
Proceedings on Privacy Enhancing Technologies ; 2019 (3):149–169

Riham AlTawy* and Guang Gong

Mesh: A Supply Chain Solution with Locally
Private Blockchain Transactions
Abstract: A major line of research on blockchains is
geared towards enhancing the privacy of transactions
through anonymity using generic non-interactive proofs.
However, there is a good cluster of application scenar-
ios where complete anonymity is not desirable and ac-
countability is in fact required. In this work, we uti-
lize non-interactive proofs of knowledge of elliptic curve
discrete logarithms to present membership and verifi-
able encryption proof, which offers plausible anonymity
when combined with the regular signing process of the
blockchain transactions. The proof system requires no
trusted setup, both its communication and computa-
tion complexities are linear in the number of set mem-
bers, and its security relies on the discrete logarithm
assumption. As a use-case for this scenario, we present
Mesh which is a blockchain-based framework for supply
chain management using RFIDs. Finally, the confiden-
tiality of the transacted information is realized using
a lightweight key chaining mechanism implemented on
RFIDs. We formally define and prove the main security
features of the protocol, and report on experiments for
evaluating the performance of the modified transactions
for this system.

Keywords: Privacy, Blockchains, Proofs of knowledge,
RFID, Supply chain, Discrete logarithm, ElGamal en-
cryption

DOI 10.2478/popets-2019-0041
Received 2018-11-30; revised 2019-03-15; accepted 2019-03-16.

1 Introduction
Transaction transparency is the powerhouse of trust in
blockchains, and in the same time a restraining fac-
tor for applications that require complete or even some
degree of privacy (e.g., health care, banking, and sup-
ply chain management applications). Generally, trans-
actions privacy can be divided into in two parts, 1) the
anonymity of participating entities, and 2) the confiden-

*Corresponding Author: Riham AlTawy: University of
Waterloo, E-mail: raltawy@uwaterloo.ca
Guang Gong: University of Waterlo, E-mail:
ggong@uwaterloo.ca

tiality of the transacted information. Apart from cur-
rency transactions where complete anonymity lends it-
self well to cash transactions, in real world applications,
complete anonymity is usually undesirable. In fact, some
level of accountability is often required, for instance, a
health care application where physicians are updating
patients records or insurance claims that are submitted
to smart contracts by claimers need the entities using
the respective blockchain application to be identified. In
such a scenario where transaction parties are identified
(e.g., through certified credentials), confidentiality of in-
formation (not currency) can be achieved through sym-
metric encryption where only authorized entities have
access to the encryption key.

Anonymity vs. Accountability. Identification of
transacting entities is not always secure. For example, in
supply chain solutions where organizations are commit-
ting tracking information to the blockchain. The identi-
fication of the submitting accounts enables tracking the
goods because these accounts are associated with the
physical locations of specific facilities. In this case, one
needs a solution that fulfills both worlds, 1) anonymity
of the sending entity to hinder tracking and b) account-
ability in the event of a dispute. Mesh offers a solution
for this problem by utilizing membership and verifiable
encryption proof based on proofs of knowledge of dis-
crete logarithms to realize plausible anonymity. In such
a context, plausible anonymity is defined as the property
of being anonymous within a group with the possibility
of being correctly identified when needed (as in group
signatures). Our solution does not require changes to
the transaction signing algorithm adopted by a given
blockchain platform (e.g., ECDSA in Ethereum) [55],
it only adds to the transaction an extra ciphertext ar-
gument and a membership proof that the ciphertext
encrypts the identity of the transaction signer under
an untrusted authority’s public key. When needed, such
anonymity can be verifiably revoked.

1.1 Related Work
Generic Proofs. Recently, there has been an exciting
line of research on proofs of knowledge for general NP
statements in the form of arithmetic circuit satisfiability
[14, 18, 30, 37, 51]. However, most of them do not lend
themselves smoothly to some applications because the

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 150

resulting arithmetic circuit can be quite large so that
either their communication or computation overheads
become unpractical. For example, a common trait in
most of the generic proof systems is that proving tim-
ings are always several magnitudes slower than verify-
ing timings. In supply chains, proving is as important
as verifying, given their highly dynamic nature where
large volumes of products are processed, and their up-
dates has to be committed swiftly because they may go
from one owner to another in under an hour. Proving
times of [14, 18, 37] range between half an hour to over
3 hours for a reasonable 222 gate circuit.

Generic proofs include zkSNARKs [14] which in-
stantiates Quadratic Arithmetic Programs (QAP) [30]
and relies on the knowledge of exponent assumption
(KOE) [26, 33]. zkSNARKS offer highly efficient proofs
of size 288 Bytes at 128-bit security and verification
time. However, they require a complicated trusted setup
to generate common reference string (CRS).

A Cryptographically Strong Hash (CSH) function
used to realize Scalable Computational Integrity (SCI)
proof [12] with no trusted set up, however, the size of the
proof and proving time are highly unpractical, roughly
over 5 MB large in practice for an average size circuit.
Following SCI, zkSTARK [13] offers a reduced but yet
large proof size of around 200 KB at only 60-bit security
for a 219 gate circuit.

Bootle et al. [37] and Bünz et al. [18] proposed two
related proof systems that rely on the discrete loga-
rithm problem assumption (DLP). These two proofs are
highly efficient in terms of proof size (logarithmic in cir-
cuit size), however, both proving and verifying timings
are linear in the multiplicative complexity of the circuit
(proving takes a minimum of 24 minutes for a circuit of
222 gates [37]).

Membership Proofs. The proof in this work turns the
original blockchain signing scheme into a group signa-
ture scheme by enabling verifiable revocable anonymity.
So conceptually, it cannot be directly adopted on
other anonymous blockchains that offer irreversible
anonymity such as ring signature schemes [50]. Particu-
larly, in Monero, the underlying Cryptnote protocol [54]
uses the Proof of partial knowledge [25] to enable a user
to pickup a random group of users public key and pro-
vide a proof of knowledge that she knows a secret key
corresponding to at least one of them (proof size and
verification are linear in the group size). The proof itself
is the signature on the transaction and hence, the notion
of an authorized walled account is not available, thus,
there is no accountability. On the other hand, some work

on set membership proofs [21, 22, 53] can be conjuncted
with verifiable encryption to generate group signatures.
However, most of them are tailored towards specific ap-
plications and can not be practically adopted on pub-
lic blockchains. For example, the work in [53] requires
constant communication of O(k) RSA-field elements for
security parameter k to be sent between prover and veri-
fier. Such a complexity is further asymptotically reduced
to O(k

log k−log log k in [21]. However, verification involves
3 logn pairings where n is the number of members in a
group (one pairing requires 260000 gas ≈ 7 elliptic curve
(EC) point multiplications [19, 49]). Schemes such as
[22, 23] aim for logarithmic (in size of group) commu-
nication complexity and constant verifying algorithm.
However, they also rely on pairings and the verifying
algorithm requires a minimum of 81 pairings [23]. In
[11], the proof is proposed for NFC ticketing systems so
it outsources most of computation to verifiers and thus
employs heavy pairing-based verifying algorithm. The
proof which adopted in Mesh is inspired by the litera-
ture on identity escrow [41], Schnorr and group signa-
tures [24, 28, 52] and generalized in [47] has O(n) com-
munication and computation complexity, however, the
computation relies only on EC multiplications and ac-
cordingly it is practical for smaller groups n < 50 as the
current Ethereum block gas limit is around 8000000. To
put things in perspective for a group of n = 20 members
(See Sec. 5.2 for rationale), the proof is 1.3 KB in size
and both proving and verifying timings are equal, and
under 4 ms. Most importantly, 4n EC multiplications
cost around 3200000 gas which is lower than perform-
ing the logarithmic or constant number of pairings in the
above schemes. Additionally, with any set membership
proof, one needs to include another proof for verifiable
encryption to ensure correct revocation which is adds
extra gas cost.

Mesh and IBM’s Fabric. Last year IBM announced its
Hyperledger Fabric and their blockchain-based solution
for supply chain management [9, 35]. Fabric is a private
permissioned blockchain where only certified members
can transact, maintain and update the blockchain. In
what follows we compare Mesh and Fabric solutions.

- Confidentiality. Fabric enforces confidentiality
through channels where only a group of participants
create their separate local blockchain, keep their own
ledger copies, and update it. There are several scala-
bility issues within their model, as the number of such
channels grows, the overall data structure is more likely
to become unmanageable as it turns from one chain to
an unstructured forest of chains. In other words, if we

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 151

like to enforce transfer of ownership between s owners
in a supply chain contract, we may need a minimum of
s related channels on top of the actual blockchain. Also,
since only few nodes maintain and update channels, the
possibility of collusion is higher than public blockchains,
essentially because the state is agreed upon using con-
sensus between only these nodes and is not publicly au-
dited. On the other hand, in Mesh, everything is kept
on one chain and we handle confidentiality through the
use of lightweight symmetric key chaining.

Side database (SideDb) is Fabric’s solution to scalability
of channels. SideDb allows two or more entities within a
channel to create a parallel outside private database to
keep data in and only commit its hash to the channeled
blockchain. However, unlike channels, such DBs can be
purged while leaving its hash as a trace on channels.
Such a solution deviates from the immutability principal
of blockchains even if a trace exists, what happens to the
purged data is unknown.

- Cost. Private blockchains may not need to pay indi-
vidual nodes but service fee is required for participa-
tion. Fabric’s food supply chain solution (Food Trust)
is offered in a subscription software as a service model
(SaaS), where the monthly subscription costs between
$100 to $10000, depending on the size of business, to
trace the history of food products only [35]. In the
event that an organization requires participation with
standard support, a total monthly subscription between
$3800 and $17700 is charged. On the other hand, an
owner participating in Mesh follows a Pay per Use model
where one data submission use ranges between ($2 to
$4) depending on group size. Such a pricing model is
known to be the most economically beneficial model for
customers of cloud services and is adopted by Slack and
Amazon Web Services [36]. Furthermore, in Mesh trac-
ing is for free. To put things in perspective, to break even
with IBM, a small to large sized organizations with 20
members have to make around 1000 to 4900 transactions
per month.

Generally, paying customers that go on private
blockchains are controlled by the entities and develop-
ers owning it. Lack of public visibility may enable the
network to be manipulated by the developers who can
enforce new rules to manipulate transactions.

Our contributions. In this work, we propose a frame-
work that utilizes membership and verifiable encryp-
tion proofs by combining proofs of knowledge, with El-
Gamal encryption over elliptic curves and symmetric
key encryption to provide accountability and privacy of

transactions on public permissionless blockchains. We
demonstrate the use of such a framework with Mesh
which is a supply chain management solution. Mesh of-
fers the following two security features:
– Plausible Anonymity and Verifiable Identification. By

appending a ciphertext that encrypts the public iden-
tity of an authorized member, and a membership
proof that the ciphertext indeed encrypts a valid
member identity to the transaction, Mesh provides
accountability and local anonymity of participating
members with respect to their affiliated organization
group. Thus, a smart contract managing a supply
chain can verify the membership of a given autho-
rized organization without learning the identity of the
member. The addition of this extra two parameters
to transactions turns the blockchain transaction sign-
ing scheme to a group signing scheme where members
of a given organization share one blockchain creden-
tials and each provides a publicly verifiable proof that
the ciphertext encrypts their valid member identity.
The associated ciphertext can only be decrypted by
Mesh untrusted revocation manager according to a
revocation clause policy. Verifiable identification is
guaranteed because Mesh revocation manager sup-
plies a proof that the revealed identity is indeed the
encrypted one.

– Forward Secrecy. Using lightweight cryptographic
permutation, and assuming the asymmetry in the
backward and forward communication channels be-
tween an RFID tag and a reader, we propose a trans-
fer of ownership and key chaining protocol that en-
ables the tag to generate a new symmetric key for new
owners to use in encrypting their blockchain updates.
Moreover, the tag generates all the previous keys us-
ing the key chaining mechanism such that all previous
updates can be verified by the current owner. Hence,
the term forward secrecy, which is different than per-
fect forward secrecy [40], implies that all forward in-
formation updates are kept secret from previous own-
ers.

We formally define and prove the above two security fea-
tures, conduct experiments to measure the performance
of the membership proof system proving and verifying
procedures, and report the results relevant to the or-
ganization group size. We discuss the proof overhead
in terms its computation and communication complex-
ities, and present a comparison with existing generic
proof systems.

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 152

2 Preliminaries
We write xni=1 to denote the set {x1,x2,· · ·,xn}. We de-
note the process of sampling y uniformly at random
from Zq by y ∈R Zq or y R←− Zq. Throughout the paper
we let λ denote a security parameter, q be a large prime,
and we define an elliptic curve EC over Fq by the set of
solutions (x, y) satisfying y2 = x3 + ux + v where all
x, y, u, and v ∈ Fq and 4u3 + 27v2 6= 0. If not explic-
itly notated, we assume all operations are mod q. We
let α and β denote primitive points in EC. It is believed
that the EC discrete logarithm problem is hard in EC
groups. In other words, given a curve point Q ∈ EC and
a secret value e ∈ Zq, a new curve point P = eQ can be
easily evaluated by adding Q to itself e times, however,
given P and Q it is hard to find the secret e. Henceforth,
we denote e by the EC discrete logarithm of point P to
the base point Q, or simply the discrete log of P .

Zero Knowledge Proofs
A Zero knowledge (zk) proof is a protocol by which a
prover P proves to a verifier V the truthfulness of some
statement without conveying why [31]. For an NP lan-
guage L, statements are of the form u ∈ L. w denotes
a witness for a statement u if (u,w) ∈ R where R is
a polynomial time decidable binary relation associated
with L. A zk proof has the following three properties;
(a) completeness: a prover with a witness w for u ∈ L
can always convince the verifier, (b) soundness: except
with negligible probability, a prover cannot convince a
verifier when u /∈ L, (c) zero-knowledge: The interaction
should not reveal anything to the verifier about w [27].
Another notion is witness indistinguishability [27] which
states that V cannot distinguish between two executions
of the protocol which differ in the specific witness P is
using. zk proofs are interactive protocols that require
multiple rounds of interaction between a prover and re-
ceiver. However, non-interactive zero knowledge proofs
(NIZKs) are possible where a common reference string
(CRS) is shared by the prover and verifier and generated
in a setup phase.

Definition 1 (Zero Knowledge Proof). A triple of pro-
cedures (setup, P, V) form a zk proof that (u,w) ∈ R

such that:
– (crs)← setup(1λ) generates the CRS public param-
eters.

– π ← P(crs, w, u) run by the prover on a witness w
to produce a proof π such that (u,w) ∈ R.

– (>/⊥) ← V(crs, u, π). Verifies that π proves the
knowledge of some witness for u such that u ∈ L.

3 Mesh Abstract Model
Mesh system consists of three subsystems, Mesh server
(M server), a blockchain, and RFID subsystems. An
architectural schematic of Mesh showing the interaction
of its entities is given in Figure 1. The green components
are trusted to behave honestly, and Mesh handler is only
responsible for passing messages between the blockchain
and the server managers. We assume that Mesh server
is hosted by some service provider, however, because
its authorized list of accounts and main execution are
published and verified on a public blockchain, we can
assume a minimum trust level.

In its supply chain life cycle, we assume that a prod-
uct is identified by its RFID tag and can be owned by l
owners (a given supply chain participants) where each
owner is a member of an organization group (shortly
group) of some n facilities or members (S1, S2, · · · , Sn).

Owner
Application

APPo

Supply chain
Contract
Csc

Mesh Contract

Cm

Authorization
Manager
Mam

Mesh Handler

Mh

Revocation
Manager
Mrm

Blockchain System Mesh Server

Reader

RFID System

TagOne physical

host

Fig. 1. Mesh system abstract architecture

3.1 Blockchain System
The blockchain side of a given instance of Mesh consists
of two smart contracts and l + 1 wallet accounts that
interact with these contracts.

Csc contract. The main functionality of managing the
supply chain activities is implemented in the supply
chain smart contract Csc. It stores verified tracking and
product information. It also can implement contractual
clauses between involved stakeholders. For example, Csc
can handle service payments and enforce penalties if
provisions are not met. We bypass these functional-
ities, and concentrate on the special privacy require-
ments that we want to fulfill. In Mesh, Csc verifies the
authorization of participating owners and stores authen-
ticated private tracking history of the product. Most im-
portantly it verifies proofs that the identity of a trans-

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 153

action signer within the organization is valid and can
be revoked byM server when needed.

Cm contract. Cm is M server’s onchain interface for
providing services to Csc. Cm is essential because smart
contracts lack Internet access, they can only communi-
cate with onchain entities, which can be other contracts
or wallet accounts. Cm stores a list of all authorized
organizations public accounts and their members pub-
lic ids. It is responsible for handling authorization and
anonymity revocation requests by Csc. In such a setting,
Csc can be seen as a requester and Cm is the handler.

Wallet accounts. Each owner group maintains a
blockchain wallet account Wi that is associated with
a certified public and private key pair (pki, ski), for
1 ≤ i ≤ l. In other words, only organizations that are
registered and their wallet credentials are authorized by
M server are allowed to invoke functions in Csc. We
assume these accounts are controlled by a blockchain
interface APPo that is available at all the members
of every group. The remaining wallet account Wm is
administered by M server. Wm is associated with M
server’s key pair (pkm, skm) and it is the only account
that can update the accounts list in Cm.

3.2 RFID System
The offchain side of Mesh includes the product which is
identified by its RFID tag, and RFID readers that are
operated by the members of organization groups.

Tag-Reader model. We assume the "minimalist
model" for RFID tags [38] where the reader broadcasts
with a signal stronger than that from tag-to-reader.
Moreover, we assume that the tag shares an initial au-
thentication key AK0 with its first owner group member
that is securely updated during a transfer of ownership
session (see Sec. 6.2). The tag is assumed to maintain an
internal counter that is incremented with each transfer
of ownership and to support a Setid(.) and Getid()
commands that enable the first owner to write the ac-
count of Csc and remaining owners to read it, respec-
tively. Finally, we assume that the tag has at least 2000
Gate Equivalents (GE) available for security function-
alities.

3.3 M server
The part of Mesh which authorizes parties that can own
products is denoted by M server. It verifies, updates
and keeps a list of all manufactures, wholesale, third
party logistic companies, and retailers that are allowed

to use the system. In this sense,M server has a registra-
tion interfaceMam that accepts memberships requests
from organizations and updates Cm lists accordingly.
The other part M server is Mrm which is responsible
for handling revocation requests made by a requesting
contract Csc to Cm. M server also implements a han-
dling module Mh to monitor the state of Cm, so that
whenever a revocation request is pending,Mh passes it
Mrm, and then relays the response using Wm back to
Cm.

3.4 From Supply chains to Mesh
A supply chain is a collection of suppliers that partially
contribute in the creation, warehousing, routing, and
finally delivering a specific product to end customers.
The chain is made up of links between such suppliers
to enable consumers to have a chronologically ordered
history of what they are purchasing. Each link carries in-
formation regarding time, cost, storage conditions, etc.
All these links are stored in supply chain management
systems which are centrally controlled repositories that
furnish such history to consumers. All suppliers are au-
thorized by a central entity that controls a given supply
chain management system. Examples of retail supply
chain management systems include coca cola, Amazon,
etc. Additionally, such systems host a supply chain for
each line of products, so for example Amazon’s system
has hundreds of supply chains for different products.

The concept of the chain is important, because it
means than the next link cannot be reached without go-
ing through the previous one which perfectly resonates
with blockchains. Accordingly, mapping supply chain
entities to our system means that all suppliers are “own-
ers" affiliated with organizational groups in Mesh where
their wallet accounts get authorized by Mesh server,
Mam. The supply chain smart contract Csc which lives
on the blockchain serves as the supply chain manage-
ment system that verifies owners authorizations and
stores the chain of information.

3.5 Threat Model
In what follows, we give our assumptions regarding
the security of the system’s components and sources of
threat.

- Contracts and blockchain communication. Con-
tracts contain publicly visible code, thus, they are
trusted to execute correctly. Transactions are authen-
ticated because they are identified by their source ac-
counts. All communication is sent in the clear and thus
lack confidentiality.

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 154

- RFID tags and readers. We assume that unautho-
rized tags (products) may be injected in the supply
chain and unauthorized readers may be used to scan
genuine tags. Following the minimalist security model
[38], we capture the asymmetry between the forward
and backward communication channels between tags
and readers and thus, we get different eavesdropping
ranges. In other words, eavesdropping on the reader to
tag communications can be done within hundreds of me-
ters but the other way is not possible unless the eaves-
dropping reader is within the vicinity of the tag (e.g.,
ten meters).

- Owners and group wallets. A wallet account oper-
ated by a given group member within the same organi-
zation may be used to impersonate other members by
submitting valid messages to the blockchain using the
group credentials. Also, group members may be curious
to reveal the identity of a transaction sender and they
may collude to get such a knowledge. Owners may try to
corrupt the protocol by submitting updates encrypted
with an unidentified key or revoking the anonymity of
other owners before products arrive to their final desti-
nation.

-Mam and Mrm. We assume thatMam is trusted by
all the organizations participating in Mesh to authorize
their wallet accounts and members’ identities, and pub-
lish them in Cm. On the other hand,Mrm is not trusted
to release the correct identity of a group member when
it receives a revocation request.

3.6 Privacy goals
Since we are using a public blockchain, transaction
source addresses and contents are seen by everyone
whether involved in an ongoing supply chain contract
or not. Accordingly, in what follows, we define the goals
of Mesh in terms of the offered anonymity and confiden-
tiality.

Local Anonymity. Our system involves physical inter-
actions between participating entities in the real world,
hence the definition of anonymity is equivalent to that
provided by the onion routing protocol. More precisely,
a given entity is anonymous if its transactions can not be
identified from those originating from its anonymity set
which is the set of members of its organizational group.
However, similar to onion routing, the anonymity of a
given entity is guaranteed with respect to all observers
of the blockchain except 1) the two entities that precede
and follow it in the supply chain as such anonymity is re-

voked during physical pickup and drop-off, and 2)Mrm

because it is the revocation manager in Mesh.

Confidentiality. In a typical supply chain scenario, one
requires the history of a given product to be viewed only
by its current owner. In Mesh, we enforce confidential-
ity of updates as a form of transfer of ownership by
generating a unique key for each new owner. Such a
key is used to encrypt the committed updates so that
all previous owners, as well as other observers of the
blockchain cannot learn the current status of the prod-
uct. Additionally, all previous keys are generated for the
current owner so that history can be verified. By history
we mean status, storage conditions, quantities, drop-off
and pickup dates, and timings, thus no previous owners
identification information is encrypted as not to violate
the anonymity requirement. Typically, such identifica-
tion and other public information can be available for
consumers after products are at retailers so that they
may verify products’ chain of custody.

3.7 Limitations.
As with other physical systems, we have the following
limitations arising from physical adversarial actions.

- Blockchain vs. real world. The blockchain provides
an authenticated unaltered chain of custody. Thus, an
end user is able to verify exactly by whom the product
they intend to purchase has been assembled and made.
However, at the end, we are still relying on such owners
to be true in what they report and that physical product
remains unaltered in transit. For that, blockchain-based
supply chains have to rely on authenticated auditing
processes to appropriately enable more trust in the co-
herence between the transacted records and the physical
products [10].

- RFID tagging. We rely on RFID tags to perform
lightweight computations that enable the confidentiality
feature of Mesh. However, a long open problem is that
physical attacks on RFID such as cloning and physical
swapping may enable counterfeit products to be inte-
grated in the supply chain. Solutions to cloning include
lightweight physically un-clonable functions (PUFs) and
crypto. Since, we assume cryptographic keys are shared
between owners and RFID tags, then a third party
cloning is not a threat. However, swapping attacks origi-
nate from RFID authorized owners and for that, we have
to rely on authenticated auditing as discussed above in
order to regulate the practices of owners.

- Privacy enforcement. We assume that owners are
going to use the keys that are generated by RFID tags

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 155

to encrypt updates. However, in the event that an ad-
versarial owner does not use an RFID generated key,
it can be identified by the following owner in the chain
which is not able to verify the history of the product.
Then using a multi-signature threshold scheme and a
smart contract penalty protocol, its anonymity can be
revoked and penalized by the smart contract. Assuming
that t owners in a supply chain are honest, such an ad-
versary can be always caught. At the end, similar to real
life, such owners are primarily interested in maximizing
their profit, so trying to corrupt a contract that they
are going to be paid by seems counterintuitive.

4 Mesh Protocol: Blockchain and
Server sides

In this section we first describe a high level overview of
the blockchain side of Mesh through the life cycle of its
protocol messages.

4.1 Message Flow
Figure 2 shows the flow of messages in the authoriza-
tion or revocation protocols (depicted in red). An au-
thorization request by Oi is in the form of a message m1

= (acclist,c,πid). This message is created by APPo
and sent to Csc. acclist contains a list of owner ac-
counts sorted by the order in which the products is go-
ing to be owned. The authorization request message m1

also carries (c,πid), where c is the sender’s encrypted
identity and πid is the proof defined in Definition 5. Fol-
lowing m1, Csc appends W1 to acclist, generates m2 =
(acclist) and forwards it to Cm which in turns checks
authorization, responds to Csc with either > and a list
of IDs of W1 group members or ⊥. Cm also generates a
unique identifier id (e.g., a counter) and stores it along
with Csc account to indicate contracts that are in ser-
vice. Since Cm handles multiple requests from different
instances of Csc and responses from Mrm, then id is
communicated to all concerned entities and enables Cm
to match requests with their corresponding responses.

Optionally, a given owner Oi may initiate the iden-
tity revocation protocol (shown as the red data flow in
Figure 2). It starts by sending revocation request mes-
sage m1 = (acc,i,c, πid) to Csc containing the organi-
zational account acc = WOj and a contract identifier
to an encrypted identity i that was used in a previ-
ous transaction by one the organizational members. m2

= (acc) and m3 = (id,acc) are generated by the Csc
and Cm, respectively to forward the revocation request
to Mrm which in turn responds with m4 = (id, IDi,

Owner
Application
APPo

Supply chain
Contract
Csc

Mesh
Contract

Cm

Authorization
Manager
Mam

Mesh Handler

Mh

Revocation
Manager
Mrm

Blockchain MeshServer

Organization Group

m2=(acclist/
acc)

m1=(acclist/acc,i
c,πid)

m3=(id,acc)

m3=(id,
acc)Update lists

m4=(id,
IDi, πr)

m4=(id,IDi, πr)

m3=(id,>/⊥, IDni=1)
m5=(id,IDi)

Fig. 2. Authorization/Revocation Message flow in Mesh protocol.

πr) indicating that IDi is the identity encrypted in c
and providing a proof πr for the correct identification.

4.2 Protocol Specification
We adopt the same notational conventions for describ-
ing offchain programs and onchain contracts as de-
scribed in [43]. We denote the process of transaction
generation by Authsend(.). We also use Assert(cond) to
denote the process of verifying a condition, if not ver-
ified, then the function is aborted. In what follows, we
give the specification of Mesh’s onchain components, the
offchain components which control wallet accounts are
detailed in the extended version of our paper. Through-
out the paper transaction and message are used inter-
changeably.

4.2.1 Supply chain contract Csc.
This is the onchain entity that manages the supply chain
information of a product. In this work, we focus on the
core functionality involving the privacy of transactions
and confidential updates, so we skip details related to
different revocation scenarios as well as fund transfers
including payments and transaction fees. Figure 3 de-
picts a pseudo code of the Csc. The contract is first
created by an authorized group member where autho-
rizations is checked by issuing a AuthorizeReq to Mesh
handling contract CM . The function Create accepts an
ordered acclist from the first product owner which sets
the authorized supply chain product owners. The func-
tion VerifyId(c,πid,IDni=1) verifies the proof that is
sent with owner generated transactions by running the
identity verification algorithm defined in Definition 5.
Csc processes update requests in the function Update
which maintains a log of private information submitted
by owners wallet accounts. Along with each new up-

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 156

Supply Chain Contract Csc

Initialize: state..= intit, scList..= {}, id, counter ..= 0. let ym, q, α,
and β denote hard coded CRS public parameters generated
by Mesh.

Create: On receiving (acclist,c,πid) from some WO

\\ append WO to acclist, send request and wait for response
Send AuthorizeReq(WO‖acclist) to Cm

Assert receiving (id, IDn
i=1) from Cm

Assert(VerifyId(c,πid,IDn
i=1))

sclist = {WO‖acclist}
counter = counter + 1
sclist[WO].active = true

\\ set contract identifier for each c under WO

sclist[WO].sidentity[counter]=c
state..= created

Update: On receiving (Enck(info),c,πid) from some WO

Assert state 6= init
Assert WO ∈ sclist
If(!sclist[WO]. active)

Send MemberReq(WO) to Cm

Assert receiving (IDn
i=1) from Cm

Assert(VerifyId(c,πid,IDn
i=1))

sclist[WO].info.append= Enck(info)
counter = counter + 1
sclist[WO].sidentity[counter]= c.
If WO is last account in acclist

tag public info
state..= reached

Else state..= updated

Revoke: On receiving (WOi , i, c,πid) from some WO

\\ revokation after final destination only
Assert state ..= reached
Assert {WO,WOi} ∈ sclist
Send MemeberReq(WO) to Cm

Assert receiving (IDn
i=1) from Cm

Assert (VerifyId(c,πid,IDn
i=1))

Send RevokeReq(id,WOi ,sclist[WO].sidentity[i]) to Cm

on receiving(ID) from CM

store sclist[WO].pidentity[i]=ID as a response

VerifyId(c,πid,IDn
i=1)

\\ run verification algorithm of membership proof in Def. 5

v = (πid
?= PoK(x, k), given c, ym, q, α, β,{IDn

i=1})
Output v

Fig. 3. Mesh’s supply chain contract.

date, a ciphertext encrypting the identity of the group
member submitting it is added, so that when a valid re-
vocation request is issued, members of an organizational
groupWO that submitted updates can be retrieved. The
updated information is encrypted with a secret key to
protect its confidentiality. However, when the product
reaches its final destination, some info are tagged as
public to enable customer at retailers to check tracking
history of a given product.
Anonymity Revocation. The function Revoke can be
executed only when the contract state is reached. Oth-
erwise, a corrupted owner can request the revocation
of the anonymity of previous owner which violates the
privacy of the products actively involved in the sup-
ply chain. On the other hand, anonymity revocation is
a way to resolve disputes which can possibly happen

in the middle of the contract. In such a case, where a
dispute severely interrupts the supply chain cycle such
as an owner holding off products or counterfeit products
are discovered by auditing authorities, a T out of N with
N being the owners involved in the contract, multisigna-
ture threshold scheme can be used to request anonymity
revocation which in this case takes precedence over the
original revocation policy. Smart contracts are very ef-
ficient in implementing such clauses using multisigna-
ture threshold schemes [56]. Particularly, using currency
escrow mechanisms and majority agreement, an owner
who initiates a revocation protocol before the end of the
contract can be significantly penalized financially by the
contract if the owners who enabled it through the mul-
tisignature threshold scheme found that the act is ma-
licious. Disincentivized by financial loss, owners would
be only inclined to initiate such procedure if it is ab-
solutely necessary which works best towards protecting
the privacy of the whole contract.

4.2.2 Mesh handling contract CM .
M-server ’s onchain functionality is implemented in Cm
which primarily maintains lists of authorized organiza-
tions orglist along with the public ID’s of their mem-
bers. It only accepts Add/Delete requests from M-
server wallet account Wm. Cm responds to authoriza-
tion requests from a given Csc. It also stores identity
revocation requests and waits for responses from Mh

(Wm) to forward to Csc. All revocation responses are
accompanied with a proof πr for verifiable decryption.
The function VerifyRev(c,πr,ID) verifies the proof πr
which proves that the decrypted ID is indeed the one
that was encrypted in c (See Def. 6). Detailed contract
is provided in the extended version of the paper.

5 Locally Private Transactions
We denote a transaction by locally private, if its local
signing member identity within a known organization
group is anonymous. Due to the accountability require-
ment, we want to make sure thatMrm is able to revoke
such an anonymity when needed, and this fact is veri-
fiable by the supply chain contract Csc when it receives
a transaction. For that we adopt the notion of identity
escrow [41, 47] to build a proof which guarantees that
the identity of a transaction signer is encrypted under
M server public key ym.

In what follows, we define the proofs of knowl-
edge of representation [46], equality [29], and existential
equality [47] in the EC discrete logarithms setting. Let
PoK{(x) : conditions} denote the proof of knowledge of
the witness x satisfying conditions.

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 157

Definition 2 (Proof of representation). A proof of
knowledge of the EC discrete logarithms representation
of y to the base points αji=1, where 1 ≤ j ≤ (q − 2) is
given by PoK{(xji=1) : y =

∑j
i=1 xiαi}. The proof is the

tuple (c, rji=1) and is generated non-interactively by the
prover as follows:
– Commitment: For each secret EC discrete logarithm
xi, a commitment ti is evaluated by
vi

R←− Zq, ti = viαi.
– Challenge: Using a collision resistant hash-function
H, the challenge
c = H(αji=1, y,

∑j
i=1 ti) is computed.

– Response: For each secret xi, a response is given by
ri = vi + cxi.

Definition 3 (Proof of equality). A proof of knowledge
that the EC discrete logarithms of y1 and y2 to the base
points α1 and α2, respectively, are equal is given by
PoK{(x) : y1 = xα1 ∧ y2 = xα2}. The proof is the tuple
(c, r) and is generated non-interactively as follows:
– Commitment: The prover chooses v R←− Zq and com-
putes t1 = vα1, and t2 = vα2.

– Challenge: Using a collision resistant hash-function
H, the challenge
c = H(α1, α2, y1, y2, t1, t2) is computed.

– Response: r = v + cx.

Proving the knowledge of either the EC discrete loga-
rithm of y1 or y2 is more difficult because the verifier
does not know which one is the right solution. In other
words, the prover wants to prove that she knows either
x1 or x2 where y1 = x1α and y2 = x2α. A proof for
partial knowledge for solving this problem is proposed
in [25]. Combining the proof of partial knowledge with
proof of equality, one can generate a proof for existen-
tial equality as has been shown in [47]. Moreover, a sys-
tematized methodology for developing proof systems by
combining different proofs about discreet logarithms has
been proposed by Camenisch (cf. Sec. 4 in [20]) which
is also used to generate the proof system in Definition
4. More precisely, one can generate the commitment,
challenge and response for a proof of knowledge of x
such that y = xα ∧ (∃|1≤i≤n: yi = xβ) by evaluating
the modified Cartesian product of the knowledge sets of
both proofs of equality and partial knowledge [20]. To
simplify the notation of Definition 4, we assume that
the prover knows x such that y = xα ∧ y1 = xβ.

Definition 4 (Proof of existential equality). A proof
of knowledge that the EC discrete logarithm of point y to
the base point α is equal to at leaset one of the discrete

logarithms of points yni=1 to the base point β is given by
PoK{(x) : y = xα ∧ (∃|1≤i≤n: yi = xβ)}. The proof is
the tuple (cni=1, r

n
i=1) and is generated non-interactively

as follows:
– Commitment: The prover chooses vni=1

R←− Zq and
cni=2

R←− Zq, and computes:
- s1 = v1α and si = viα− ciy
- t1 = v1β and ti = viβ − ciyi for 2 ≤ i ≤ n.

– Challenge: Using a collision resistant hash-function
H, the challenge
- c = H(α, β, y, yni=1, t

n
i=1, s

n
i=1) is computed.

- c1 = c−
∑n
i=2 ci.

– Response: The prover calculates:
- r1 = v1 + c1x, and ri = vi for 2 ≤ i ≤ n

The non-interactive proof of existential equality has
been shown to be sound, complete and witness indistin-
guishable proof of knowledge in [47]. For completeness,
we give the security proofs in Appendix B.

5.1 Transaction Signing Scheme
In what follows, we define the scheme (K, S, P, V, R)
where public key encryption is performed using ElGa-
mal scheme over EC [42]. We assume, the chosen curve
of prime order q parameters and the primitive points
α and β are known by all entities as well as M server
public encryption key ym where ym = xmβ. We assume
that an owner wallet key credentials WO : (pko, sko) are
generated and registered at Mam, and securely shared
with all the n members of the group.

1. Key setup K. This key generation process is run by
each member to generate their public identity IDi
that is registered atMam and stored in Cm.

(xi, IDi)← K(1λ)

xi
R←− Zq, IDi = xiα

2. Tx signature generation S. The identity is first
encrypted using ElGamal scheme under ym, then uti-
lizing the membership proof system defined in Defi-
nition 5, a proof πid is constructed.

(σ, c, πid)← S(m, sko, xi, ym)

k
R←− Zq, c = (c1, c2) = (kβ, kym + xiα)

πid = PoK{(xi) : c2 = kym + xiα ∧
(∃|1≤i≤n: IDi = xiα)}

Now a member forms a blockchain transaction signa-
ture by first hashing the message and the ciphertext
then signing them by the group’s secret key, σ =

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 158

ΣskO (H(m, c)) where Σk(.) denotes the blockchain
transaction signing procedure using key k.

3. Signature verification V. The transaction signa-
ture on m and c is first verified using the group’s
public key pko. Then the proof πid is verified against
c and the set of member identities IDni=1.

(>/⊥)← V(σ,m, c, πid, pkO, IDni=1)

4. Identity revocation. Mrm decrypts c using xm
and recovers the encrypted identity ID. Moreover,
it generates a proof that the encrypted identity in c
is equal to the revealed ID.

(ID, πr)← R(c, xm)
ID = c2 − xmc1

πr = PoK{(xm) : c2 − ID = xmc1}

5.2 Membership Proof System.
A signing member need to generate a proof for the fol-
lowing two statements.
- c encrypts a valid identity form (i.e., ID = xα).
- The encrypted identity is a member of the set, i.e.,
ID ∈ {ID1, ID2, · · · , IDn}.

Common Reference String (CRS). Similar to all
non-interactive proofs, some public parameters have to
be known to both sender and verifier prior to engaging in
a proof protocol. Some CRSs are highly structured, and
can possibly foster a backdoor, thus requiring a cum-
bersome trusted setup to choose them such as that used
in zkSNARKs [15]. Other CRSs are simply chosen uni-
formly at random and require not trusted setup such as
ours and the ones used in [18, 37]. Our CRS primarily
contains the curve parameters, two primitive points α
and β which are hard-coded in the contracts and gen-
erated by Mesh-server, Mesh’s public key ym, and the
public IDs of members of a given group, which are cho-
sen by each member privately and published by Mam

in Cm. The randomness of α and β can be guaranteed
by requiring HM to generate them by hashing a small
public seed [17]. Unlike zkSNARKs where the challenge
is hard-coded, in Mesh, all challenges are freshly and
uniquely generated by the prover using commitments
and the Fiat-Shamir heuristic.

Formally, the identity proof system is defined as fol-
lows:

Definition 5 (Membership Proof πid). Given
c=(c1, c2), where c1 = kβ, c2 = kym + ID, and
ID = xα, a proof that c encrypts a valid member
identity from a set of identities {ID1, ID2, · · · , IDn} is

given by PoK{(x, k) : c2 = kym+xα∧c1 = kβ∧(∃|1≤i≤n:
c2 − IDi = kym)} and can be realized using

PoK{(x, k) : c2 = kym + xα} ∧
PoK{(k) : c1 = kβ ∧ (∃|1≤i≤n: c2 − IDi = kym)}

In Figure 4, we give the details of the membership proof
generation and verifications algorithms. For simplicity
and without loss of generality, we assume the prover is
a group member with public identity ID1.

Commitment. The prover with ID1 chooses
z1, z2, v

n
i=1, w

n
i=2

R←− Zq, and computes:
u1 = z1ym, u2 = z2α

t1 = v1β and ti = viβ − wic1, for i ∈ [2, n]
s1 = v1ym and si = viym − wi(c2 − IDi), for i ∈ [2, n]

Challenge. Using a collision resistant hash-function H and mes-
sage m, the following challenges are computed:
chr = H(m, ym, α, c2, u1 + u2).
che = H(m,β, ym, c1, c2 − IDni=1, t

n
i=1, s

n
i=1).

Response. The prover first sets chi = wi for i ∈ [2, n], then
evaluate the following:
r1 = z1 + kchr, r2 = z2 + xchr.
ch1 = che − Σni=2chi.
r3 = v1 + kch1, and ri+2 = vi for i ∈ [2, n]

The prover sends πid = (chr, chni=1, r
n+2
i=1) to the verifier.

Verification The verifier checks the following:
H(m, ym, α, c2, r1ym + r2α− chrc2) ?= chr

H(m,β, ym, c1, c2 − IDni=1, t
′n
i=1, s

′n
i=1) ?= Σni=1chi, where

t
′

i = ri+2β − chic1, s
′

i = ri+2ym − chi(c2 − IDi)

Fig. 4. Membership proof πid generation and verification proce-
dures.

Definition 6 (Proof of revocation πr). Given c =
(c1, c2), where c1 = kβ, c2 = kym + ID, a proof that
the identity ID′ which is revealed byMrm is indeed the
one encrypted in c under ym (i.e., ID′ = ID) is given
by PoK{(xm) : c2 − ID′ = xmc1 ∧ ym = xmβ}.

πr generation and verifications algorithms are given in
Figure 5.

Commitment. the prover chooses v R←− Zq, and computes t1 =
vc1, t2 = vβ.

Challenge. Using a collision resistant hash-function H, compute:
ch = H(m, c2 − ID′, ym, c1, β, t1, t2).

Response. the prover evaluates r = v + xmch, and sends πr =
(ch, r) to the verifier.

Verification The verifier checks the following:
H(m, c2 − ID′, c1, rc1 − ch(c2 − ID′), rβ − chym) ?= ch

Fig. 5. πr generation and verification procedures.

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 159

Security. In Appendix C, we provide security proofs for
the completeness, soundness, and witness indistinguish-
ablity of membership proof when utilizing the chosen
ElGamal variant over EC [42].

The above proof ensures the privacy of the sender
because its identity is encrypted using ElGamal encryp-
tion over EC which is semantically secure under the de-
cisional Diffie-Hellman assumption [16]. Assuming that
the private keys of all the IDs are known only by their
corresponding members, the membership proof ensures
that the valid identity of the transaction signer is indeed
encrypted in c under ym, formally.

Theorem 1. Given two primitive curve points β and
α, let the ciphertext c = (c1, c2) where c1 = kβ and
c2 = kym + IDi be ElGamal encryption over EC of the
identity IDi under the public key of M-server ym. Un-
der the assumption of the intractability of the ECDL
problem, membership proof guarantees that the transac-
tion signer knows the corresponding secret xi such that
IDi = xiα and IDi is a valid group member identity.

Proof. Membership proof is made of the conjunction
of two proofs, namely, proof of representation and
proof of existential equality. The proof of representa-
tion PoK{(x, b) : c2 = bym + xα} guarantees that
the i-th member of a group knows any pair of val-
ues (x, b) ∈ Zq where c2 = bym + xα. On the other
hand, the proof of existential equality PoK{(d) : c1 =
dβ ∧ (∃|1≤i≤n: (c2 − IDi) = dym)} ensures that the i-
th group member knows a value d where c1 = dβ and
that there exists at least one valid ID point, out of the
public n IDs, that when subtracted from c2 leads to
the point dy. Therefore, it follows that b = d and xα

equals to one of the valid ID points. In other words,
xα ∈ {x1α, x2α, · · · , xnα}.

According to the soundness proof of the membership
proof in Appendix C, no entity may construct a valid
proof with non negligible probability without the knowl-
edge of a secret identity, xi corresponding to one of the
public identities IDs. Accordingly, impersonation of a
given member by another group member or Mrm is
thwarted. Moreover, all group members are protected
against false identification by Mrm by proof of revoca-
tion, formally.

Theorem 2. Given the ciphertext c = (c1, c2), where
c1 = kβ, c2 = kym+IDi and c encrypts the public iden-
tity of the i-th group member, IDi, under the public key
ym of M-server. The i-th member is protected against
false identification by M-server.

Proof. The proof of revocation ensures that M-server
knows a given xm ∈ Zq such that the point c2 − IDi
is equal to xmc1 and that ym = xmβ. Since c2 and c1
are public values generated by the transaction signer as
c1 = kβ, c2 − IDi = kym, therefore, under the assump-
tion that the ECDL problem is intractable, the revealed
ID′ is equal to the encrypted identity IDi if ID′ is equal
to c2 − xmc1. Formally c2 − IDi = xmc1 ∧ ym = xmβ.
Otherwise, M-server has to find another x′ that de-
crypts c to another identity and this contradicts the
ECDL hardness assumption.

Communication and computation overhead.
For each transaction, extra transaction parameters of
2 curve points and 2n + 3 field elements are sent. The
proof alone is of length 2n+ 3 elements and is linear in
the size of the organizational group n. Assuming 128-bit
security, we require q = 256 which gives an overall over-
head of 2n+ 7 field elements. Using point compression,
one point can be encoded in 32 bytes in addition to one
bit to encode the least significant bit of the y coordinate
of each point. Overall, the communication overhead is
equal to (2n + 5)(32 bytes) + 2 bits. The computation
cost of proving requires 4n point multiplications to com-
pute the challenges and 3 field multiplications for the
responses. Verifying cost is almost equal to proving cost
with 4n+ 3 point multiplications.

How large can n be? the choice of n determines the
size of the anonymity set, the size of the CRS as well
as the communication and computation overheads. Pri-
marily, for practical realization on Ethereum, we need
the verifying execution gas cost to be less than the block
gas limit with is slightly over 8 million. Given that one
EC multiplication requires 40000 gas [49], n should less
than 50. Nevertheless, we have researched the average
number of major supply chain stakeholders (see Table
2), and based on these numbers, we recommend that
organizations carry a hierarchical subgroup structures
where each child subgroup is issued new blockchain cre-
dentials; such subgroups can be categorized under geo-
graphical locations around the world which makes their
internal group identity management more logical.

6 Mesh Protocol: RFID side
Confidentiality of transactions is established by encrypt-
ing their payload using symmetric keys generated by the
RFID tag. In what follows, we give the message flow for
the mutual authentication between a the RFID tag and

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 160

a reader that is operated by an owner member and how
transfer of ownership is accomplished.

6.1 Tag-Reader Mutual Authentication
RFID authentication has been extensively studied in the
literature for more than fifteen years [39, 44]. Most of
such proposals avoided the use of cryptographic prim-
itives and opted for simple operations to accommo-
dated the constrained hardware area of the tag. How-
ever, as such tags are getting stronger, their standards
are gradually defining cryptographic primitives. For in-
stance, the second version of Electronic Product Code
(EPC) Class 1 Gen 2 standard for RFID tags [7], de-
fines pseudorandom bit generator, encryption and au-
thentication functionalities. Also, the currently ongoing
NIST lightweight cryptographic standardization compe-
tition aims for standardizing cryptographic primitives
for tiny devices such as RFID tags. All of these recent
indicators suggest that having crypto-enabled RFIDs
is expected in the near future. EPC tags are heavily
used in retail supply chains. Stateful Near Field Com-
munication (NFC) tags are used in healthcare, phar-
maceutical, and electronics supply chains. In what fol-
lows, we give quantitative metrics of both communica-
tion (data rate), computation (power consumption and
security hardware area in GE) capabilities, security lev-
els, dedicated investment in security of both EPC and
RFID tags [7, 38]. Intuitively, if a given cryptographic
primitive operates under such numbers, its implementa-
tion can be practically realized on these tags. Examples
of such designs include [8, 34] which may realize more
than one cryptographic functionality using the same cir-
cuitry.

Tag Data rate Power Security Sec. area Sec. Cost
kbps bits (approx)

NFC 106–424 125 mW - 1 W 128 5 kGE $0.01
EPC 26.7–128 80 2 kGE $0.01

Table 1. Bit security, and the corresponding dedicated GE area
and cost in both NFC and RFID tags

In [38], Juels proposed the “minimalist” model
for RFID tags which captures the asymmetry between
reader-to-tag and tag-to-reader transmission ranges. In-
tuitively, readers transmit at much higher power than
tags, thus, their messages are vulnerable to attacks at
much greater distances than tag-to-reader communica-
tions. Figure 6 depicts a 4-move mutual authentication
protocol that is secure against man-in-the middle and
reply attacks because of the keyed MAC scheme and the
use of fresh nonces. We assume that initially both tag

and reader share ti and Ak where ti is an index to their
shared key AK.

Reader (ti,Ak, Csc) Tag (ti, Ak)

Query
ti,Rt Rt

R←− {0, 1}80.

Rr
R←− {0, 1}80 MACAk(Rt), Rr

Verify MACAk(Rt) then
MACAk(Rr) Authenticate ..= 1

Verify MACAk(Rr) then
Authenticate ..= 1,

Fig. 6. A 4-message mutual authentication protocol.

The tag maintains a counter cn that is initialized to
zero and then incremented when it changes ownership.
After executing the above protocol, a reader can issue
one of the following two commands to the tag.

1. setId(Csc). This command can only be issued by
the first owner (i.e., cn = 0) and it instructs the tag
to store the supply chain contract account as its
unique identification code, after that, the counter is
incremented.

2. getId() This command can be issued by any au-
thorized reader at anytime and it returns Csc.

6.2 Transactions Confidentiality: Forward
Secrecy on the Blockchain

We enforce forward secrecy where new owners can de-
crypt previously submitted information and past own-
ers are prevented from accessing future information. We
note that the adopted notion of forward secrecy is differ-
ent than that of Perfect Forward Secrecy that is defined
in [40] for key agreements which intuitively ensures the
security of past session keys in the event of a compro-
mise of the long term key which was used in generating
them.

Transfer of Ownership. In order to enforce the de-
fined notion of forward secrecy in our protocol, we need
to first implement a transfer of ownership mechanism
and couple it with a one way key chaining algorithm.
Particularly, a transfer of ownership mechanism is an
amendment to the mutual authentication protocol de-
picted in Figure 6. In Mesh we choose to implement
it as a command, newOwner() that is issued by a new
owner. This command instructs the tag to issue new
authentication credentials to the new owner after being
authenticated using the old credentials that have been
handed to her by the old owner. In this context, we rely
on the asymmetry between the eavesdropping ranges

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 161

on the forward and backward channels as stated in the
RFID minimalist model (see Section 3.5) to assume that
an old owner can not intercept this one session. Once
the transfer of ownership is established, the counter cn
is incremented and a new encryption key is generated
by the tag and securely sent to the reader.

Key chaining. A new owner should have access to all
the previous encryption keys as well as her current new
key. Accordingly, we let the tag generate all the keys
sequentially which results in a key chain. More precisely,
we assume that the tag stores a secret seed s and with
each newOwner() command, it runs its Pseudo Random
Bit Generator (PRBG) on this seed and cn to generate
a new secret key. If cn > 1, then it generates all the
previous keys to provide a new owner with a key chain
that enables the decryption of all previous information.

Definition 7 (Key chain). Given a secret seed s, and
the number of all previous owners cn − 1, a keychain
of size cn is denoted by KCcn and is a set of keys
{k1, k2, · · · , kcn} that is generated by the tag to the cn-th
owner where ki = PRBG(s⊕ i), and i = 1, 2, · · · , cn.

At any time, the ith − 1 owner knows {k1, k2, · · · , ki−1}
and only the i-th owner learns ki.

7 Security
Proofs for Theorem 3 (resp. 4) are given in Appendix D
(resp. E). Other attack scenarios are discussed in Ap-
pendix F.

7.1 Plausible Anonymity
We define plausible anonymity, as a necessary condition
for providing both local anonymity and accountability
of transaction’s sender. Formally, we define it as follows.

Definition 8 (Plausible Anonymity of Transactions).
We say that a transaction from a wallet account WO is
plausibly anonymous if for any PPT adversary A who
is not Mrm and does not engage with a transaction
sender in a physical pickup or drop-off scenario, a
security parameter λ, and the negligible function ε(.)
the following two conditions hold:
– A cannot reveal the identity of the transaction
sender, formally Pr[(ID)← AR(c, 1λ)] ≤ ε(λ).

– A cannot cause an honest verifier to accept
a transaction with c and πid pair, where c

encrypts a valid group ID for which A does
not know the corresponding secret x. For-

mally Pr[(σ, c, πid) ← AS(m, sko, 1λ, ym) :
Csc·VerifyId(m, c, πid, IDni=1) = 1] ≤ ε(λ)

Theorem 3. Assuming that Σ is a secure signature
scheme, Mesh transactions achieve plausible anonymity
under Definition 8.

7.2 Forward Secrecy
Assuming that transaction information is encrypted us-
ing secret keys generated by the tag’s PRBG with a
secret seed, s, and a counter, cn, such that the i-th key
ki = PRBG(s ⊕ i), our notion of forward secrecy is de-
fined as follows:

Definition 9 (Mesh forward secrecy). Given a product
that is currently owned by the i-th owner in the supply
chain, the i-th encrypted information ci, and the sym-
metric encryption algorithm Eλ(.), for all polynomially
bounded previous l = i − 1 owners and blockchain ob-
server, no useful information can be deduced from ci,
while the i-th owner I can decrypt any ci−j , where j =
0, 1, · · · , i − 1. Formally, PR[mi ← AD(ci, 1λ)] ≤ ε(λ)∧
PR[mi ← ID(ci−j , 1λ)i−1

j=0] = 1, where D(.) denotes the
decryption function.

Theorem 4. Assuming that the encryption algorithm
Eλ(.) is secure, the indistinguishability of the PRBG, the
tag is physically secure, and that encryption keys are
generated by the tag and known only by their respective
owner, Mesh protocol achieves forward secrecy as defined
in Definition 9.

8 Performance Evaluation
We have implemented the proof of membership prov-
ing and verifying algorithms, and the new transaction
signing scheme in C for the purpose of performance eval-
uation. We have used openSSL and crypto++ libraries,
and 128-bit security Koblitz elliptic curve secp256k11

because it is the one used in Ethereum’s ECDSA. All
the reported measurements are taken on an Intel i7-
6700U CPU 3.40 GHz and 16.0 GB RAM.

8.1 Measurements Criteria
We have fixed a message of size 128 bytes to satisfy
the bounds of all the transaction fields [55], in addi-
tion to some bytes in the data field which where the
update information is placed. A critical parameter that
affects both the proof size, and proving and verifying

1 Recommended parameters can be found in Sec. 2.7 in http:
//www.secg.org/SEC2-Ver-1.0.pdf

http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 162

Table 2. Number of members/facilities of some of the major
supply chain stakeholders

Organization Number of Members
N. America S. America Europe Asia & Oceania

Walmart [6] 5768 4085 642 501

Amazon [45] 339 1 158 252

P&G [5] 130

Nestlé [1] 158 146a 109

Mearsk [4] 639b

India Post [3] 154910c
a Including MENA region.
b Total number of fleet vessels.
c World’s largest postal network.

timings and is the number of members in the group, n.
Accordingly, we have searched for the number of facil-
ities (e.g., warehouses, logistic vehicles, outlets, etc...)
affiliated with some2 of the world largest supply chain
organizations in order to make our experiments realis-
tic. Table 2 depicts the distribution of the number of
members of such organizations over their main opera-
tive geographical regions.

Following the sample statistical distributions in Ta-
ble 2, and as has been pointed out in Section 5.2, we
decided to run our experiments on n ≤ 100. Mainly
because we need to optimize our efficiency and gas cost
(See Sec. 5.2). The size of membership proof πid is linear
in the number of members and ranges from 736 bytes to
6.3 KB for groups of 10 to 100 members. On the other
hand, proof of revocation πr is always equal to 96 bytes.
Figure 7 depicts the proving and verifying timings for
10 ≤ n ≤ 100. Both timing are almost identical. Both
these timings are linear in the number of members and
asymptotically linear in circuit size, however the order
of growth for reasonable sized groups is small because
of the large cost of point multiplications. For the chosen
range of n, proving and verification times vary between
4.7 ms and 19.5 ms.

10 20 40 60 80 100

2
4
6
8

10
12
14
16
18
20

Number of members (n)

π
id

tim
in
gs

(m
s)

Proving time
Verifying time

Fig. 7. Timing of membership proof.

2 We included organizations which have been affiliated with
IBM’s supply chain solution [32, 48] and BiTA [2]

Table 3. Comparison between membership proof and other
generic proof systems for 10, 50, and 100 members membership
arithmetic circuit

System #Gates (N) πr size Timing Trusted Security
(KG)a (KB) Prove Verify setup Assumption

Membership proof
57 0.75 2.5 ms 2.0 ms

No DLP262 3.2 10.0 ms 9.7 ms
518 6.3 19.6 ms 19.2 ms

Bulletproofs [18]b
57 1.4 44.8 s 2.4 s

No DLP262 1.5 200.9 s 7.8 s
518 1.6 397.3 s 15.4 s

zkSTRAKs[13]c
57

>200
253 ms 66 ms

No CSH262 517 ms 341 ms
518 825 ms 748 ms

Bootle et al.[37]d
57 3.4 15.5 s 5.2 s

No DLP262 3.8 71.0 s 24.1 s
518 4.0 140.2 s 46.8 s

zkSNARKs[15]e
57

288 B
9.1 s 5 ms

Yes KOE262 41.9 s 5.6 ms
518 82.9 s 6.4 ms

da N = 2560(2 + 2n) and the numbers are rounded below.
b Logarithmic communication of 2log(N)+13 elements. Prove and verify times are linear in N and are

approximately evaluated from Table 3 in [18].
c All timings are approximated from timing graphs in [13].
d Logarithmic communication of 6log(N)+13 elements, prove (resp. verify) computation takes 12N

(resp. 4N) exponentiations, and one group exponentiation requires around 22.6 µs [37].

e Input x = 322, 1607, 3213 bytes, verifying takes 4.8 + 0.0005x, and proving takes 0.16 ms/gate [15].

8.2 Comparison to Generic Proof Systems
In order to compare we need to translate our “I know x

and k such that c2 = kym + xα ∧ ∃|i: IDi = xα" state-
ment to an arithmetic circuit that is satisfied by our
witnesses x and k. Such a statement involves witnesses
to ElGamal encryption and proof of existential equal-
ity of EC discrete logarithm which are both computed
by EC point multiplication. Given that on average 20λ
arithmetic operations are required for one EC multipli-
cation using projective coordinates [37], the number of
circuit gates, henceforth denoted by N , of the resulting
circuit blows up as n increases. We depict in Table 3
the lower bounds on the number of circuit gates using
an estimate on the minimum number of EC multiplica-
tions which is approximated by 2n+ 2, where two point
multiplications are required for proving the knowledge
of representation of c2 and 2n multiplication for the set
existential equality. When λ = 128, one point multipli-
cation requires around 20λ = 2560 fan-in 2 multiplica-
tive gates. We provide comparison measurements when
n = 10, 50, and 100 which results in N = 57, 262, 518
Kilo Gates (KG). We compare the membership proof
with the following systems:

– Bulletproofs [18]. At 128-bit security using the same
Koblitz secp256k1 EC parameters as our implemen-
tation and a typical desktop.

– zkSTARK [13]. The systems is not EC-based an
its security relies on the collision resistance of hash

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 163

functions. Reported numbers are at 80-bit security
and the proving algorithm has been run on a pow-
erful server with 32 AMD cores at clock speed of
3.2GHz, with 512GB of DDR3 RAM, so longer prov-
ing times are expected on typical desktops.

– Bootle et al. [37]. At 128-bit security using an
OpenSSL curve. Since the exact curve is not ex-
plicitly mentioned in the paper and their experi-
ments are over a 256-bit prime field, we assume that
secp256k1 is used. Experiments are run on a typical
desktop.

– zkSNARK [15]. At 128-bit security using a cus-
tomized pairing-friendly parameterization of a
Barreto-Naehrig curve over a 256-bit prime field (cf.
Sec. 4.1 [15] and Sec. 3.1 in [14] for parameters and
rationale). Tests conducted on a typical desktop.

It can be seen that zkSNARKs offer the smallest proof
size at just 288 bytes, and a slowly increasing verifica-
tion timing, however, proving times are slow and grows
linearly with gate count. On the other hand, πid requires
no trusted setup has a reasonable proof size at 6.3 KB
for 219 circuit and at the same time competitive proving
and verifying timings at less than 6.5 ms. zkSTARK has
large proof size of more than 200 KB and the proving
and verifying times are relatively slow of around 800 ms
518 KG circuit. Both proving and verifying timings of
πid are significantly faster than those of Bulletproof and
Bootle et al. systems for all circuit sizes. Even though
the proof sizes of Bulletproof are less than those of πid,
proving times of around 7 minutes may be unpractical
given the real time nature of supply chain activity.

8.3 Gas Cost Estimation
Since the main functionality of Csc is verifying proofs, we
have tested a prototype for the verification functionality
by implementing a function that essentially performs 4n
iterations of EC point multiplication and addition to
compute the commitments for n member groups. The
function references the helping pre-compiled contract
EIP-196 [49] that implements EC basic operations on
the Barreto-Naehrig curve over 256-bit prime field. In
our experiment, we have created test-cases with n = 10,
15, and 20. We have chosen these number because one
EC multiplication costs around 40000 gas [49], so larger
groups n > 50 may not be realizable on Ethereum as the
current block gas limit of 8000046. Table 4 shows the gas
cost and the corresponding price in USD for both the
transaction and execution of the function. At the time of
carrying out our experiment, December, 2018, the ether

exchange rate is 1 ether = 106 USD, and the median
gas price is approximately 10 Gwei = 10× 10−9 ether.

Table 4. Gas cost associated with the various functions

Members Transaction cost Execution cost
(n) gas USD gas USD

10 1727330 1.8 1719080 1.8

15 2575995 2.7 2406712 2.5

20 3434660 3.6 3405420 3.6

Recall that verifyID performs hashing on 2n + 4
inputs, which if implemented using SHA3 Keccak-256,
has a fixed gas cost of 30 + 6 gas per input. However,
such a price is negligible compared to the 4n EC multi-
plications which dominates the overall cost. According
to these results, if Mesh is implemented on Ethereum,
we recommend that groups stay within the range of 20
to 30 members in order to reduce cost and optimize
the efficiency given the required security in terms of the
anonymity set size. Given the block gas limit, imple-
menting Meshon Ethereum suggests that other transac-
tions will not fit in the same block. However, Meshcan
be implemented on other future public blockchains that
do not have this limitation.

9 Conclusion
In this work, we have presented a solution for blockchain
applications that require privacy of their transactions
and accountability at the same time. In order to real-
ize sender anonymity, we have utilized a membership
proof that requires no trusted setup and its security
relies on the discrete logarithm assumption. We have
reported on implementation measurements and shown
that such a proof is more efficient in terms of either
communication or computation overheads than using
generic proofs for arithmetic circuit satisfiability. Both
overheads are linear in the number of set members. We
have proposed Mesh to demonstrate a practical solution
for supply chain management over public permissionless
blockchains with a guarantee of plausible anonymity. We
have shown that using RFIDs, confidentiality of trans-
actions is provided using a lightweight symmetric key
chaining mechanism. The security properties of Mesh
are formally defined, security proofs, and arguments for
adversarial scenarios are provided. For future work, we
plan to provide an open source prototype for Mesh-
server and perform practical analysis on the security
models adopted in the RFID subsystem.

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 164

10 Acknowledgment
The work is supported by NSERC SPG research grant
and NSERC PDF fellowship. The authors would like to
thank Kalikinkar Mandal and Hisham S. Galal for their
help in providing the computational results.

References
[1] Néstle annual review 2017, 2017. https://www.nestle.com/

asset-library/documents/library/documents/annual_reports/
2017-annual-review-en.pdf.

[2] Blockchain in Transport Alliance (BiTA), 2018. https://
bita.studio/members/.

[3] India post annual report 2017, 2018. https://www.indiapost.
gov.in/VAS/DOP_PDFFiles/AnnualReportEnglish2016-
17.pdf.

[4] Maersk line, 2018. https://www.maersk.com/about.
[5] P&G manufacturing facilities locations, 2018. https://www.

pgcareers.com/our-locations.
[6] Walmart location facts, 2018. https://corporate.walmart.

com/our-story/our-locations.
[7] Epc™ radio-frequency identity protocols generation-2 uhf

rfid standard version 2. EPCglobal Inc. Specification docu-
ments, Jul. 2018. https://www.gs1.org/sites/default/files/
docs/epc/gs1-epc-gen2v2-uhf-airinterface_i21_r_2018-09-
04.pdf.

[8] R. AlTawy, R. Rohit, M. He, K. Mandal, G. Yang, and
G. Gong. sLiSCP-light: Towards hardware optimized sponge-
specific cryptographic permutations. ACM Trans. Embeded
Computing Systems, 17(4):81:1–81:26, 2018.

[9] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Chris-
tidis, A. De Caro, D. Enyeart, C. Ferris, G. Lavent-
man, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, S. Cocco, and J. Yellick.
Hyperledger Fabric: A distributed operating system for per-
missioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, pages 30:1–30:15, 2018.

[10] Shireesh Aptea and Nikolai Petrovsky. Will blockchain tech-
nology revolutionize excipientsupply chain management?
7(3):76–78, 2016.

[11] Ghada Arfaoui, Jean-François Lalande, Jacques Traoré,
Nicolas Desmoulins, Pascal Berthomé, and Said Gharout.
A practical set-membership proof for privacy-preserving nfc
mobile ticketing. In PETs, pages 25–45, 2015.

[12] E. Ben-Sasson, I. Bentov, A. Chiesa, A. Gabizon, D. Genkin,
M. Hamilis, E. Pergament, M. Riabzev, M. Silberstein,
E. Tromer, and M. Virza. Computational integrity with
a public random string from quasi-linear pcps. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Ad-
vances in Cryptology – EUROCRYPT 2017, pages 551–579.
Springer, 2017.

[13] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scal-
able, transparent, and post-quantum secure computational
integrity. Cryptology ePrint Archive, Report 2018/046, 2018.

https://eprint.iacr.org/2018/046.
[14] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and

M. Virza. Snarks for c: Verifying program executions suc-
cinctly and in zero knowledge. In R. Canetti and J. Garay,
editors, Advances in Cryptology – CRYPTO 2013, pages
90–108. Springer, 2013.

[15] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowledge
for a von neumann architecture. Cryptology ePrint Archive,
Report 2013/879, 2013. https://eprint.iacr.org/2013/879,
updated in 2015.

[16] D. Boneh. The decision diffie-hellman problem. In J..
Buhler, editor, Algorithmic Number Theory, pages 48–63.
Springer, 1998.

[17] Dan Boneh, Ben Lynn, and Hovav Shacham. Short sig-
natures from the weil pairing. Journal of Cryptology,
17(4):297–319, 2004.

[18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In IEEE Symposium on Security and
Privacy (SP), pages 315–334, 2018.

[19] Vitalik Buterin and Christian Reitwiessner. Eip 197: Precom-
piled contracts for optimal tate pairing check on the elliptic
curve alt_bn128, 2017. https://eips.ethereum.org/EIPS/eip-
197.

[20] J. Camenisch and M. Stadler. Proof systems for general
statements about discrete logarithms. Technical report,
Dept. of Computer Science, ETH Zurich., 1997.

[21] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient
protocols for set membership and range proofs. In Josef
Pieprzyk, editor, Advances in Cryptology - ASIACRYPT
2008, pages 234–252. Springer, 2008.

[22] Sébastien Canard, Iwen Coisel, Amandine Jambert, and
Jacques Traoré. New results for the practical use of range
proofs. In Sokratis Katsikas and Isaac Agudo, editors, Public
Key Infrastructures, Services and Applications, pages 47–64.
Springer, 2014.

[23] Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. A
non-interactive range proof with constant communication.
In Angelos D. Keromytis, editor, Financial Cryptography and
Data Security, pages 179–199. Springer, 2012.

[24] D. Chaum and E. van Heyst. Group signatures. In
D. Davies, editor, EUROCRYPT ’91, pages 257–265.
Springer, 1991.

[25] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers.
Proofs of partial knowledge and simplified design of witness
hiding protocols. In Yvo G. Desmedt, editor, CRYPTO,
pages 174–187. Springer, 1994.

[26] I. Damgård. Towards practical public key systems secure
against chosen ciphertext attacks. In J. Feigenbaum, editor,
Advances in Cryptology — CRYPTO ’91, pages 445–456.
Springer, 1992.

[27] U. Feige and A. Shamir. Witness indistinguishable and
witness hiding protocols. In ACM Symposium on Theory of
Computing, STOC ’90, pages 416–426. ACM, 1990.

[28] A. Fiat and A. Shamir. How to prove yourself: Practi-
cal solutions to identification and signature problems. In
A. Odlyzko., editor, Advances in Cryptology — CRYPTO’
86, pages 186–194. Springer, 1987.

https://www.nestle.com/asset-library/documents/library/documents/annual_reports/2017-annual-review-en.pdf
https://www.nestle.com/asset-library/documents/library/documents/annual_reports/2017-annual-review-en.pdf
https://www.nestle.com/asset-library/documents/library/documents/annual_reports/2017-annual-review-en.pdf
https://bita.studio/members/
https://bita.studio/members/
https://www.indiapost.gov.in/VAS/DOP_PDFFiles/AnnualReportEnglish2016-17.pdf
https://www.indiapost.gov.in/VAS/DOP_PDFFiles/AnnualReportEnglish2016-17.pdf
https://www.indiapost.gov.in/VAS/DOP_PDFFiles/AnnualReportEnglish2016-17.pdf
https://www.maersk.com/about
https://www.pgcareers.com/our-locations
https://www.pgcareers.com/our-locations
https://corporate.walmart.com/our-story/our-locations
https://corporate.walmart.com/our-story/our-locations
https://www.gs1.org/sites/default/files/docs/epc/gs1-epc-gen2v2-uhf-airinterface_i21_r_2018-09-04.pdf
https://www.gs1.org/sites/default/files/docs/epc/gs1-epc-gen2v2-uhf-airinterface_i21_r_2018-09-04.pdf
https://www.gs1.org/sites/default/files/docs/epc/gs1-epc-gen2v2-uhf-airinterface_i21_r_2018-09-04.pdf
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2013/879
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-197

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 165

[29] E. Fujisaki and T. Okamoto. Statistical zero knowledge pro-
tocols to prove modular polynomial relations. In B. Kaliski,
editor, Advances in Cryptology — CRYPTO ’97, pages 16–
30. Springer, 1997.

[30] R. Gennaro, C. Gentry, B. Parno, and M. Raykova.
Quadratic span programs and succinct NIZKs without PCPs.
In T. Johansson and P. Nguyen, editors, Advances in Cryp-
tology – EUROCRYPT 2013, pages 626–645. Springer,
2013.

[31] S Goldwasser, S Micali, and C Rackoff. The knowledge com-
plexity of interactive proof-systems. In The ACM Sympo-
sium on Theory of Computing, STOC ’85, pages 291–304.
ACM, 1985.

[32] T. Groenfeldt. IBM ibm and Maersk apply blockchain
to container shipping. https://www.forbes.com/sites/
tomgroenfeldt/2017/03/05/ibm-and-maersk-apply-
blockchain-to-container-shipping.

[33] J. Groth. Short pairing-based non-interactive zero-knowledge
arguments. In M. Abe, editor, Advances in Cryptology -
ASIACRYPT 2010, pages 321–340. Springer, 2010.

[34] J. Guo, T. Peyrin, and A. Poschmann. The photon family of
lightweight hash functions. In P. Rogaway, editor, CRYPTO,
pages 222–239. Springer, 2011.

[35] IBM.com. IBM Food Trust Marketplace. https://www.ibm.
com/us-en/marketplace/food-trust/purchase, accessed: 22
Aug. 2018.

[36] Aferdita Ibrahimi. Cloud computing: Pricing model. Journal
of Advanced Computer Science and Applications, 8(6):434–
441, 2017.

[37] j. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Ef-
ficient zero-knowledge arguments for arithmetic circuits in
the discrete log setting. In M. Fischlin and JS. Coron, edi-
tors, Advances in Cryptology – EUROCRYPT 2016, pages
327–357. Springer, 2016.

[38] A. Juels. Minimalist cryptography for low-cost RFIS tags
(extended abstract). In C. Blundo and S. Cimato, edi-
tors, Security in Communication Networks, pages 149–164.
Springer, 2005.

[39] A. Juels and S.. Weis. Authenticating pervasive devices with
human protocols. In V. Shoup, editor, Advances in Cryptol-
ogy – CRYPTO 2005, pages 293–308. Springer, 2005.

[40] J. Katz, R. Ostrovsky, and M. Yung. Forward secrecy in
password-only key exchange protocols. In Proceedings of the
3rd International Conference on Security in Communication
Networks, SCN’02, pages 29–44. Springer, 2003.

[41] J. Kilian and E. Petrank. Identity escrow. In H. Krawczyk,
editor, Advances in Cryptology — CRYPTO ’98, pages 169–
185. Springer, 1998.

[42] N. Koblitz. Elliptic curve cryptosystems. Mathematics of
computation, 48(177):203–209, 1987.

[43] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and
Charalampos Papamanthou. Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts. In
2016 IEEE Symposium on Security and Privacy, pages 839–
858, 2016.

[44] Z. Li, G. Gong, and Z. Qin. Secure and efficient LCMQ
entity authentication protocol. IEEE Trans. Information
Theory, 59(6):4042–4054, 2013.

[45] mwpvl international. Amazon distribution network, 2018.
http://www.mwpvl.com/html/amazon_com.html.

[46] T. Okamoto. Provably secure and practical identification
schemes and corresponding signature schemes. In E. Brick-
ell, editor, Advances in Cryptology — CRYPTO’ 92, pages
31–53. Springer, 1993.

[47] H. Petersen. How to convert any digital signature scheme
into a group signature scheme. In B. Christianson,
B. Crispo, M. Lomas, and M. Roe, editors, Security Pro-
tocols, pages 177–190. Springer, 1998.

[48] B. Peterson. IBM told investors that it has over 400
blockchain clients — including Walmart, Visa, and Nestlé.
https://www.businessinsider.com/ibm-blockchain-enterprise-
customers-walmart-visa-nestl-2018-3?IR=T.

[49] Christian Reitwiessner. Eip 196: Precompiled contracts
for addition and scalar multiplication on the elliptic curve
alt_bn128, 2017. https://eips.ethereum.org/EIPS/eip-196.

[50] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to
leak a secret. In Colin Boyd, editor, ASIACRYPT, pages
552–565. Springer, 2001.

[51] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on
Security and Privacy, pages 459–474, 2014.

[52] C. Schnorr. Efficient signature generation by smart cards.
Journal of Cryptology, 4(3):161–174, 1991.

[53] B. Schoenmakers. Interval proofs revisited. In International
Workshop on Frontiers in Electronic Elections, 2005. (slides
presentation).

[54] Nicolas van Saberhagen. Cryptonote v 2.0, 2013. https:
//cryptonote.org/whitepaper.pdf.

[55] GAVIN Wood. Ethereum: A secure decentralised generalised
transaction ledger. 2014. http://gavwood.com/paper.pdf.

[56] Fan Zhang, Philip Daian, Gabriel Kaptchuk, Iddo Bentov,
Ian Miers, and Ari Juels. Paralysis proofs: Secure dynamic
access structures for cryptocurrencies and more, 2018. In
Bitcoin magazine https://eprint.iacr.org/2018/096.pdf.

A ElGamal Encryption over EC
ElGamal has a 2:1 ciphertext plaintext ratio, thus, it
makes sense to use EC instead of plain Galois fields.

Definition 10 (ElGamal over EC [42]). Let f(m) :
m → Pm denote a publicly known bijective function
which maps a message m to a curve point Pm, the El-
Gamal scheme defines the following three procedures:
– Key generation: (pk, sk)← K(1λ). Given a primitive
point α ∈ EC, choose a secret value x ∈R Zq, and
evaluate y = xα. The public key pk = (y, α), and the
secret key sk = x.

– Encryption: (c1, c2) ← E(pk,m). Randomly choose
k ∈R Zq, and calculate c1 = kα, and c2 = f(m)+ky.

– Decryption: m← D(sk, c1, c2). m = f−1(c2 − xc1).

https://www.forbes.com/sites/tomgroenfeldt/2017/03/05/ibm-and-maersk-apply-blockchain-to-container-shipping
https://www.forbes.com/sites/tomgroenfeldt/2017/03/05/ibm-and-maersk-apply-blockchain-to-container-shipping
https://www.forbes.com/sites/tomgroenfeldt/2017/03/05/ibm-and-maersk-apply-blockchain-to-container-shipping
https://www.ibm.com/us-en/marketplace/food-trust/purchase
https://www.ibm.com/us-en/marketplace/food-trust/purchase
http://www.mwpvl.com/html/amazon_com.html
https://www.businessinsider.com/ibm-blockchain-enterprise-customers-walmart-visa-nestl-2018-3?IR=T
https://www.businessinsider.com/ibm-blockchain-enterprise-customers-walmart-visa-nestl-2018-3?IR=T
https://eips.ethereum.org/EIPS/eip-196
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
http://gavwood.com/paper.pdf
https://eprint.iacr.org/2018/096.pdf

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 166

B Security Proofs for Existential
Equality Proof

In what follows, we give the completeness, soundness
and witness indistinguishability proofs for Definition 4.

Completeness. It can be seen that an honest prover will
always succeed in constructing a valid proof since the
following equivalences hold.

- For i = 1 : s′
1 = r1α− c1y = s1, t′1 = r1β − c1y1 = t1

- For 1 ≤ i ≤ n : s′
i = riα− ciy = si, t′i = riβ − ciyi = ti

H(α, β, y, yn
i=1, t

′n
i=1, s

′n
i=1) =

∑n

i=1 ci

Soundness. Given H and following the Fiat-Shamir
heuristic, it is assumed that the values tni=1, and sni=1
had been fixed before c was computed. Let us assume, if
in an interactive setting, that the transaction signer is
able to compute proofs for two different challenges (c1,
c2) after committing the values tni=1, and sni=1 by eval-
uating the corresponding responses rni=1,1 and rni=1,2,
where ri,j denote the i-th response to cj , without know-
ing at least one secret x such that y = xα ∧ (∃|1≤i≤n:
yi = xβ)} and for all i ∈ [1, n] and j ∈ {1, 2}, the follow-
ing equivalences hold.

ri,jα = si + cjiy, ri,jβ = ti + cjiyi, c
j = Σni=1c

j
i

Then, there exists at lease one pair of tuples (ri,1,c1
i)

and (ri,2,c2
i) such that c1

i 6= c2
i and c1

i y = ri,1α − si
and c2

i y = ri,2α − si, and c1
i yi = ri,1β − ti and c2

i yi =
ri,2β−ti which implies that y(c1

i−c2
i) = (ri,1−ri,2)α and

yi(c1
i − c2

i) = (ri,1 − ri,2)β. In other words, the prover
knows some x = ri,1−ri,2

c1
i
−ci2 such that y = xα and yi =

xβ, which contradicts the initial assumption that the
signer does not know at least one secret x such that
y = xα ∧ (∃|1≤i≤n: yi = xβ)}.

Witness indistinguishablity. following Definition 3.1 in
[[27]], given that the responses ri for i ∈ [2, n] are ran-
dom values and r1 is evaluated by adding a random
value to the product of the witness and the challenge,
and the challenges cni=2 are also random and c1 is ran-
dom under the assumption that H(.) behaves like a
random oracle [28], then it follows that all sni=1 and
tni=1 are random. Therefore, all the transcripts (ci, ri, si)
and (ci, ri, ti) have the same distribution as in a sin-
gle Schnorr signature [52], they additionally satisfy c =
Σni=1ci which does not leak any useful information about
the witness x as it is essentially the sum of random
values. Even a distinguisher, who knows the possible
witnesses, cannot tell which witness the prover knows.

Thus, the proof is witness indistinguishable in the sense
of [27].

C ECDL Membership Proof
Security

Theorem 5. Given a random collision resistant hash
function H(.), the Proof of identity in Definition 5 is a
sound, complete and witness indistinguishable proof of
knowledge of the values xi, k ∈ Zq satisfying IDi = xiα,
c1 = kβ, (c2 = kym + IDi) for some i ∈ {1, 2, · · · , n}.

Soundness. Since the hash function is preimage resis-
tant, we can assume that the values u1, u2, tni=1, and
sni=1 had been fixed before chr and che were computed.
Assuming that the transaction signer is able to com-
pute proofs for two different challenges (ch1

r, ch1
e) and

(ch2
r, ch2

e) after committing the values u1, u2, tni=1, and
sni=1 by evaluating the corresponding responses rn+2

i=1,1
and rn+2

i=1,2 without knowing any of the secret identities
xi for some i ∈ {1, 2, · · · , n} and a value k such that for
all i ∈ [1, n] and j ∈ {1, 2}, the following equivalences
hold.

r1,jym + r2,jα = u1 + u2 + chjrc2

ri+2,jβ = ti,j + chji c1

ri+2,jym = si,j + chji (c2 − IDi),

chje =
n∑
i=1

chji

Then there exists at lease one tuple (r1,1, r2,1,
ri+2,1,ch1

r, ch1
e) and (r1,2, r2,2, ri+2,2,ch2

r, ch2
e) such that

the following equivalences hold.

1. ch1
r 6= ch2

r, ch
1
e 6= ch2

e

2.a. r1,1ym + r2,1α = u1 + u2 + ch1
rc2

2.b. r1,2ym + r2,2α = u1 + u2 + ch2
rc2

3. ri+2,1β = ti + ch1
i c1, ri+2,1ym = si + ch1

i (c2 − IDi)
4. ri+2,2β = ti + ch2

i c1, ri+2,2ym = si + ch2
i (c2 − IDi)

(1), (2.a) and (2.b) imply that

5. ch1
rc2 = r1,1ym + r2,1α− (u1 + u2)

6. ch2
rc2 = r1,2ym + r2,2α− (u1 + u2)

by subtracting (6) from (5), we get
c2(ch1

r − ch2
r) = (r1,1 − r1,2)ym + (r2,1 − r2,2)α, thus

c2 =
r1,1 − r1,2
ch1
r − ch2

r

ym +
r2,1 − r2,2
ch1
r − ch2

r

α

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 167

In other words, a signer knows some

k =
r1,1 − r1,2
ch1
r − ch2

r

and x =
r2,1 − r2,2
ch1
r − ch2

r

such that

c2 = kym + xα

(1), (3), and (4) imply that

ch1
i c1 = ri+2,1β − ti, ch2

i c1 = ri+2,2β − ti
ch1
i (c2 − IDi) = ri+2,1ym − si,

ch2
i (c2 − IDi) = ri+2,2ym − si, thus,

c1(ch1
i − ch2

i) = (ri+2,1 − ri+2,2)β
(c2 − IDi)(ch1

i − ch2
i) = (ri+2,1 − ri+2,2)ym

It follows that the signer knows some

k =
ri+2,1 − ri+2,2
ch1
i − ch2

i

such that c1 = kβ ∧ c2 −IDi = kym

and that for this given (c, IDi) pair, k = r1,1−r1,2
ch1
r−ch2

r
=

ri+2,1−ri+2,2
ch1
i
−ch2

i

, and ∃|i s.t IDi = xiα ∧ xi = r2,1−r2,2
ch1
r−ch2

r
,

which contradicts the initial assumption that the signer
does not know any secret identity xi for some i ∈
{1, 2, · · · , n} and the value of k.

Completeness. It can be seen that an honest prover
will always succeed in constructing a valid proof since
the following equivalences hold.

- u′1 + u′2 = r1ym + r2α− chrc2

= (z1 + kchr)ym + (z2 + xichr)α
− chr(kym + xiα)

= z1ym + kchrym + z2α+ xichrα− chrkym
− chrxiα

= z1ym + z2α

= u1 + u2

Therefore H(m, ym, α, c2, u
′
1 + u′2) = chr.

- For i = 1:

t′1 = r3β − ch1c1 = (v1 + kch1)β − ch1(kβ)
= v1β + kch1β − ch1kβ = v1β

= t1
s′1 = r3ym − ch1(c2 − ID1)

= (v1 + kch1)ym − ch1(kym)
= v1ym + kch1ym − ch1kym = v1ym
= s1

- For 1 ≤ i ≤ n:

t′i = ri+2β − chic1 = (vi)β − wic1
= ti

s′i = ri+2ym − chi(c2 − IDi) = (vi)ym − wi(c2 − IDi)
= si

Therefore H(m,β, ym, c1, (c2 − IDi)ni=1, t
′n
i=1, s

′n
i=1) =

Σni=1chi.

Witness indistinguishablity. following Definition 3.1 in
[27], all the responses ri for i ∈ [1, n + 2] are either a
random value or evaluated by adding a random value
to the product of the witness and the challenge. Given
that challenges are also random under the assumption
that H(.) behaves like a random oracle, all the tuples
(r1, r2, che, ri + 2, chi) have the same distribution, they
additionally satisfy che = Σni=1chi which does not leak
any information about the witness, xi, k. Therefore, the
proof is witness indistinguishable as the verifier learns
no information about which witness the prover knows.

D Proof of Theorem 3
Proof. For the first condition in Definition 8, A may
attempt either of the following:

– A outputs the correct identity ID by running the re-
vocation algorithmR(.) on the observed c. However,
since c = (c1, c2) = (kβ, kym + ID) is ElGamal EC
encryption of the identity ID, and ElGamal encryp-
tion is proven to be semantically secure under the
decisional Diffie-Helman assumption, then the suc-
cess probability of A is reduced to the success prob-
ability of a simulator B that only has access to any
auxiliary information about ID, e.g., its length or
more generally h(ID) where h(.) is any polynomially
bounded function. Formally, Pr[AR(1λ, c, h(ID)) =
ID]− Pr[BR(1λ, h(ID)) = ID] ≤ ε(λ)

– A tries to establish a link between c and the iden-
tity by testing c against encrypting ci = Eym(IDi)
for 1 ≤ i ≤ n. Since the encryption scheme is proba-
bilistic where a fresh secret nonce is used with each
c, it follows that the encryption of the same identity
results in different c’s with each transaction.

For the second condition in Definition 8, A is restricted
the set of adversaries to those who have access to the
walletWO signing credentials, i.e., members of the same
group who can produce valid signatures. Otherwise, A
may need to break the signing scheme and produce a
forged signature Σsk′

o
(H(m, c)) without the knowledge

of sko and this contradicts the assumption that Σ is a
secure signature scheme. A may attempt either of the
following:

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 168

– Without knowing the secret identity x where
ID = xα, A can generate a given k, evalu-
ate c, and try evaluating πid such that Csc ·
VerifyId(m, c, πid, IDni=1) = 1. In this case, A is
able to generate a valid proof of knowledge πid to
a witness x that she does not know, which accord-
ing to the soundness proof in Appendix C can hap-
pen with negligible probability. Formally, Pr[Csc ·
VerifyId(m, c, πid, IDni=1) = 1 ∧ c = Eym(k, xα) ∧
πid = PoK(k, x′) ∧ x′ 6= x] ≤ ε(λ).

– A tries to use a recorded c and πid to send a trans-
action and not be held accountable. Recall that the
proof generation algorithm in Definition 5 evaluates
the challenge by incorporating the transaction pay-
loadm in H(.) which results in a message dependent
proof. In other words, assuming thatH(.) is collision
resistant hash function, with negligible probability,
A is able to replay a previous πid in a new transac-
tion.

E Proof of Theorem 4
Proof. (Sketch) Since the encryption keys are generated
by the tag using a securely stored secret seed s and a
publicly known counter cn, the result of xoring s by
cn is still secret, and accordingly, each new encryption
key ki is generated by a secret seed that is not known
to the previous l owners and all blockchain observers.
Additionally, given the indistinguishability assumption,
it follows that even that inputs of the PRBG are related,
the corresponding outputs are not.

F Adversarial Scenarios.
Plausible anonymity ensures that members are held ac-
countable to their transactions and that their identity is
locally anonymized within their owner groups. Forward
secrecy guarantees the confidentiality of the transaction
information. In what follows, we list some security con-
cerns in the form of adversarial scenarios and show how
Mesh handles them.

Corrupted Mrm. Mesh allows a revocation manager
Mrm to reveal this identity when a request is raised
by the contract. A corrupted manager can attempt to
frame another member by responding with a different
identity than the decrypted one. Mesh mitigates such
an attack by requiring that Mrm provides a proof of

correct decryption πr (see Section 5) with the revealed
identity. According to theorem 2, the success ofMrm in
revealing a different identity and providing a valid πr is
equivalent to solving the ECDL problem.

Malicious Owners. A corrupted owner may try to in-
terfere with the normal execution of the protocol in sev-
eral scenarios. Nevertheless, similar to real world con-
tracts, smart contracts can be implemented to enforce
penalties on owners that deviate from the expected pro-
cedure. Assuming the majority of owners are honest and
are looking for the best outcome for their business, such
penalties can be enforced by a t out of N multisignature
threshold scheme. As indicated earlier, we assume mul-
tisignature transactions are used for transfer of product
ownership. Accordingly, a penalized owner has to have
owned the product at some point, and given the honest
majority assumption, contract penalties are assumed to
be fairly enforced. Owner adversarial scenarios are listed
below.

– Impersonate and frame an honest member which ac-
cording to Theorem 3 may happen with negligible
probability.

– Revoke the confidentiality of updates by submitting
information in the clear. In this case, the identity of
the owner can be revealed. In other words, because
of the associated proof of identity, πid, the contract
accepts update information only after verifying πid,
thus a member cannot repudiate the transaction. In
such scenario, we assume certain penalties can be en-
forced by the contract when prompted the majority
of authorized owners.

– Use different key than the one produced by the tag or
invoke newOwner() multiple times to get multiple keys
and corrupt owner count. In such a scenario, a cor-
rupted owner may deny the remaining rightful owners
from accessing history information on the blockchain
or cause confusion in the event of multiple keys. How-
ever, such an owner can directly be identified by the
following owner who is expected to check the prod-
uct information on the blockchain by decrypting it
using KC that is generated by the product tag, then
penalties may be executed by majority of owners. If
not identified then all following owners that do not
identify a previous violation share the penalties.

– Request the revocation of anonymity of a previous
owner. The contract accepts revocation requests from
authorized owners only after the product has reached
its final destination (i.e., currently owned by the last

Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions 169

owner in the list). In such a case, anonymity revoca-
tion requests do not pose security violation.

	Mesh: A Supply Chain Solution with Locally Private Blockchain Transactions
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Mesh Abstract Model
	3.1 Blockchain System
	3.2 RFID System
	3.3 M server
	3.4 From Supply chains to Mesh
	3.5 Threat Model
	3.6 Privacy goals
	3.7 Limitations.

	4 Mesh Protocol: Blockchain and Server sides
	4.1 Message Flow
	4.2 Protocol Specification
	4.2.1 Supply chain contract C_sc.
	4.2.2 Mesh handling contract C_M.

	5 Locally Private Transactions
	5.1 Transaction Signing Scheme
	5.2 Membership Proof System.

	6 Mesh Protocol: RFID side
	6.1 Tag-Reader Mutual Authentication
	6.2 Transactions Confidentiality: Forward Secrecy on the Blockchain

	7 Security
	7.1 Plausible Anonymity
	7.2 Forward Secrecy

	8 Performance Evaluation
	8.1 Measurements Criteria
	8.2 Comparison to Generic Proof Systems
	8.3 Gas Cost Estimation

	9 Conclusion
	10 Acknowledgment
	A ElGamal Encryption over EC
	B Security Proofs for Existential Equality Proof
	C ECDL Membership Proof Security
	D Proof of Theorem 3
	E Proof of Theorem 4
	F Adversarial Scenarios.

