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document edits. This protocol is su�cient if the set of
participants in a collaboration group is �xed.

1.1 Adding a new collaborator

Further challenges arise if new collaborators may be in-
vited to join the editing session for an existing docu-
ment. In this case, the new collaborator must be given
a copy of the document at the time she is invited, and
then be sent any subsequent edits to the document. We
identify three approaches to inviting new collaborators:

1. If the existing collaborators keep a log of all editing
operations that have occurred since the creation of
the document, they can send a copy of that log to
the new collaborator, who can then reconstruct the
current state of the document from the edits. The
new collaborator can also use the hashes and signa-
tures on the operations to verify the integrity of the
edit log. This approach is used by the protocol in
Ÿ4, but it has signi�cant disadvantages. In partic-
ular, storing, transmitting, replaying, and checking
the integrity of the edit log incurs substantial costs
in storage, network bandwidth, and processing time;
and the edit log contains all past versions of the doc-
ument, including any text that has been deleted in
the current version.

2. To reduce the cost and improve the privacy prop-
erties of the �rst approach, the new collaborator
could be sent only a snapshot of the current state of
the document, not including its past editing history.
To ensure consistency, each existing participant can
be asked to con�rm the validity of the snapshot.
However, if any existing participants are o�ine, the
new participant must either wait (potentially indef-
initely) until they are next online, or go ahead and
accept the risk that its snapshot is inconsistent with
other participants' view of the document.

3. To overcome the downsides of the �rst two ap-
proaches, we develop a new protocol in Ÿ5. In this
protocol, new collaborators are only sent a snapshot
of the current state of the document, plus a crypto-
graphic proof of the integrity of the snapshot. The
new collaborator can then use this proof to verify
the integrity of the snapshot, without having to wait
for any communication with other participants.

1.2 Contributions of this paper

The contributions of this paper are as follows:

� We propose a scheme for cryptographically verifying
the consistency of a shared text document between
collaborators without relying on a trusted server.
Furthermore, the scheme allows devices to be in-
vited to a group of collaborators by sending new de-
vices a snapshot of the shared document; this snap-
shot does not contain any deleted text or the editing
history, and therefore has better privacy and scala-
bility properties than a naive solution.

� In Ÿ5 we propose a scalable implementation of the
scheme based on RSA accumulators and Merkle
trees, and we prove (in the appendix) that our pro-
posed protocol satis�es the required security and
consistency properties.

� We evaluate the practicality of a prototype imple-
mentation using the editing history of Wikipedia ar-
ticles. In our experiments, 99% of insert operations
were processed within 11.0 milliseconds, and within
64.9 milliseconds for delete operations. We further
achieved a median 84% reduction in the amount of
data that needs to be transferred to a new collab-
orator by using authenticated snapshots (Ÿ5) com-
pared to a basic protocol (Ÿ4) that transfers the full
editing history.

� We propose a number of optimizations to reduce the
constant factor overhead of both computation and
communication in our prototype implementation.

2 Background

2.1 Con�ict-free Replicated Data Types

We make use of operation-based Con�ict-free Repli-
cated Data Types (CRDTs) [33] in order to ensure that
concurrent edits to a document can be merged by user
devices without con�icts. We have chosen CRDTs be-
cause they do not need a central server � data can �ow
directly between devices. CRDTs do not need con�ict
resolution or transformation of operations, because op-
erations are designed such that concurrent operations
can be applied con�ict-free in any order. In the context
of CRDTs we call each device a replica, since it has a
copy of the shared document. Updates at a replica are
applied locally immediately without any synchroniza-
tion, and are broadcast asynchronously to other repli-
cas. All replicas converge to the same state provided
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Fig. 1. Possible tree representation of the string �abcde� as used
in Treedoc.

that they receive all updates eventually, a consistency
model known as strong eventual consistency[33]. Unlike
consensus protocols, CRDTs remain available under ar-
bitrary network partitions (in the sense of the CAP the-
orem [3, 14]), so they are able to support o�ine editing.

Treedoc
Treedoc [28] is an example of an operation-based CRDT
for collaborative editing of text documents. The proto-
cols we present in Ÿ4 and Ÿ5 use Treedoc for its simplic-
ity, but would also work with other CRDTs.

Treedoc models a shared document as a sequence
of atoms. An atom is the smallest unit of content sup-
ported by the editor, e.g. a character of text. The basic
idea of Treedoc is to assign a unique position identi�er
pos to every atom. Position identi�ers are totally or-
dered, such that the total order is consistent with the
order of the atoms in the document. Additionally, the
space of position identi�ers is dense, i.e. for any position
identi�ers pos1 and pos2, one can create a new position
identi�er posnew with the property pos1 < posnew < pos2.
Treedoc allows two operations:

� insert(pos; atom): Inserts the new atom atom into the
document at position pos.

� delete(pos): Removes the atom at position pos. For
the operation to be valid, such an atom must exist in
the state of the device that initiates the operation.

In Treedoc, position identi�ers are de�ned to be
paths in a binary tree. For example, Figure 1 shows a
possible representation of the string �abcde�, in which
the path for character `e' is �11�. The order of atoms
in the document is given by an in�x-order depth-�rst
traversal of the tree. When inserting a new atom, a new
position identi�er is generated by creating a suitable de-
scendant of the node to the left or right of the desired
insertion position. However, this alone is not enough to
guarantee uniqueness of the identi�er, since more than
one user can perform insertions concurrently. To solve

this, Treedoc attaches a disambiguator to each node. We
de�ne disambiguators to be (ctr ; replicaID ) pairs, where
replicaID is the unique identi�er of a replica, and ctr is
a per-replica counter.

2.2 RSA Accumulators

A cryptographic accumulator allows a �nite set X to be
accumulated and represented by a single, constant-sized
value, accX . For every element s 2 X , one can e�ciently
compute a witness ws2X that can be presented to prove
the membership of s with regards to accX , i.e. proving
that s is part of the set accumulated in accX . However,
it is computationally infeasible to compute a witness for
an element x =2 X (collision-freedom).

RSA accumulators [1, 2] are based on the hardness
of the RSA problem. An RSA accumulator requires an
RSA secret key consisting of two safe primesp and q,
and a base value x that is drawn randomly from the
cyclic group of quadratic residues modulo N , where N =
pq is the RSA modulus [9]. In the elementary form of
the accumulator, the accumulator value is calculated as:

accX = x
Q

a 2X
a mod N: (1)

Due to the multiplications in the exponent, the elements
to be accumulated are restricted to prime numbers for
collision-freedom.

To remove the restriction to prime numbers, Bari¢
and P�tzmann proposed a variant of the accumula-
tor that uses prime representatives [1]. They construct
prime representatives as follows. The prime represen-
tative h(a) for an element a is computed as h(a) =
2l 
( a) + d, where 
( a) is a random oracle (in prac-
tice replaced by a secure hash function), l is suitably
large, and d is an l-bit number chosen such that h(a) is
a prime. In other words, one appends l low-order bits
to 
( a) such that the result becomes prime. A suitable
d can be found by using a standard primality test [29]
and trying all odd d starting from 1.

To show that an element b 2 X is accumulated in
accX , one presents a witnesswb2X computed as:

wb2X = x
Q

a 2X � b
a

mod N: (2)

Thus, a witness for an element is equal to the accumu-
lator value for all the remaining accumulated elements.
To verify the correctness of the witness, one checks:

wb
b2X = accX mod N: (3)

In addition to memberships proofs for individual ele-
ments, RSA accumulators allow us to prove a subset
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relationship S � X with a single witness. This witness
is computed by accumulating all remaining elements,
and veri�cation works accordingly:

wS�X = x
Q

a 2X n S
a

mod N; (4)

w

Q
a 2 S

a

S�X = accX mod N: (5)

Note that computing a witness does not require
knowledge of the secret key; it requires only x, N , and
the accumulated set X .

3 System architecture

We envision a collaborative document editing system
with an arbitrary number of users, each of whom may
own one or more devices. Document editing software is
installed on each device, allowing the user to create a
new document, invite others to collaborate on a docu-
ment, and join an existing document. The software al-
lows users to edit any document regardless of whether
they are currently connected to a network or not; if no
network connection is available, then document changes
are applied locally and sent to peers when network con-
nectivity returns. Modelling typical mobile devices, we
assume that devices may frequently be o�ine, and that
devices may su�er a permanent failure without warning,
e.g. if dropped in water.

3.1 Threat model and design goals

We assume the adversary is able to control network com-
munication and can read, modify and delay any tra�c,
including partitioning the network for arbitrary periods
of time. Further, we assume the adversary can create an
arbitrary number of fake users with devices that may
participate in group collaboration; these devices may
deviate arbitrarily from the protocol.

We assume that an existing key exchange and en-
cryption protocol protects the con�dentiality of mes-
sages sent via the network. In addition, we assume a
public key infrastructure through which collaborators
are able to �nd each others' public keys. The adver-
sary cannot compromise the public-key infrastructure
and does not have access to secret keys of honest partic-
ipants; therefore, the adversary cannot forge messages
or signatures created by honest participants.

On top of this infrastructure, our protocol provides
the following properties in the face of the adversary:

Edit integrity. The shared document can only be
modi�ed by a group member.

Attributability. All edits are attributable to the hon-
est device that made the modi�cation. Group mem-
bers can identify who added a certain part of a doc-
ument, even if it was added before they joined.

Consistency. Devices have consistent views of the doc-
ument. When an honest device processes an edit
operation, it must have previously processed exactly
those edits that happened before this operation, and
possibly some concurrent edits.

Snapshot consistency. On joining a group, a new
member can check the integrity of the document,
i.e. they can verify that the state is consistent with
states seen by other collaborators. In particular,
they can verify that all modi�cations made or seen
by collaborators up to a certain point are repre-
sented in the snapshot, and that no modi�cations
were falsely attributed to a collaborator.

Edit history privacy. A new group member cannot
see edits made before she joined the group, other
than what can be inferred from the document state
when she joins; in particular, she cannot see parts of
the document that were deleted before she joined.

Convergence. When honest group members commu-
nicate, their local copies of the shared data converge
towards a consistent state, even if arbitrarily many
group members are malicious.

Availability. Any two participants can collaborate on
a document, even if all other collaborators are o�-
line; in particular, the protocol does not require any
quorum of devices to be reachable.

Scalability. Assuming a bounded number of collabo-
rators, protocol messages add only a constant size
overhead compared to a simple protocol that does
not allow authenticated snapshots; communication
and computational overhead for inviting a new
member, sending and processing a snapshot is prac-
tically linear in the number of atoms in the docu-
ment at the time of the snapshot.

We prove in the appendix that the protocol de-
scribed in Ÿ5 satis�es these properties. The properties
protect against di�erent kinds of attacks an adversary
might attempt. For example, an estate agent selling a
house could try to present di�erent views of a contract
to di�erent parties, showing di�erent sale prices and
keeping the di�erence. In a collaborative code editor,
an attacker may want to insert malicious code and at-
tribute it to someone else.
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Edit history privacy allows, for example, lawyers to
collaborate on a contract and later share it with a third
party, while ensuring that the third party is unable to
see potentially sensitive contents of any previous ver-
sions of the contract. Edit history privacy is also useful
when researchers working on a paper want to share a
draft with a colleague, but would prefer not to reveal
previous unpolished versions of the paper.

4 Basic protocol

In this section, we propose a basic protocol for collabo-
rative editing of a text document that relies on all col-
laborators having a copy of the full editing history of the
document. In Ÿ5 we will show how to improve the proto-
col's privacy properties so that new collaborators can be
given a snapshot containing only the current document
state, and not the past editing history.

The document is initially created on one particular
device, and any existing device can add a new collab-
orating device using an addDeviceoperation (see Ÿ4.3).
We assume that each device is identi�ed by a unique
device identi�er, deviceID, which may for example be a
hash of its public key.

Following the Treedoc algorithm [28], we represent a
collaboratively editable text document by a set of atoms.
Each atom represents an editable unit of text, for exam-
ple, a character, a word, a line, or a sentence, and the
metadata associated with it. The granularity of atoms
can be chosen depending on the application, and does
not a�ect the operation of the protocol.

An atom is a 4-tuple (pos; src; ctr ; txt ):

� pos is a variable-length bit string that identi�es a
position in the document as in Treedoc (Ÿ2.1).

� src is the deviceID of the source (the device on which
the atom was originally created).

� ctr is a sequence number that is incremented by the
sender as described in Ÿ4.1.

� txt is a text fragment (character, word, or line).

Note that an atom can be uniquely identi�ed both by
its position identi�er, and by the tuple (src; ctr ).

The text of the document is obtained by sorting the
set of atoms in lexicographical order of the position iden-
ti�er, and concatenating the associated text fragments
in that order. We allow the text to be edited through
two types of operation: inserting an atom, and deleting

an atom. Replacement of text is expressed as deletion
and subsequent insertion.

4.1 Sending messages

Collaborators communicate by sending and receiving
messages. Each collaborator maintains a set of messages
it has sent and received; for example, msgsA is the set
of messages sent or received byA.

Each message is a 5-tuple (src; ctr ; op; deps; sig),
constructed as follows:

� src is the deviceID of the source (the device that
created the message).

� ctr is a sequence number that is 1 for the �rst mes-
sage sent by a particular src, and incremented for
each subsequent message fromsrc.

� op is an operation: either insert(pos; text) to repre-
sent the insertion of a new atom, or delete(src0; ctr 0)
to represent the deletion of an existing atom, or
addDevice(deviceID; publicKey) to announce the ad-
dition of a collaborator device, or noop if the docu-
ment has not been changed. Thenoop operation is
useful so a device can acknowledge that it has seen
a certain state without performing any changes.

� depsis the set of dependenciesof this message, that
is, a reference to the most recent prior message from
each device; more precisely it is a set of triples con-
sisting of the source deviceID, the sequence number
of the most recent message seen from that source,
and the hash of that message:1

deps=
�

(s; c;h(m)) j (6)

m 2 msgssrc ^ m = ( s; c; ; ; ) ^

@c0: ((s; c0; ; ; ) 2 msgssrc ^ c < c0)
	

:

The hash h(m) of messagem = ( src; ctr ; op; deps; ),
is computed as a cryptographic hash of the message
contents (excluding the signature), and is used to
check that all collaborators have received the same
message contents:

h(m) = H( src k ctr k op k deps): (7)

H(� � � ) can be any secure hash function, such as
SHA-256. Note that this creates a directed acyclic

1 We use the underscore as placeholder for a fresh, existen-
tially quanti�ed variable. For example, ( x; ; ) 2 A is short-
hand for 9 y; z: (x; y; z ) 2 A , and @(x; ; ) 2 A is shorthand for
@y; z: (x; y; z ) 2 A .
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graph of hashes, where each message references the
previous message from the same device and any
messages received from other devices. This hash-
DAG is similar to the commit history in the Git
version control system.

� sig is a digital signature of the preceding elements
of the message tuple, using the private key of the
sender src:

sig = signsrc (docID k src k ctr k op k deps); (8)

where docID is a document identi�er that uniquely
identi�es the document. We assume that the doc-
ument identi�er is known to all participants, e.g.
through the messaging protocol.

When the source device src sends a messagem, it
adds the message to its message set:

msgs0src = msgssrc [ f mg: (9)

m is sent to the other collaborators using a secure mes-
saging protocol, which we elide in this description. Any
protocol that protects the con�dentiality and integrity
of the message against network attackers can be used.

4.2 Receiving messages

When a messagem = ( src; ctr ; op; deps; sig) is received
by a destination device dst, the destination device per-
forms the following checks:

1. There is no existing message from the samesrc with
a counter value greater than or equal to the incom-
ing message:

8c: (src; c; ; ; ) 2 msgsdst =) c < ctr : (10)

2. The dependencies are satis�ed:

deps�
�

(s; c;h(m0)) j m0 2 msgsdst ^ (11)

m0 = ( s; c; ; ; )
	

If msgsdst does not contain the dependencies be-
cause they have not yet been delivered, the message
m can be bu�ered locally, and the destination device
can request retransmission of the missing messages.
Then the delivery of m can be retried after other
messages have arrived. However, if the check fails
because the hashes are mismatched,m must be re-
jected.

3. sig is a valid signature of docID k src k ctr k opk deps,
checked with src's public key.

If all of these checks succeed,m is added to the desti-
nation device's message set:

msgs0dst = msgsdst [ f mg: (12)

Assuming second preimage resistance of the hash func-
tion and unforgeability of the signatures, the destination
device knows that msgsdst � msgssrc if the above checks
succeed, since the hashes indepstransitively include all
messages inmsgssrc at the time the message was sent.

Finally, on any device A, the set of atoms S(msgsA )
that make up the document is the set of atoms that
have been inserted but not deleted:

S(msgs) =
�

(pos; src; ctr ; txt ) j (13)

(src; ctr ; insert(pos; txt ); ; ) 2 msgs^

@( ; ; delete(src; ctr ); ; ) 2 msgs
	

The text of the document is obtained by sorting this set
of atoms as described in Ÿ2.1.

4.3 Adding a new collaborator

When an existing collaborator wants to add a new de-
vice as a collaborator, it �rst broadcasts a message con-
taining an addDevice(deviceID; publicKey) operation to
announce to other devices that a certain device has been
added. Moreover, the device A that invites the new col-
laborator must send the entire set msgsA to the new
device. The new device can then check the integrity of
these messages by performing the same checks as in Ÿ4.2.

If A is malicious, it may try to make the new device's
document diverge from the rest of the group. However,
A is limited to two attacks: it can give the new device an
old version of the document (corresponding to a subset
of msgsA ), and it can give the new device a document
containing edits that have not yet been sent to other
collaborators. In either case, when the new collabora-
tor communicates with other group members, they will
exchange the missing operations.

5 Privacy-enhanced protocol

The protocol described in Ÿ4 has the problem that the
full editing history, including any deleted past content
of the document, is exposed to a new collaborator when
she joins. In this section we present a revised protocol
that avoids this problem.

Speci�cally, we want to be able to send a new col-
laborator a snapshot containing only the current set of
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Variable Description Ÿ

docID Unique identi�er of shared document 4.1
src Unique deviceID of source device 4.1
ctr Per-device message sequence number 4.1
op Operation 4.1
pos Position identi�er 2.1
txt Atomic text fragment 4
deps List of dependencies of a message 4.1
sig Signature of message signed by source 4.1
h( m ) Hash of messagem 4.1
S( msgs) Atoms inserted but not deleted in msgs 4.2
r Per-message random nonce 5.1
acc Accumulator value of current set of atoms 5.1
Tsrc Merkle tree of messages from device src 5.1
Tsrc [c] Tsrc up to message with ctr = c 5.1
mh Hash of Merkle tree roots for all devices 5.1
msgsd Set of messages processed by deviced 4.1
Sd Set of atoms in device d's document view 5.1
sdesc Set of state descriptors for all devices 5.3.1
mproofs Merkle consistency proofs 5.3
mnodes Merkle tree nodes sent to new device 5.3
wit Witness for atoms present in device's view 5.3.1

Table 1. Variables used in the description of the privacy-enhanced
protocol.

atoms, rather than the full set of operations that led
to it. However, simply changing the protocol of Ÿ4.3 to
sendS(msgsA ) instead of msgsA removes any ability for
the new collaborator to check the integrity and consis-
tency of the document, since she cannot use the checks
in Ÿ4.2. Thus, a malicious device could send the new
collaborator an arbitrarily corrupted set of atoms.

To allow the new collaborator to verify that the
snapshot is consistent with the sets of atoms on other
devices, we use RSA accumulators [1, 2] as described in
Ÿ2.2. Each device generates an RSA keyN = pq and
makes the modulus N public. The accumulator base x
can be �xed.

Devices use those accumulators to attest to their
current state (set of atoms) with every message they
send. When a new device is added, the device sending
the invitation provides a snapshot of the document con-
taining the latest signed accumulator from each device,
and cryptographic proofs that the accumulated sets of
atoms are consistent with each other. To ensure that the
signed accumulators from di�erent devices correspond
to states in a consistent edit history, the snapshot also
includes a set of appropriate Merkle tree consistency
proofs. Each message additionally contains a hash over
all messages processed by the sender so far. The re-
mainder of this section will explain these constructions
in more detail.

Since the following protocol description contains a
considerable number of variables, for reference, Table 1
contains a list of the variables used, with a short de-
scription and the section where the variable is de�ned.

5.1 Sending messages

We update the de�nition of a message in Ÿ4.1 by adding
three additional elements: a nonce r , an accumulator
acc, and a hash mh. In our revised de�nition, a message
is an 8-tuple (src; ctr ; op; deps; r ; acc; mh; sig):

� src, ctr , op, and depsare de�ned as in Ÿ4.1.
� r is a 128-bit random prime.
� acc is the value of an RSA accumulator over the

current set of atoms Ssrc = S(msgssrc ), which is
derived from msgssrc as shown in (13), and r :

acc(Ssrc ; r ) = xP (Ssrc ) r
src mod Nsrc ; (14)

where P(S) =
Y

a2 S

prime(a): (15)

The function prime(a) is a hash function that re-
turns only prime numbers, as described in Ÿ2.2. We
accumulate r in addition to the set of atoms to
make the accumulator indistinguishable, i.e. to pre-
vent a new collaborator guessing the accumulated
set based on the accumulator value and therefore
learning about deleted atoms [9]. The nonce is sent
to current collaborators, since it is required for the
witness calculation in (22), but it is omitted from
snapshots sent to new collaborators, as described
in Ÿ5.3. The accumulator can be maintained incre-
mentally, so it does not need to be recalculated from
scratch for every message sent.

� mh is the hash of a set of Merkle trees, de�ned as
follows. Let Ts be a Merkle tree [23] containing all
message hashes received from devices in order of
their sequence number (including the current mes-
sage ifs is the sending devicesrc), and let MTH( Ts)
be the Merkle Tree Hash of Ts. Then

mh = H
� �

MTH( Ts) j s is a deviceID
	 �

: (16)

In Ÿ5.3.3 we use this construction to prove that the
sequence of messages from a particular sending de-
vice is an append-only sequence, following the ap-
proach of Certi�cate Transparency [10, 20]. To en-
sure that mh is unique, the elements of the set are
hashed in a �xed order, e.g. in lexicographic order
of deviceIDs.
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� sig is extended to also cover the accumulator and
the Merkle Tree Hash. Moreover, instead of op, we
include h(m) in the data to be signed:

sig = signsrc (docID ksrckctr kh(m) kdepskacckmh):
(17)

This construction allows a new collaborator to ver-
ify the signature of a partial message without neces-
sarily knowing the operation contained in the mes-
sage. The hash of the message,h(m), is extended by
the nonce and accumulator:

h(m) = H( src k ctr k op k depsk r k acc);

where m = ( src; ctr ; op; deps; r ; acc; ):
(18)

5.2 Receiving messages

When a messagem = ( src; ctr ; op; deps; r ; acc; mh; sig)
is received by a device dst, it �rst performs the same
checks as in Ÿ4.2.

Next, to validate the accumulator acc, dst computes
the set of atoms that existed on the source device src
at the time m was sent. To this end, we �rst �nd the
subset of messages inmsgsdst that are referenced in the
message dependenciesdeps:

msgsIn(deps) =
�

(s; c; ; ; ; ; ; ) 2 msgsdst j (19)

9 c0: (s; c0; ) 2 deps^ c � c0	

As de�ned in (13), the set of atoms at the time m
was sent is the set of atoms that were inserted but not
deleted in the set of messagesmsgsIn(deps) [f mg. Thus,
dst can check that the accumulator satis�es:

acc
?
= xP (S(msgsIn( deps) [ f m g)) r

src mod Nsrc : (20)

If dst has already veri�ed the message hashh(m),
this check is redundant and only serves to verify that
src has calculated acc correctly. However, dst can only
verify the hash if it can compute the hashes of all depen-
dencies, which may not be the case if it does not know
the full operation history because it has joined from a
snapshot (as described in Ÿ5.3). If any dependencies of
a message predate (or happened concurrently to) the
snapshot from which dst was initialised, verifying the
accumulator allows dst to check that the sender's state
is consistent with its own.

If dst has already veri�ed an earlier accumulator
accold (with corresponding nonce rold ) from src, it can
compute the new accumulator incrementally.

Lastly, the destination device veri�es that mh has
been computed correctly by recomputing the value
based on its own operation hash trees.

5.3 Adding a new collaborator

Similarly to the process in Ÿ4.3, the device sending
the invitation �rst broadcasts a message containing an
addDevice(deviceID; publicKey) operation to the exist-
ing collaborators, where the public key now also con-
tains the accumulator RSA modulus of the device. Next,
the collaborator A who invites the new device sends a
snapshot to the new device. The snapshot is a 4-tuple
(SA ; sdesc; mproofs; mnodes), where SA = S(msgsA ) is
A's current set of atoms, as de�ned in (13). We show in
Ÿ5.3.1 howsdescis constructed and checked, and we dis-
cussmproofs and mnodesin Ÿ5.3.3. Using the snapshot,
a new deviceB can start collaborating from the current
state, but does not learn contents that were added to
the document earlier but deleted since then. Note that
to ensure this privacy property, devices must not for-
ward a message to devices that were added later (in the
dependency graph) than the message. After B has re-
ceived a snapshot, it immediately broadcasts a message
containing a noop operation. The accumulator value of
this message allows other devices to verify that B has
received a set of atoms consistent with their own. Be-
causeB cannot verify the hashes of dependent messages
that happened before or concurrently to a snapshot, it
must only accept messages that happened after itsnoop
message. If any messages happened concurrently to the
snapshot, B must request a new snapshot that also con-
tains the e�ects of these concurrent messages. Whether
a message was created logically before, after, or concur-
rently to another message, can be determined straight-
forwardly based on the sequence numbers in the message
and its dependencies.

5.3.1 State descriptors

sdesc is the set of state descriptors, one for each of
the existing collaborators. A state descriptor is an
8-tuple (src; ctr ; hash; deps; acc; mh; sig; wit ), where the
�rst seven elements are taken from the most recent mes-
sage sent bysrc:

sdesc=
�

(src; ctr ; h(m); deps; acc; mh; sig; wit ) j (21)

m 2 msgsA ^

m = ( src; ctr ; op; deps; r ; acc; mh; sig) ^

wit = witness(S(msgsIn(deps) [ f mg); r ) ^

@c0: ctr < c 0 ^ (src; c0; ; ; ; ; ; ) 2 msgsA
	

The last element, wit , is a witness that cryptographi-
cally proves the relationship between acc (the accumu-
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lator from src) and SA (the current set of atoms):

witness(Ssrc ; r ) = xP (Ssrc � SA ) �r
src mod Nsrc (22)

Using (19), let Ssrc = S(msgsIn(deps) [ f mg) be the
set of atoms in the document at the time when m, the
most recent message fromsrc, was sent.Ssrc may re�ect
the state of the document at some point arbitrarily far
in the past, depending on the time when src was last
active. If A knows the full message history, Ssrc is known
to A. We will consider the case whereA has only seen a
partial history in Ÿ5.3.2. The newly invited collaborator,
however, does not know Ssrc for any src 6= A, since the
snapshot contains only SA , the current set of atoms on
device A.

In the intervening time between state Ssrc and the
current state SA , atoms may have been added or re-
moved. The set Ssrc � SA in the exponent of (22) con-
tains exactly those atoms that have been removed.

When device B receives a snapshot from deviceA,
it performs the following steps to verify SA and sdesc:

1. For each atom (pos; src; ctr ; txt ) 2 SA , verify that:
(a) The pair (src; ctr ) is unique:

8p; t: (p;src; ctr ; t) 2 SA =) p = pos ^ t = txt :
(23)

(b) The atom's ctr is contained in the state descrip-
tor for device src:

9 c0: (src; c0; ; ; ; ; ; ) 2 sdesc^ ctr � c0:
(24)

(c) The atom's ctr is contained in deps in A's own
state descriptor:

8deps: (A; ; ; deps; ; ; ) 2 sdesc=)

9 c0: (src; c0; ) 2 deps ^ ctr � c0: (25)

2. For each state descriptor tuple in the set sdesc, i.e.
for (src; ctr ; hash; deps; acc; mh; sig; wit ) 2 sdesc:
(a) Verify that sig is a valid signature of docID k

src k ctr k hashk depsk acc k mh, checked with
src's public key.

(b) Find the subset of atoms in SA that already ex-
isted in Ssrc . Although the set Ssrc is not known
to the newly invited device B , the intersection
Ssrc \ SA can be computed from src's state de-
scriptor:

Ssrc \ SA =
�

(p; s; c; t) 2 SA j (26)

(s = src ^ c � ctr ) _

(s 6= src ^ 9 c0: (s; c0; ) 2 deps ^ c � c0)
	

We can then usewit to verify that the computed
set Ssrc \ SA is indeed a subset ofSsrc :

wit P (Ssrc \ SA ) ?
= acc mod Nsrc : (27)

If the snapshot is correct, the exponent from
(22), P(Ssrc � SA )�r , is multiplied with the expo-
nent P(Ssrc \ SA ) from (27), yielding P(Ssrc ) � r
as in the accumulator de�nition (14).

(c) Check that ctr is the most recent sequence num-
ber seen fromsrc:

8d: ( ; ; ; d; ; ; ) 2 sdesc=) (28)

8c: (src; c; ) 2 d =) c � ctr :

(d) Ensure that there is a state descriptor for every
device in deps:

8s: (s; ; ) 2 deps=) (s; ; ; ; ; ; ) 2 sdesc:
(29)

If any of the above checks fail, the snapshot must be
rejected.

5.3.2 Computing witnesses incrementally

The above discussion, especially (21) and (22), assumes
that the device A that sends the snapshot has access to
the full message history since the creation of the doc-
ument. In general, this may not be the case, since A
might itself be a device that was invited by snapshot.

However, the approach above easily generalises to
the case where A starts from a snapshot. In particu-
lar, the witness computation in (22) can be performed
incrementally without knowledge of Ssrc . Due to space
constraints we omit a detailed discussion of the iterative
witness computation.

5.3.3 Merkle tree consistency proofs

The third element of the snapshot, mproofs, serves as a
cryptographic proof that there has not been a fork in
the editing history of the document. A fork occurs if
a device presents di�erent and contradictory edits with
the same sequence number to its collaborators.

In the basic protocol of Ÿ4, the message hashes in
depsserve the purpose of detecting forks. In the privacy-
enhanced protocol of Ÿ5, the full message history is not
available to a newly invited collaborator, so we instead
use Merkle trees to prove that there is no fork among
the state descriptors in sdesc.
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As described in Ÿ5.1, each device keeps track of the
sequence of messages it has received from each other de-
vice � an append-only log per source device. Following
the approach of Certi�cate Transparency [7, 20], we en-
code that log in a Merkle tree. If no fork has occurred,
each device will see the same sequence of messages from
each source device. However, since devices may be o�-
line, some devices may have an incomplete view of other
devices' message logs. In those cases, we expect the mes-
sage log on one device to be a pre�x of the corresponding
logs on other devices.

We use Merkle consistency proofs to show that the
per-source message sequence on one device is a pre�x of
the corresponding message sequence on another device,
without revealing the actual messages. For each origi-
nating device src, mproofs contains a set of Merkle con-
sistency proofs as follows. Let Tsrc [c] be the Merkle tree
containing the �rst c messages fromsrc. Let cd be the
sequence number of the last message fromsrc seen by
d at the time of the message corresponding tod's state
descriptor. Then Tsrc [cd] contains exactly the messages
from src received at device d at that time.

Now consider the Merkle trees Tsrc [cd] for all de-
vices d, sorted in increasing order by cd, and omitting
duplicate cd. For each adjacent pair of Merkle trees in
this set, mproofs contains a consistency proof showing
that the larger tree is the same as the smaller one with
some additional leaves appended. By transitivity, those
proofs show the consistency of all trees for each origi-
nating device.

To check the consistency proofs, we proceed as fol-
lows. From each state descriptor, extract the sequence
number of the last received message from each device
src. Group the sequence numbers by originating device
src and sort them in increasing order, omitting dupli-
cates. Now, for each two adjacent sequence numbers
c1; c2 in this list, check that mproofs contains a valid con-
sistency proof between Merkle treesTsrc [c1] and Tsrc [c2],
i.e. a proof that Tsrc [c1] is a pre�x of Tsrc [c2]. The Merkle
tree roots do not need to be included with the proofs
if they can be computed from a matching consistency
proof. Compute the Merkle tree roots of the trees Tsrc [c]
for each counter c, and using those, verify the hash over
the Merkle tree roots mh within each state descriptor.

Lastly, mnodes contains a partial Merkle tree for
each device, containing all nodes of the latest tree Tsrc

that are required for the newly invited device to be able
to extend the tree by appending leaves. For this it is
su�cient to include the root of every maximal complete
subtree.

6 Evaluation

In this section, we evaluate the costs of the privacy-
enhanced protocol described in Ÿ5. Signi�cant costs
arise for the creation and processing of messages, for
inviting a new collaborator, and for joining as a col-
laborator. We consider the computational costs of these
actions, the communication costs for di�erent types of
messages, and the memory and storage requirements.
The security and consistency properties are discussed
in the appendix.

We implemented a prototype of the privacy-
enhanced protocol in Java based on the Treedoc CRDT
with unique disambiguators [28], without optimizations.
The instrumented prototype simulates all devices within
a single thread of execution and measures execution
times of relevant operations as well as the volume of
network communication. We use a 2048-bit RSA modu-
lus, and SHA-256 as the secure hash function. We calcu-
late prime representatives as described in Ÿ2.2. We use
SHA-256 as an approximation of a random oracle, and
the Miller-Rabin primality test [29] with 50 iterations.
We further chose t = 16, since assuming Firoozbakht's
conjecture [30, p. 185] (which implies that the gap be-
tween primes pk and pk+1 is less than ln2 pk � ln pk for
all k > 4), this should always allow a suitable d to be
found.

To evaluate the costs of the scheme based on realis-
tic data, we replayed edits from Wikipedia editing histo-
ries. We randomly2 selected 300 pages from Wikipedia.
We excluded seven pages with only a single edit, and
to ensure a reasonable emulation time, we excluded 23
pages which had either more than 250 edits, or more
than 25,000 characters in the latest version; our results
in this section demonstrate clear trends which will not
signi�cantly change for larger edit histories or pages.
For the sake of estimating the communication costs,
we assumed that deviceIDs are 128-bit random num-
bers (to achieve uniqueness with high probability in a
decentralized setting). For simplicity, we assume that all
devices are always online, devices do not batch multi-
ple operations together into a single message, and that
devices only send messages when they edit the docu-
ment. When replaying the editing history, we assumed
that a Wikipedia user or IP address corresponds to a
device, and that new collaborators get invited by and
receive a snapshot of the document from the last person

2 Using https://en.wikipedia.org/wiki/Special:Random



Snapdoc: Authenticated snapshots with history privacy in peer-to-peer collaborative editing 220

who edited the document before them. We assume each
line is represented as an atom, as commonly done in the
evaluation of CRDT algorithms [24, 36, 37] (the original
Treedoc paper used paragraph granularity [28]).

We did not consider the time taken for encrypting
or decrypting messages, since the choice of the encryp-
tion scheme is independent of our protocol, and modern
encryption algorithms are fast compared to the RSA ac-
cumulator operations. For signing, we used ECDSA and
the NIST P-256 curve.

We measured execution times on a 2013 desktop-
class 3.20GHz i5-4570 CPU with 32 GiB RAM running
Oracle JRE 1.8.0_172 with a heap size of 8 GiB. We
chose a 8 GiB heap size to reduce the number of garbage
collection cycles and their impact on the measurements,
and because we simulated all devices within a single pro-
cess. The heap size of 8 GiB was enough to comfortably
simulate up to 141 devices, therefore a single device can
run the protocol with substantially less memory.

Discussion of simplifying assumptions
In a practical implementation, devices may want to
batch edits, and periodically broadcast noopmessages to
other clients to con�rm the latest seen document state.
Devices may also be o�ine temporarily or permanently,
delaying message delivery and processing until such de-
vices comes back online again, but this merely defers
when costs are incurred.

Periodically broadcasting noop messages would
cause additional network tra�c and devices would need
to process additional messages. The dominant cost for
processingnoopmessages is the veri�cation of the accu-
mulator of the sending device (see Ÿ6.1.1). This cost
grows linearly with the number of atoms added and
deleted since the last message from the device. There-
fore, processingnoop messages would reduce the com-
putational cost for the accumulator veri�cation for in-
dividual operations, however it is likely to increase the
cumulative cost if a large number of atoms are added,
and the same ones deleted, between edit operations from
a device. Some additional costs may also be caused by
devices that regularly send noop messages, but do not
make any (more) edits. On the other hand, for devices
that regularly send noop messages, other devices can
skip the iterative witness computation, as the witness
is simply the accumulator base if a device is up-to-date.
Since we do not have reliable data on the network sta-
tus of devices editing Wikipedia, we defer evaluation of
these trade-o�s to future work.

6.1 Computation costs

6.1.1 Basic editing operations

Processing any message requires checking the correct-
ness of the hashes and the accumulator. Of those, veri-
fying the accumulator tends to be the most costly, as it
requires a modular exponentiation for every atom added
or deleted since the last message from the source device.

In addition to the above, the dominant costs for
inserting an atom are calculating a prime representa-
tive, and updating the device's accumulator, which re-
quires one modular exponentiation. The median pro-
cessing time for a message containing aninsert opera-
tion from another device in our experiments was 5.6 ms,
and 99% were processed within 11.0 ms. We observed
outliers of up to 1.0 seconds, which were caused by the
cost for veri�cation of the accumulator when a relatively
large number of changes have happened since the last
message from the device that created the insert opera-
tion. Note that these numbers are only for insert oper-
ations created on a di�erent device. Processing locally
generated operations is faster, since they do not require
the source device's accumulator to be veri�ed.

For a deleteoperation, the additional costs are dom-
inated by the cost of updating the device's accumulator,
which requires a modular k-th root computation, and by
the cost for the iterative witness computation. Figure 2
shows the time it took to process deleteoperations from
other devices, with iterative witness computation en-
abled after every operation. Overall, the median cost for
processing adeleteoperation was 12.4 ms, and 99% were
processed within 64.9 ms. Outliers take up to 1.19 sec-
onds and were due to the accumulator veri�cation. As
for the insertoperation above, these numbers do not con-
sider delete operations that were created on the same
device, which are faster to process.

6.1.2 Adding a new collaborator

Adding a new collaborator requires four steps:

1. generating a snapshot on the inviting device,
2. verifying the snapshot and the new device,
3. initialising the local state on the new device, and
4. verifying the �rst message from every other device

on the new device, and vice versa.

Let c be the current number of collaborating de-
vices, and n be the current number of atoms in the doc-
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Fig. 2. Measured processing times for a delete operation from
another device. The worst case execution time generally grows
with the number of devices, as with every delete operation, we
incrementally update the witnesses for all other devices, unless
the deleted atom has been inserted after the last message from a
device. Therefore, costs vary depending on the editing behaviour
of users, and how often they communicate. Roughly speaking,
deleting older parts of a document is more expensive, and more
frequent synchronisation between devices also makes deletions
more expensive. The boxes show the �rst, second, and third quar-
tile. The whiskers show the range containing 99% of data points.
We omit data for more than 80 devices where we have limited
data. Overall, the median processing time is 12.4 ms, and the
99th percentile is 64.9 ms.

ument. Then creating a snapshot requires O(n+ c) oper-
ations, computing O(c2) Merkle consistency proofs, plus
computing a witness per device. Computing the consis-
tency proofs is fast for a moderate number of devices.
Computing the witness for a device requires a modu-
lar exponentiation for every atom that has been deleted
since the last accumulator seen from that device (but
was already present then). However, we iteratively com-
pute witnesses with every message to minimize snapshot
generation time, as described in Ÿ5.3.2. Therefore, the
time taken to generate a snapshot is negligible compared
to other costs such as its veri�cation.

Verifying the Merkle consistency proofs can take
�( c2 logm) time, where m is the total number of dis-
tinct messages broadcast since the document was cre-
ated. However, in practice, the cost for verifying a snap-
shot is dominated by the costs for verifying that the set
of atoms matches the accumulators, unless the number
of collaborators becomes large compared to the number
of atoms in the document, and many of them have sent
their last message at di�erent points in the history. For
each device, this requires one modular exponentiation
per atom that is present both in the latest document
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Fig. 3. Measured snapshot veri�cation times. Veri�cation time
is at most linear in the product of the number of devices and
atoms, however it can be signi�cantly lower if many atoms have
been added since the last message from collaborating devices.

and in the accumulator from the device. Thus, for mod-
erately large groups of collaborators, the worst case cost
is O(c � n). The actual cost is signi�cantly smaller if a
large number of atoms have been added since the last
message from other devices. Figure 3 shows how long
each snapshot veri�cation took in our experiments, and
its relationship to the product of the number of atoms
and devices.

After a snapshot is veri�ed, the remaining cost for
initialising a new device is dominated by the cost for
calculating the device's current accumulator value based
on the current set of atoms. The cost is n � 1 modular
multiplications and a single modular exponentiation.

When a device receives the �rst message from an-
other device, it needs to compute the current set of
atoms at that device based on the counters within the
message and the operation history, and based on that
verify the accumulator value by re-computing it. This
requires O(n) modular exponentiations. We empirically
veri�ed this linear relationship; we observed a veri�ca-
tion time of about 0.65 milliseconds per atom.

6.2 Communication costs

Table 3 compares the amount of data transferred for
di�erent message types for the basic and the privacy-
enhanced protocols. The privacy-enhanced protocol re-
quires additional data for individual messages (for nonce
and accumulator), but snapshot sizes are smaller if the
number of users is small compared to the number of



Snapdoc: Authenticated snapshots with history privacy in peer-to-peer collaborative editing 222

Empirical values
Variable Description Typical value min median max

d Number of collaborating devices variable 2 16 141
sdevID Size of device identi�er 16 B
shash Size of hash 32 B
ssig Size of signature 72 B
snonce Size of nonce 16 B
sRSA Size of accumulator 256 B
spos Size of position identi�er variable 1 B 3 B 117 B
scontent Size of atom text fragment variable 1 B 34 B 5.0 KiB
spubkey Size of public key (accumulator + signing) 256+32 B
shistory Size of message history (excl. signatures) variable 4.9 KiB 123 KiB 7.2 MiB
sdoc Size of document including metadata variable 699 B 4.8 KiB 77 KiB

Table 2. Description of di�erent variables used in Table 3, and typical values. For the ones where typical values are highly variable,
minimum, median, and maximum values from our simulations with Wikipedia edit histories are included.

Basic protocol Privacy-enhanced protocol
Message sdevID + d( sdevID + shash ) + ssig + Op Basic + snonce + sRSA + shash

Op_insert Message + spos + scontent Basic
Op_delete Message + sdevID Basic
Op_noop Message Basic
Op_addDevice Message + sdevID Basic + spubkey

Snapshot shistory + d � ssig sdoc + d � ( sdevID + shash + 2 sRSA + O ( d � log shistory ) + ssig )

Table 3. Communication costs for di�erent types of messages and operations. Small constants are omitted. Note that in the basic
protocol, for a snapshot it is su�cient to include the most recent signature from each device.

atoms, since deleted atoms do not need to be trans-
ferred. Using the Wikipedia data, we looked at the
amount of data that would need to be transferred to
invite the user that has most recently made her �rst con-
tribution. Figure 4 shows a comparison of the amount
of data transferred in the basic scheme and the privacy-
enhanced scheme. We observed a median 84% reduc-
tion in data transferred for the privacy-enhanced scheme
compared to the basic scheme. The reduction was al-
ways more than 30%, and 98.2% in the best case.

6.3 Storage and memory requirements

A device needs to keep the atoms currently in the docu-
ment in memory. In addition it must store, for each col-
laborator, the most recent message, the current witness,
and additional metadata. The device needs to store the
message history to be able to relay messages to other
devices, and to calculate earlier states of the document
which can be needed to verify an accumulator or to cal-
culate a witness. The memory requirements for storing
current atoms in a document corresponds to the y-axis
in Figure 4, and the past history corresponds to the x-
axis. Therefore, the overall memory and storage require-
ments are typically less than 10 MiB. A device may also

keep an in-memory or disk cache of the prime represen-
tatives of all atoms (34 bytes per atom in our prototype)
as computing those is costly. If memory/storage is scarce
and the prime representative generator described in Ÿ2.2
is used, it can also memorize only the last 2 bytes, and
recompute the remaining ones when needed.

7 Discussion

The privacy-preserving variant of our protocol has
a signi�cant computational and metadata overhead.
The costs seem reasonable for text editing with line-
granularity atoms, especially since most of the expensive
operations can be parallelized and typically can be run
in the background without interrupting the editing pro-
cess. However, for character-level granularity or similar,
the costs seem prohibitive, in particular if the document
is large and collaborators get added frequently, or when
edits are performed at a high frequency. The protocol
may be well suited for other types of collaborative ap-
plications such as shared calendars or to-do lists [18].

While the protocol has a relatively large overhead,
it scales well with the size of the document. Assuming a
bounded number of devices and not considering costs for
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Fig. 4. Amount of data transferred to a new collaborator when
invited by another device, for the most recently added collab-
orator in each of the pages from the Wikipedia dataset for the
privacy-enhanced protocol in comparison to the basic protocol.
The plot is log-log scale. A point below the black diagonal line
indicates that the privacy-enhanced protocol transfers less data
than the basic protocol. The privacy-enhanced scheme needs to
transfer less data because it does not transfer deleted atoms.

the CRDT metadata, communication and computation
costs for editing operations are constant or amortized
constant, except when a new collaborator is added, in
which case the cost is (practically) linear in the number
of atoms.

However, communication costs also grow with the
number of operations due to the CRDT metadata. We
used the Treedoc CRDT without optimizations, which
generates a relatively large communication overhead for
CRDT metadata because the tree is not balanced and
every tree node stores a device identi�er. To counter
this, one can use a CRDT more optimized for the appli-
cation, e.g. LSEQ [24] for text editing, and introduce
device identi�er compression. Furthermore, metadata
overhead can be reduced by allowing a list of operations
to be sent within a message instead of only a single op-
eration per message.

To reduce the cost for insertoperations and snapshot
veri�cation, if the prime representative is generated as
described in Ÿ2.2, the device inserting the atom can in-
clude the last 2 bytes of the prime representative with
the atom metadata. Other devices only need to verify
its validity, but do not need to recompute it. Note that
in this case it is not necessary that the smallest d is
chosen, as long as the result is a prime and every device
uses the samed.

Some information about the history can still be in-
ferred from the metadata found in the privacy-enhanced

scheme, in particular how many operations have been
performed on each device, and the position identi�ers
and counters may allow some inferences about the posi-
tions where text fragments were deleted and how much
was deleted. On the other hand, it may be desirable
to know at which positions parts of the document have
been deleted, as the device creating a snapshot can omit
arbitrary atoms and therefore potentially completely
change the meaning of the content. Metadata does not,
in general, allow someone in possession of only a snap-
shot to infer positions where atoms have been deleted.

Our protocol relies on CRDTs where atoms have
totally ordered position identi�ers. More research is
needed to add support for other operation-based CRDTs
that do not have this property, such as RGA [31].

Lastly, while our protocol detects any forks that
may arise (as discussed in Ÿ5.3.3), a fork-resolution pro-
tocol is required to resolve forks caused by misbehaving
devices. Such a protocol is out of scope of this paper.

8 Related work

Traditional collaborative editing applications rely on
Operational Transformation (OT) algorithms [11, 26]
to synchronize changes between devices. OT algorithms
work by transforming concurrent operations so they can
be applied in a di�erent order. They tend to be rela-
tively complex, as evidenced by the fact that several
peer-reviewed OT algorithms have later been proved
to be incorrect [15, 16, 27]. To the best of our knowl-
edge, all widely deployed OT algorithms rely on a cen-
tral server to totally order operations. For example,
Google/Apache Wave is based on the Jupiter algo-
rithm [26], which requires such a total ordering and
needs to be able to perform server-side transformations
on operations. It is therefore neither suited for peer-to-
peer communication, nor for end-to-end encryption, as
the server needs access to the plaintext.

More recently, (operation-based) Con�ict-free
Replicated Data Types (CRDTs) [32, 33] have been
proposed to ensure convergence without requiring con-
sensus between devices, providing strong eventual con-
sistency. In contrast to OT, updates do not require any
synchronization and all concurrent operations are de-
signed to be commutative. At the time of writing, there
are a number of projects actively working on collabo-
rative editors or libraries based on CRDTs that allow
devices to communicate peer-to-peer (using WebRTC),
including Teletype for Atom, Conclave, and Automerge.
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Several server-based collaborative editing systems
with end-to-end encryption have been proposed, includ-
ing SPORC [12], SECRET [13], and Capsule [19]. How-
ever, to the best of our knowledge, our protocol is the
�rst one that provides authenticated snapshots and al-
lows devices to verify that their view is consistent with
other devices, even when other devices are o�ine.

Version control systems such as Git, Mercurial,
or Subversion are another popular kind of tool for col-
laboration. They are not designed for real-time editing
and require manual merging if a possible con�ict is de-
tected. Authenticated snapshots could also be imple-
mented for version control systems; however we are not
aware of any existing system that supports them.

Cryptographic accumulators have been pro-
posed based on RSA [1, 2], bilinear maps [5, 25], Merkle
trees [4], and vector commitments [6]. Variants of our
protocol could also be designed based on other accumu-
lator schemes with di�erent trade-o�s. For example, it
seems possible to use Merkle trees instead of RSA accu-
mulators to substantially reduce the constant factor of
the computational overhead. However, Merkle trees do
not support batch membership proofs, therefore sub-
stantially increasing the communication overhead for
sending a snapshot. We chose to use RSA accumula-
tors because they provide constant-size public keys, wit-
nesses, and batch membership proofs.

In a three-party authenticated data structure
(ADS) [35], a source replicates some data to one or more
servers, and the servers answer queries on the data from
clients, including a proof that allows clients to verify the
authenticity of the response using a digest provided by
the source (e.g. a hash). Our proposed scheme can be
seen as an ADS for CRDTs, where the collaborators are
sources, the inviter is the server, and a newly invited
device is the client.

A redactable signature scheme [17, 34] allows
a third party without knowledge of the secret signing
key to remove parts of a signed message while still re-
taining a valid signature. Our protocol essentially uses
redactable signatures � the signature within a message
signs the current set of atoms, and the state descrip-
tors within a snapshots contain a signature of a possibly
redacted state of that set.

9 Conclusions and future work

We propose a protocol for peer-to-peer collaborative
editing that allows new devices to be added as collab-

orators by sending a snapshot that only contains the
latest state of a document. Such a snapshot reduces the
amount of data that needs to be transferred to a new
device and additionally hides the editing history of the
document, while still allowing the new device to verify
its integrity. This is achieved without requiring a con-
sensus between collaborating devices and is therefore
also suitable for devices that are frequently o�ine.

We evaluated the performance of the protocol based
on editing histories of 270 Wikipedia pages, and showed
that while it has a signi�cant computational overhead
due to the use of RSA accumulators, its performance
is reasonable if applied to small documents or using a
coarse granularity (e.g. line-based instead of character-
based). 99% of insert operations were processed within
11.0 ms, and 99% of delete operations within 64.9 ms.
We also measured a median 84% reduction in the data
transferred to a new collaborator by using authenticated
snapshots compared to a basic protocol that transfers
the full editing history. Therefore it may be well suited
for applications such as shared calendars and to-do lists,
where users tend to make relatively few edits, and a
coarser granularity of edits may be acceptable. Further
research is needed to make the protocol more practical
for real-time editing with character-level granularity.

Future research might also look at protocols that
preserve information about the positions where text
fragments have been deleted, or alternatively, com-
pletely hide this information. Another interesting re-
search direction is developing CRDTs speci�cally de-
signed for authenticated snapshots and history privacy,
with a reduced overhead. It would also be interesting to
design a protocol that does not only hide deleted parts
from a new user, but also hides the author of a piece of
text, either from new users or from all collaborators.
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Appendix

We show that the privacy-enhanced protocol described
in Ÿ5 satis�es the properties from Ÿ3.1.

Edit integrity and attributability

Cryptographic signatures attached to each message en-
sure that only group members can modify the docu-
ment. For the basic protocol of Ÿ4, the signatures also
provide attributability of all modi�cations. When using
the privacy-enhanced protocol of Ÿ5, a device can simi-
larly use the signatures to attribute any changes made
to the document after it joined. Parts of the document
that were added earlier � before or concurrently to when
a device joined � cannot be attributed directly using the
signatures of the messages containing theinsert opera-
tions, since the new collaborator does not receive those
messages. However, attributability in this case is en-
sured by the signed accumulators from each collabora-
tor that are part of each snapshot, since the set of atoms
certi�ed by each device in this way must also contain all
atoms inserted by the device itself.

Edit history privacy

A new device, when joining, only receives the current
set of atoms, the set of devices collaborating, several
sequence numbers and cryptographic hashes, and a set
of RSA accumulators. Assuming preimage resistance of
the hash function and due to including a 128-bit ran-
dom nonce into every message, it is infeasible to in-
fer anything about previous contents from the hashes.
RSA accumulator and witness values each contain an
accumulated 128-bit random nonce; since the new de-
vice never learns this nonce, the accumulators are cfw-
indistinguishable [9], making it infeasible to infer con-
tents from the accumulator values. For e�ciency rea-
sons, we use the same nonces to calculate message
hashes and accumulators to improve e�ciency; we be-
lieve this does not introduce any weaknesses.

While the scheme hides the contents of all text
deleted before a device joins, it does not perfectly hide
the editing history. Since a snapshot also includes meta-
data such as position identi�ers and sequence numbers,
a new device can infer some information about the his-
tory, such as the number of messages sent by each de-
vice. Moreover, gaps between position identi�ers can
leak the fact that atoms have been deleted at a certain
position (but not the values of those atoms).

Consistency and snapshot consistency

We show that our protocol satis�es a variant of fork-
join-causal consistency, as introduced by Mahajan et al.
[21, 22]. Stated informally, this consistency model re-
quires that honest3 devices always observe the system in
a state that is consistent with a global execution graph,
and that this execution graph correctly re�ects the de-
pendencies and operations performed by devices.

To prove that our protocol satis�es this consistency
model, we �rst show how to construct the happens-before
graph G (representing the global execution). For each
honest devicen we also de�ne a graph Gn representing
n's view of the execution. We then prove that G and
Gn are consistent with each other: that is, reading the
document at any vertex of Gn returns the same result
as reading it at the corresponding vertex of G.

3 We use the word �honest� to refer to devices that correctly
follow the protocol (in the distributed systems literature, the
term �correct� is more common). A device that does not cor-
rectly follow the protocol, regardless whether by accident or by
malice, is called �faulty�.
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De�nition 1. Let G be a directed acyclic graph. We
then de�ne the partial order � G to be equal to the tran-
sitive closure of the graph. That is, for vertices a and
b in G, we have a � G b if there is an edge a ! b in
G, or if there exists a vertex c such that a � G c and
c � G b. Similarly, the partial order � Gn is de�ned as
the transitive closure of the graph Gn .

De�nition 2. An operation messageis a message con-
taining an operation ( insert, delete, noop, or addDevice,
but not a snapshot) sent as part of the protocol.

De�nition 3. For any vertex m in the graph G we de-
�ne read(G; m) to be the set of atoms in the document
at the time immediately after m has been processed, i.e.
the set of atoms a such that there exists a vertex mI;a

containing an insert operation for a, with mI;a � G m,
and there exists no vertex mD;a containing a deleteop-
eration for a with mD;a � G m:

read(G; m) = S(f m0 j m0 � G mg), (30)

where the function S(: : : ) is de�ned in (13).

We can now formally de�ne the fork-join-causal consis-
tency model as follows.

De�nition 4. An execution is fork-join-causally con-
sistent if there exists a directed acyclic graph G (the
happens-before graph) that satis�es the following three
properties:
FJC0. G contains a vertex for every operation message

sent by an honest device, and also a vertex for every
operation message that is sent by a faulty device and
processed by at least one honest device.

FJC1. The operations of an honest device are totally
ordered in G. This total ordering must be consistent
with the actual execution order of the operations at
that device. Speci�cally, if v and v0 are operations
by n, then v:startTime < v0:startTime () v � G v0.

FJC2. For each honest devicen there exists a directed
acyclic graph Gn in which there is a vertex for every
operation message sent or received byn, and edges
corresponding to the dependencies between those
messages. By FJC0, for each vertexm in Gn there is
a corresponding vertex m in G. We then require that
for each vertex m in Gn , the document state is the
same as the document state at the corresponding
vertex in G: read(Gn ; m) = read(G; m).

noop
“ab”

A

B

C

ins(‘a’)
“a”

ins(‘b’)
“ab”

ins(‘c’)
“ac”

noop
“abc”

(a) Happens-before graph of execution ( G)

A

B

C

ins(‘a’)
“a”

ins(‘c’)
“ac”

(b) Happens-before graph of C's view of the execution ( GC )

Fig. 5. Happens-before graphs for an execution with three devices
where devicesB and C perform concurrent inserts.

Basic protocol
For the basic protocol described in Ÿ4, G can simply be
de�ned as follows: G contains a vertex for each message
m sent or observed by an honest device, and a directed
edge a ! b between vertices a and b if a is one of the
dependencies ofb.

Figure 5a shows an example of a happens-before
graph for an execution where deviceA inserts the atom
`a', followed by devices B and C concurrently adding
atoms `b' and `c', respectively. Device A then performs
noop operations in order to acknowledge the receipt of
the edits from B and C. Figure 5b shows device C's
view of the execution. For clarity, we omit addDevice
operations.

This de�nition of G trivially satis�es property
FJC0. Moreover, from the protocol de�nition it is rela-
tively easy to see that property FJC1 is also satis�ed.
Every honest device increments its sequence number
with every message it sends, and an honest device would
not process a message from a devicea that depends on
a message froma with a higher or equal sequence num-
ber. Hence, the messages sent by an honest device are
totally ordered in G.

For the basic protocol, it is also easy to see that
property FJC2 is ful�lled. If a device n processes a mes-
sagem, it needs to have processed all messages that hap-
pened beforem in Gn . The use of cryptographic hashes
within the message dependencies ensures that the set of
messages precedingm in Gn is the same as the set of
messages precedingm in G.
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ins(‘b’)

noop

ins(‘a’)
“a”

A

B

C

del(‘a’) addDev(C) Snapshot
“ab” “b” “b” “b”

“b”

Fig. 6. Happens-before graph of an execution where deviceB
adds deviceC by sending it a snapshot of the current state.

Privacy-enhanced protocol
In the privacy-enhanced protocol of Ÿ5, the above argu-
ment no longer works, since it relies on devices having
received all messages that happened before a messagem
before processingm, which is not necessarily the case:
devices do not receive messages that happened before
they were added as a collaborator.

We illustrate the challenge by giving an example be-
fore proceeding to the formalisation. Consider the exe-
cution visualised in Figure 6.

Suppose that honest deviceA fails permanently af-
ter sending the insert operation for `a', and therefore it
never receives the later operations. Further assume that
device B is faulty. Thus, there is no honest device that
has observed theinsertoperation for `b' or the deleteop-
eration for `a'. The FJC0 property only requires that G
contains operations observed by honest devices. There-
fore it is not immediately clear how FJC2 can still be
preserved for the noop operation by C (and any later
operations).

One option would be to add a vertex containing an
insert operation for each atom that C receives as part of
the snapshot. However, this would allow too many exe-
cutions. We only want to allow executions where snap-
shots are consistent with earlier messages seen by honest
devices.

Since the messages containing the insertion of `b'
and the deletion of `c' have not been observed by any
honest device, it is not relevant for G whether they
actually happened. It is only important whether it is
possible to add a set of edit operations by faulty de-
vices directly before the message adding a new device
(or sending an updated snapshot) such that FJC1 and
FJC2 are preserved. Thus we adapt the de�nition of G
to allow the addition of vertices containing insert and
deleteoperations by faulty devices between the vertices
corresponding to messages observed by honest devices,
and the vertex corresponding to the addDevicemessage
for a new device, or a message containing an updated
snapshot.

For each honest devicen, De�nition 5 describes the
graph Gn that represents n's view of the execution. In

summary, it contains insert operations for all atoms re-
ceived by n in its initial snapshot, all messages processed
by n, and edges for the dependencies between them. A
device may receive more than one snapshot if another
device performed operations concurrently to the �rst
snapshot (as described in Ÿ5.3); if this is the case,n
also contains insert and/or delete operations for atoms
that were added/removed in subsequent snapshots.

De�nition 5. For the privacy-enhanced protocol, we
de�ne Gn such that it contains:
1. A vertex for each operation message sent or pro-

cessed byn.
2. An edge a ! b between two messages processed by

n if a is a dependency ofb.
3. For each snapshot processed byn, a vertex r i (i =

1; :::; k). If n has sent any messages after the snap-
shot, add an edge r i ! t i to the vertex t i corre-
sponding to the �rst such message.

4. If n joined as a collaborator from a snapshot, for
each atom a that was part of this �rst snapshot, a
vertex ua with an operation insert(a),

5. For each subsequent snapshot received byn, a ver-
tex ua with an operation insert(a) for each atom
present in the snapshot if there is no previous vertex
with an insertoperation for a in Gn . In this context,
previous means preceding a vertext i corresponding
to a vertex corresponding to n's �rst message after
the snapshot.

6. Similarly for each subsequent snapshot received by
n, a vertex wa containing an operation delete(a)
for any atom a with an insert operation, but no
delete operation, previously present in Gn that is
not present in the snapshot.

7. For each such vertexua or wa , an edge to the vertex
r i corresponding to the snapshot.

Proof overview
We construct a suitable happens-before graph G for an
arbitrary execution, showing that G is a directed acyclic
graph (Lemma 1), and hence that FJC0 and FJC1 are
satis�ed. Next, we show that deleted atoms cannot be
re-added (Corollary 2.1), a property that is useful for
Lemma 3, which shows that FJC2 holds for every mes-
sagem, as long as it holds for every preceding snapshot.
Finally, Lemma 4 shows that it holds for every snapshot,
from which Corollary 4.1 deduces that FJC2 holds for G.
We therefore conclude that the privacy-enhanced proto-
col is fork-join-causally consistent.
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De�nition 6. Let v(m) be the version vector for a
messagem = ( src; ctr ; op; deps; r ; acc; mh; sig), contain-
ing the set of pairs (srcv ; ctr v ) with the counter from
the latest message from each device included inm, i.e.
ctr v = ctr for srcv = src, and otherwise ctr v is the
counter of the entry for srcv in deps. The version vec-
tor of a snapshot is de�ned equivalently using the state
descriptor of the creator of the snapshot.

De�nition 7. We construct the happens-before graph
G for an execution as follows.
1. Add a vertex for each operation message sent or

processed by at least one honest device.
2. Add a directed edge a ! b if a is a dependency ofb

and at least one honest device has sent or processed
both a and b.

3. For each snapshot received by an honest devicen,
add a vertex r that represents the read of the snap-
shot by n. If n has sent any messages after the snap-
shot, add an edger ! t to the vertex t correspond-
ing to the �rst such message.

4. For each snapshot received by an honest devicen
that was created by an honest devicen0, add an edge
ms ! r , where ms is the message byn0 de�ning the
document state contained in the snapshot.

5. For each snapshots received by an honest devicen
that was created by a faulty device, we add insert
and deleteoperations by faulty devices as required
to make the graph consistent as follows.
Let src be the deviceID of the device that created
the snapshot s = ( As; sdesc; ; ).
Let (src; ; ; deps; ; ; ; ) 2 sdescbe the state de-
scriptor for src in s.
For every honest devicen0 let (n0; ctr n 0; ) 2 depsbe
the snapshot's dependency onn0, and deps;n 0 be the
vertex in Gn 0 corresponding to the message fromn0

with sequence number ctr n 0.
For each device n0 we now �nd the set of opera-
tion messages that n0 has observed by the time it
produced deps;n 0, and de�ne the union of all these
messages to beops(s):

ops(s) =
[

n 0

f m0 j m0 � Gn 0 deps;n 0g (31)

Let S(msgs) be the set of atoms that have been
inserted but not deleted within a set of operation
messagesmsgs, as de�ned in (13).
Let As be the set of atoms received as part of the
snapshot.
M n = f ( ; srca ; ; ) 2 As n S(ops(s)) j
srca is faulty g is de�ned to be the set of atoms by

faulty devices that are part of the snapshot but have
not been seen by any honest device before the snap-
shot.
Now for each such snapshots, do the following:
(a) For each messagedeps;n 0 from an honest device

referred to in deps, add an edge deps;n 0 ! r ,
where r is the snapshot read vertex added in
point 3.

(b) For each atom a 2 M n , add a vertex i a with
an operation insert(a), an edgedeps;n 0 ! i a for
each honest devicen0, and an edgei a ! r .

(c) For each atom a 2 S(ops(s)) n As, add a ver-
tex da with an operation delete(a), an edge
deps;n 0 ! da for each honest devicen0, and an
edgeda ! r .

Lemma 1. G is a directed acyclic graph.

Proof. First observe that for any edge a ! b where a
is a dependency ofb, a's version vector must be smaller
than b's. For a snapshot created by an honest device,
point 4 of the construction of G (De�nition 7) adds a
path between vertex ms and the corresponding vertex r .
For a snapshot created by a faulty device, point 5 adds
a number of paths between vertices for dependencies
deps;n 0, and r . Since eachr does not have outgoing edges
except to the corresponding t (as de�ned in point 3), and
v(ms) < v(t) and v(deps;n 0) < v(t), the invariant v(a) <
v(b) is preserved for all edgesa ! b between actual
messages, and additional edges do not add cycles.

Since two consecutive messagesmi , mi +1 sent by the
same honest device always have a dependency relation
between them, and v(mi ) < v(mi +1 ), from the above
proof it also follows that G is consistent with their real-
time ordering. Thus, the FJC1 property holds for G.

Lemma 2. Let n be an honest device, letm be a vertex
corresponding to a message inGn , and let mD;a be a
vertex containing a delete operation for an atom a. If
mD;a � G m, and if n has processedm, then all insert
operations for a processed byn precedem in Gn .

Proof. Let (srca ; ctr a) be the source and counter of a,
and let ca be the entry for srca in the version vector of
m. Since the insertion of a must have happened before
mD;a and therefore also before m, ctr a < c a . Due to
the checks performed on sequence numbers,n does not
accept an insert operation with a ctr less than or equal
to the ctr of the latest message from srca included in
n's state. Thus, if n has already processedm, it will not
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accept an insert operation for a that happened either
after or concurrent to m.

Corollary 2.1. If mD;a � G m, m 2 Gn , and a =2
read(Gn ; m), then for any vertex m0 that succeeds m
in Gn (m � Gn m0), a =2 read(Gn ; m0).

Lemma 3. Let m be a vertex in G corresponding to a
message, and letn be an honest device such that m 2
Gn . Assume that for every honest device ~n and every
vertex rn corresponding to a snapshot received by ~n,
read(G; r ~n ) = read(G~n ; r ~n ) (note that this assumption
will be proved in Lemma 4). Then for every such vertex
m we have read(G; m) = read(Gn ; m).

Proof. By well-founded induction on m using the order
relation � G . That is, for any vertex m in G we assume
the inductive hypothesis:

8m0: m0 � G m =) read(G; m0) = read(Gn ; m0) (32)

and hence prove read(G; m) = read(Gn ; m). We break
this down into two subgoals, read(Gn ; m) � read(G; m)
and read(G; m) � read(Gn ; m).

read (Gn ; m ) � read (G; m ):
Let a be an atom in read(Gn ; m). We start by show-
ing that there must be an insert operation for a at or
before m in G. Let mI;a be the message containing
the insert operation for a observed by n. If mI;a = m,
mI;a � G m is trivially true. Otherwise, there exists at
least one edged ! m in Gn such that mI;a � Gn d,
and there is no delete operation for a that precedes
m in Gn . Thus, a 2 read(Gn ; d). If d corresponds to
an actual message, by the induction hypothesis, a 2
read(Gn ; d) = read(G; d). Otherwise, d must be a ver-
tex corresponding to a snapshot received by n, and we
can apply the assumption read(G; r ~n ) = read(G~n ; r ~n ) to
conclude a 2 read(Gn ; d) = read(G; d). Therefore, there
must be an insert operation for a in G that precedes d,
m0

I;a � G d � G m.
To show that a 2 read(G; m), it remains to be shown

that there is no delete operation for a at or before m
in G. Suppose there was a vertexmD;a 2 G containing
such adeleteoperation for a, with mD;a � G m. We show
that this contradicts a 2 read(Gn ; m). If mD;a = m, this
directly contradicts a 2 read(Gn ; m). Otherwise, at least
one vertex d with a edge d ! m must contain or succeed
the deleteoperation in G, mD;a � G d. Let d1; d2; :::; dk

be all such vertices. We consider two cases, whether any
such di is in Gn , or not.

Case di 2 Gn for some i . Let d be any such di . Since
mD;a � G d, a =2 read(G; d). We now show that
d ! m also exists in Gn and that a =2 read(Gn ; d).
If d is an actual message, d must be a depen-
dency of m, and by de�nition of Gn , d ! m must
be present in Gn . By the induction hypothesis,
a =2 read(G; d) = read(Gn ; d). Otherwise, d must
be a vertex corresponding to a snapshot received
by n. Since in this case, d does not exist in any
other device's view, the edge d ! m can only ex-
ist in G if it exists in Gn . Thus, d � Gn m. By
the assumption read(G; r ~n ) = read(G~n ; r ~n ) we have
a =2 read(G; d) = read(Gn ; d).
Since mD;a � G d, and we can apply Corollary 2.1,
which implies that a =2 read(Gn ; m).

Case di =2 Gn for all i . Let d be any such di . We con-
sider two cases: whetherd corresponds to an actual
message, or whether it is a vertex added in our con-
struction of G (De�nition 7).
Consider �rst the case where d corresponds to an ac-
tual message received by an honest devicen0. Since
d ! m 2 G, d must correspond to one of m's de-
pendencies. Thus, n must have processedd before
processingm, unless m is the �rst message by n af-
ter a snapshot. Since d =2 Gn , the latter must be
true. Since a =2 read(G; d), by the induction hypoth-
esis, a =2 read(Gn 0; d). Since mD;a � G d, by Corol-
lary 2.1, in n0's view, the document does not contain
a at messagem, i.e. a =2 read(Gn 0; m). Since m was
created by an honest device, and bothn and n0 have
processed it and compared the accumulator value to
its view of the set of atoms, they agree on the set of
atoms at m. Thus, a =2 read(Gn 0; m) = read(Gn ; m).
Now consider the other case, whered is one of the
vertices we added when constructing G. Since m is
an actual message, and there exists an edged ! m
in G, and d =2 Gn , d must be a vertex added for
a snapshot processed by a di�erent device n0, and
m must be the �rst message by n0 after that snap-
shot. Since mD;a � G d, by the construction of G,
mD;a must either be included in one of the state
descriptors for an honest device �n contained in the
snapshot (i.e. mD;a � G s�n , where s�n is the mes-
sage corresponding to�n's state descriptor), or mD;a

must be an additional vertex added to G in our con-
struction (De�nition 7, point 5(c)). In both cases,
a is not part of the snapshot received by n0, and
the insert operation for a must have happened be-
fore the snapshot. Let (srca ; ctr a) be the source and
counter of a, and let ca be the entry for srca in the
version vector associated with the snapshot. Again
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in both cases,ctr a � ca , and therefore, n0 would not
accept an insert operation for a since its ctr would
con�ict with the snapshot it has received. There-
fore, in n0's view, the document does not contain a
at messagem, i.e. a =2 read(Gn 0; m). Since m was
created by an honest device, both n and n0 have
processedm, and both devices behave correctly,m's
accumulator value must match the set of atoms at
both devices, i.e. read(Gn 0; m) = read(Gn ; m). Thus,
a =2 read(Gn ; m).

read (G; m ) � read (Gn ; m ) :
Let a 2 read(G; m). Thus, there exists a vertex mI;a

with an insertoperation for a such that mI;a � G m, and
no delete operation before or within m. If mI;a = m,
since a delete operation cannot have happened before
the insertion, a 2 read(Gn ; m). Otherwise, there exists
at least one edged ! m such that mI;a � G d, and thus
a 2 read(G; d). We consider two cases, whetherd 2 Gn ,
or not.
Case d 2 Gn . Depending on whether d corresponds to

an actual message or to a snapshot, we can apply the
induction hypothesis or the assumption for snapshot
vertices (read(G; r ~n ) = read(G~n ; r ~n )), to conclude
that a 2 read(Gn ; d). Hence, there exists an insert
operation for a in Gn preceding m.
Next we show that there is no deleteoperation for a
before m in Gn . Assume, for the sake of contradic-
tion that there was a messagemD;a � Gn m contain-
ing a deleteoperation for a. We show that this con-
tradicts a 2 read(G; m). We �rst consider the case
that there exists a set of vertices m1; m2; :::; mk cor-
responding to actual messages such thatmD;a !
m1 ! ::: ! mk ! m. By construction of G, the
same set of messages and edges has to exist inG
too, contradicting a 2 read(G; m). Otherwise, if no
such set of vertices exist, mD;a must be a vertex of
the type added for a snapshot in point 6 of the con-
struction of Gn (De�nition 5). Let r i be the vertex
corresponding to the snapshot directly after mD;a .
The existence of the deletevertex implies that a is
not part of the set of atoms in the snapshot corre-
sponding to r i , but there is a vertex ~m correspond-
ing to n's entry in the dependencies of the snapshot
in Gn , where a was still present: a 2 read(Gn ; ~m).
Thus, there is an edge ~m � G r i in G. Since m has
happened after r i , it must have also happened af-
ter the �rst message mn;i by n after r i , and we get
~m � Gn r i � Gn mn;i � Gn m. Furthermore, since
mn;i � Gn m, there is a path of vertices correspond-
ing to messages byn, mdev;i ! m̂1 ! ::: ! m̂l

in Gn such that m̂1 is a dependency of m. Since
the vertices correspond to messages processed by
an honest device, the same path has to exist in G,
and we get r i � G mn;i � G m. By the assumption
read(G; r ~n ) = read(G~n ; r ~n ), a =2 read(Gn ; r i ) implies

that a =2 read(G; r i ), and since a 2 read(Gn ; ~m)
IH
=

read(G; ~m) and ~m � G r i � G m, there must be an
insert operation for a preceding r i in G. Because
~m � G r i and a =2 read(G; r i ), there must be a delete
operation for a preceding r i in G. Since r i � G m,
a =2 read(G; m), reaching the desired contradiction.
Therefore, there is no deleteoperation for a before
or at m in Gn , and since the edged ! m is present
in Gn by construction, a must still be present at m
in n's view. Thus, a 2 read(Gn ; m).

Case d =2 Gn . As before, there are two cases. Eitherm
is the �rst message by n after a snapshot (since n
must have received all direct dependencies of any
other message before processing it), orm is the �rst
message by another honest devicen̂, and d is the
vertex corresponding to the snapshot received by n̂.
In the �rst case, since d 2 G and d ! m 2 G,
there must be at least one honest device n0 that
has processedd and m. By the induction hypoth-
esis, read(Gn ; d) = read(Gn 0; d), and therefore a 2
read(Gn 0; d). For the same reasons as above, there
cannot be a deleteoperation for a before or within
m in Gn , and therefore a must still be present at
m in n0's view. Since both n and n0 are honest de-
vices, and n0 must have veri�ed the accumulator of
m, they must have seen the same set of atoms atm,
a 2 read(Gn 0; m) = read(Gn ; m).
In the latter case, by assumption, a 2 read(Gn̂ ; d),
implying that mI;a � G n̂ d. Again, there cannot be a
deleteoperation for a before or at m in G, and thus
a must still be present in n̂'s view at m. Therefore,
a 2 read(Gn̂ ; m), and since n has agreed on the ac-
cumulator value of m and thus on the set of atoms,
a 2 read(G; m).

Lemma 4. Let rn be a vertex associated with a snap-
shot s received by n. Then the read corresponding to
this vertex (which returns the atoms that were part of
the snapshot) ful�ls property FJC2 with regard to G,
i.e. read(Gn ; rn ) = read(G; r n ).

Proof. By well-founded induction on rn (using the
happened-before ordering induced by G).

If n has created the document, the statement is
trivially true. Otherwise, let An = read(Gn ; rn ), and
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A = read(G; r n ). Let n̂ be the device creating the snap-
shot. If n̂ behaves correctly, this implies that the snap-
shot corresponds to a messagems created by n̂. By in-
duction and Lemma 3, read(Gn̂ ; ms) = read(G; ms), and
since the only incoming edge for rn in both G and Gn is
from ms, read(Gn ; rn ) = read(Gn̂ ; ms) = read(G; ms) =
read(G; r n ).

If n̂ is faulty, we �rst show that An � A. Let a =
(src; ctr a ; ; ) 2 An . Thus, a was part of the set of atoms
presented as part of the snapshot. We de�ne sh to be
the message by honest deviceh corresponding to the h's
state descriptor. We consider three cases:
src is an honest device.

Let (src; ctr src ; ; ; acc; mh; sig; wit ) be the state de-
scriptor for src presented in the snapshot, let msrc

be the corresponding message fromsrc with se-
quence number ctr src , and let mI;a be the mes-
sage containing the insert operation for a. The
snapshot is only accepted by n if ctr a < ctr src .
Using sig, acc, and wit , n has veri�ed that

a 2 read(Gsrc ; msrc )
IH, Lemma 3

= read(G; msrc ), and
mI;a � G msrc � G m. It remains to be shown that
there is no deleteoperation for a in G before m.
For each honest deviceh that was part of the snap-
shot where sh happened after mI;a , n has veri�ed
using the Merkle consistency proofs that mI;a � Gh

sh , and it has veri�ed using h's witness that a 2

read(Gh ; sh )
IH, Lemma 3

= read(G; sh ), and thus there
exists no deleteoperation for a before any sh . Lastly,
since a is part of the snapshot, no deleteoperation
for a is added in point 5 of the construction of G
(De�nition 7).

src is faulty. We further consider two sub-cases:
whether at least on one honest deviceh has observed
an insert operation for a before ssrc .
If yes, based on the dependencies inh's state de-
scriptor, n can infer that the insertion has happened
before sh . Again this means that n has veri�ed us-
ing h's witness that a 2 read(Gh ; mh ). The rest of
the argument is as in the previous case.
If not, since a is part of the snapshot, the construc-
tion of G, in particular point 5, ensures that there
exists an insert operation for a before rn , and no
deleteoperation.

Now we show that A � An . Let a 2 A. For the sake
of contradiction, assume a =2 An . We consider two cases:
a 2 S(ops(s)) (as de�ned in De�nition 7). This

implies that in G, an operation delete(a) was added
before rn , contradicting a 2 A.

a =2 S(ops(s)) . This implies that either no honest device
has seen aninsert operation for a before rn , or at
least one has seen adelete operation for a. Either
way, a =2 A.

Corollary 4.1. For a device n and a messagem 2 Gn ,
n's view of the document at m is equal to the state
according to G, read(G; m) = read(Gn ; m). Thus, the
privacy-enhanced protocol preserves FJC2.

Convergence and availability

For the basic protocol, convergence and availability di-
rectly follow from the properties of the CRDT and from
the use of cryptographic hashes for dependencies. How-
ever, a fork-resolution protocol is required to resolve
forks caused by misbehaving devices. Such a protocol
is out of scope of this paper.

For the privacy-enhanced protocol, fork-join-causal
consistency ensures that the views of honest group mem-
bers converge to a consistent state. This again requires
a fork-resolution protocol in case a misbehaving devices
causes the views of honest devices to be forked. Any two
participants can generally communicate even if other
collaborators are o�ine; however, if multiple devices
join concurrently, they require the help of an existing
collaborator to reach a state where they can collabo-
rate directly, since neither of them has seen all required
dependencies of the others at the time of joining.


