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Internet Transparency
Abstract: Can we improve Internet transparency with-
out worsening user anonymity? For a long time, re-
searchers have been proposing transparency systems,
where traffic reports produced at strategic network
points help assess network behavior and verify service-
level agreements or neutrality compliance. However,
such reports necessarily reveal when certain traffic ap-
peared at a certain network point, and this information
could, in principle, be used to compromise low-latency
anonymity networks like Tor. In this paper, we examine
whether more Internet transparency necessarily means
less anonymity. We start from the information that a
basic transparency solution would publish about a net-
work and study how that would impact the anonymity
of the network’s users. Then we study how to change,
in real time, the time granularity of traffic reports in
order to preserve both user anonymity and report util-
ity. We evaluate with real and synthetic data and show
that our algorithm can offer a good anonymity/utility
balance, even in adversarial scenarios where aggregates
consist of very few flows.
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1 Introduction
The Internet does not provide enough transparency:
when traffic is lost, delayed, or damaged, there is no sys-
tematic way for the affected parties to determine where
the problem occurred and who is responsible. This was a
conscious design choice made by the Internet architects
because, at the time, they did not intend for the Inter-
net to be used commercially [16]. Indeed, lack of trans-
parency has led to problems: Internet service providers
(ISPs) sign service-level agreements (SLAs), commit-
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ting to a certain packet delivery rate or latency [1, 3],
that are impossible to verify; governments enact net-
work neutrality regulations, requiring that ISPs treat
all traffic the same independently from origin or appli-
cation [5], that are impossible to enforce; content and
network providers enter disputes that are impossible to
investigate properly [4]. We are not arguing for SLAs
or regulations; but from the moment Internet users care
enough for them to exist, there should be a way to verify
and enforce them.

To improve Internet transparency, researchers have
proposed “transparency systems,” where domains re-
port on their own performance [9–12, 24, 39–41]. The
common idea behind these proposals is that participat-
ing domains deploy special nodes at their boundaries,
which collect samples or summaries of the observed traf-
fic and report them to a ledger; based on these reports,
one can accurately estimate each domain’s performance
with respect to various traffic aggregates. The challenges
typically addressed are how to produce useful reports at
low cost, and how to prevent domains from lying to ex-
aggerate their perceived performance.

However, transparency systems face another signif-
icant challenge, which, to the best of our knowledge,
has not been addressed: they interfere with anonymous
communications. Anonymity networks enable a user to
hide the fact that she is communicating with a particu-
lar destination. Transparency systems directly threaten
this capability because they expose information about
when given traffic is observed at given network points.
For example, consider: a user that communicates with
various destinations through Tor [6]; a government that
monitors the user’s Internet connection and observes
the flows she generates; and a basic transparency sys-
tem, where participating domains periodically group
flows into aggregates and report per-aggregate packet
counts. If the government gains access to the infor-
mation stored in the ledger, it becomes equivalent to
a passive adversary that observes the user’s flows, on
the one hand, and all Tor aggregates, on the other,
and tries to de-anonymize the user’s flows; low-latency
anonymity networks like Tor are vulnerable to such ad-
versaries [17, 27, 31].
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Is it possible to design a transparency system that
produces useful reports without interfering with anony-
mous communications? On the one hand, there exists
a fundamental trade-off between report utility and flow
anonymity: the finer the time granularity of the reports,
the better one can compute loss burstiness or delay jit-
ter between reporting nodes (so, higher report utility),
but also the better one can match flow and aggregate
patterns (so, lower flow anonymity). On the other hand,
even time granularity of minutes can be useful: in the
current Internet, downloading movies or kernel distri-
butions can take from minutes to hours; hence, reports
that help determine whether ISPs honor their SLAs or
honor neutrality at such time granularity are still useful.
The question then is: how coarse do reports have to be
in order to preserve flow anonymity? If a transparency
system reports at a time granularity of minutes, is that
enough? How about seconds?

We take a first step toward answering this ques-
tion: We consider a basic transparency system, where
nodes report per-aggregate packet counts, which can be
used to compute packet loss between pairs of nodes (§2).
We first study how such a system would affect flow
anonymity in the context of a low-latency anonymity
network (§3). Then we propose MorphIT, an algorithm
that takes as input a node’s report and produces as
output a modified version that improves flow anonymity
(§4). Our algorithm does not introduce noise in the typ-
ical sense, i.e., does not introduce error in the reported
packet counts; instead, it merges packet counts so as
to obfuscate the flow patterns that stand out the most
within each aggregate. We evaluate this approach with
synthetic and real traffic traces obtained from CAIDA
(§5). We show that, even in highly adversarial scenar-
ios (e.g., only 64 flows per aggregate), merging packet
counts across sub-second time intervals is enough to pre-
vent an adversary from tracing any flow to a unique
aggregate, and it also significantly reduces the number
of flows that can be traced to few candidate aggregates
(e.g., fewer than 5). Reporting packet counts of sub-
second granularity means that we retain report utility,
in the sense that we can use the reports to verify SLA
or neutrality violations at such a fine granularity.

We close the paper by discussing the limitations of
our approach (§6), related work (§7), and our conclu-
sions (§8).

2 Setup
After defining the basic terms we use in the paper (§2.1),
we state our threat model (§2.2) and problem (§2.3),
and we summarize the most relevant anonymity metrics
from related work (§2.4).

2.1 Definitions

A domain is a contiguous network managed by a sin-
gle administrative entity, e.g., an enterprise network, an
Internet service provider (ISP), an Internet exchange
point (IXP).

A transparency system (Fig. 1) consists of hand-off
points (HOPs) and a report ledger. A HOP is a network
node that publishes periodic traffic reports. Each do-
main that joins a transparency system deploys a HOP
at each point where traffic enters and exits its network;
hence, a HOP is always collocated with a network inter-
face of a gateway or border router. The report ledger col-
lects the HOPs’ reports and provides access to them. It
is a logically centralized entity that could be owned and
managed either by a third party (akin to how the root
DNS servers are managed by companies) or by the par-
ticipating domains themselves (in which case it would
be implemented as a distributed, decentralized system).

A time tick t is a time interval of the smallest du-
ration for which a HOP can produce statistics. A time
bin T is a time interval of one or more time ticks. The
observation window W , of size w, is the time interval
for which our adversary (defined below) collects infor-
mation.

A flow f is a sequence of packets exchanged be-
tween a unique source and destination. When we say
that an adversary knows a flow’s pattern, we mean that
she knows the packet inter-arrival times, but not nec-
essarily the packet contents (because they could be en-
crypted) or the flow’s destination (because the source
could be using an anonymity network). Nf (t) (Nf (T ))
denotes the number of f ’s packets observed at a HOP
during time tick t (time bin T ). λf denotes f ’s average
packet count per time tick.

An aggregate A is a sequence of packets with a
unique source and destination IP prefix that are ob-
served at a particular HOP. NA(t) (NA(T )) denotes the
number of A’s packets observed during time tick t (time
bin T ). λA denotes A’s average packet count per time
tick.
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Fig. 1. A transparency system.

A traffic report R(A) refers to a specific aggregate
A and is a set of tuples:

R(A) ≡ { 〈t,NA(t)〉 }.

The reports produced by two different HOPs for the
same aggregate A are used to compute the packet-loss
rate between the two HOPs with respect to A.

There exist many flavors of transparency sys-
tems [9–12, 24, 39–41], each one reporting slightly dif-
ferent statistics. We consider this particular flavor, be-
cause it produces minimal information (per-aggregate
packet counts); if it poses a threat to flow anonymity,
then any of the more sophisticated transparency sys-
tems that have been proposed will also pose a threat.

Table 1 lists the symbols used in the paper.

2.2 Threat Model

In the context of a transparency system, the report
ledger is trusted to collect the traffic reports and provide
proper access to them, while domains may be honest
(report true packet counts) or dishonest (report fake
packet counts in an effort to exaggerate their perfor-
mance). Like prior work, our transparency system by
design prevents dishonest domains from exaggerating
their performance. For example, consider Figure 1 and
an aggregate A that crosses HOPs X1, X2, and Y1. Sup-
pose ISPX drops a packet from A and wants to lie about
it. To this end, it makes X2 report a fake packet count
for A (increased by 1 relative to the true packet count).
As a result, the report ledger thinks that the packet was
lost on the inter-domain link between X2 and Y1 and at-

Symbol Description
Traffic units

f A flow: a packet sequence exchanged
between a unique source and destination

A An aggregate: a packet sequence observed at a HOP
A A set of aggregates

Time intervals
t A time tick
T A time bin: a set of consecutive time ticks
T A set of consecutive, non-overlapping time bins
W The adversary’s observation window

w = |W |
The size of the adversary’s observation window
(in time ticks)

Traffic characteristics
Nf (t) Number of packets in flow f in time tick t
Nf (T ) Number of packets in flow f in time bin T
λf Average packet rate of flow f

NA(t) Number of packets in aggregate A in time tick t
NA(T ) Number of packets in aggregate A in time bin T
λA Average packet rate of aggregate A
φ Maximum number of active flows per aggregate

Algorithm parameters
ρ Max flow burst size per time tick (in packets)
τ Max bin size (in time ticks)
ω Active window size (in time ticks)

Differential Privacy
ε Privacy loss
δ Probability of exceeding ε

Table 1. List of symbols used in this paper.

tributes the loss to both ISPs X and Y . Hence, by lying,
ISP X not only cannot hide its true packet loss, but
it also falsely attributes packet loss to neighbor ISP Y ,
causing a dispute with that neighbor [11].
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Moreover, we consider an adversary who is passive
and aims to trace a target flow f : given a set of aggre-
gates A, one of which contains f , she wants to determine
which aggregate is most likely to contain f . She has the
following information: (a) f ’s pattern; (b) all the traffic
reports for all the aggregates in A published within the
observation window W . This adversary could be, for ex-
ample, a government, who has subpoenaed an ISP (to
gain access to a user’s Internet connection), as well as
the report ledger (to obtain the traffic reports).

We illustrate how this relates to low-latency
anonymity networks through an example: Suppose user
S in Figure 1 sends a flow f to some destination through
Tor. Consider an adversary, Eve, who monitors S’s In-
ternet connection and learns f ’s packet-arrival pattern.
Moreover, Eve knows that f is observed at HOP X1 and
then either X2 or X3. Without any extra information,
Eve cannot determine f ’s destination. However, if she
obtains the traffic reports published by HOPs X2 and
X3, she can extract the patterns of the aggregates ob-
served at these two HOPs, correlate them with f ’s pat-
tern, and guess which one of these aggregates contains f .
By repeating this process, she can guess at the sequence
of HOPs that observe f . If she guesses correctly, she has
narrowed down the flow’s destination within an IP pre-
fix. In some cases, this is all Eve needs to know, e.g., if
the IP prefix belongs to a censored content provider.

It has already been shown that low-latency
anonymity networks are vulnerable to similar adver-
saries. In one case, the adversary observes a target flow
f and a set of aggregates {Ai}, one of which contains f ;
her goal is to guess which Ai contains f [17]. In another
case, the adversary observes a random sample of a tar-
get flow f and a set of packet sequences, one of which
is also a random sample of f ; her goal is to guess which
packet sequence is a random sample of f [31]. Our ad-
versary is similar to these, in that she knows the pattern
of the target flow, and she also has information about
other traffic, observed at different points in the network,
which may be correlated with the target flow.

The new aspect of our adversary is that she learns
about traffic (other than the target flow) from trans-
parency reports. We are interested in this particular ad-
versary, because we want to assess the new anonymity
risk that a transparency system would introduce. Our
adversary would pose no threat to an anonymity net-
work that explicitly makes aggregates indistinguishable
by introducing latency and/or fake traffic [29]. We do

not consider active adversaries [14, 25] or software ex-
ploits that target anonymity-network browsers1.

2.3 Problem Statement

We want a transparency system that strikes a good
balance between being useful (enabling accurate as-
sessment of network performance) and obstructing flow
tracing. Given that our adversary has access to the traf-
fic reports published by the HOPs, any obfuscation of
information must happen at the HOPs, before the re-
ports are published.

Hence, we look for an algorithm that takes as in-
put a traffic report and modifies it, such that the report
makes flow tracing “as hard as possible” while meet-
ing a target “utility level.” Each HOP can then apply
this algorithm to each traffic report it produces. We as-
sume that each HOP has only a local view (the traffic
it observes and the reports it produces), but not the
adversary’s global view (the reports produced by other
HOPs). Moreover, from the HOP’s point of view, any
flow contained in an aggregate could be a target flow,
which means that the algorithm cannot focus on making
only specific flows hard to trace.

We put “as hard as possible” and “utility level” in
quotes, because they are not meaningful until we define
metrics that capture how much a report helps/obstructs
flow tracing versus how much it helps transparency.
Defining metrics was a key part of our work, and we
state them later in the paper. In the next subsection,
we summarize the most relevant privacy metrics from
the literature that we used as basis and inspiration.

2.4 Anonymity Metrics

In general, anoymity metrics characterize an adversary’s
uncertainty about linking an item of interest to a target
user’s identity [33]. In our context, the item of interest
is the target flow while the target user’s identity is an
aggregate observed at a HOP.

Traceability [17]. This metric is useful when one
knows the packet-arrival patterns of a target flow f and
two candidate aggregates, A0 and A1, one of which con-
tains f ; her goal is to trace f (decide which aggregate is

1 https://thehackernews.com/2013/08/Firefox-Exploit-Tor-
Network-child-pornography-Freedom-Hosting.html

https://thehackernews.com/2013/08/Firefox-Exploit-Tor-Network-child-pornography-Freedom-Hosting.html
https://thehackernews.com/2013/08/Firefox-Exploit-Tor-Network-child-pornography-Freedom-Hosting.html
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more likely to contain it). Traceability is defined as

TR ≡ log L{H0}
L{H1}

,

where L denotes likelihood, and H0 (H1) is the hypoth-
esis that A0 (A1) contains f . Traceability 0 means that
the two hypotheses are equally likely, i.e., the packet-
arrival patterns do not help trace f . The absolute value
of traceability indicates the difference between the log-
likelihoods of the two hypotheses, so, the larger it is, the
more the packet-arrival patterns help trace the flow.

The paper that introduced traceability showed how
to compute it assuming independent packet arrivals that
follow a Poisson distribution for the target flow and a
uniform distribution for all other traffic. Indeed, when
we experimented with synthetic flows generated from a
Poisson model, traceability worked, i.e., our adversary
could use it to trace target flows. However, when we
experimented with flows extracted from CAIDA traf-
fic traces, the flows’ packet-arrival patterns were not
always Poisson, and computing traceability under the
assumption that they were did not work. For instance,
it would be the case that a target flow’s packet-arrival
pattern was clearly visible within one of the candidate
aggregates, and yet traceability was close to 0.

Cross-correlation [35]. This metric captures the
similarity between the packet-arrival pattern of a target
flow f and a traffic report2 R(A) during a time interval
[t1, t2]. It is defined as:

CC (f , R(A), [t1, t2]) ≡ (1)∑
t∈[t1,t2]

(NA(t)− λA)(Nf (t)− λf ).

In our context, cross-correlation is more practical
than traceability, because it does not require any as-
sumptions about packet arrivals. Moreover, when we
experimented with flows extracted from CAIDA traffic
traces, cross-correlation worked, i.e., it did enable our
adversary to trace target flows.

However, neither metric captures intuitively our ad-
versary’s power. For instance, it is not clear what values
of traceability or cross-correlation we should target in
order to argue that our adversary does not pose a threat
to anonymity networks.

2 The original definition is for a flow and an aggregate. We
define it for a flow and a traffic report, because, in our context,
the adversary learns about the aggregate from a traffic report.

3 Approach
In this section, we describe first the metric that we
use to capture our adversary’s uncertainty (§3.1), then
the measurements that motivated our approach (§3.2),
and then the idea of using coarser time granularity for
anonymization (§3.3).

3.1 Metric: T-Anonymity Set Size

Suppose our adversary wants to trace target flow
f across a set of candidate aggregates A =
{A1,A2, . . .A|A|}. The ground truth is that aggregate
Ax contains f . The adversary computes a likelihood dis-
tribution L = {l1, l2, . . . l|A|}}, where li is her estimated
likelihood that Ai contains f .

We want a metric that captures the adversary’s un-
certainty in tracing the target flow to the correct aggre-
gate, akin to an anonymity set size. In particular, we
want our metric to have value:

1, if lx = 1

∈ (1, |A|), if lx ∈
(

1
|A| , 1

)
|A|, if lx ∈

[
0, 1

|A|

]
The first row describes the scenario where the adver-
sary knows the 1 aggregate that contains f . The last
row describes the scenario where the adversary either
has no information (she believes that all |A| aggregates
contain f with the same likelihood 1

|A| ), or has mislead-
ing information (she believes that aggregate Ax contains
f with likelihood < 1

|A| ). The middle row describes all
other scenarios, where the adversary has some correct
information.

At first we defined our adversary’s anonymity set
size as 2H(L), where H denotes entropy, with the ra-
tionale that entropy is the standard way to quantify
the uncertainty resulting from a likelihood distribution.
This metric, however, does not work when the adver-
sary has misleading information. For example, consider
two scenarios: (a) the adversary is certain that aggre-
gate Ax contains the target flow f , which is true; (b)
the adversary is certain that aggregate Ay contains f ,
which is false. In both scenarios the entropy of her like-
lihood distribution is H(L) = 0, and 2H(L) = 1, which
indicates that the adversary has traced f to 1 aggregate,
but ignores that, in scenario (b), the tracing is false.
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We define our adversary’s T-anonymity set size as:

S ≡ min
{

1
lx
, |A|

}
.

Recall that: A is the set of candidate aggregates, the
ground truth is that aggregate Ax contains the target
flow f , and lx is the adversary’s estimated likelihood
that Ax contains f . This metric satisfies our require-
ments and has an intuitive meaning. For instance, sup-
pose the adversary knows that either Ax or Ay contain f ,
but has no further information; then, her T-anonymity
set size is min

{ 1
0.5 , |A|

}
= 2, which indicates that she

has correctly traced f to one of 2 aggregates. However,
if the adversary believes that Ax contains f with likeli-
hood 0.9, while Ay contains f with likelihood 0.1, then
her T-anonymity set size is min

{ 1
0.9 , |A|

}
≈ 1.12, which

indicates that she has correctly traced f to almost 1
aggregate.

Our metric is related to prior work as follows: Con-
sider a slightly different context from ours, where: there
is an item of interest, associated with one user from
a set A = {A1,A2, . . .A|A|}; a true distribution P =
{p1, p2, . . . p|A|}, where pi is the likelihood that the item
is associated with user Ai; and an estimated distribution
L = {l1, l2, . . . l|A|}, which is an adversary’s estimate of
P. To quantify the adversary’s uncertainty about the
true distribution, it has been proposed to use the rela-
tive entropy or KL divergence from P to L:

DKL(P‖L) ≡
∑
i

pi log2
pi
li
.

In our context (where the ground truth is that Ax con-
tains the target flow f ), we could say that the true likeli-
hood distribution is P = {pi|pi=x = 1, pi6=x = 0}, hence
DKL(P‖L) = px log2

px

lx
= log2

1
lx
. The standard way

to convert this entropy to an anonymity set size would
be 2log2

1
lx = 1

lx
. Hence, one can view our metric as

the anonymity set size that corresponds to the relative
entropy between the ground truth and our adversary’s
estimated likelihood distribution.

There remains the question of how to compute our
adversary’s likelihood distribution L. First, the target
flow f cannot belong to an aggregate Ai if f has more
packets than Ai during any time tick t in the observation
window W . Hence:

li = 0, if ∃t ∈W , s.t. f (t) > NAi
(t).

Otherwise, we compute li based on the cross-correlation
between f and R(Ai):

li = CC + (f , R(Ai),W )∑
∀Aj∈A CC + (f , R(Aj),W )

,

where

CC + (f , R(A), [t1, t2]) ≡
max{ CC (f , R(A), [t1, t2]) , 0 }.

We count only positive cross-correlation between f and
R(A) as an indication that f belongs to A. We did ex-
periment with an alternative approach, where we com-
puted li as a normalized version of |CC (f , R(Ai),W )|,
but we found that our adversary drew slightly worse
conclusions that way. This is because we assume that
our adversary correctly aligns target flow patterns to ag-
gregate reports. As a result, negative cross-correlation
between f and R(A) is actually an indication that a flow
does not belong to A.

3.2 Would Transparency Affect
Anonymity?

We use Internet backbone traces made available by
CAIDA [2], collected at the equinix-nyc monitor, di-
rection A, from March to November 2018. From each
trace, we extract TCP and UDP flows; then we cre-
ate aggregates by grouping flows together. We assume a
time tick of 1ms (i.e., a traffic report contains an aggre-
gate’s packet count every 1ms). In each experiment, we
emulate the scenario where: an adversary obtains traf-
fic reports for 50 aggregates, A1,A2, . . .A50 and wants
to trace 50 target flows, f1, f2, . . . f50; the ground truth
is that aggregate Ai contains flow fi. The number of
flows per aggregate, φ, and the adversary’s observation
window, w, vary per experiment.

In the experiments we present, each target flow
contributes a maximum of ρ = 1 packet during any
given time tick (hence maximum rate 1.5 Mbps). In
general, burstier, higher-rate flows are easier to trace.
Low-latency anonymity networks do not aim to pro-
tect flows of arbitrary rate, for example, Tor’s hidden-
service statistics aim to protect flows that contribute
up to 1MiB over 24 hours [18]. In our context, as stated
above, a target flow f cannot belong to a candidate ag-
gregate A if f has more packets than A during any time
tick t in the observation window. The larger f ’s bursts,
the more candidate aggregates the adversary can ex-
clude with this rationale. Hence, we think the interest-
ing question is whether transparency would affect the
anonymity of relatively low-rate flows, which could not
be trivially traced due to their bursts. For this reason,
we cropped our target flows, such that each contributes
up to ρ = 1 packet during any given time tick. To satisfy
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(a) Observation window size w = 10s, varying number of flows per aggre-
gate φ.

(b) Number of flows per aggregate φ = 512, varying observation window
size w.

Fig. 2. CDF of the adversary’s T-anonymity set size as a function of flows per aggregate (left) and observation window (right).

this constraint, from the 50 × 600k3 flow contributions
per time tick that we considered, we had to crop 1%.

First, we look at how the adversary’s uncertainty
depends on the number of flows per aggregate φ. Recall
that, in our context, an aggregate is all traffic observed
at a HOP with a unique source and destination IP prefix
pair. So, we expect most aggregates to contain at least
hundreds of flows; however, it could happen that, for a
short time window, an aggregate contains fewer active
flows than usual, potentially making these flows more
vulnerable to tracing. The question then is: what can
our adversary do when φ is in the hundreds, and what
can she do when φ drops to tens of flows per aggregate?

Fig. 2a shows the cumulative distribution function
(CDF) of the adversary’s T-anonymity set size S when
her observation window size is w = 10s, while the num-
ber of flows per aggregate φ varies. When φ = 512, the
adversary traces no target flow to a unique aggregate,
but she still traces 6% of the target flows to < 5 can-
didate aggregates. When φ = 64, she traces 64% of the
target flows to a unique aggregate, and 84% of the target
flows to < 5 candidate aggregates.

Next, we look at how the adversary’s uncertainty
depends on her observation window size w. We expect
that the adversary’s uncertainty drops as w increases,
and the question is how fast.

Fig. 2b shows the CDF of the adversary’s T-
anonymity set size S, when there are φ = 512 flows
per aggregate, while the adversary’s observation win-
dow size varies. As we saw in the previous graph, when
w = 10s, the adversary traces no target flow to a unique
aggregate, but she still traces 6% of the target flows to

3 The maximum observation window we considered is 10min =
600k time ticks.

< 5 candidate aggregates. When w = 10min, she traces
16% of the target flows to a unique aggregate, and 62%
of the target flows to < 5 candidate aggregates.

As expected, the adversary’s uncertainty increases
as φ gets bigger and w gets smaller (S’s CDF shifts to
the right); however, she always manages to trace a few
target flows to a relatively small number of candidate
aggregates. For example, even when φ = 512 flows per
aggregate, and the adversary’s observation window is
barely w = 1s (rightmost curve in Fig. 2b), there is still
one target flow for which S < 5. As expected, these are
flows with peculiar packet-arrival patterns, e.g., bursts
of unusual duration or period, that make them stand
out even within 511 other flows. For example, the flow
shown in Fig. 3a is vulnerable to tracing, because it is
the only flow in our dataset to contribute such a high
number of packets within a few seconds. In contrast,
the flow shown in Fig. 3b is hard to trace, because it
only contributes two packets in total—a pattern that is
easily hidden within an aggregate.

3.3 Coarser Time Granularity as Noise

The first approach we tried was differential privacy [20]:
Consider a HOP that observes two aggregates, A1 and
A2, that differ in a single flow f ; and publishes traffic
reports R(A1) and R(A2). Ideally, if R(A1) contains a
tuple 〈t,NA1(t)〉, and R(A2) contains a tuple 〈t,NA2(t)〉,
it should be the case that probabilities of NA1(t) and
NA2(t) taking any arbitrary value N are approximately
equal. If we could guarantee this property for any A1,
A2, and f , then we could say that the transparency sys-
tem is “differentially private”, in the sense that traffic
reports never reveal any information that could help our
adversary trace a target flow.
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(a) A packet-arrival pattern that is easy to trace. (b) A packet-arrival pattern that is hard to trace.

Fig. 3. Examples of actual packet flows that are easy (left) and hard (right) to trace.

We explored this approach but could not guaran-
tee any meaningful differential privacy without mak-
ing the traffic reports useless: We tried adding noise
to the packet counts of a traffic report so as to guar-
antee ε-differential privacy; we considered both stan-
dard Laplace noise and a more recent Fourier-based
variant [34]. When we set ε to any typical value (e.g.,
∈ (0, 1)), the modified packet counts were so noisy that
any statistic computed from them was arbitrarily unreli-
able. When we bounded the difference between the orig-
inal and modified packet counts to any reasonable value
(e.g., relative error 10%), the ε for which we could guar-
antee ε-differential privacy was so large (tens of thou-
sands) that we could not reason about its meaning any
more.

In retrospect, given the purpose of a transparency
system, additive noise does not make sense as a first
counter-measure (although it could be useful as an en-
hancement): If a traffic report contains packet counts at
a granularity of 10ms, and we decide that that reveals
too much information, it does not make sense to add
noise to the packet counts while keeping the same, fine
time granularity.

Hence, we explore the following idea: instead of
adding noise to the packet counts of traffic reports, we
coarsen their time granularity. This is another form of
noise, and it has two benefits:

(1) It allows us to control report utility: Suppose
traffic reports have time granularity τ , i.e., each HOP
publishes a packet count per aggregate every τ time
ticks. By coarsening the time granularity of the reports
(increasing τ), we do not make them less reliable: if
the packet counts are perfectly accurate, the packet-
loss rates computed from them will also be perfectly
accurate, albeit averaged over longer time intervals.

(2) It allows us to preserve the incentive structure of
the transparency system (§2.1): By coarsening the time
granularity of the reports, we do not change the fact
that reports are expected to contain exact per-aggregate
packet counts. Hence, as long as we can align the reports
produced by subsequent HOPs for the same aggregate,
a domain cannot escape the blame for a lost packet—it
can only shift it from an internal path to one of its own
inter-domain links, which does not improve its perceived
performance and causes a dispute with a neighbor do-
main.

4 Algorithm
We now present our algorithm: first an overview (§4.1),
then an “idealized” version (§4.2), and then a more prac-
tical online version (§4.3).

4.1 Overview

Given an aggregate A and an observation window W ,
our algorithm takes as input:

. A traffic report4

R(A) ≡ { 〈 t, NA(t) 〉, ∀t ∈W }.

. The patterns of A’s flows

{ 〈 t, Nf (t) 〉, ∀t ∈W , ∀f ∈ A }.

4 Technically, this traffic report can be reconstructed from the
second input (the patterns of A’s flows). We state it as a sep-
arate input because we think that helps make the algorithm
description clearer.
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It produces as output a traffic report Ro(A), which con-
tains packet counts not per time tick (as the input re-
port), but per time bin:

Ro(A) ≡ { 〈 T, NA(T ) 〉, ∀T ∈ T }, (2)

where T is a set of consecutive, non-overlapping time
bins that cover the observation window W .

Our algorithm takes the following configuration pa-
rameters:

. The maximum flow burst size ρ. Flows with bigger
bursts are easier to trace: The adversary knows that
a target flow f does not belong to a candidate aggre-
gate Ai if she knows that f has more packets than
Ai during any given time interval. The burstier f is,
the more aggregates the adversary can exclude with
this rationale. Our algorithm tries to protect flows
that contribute up to ρ packets during any single
time tick.

. The maximum bin size τ . Our algorithm produces
time bins that contain up to this many time ticks.
This parameter is our way of ensuring that the out-
put report retains a certain utility level.

To capture the similarity between a target flow f
and the output traffic report Ro(A), we define the cross-
correlation between f and Ro(A) and its positive-only
version as:

CC (f , Ro(A), [t1, t2]) ≡∑
t∈[t1,t2]

(
NA(Tt)
||Tt||

− λA

)
(Nf (t)− λf ),

CC + (f , Ro(A), [t1, t2]) ≡ (3)
max { CC (f , Ro(A), [t1, t2]) , 0 } .

where Tt ∈ T is the time bin that contains time tick t.
This is essentially the same definition as in Eq. 1, with
the difference that NA(t) has been replaced by NA(Tt)

||Tt|| ,
because the adversary does not see the original packet
counts NA(t) any more, but only the modified, coarser
packet counts NA(Tt).

We do not try to design an optimal algorithm: Re-
call that our adversary collects traffic reports for a set
of candidate aggregates observed at different HOPs, and
tries to trace a target flow f ; the metric for her success
is her T-anonymity size S for f . An optimal algorithm
would either maximize S subject to some minimum re-
port utility; or maximize report utility subject to some
minimum S. Either approach requires knowledge of f ’s

pattern as well as the patterns of all the candidate ag-
gregates; whereas our algorithm runs at a single HOP
and takes as input only R(A) and the patterns of A’s
flows.

The simplest solution would be to choose time bins
of fixed duration τ ; as we show in our evaluation, this
protects most realistic flows, but has two disadvan-
tages: First, it introduces unnecessary noise, because it
coarsens the report’s time granularity uniformly, even
during time intervals when the report does not improve
the adversary’s knowledge. Second, it can be bad for
flows whose pattern happens to align in an unlucky way
with the time bins. For instance, consider a flow that is
active for a window of x time ticks, then inactive for a
window of x time ticks, and the pattern repeats; if each
time bin happens to align with an active or inactive win-
dow, then coarsening time granularity from 1 to x time
ticks may not increase at all the adversary’s uncertainty
(depending on the other traffic). Such “on-off” flows do
exist, albeit rarely, in the CAIDA traces.

Our solution relies on the concept of a virtual flow
v: given an output traffic report Ro(A), v is a synthetic
flow that, during any time bin T , has the same pattern
as the real flow that has the highest cross-correlation
with Ro(A) during time bin T . More precisely,

Nv(t) = NfT
(t), ∀t ∈ T,

where

fT = arg max
f

CC +(f , Ro(A), T ). (4)

Our algorithm tries to choose the time bins of the
output traffic report, such that the report reveals as lit-
tle information as possible about v. The rationale is that
v consists of the most vulnerable pieces of A’s real flows;
so, if the output report hides v’s pattern, we expect that
it will also hide the patterns of A’s real flows.

4.2 Idealized Algorithm

We first designed an idealized version of our algorithm
(that we call MorphITid), which finds the time bins T
that cover the observation window W while minimizing
the following metric:∑

∀T∈T

max
f

CC +(f , Ro(A), T ). (5)

This is simply the positive-only cross-correlation (Eq. 3)
between the virtual flow v (Eq. 4) and the output traffic
report Ro(A) (Eq. 2) during the observation window W .
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Our algorithm relies on dynamic programming and
defines three matrices:

S[j+1, i] specifies how much our optimization metric
(Eq. 5) will increase if the output report already covers
time interval [0, j] and we add time bin [j + 1, i]:

S[j + 1, i] =


∞, if i− j > τ OR

NA ([j + 1, i]) < (i− j)ρ,
maxf CC +(f , Ro(A), [j + 1, i]), otherwise

Notice that S[j + 1, i] =∞ if time bin [j + 1, i] exceeds
the maximum bin size τ , or if aggregate A contributes
fewer than (i−j)ρ packets in time bin [j+1, i] (in which
case we could not protect flows with such burst sizes).

Sopt [k, i] keeps track of the minimum value of the
optimization metric when the output report covers time
interval [1, i] divided in k time bins:

Sopt [k, i] =

{
S[1, i], if k = 1,
Sopt [k − 1, j∗] + S[j∗ + 1, i], if k > 1,

j∗ = arg min
k−1≤j≤i−1

{Sopt [k − 1, j] + S[j + 1, i]}.

Topt [k, i] keeps track of the time bins that lead to
Sopt [k, i] (in particular, it specifies the beginning of the
last time bin that leads to Sopt [k, i]).

Once the algorithm has filled Sopt and Topt , it picks
the time bins that lead to Sopt [1,w] by backtracking
from Topt [k∗,w], where:

k∗ = arg min
dw/τe≤k≤n

{Sopt [k,w]}.

The complexity of the idealized algorithm is

O(w3) +O(φw2),

where w is the size of the observation window covered
by the input traffic report, and φ is the number of flows
in aggregate A. The first term comes from filling Sopt :
to fill each position, the algorithm examines τ = O(w)
entries; this is done for each of the w × w positions of
the matrix, leading to O(w3). The second term comes
from filling S: to fill S[j, i], the algorithm computes
CC (A, f , [j, i]) for each of the φ participating flows; this
is done for each of the w × w positions of the matrix,
leading to O(φw2).

Given that we want HOPs to run our algorithm in
real time, this complexity becomes prohibitive when w
extends beyond a few tens of seconds.

4.3 Online Algorithm

To make our algorithm practical, we designed an “on-
line” version (that we call MorphITω), which divides

the observation window into smaller windows of size ω,
applies the idealized algorithm to each of them, and
combines all the resulting outputs into one that covers
the entire observation window.

Intuitively, as the size of the active window ω ap-
proaches the size of the observation window w, the per-
formance of the online version improves and approaches
that of the idealized one; however, we cannot guaran-
tee that the performance gap between the two closes
smoothly as ω increases. Figure 4 illustrates an extreme
scenario where any ω < w yields bad results: Aggregate
Ax has packets only during time tick 1, while aggre-
gate Ay has packets only during the last time tick w. If
the adversary is trying to trace a flow to one of these
two aggregates, she will clearly succeed, unless the out-
put traffic reports consist of a single time bin of length
w—in which case the two aggregates become indistin-
guishable. In this scenario, any τ < w and any ω < w
would have no impact on the adversary’s T-anonymity
set size.

Fig. 4. Example of two aggregates that require τ = ω = w.

The question is: are there values of ω that make
the algorithm deployable while maintaining most of the
benefit of the idealized algorithm? The answer depends
on flow duration and patterns, and we study it in our
evaluation section.

5 Evaluation
After describing our setup (§5.1), we present our algo-
rithm’s performance (§5.2) and compare it to a simpler
alternative (§5.3) and a state-of-the-art anonymization
tool based on differential privacy (§5.4). We discuss pro-
cessing overhead in the Appendix A.
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5.1 Setup

The basic experimental setup is the same as in §3.2:
We assume 1ms time ticks. In each experiment, we con-
sider: 50 aggregates, A1,A2, . . .A50, and an adversary
who wants to trace 50 target flows, f1, f2, . . . f50; the
ground truth is that aggregate Ai contains flow fi. The
number of flows per aggregate φ and the adversary’s
observation window size w vary per experiment.

We experiment with three types of traffic:

1. Poisson: We generate flows with Poisson packet
arrivals of average rate λf = 1 packet per time
tick. We create an aggregate by grouping φ of these
flows. This is similar to the experimental setup used
in [17], the work that is closest in spirit to ours.
There is also evidence that real traffic flows can have
Poisson behavior [28].

2. Real: We extract TCP and UDP flows from Inter-
net backbone traces as stated in §3.2. We create
an aggregate by grouping φ randomly chosen flows.
We crop the target flows such that each of them
contributes up to ρ = 1 packet during any given
time tick. So, we use the traces to obtain realistic
flows, but assume that an aggregate may consist of
any random subset of these flows; we do not rely on
the traces to draw any conclusion about the nature
of aggregates.

3. On-off: We craft a target flow with 10 packets at
time tick 31, 10 packets at time tick 32, and no other
traffic. Then we craft another target flow with the
same pattern, but shifted by 2ms, i.e., 10 packets
at time tick 33, 10 packets at time tick 34, and no
other traffic. We craft 24 more such pairs of target
flows, where each flow has traffic during only 2 time
ticks, and one flow is shifted by 2ms relative to the
other. We create an aggregate by grouping 1 on-off
flow with φ − 1 real flows (extracted from traces).
The purpose of this traffic pattern is to illustrate
the limitations of the Uniform algorithm.

We consider the following algorithms:

1. MorphIT100: This is the online version of our al-
gorithm with an active window of ω = 100ms.

2. MorphITid : This is the idealized, non-
implementable version of our algorithm. We run
it whenever possible (when the observation window
is small enough for the algorithm to finish in rea-
sonable time), to give a sense of how much better
it performs than our online algorithm.

3. Uniform: This is a simpler alternative (§4.1) that
always picks fixed time bins of equal size τ . If it
works well, then there is no reason for a more com-
plex algorithm like MorphIT.

4. PrivCount [26]: This is a state-of-the-art system
that uses Gaussian noise to provide (ε, δ)-differential
privacy [19] for a number of statistics aggregated
across the Tor network and over time (e.g. number
of TCP connections exiting Tor within 24 hours).

We adjust the computation of the adversary’s likeli-
hood distribution L in a straightforward manner: Con-
sider a target flow f , a candidate aggregate Ai, and the
time bins Ti from Ai’s report Ro(Ai). First, f cannot
belong to Ai if, during any one time bin in T , f has
more packets than Ai:

li = 0, if ∃T ∈ T , s.t. f (T ) > NAi
(T ).

Otherwise, we compute li based on the cross-correlation
between f and Ro(Ai):

li = CC + (f , Ro(Ai),W )∑
∀Aj∈A CC + (f , Ro(Aj),W )

.

5.2 MorphIT Performance

We consider two scenarios from Section 3.2 where the
adversary had little uncertainty:

1. Long observation: There are φ = 512 flows per
aggregate, and the adversary’s observation window
is w = 10min.

2. Sparse aggregates: There are only φ = 64 flows
per aggregate, and the adversary’s observation win-
dow is w = 10s.

Fig. 5 shows the CDF of the adversary’s T-
anonymity set size S given real flows, in the “long
observation” scenario (5a) and in the “sparse aggre-
gates” scenario (5b). The solid curves were obtained
with MorphIT100, while the dotted curves were obtained
with MorphITid (we do not show MorphITid ’s perfor-
mance for w = 10min, because the algorithm is infeasi-
ble for such a large w). Different curves correspond to
different max bin sizes τ .

Consider Fig. 5a. Without any modification to the
traffic report (τ = 1 time tick, leftmost curve), the ad-
versary traces 16% of the target flows to a unique aggre-
gate and 62% of the target flows to < 5 candidate aggre-
gates. As τ increases, we allow our algorithm to modify
more the traffic report, and the adversary’s uncertainty
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(a) “Long observation” scenario: φ = 512 flows/aggr., w = 10min. (b) “Sparse aggregates” scenario: φ = 64 flows/aggr., w = 10s.

Fig. 5. CDF of the adversary’s T-anonymity set size given real flows. The solid curves are achieved by MorphIT100, while the dotted
curves are achieved by MorphITid . The max bin size τ varies.

(a) “Long observation” scenario: φ = 512 flows/aggr., w = 10min. (b) “Sparse aggregates” scenario: φ = 64 flows/aggr., w = 10s.

Fig. 6. CDF of the adversary’s T-anonymity set size given Poisson flows. The solid curves are achieved by MorphIT100, while the dot-
ted curves are achieved by MorphITid . The max bin size τ varies.

increases (S’s CDF shifts to the right). For τ = 16ms,
the adversary traces no target flow to a unique aggre-
gate; for τ = 64ms, she traces 14% of the target flows to
a set of < 5 candidate aggregates. Regarding report util-
ity, as long as τ < 1s, users of the transparency system
can still use the reports to compute domain performance
at a sub-second time granularity.

Consider Fig. 5b. Recall that this is a particularly
adversarial scenario, with only φ = 64 flows per ag-
gregate. Without any modification to the traffic report
(τ = 1 time tick, leftmost curve), the adversary traces
66% of the target flows to a unique aggregate and 84% of
the target flows to < 5 candidate aggregates. For τ = 64
time ticks, she traces no target flow to a unique aggre-
gate and 1 target flow to < 5 candidate aggregates. Re-
garding the relative performance of the two algorithms,
MorphIT100 closely follows the T-anonymity set sizes
achieved by MorphITid .

Fig. 6 shows the CDF of the adversary’s T-
anonymity set size S given Poisson flows, in the “long
observation” scenario (Fig. 6b) and in the “sparse ag-
gregates” scenario (Fig. 6a).

Comparing our results given Poisson versus real
flows: The adversary’s uncertainty is, in general, lower
with Poisson flows. We think that this is due to the fact
that all Poisson flows are active throughout the observa-
tion window, whereas real flows are typically active for
significantly shorter time intervals. On the other hand,
the adversary’s uncertainty is more stable with Poisson
flows (S’s CDF is closer to vertical), which is not sur-
prising given that their packet arrivals follow the same
distribution.
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(a) CDF of the adversary’s T-anonymity set size. (b) CDF of the bin sizes picked by MorphIT100.

Fig. 7. MorphIT100 (solid curves) versus Uniform (dotted curves) performance given real flows. “Long observation” scenario: φ = 512
flows/aggr., w = 10min. The max bin size τ varies.

(a) CDF of the adversary’s T-anonymity set size. (b) CDF of the bin sizes picked by MorphIT100.

Fig. 8. MorphIT100 (solid curves) versus Uniform (dotted curves) performance given on-off target flows. “Sparse aggregates” scenario:
φ = 64 flows/aggr., w = 10s. The max bin size τ varies.

5.3 Comparison to Uniform

We expected Uniform to achieve adversary uncer-
tainty similar to MorphITid , but introduce a significant
amount of unnecessary noise (because it coarsens the
entire traffic report to time granularity τ , whether that
helps anonymity or not).

Fig. 7 compares Uniform to MorphIT100 in the
“Long observation” scenario, given real flows. Uniform
achieves similar adversary uncertainty (Fig. 7a), but in-
troduces significantly more noise: Fig. 7b show the CDF
of the bin sizes picked by MorphIT100 in each scenario.
We see that it resorts to the max bin size sparingly, es-
pecially for the larger values of τ . For instance, when
τ = 64, 50% of the bins have size < 25ms, while 80% of
the bins have size < 53ms.

Fig. 8 compares Uniform to MorphIT100 in the
“Sparse aggregates” scenario, given on-off target flows.
Uniform achieves slightly worse (lower) adversary un-

certainty (Fig. 8a), while it still introduces significantly
more noise (Fig. 8b).

5.4 The Cost of Differential Privacy

Any mechanism providing differential privacy (like Priv-
Count) would provide better anonymity than MorphIT;
the question we examine is at what cost to report utility.

We simulate the following scenario: An ISP has
signed SLAs with 50 customer networks, promising
packet loss below 0.1%. During some time interval, each
customer network generates a traffic aggregate consist-
ing of φ = 512 real flows. During this time interval, the
ISP honors half the SLAs and violates the other half:
it introduces packet loss 0.01% to half of these aggre-
gates (we call them “below” aggregates) and packet loss
1% to the other half (we call them “above” aggregates).
Each aggregate A crosses the ISP at one ingress and one
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(a) SLA: 0.1%. Real packet loss: 0.01% for “below” aggregates, 1% for
“above” aggregates.

(b) SLA: 5%. Real packet loss: 1% for “below” aggregates, 10% for “above”
aggregates.

Fig. 9. Packet-loss rate estimated from traffic reports anonymized with PrivCount. Time granularity is 1s, 1min, or 10min.

egress HOP; the corresponding traffic reports produced
by the two HOPs are used to compute the ISP’s packet
loss rate with respect to A.

The HOPs use PrivCount to anonymize their traffic
reports, with privacy budget ε = 1, δ = 10−3, equally
split between the two HOPs, and the sensitivity value
(the maximum contribution of a flow to the total aggre-
gate packet count) fixed to 1 packet per ms. We chose
these values according to the recommendations in [30].

Fig. 9a shows the ISP’s packet-loss rates as esti-
mated from the anonymized traffic reports: The first
(second) boxplot shows the estimated packet-loss rates
for the “below” (“above”) aggregates when the reports
contain 1s packet counts. The next two boxplots corre-
spond to 1min packet counts, and the last two boxplots
to 10min packet counts.

Fig. 9b shows similar results for the scenario where
the ISP promises packet loss below 5% and introduces
packet loss 1% to the “below” aggregates and 10% to
the “above” ones.

In both scenarios, the noise needed to guarantee
(ε, δ)-differential privacy destroys the utility of the traf-
fic reports. Even when the HOPs report a single per-
aggregate packet count every 10min (last two boxplots
in both figures), the estimated packet-loss rate can dif-
fer from the actual one by tens of percentage points.
With such accuracy levels, it is impossible to determine
whether the ISP has honored or violated an SLA for a
given aggregate, or whether the ISP is discriminating in
favor or against some of the aggregates.

MorphIT also affects report utility but in a con-
trolled manner: A HOP that uses MorphIT reports ex-
act per-aggregate counts. Hence, as long as an ISP’s
entry and exit HOP report counts for the same time in-
terval, the ISP’s packet-loss rate (and SLA compliance)
can be accurately computed during that time interval.

Even though HOPs pick their time bins independently
from each other, we found that two HOPs that observe
the same aggregate pick mostly the same time bins for
that aggregate, even in the presence of packet loss. As
a result, it is easy to align their traffic reports and com-
pute accurate packet-loss statistics between them.

These results are not surprising, because PrivCount
was not designed for anonymizing statistics that are
meant to be used for verifying SLA or neutrality com-
pliance. We included them to make the point that a
straightforward application of differential privacy would
not work in our context.

6 Discussion
We now discuss the limitations of our approach and op-
portunities for future work.

Privacy guarantees. Our approach does not pro-
vide any guarantees about how much a flow can be pro-
tected (even if the flow contributes no more than ρ pack-
ets during any given time tick). This is because HOPs
produce their traffic reports without any coordination,
hence there is no guarantee about how much cover their
reports provide to each other’s flows. Our results indi-
cate that it is possible to protect most flows without co-
ordination. To provide any kind of guarantees, however,
we expect that coordination between HOPs is necessary.

Report correlation. In our evaluation, the adver-
sary assumes that each target flow belongs to one of
a set of candidate aggregates. The adversary does not
leverage the fact that a target flow may cross multiple
HOPs, hence belong to multiple aggregates. Preliminary
experiments indicate that doubling the number of aggre-
gates that a flow belongs to (and allowing the adversary
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to leverage this in her analysis) is roughly equivalent to
doubling the adversary’s observation window, however,
more work is required to draw reliable conclusions.

Transparency/privacy trade-off. Transparency
systems are useful only if domains cannot arbitrarily
lie about their performance, and prior work has shown
how the report ledger can identify dishonest traffic re-
ports and/or render them ineffective [11]. At the same
time, to protect flow privacy, domains need to conceal
information from the report ledger. Whether this en-
ables domains to cheat depends on the nature of the ob-
fuscation. For example, an obfuscation mechanism that
naïvely adds high-variance noise to the traffic reports
would enable domains to cheat. Our obfuscation mech-
anism is to coarsen the time granularity of the reports.
Hence, we do not interfere with the ability of the re-
port ledger to identify dishonest reports, but we do force
the report ledger to detect dishonesty at a coarser time
granularity. That said, we think that this trade-off be-
tween transparency and privacy can be explored much
more deeply and deserves the attention of the research
community.

7 Related Work
MorphIT shares a common vision with Network Con-
fessional (NC) [11]: give ISPs an interface for supplying
quality-of-service feedback to end users. Both proposals
are different from approaches to Internet accountability
that either resort to alternative Internet protocols, such
as AIP [8] and APIP [32], or alternative designs of the
whole Internet architecture, such as SCION [38]. How-
ever, unlike our system, NC does not target anonymity
guarantees and may interfere with existing anonymous
communication systems, Tor [6], by enabling global pas-
sive de-anonymization attacks [17, 27, 31].

Many before us have proposed designs for privacy-
preserving data collection in networks [7, 13, 15, 22, 23,
26]. Among them, SEPIA [13] uses secure multiparty
computation (MPC) [37], which allows learning of ag-
gregate network statistics without disclosing local input
data, but assumes that learning is secure in itself. Using
the optimized SEPIA primitives, one can possibly de-
vise protocols tailored to the applications we consider,
i.e. SLA and neutrality verification, however we do not
want to restrict a richer class of analysis on the gen-
erated traffic reports. Moreover, the SEPIA approach,
applied to our context, would impose communication
overhead and require coordination among domains.

State-of-the-art results in gathering privacy-
preserving statistics on anonymity networks were ob-
tained by PrivCount [26]. However, as seen earlier in
this paper (Section 5.4), PrivCount is far from pro-
viding the report utility we seek. In the same vein,
Pan-Private BLIP [7] provides theoretical privacy guar-
antees (ε-differential pan privacy [21]) and collects data
over long periods of time (e.g. on a daily basis).

To balance anonymity and transparency, we also
explored solutions based on traffic morphing [36]. By
employing convex optimization techniques, HOPs could
obfuscate features of traffic reports (e.g. the packet
count distribution or the exact pattern of aggregates)
while limiting the loss of utility (e.g. minimizing the L1
norm of the difference between the original and noisy
aggregate sequences). Nevertheless, we decided not to
include it in our final evaluation, as it makes the reports
less accurate without the benefit of theoretical privacy
guarantees provided by PrivCount.

8 Conclusion
We assessed the risk that a basic transparency system
would pose for low-latency anonymity networks like Tor.
We found that there is indeed a risk, in the sense that
the traffic reports published by a transparency system
can help a passive adversary deanonymize flows. We also
found that adding noise to the traffic reports so as to en-
sure differential privacy would destroy report utility, i.e.,
make them unusable in the context of a transparency
system. Instead, we proposed MorphIT, an algorithm
that coarsens the time granularity of traffic reports in
order to obfuscate the flow patterns that are most vul-
nerable to tracing. We experimented with Poisson and
real flows and showed that MorphIT significantly im-
proves flow anonymity even in highly adversarial sce-
narios where there are as few as 64 flows per aggregate.
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A Processing Overhead

The online version of our algorithm operates on ac-
tive windows of size ω, and its runtime should scale lin-
early with the number of active windows within the ob-
servation window.

Fig. 10 shows the average runtime of MorphIT100
as a function of the maximum bin size τ . There are
φ = 512 flows per aggregate, and the adversary’s obser-
vation window size is w = 10s. The implementation is

in Matlab, and it is running on an Intel Core i7-7700
3.6GHz CPU.

The figure confirms our algorithm’s scalability.
Moreover, given that our implementation is far from
optimized for performance, and it is running on a sin-
gle core, these numbers indicate that our algorithm is
deployable.

Fig. 10. Average runtime of MorphIT100. φ = 512 flows per
aggregate. w = 10s.
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