
is indeed the case for most static constructions, it is
not necessarily true in the dynamic case. 1 In fact, solu-
tions designed specifically against a persistent adversary
could still leak information to a snapshot adversary that
one would expect to be hidden. Indeed, this can hap-
pen if the query or update operation modifies the en-
crypted structure in a way that depends on some previ-
ous query. The resulting leakage persists and can there-
fore be observable by a snapshot adversary. We stress
that there are very natural constructions that work this
way including [5, 6, 16, 29]. The problem of designing
snapshot-secure EDBs, therefore, is non-trivial and is
even more challenging when security against both a per-
sistent and a snapshot adversary is required.

1 More precisely, it holds for static constructions with mini-
mal setup leakage and query operations that do not modify the
structure.
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1.1 Previous Work and Challenges

Structured encryption. A promising approach to de-
signing EDBs relies on structured encryption schemes
which provide a balance of security, efficiency, expres-
siveness. A structured encryption scheme encrypts a
data structure in such a way that it can be pri-
vately queried. Roughly speaking, an STE scheme is
secure if it reveals nothing about the underlying struc-
ture and queries beyond some well-specified leakage.
Special cases of STE include graph [12, 32], dictio-
nary [10, 12] and, in particular, multi-map encryption
schemes [5, 10, 13], which are going to be the focus of
this work.

Multi-maps are data structures that store pairs of
the form (`,v), where ` is a label and v = (v1, . . . , vn)
is a tuple of n values. Multi-maps support a get oper-
ation that takes as input a label and returns its asso-
ciated tuple. Encrypted multi-maps (EMM) naturally
yield single-keyword SSE schemes by associating to the
set of encrypted documents (ct1, . . . , ctn), an EMM that
stores pairs of the form (w,v) where w is a keyword and
v = (id1, . . . , idm) is a tuple of identifiers for the files that
contain w. In addition, EMMs can be used as building
blocks to design graph encryption schemes [12], boolean
SSE schemes [8, 23] and encrypted relational databases
[25].

In many practical scenarios, encrypted data struc-
tures need to be dynamic; that is, able to support
additions and deletions. As such, efficient dynamic
SSE/EMM constructions have received a lot of atten-
tion both in terms of design [5, 6, 10, 16, 17, 21, 23, 24,
28, 33, 36–38] and cryptanalysis [7, 22, 39]. In partic-
ular, it has been shown that SSE schemes, under some
assumptions, can be prone to query recovery attacks
against passive [7, 22],2 and dynamic [39] adversaries.
Forward-privacy. The most recent work on dynamic
EMMs has focused on the notion of forward privacy
which was first proposed by Stefanov, Papamanthou
and Shi [38] and later formalized by Bost [5] with an
alternative definition given by Lai and Chow in [29].
Roughly speaking, forward privacy guarantees that up-
dates to the structure do not reveal their association to
any query made in the past. While forward privacy is
a useful security property in of itself, it has also been
shown to mitigate the adaptive file injection attacks of
Zhang, Katz and Papamanthou [39] (though not the
non-adaptive attacks).

2 Note that the attacks [7, 22] require the knowledge of 95%
and 80% of the user’s data in order to work, respectively.

Currently, the known forward-private EMMs are the
SPS construction by Stefanov et al. [38], the Sophos
construction of Bost [5], the TWORAM construction
by Garg, Mohassel and Papamanthou [18], the EKPE
construction by Etemad, Küpçü, Papamanthou and
Evans [16], and a recent construction by Lai and
Chow [29]. Recently, Bost, Minaud and Ohrimenko [6]
presented the first backward-private EMM, a notion
that was informally introduced in [38]. At a high level,
backward privacy guarantees that queries do not reveal
their association to deleted documents. While there are
no known attacks that leverage the lack of backward
privacy, improving the security guarantees of EMMs is
well-motivated.
Snapshot security.While most STE constructions are
known to be adaptively-secure against a persistent ad-
versary, as far as we know, no previous work has consid-
ered STE in the context of snapshot adversaries. Infor-
mally, a persistent adversary has access to the encrypted
structure and has access to the transcripts of the inter-
actions between the client and the server. A snapshot
adversary, on the other hand, only has access to the
encrypted structure (but at various times). Given that
snapshot adversaries are clearly weaker, it motivates the
following natural question:

Can we design efficient and dynamic
EMMs that are secure against a persistent
adversary and are (almost) zero-leakage
against a snapshot adversary?

We answer this question positively and in do-
ing so introduce a new kind of dynamic EMM
which are efficient and secure against both snapshot
and persistent adversaries. Specifically, these EMMs
are forward-private against persistent adversaries and
breach-resistant against snapshot adversaries, in the
sense that they leak only the size of the structure at
the time of the snapshot. Interestingly, while our con-
structions offer stronger security guarantees than pre-
vious work, it also achieves better asymptotic efficiency
in terms of query and update complexity, token and
encrypted structure size and client storage (under rea-
sonable assumptions).

1.2 Our Contributions

In this work, we revisit dynamic EMMs in several ways.
Breach resistance. Snapshot adversaries are moti-
vated by the threat of data breaches. In such a scenario,
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the adversary is not necessarily the server itself but some
other party that gets access to a copy of the encrypted
structure at some point(s) in time.

We propose a formal definition of snapshot secu-
rity which, intuitively, requires that a copy of the en-
crypted structure reveals nothing about the structure
and the past operations beyond what is revealed by a
well-specified leakage function we refer to as the snap-
shot leakage. We then say that an STE scheme is breach-
resistant if its snapshot leakage reveals at most the cur-
rent size of the structure. Our notion of breach resis-
tance is similar to the notion of offline security of Lewi
and Wu in the setting of property-preserving encryp-
tion (PPE) [30]. The IND-CPA-DS definition in [27] also
tries to capture snapshot security in the PPE setting,
but it only holds for single snapshots and semi-dynamic
schemes (that do not support deletes). We also show
that, breach-resistance implies some interesting and pre-
viously studied notions such as (a weaker version) of
history independence [35] and write-only obliviousness
[4].

We stress that our notion of breach resistance
applies only to the encrypted structures we design
and that, as pointed out by Grubbs, Ristenpart and
Shmatikov [20], there are non-trivial implementation
questions that have to be considered when they are in-
tegrated into real-world systems.
Forward privacy. Much like recent works, our pro-
posal is also forward-private. Our scheme, DLS, does
not make use of ORAM simulation [18, 38] or public-key
operations [5]. Furthermore, its query complexity grows
only with the number of delete operations performed
since the client executed (linear-time) rebuild protocol;
as opposed to the Sophos [5] and Diana [6] construc-
tions whose complexity grows with the total number of
deletes ever performed. Our construction is also much
more efficient as it only uses simple symmetric-key op-
erations as opposed to other schemes which use public-
key operations or constrained PRFs. Compared to the
EKPE construction [16], which is not snapshot-secure
and forward-private only for add operations, DLS offers
better asymptotics if the scheme is used in scenarios in
which the structure has more frequent updates and less
frequent queries.

Surprisingly, we find that forward privacy does not
imply breach resistance. While this may seem counter-
intuitive, it reinforces the need of rigorous security anal-
ysis of STE constructions against different types of ad-
versaries. In fact, several known forward-private con-
structions are not breach-resistant [5, 6, 16, 29]. For
instance, in [16], an adversary that observes multiple

snapshots can tell if a search occurred or not because
entries are deleted as part of the search operation. It
can also learn the exact size of the result set if snap-
shots were taken before and after a search operation.
This leakage is already more than just the size of the
data structure as required by breach resistance. For the
Sophos [5] and Dianadel [6] constructions, a snapshot
adversary can learn if or when a delete occurs if deletes
are not handled in the same structure.
Dual security. After formally defining snapshot secu-
rity, we construct, as far as we know, the first provably-
secure breach-resistant encrypted multi-map. In addi-
tion, our construction is also forward-private which
means that it can be used to protect against both
persistent and snapshot adversaries. We refer to such
constructions as being dual-secure. Our scheme, DLS,
achieves both notions of security, and we achieve our
desirable asymptotic query complexity by an explicit
rebuild protocol that must be executed by the client at
certain times. We show, however, that the protocol can
be de-amortized and we call this variant DLSd.3

To sum up, DLS features the best query, token size,
client memory, update and storage complexity among
all dual-secure schemes in literature.
Experimental evaluation. We implemented DLSd

(the variant with de-amortized rebuilding) in Java and
evaluated its performance on the Wikipedia dataset.
Our experiments show that this construction is highly
practical. We ran experiments on up to 83 million la-
bel/value pairs on an Amazon EC2 instance with 32
vCPUs and 60GB of memory.

DLSd is compact, producing EMMs of size 9.4GB
for a 3.6GB folder composed of 554, 059 files. It has a
search overhead less than 1 microsecond per pair for
selectivities spanning from 100 to 10, 000 pairs. On the
other hand, it has an update overhead of around 100
milliseconds per pair. This slowdown is mainly due to
the de-amortized rebuilding protocol.

2 Preliminaries
Notation. The set of all binary strings of length n is
denoted as {0, 1}n, and the set of all finite binary strings
as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n]

3 While this can be of independent interest, DLS results in a
very efficient write-only oblivious multi-map which can replace
several existing constructions, e.g., the ones used in the hidden
volume scheme HIVE [4] or in the oblivious file backup system
ObliviSync [2].
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is the corresponding power set. We write x← χ to rep-
resent an element x being sampled from a distribution
χ, and x $← X to represent an element x being sampled
uniformly at random from a set X. The output x of an
algorithm A is denoted by x ← A. Given a sequence o
of n elements, we refer to its ith element as oi or o[i]. If
T is a set then #T refers to its cardinality. Given strings
x and y, we refer to their concatenation as either 〈x, y〉
or x‖y.
Basic structures. We make use of several basic data
types including dictionaries and multi-maps which we
recall here. A dictionary DX of capacity n is a collection
of n label/value pairs {(`i, vi)}i≤n and supports Get and
Put operations. We write vi = DX[`i] to denote getting
the value associated with label `i and DX[`i] = vi to de-
note the operation of associating the value vi in DX with
label `i. We denote by LDX the set of labels stored in DX
and by #DX the volume of DX which is the number of
label/value pairs it holds which is n = #LDX. A multi-
map MM with capacity n is a collection of n label/tuple
pairs {(`i,vi)}i≤n that supports Get and Put opera-
tions. Similarly to dictionaries, we write vi = MM[`i]
to denote getting the tuple associated with label `i and
MM[`i] = vi to denote operation of associating the tu-
ple vi to label `i. We denote by LMM the set of labels
stored in MM and by #MM the volume of MM which
is
∑

`∈LMM
#MM[`]. Multi-maps are the abstract data

type instantiated by an inverted index. In the encrypted
search literature multi-maps are sometimes referred to
as indexes, databases or tuple-sets (T-sets) [8, 10]. Given
a sequence of operations op = (op1, . . . , opn), each of
which can be a query, an addition or a deletion, we de-
note by add(op) the subsequence of addition operations
and by del(op) the subsequence of delete operations. We
further define the subsequence of update operations as
up(op) = add(op) + del(op).
Basic cryptographic primitives. We make use of
encryption schemes that are random-ciphertext-secure
against chosen-plaintext attacks (RCPA),4 and pseudo-
random functions (PRF). For definitional details, we re-
fer the readers to [10, 26].

3 Definitions
Structured encryption schemes [12] encrypt data struc-
tures in such a way that they can support operations

4 RCPA-secure encryption can be instantiated practically using
either the standard PRF-based private-key encryption scheme
or, e.g., AES in counter mode.

on encrypted data. With encrypted data structures, we
can distinguish between different types of operations.
This includes non-interactive and interactive operations
where the former require only a single message and the
latter require several rounds. We can also distinguish
between response-revealing and response-hiding opera-
tions, where the former reveal the answer to the query
and the latter do not.

STE schemes are used as follows. During a setup
phase, the client constructs an encrypted structure EDS
from a plaintext structure DS under a key K. If the
scheme is stateful, this setup procedure also outputs
a state st. The client then sends the encrypted struc-
ture EDS to an untrusted server and keeps the state
st and key K private. The client can then query EDS
using the supported operations. If the operation is non-
interactive, the client sends to the server a token tk con-
structed with its key K, state st and query q. The server
then uses the token tk to query the encrypted structure
EDS. If the operation is interactive, the client and server
execute a two-party protocol where the former inputsK,
st and q and the latter inputs EDS.
Self-adjusting encrypted structures.

A data structure is self-adjusting if it re-arranges it-
self after being queried or updated. This is usually done
to maintain correctness, consistency or to improve effi-
ciency. We provide below the syntax of a self-adjustable
STE scheme. Note that, here, the update operation is
interactive which is not a requirement.

Definition 3.1 (Self-adjusting STE). A response-
hiding dynamic structured encryption scheme Σ =
(Setup,Token,Query,Update,Rslv) with non-interactive
queries and interactive updates consists of four
polynomial-time algorithms and one two-party proto-
col between the client and server that work as follows:
– (K, st,EDS) ← Setup(1k,DS): is a probabilistic algo-
rithm that takes as input a security parameter 1k and
a structure DS. It outputs a secret key K, a state st
and an encrypted structure EDS.

– (st′, tk)← Token(K, st, q): is a (possibly) probabilistic
algorithm that takes as input a secret key K, a state
st and a query q. It outputs a new state st′ and a
query token tk.

– (ct,EDS′) ← Query(EDS, tk): is a (possibly) proba-
bilistic algorithm that takes as input an encrypted
structure EDS and a token tk. It outputs a message ct
and an (possibly) updated encrypted structure EDS′.

– (st′,EDS′) ← UpdateC,S

((
K, st, u

)
,EDS

)
: is a two-

party protocol between the client and the server. It
takes as input from the client a key K, a state st
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and an update u and as input from the server an
encrypted structure EDS. It outputs to the client an
updated state st′ and to the server a new encrypted
structure EDS′.

– r ← Rslv(K, ct): is a deterministic algorithm that
takes as input a secret key K and a message ct. It
outputs a response r.

The syntax of response-revealing Query operation can
be recovered by having it output the response r directly
and omitting the Rslv algorithm.
Rebuildable encrypted structures. We say that a
data structure is rebuildable if it supports a rebuild
operation that reconstructs it. Rebuild operations are
typically used to improve query efficiency or storage
overhead after a sequence of operations have been per-
formed. Whereas self-adjusting structures re-arrange
themselves as part of a query or update operation, re-
buildable structures support an explicit rebuild opera-
tion that is typically invoked after a sequence of oper-
ations. We provide below the syntax of a rebuildable
STE scheme. Note that, here, the rebuild operation is
interactive.

Definition 3.2 (Rebuildable STE). A response-hiding
dynamic structured encryption scheme Σ = (Setup,
Token,Query,UToken,Update,Rebuild,Rslv) with non-
interactive queries and interactive rebuilds consists of
seven polynomial-time algorithms and one two-party
protocol between the client and server. The Setup,Token
and Rslv are as in Definition 3.1 while Query,UToken,
Update and Rebuild work as follows:
– ct← Query(EDS, tk): is a (possibly) probabilistic algo-
rithm that takes as input an encrypted structure EDS
and a token tk. It outputs a message ct.

– (st′, utk)← UToken(k, st, u): is a (possibly) probabilis-
tic algorithm that takes as input a secret key K, a
state st and an update u. It outputs a new state st′

and an update token utk.
– EDS′ ← Update(EDS, utk): is a (possibly) probabilistic
algorithm that takes as input an encrypted structure
EDS and an update token utk. It outputs an updated
encrypted structure EDS′.

– (st′,EDS′) ← RebuildC,S
((
K, st

)
,EDS

)
: is a two-

party protocol between the client and the server. It
takes as input from the client a key K and a state st
and as input from the server an encrypted structure
EDS. It outputs to the client an updated state st′ and
to the server a new encrypted structure EDS′.

In the subsequent parts of this section, we will only fo-
cus on rebuildable STE. The proposed definitions can be
naturally extended to self-adjusting STE schemes.

3.1 Security Against a Persistent
Adversary

The standard notion of security for STE guarantees
that: (1) an encrypted structure reveals no information
about its underlying structure beyond the setup leakage
LS; (2) that the query algorithm reveals no information
about the structure and the queries beyond the query
leakage LQ; and that (3) the update algorithm reveals
no information about the structure and the update be-
yond the update leakage LU. Naturally, if the scheme
has a rebuild protocol then we require that it reveals no
information about the underlying structure beyond the
rebuild leakage LR.

If this holds for non-adaptively chosen operations
then the scheme is said to be non-adaptively secure. If,
on the other hand, the operations can be chosen adap-
tively, the scheme is said to be adaptively-secure. This
notion of security was first formalized by Curtmola et
al. in the context of searchable encryption [13] and later
generalized to structured encryption in [12].

Definition 3.3 (Adaptive security [12, 13]). Let Σ =
(Setup,Token,Query,UToken,Update,Rebuild,Rslv) be a
rebuildable STE scheme and consider the following prob-
abilistic experiments where A is a stateful adversary, S
is a stateful simulator, LS, LQ, LU and LR are leakage
profiles and z ∈ {0, 1}∗:
RealΣ,A(k): given z the adversary A outputs a struc-

ture DS and receives EDS from the challenger, where
(K, st,EDS) ← Setup(1k,DS). The adversary then
adaptively chooses a polynomial number of opera-
tions op1, . . . , opm such that opi is either a query
qi, an update ui, or a rebuild ri. For all i ∈
[m], the adversary receives tki ← Token(K, st, qi) if
opi = qi or utki ← UToken(K, st, ui) if opi = ui.
If opi = ri, then the client and server execute
RebuildC,S

((
K, st

)
,EDS

)
. Finally, A outputs a bit

b that is output by the experiment.
IdealΣ,A,S(k): given z the adversary A generates a

structure DS which it sends to the challenger. Given
z and leakage LS(DS) from the challenger, the sim-
ulator S returns an encrypted structure EDS to A.
The adversary then adaptively chooses a polynomial
number of operations op1, . . . , opm such that opi is
a query qi, an update ui or a rebuild ri. For all
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i ∈ [m], if the simulator receives either query leak-
age LQ(DS, qi) or update leakage LU(DS, ui). In the
former case, it returns a query token tki to A and
in the latter it returns an update token utki to A. If
opi = ri, S(LR(DS)) and A execute Rebuild. Finally,
A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ,LU,LR)-secure if
there exists a ppt simulator S such that for all ppt ad-
versaries A, for all z ∈ {0, 1}∗, the following expression
is negligible in k:∣∣Pr

[
RealΣ,A(k) = 1

]
− Pr

[
IdealΣ,A,S(k) = 1

]∣∣ .
Forward privacy. An important property for dynamic
STE schemes is forward privacy which was introduced
in [38] to address some of the limitations of dynamic
SSE constructions at the time. The informal require-
ment described in [38] was that forward-private SSE
schemes should not reveal if the file in a file update
operation (i.e., a file add or delete) has keywords that
were searched for in the past. This was formalized in [5]
for AddFile operations as

LAF(MM, f) =
(

#f
)
,

where f ⊆W is a file.

3.2 Security Against a Snapshot Adversary

In the standard notions of security for STE, the ad-
versary is assumed to be the server itself. As such, we
seek security guarantees against an adversary that sees
not only the encrypted structure but all the search and
update operations as well. In many real-world scenar-
ios, however, we are concerned with a weaker adver-
sary that, only periodically, gets access to the encrypted
structure and, in particular, does not get to see any
query or update operations. This adversarial model cap-
tures, for example, data breaches, malicious employees
and device theft. Such an adversary is called a snapshot
adversary.

We propose a new security definition for STE
against snapshot adversaries. In our definition 3.4, the
adversary has access to multiple snapshots each of which
is interspersed with a batch of operations. Intuitively, we
require that the encrypted structure reveals no informa-
tion about the underlying structure and the sequence of
operations executed prior to the multiple snapshots, be-
yond some snapshot leakage LSN.

Surprisingly, we demonstrate that for a particular
class of snapshot leakage, (multiple) snapshot secure

STE schemes imply insertion independence, a variant of
history independent data structures [35], and can also
provide a write-only oblivious structure [4].

Definition 3.4 (Snapshot security). Let Σ = (Setup,
Token,Query,UToken,Update,Rebuild,Rslv) be a rebuild-
able STE scheme and consider the following probabilis-
tic experiments where A is a stateful adversary, S is
a stateful simulator, LSN is a stateful leakage function,
z ∈ {0, 1}∗, and m ≥ 1:
Realms

Σ,A(k,m):
1. given z the adversary A outputs a structure DS0;
2. the challenger computes (K, st,EDS0) ←

Setup(1k,DS0);
3. the adversary A(EDS0) outputs a sequence of oper-

ations op1 = (op1,1, . . . , op1,`) where ` = poly(k);
4. For all i ∈ [m],
(a) the challenger applies all the operations in opi to

EDSi−1 by computing and applying the appropri-
ate tokens. This results in EDSi;

(b) the adversary A(EDSi) outputs a sequence of op-
erations opi+1 = (opi+1,1, . . . , opi+1,`) where ` =
poly(k);

5. Finally, A outputs a bit b that is returned by the
experiment.

Idealms
Σ,A,S(k,m):

1. given z the adversary A outputs a structure DS0;
2. the simulator S(z,LSN(DS0,⊥)) simulates EDS0;
3. the adversary A(EDS0) outputs a sequence of oper-

ations op1 = (op1,1, . . . , op1,`);
4. For all i ∈ [m],
(a) the challenger applies all the operations in opi to

DSi−1, resulting in DSi;
(b) the simulator S(LSN(DSi,opi)) simulates EDSi;
(c) the adversary A(EDSi) outputs a sequence of op-

erations opi+1 = (opi+1,1, . . . , opi+1,`);
5. Finally, A outputs a bit b that is output by the ex-

periment.
We say that Σ is (m,LSN)-snapshot secure if there exists
a ppt simulator S such that for all ppt adversaries
A and for all z ∈ {0, 1}∗, the following expression is
negligible in k:∣∣Pr
[

Realms
Σ,A(k,m) = 1

]
− Pr

[
Idealms

Σ,A,S(k,m) = 1
]∣∣ .

Breach resistance. Ideally, the snapshot leakage of
a scheme should be as small as possible. With this in
mind, we deem that an encrypted structure should be
regarded as breach-resistant if its snapshot leakage is at
most the size of the plaintext structure at the time the
snapshot is taken.
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Definition 3.5 (Breach resistance). Let Σ be an LSN-
snapshot secure non-interactive dynamic STE scheme.
We say that Σ is breach-resistant if

LSN(DS,op1, . . . ,opi) = #DSi,

where DSi is the structure that results from applying
op1, . . . ,opi to DS and #DSi refers to its volume in
the sense of the total number of “items" it stores. Note
that the volume of a structure depends on its type.

For the remainder of this work, we focus on designing
a multi-map encryption scheme that is secure against
both persistent and snapshot adversaries. Specifically,
we require that the scheme be forward-private against
a persistent adversary and breach-resistant against a
snapshot adversary. We refer to schemes that meet these
two properties as dual-secure.

Definition 3.6 (Dual security). Let Σ be a dynamic
rebuildable structured encryption scheme with leakage
profiles ΛPer = (LS,LQ,LU,LR) and ΛSna = LSN. We
say that Σ is dual-secure if it is forward-private and
breach-resistant.

Implications of breach resistance. We demonstrate
that breach resistance implies some interesting and pre-
viously studied notions of security including a weaker
notion of history independence [35] and write-only obliv-
iousness [4]. Due to lack of space, the details appear in
the full version of this paper.

4 DLS: A Dual-Secure Multi-Map
Encryption Scheme

We now describe our construction, DLS, which is a dual-
secure rebuildable multi-map encryption scheme. Unlike
SPS [38] and Sophos [5], DLS does not make use of
ORAM-like techniques or public-key operations. In ad-
dition, while Sophos and Diana [6] have query complex-
ity that is linear in the number of delete operations ever
executed, DLS’s query complexity is linear only in the
number of delete operations executed since the last re-
build operation. The rebuild protocol is linear in the size
of the multi-map and can be de-amortized while main-
taining snapshot security. In the following, we present
a description of the construction followed by a detailed
analysis.

4.1 Detailed Description

DLS makes use of a pseudo-random function F and of
a private-key encryption scheme SKE. The details of the
scheme are provided in Figs. 1 and 2. At a high-level,
it works as follows.
Setup. The Setup algorithm takes as input a security
parameter k and a multi-map MM. It instantiates two
dictionaries: an old dictionary, DXo, and a new dictio-
nary, DXn. It also instantiates the state composed of
a global version versiong, a searched label set Se, and
two state dictionaries, an old DXst

o and a new DXst
n . The

global version versiong will record the number of rebuilds
ever performed in the future. The set Se is a temporary
one that will keep track of all searched labels within
a single rebuild epoch. Dictionaries DXst

o and DXst
n will

map a label to both its counter and version. The counter
of a label ` in DXst

o and DXst
n is the number of all values

that have been added to DXo and DXn in the previous
and current epoch, respectively. In other words, DXst

o
contains only labels that existed within the previous
version, i.e., the previous rebuild epoch.

Setup outputs the old and new dictionaries as its en-
crypted multi-map. The old dictionary DXo is populated
as follows. In order to store (`‖versiong,MM[`]) in DXo,
it stores the pairs

(
`‖i‖versiong, vi

)
, for all vi ∈ MM[`]

and i ∈ [#MM[`]], where versiong is the current rebuild
epoch (the rebuild epoch at setup time is initialized to
1). To store the pair in an encrypted way, a PRF evalua-
tion is performed on the concatenation of the label `, its
counter count and the rebuild epoch versiong. The corre-
sponding value in MM[`] is first concatenated with the
string edit+ and then simply encrypted. The new dictio-
nary DXn is only instantiated and remains empty. The
output of the setup algorithm includes the encrypted
structures (DXo,DXn), the keys as well as the state.
Search token. The Token algorithm takes as input a
key, a state and a label. First, it fetches from both
the old and new state dictionaries the correspond-
ing counters and rebuilding versions. Recall the old
and new counters, counto and countn, count the num-
ber of times the label has been added, deleted from
the old and new dictionaries, respectively. Based on
the counters, whether old or new, it creates two sub-
token vectors such that otk = (otk1, · · · , otkcounto) and
ntk = (ntk1, · · · , ntkcountn). The old subtokens otki, for
i ∈ [counto], will allow the server to query the old dic-
tionary DXo, while the new tokens ntki, for i ∈ [countn],
will allow the server to query the new dictionary DXn.
Finally, it updates the state by adding ` to Se as it is
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now searched. The output includes the state and the
token tk = (otk, ntk).
Query. The Query algorithm takes as input the token
and the encrypted data structure. The token is divided
into two sub-token vectors, otk and ntk. Each sub-token
in otk corresponds to a label in the old dictionary DXo
from which the server fetches the value and inserts in
the result set, Result. The server performs the same op-
erations for every sub-token in ntk, but on the new dic-
tionary DXn. The server finally outputs the result set
Result. Note that the set Result does not exactly equal
MM[`] as the client might have deleted several pairs
both in the old or new dictionaries. The client, based
on the meta-information included with the decrypted
values, i.e., edit+ or edit−, can easily compute the cor-
rect MM[`], where edit+ and edit− denote added and
deleted values, respectively.
Update token. The UToken algorithm takes as input
a key, a state, and an update consisting of the type of
operation op, a label `, and its value v. It first computes
tk1 which is a PRF evaluation on the concatenation of
the label, its counter and the current rebuilding version.
The counter represents the number of times the label `
has been added to the new dictionary DXn throughout
the current rebuilding version, and is fetched from the
new state dictionary DXst

n , given the label `. The counter
is then updated accordingly. The value v is concatenated
to the operation op before being encrypted, and this rep-
resents the second part of the token, tk2. The output of
the algorithm includes utk = (tk1, tk2) and an updated
state.
Update. The Update algorithm takes as input the up-
date token and the encrypted data structure. The server
will simply update the new dictionary DXn by adding
the update token, utk = (tk1, tk2), to it. The output of
the Update algorithm consists of the updated encrypted
structure.
Rebuilding. The Rebuild algorithm is a two-party pro-
tocol between the client and the server. The client’s
input is a key and a state, while the server’s input is
the encrypted data structure. The goal of the rebuild
operation is to merge the old dictionary into the new
one. The new one will then become the old at the end
of the rebuild. The rebuild differentiates between two
types of labels: (1) labels that have been searched for
in DXo, and (2) labels that have not. For each of the
labels in Se, the client fetches all the values correspond-
ing to ` ∈ Se, removes all values that have to be deleted
and then insert the remaining ones into the new dic-
tionary DXn. Inserting these values into DXn follows a
similar process to the one in UToken and Update algo-

rithms. For the remaining labels, i.e., labels that have
never been searched for in DXo, the client picks a ran-
dom label, fetches a value with the largest counter and
inserts it into the new dictionary DXn. The client up-
dates the state by decreasing the counter of the selected
label and removes it whenever it equals 1. Once all la-
bels have been reinserted, both the old state dictionary
DXst

o and old dictionary DXo are deleted, the set Se is
reinitialized, the new state dictionary DXst

n and new dic-
tionary DXn becomes the old state dictionary DXst

o and
old dictionary DXo, and the epoch is incremented. The
output of the Rebuild is an updated state for the client
and an updated encrypted structure for the server.

In order to achieve snapshot security, the entire
transcript of the Rebuild protocol, including its internal
state, has to be kept secret. That is, a snapshot adver-
sary must not get a snapshot of the encrypted structures
while the Rebuild protocol is executing. This is mainly
due to the fact that while rebuilding searched for labels,
a snapshot adversary will get to know the response size
of the searched for labels; which is clearly at odds with
our security goals that consist of only disclosing the size
of the data structure.

We show how to lift this constraint in Section 5.
Efficiency. The query complexity of DLS is

O

(
#MM[`] + del(`, e)

)
,

where del(`, e) is the number of deletes for ` since epoch
e when ` was most recently searched for (i.e., since the
last rebuild during which ` was a searched for label). As
a point of comparison, the Sophos construction of Bost
[5] and the Diana construction of Bost et al. [6] have
query complexity

O

(
#MM[`] + del(`, 0)

)
,

where del(`, 0) denotes the number of deletes for ` since
the structure was setup. The storage complexity of DLS
is

O

( ∑
`∈LMM

(
#MM[`] + del(`, e)

))
,

while recent constructions [5, 6] have storage complex-
ity O(

∑
`∈LMM

(#MM[`]+del(`, 0))). DLS has search and
update tokens of size O

(
#MM[`]+del(`, e)

)
and O(#v),

respectively, and its rebuild complexity is

O

( ∑
`∈LMM

(
#MM[`] + del(`, e)− up(`, c)

))
,

where #up(`, c) is the number of updates for ` since the
last rebuild operation.
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Let F be a pseudo-random function, SKE = (Gen, Enc, Dec) be a
private-key encryption scheme. Consider the dynamic encrypted
multi-map DLS = (Setup, Token, UToken, Get, Put, Rebuild) defined
as follows:

– Setup
(

1k, MM
)
:

1. sample K1, K2
$← {0, 1}k;

2. initialize an empty set Se and four empty dictionaries
DXst

o , DXst
n , and DXo and DXn with capacities #LMM and∑

`∈LMM
#MM[`] respectively;

3. for all i ∈ [#MM],
(a) sample a pair (`, MM[`]) from MM without replacement;
(b) set count = 1 and versiong = 1;
(c) for all v ∈ MM[`],

i. compute

label := FK1 (`‖versiong‖count) and value := Enc(K2, v‖edit+);

ii. set DXo[label] := value;
iii. set DXst

o [`] := (versiong, count) and increment count;
4. increment versiong;
5. output (K, st, EMM) where K = (K1, K2), st =

(versiong, Se, DXst
o , DXst

n ) and EMM = (DXo, DXn).
– Token

(
K, st, `

)
:

1. parse K = (K1, K2) and st = (versiong, Se, DXst
o , DXst

n );
2. if DXst

n [`] 6= ⊥, set (versionn, countn) := DXst
n [`], and if

DXst
o [`] 6= ⊥ set (versiono, counto) := DXst

o [`] and add ` to
Se;

3. set

otk =
(

otk1, · · · , otkcounto

)
and ntk =

(
ntk1, · · · , ntkcountn

)
,

where for all i ∈ [counto] and j ∈ [countn]

otki := FK1 (`‖versiono‖i) and ntki := FK1 (`‖versionn‖j);

4. output the update state st = (versiong, Se, DXst
o , DXst

n ) and
the token tk = (otk, ntk).

– UToken
(

K, st, (op, `, v)
)
:

1. parse K = (K1, K2) and st = (versiong, Se, DXst
o , DXst

n );
2. if ` /∈ LMM,
(a) set DXst

n [`] := (versiong, count) where count = 1;
3. otherwise,
(a) if DXst

n [`] 6= ⊥,
i. set (version, count) := DXst

n [`] and increment count;
ii. set DXst

n [`] := (versiong, count);
(b) otherwise

i. set DXst
n [`] := (versiong, count) where count = 1;

4. for all v ∈ v,
(a) compute

tkv,1 := FK1

(
`‖versiong‖count

)
and tkv,2 := Enc(K2, v‖op);

(b) increment count and set DXst
n [`] := (versiong, count);

5. output the updated state st = (versiong, Se, DXst
o , DXst

n ) and
utk = (tkv,1, tkv,2)v∈v.

– Get
(

tk, EMM
)
:

1. parse EMM = (DXo, DXn) and tk = (otk, ntk) s.t.

otk =
(

otk1, · · · , otkcounto

)
and ntk =

(
ntk1, · · · , ntkcountn

)
;

2. instantiate an empty set Result;
3. add DXo[otki] and DXn[ntkj ] for all i ∈ [counto] and j ∈

[countn] to Result;
4. output Result.
– Put

(
utk, EMM

)
:

1. parse EMM = (DXo, DXn) and utk = (tkv,1, tkv,2)v∈v;
2. for all v ∈ v, set DXn[tkv,1] := tkv,2;
3. output EMM.

Fig. 1. DLS (Part 1).

– RebuildC,S

((
K, st

)
, EMM

)
:

1. C parses K = (K1, K2), st = (versiong, Se, DXst
o , DXst

n ) and
EMM = (DXo, DXn);

2. for all ` ∈ Se such that DXst
o [`] 6= ⊥, ,

(a) C sets (versiono, counto) := DXst
o [`] and removes ` from

DXst
o ;

(b) C computes and sends to S,

tk = (otk1, · · · , otkcounto ),

where otki = FK1 (`‖versiono‖i);
(c) S computes and sends to C,

Result = (ct1, · · · , ctcounto );

where cti = DXo[otki] for all i ∈ [counto];
(d) C computes V = Result+ \ Result−, where

Result+ = {v : ∀ct ∈ Result, v‖edit+ = Dec
(

K2, ct
)
}

Result− = {v : ∀ct ∈ Result, v‖edit− = Dec
(

K2, ct
)
}

(e) if DXst
n [`] 6= ⊥, C sets (versionn, countn) := DXst

n [`], other-
wise sets countn = 1;

(f) for all v ∈ V ,
i. C computes and sends,

tk1 := FK1

(
`‖versiong‖countn

)
tk2 := Enc(K2, v‖edit+);

ii. S computes DXn[tk1] := tk2;
iii. C increments countn;

3. while #DXst
o > 0,

(a) C picks ` at random
(b) C sets (versiono, counto) := DXst

o [`] and DXst
o [`] :=

(versiono, counto − 1);
(c) if counto − 1 < 1, C then removes ` from DXst

o ;
(d) C computes and sends to S otk =

F (K1, `‖versiono‖counto);
(e) S computes and sends to C ct = DXo[otk];
(f) if DXst

n [`] 6= ⊥,
i. C sets (versionn, countn) := DXst

n [`];
ii. C computes and sends to S,

tk1 := FK1

(
`‖versionn‖countn

)
tk2 := Enc

(
K2, Dec(K2, ct)

)
;

iii. S computes DXn[tk1] := tk2;
iv. C sets DXst

n [`] := (versionn, countn + 1);
(g) otherwise if DXst

n [`] = ⊥, then
i. C sets DXst

n [`] := (versiong, 1);
ii. C computes and sends to S,

tk1 := FK1

(
`‖versiong‖1

)
tk2 := Enc

(
K2, Dec(K2, ct)

)
iii. S computes DXn[tk1] := tk2;

4. C sets DXst
o := DXst

n and initializes an empty dictionary DXst
n

with capacity 2 ·#LMM;
5. S sets DXo := DXn and initializes an empty dictionary DXn

with capacity 2 ·#LMM;
6. C empties Se and increments versiong;
7. C outputs the updated states st = (versiong, Se, DXst

o , DXst
n )

and S the updated encrypted multi-map EMM =
(DXo, DXn).

Fig. 2. DLS (Part 2).
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DLS’s amortized rebuild complexity is

O

(
max

e∈N,`∈LMM
#MMe[`]

)
,

where MMe[`] denotes the tuple associated to label ` at
epoch e. This is because for all e ∈ N, we have

del(`, e) = O

(
max

e∈N,`∈LMM
#MMe[`]

)
,

from which it follows that the total rebuild cost is

O

(
#LMM · max

e∈N,`∈LMM
#MMe[`]

)
.

If rebuilds are executed every O(#LMM) operations, we
get the amortized cost above. Note that this is a very
loose asymptotic upper-bound and that, in practice,
DLS’s amortized cost will be much lower.

Finally, the client locally stores the state composed
of both the old and new state dictionaries, and the set
of searched for labels. That is, client storage is

O

(
#LMM · log

(
max

`∈LMM
(#MM[`] + del(`, e))

)
.

Variants. While DLS improves on the query, update
and storage complexity of all previous dynamic EMM
schemes, its token size is larger. This can be improved
using one of the following three approaches. The first
reduces the token size to be O

(
#up(`, c)

)
. It consists of

using the counter-based approach for the old dictionary;
that is, granting the server the ability to compute all
encrypted labels for the old dictionary (as πdyn). Given
that all new updates are going to be added to the new
dictionary, the server, with a key derived from the label,
can generate all the encrypted labels. That is, the client
will only send a key along with the new token ntk which
has size equal to the number of updates for ` in the
current epoch.

The second approach leverages constrained pseudo-
random functions, introduced in Diana [6]. The client
can simply send two constrained keys for the required
ranges for both the old and new counters. This approach
reduces the token size to be

O

(
log
(
#MM[`] + del(`, e)

))
,

when using GGM [19] as the constrained PRF.
The third approach is the combination of the first

two approaches. The client sends a token composed of:
(1) a key for a standard PRF with which the server
computes all encrypted labels in the old dictionary; and
(2) a constrained key for the appropriate range in the

new dictionary. The size of the search token in this case
is

O

(
log
(
#up(`, c)

))
,

when using GGM as the constrained PRF.
This last variant of DLS outperforms all previous

constructions in query complexity, update complexity,
token size, query round complexity and client and server
storage—all while being secure in the standard model.
DLS can also be easily modified to have constant client
memory by storing the state on the server in a zero-
leakage encrypted multi-map, e.g., using ORAM at the
cost of an additive poly-logarithmic overhead per query.

4.2 Security

In the following, we detail the leakage of DLS against
standard and snapshot adversaries, respectively.
Against a persistent adversary. The setup leakage
of DLS consists of the size of the multi-map MM. The
query leakage of DLS for a label ` consists of the search,
response length and operation patterns. The search pat-
tern captures if and when the label has been searched
for in the past. As DLS is response-hiding, it does not
reveal the access pattern but only the response length
which is the cardinality of the result. The operation pat-
tern reveals if an operation for a label ` was an update
(i.e., an add or delete) or not. The update leakage of
DLS is the size of the tuple to be updated. The rebuild
leakage is the size of the updated multi-map and, for
each label that was searched for in the current epoch,
the number of deletes in DXo. We now give a precise
description of DLS’s leakage profile and show that it is
adaptively-secure with respect to it. Its setup leakage is

LS(MM) =
∑

`∈LMM

#MM[`].

The query leakage is

LQ(MM, `) =
(

QP,RL,OP
)
.

Here, QP is the query pattern which reveals if and when
a query is repeated. More formally, it is defined as QP =
B, where B is a binary square matrix of size t and t is
the total number of operations that have been made. B
is such that Bi,j = 1 if the ith and jth queries are the
same, and 0 otherwise. The response length pattern is

RL(MM, `) = #MM[`].

The operation pattern is
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OP(MM, `) = m,

where m is a binary vector of size t, where t is the total
number of operations. For all i ∈ [t], mi = 1 if the ith
operation is an update andmi = 0 otherwise. Its update
leakage is

LU(MM, (op, `,v)) = #v,

for all op ∈ {edit+, edit−}. Its rebuild leakage is

LR(MM) =
(
#delo`

)
`∈Se

,

where #delo` is number of pairs with label ` removed
from the old dictionary DXo and Se ⊆ L is the set of
labels that were searched for in the current epoch.

Theorem 4.1. If SKE is an RCPA-secure encryption
scheme and F is a pseudo-random function, then DLS
is (LS,LQ,LU,LR) secure.

The proof of Theorem 4.1 appears in Appendix A.
Leakage against a snapshot adversary. The snap-
shot leakage LSN of DLS is

LSN(MM, op1, . . . , opi) =
∑

`∈LMM

#MMi[`]

where MMi is the current version of the multi-map. Note
that, given LSN, DLS is breach-resistant based on Def-
inition 3.5.

Theorem 4.2. If SKE is an RCPA-secure encryption
scheme and F is a pseudo-random function, then DLS
is
(
m,LSN

)
-snapshot secure, for m ∈ poly(k).

The proof of Theorem 4.2 is in Appendix C.

Corollary 4.3. DLS is dual-secure.

5 DLSd: DLS with De-amortized
Rebuilding

In Section 4, we introduced an instantiation of the re-
building protocol with a worst-case complexity linear in
the size of the old dictionary, i.e., in

O

( ∑
`∈LMM

(
#MM[`] + del(`, e)− up(`, c)

))
,

where #up(`, c) is the number of updates for ` since
the last rebuild operation. Moreover, DLS only achieves
dual security under the assumption that all intermediate

steps of the rebuild protocol are hidden from the snap-
shot adversary. In this section, we show how to over-
come these two challenges, resulting in a variant of our
construction called DLSd. DLSd uses a de-amortized re-
build process, that maintains dual security with minimal
leakage while providing optimal worst-case efficiency
under no assumptions on when snapshots occur.
Intuition. DLSd is a variant of DLS with de-amortized
rebuilding, i.e., it has the same setup, search token and
get algorithms, but differs on how the rebuilding process
is performed. We now provide a gradual description of
this process starting from our previous rebuild protocol.

We can de-amortize the Rebuild protocol of DLS by
simply operating on one label at a time in the case of
a searched label, or on a pair in the other case. This
solution provides a de-amortized rebuilding and clearly
does not introduce any additional leakage against a per-
sistent adversary. Unfortunately, this solution still in-
duces additional leakage against a snapshot adversary
because it can differentiate between the two types of
labels based on the number of pairs that have been in-
serted into the new dictionary. Remember that our goal
is to have snapshot leakage composed only of the size of
the current structure. So far, this is not the case as we
have an additional leakage.

We solve the issue above by allowing some client
storage. That is, instead of inserting an arbitrary num-
ber of pairs in the case of searched for labels, only λ

pairs are inserted and the remaining pairs are kept in
the client side. For the unsearched for labels, the same
number of pairs, λ, is similarly inserted in the structure.
This will make differentiating between the two types of
labels impossible for a snapshot adversary.
De-amortization. An important design decision we
have to make is to figure out when to rebuild. There
are three possible approaches, including:

– at update time: this approach runs the de-
amortized rebuild steps as a sub-routine of the up-
date protocol. That is, whenever the client updates
the encrypted structure, the client simultaneously
performs a partial rebuilding that operates on λ pairs.
Note that this choice is natural as a snapshot adver-
sary already knows that a data structure has been
modified due to the update operation. Therefore per-
forming a partial-rebuilding that is triggered by an
update will not leak more than the number of rebuilt
pairs, which is λ.

– at query time: this approach consists of running
the de-amortized rebuild step as a sub-routine of the
query protocol. In this case, it is easy to see that
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a snapshot adversary would learn that a search oc-
curred by just looking to the encrypted structure,
which violates breach-resistance and, therefore, dual
security.

– continuously: this approach runs the de-amortized
rebuild steps continuously in the background. This is
quite similar to the previous rebuild protocol except
that the client can always query or update the struc-
ture independently of the rebuilding process. In other
words, the rebuild does not affect the correctness
of the query operation. This approach provides the
client with the flexibility to rebuild the data struc-
ture whenever it is required (which is not the case of
the previous approaches).

Our preferred approach is to execute rebuild steps at
update time. In the following, we provide the algorith-
mic details. Note that the syntax of the STE scheme will
change slightly because we are now dealing with a self-
adjusting EMM. We refer the reader to Definition 3.1
for more details.
Details. DLSd is a self-adjusting dynamic encrypted
multi-map composed of four non-interactive algorithms
and one interactive protocol such that DLSd = (Setup,
Token,Get,Update,Rslv). Below, we only detail the
Update protocol as Setup, Token, Get and Rslv remain
the same as in DLS. The pseudo-code details of DLSd

appear in the full version of the paper.
Update is a two-party protocol between the client

and the server. The client’s input consists of a key K, a
state st and an update u. The server’s input consists of
the encrypted multi-map EMM. The state is the same
as the state of DLS except that it is augmented with
the de-amortization rate λ and two lists Lsr and Lun.
Lsr is a stash that stores the pairs corresponding to the
searched for labels, while Lun is a stash that stores the
pairs for the unsearched for labels.

The client starts by creating the update token and
sending it to the server which then inserts the updates
in the new dictionary using DLS UToken and Put algo-
rithms, respectively. The client then samples a bit b. If
b = 0, the client rebuilds a searched label in Lsr, other-
wise it rebuilds an unsearched label in Lun. If #Lsr < λ

or #Lun < λ, it means the client does not hold enough
pairs in the stashes to rebuild and needs to prepare ad-
ditional pairs as follows.

If it is rebuilding searched labels and #Lsr < λ, then
the client picks a label ` ∈ Se, where Se contains all the
searched for labels. The client fetches the correspond-
ing pairs from the old dictionary DXo, decrypts them,
removes all the deleted pairs, and appends the remain-

ing pairs to Lsr. The client then removes the label `
from Se. When it is time to send pairs to the server,
it generates λ freshly encrypted pairs from Lsr to send.
Similarly to the UToken algorithm, a fresh pair is com-
posed of two sub-tokens. The first, tk1, is the evaluation
of the pseudo-random function on the label `, the global
version versiong, and a counter countn. The second, tk2,
is generated by encrypting the value v corresponding to
the label ` concatenated to the string edit+.

Otherwise, if it is rebuilding unsearched labels and
#Lun < λ, the client retrieves an unsearched label uni-
formly at random from LMM \ Se and only retrieves one
pair using the label’s counter. The client then decre-
ments the counter and updates the state accordingly. If
the counter is less than one, it removes the label from
the state, DXst

o . The client refreshes the pair similarly to
the operations described earlier, but then appends it to
Lun. The client repeats this process as long as #Lun < λ.
Finally if both the stashes are empty and each pair in
DXo is refreshed, the server deletes the old dictionary
and the new dictionary becomes the old dictionary. The
client similarly deletes the state of the old dictionary
and replaces it with the state of the new dictionary. A
new empty dictionary and state are initialized for fu-
ture updates. Finally the client increments the global
version.
Efficiency. DLSd has the same query complexity, stor-
age complexity and token size as DLS. Below, we only
detail the client memory and update complexity. DLSd

introduces two new data structures that are stored at
the client. The first, Lsr, stores the pairs for the searched
labels and has size

O

(
max

{
λ, max

`∈LMM
(#MM[`] + del(`, e))

})
.

The second, Lun, stores the pairs for the unsearched
labels and has size O(λ). In addition, similarly to
DLS, the client also stores the state which is com-
posed of both the old and new state dictionaries,
and the set of searched for labels. This results in
O
(
#LMM · log

(
max`∈LMM(#MM[`] + del(`, e))

))
storage

at the client. The overall client storage is then

O

(
#LMM · log

(
max

`∈LMM
(#MM[`] + del(`, e))

)
+

max
{
λ, max

`∈LMM
(#MM[`] + del(`, e))

})
.

The update complexity is O(λ + #v) with two rounds
of interactions.5 The first round fetches the pairs and
5 One might think that the update complexity should be equal
to O(#v + max{λ,max`∈LMM (#MM[`] + del(`, e))}). However,
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sends the update token to the server and the second
inserts the freshly encrypted pairs from the states along
with the updates.

5.1 Security

In the following, we describe the leakage of DLSd

against persistent and snapshot adversaries, respec-
tively.
Leakage against a persistent adversary. The setup
and query leakage of DLSd is the same as DLS. The
Update leakage consists of the update leakage of DLS
and the de-amortization rate which is public. Note that,
contrary to DLS, there is no explicit rebuild leakage
since the rebuild process is de-amortized and executed
as a sub-routine of the update operation.

The update with rebuild leakage is then

LUr (MM, u) =
(
LU(MM, u),LRd(MM)

)
,

where u = (op, `,v), LU(MM, u) = #v, LRd(MM) =(
λ,
(
#delo`

)
`∈Se

)
, λ is the rebuild rate of the Update pro-

tocol, and Se ⊆ L is the set of labels that were searched
for in the current epoch.

Theorem 5.1. If SKE is an RCPA-secure encryption
scheme and F is a pseudo-random function, then DLSd

is (LS,LQ,LUr ) secure.

The proof of Theorem 5.1 appears in Appendix B.
Leakage against a snapshot adversary. The snap-
shot leakage LSN of DLSd is

LSN(MM,op) =
(
λ,
∑

`∈LMM

#MM(`)
)
.

Note that λ is a public parameter so DLSd is breach-
resistant.

Theorem 5.2. If SKE is an RCPA-secure encryption
scheme and F is a pseudo-random function, then DLSd

is
(
m,LSN

)
-snapshot secure, for m ∈ poly(k).

The proof of Theorem 5.2 appears in Appendix D.

Corollary 5.3. DLSd is dual-secure.

the quantity max`∈LMM (#MM[`]) can be de-amortized over λ−1 ·
max`∈LMM (#MM[`]) updates, as the client will not fetch any pair
as long as the state Lsr contains more than λ pairs.

6 Empirical Evaluation
We now evaluate how our construction performs in prac-
tice. We implemented DLSd, the de-amortized variant
of DLS, in Java using the Clusion encrypted search li-
brary [34]. It consists of 1114 lines of codes excluding 180
lines for testing purposes calculated using CLOC [14].
We set λ to 3 for all experiments except for one where
we vary λ to study its effect on update time.
Parsing and indexing. We used the parsing and in-
dexing functionality of the Clusion library to process
data (which is itself based on the Lucene parser [31]).
Through Clusion, our implementation handles pdf files,
Microsoft Office files (doc, docx, pptx, xlsx), basic text
files. For media files, it only indexes the file names.
Cryptographic primitives.We use the cryptographic
primitives provided by Clusion (themselves based on
Bouncy Castle [11]). For symmetric encryption, we use
AES in CTR mode with a 256 bit key. We use of HMAC-
SHA256/512 for PRFs.
Experimental setup. We ran our experiments on
an Amazon EC2 instance running Ubuntu Linux
(c3.8xlarge) with an Intel Xeon E5-2680 v2 (Ivy Bridge)
Processor with 32 vCPU and 60 GB of RAM. For all
our experiments, we used the Wikipedia data dumps.
The total uncompressed size of our dataset was 26.5GB.
There are a total number of 2, 681, 795 files in this
dataset. We partitioned these files into different fold-
ers. The first folder had 17, 600 files with a total size of
about 250 MB and the last folder had 554, 059 files with
a total size of 3.6GB. In our empirical evaluation, we
want to quantify the following characteristics of DLSd:

1. The time to set up the EMM as a function of the num-
ber of pairs;

2. The size of each EMM and of the client state as a func-
tion of the number of pairs;

3. The time taken to respond to a query for labels with
different selectivity as a function of the number of
pairs. The selectivity of a label is the number of values
associated to it;

4. The time taken for an update operation as a function of
the number of pairs in the EMM. We also measure how
different rebuild parameters λ affect the time taken;

5. The effect of de-amortized rebuilding on the time taken
by a query operation in DLSd specifically when there
are deletes involved.

Setup time and storage overhead. Fig. 3 describes
the time taken to set up an EMM as a function of
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the number of label/value pairs stored. We created
EMMs with number of pairs ranging from 2, 758, 254 to
83, 239, 341. The setup phase takes under 13 minutes
with a multi-threaded implementation.6 Fig. 4 shows
the size on disk of both the client state and the EMM
for different number of pairs. We observe that even for
about 83 million pairs, the client state is only 210MB
for an 11GB EMM. Recall that in scenarios in which
client memory is expensive (e.g., in the case of email
clients [3]), the state can always be outsourced using
ORAM at the cost of a poly-log overhead. Also note
that DLS’s state is (asymptotically) the same as all re-
cent forward-private schemes [5, 6, 16, 29].
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Fig. 4. Encrypted multi-map and state sizes.

Search and update operations. Fig. 5 describes the
time taken to search for labels of different selectivities
(MM(w)). We also measure time taken by an update
operation. In our experiments, the client and server are
running on the same machine. We measure the effect
of increasing the EMM size on the query time, which

6 Setup time would be roughly ×32 slower with a single-
threaded execution.

seems negligible. We do not send any update tokens be-
tween the query operations during the experiment. For
each EMM we first search for labels of different selec-
tivities (100, 1000 and 10,000). The search time for all
selectivities is less than 1 microsecond per pair. We ran
every search data point corresponding to every number
of pairs in the x-axis 500 times. We re-ran the whole
experiment 10 times, then we took the median. From
Fig. 6 we can see that the update operation is more
costly as it takes around 100 milliseconds when λ is set
to 3. This can be attributed to the fact that the rebuild
is performed with the update algorithm. Whenever we
do an update, we also execute λ de-amortized rebuild
steps. One can see that as we increase λ, the update time
increases proportionally. Note also that both the search
and update operations are independent of the number
of pairs in the EMM.
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Effect of rebuilding. Figure 7 describes the query
time as a function of the number of delete opera-
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Fig. 7. Query times for the same keyword at different times. Dur-
ing epoch 0, the keyword starts with a selectivity of 100, 000 and
8000 delete operations are performed between each query opera-
tion. No further deletes happen in the next epoch.

tions. The keyword being queried initially has selectivity
100, 000 which was achieved by updating the EMM with
100, 000 update tokens. The consequence of this is that
these values are initially in DXn. The first point of epoch
0 (the green line) represents the first query. After that,
we send 8000 delete tokens, execute a search, send 8000
more deletes, execute a search and so on. This continues
until we send a total of 40, 000 delete tokens (the end
of the green line). At this stage, the selectivity of the
keyword is 60, 000 but the total number of pairs in DXn
associated with the keyword is 140, 000. During epoch
0 we can clearly see that query time increases as the
number of deletes increases.

At some point, the rebuild operation ends and epoch
1 begins and DXn becomes DXo. At the beginning of
epoch 1 two queries occur before the keyword has been
selected to be rebuilt. The gap in query time between
epoch 0 and the first two queries of epoch 1 is due to
the fact that the pairs are stored in different sized dic-
tionaries in the two epochs. In epoch 0 they are stored
in a relatively empty DXn whereas in epoch 1 they are
stored in DXo along with 50 million other pairs (remem-
ber that we need to keep updating the EMM to make
the rebuild process progress). Once the keyword is se-
lected to be rebuilt (red line), it is moved to the client’s
local stash; specifically, to Lsr since it was searched. At
this stage, query time is negligible but increases as the
pairs are inserted into DXn. When all pairs have been
inserted, DXn only holds 60, 000 pairs associated to this
keyword (i.e., all the delete pairs have been removed).

One can clearly see the difference in query time be-
fore and after the keyword has been rebuilt. Before it
has been rebuilt (i.e., epoch 0 and beginning of epoch
1 which are the green and blue lines, respectively), the

query times range from 55.6 ms to 75.8 ms. After being
rebuilt (i.e., the end of epoch 1 which is the red line),
query times range from 0.1 ms to 33 ms.

Also, note that all query times stay well below 1
microsecond per pair.
Comparison with previous constructions. Given
the asymptotic overhead of the SPS construction, we
do not compare it to DLSd and focus mainly on the
Sophos and Diana schemes of [5] and [6]. The empirical
evaluations of these constructions are based on C/C++
implementations whereas our implementation of DLSd

is in Java. In addition, the Sophos implementation is
multi-threaded. Our implementation of DLSd, on the
other hand, is only multi-threaded for setup. And while
our experiments are in memory and the ones of [5] and
[6] are on disk, they are conducted using SSDs which
have efficiency comparable to memory. Even with these
advantages, the performance of DLSd is better or, at the
very least, comparable to those of Sophos and Diana. [5]
reports search times ranging from 24 microseconds to 7
microseconds per pair depending on the selectivity of
the keyword. On similar datasets, the Diana implemen-
tation in [6] is 10 times faster. Similarly to our DLSd

implementation, the hardware accelerated C/C++ im-
plementation of Diana takes less than 1 microsecond per
pair.

An important distinction between our constructions
and Sophos and Diana is in how their query time is
affected by delete operations. While the query time of
Sophos and Diana will increase with the total number of
deletes ever performed, the query time of DLSd will only
increase with the number of deletes since the last rebuild
(or the current epoch). As shown above, this makes a
significant difference in the query time of DLSd.
Locality. Several works [1, 9, 10, 15] have considered
the design of locality-friendly SSE schemes. While DLSd

achieves near-optimal search complexity, it has a non-
optimal locality. This results from the way the plaintext
multi-map tuples are stored in the underlying dictio-
nary (each tuple is split and stored in multiple non-
contiguous memory locations). While locality had no
impact in our experiments (since they were conducted
in memory) one might observe a slowdown if the en-
crypted structure is stored on disk.

It is worth mentioning, however, that DLSd could
be made local using techniques from [10]. In fact, the
design and approach of DLSd could be used to extend
the locality-friendly 2Lev construction of [10] instead of
πbas.
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A Proof of Theorem 4.1
Theorem 4.1. If SKE is an RCPA-secure encryption
scheme and F is a pseudo-random function, then DLS
is (LS,LQ,LU,LR) secure.

Proof. Consider the simulator that works as follows.

1. Setup simulation. Given the setup leakage
LS(MM) =

(∑
`∈LMM

#MM[`]
)
, the simulator ini-

tializes two dictionaries DX0 and DX1 of size∑
`∈LMM

#MM[`]. It then initializes a state multi-
map MM0 and three vectors vecl, veco vecn. For
1 ≤ i ≤

∑
`∈LMM

#MM[`]:

(a) compute stri, ctri
$← {0, 1}k where stri, ctri are of ap-

propriate lengths;
(b) set DX0[stri] = ctri;
(c) add stri to vecl.

It then outputs EMM = (DX0,DX1).
2. UToken simulation. Given the update leakage

LU(MM, `,v, op) = #v,

for all op ∈ {edit+, edit−}. For 1 ≤ i ≤ #v,
(a) compute stri, valuei

$← {0, 1}k where stri, valuei are
of appropriate lengths;

(b) add stri to vecn.
It then outputs UToken = (stri, valuei)i∈v̄.

3. Token simulation. Given the query leakage

LQ(MM, `) =
(

QP,RL,OP
)
,

where QP is the search pattern, RL =
(#DXo[`],#DXn[`]) is the access pattern and OP is
the operation pattern. It adds ` to a set of searched
labels S and executes the following steps.

(a) if MM0[`] = ⊥ (which occurs if ` is being searched for
the first time),

i. set count = #DXo[`] from RL and initialize an empty
set Sl;

ii. using OP, extract and remove all labels that were
updates of ` from veco and add them to Sl. This step
is performed in a case if where a rebuild has already
occurred and some updates are in the old dictionary.

iii. from i = #Sl to count, pick and remove a label from
vecl and add it to Sl.

iv. assign Sl to MM0[`]
(b) else if MM0[`] < #DXo[`] (which happens when there

is a rebuild and some new updates are now in the old
dictionary),
– using OP, extract and remove all labels that were

updates of ` from veco and prepend them to
MM0[`].

(c) set count = #DXn[`] from RL and initialize an empty
set Sl;

(d) Using OP, add all labels that were updates of ` from
vecn (all updates in the new dictionary) and add them
to Sl.
It then outputs otk = MM0[`] and ntk = Sl.

4. Rebuild simulation. Given the rebuild leakage

LR(MM) =
(
#delo`

)
`∈S,

where #delo` is the number of pairs with label ` that
have been removed from the old dictionary since the
last rebuild. It executes the following steps,

(a) to remove the appropriate number of tuples it does
the following. For ` ∈ S,

i. if MM0[`] 6= ⊥,
A. initialize vlab;
B. for count = 0 to #MM0[`]−#delo` ;

– compute str, ctr $← {0, 1}k where str, ctr are
of appropriate lengths;

– set vlab[count] = str and DX1[str] = ctr;
– send the pair (str, ctr) to adversary.

C. set MM0[`] := vlab.
(b) To freshly encrypt the remaining pairs n the old

dictionary, it sets counter to #vecl + #veco +∑
`∈K(MM0)\S #MM0[`] where vecl has all the still

http://eprint.iacr.org/2016/830
https://github.com/encryptedsystems/Clusion
https://github.com/encryptedsystems/Clusion
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unsearched for labels from setup, veco has the un-
searched for updates which happened before the last
rebuild and K(MM0) \ S is a set of all ` that were
searched for before the last rebuild but not since
(where K(MM0) is a set that contains all the labels
of the state multi-map MM0). It then does the follow-
ing:

(c) initialize newl of size counter;
(d) for i = 1 to counter,

i. str, ctr $← {0, 1}k where str, ctr are of appropriate
lengths;

ii. append (str, ctr) to newl;
iii. send (str, ctr) to adversary.

Now that the simulator has all fresh encryptions, it
just needs to replace them in its internal state.

(e) for all ` ∈ (K(MM0) \ S),
i. initialize vlab and for count = 0 to #MM0[`];

A. pick and remove a pair (str, ctr) from newl at
random;

B. append str to vlab;
C. set DX1[str] = ctr.

ii. set MM0[`] := vlab.
(f) initialize vlab and for ` ∈ vecl,
i. pick and remove a pair (str, ctr) from newl at ran-

dom;
ii. append str to vlab;
iii. set DX1[str] = ctr.

(g) vecl := vlab;
(h) initialize vlab and for ` ∈ veco,

i. pick and remove a pair (str, ctr) from newl at ran-
dom;

ii. append str to vlab;
iii. set DX1[str] = ctr;
(i) set veco := vlab;
(j) prepend vecn to vec0 and delete everything from vecn;
(k) set DX0 := DX1 and delete everything from DX1;
(l) delete all labels from S.

Now, we have to show that for ppt adversaries A,
the output of the real experiment and ideal experiment
are indistinguishable. This can be shown by standard
sequence of games argument that shows that EMM, utk
and tk are indistinguishable from the real ones due to
the RCPA security of SKE and the pseudo-randomness
of F .

Game0: It is the same as a real experiment.
Game1: It is the same as Game0 except that we re-

place the function F by a call to a random function
G. This is indistinguishable because of the pseudo-
randomness of F .

Game2: It is the same as Game1 except that we do not
generate any keys and replace encryption steps to
simply producing a random string. During rebuild
step for searched for labels, we simple remove en-
crypted values at random from the result set till
the result set is of the leaked size. RCPA security
of SKE guarantees indistinguishability between a ci-
phertext and a randomly generated string.

Game3: It is the same as Game2 except that we replace
the random function G and use random strings for
labels. In setup, keep track of all labels (random
strings) generated. When generating search tokens,
we pick these labels at random for a fresh query as
the number of labels originally in the old dictionary
for the query is leaked. We further pick appropriate
labels from both dictionaries as the total number
of updates in each dictionary and when they were
received is leaked. We assign these labels to this par-
ticular query for future repetitions. During rebuild
step for unsearched for labels, we pick them one by
one at random and then replace them with a new
random string. This is the same as Game2 as the
output of G and a random string are indistinguish-
able.

Game3 is the same as an ideal experiment.

This concludes our proof.

B Proof of Theorem 5.1
Theorem B.1. If SKE is an RCPA-secure encryption
scheme and F is a pseudo-random function, then DLSd

is (LS,LQ,LU) secure.

Consider the simulator that works as follows.

1. Setup simulation. The simulator takes as input the
setup leakage LS(MM) =

∑
`∈LMM

#MM[`] and initial-
izes dictionaries DX0 and DX1 of size

∑
`∈LMM

#MM[`].
It also initializes a state multi-map MM0 and three vec-
tors vecl, veco vecn. Then For 1 ≤ i ≤

∑
`∈LMM

#MM[`]:

(a) compute stri, ctri
$← {0, 1}k where stri, ctri are of ap-

propriate lengths;
(b) set DX0[stri] = ctri;
(c) add stri to vecl.

It then outputs EMM = (DX0,DX1)
2. Update Simulation. The simulator first simulates an

update token utk and then outputs the rebuilt label,
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value pairs for the adversary. To simulate the utk, it
takes as input the update leakage which is equal to
LU(MM, `,v, op) = #v for all op ∈ {edit+, edit−}. To
output the rebuilt pairs, it takes as input the public
parameter λ and also when a rebuild gets completed.
Then, for 1 ≤ v ≤ #v, It does the following:

(a) strv, valuev
$← {0, 1}k where strv, valuev are of appro-

priate lengths;
(b) add strv to vecn.

It outputs utk = (strv, valuev)v∈v̄, and executes the
following steps if the rebuild was completed:

(a) delete vecl and MM0;
(b) set veco := vecn and reset vecn where vecn had all the

updates and re-inserts during current rebuild epoch.
If the rebuild was not complete, then for v ∈ [λ],

(a) strv, valuev
$← {0, 1}k where strv, valuev are of appro-

priate lengths
(b) add strv to vecn and output (strv, valuev).
3. Token Simulation. The simulator takes as input

the query leakage which is equal to LQ(MM, `) =(
QP,RL,OP

)
where QP is the search pattern, RL =

#MM[`] is the response length pattern and OP is the
operation pattern which captures the update tokens
and rebuild insertions of `. It first extracts from RL
and OP the old and new response lengths, #DXo[`] and
#DXn[`] respectively, such that #MM[`] = #DXo[`] +
#DXn[`]. It initializes empty vectors S1 and S2 and if
the first rebuild hasn’t been completed yet it executes
the following steps:

(a) if MM0[`] = ⊥:
i. set count = #DXo[`];
ii. from i = 1 to count, pick and remove a label from

vecl and add it to S1;
iii. assign S1 to MM0[`].

(b) Using OP, extract all labels that were updates of `
from vecn, and add them to S2.
But if the first rebuild was completed, it simply does
the following:

(a) using OP, extract all labels that were updates or re-
inserts of ` from vec0 and add to S1;

(b) using OP, extract all labels that were updates or re-
inserts of ` from vecn and add to S2.
It then outputs otk = S1 and ntk = S2.

Now, we have to show that for all ppt adversaries A,
the output of the real experiment and ideal experiment
are indistinguishable. This can be shown by standard
sequence of games argument that shows that EMM, utk
and tk are indistinguishable from the real ones due to

the RCPA security of SKE and the pseudo-randomness
of F .

Game0: It is the same as a real experiment.
Game1: It is the same as Game0 except that we re-

place the function F by a call to random function
G. This is indistinguishable because of the pseudo-
randomness of F .

Game2: It is the same as Game1 except that we do not
generate any keys and replace encryption steps to
simply producing a random string. During rebuild
step for a searched for label, we simply remove en-
crypted values at random from the result set till the
result set is of the leaked size. RCPA security of SKE
guarantees indistinguishability between a ciphertext
and a randomly generated string.

Game3: We now get rid of G and use random strings
for labels. In setup, keep track of all labels (random
strings) generated. When generating search tokens,
we pick these labels at random for a fresh query as
the number of labels originally in the old dictionary
for the query is leaked if the first rebuild hasn’t been
completed. We assign these labels to this particular
query for future repetitions till the first rebuild is
completed. If it has, these labels have already been
re-inserted so using OP, we can retrieve them. We
further pick appropriate labels from both dictionar-
ies as the total number of updates and re-inserts
in each dictionary and when they were received is
also leaked. During rebuild step for unsearched la-
bels, we pick λ labels one by one at random and
then replace them with a new random string. This
is the same as Game2 because the output of G and
a random string are indistinguishable.

Game3: It is the same as an ideal experiment. The re-
build step is now essentially equivalent to sending
λ label, value pairs (which are both random strings
now) whenever Update protocol is executed.

C Proof of Theorem 4.2
Theorem 4.2. If SKE is an RCPA-secure encryption
scheme and F is a pseudo-random function, then DLS
is
(
LSN,m, `

)
-multi-snapshot secure, for m, ` ∈ poly(k).

Proof. Consider the simulator that works as follows.

1. The snapshot leakage is composed of the total number
of label, value pairs in the old dictionary. So the simula-
tor initializes DX0 and DX1 of the size

∑
`∈LMM

#MM[`].
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For 1 ≤ i ≤
∑

`∈LMM
#MM[`], it performs the following

steps:
(a) compute stri, ctri

$← {0, 1}k where stri, ctri are of ap-
propriate lengths;

(b) set DX0[stri] = ctri.
Then output EMM = (DX0,DX1) and set a variable
size1 = 0 which captures the size of DX1.

2. The snapshot leakage is composed of the size of the
dictionaries (#DXo,#DXn). The simulator then sets
count to be #DXn − size1 where size1 captures the
size of DXn before the update. Then for 1 ≤ v ≤ count,
it does the following:

(a) compute str, value $← {0, 1}k where str, value are of
appropriate lengths;

(b) set DX1[str] = ctr.
It outputs EMM = (DX0,DX1) and sets size1 to #DXn.

3. The rebuild eakage for a snapshot adversary is,
similarly, composed of the size of the dictionaries
(#DXo,#DXn) after the rebuild. The simulator sets
count to be #DXo−size1 as the DXn is now DXo. Then
for i from 1 to count, it does the following:

(a) compute str, ctr $← {0, 1}k where str, ctr are of appro-
priate lengths;

(b) set DX1[str] = ctr.
It then sets size1 := 0 , DX0 := DX1, deletes everything
from DX1 and outputs EMM = (DX0,DX1).

Now, we have to show that for ppt adversaries A,
the output of the real experiment and ideal experiment
are indistinguishable. This can be shown by standard
sequence of games argument that shows that snapshots
of EMM after different protocols are indistinguishable
from the real ones due to the RCPA security of SKE
and the pseudo-randomness of F .

Game0: It is the same as a real experiment.
Game1: It is the same as Game0 except that we re-

place the function F by a call to random function
G. This is indistinguishable because of the pseudo-
randomness of F .

Game2: It is the same as Game1 except that we do not
generate any keys and replace encryption steps to
simply producing a random string. During rebuild
step for searched for labels, we now use the snap
leakage capturing the decrease in size (#del) of the
old dictionary, and just create label, value pairs that
are exactly #del less than the original size in num-
ber. It does not matter if we remove from each in-
dividual result sets of the searched for labels accu-
rately as long as the overall size decrease is satisfied.

RCPA security of SKE guarantees indistinguishabil-
ity between a ciphertext and a randomly generated
string.

Game3: It is the same as Game2 except that we now
remove the random function G and replace it with
random strings for labels and during rebuild. We
simply generate random label, value pairs that are
equal in number to the new size of the old dictionary
and add them to the new dictionary. This is the
same as Game2 because output of G and a random
string are indistinguishable.

Game3 is the same as an ideal experiment.

D Proof of Theorem 5.2
Theorem D.1. If SKE is an RCPA-secure encryption
scheme and F is a pseudo-random function, then DLSd

is
(
m,LSN

)
-snapshot secure, for m, ` ∈ poly(k).

Proof. Consider the simulator that works as follows.

1. The snapshot leakage consists of the total number of
label, value pairs in the old dictionary. The simula-
tor takes this as input and initializes a dictionary DX0
of size

∑
`∈LMM

#MM[`] and an empty dictionary DX1.
Then for 1 ≤ i ≤

∑
`∈LMM

#MM[`], it does the follow-
ing:

(a) stri, ctri
$← {0, 1}k where stri, ctri are of appropriate

lengths;
(b) set DX0[stri] = ctri.

It then outputs EMM = (DX0,DX1) and sets size1 = 0
which captures the size of DX1.

2. We can derive from the snapshot leakage the size of
the old and new dictionaries, #DXo and #DXn respec-
tively. The simulator takes this derived leakage as input
and simulates Update as follows:

(a) if #DXn is 0 (this is when a rebuild just got com-
pleted), it sets count to be #DXo − size1 and for
1 ≤ v ≤ count it does the following,

i. str, value $← {0, 1}k where str, value is of appropriate
lengths;

ii. set DX1[str] = ctr.
If size1 > 0, it then sets size1 := 0, DX0 := DX1,
deletes everything from DX1. It then outputs EMM =
(DX0,DX1).

(b) Otherwise, it sets count to be #DXn − size1 and for
1 ≤ v ≤ count it does the following,
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i. str, value $← {0, 1}k where str, value is of appropriate
lengths;

ii. set DX1[str] = ctr.
It then outputs EMM = (DX0,DX1) and sets size1 to
#DXn.

Now, we have to show that for all ppt adversaries A,
the output of the real experiment and ideal experiment
are indistinguishable. This can be shown by standard
sequence of games argument that shows that snapshots
of EMM after different protocols are indistinguishable
from the real ones due to the RCPA security of SKE
and the pseudo-randomness of F .

Game0: It is the same as a real experiment.
Game1: It is the same as Game0 except that we re-

place the function F by a call to random function
G. This is indistinguishable because of the pseudo-
randomness of F .

Game2: It is the same as Game1 except that we do not
generate any keys and replace encryption steps to
simply producing a random string. During rebuild
step for searched for labels, as λ is leaked we sim-
ply output λ pairs without caring about deletes.
When the rebuild is complete, we would automati-
cally send the the right number of pairs. RCPA secu-
rity of SKE guarantees indistinguishability between
a ciphertext and a randomly generated string.

Game3: We now get rid of G and use random strings
for labels and during rebuild, we simply generate
random label, value pairs that are equal in number
to the new size of the old dictionary and add them
to the new dictionary. This is the same as Game2
because output of G and a random string are indis-
tinguishable.

Game3 is the same as an ideal experiment.

This concludes our proof.
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