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Abstract: Pseudonymization is a widely deployed tech-
nique to de-sensitize data sets by consistently replac-
ing identifying attributes with non-sensitive surrogates.
However, all existing solutions are impractical to deploy
in settings where data is accumulated from distributed
sources: they either require sharing the same secret key
with all sources, or rely on a fully trusted service to
consistently compute these pseudonyms. Further, the
consistency of pseudonyms, which is required to main-
tain the data’s utility, comes with inherent and severe
privacy limitations. This paper solves the key man-
agement and privacy challenges by introducing obliv-
ious pseudonymization-as-a-service. Therein, the pseu-
donymization is outsourced to a central, yet fully obliv-
ious entity, i.e., the service neither learns the sensitive
information nor the pseudonyms it produces. Further, to
obtain better privacy we no longer require pseudonyms
to be computed consistently and instead introduce a
dedicated join procedure. When data is stored at rest,
all data is pseudonymized in a fully unlinkable man-
ner. Only when certain subsets of the data are needed,
the linkage is established through a controlled and non-
transitive join operation. We formally define the desired
security properties in the UC framework and propose a
generic protocol that provably satisfies them. The core
of our scheme is a 3-party oblivious and convertible
PRF, which we believe to be of independent interest.
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1 Introduction
It is a widely held opinion that big data is the “new
oil” of the digital economy. In particular, personal
data is gaining more and more value and organiza-
tions increasingly collect large amounts of such data.
When data gets accumulated, these large data bases
are often outsourced to third parties, such as cloud
or analytic providers. Thereby, legal constraints or se-
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curity concerns often require the de-sensitization of
the data before moving it across borders or into un-
trusted environments. A crucial technique used for de-
sensitization is pseudonymization where uniquely iden-
tifying information, such as social security numbers,
bank account numbers or identifying attribute combi-
nations, e.g. names and addresses, are replaced with
a random looking surrogate, the pseudonym. To pre-
serve the utility of the data, all occurrences of the same
unique identifier must consistently be replaced by the
same pseudonym.

Pseudonymization is recommended by NIST for the
protection of personal data [21], and even mandated
in a number of industry-specific regulations, e.g., by
HIPAA [31] or the Payment Card Industry Data Se-
curity Standard (PCI DSS) [25]. Furthermore, the Gen-
eral Data Protection Regulation (GDPR) Europe’s new
privacy regulations that came into effect in 2018, en-
forces strong rules for the protection of personal data.
These strong rules only apply for personal data, and
the GDPR explicitly recommends pseudonymization as
a legitimate way to remove identifying information.
For instance, the GDPR permits the processing of
pseudonymized data for uses beyond the purpose for
which the data was originally collected.

Key Management Challenges. A number of practical
pseudonymization solutions have been introduced and
are in commercial operation [1, 2, 29, 30, 32]. Typi-
cal solutions rely on (keyed) hash functions, encryption
schemes, or non-cryptographic methods such as random
substitution tables that must be kept secret. What all
solutions have in common, is that they assume the pseu-
donymization to happen in a trusted environment, ei-
ther directly at the data source itself or by a dedicated
entity within the trust domain of the source.

In reality, however, data is often collected from mul-
tiple and distributed sources, which poses a number of
challenges for the key management. Given that the pseu-
donymization is a deterministic and keyed process, all
data sources must share the same secret pseudonymi-
zation key or, even worse, keep a shared and consistent
version of the substitution table. Clearly, replicating the
secret key material across a multitude of data sources,
some even being outside of the trust domain of the en-
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tity collecting the data, is not desirable from a security
perspective: if any of these data sources gets corrupted,
the exposure of the secret key renders the pseudonymi-
zation useless.

Reverting to unkeyed pseudonymization is not an
option either. As the identifying information has low
entropy and the pseudonymization is deterministic,
any unkeyed operation is vulnerable to brute-force at-
tacks [20]. Services already offer to “reverse” the hashes
of email addresses for 4 cents per hash [3].

A more practical and secure approach is to concen-
trate the pseudonymization task at a central trusted en-
tity (TTP) which holds the secret key. The TTP then
provides a service that consistently transforms the sensi-
tive identifiers into their secure pseudonym. Using such
a setting relieves the data sources from sharing any se-
cret keys. Current solutions [2, 9, 32] require the full
disclosure of the identifiers towards the TTP, though,
which makes the TTP a security and privacy bottleneck
itself. In particular when data is pseudonymized in an
online manner and originates from various sources, hav-
ing a single entity that can recognize and track the ac-
tivities of the users is clearly not desirable.

The Risk of Linkability. Another – and more fundamen-
tal – challenge for pseudonymization is to find a trade-
off between privacy and utility. Pseudonymization is
supposed to preserve the core utility of the data, which
is realized by re-using the same pseudonym for every
occurrence of the same unique identifier. This linkabil-
ity preserves the crucial correlation among events, but
gets also exploited for re-identification attacks, as im-
pressively demonstrated for “anonymized” credit-card
transactions [14] and the Netflix challenge [24]. For the
former, more than 90 percent of individual consumers
could be re-identified from the anonymized information.

To avoid such re-identification attacks that exploit
the linkability of pseudonyms, the pseudonymization
would have to replace all occurrences of the same iden-
tifier by different pseudonyms. While this is preferable
from a security and privacy aspect, it clearly dimin-
ishes the utility of the pseudonymized data, as the cor-
relation often contains valuable information. A middle-
ground would be to use purpose-specific pseudonyms.
This would ensure that data is only linkable within its
context, but cannot be linked across them. However,
this would require to know the exact purpose of all the
data beforehand, as any further linkage after the data
is collected would no longer be possible. Clearly, this is
too restrictive for practical applications and the data
collectors will hesitate to choose the option of unlinka-

bility, as they fear to lose too much information by the
irreversible decorrelation.

1.1 Our Contributions
In this work we address the aforementioned chal-
lenges and realize cryptographically strong pseudonym-
ization in a secure and convenient way. Our solution,
ScrambleDB, provides an oblivious service that gener-
ates privacy- and utility-preserving pseudonyms.

Oblivious Pseudonymization. Our solution implements
the TTP approach but in a privacy-preserving, fully
oblivious manner: A central service holds the secret
keys and computes the pseudonyms. However, it does
not learn any information about the identifiers that
should be pseudonymized, nor about the blindly com-
puted pseudonyms. In fact, the service cannot even tell
whether two pseudonym requests are for the same iden-
tifier or not. Despite performing the pseudonymization
in a blind manner, the final pseudonyms are produced
in a utility-preserving way.

Chameleon Pseudonyms. To overcome the tension of
privacy vs. utility we take a different spin on the prob-
lem of pseudonymization and decouple the pseudonym-
ization used when the data is collected from when the
data is actually used. Usually, while a large and con-
tinuously growing number of data is collected in the
data lake, only much smaller and selected subparts
are used in the data analysis. Thus when collected,
data should be fully unlinkable per default. Only when
strictly needed or desired, should the required pieces be
made linkable in a controlled manner. To pseudonyms
that allow for such flexibility and convertability we refer
to as chameleon pseudonyms.

In our ScrambleDB solution the chameleon pseudo-
nyms are computed in the oblivious-service model, al-
lowing for a convenient deployment. This central ser-
vice, which we call converter is the crucial entity to
derive and convert pseudonyms. When a data source
wishes to pseudonymize a data set containing of a col-
lection of attributes for a number of users, the con-
verter blindly derives a different pseudonym for every
attribute. In the data lake, the data is stored in the
form of many unlinkable and scrambled data snippets.

When a data processor is interested in a certain
combination of attributes, it can obtain a joined ver-
sion. This correlation can only be done by the converter,
which enforces strong usage control of the data, thereby
elegantly solving another requirement of the GDPR. To
join the requested data, the converter blindly transforms
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the unlinkable pseudonyms into a consistent represen-
tation, i.e., pseudonyms belonging to the same user will
be mapped to the same value. To restrict the re-linked
data to a particular purpose, the joins are strictly non-
transitive, i.e., every conversion is done towards a join-
specific representation and cannot be correlated with
data received in another join request.

We formally define this concept of oblivious
chameleon pseudonymization, discuss its guaranteed se-
curity and privacy properties, and finally propose a
provably secure protocol. Our protocol realizes the de-
sired security for passive adversaries, which allows for an
efficient realization and provides sufficient guarantees in
practice: the entities that would use such a system have
basic trust in each other, and mainly aim to avoid data
breaches. However, we also discuss weaker security no-
tions that are achieved under active corruptions.

3-Party Oblivious & Convertible PRFs. Our
ScrambleDB construction is built in a generic way from
modular building blocks. The core of our scheme is a
new primitive: a 3-party oblivious and convertible PRF.
A conventional (2-party) OPRF [19] allows any party
to blindly query a PRF. That is, the key holder of the
PRF does not learn the values he computed the PRF
on, nor the output he is blindly deriving.

We extend this primitive to a 3-party setting, mean-
ing that the requester and receiver of a PRF value can
be different parties. This is crucial for pseudonymiza-
tion, as we do not want the (potentially untrusted) data
sources to learn the pseudonyms (which will be PRF
values) used in the data lake, and likewise the data lake
is not supposed to learn the unique identifiers behind
the pseudonyms. We then augment the 3-party OPRF
to allow for a blind conversions among different PRF
keys. Such a coPRF has an efficient algorithm that on
input two keys ki, kj and a PRF value yi = PRF(ki, x)
blindly transforms yi into the corresponding PRF out-
put yj = PRF(ki, x) of x under kj .

We formalize the desired properties of coPRFs us-
ing game-based definitions, which we believe is better
suited for building blocks than a UC-functionality: an
ideal functionality hardcodes the exact set of security
properties, whereas game-based definitions allow to eas-
ily omit certain properties when they are not needed.

We show that such coPRFs can be realized from
DDH-PRF, re-randomizable and homomorphic encryp-
tion and the proxy re-encryption idea by Blaze et al. [6].
We stress that we do not claim the cryptographic tech-
niques behind coPRFs to be particular novel. The con-
tribution of this work is to show how existing techniques

can be used to realize a new and versatile tool in prov-
ably secure manner. This is similar to key-homomorphic
PRFs that have been proposed recently [7] and became
useful in many practical applications and inspired sev-
eral follow-up work, e.g., [5, 8, 16, 28].

1.2 Related Work
In the context of data exchange among distributed
databases, a similar idea of using convertible pseudo-
nyms was proposed by Camenisch and Lehmann [10,
11]. Therein, the different databases receive seem-
ingly unlinkable pseudonyms which can only be con-
verted from one database to another via a central en-
tity. Within one database, all user data is associated
with the same pseudonym though. Further, in [10] the
pseudonym generation is non-blind, i.e., the unique
identifiers had to be revealed to the converter. This was
changed in [11] where pseudonyms get blindly derived
by the user himself through an interactive protocol be-
tween the user, converter and the server he wants to
establish a pseudonym with. Our work does not target
such a user-centric setting, but instead aims at generat-
ing pseudonyms from untrusted data sources, which are
not supposed to learn the pseudonyms (which the user
does in [11]). Furthermore, both works aim at transi-
tive transformations between established pseudonyms,
whereas we focus on non-transitive joins. Thus, both
schemes target a considerably different setting and do
not provide the functionality we need.

Another line of related work is on adjustable joins
over encrypted databases, which is an important feature
e.g., in the CryptDB system by Popa et al. [27]. Re-
cently, it was shown that CryptDB’s join operator is
transitive which reveals much more information than ex-
pected [22]. Mironov et al. argue that this flaw was due
to an imprecise security model [26] and formally define
the desired behaviour of non-transitive joins. In contrast
to our work which aims at “public” de-sensitization, the
setting of encrypted databases assumes that all data is
prepared in a trusted environment using symmetric en-
cryption. Thus, their solution is not applicable to our
setting where data is accumulated from multiple, and
possibly untrusted data sources. Further, the adjustable
join tokens are computed by the secret key holder in a
non-blind manner and get revealed to the data proces-
sors, whereas our joins are blind and performed by the
oblivious converter. Overall, while similar in spirit, both
settings are incomparable.

However, their work demonstrates the need of clear
and formally sound security notions in order to avoid
that seemingly privacy-preserving systems reveal more
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information than intended. In fact, deploying such sys-
tems without rigorous security proofs can be devastat-
ing as the claimed privacy properties inspire wrong con-
fidence and might lead users and organizations to put
large amounts of personal data at risk.

2 Preliminaries
Here we introduce our notation for databases and the
standard building blocks needed in our protocols.

Notation for Database Tables. We write Tm×n to de-
note a database table that consists of n rows and m

columns for attributes attr1, . . . , attrm ← ATTR(Tm×n).
Each row is uniquely addressed by a primary key
uid1, . . . , uidn ← KEY(Tm×n). A table is uniquely iden-
tified by the table identifier tid ← ID(Tm×n). Each cell
Tm×n[i, j] contains a value vali,j for uidi and attrj , and
for i = 1, . . . , n and j = 1, . . . ,m.

Public-Key Encryption. We need an encryption scheme
(KGen,Enc,Dec) that is chosen-plaintext (CPA) se-
cure. It consists of algorithms for key generation
(epk, esk) ←$ KGen(τ), encryption C ←$ Enc(epk,m),
and decryption m← Dec(esk, C).

We will require that ciphertexts are re-
randomizable. That is, there must also be an algorithm
C′ ←$ ReRand(epk, C) that returns a re-randomized
version of the input ciphertext C. In terms of (addi-
tional) security we require that an adversary cannot
distinguish a fresh encryption from a re-randomized
ciphertext. The formal security definition for this prop-
erty is given in Appendix A.1. For some of the en-
cryption schemes we further require that the scheme
has an appropriate homomorphic property, namely that
there is an efficient operation � on ciphertexts such
that, if C1 ∈ Enc(epk,m1) and C2 ∈ Enc(epk,m2), then
C1 � C2 ∈ Enc(epk,m1 ·m2). We use exponentiation to
denote the repeated application of �.

We use the ElGamal encryption scheme, both for
the instantiation of re-randomizable schemes and the
ones that are also homomorphic. It is well known that
the ElGamal scheme achieves these notions and is CPA
secure. The CPA security is sufficient for our construc-
tion, as we consider mostly passive adversaries in this
work. Let (G, g, q) be system parameters available as
CRS such that the DDH problem is hard w.r.t. τ , i.e.,
q is a τ -bit prime. Then the re-randomizable version of
ElGamal is defined as follows:

ElG.KGen(τ) : esk ←$ Zq, epk ← gesk , output (esk, epk)

ElG.Enc(epk,m) : r ←$ Zq, output (epkr, grm)
ElG.Dec(esk, (C1, C2)) : output m′ ← C2 · C−1/esk

1
ElG.ReRand(epk, (C1, C2)) : r′ ←$ Zq, C′1 ← C1 · epkr

′
,

C′2 ← C2 · gr
′ , output C′ ← (C′1, C′2)

Pseudorandom Functions. We require a standard
pseudorandom function, consisting of a key genera-
tion k ←$ PRF.KGen(τ) and evaluation function y ←
PRF.Eval(k, x). We also need a pseudorandom permuta-
tion, which in addition to PRP.KGen and PRP.Eval has
an inversion algorithm x← PRP.Invert(k, y).

3 Convertible & Oblivious PRFs
This section introduces our core building block: a 3-
party oblivious and convertible PRF (coPRF). We first
describe its expected behaviour (Sec. 3.1), then define
the required security properties (Sec. 3.2) and present
an efficient realization (Sec. 3.3). At the end we dis-
cuss the relation of coPRFs to OPRFs, key-homomorphic
PRFs and proxy re-encryption (Sec. 3.4).

3.1 Functionality of 3-Party coPRFs
A first crucial difference to existing OPRFs, is that we
are focusing on a 3-party oblivious evaluation of the
PRF. In the 3-party setting, a requester R wishes the
PRF to be blindly evaluated on some input x towards
a receiver V. This blinded request, which we denote as
x, is sent to the evaluator E that is the entity holding
the secret PRF key. The evaluator blindly transforms x
into a blinded PRF output y of y = coPRF.Eval(k, x),
and sends it to the receiver V which is the (only) entity
that can unblind the response and retrieve y.

Further, to capture the conversion property where
PRF values can be transformed from one key to an-
other, we need to define the PRF in a multi-key set-
ting. Therefore, we model key generation in two steps:
the coPRF.Setup algorithm generates a master key msk
from which domain-specific keys ki for some index i

can be derived via ki = coPRF.KGen(msk, i). The in-
dex allows the requesting party to indicate under which
key it wants the PRF to be evaluated on. Finally, we
want the PRF to be convertible, i.e., there exists an ef-
ficient algorithm coPRF.Convert(ki, kj , yi) that on input
two keys ki, kj and a PRF value yi = coPRF.Eval(ki, x)
transforms this value into the corresponding PRF out-
put yj = coPRF.Eval(ki, x) of x under kj .

More formally, a 3-party convertible PRF coPRF :
K × X → Y is defined through the following set of
algorithms.
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Main Algorithms:
Master Key: msk ←$ coPRF.Setup(τ)
Key Generation: ki ← coPRF.KGen(msk, i)
Evaluation: y ← coPRF.Eval(ki, x)
Conversion: yj ← coPRF.Convert(ki, kj , yi)

We require that conversions and fresh PRF evalua-
tions are consistent, i.e., for all msk ←$ coPRF.Setup(τ),
x ∈ X , i, j ∈ {0, 1}∗, ki ← coPRF.KGen(msk, i), kj ←
coPRF.KGen(msk, j), we have that

coPRF.Eval(kj , x) =
coPRF.Convert(ki, kj , coPRF.Eval(ki, x)).

We want the evaluation and conversion to be com-
putable in an oblivious manner. For the blind computa-
tion of coPRF.Eval, we require the algorithms stated be-
low. To reflect the 3-party setting we define the blinding
and unblinding operations in a public-key setting, i.e.,
the PRF receiver V will generate a key pair (bpk, bsk)
via coPRF.BKGen and distribute the public blinding key
bpk to the PRF requester, and use the secret key bsk for
the unblinding of the PRF response.

Blinding Key Generation:
Key Generation (bpk, bsk)←$ coPRF.BKGen(τ)

Blind Evaluation:
Blinding: x←$ coPRF.Eval.Blind(bpk, x)
Evaluation: y ←$ coPRF.Eval.Exec(ki, bpk, x)
Unblinding: y ← coPRF.Eval.Unblind(bsk, y)

Similarly, the oblivious, 3-party computation of
coPRF.Convert is defined via the three algorithms be-
low. The conversion request yi is computed by a re-
quester R that wishes to convert the value yi towards a
receiver V and the secret key with index j. The evaluator
blindly computes yj which is the converted PRF value
yj = coPRF.Convert(ki, kj , yi) = coPRF.Eval(kj , x). The
blinding and unblinding leverages a key pair (bpk, bsk) of
the receiver derived via coPRF.BKGen as defined above.

Blind Conversion:
Blinding: yi ←$ coPRF.Convert.Blind(bpk, yi)
Conversion: yj ←$ coPRF.Convert.Exec(ki, kj , bpk, yi)
Unblinding: yj ← coPRF.Convert.Unblind(bsk, yj)

For correctness of blind evaluation and conversion
we require that any computation through the blinded al-
gorithms performed by honest parties leads to the same
value that would be derived using the non-blind coun-
terparts coPRF.Eval and coPRF.Convert.

Whereas most previous work defined OPRFs in form of
ideal functionalities in the UC framework, we opted for
an algorithm-based definition as it gives direct access to

all intermediate values, and thus allows a more flexible
use in the protocol design. For instance, it enables batch
evaluation, i.e., a single evaluation request x can be used
by the evaluator to derive multiple blinded PRF outputs
y1, . . . , yn under different secret keys, which would not
be possible under a UC-based definition.

3.2 Security Notions for coPRFs
We now present our security definitions for convertible
and oblivious PRFs. Some core differences to existing
notions for oblivious PRFs [17, 19] already stem from
our targeted 3-party setting: The previous works aim at
2-party OPRFs, i.e., they assume that the party query-
ing the OPRF and receiving the final value are always
the same entity, whereas our definition is more generic
and allows them to be different. This new setting mo-
tivates a new security property that is not captured by
2-party OPRFs: if the requester and receiver collude,
they should not be able to correlate the PRF’s in- and
outputs (beyond what is trivially possible given the de-
terminism of the PRF).

The security definitions are defined via games that
an adversary runs with a challenger, covering differ-
ent corruption settings: the notions of pseudorandom-
ness, collusion-resistance and one-more unpredictabil-
ity provide security against corrupt requesters and re-
ceivers, whereas obliviousness and input-hiding cap-
ture the guarantees of coPRFs against corrupt evalu-
ators (and receivers). Our strong notion of collusion-
resistance focuses on passive adversaries, and one-more
unpredictability is a weaker notion that allows active
adversaries but still enables highly efficient realizations.

Writing Conventions. For brevity we will often write
ki in our definition without making the key genera-
tion explicit, i.e., whenever we write ki we mean ki ←
coPRF.KGen(msk, i). Further, when we write “retrieve a
record” in an oracle but no matching record exists, the
oracle call is ignored.

3.2.1 Pseudorandomness
The core property of coPRFs is that, without knowing
the secret key, their outputs should be indistinguishable
from random — bearing in mind the added conversion
functionality. We require this property for the main, i.e.,
non-blind algorithms coPRF.Eval and coPRF.Convert and
extend it to the blind evaluation in the next definition.

The pseudorandomness of convertible PRFs is cap-
tured in the following definition where the adversary is
given access to oracles ObEval and ObConvert (Fig. 1). For
b = 0 the oracles return the real coPRF output whereas
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Ob
Eval(i, x)
if b = 0 (Real):
yi ← coPRF.Eval(ki, x)

if b = 1 (Random):
yi ← fi(x)

add (i, x, yi) to VPRF
return yi

Ob
Convert(i, j, yi)
retrieve (i, x, yi) from VPRF
if b = 0 (Real):
yj ← coPRF.Convert(ki, kj , yi)

if b = 1 (Random):
yj ← fj(x)

add (j, x, yj) to VPRF
return yj

Fig. 1. Oracles for the pseudorandomness definition of coPRFs. fi
is a random function fi : X → Y that, for every new i, is chosen
at random from the family of such functions, and gets re-used for
all recurring calls for the same i.

for b = 1 the output is derived via a random function fi.
To capture the conversion capability in the ideal random
setting we enforce that ObConvert can only be invoked on
PRF values that have been obtained through the ObEval
oracle. As we keep records (i, x, y) for all evaluation re-
quests in a list VPRF this allows the experiment to look
up the underlying value x and return fi(x) in the con-
version call when being in the ideal setting with b = 1.

Definition 3.1 (Pseudorandomness). A coPRF is
called pseudorandom if for all PPT adversaries A it
holds that

∣∣Pr[ExpcoPRF
A,rand(τ) = 1] − 1/2

∣∣ ≤ negl(τ) for the
following experiment and the oracles defined in Figure 1.

Experiment ExpcoPRF
A,rand(τ):

msk ←$ coPRF.Setup(τ), VPRF ← ∅, b←$ {0, 1}
b′ ←$ AOb

Eval,O
b
Convert(τ)

return 1 if b = b′

3.2.2 Security against Corrupt Requester & Receiver
The following definition covers security against mali-
cious requester and receiver, guaranteeing that the blind
computations of coPRF.Eval and coPRF.Convert do not
leak more information than their non-blind counter-
parts. This does not follow from the pseudorandomness
and correctness requirement of blind evaluations and
conversions, e.g., coPRF.Eval.Exec could output the key
ki as part of y without harming either requirement.

Our first definition is targeted to passive attackers,
also known as honest-but-curious adversaries. They fol-
low the protocol correctly but try to learn as much in-
formation as possible from its execution. A second and
weaker notion then captures security against active ad-
versaries.

Passive Security. This security property is phrased by
the experiment defined below and for the oracles de-
fined in Figure 2. Here we ask the adversary to distin-
guish between a real (b = 0) and a simulated (b = 1)
setting. In the real setting, the oracles return the nor-
mal blind coPRF outputs. In the simulated world, the

outputs are derived from a simulator SIM that gets the
corresponding non-blind evaluation of coPRF as input.
For collusion-resistance we require that their must exist
a simulator that makes both worlds indistinguishable.

Note that the simulator has to produce indistin-
guishable y values based purely on the input of y and
bpk. As SIM doesn’t get the evaluation or conversion re-
quest x or y as input, this definition ensures that the
blinded PRF output y is unlinkable to the blinded in-
put. This is a crucial property for our pseudonym sys-
tem where a sender pseudonymizes a batch of many pri-
mary identifiers towards the data lake, and a colluding
requester and receiver should not be able to link the
identifiers to their pseudonyms.

Definition 3.2 (Collusion Resistance). A coPRF is
called collusion-resistant if for all PPT adversaries
A there exists a PPT simulator SIM such that∣∣Pr[ExpcoPRF

A,collres(τ) = 1] − 1/2
∣∣ ≤ negl(τ) for the fol-

lowing experiment and the oracles defined in Figure 2.

Experiment ExpcoPRF
A,collres(τ):

msk ←$ coPRF.Setup(τ), Vx,Vy,VPRF ← ∅, b←$ {0, 1}
b′ ←$ AOBlind,Ob

Eval.Exec,O
b
Convert.Exec(τ)

return 1 if b = b′

As said, this definition is targeted to passive attackers.
This is modeled by granting the adversary a blinding
oracle OBlind which he can use to obtain correctly formed
x or y values, including the used randomness. We then
require A to invoke the ObEval.Exec and ObConvert.Exec only
on blinded values obtained via these oracles.

We stress that for any definition of consistent and
blind coPRFs the definition must enforce that inputs
are properly formed and the blinded values are ex-
tractable. When allowing active attacks, the instanti-
ation will require heavy tools such as zero-knowledge
proofs, privacy-preserving signatures and extractors –
which we try to avoid. We believe that passive attacks
still capture the main threat in practice, namely the cor-
ruption of the secret key and full state of a party. Our
definition guarantees security against these attacks and
also enables highly efficient instantiations.

In fact, this trade-off resembles the current state
in the related area of private set intersection: Therein
passive security is accepted as the de-facto standard for
practical solutions, as even the most efficient adaptions
to malicious security require significant additions to the
passively-secure protocols [13].

Active Security. While guaranteeing the pseudoran-
domness and collusion-resistance properties against ac-
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OBlind(·, ·, ·)
upon input (Eval, bpk, x):

get x←$ coPRF.Eval.Blind(bpk, x)
add (bpk, x, x) to Vx

return (x, r$)

upon input (Convert, bpk, y):
get y ←$ coPRF.Convert.Blind(bpk, y)
add (bpk, y, y) to Vy

return (y, r$)

Ob
Eval.Exec(i, bpk, x)
retrieve (bpk, x, x) from Vx

get yi ← coPRF.Eval(ki, x)
add (i, x, yi) to VPRF
if b = 0 (Real):

get yi ←$ coPRF.Eval.Exec(ki, bpk, x)
if b = 1 (Simulated):

get yi ←$ SIM(Eval, bpk, yi)
return yi

Ob
Convert.Exec(i, j, bpk, yi)
retrieve (bpk, yi, yi) from Vy

and (i, x, yi) from VPRF
get yj ← coPRF.Convert(ki, kj , yj)
add (j, x, yj) to VPRF
if b = 0 (Real):

get yj ←$ coPRF.Convert.Exec(ki, kj , bpk, yi)
if b = 1 (Simulated):

get yj ←$ SIM(Convert, bpk, yj)
return yj

Fig. 2. Oracles for the collusion-resistance definition, where r$ in the OBlind oracle is the randomness used by the internal algorithm.

tive adversaries would be very costly to realize, we also
propose a weaker property that can be achieved much
more efficiently: one-more unpredictability. This notion
captures that even an actively corrupted requester and
receiver cannot learn anything from the evaluator’s key
that would enable them to compute or convert PRF val-
ues on their own. This is defined via a game where the
adversary can query OEval and OConvert oracles on (mali-
ciously crafted) inputs of his choice and has to come up
with more valid PRF tuples than he made queries to the
oracles. A similar notion has been used for the (2-Party)
OPRF in [15]. Compared with the pseudorandomness
and collusion-resistance properties, this definition does
not guarantee consistency or committed-input compu-
tation, but ensures that the secrecy of the evaluators
PRF key is not impacted by any malicious behaviour of
the requester and receiver. The formal definition of this
property is given in Appendix A.3.

3.2.3 Security against Corrupt Evaluator
We now turn to the properties coPRFs must guaran-
tee against malicious evaluators. The notion of oblivi-
ousness guarantees the blindness of the values that the
evaluator receives and outputs. The second definition of
input hiding captures the security that remains when
the evaluator colludes with the receiver, and thus learns
the outputs he computes. Due to the determinism of
the PRF, the security in this setting is limited and
boils down to brute-force attacks on the input space.
We stress that the latter is unavoidable when the secret
key and the output of the keyed and deterministic func-
tion are known to the adversary. In the protocol this can
be strengthened easily though, e.g., by simply applying
another PRF on the in- and/or output, which is what
we will do in the ScrambleDB scheme.

Obliviousness. This is the core property we want to en-
sure against a corrupt PRF evaluator E . When the re-
quester and receiver in a blind evaluation or conversion
session are honest, then a corrupt E should not learn
anything about the inputs it is receiving or the outputs

it is computing. As blinding does not require any secret
keys, this definition does not give any oracle access to
the adversary. Note that obliviousness as defined below
also guarantees unlinkability, i.e., a corrupt evaluator
cannot tell whether two blinded inputs belong to the
same x and y respectively.

Definition 3.3 (Obliviousness). A coPRF is called
fully oblivious if for all PPT adversaries A in the experi-
ments below it holds that |Pr[ExpcoPRF

A,blindX(τ) = 1]−1/2| ≤
negl(τ) for X ∈ {eval, convert}.

Experiment ExpcoPRF
A,blindeval(τ):

(bpk, bsk)←$ coPRF.BKGen(τ)
b←$ {0, 1}
(x0, x1, state)←$ A(bpk)
proceed only if x0, x1 ∈ X
xb ←$ coPRF.Eval.Blind(bpk, xb)
b′ ←$ A(state, xb)
return 1 if b = b′

Experiment ExpcoPRF
A,blindconvert(τ):

(bpk, bsk)←$ coPRF.BKGen(τ)
b←$ {0, 1}
(y0, y1, state)←$ A(bpk)
proceed only if y0, y1 ∈ Y
yb ←$ coPRF.Convert.Blind(bpk, yb)
b′ ←$ A(state, yb)
return 1 if b = b′

Input Hiding. This notion captures the privacy guaran-
tees against a malicious evaluator and receiver. Clearly,
when both the PRF evaluator and the PRF receiver are
corrupt, we can no longer guarantee the full oblivious-
ness as defined above. However, we still want the blinded
PRF input x to be as “hidden” as possible. This is de-
fined by requiring the blinded input message to be sim-
ulatable with the input of only some leakage leak(x) of
x. The strength of this notion obviously depends on the
leakage function leak: in the extreme case of leak(x) = x

the definition becomes meaningless as the simulator has
the full knowledge of the input value. Our construction
will realize the input-hiding notion for the leakage being
the (one-way) hash function HG.

The coPRF then inherits the properties of leak,
meaning when leak is one-way, this notion models that
the coPRF is not reversible (on random, high-entropy in-
puts) even if an adversary is given the secret key. This
is often desired in the context of pseudonymization, as
pseudonyms produced by an inherently reversible func-
tion would not be considered to be fully de-identifying
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and thus require stronger protection than pseudonyms
produced via one-way functions. For space reasons, we
present the formal definition in Appendix A.2.

3.3 Secure Instantiation of coPRF
The following instantiation securely realizes coPRF as
just defined. The construction is based on the PRF by
Naor, Pinkas, and Reingold [23] where an input x is
first hashed and then raised to an exponent that is the
evaluator’s secret key as y = HG(x)ki . This has been
shown to be a secure PRF when the DDH assumption
is hard in G and HG is a random oracle. The conversion
is realized in a proxy re-encryption manner using the re-
encryption idea first proposed by Blaze et al. [6]. That
is, conversion of a PRF value y = HG(x)ki towards a key
kj is realized by using the quotient of the source and tar-
get key as yj = y

kj/ki

i . 3-Party obliviousness is realized
by encrypting all inputs towards the evaluator with a
homomorphic encryption scheme HE under the public
key of the PRF receiver. We also require the homomor-
phic encryption scheme to be re-randomizable, i.e., a
ciphertext can be re-randomized such that it becomes
indistinguishable from a fresh encryption. The evaluator
uses that property to re-randomize every ciphertext it
receives, which guarantees collusion-resistance. Finally,
we use a standard PRF to derive the individual coPRF
keys ki from a master key msk and an index i ∈ {0, 1}∗.
When used as building block in a protocol, the index
will allow to “publicly” steer the key under which the
coPRF shall be evaluated.

Construction coPRFDDH. Our construction assumes the
availability of public parameters (G, g, q) such that the
DDH problem is hard w.r.t. the security parameter τ .
More precisely, G is a cyclic group of order q where q
is a τ -bit prime. The coPRFDDH scheme makes use of a
hash function HG : {0, 1}∗ → G and a standard pseu-
dorandom function PRFq = (PRFq .KGen,PRFq .Eval)
with PRFq : K × {0, 1}∗ → Zq. Note that the choice
of these functions is influenced by the group param-
eters which in turn depend on the security param-
eter τ . Further let HE = (HE.KGen,HE.Enc,HE.Dec,
HE.ReRand) be a homomorphic and re-randomizable
encryption scheme that is compatible with G. Then,
coPRFDDH : {0, 1}∗ × {0, 1}∗ → G is defined as:

Main Algorithms:
Setup(τ): msk ←$ PRFq .KGen(τ)

KGen(msk, i): ki ← PRFq .Eval(msk, i)
Eval(ki, x): y ← HG(x)ki

Convert(ki, kj , yi): yj ← y∆
i with ∆← kj/ki

Blind Evaluation & Conversion:
BKGen(τ): (bpk, bsk)←$ HE.KGen(τ)

Eval.Blind(bpk, x): x←$ HE.Enc(bpk,HG(x))
Eval.Exec(ki, bpk, x): y ←$ HE.ReRand(bpk, x)ki

Eval.Unblind(bsk, y): y ← HE.Dec(bsk, y)

Convert.Blind(bpk, yi): yi ←$ HE.Enc(bpk, yi)
Convert.Exec(ki, kj , bpk, yi): yj ←$ HE.ReRand(bpk, yi)kj /ki

Convert.Unblind(bsk, yj): yj ← HE.Dec(bsk, yj)

It is easy to see that coPRFDDH is consistent, and the
blind evaluation and conversion procedures are correct
as defined in Section 3.1. We have already informally
argued how the individual building blocks are used to
satisfy all the required properties of coPRFs and give the
details of the straightforward proofs for the following
theorems in the full version of this paper.

Theorem 3.4 (Pseudorandomness). The construction
coPRFDDH described above is pseudorandom if PRFq is
pseudorandom, HG is a random oracle, and the DDH
assumption holds in G.

Theorem 3.5 (Collusion-resistance). The construc-
tion coPRFDDH is collusion-resistant if HE is re-
randomizable (as defined in Def. A.1).

Theorem 3.6 (Obliviousness). The construction
coPRFDDH is fully oblivious if HE is CPA-secure.

Theorem 3.7 (Input-Hiding). The construction
coPRFDDH described above is input-hiding w.r.t. the
one-way function leak = HG if HG is one-way.

Our construction does not achieve collusion-resistance
and pseudorandomness as defined in Section 3.2 against
actively corrupt requester, as this would require addi-
tional zero-knowledge proofs and extractability to en-
force that inputs are well-formed. Instead, we show
that coPRFDDH satisfies the notion of one-more un-
predictability against active adversaries, which ensures
the overall safety of the evaluator’s secret key. This
property relies on the One-More DH with Inverse Or-
acle (OMDH-IO) assumption that was introduced re-
cently [18], and is a slight modification of the standard
One-More DH assumption that gives the adversary ac-
cess to an inversion oracle (·)1/x in addition to (·)x.
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Theorem 3.8 (Active Security of coPRFDDH). The
construction coPRFDDH described above is one-more
unpredictable if PRFq is pseudorandom, HG is a random
oracle, and the OMDH-IO assumption holds in G.

3.4 Related Work for coPRFs
Our 3-party coPRF can be seen as a generalization and
extension of 2-party OPRFs, i.e., coPRFs can be used
in the simpler 2-party setting by making the requester
and receiver the same party. However, the 3-party set-
ting and the additional collusion-resistance property al-
low to use coPRFs in applications where no party should
be privy of both the in- and output of the PRF, which
is exactly what we will need for our pseudonym system:
therein batches of identifiers get replaced by pseudo-
nyms and the coPRF hides the relation between them,
even when the requester and receiver are corrupt.

In Appendix B we discuss the relation between our
coPRF and similar concepts such as key-homomorphic
PRFs (KH-PRF) and proxy re-encryption (PRE). In
short, convertible PRFs are orthogonal to the both
primitives. KH-PRFs require to know the preimage x
in order to convert PRF values between keys, whereas
coPRF allows conversions based on y only. In PRE, an
untrusted proxy can re-encrypt ciphertexts from one key
to another, without knowing the secret keys but seeing
the ciphertexts it is converting. Whereas in coPRFs the
converter does know all secret keys but must do the
conversion blindly.

4 ScrambleDB
We now present ScrambleDB in which a central and
oblivious pseudonymization service is used to de-
sensitize data from distributed sources. At the same
time, ScrambleDB overcomes the privacy limitations
that are inherent whenever globally consistent pseudo-
nyms are used in order to preserve the utility of the
data. The main idea is to distinguish between pseu-
donymization used for data collection and data usage:
when collected, data should be fully unlinkable per de-
fault. Only when strictly needed or desired, should the
required pieces be made linkable in a controlled manner,
again using the oblivious service for simple deployment.
To pseudonyms that allow for such flexibility and con-
vertability we refer to as chameleon pseudonyms.

We start with the high-level idea of ScrambleDB
(Sec. 4.1), then present our formal security model
(Sec. 4.2) and finally propose our protocol (Sec. 4.3).

4.1 High-Level Idea
We have four entities in our setting: a number of data
sources S, the central pseudonym converter C, the
data lake L, and a number of data processors P.

Pseudonymization. The data sources hold tables Tm×n
containing attribute values for n users and m attribute
types which they want to upload in pseudonymized
form to the data lake. All pseudonymization has to go
through the converter C which breaks the table into m
tables each indexed with attribute-specific pseudonyms.
The data lake receives and stores such pseudonymized
and unlinkable tables.

More precisely, pseudonymization is triggered by
some data source S holding a table Tm×n. The pri-
mary key of each row is the unique identifier that
is supposed to be pseudonymized, which we write as
(uid1, . . . , uidn) ← KEY(Tm×n) (see Sec. 2 for more
writing-conventions for database tables). The pseudo-
nymization is requested towards the converter C. When
C approves, it derives different pseudonyms for every
attribute in the table. That is, C breaks the Tm×n
table into m tables T1×n, one table for every at-
tribute, and blindly derives attribute-specific pseudo-
nyms nymi,j for every combination of uidi and attribute
type attrj . At the end, L receives m shuffled tables
(T1×n

1 , . . . ,T1×n
m ), each with pseudonyms KEY(T1×n

j )←
(nym1,j , . . . ,nymn,j) as primary keys. Thus, all data
stored by L is broken into unlinkable and scrambled
data snippets.

Join. The data processors are entities that wish to re-
ceive a joined version of some of the tables held by L.
For instance, P could be a data analyst that aims to
access data from an intra-enterprise data lake L, where
ScrambleDB is used to implement the principle of data
minimization within their own premises. The data lake
could also be a collection of pseudonymized medical
data accumulated from different sources to which ex-
ternal researchers can request selected access to. De-
pending on the use case, P might have full access to
the pseudonymized (but fully unlinkable) data held by
L, only see data excerpts or even only learn the at-
tribute types and quantities. How P will request the
information from L is very application-specific and will
be outside of our model. We simply consider that L has
already agreed on producing a joined output of certain
tables T1×n1

1 , . . .T1×nl

l towards P.
Thus, the join process is triggered by the data lake

for a particular data processor P and requires the ex-
plicit approval of the converter. If C gives such approval,
then P (and only he) will receive transformed tables in
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1. Pseudonymization Request. On input (NymReq, sid, pqid,Tm×n) from a data source S:
– If C and L are corrupt: Set Tm×n ← Tm×n with KEY(Tm×n)← (leak(uidi), . . . , leak(uidn)) for (uid1, . . . , uidn)← KEY(Tm×n),

and set `← Tm×n. Otherwise set `← size(Tm×n).
– Send (NymReq, sid, pqid,S, `) to A and wait for (NymReq, sid, pqid, ok) from A.
– Create a record (nymreq, sid, pqid,Tm×n,S) and output (NymReq, sid, pqid,S,ATTR(Tm×n), n) to C.

2. Pseudonymized and Unlinkable Data Output. On input of (NymOut, sid, pqid) from the converter C:
– Proceed only if a record (nymreq, sid, pqid,Tm×n,S) for pqid exists.
– Send (NymOut, sid, pqid) to A and wait for (NymOut, sid, pqid, ok).
– Get (attr1, . .., attrm)← ATTR(Tm×n), and (uid1, . .., uidn)← KEY(Tm×n) for the retrieved Tm×n.
– For j = 1, . . .m:
– Create T1×n

j by using the j-th column of Tm×n, set ID(T1×nj

j )← (ID(Tm×n), attrj), and add T1×n
j to Tables.

– Produce the pseudonymized version of T1×n
j as follows:

∗ For i = 1, . . . , n: Get nymi,j ← Nyms(uidi, attrj). If nymi,j = ⊥, choose nymi,j ←$ N and set Nyms(uidi, attrj)← nymi,j .
∗ Set KEY(T1×n

j )← (nym1,j , . ..,nymn,j) and sort T1×n
j by the primary key.

– Output (NymOut, sid, pqid,S, (T1×n
1 , . . . ,T1×n

m )) to the data lake L.

3. Join Request. On input (JoinReq, sid, jqid, (tid1, . . . , tidl),P) from the data lake L:
– Proceed only if T1×n1

1 , . . .T1×nl

l ∈ Tables for all (tid1, . . . , tidl).
– If C and P are corrupt: For j = 1, . . . , l set T1×nj

j ← T1×nj

j with KEY(T1×nj

j ) ← (leak(uid1), . . . , leak(uidnj )) for
(uid1, . . . , uidnj )← KEY(T1×nj

j ), and set `← {T1×nj

j }j=1,...,l. Otherwise, set `← (size(T1×n1
1 ), . . . , size(T1×nl

l )).
– Send (JoinReq, sid, jqid, `,P) to A and wait for (JoinReq, sid, jqid, ok) from A.
– Create a record (joinreq, sid, jqid, (T1×n1

1 , . . .T1×nl

l ),P) and output (JoinReq, sid, jqid, (tid1, . . . , tidl),P) to C.

4. Join Response.On input of (Join, sid, jqid) from the converter C:
– Proceed only if (joinreq, sid, jqid, (T1×n1

1 , . . .T1×nl

l ),P) for jqid exists. Set Join-IDs← ∅.
– Send (Join, sid, jqid) to A and wait for (Join, sid, jqid, ok).
– For j = 1, . . . , l: Get (uid1, . . . , uidnj )← KEY(T1×nj

j ) and create a copy T̃1×nj

j ← T1×nj

j as follows
– For i = 1, . . . , nj : Get join-idi ← Join-IDs(uidi). If join-idi = ⊥, choose join-idi ←$ N and set Join-IDs(uidi)← join-idi.
– Set KEY(T̃1×nj

j )← (join-id1, . . . , join-idnj
) and sort T̃1×nj

j by the primary key.
– Output (Joined, sid, jqid, (T̃1×n1

1 , . . . , T̃1×nl

l )) to P and delete Join-IDs.

Fig. 3. Ideal functionality FScrambleDB with sid = (sid′, C,L,N) parametrized with a leakage function leak and with sid =
(sid′, C,L,N) where N denotes the pseudonym space. The functionality can be called by multiple data sources S and processors P.

which all unlinkable pseudonyms are consistently con-
verted into an ephemeral and non-transitive pseudonym
representation to which we refer to as join-id.

Informally, such an oblivious chameleon-
pseudonymization-service should satisfy the following:

1) Oblivious Generation & Conversion: The con-
verter C neither learns the incoming identifiers uidi,
nor the blindly computed pseudonyms nymi,j . In fact,
the converter C cannot even tell whether two requests
are for the same identifier or not. Furthermore, the
data source S does not learn anything about the trig-
gered pseudonyms, nor does the lake L learn anything
about the identifiers behind the pseudonyms. Likewise
C must also perform the conversion for joins in a blind
manner and L learns nothing about the underlying
identifiers or the triggered join-ids.

2) Pseudorandom & Unlinkable Pseudonyms:
For each user uidi and attribute type j, a random-
looking pseudonym nymi,j is generated. In particular,
when given two pseudonyms nymi,j and nymi′,j′ for

two different attribute-types j and j′, one cannot tell
if i = i′, i.e., whether both pseudonyms belong to the
same user or not. This property also covers collusion-
resistance, i.e., even if some data sources and the data
lake collude they cannot re-identify the users behind
the pseudonyms or correlate their attribute-specific
pseudonyms.

3) Controlled Join & Consistency: The only way
to link and correlate the chameleon pseudonyms is via
requests to the converter. When approved by C, the
pseudonyms of the required subsets are consistently
converted into ephemeral join-ids. That is, if nymi,j

and nymi,j′ are based on the same unique identifier
uidi, they both will be converted into the same join
pseudonym join-idi.

4) Non-Transitivity of Joins: Two individually
joined data sets cannot be correlated any further (via
the join-ids). That is, the consistent join conversion
is strictly non-transitive and prevents corrupt data
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processors Pi to correlate their data beyond what was
explicitly approved by the converter.

4.2 Security Model for ScrambleDB
We now formally define the security and functionality of
such an oblivious chameleon pseudonymization service
by describing an ideal functionality FScrambleDB in the
Universal Composability (UC) framework [12].

The UC Framework & Writing Conventions. The ideal
functionality works in a way that is secure-by-design.
A real-world protocol is said to securely realize a cer-
tain functionality F if an environment cannot distin-
guish whether it is interacting with the real protocol or
with F and a simulator.

The UC framework allows us to focus our analy-
sis on a single protocol instance with a globally unique
session identifier sid. Here we use session identifiers of
the form sid = (sid ′, C,L,N), i.e., it fixes the identity
of the converter C and the data lake L. Further, sid ′ is
a unique string, and N denotes the pseudonym space.
We also use unique query identifiers pqid and jqid to
distinguish between several pseudonym generation and
conversion sessions. We implicitly assume that the func-
tionality checks that all session and query identifiers are
well-formed and unique.

Our functionality keeps the following state: The list
Nyms contains tuples of the form (uidi, attrj ,nymi,j)
denoting that nymi,j is the attribute-specific
pseudonym for unique id uidi and attrj . We use the
shorthand nymi,j ← Nyms(uidi, attrj) to denote re-
trieving the pseudonym nymi,j from the record for uidi
and attrj . The set Tables contains all stored tables,
which can be selectively retrieved using the table iden-
tifier tid which we denote as Tm×n ← Tables(tid).

The FScrambleDB Functionality. The definition of our
ideal functionality FScrambleDB is given in Figure 3. It
has four interfaces, two for the pseudonymization, and
two for selective joins. The pseudonymization request in-
terface can be invoked by any data source S that wishes
to upload a pseudonymized version of the table Tm×n
to the data lake L. When C approves the request via an
input to the pseudonymized data output interface, then
FScrambleDB produces unlinkable pseudonyms and out-
puts m shuffled and individually pseudonymized tables
(T1×n

1 , . . . ,T1×n
m ) to L.

The join request interface is invoked by the data
lake L that wishes to produce a joined (or rather join-
able) version of the unlinkable data tables identified by
(tid1, . . . , tidl) to a certain data processor P. When the

converter gives explicit approval via the join response
interface, FScrambleDB outputs (T̃1×n1

1 , . . . , T̃1×nl

l ) to P
which are the requested tables that have consistently
converted pseudonyms as primary keys. The consistent
conversion is done with the help of Tables, which con-
tains all the tables of the data lake in fully identifying
form and is internally maintained by FScrambleDB.

We now discuss how FScrambleDB guarantees the ex-
pected security properties described before.

1) Obliviousness: As long as not both the converter
and the data lake are corrupt, all the adversary
learns for pseudonym generation is the identity of the
data source and the size of the table Tm×n via the
leakage `. Likewise, when data is joined, the adver-
sary again only learns the size of the tables ` ←
(size(T1×n1

1 ), . . . , size(T1×nl

l )) for which the join was
requested. The leakage function size will reveal the
number of rows and columns of a table, and possi-
bly the lengths of the attributes. In our protocol, the
latter will be the “leakage” of the underlying encryp-
tion scheme that will be used to encrypt the attributes,
which usually reveals the (block) length of a message.
For simplicity however, we assume that all attributes
are bounded by the block size and omit an explicit
treatment of their length.
Only when both the converter and the receiver of the
pseudonyms, i.e., L for generation and P for conver-
sion, are corrupt, the adversary learns some leakage of
the underlying identifiers as leak(uidi). As discussed,
this leakage is unavoidable in a setting where C is han-
dling all the essential keys and colludes with the re-
ceiver of its deterministic computations. Our protocol
realizes FScrambleDB for leak being a one-way function.

2) Pseudorandomness & Unlinkability: For each
user uidi and attribute type attrj , the functionality
assigns a random value nymi,j ←$ N. This naturally
enforces unlinkability of pseudonyms for the same user
across different attributes. FScrambleDB reuses the same
pseudonym only when multiple tables share the same
attributes. Thus, for the best privacy guarantees, all
attributes types in the databases should be globally
unique. A trivial way to achieve this is to simply
prepend the table identifier tid to every attribute type.
The functionality enforces collusion-resistance by shuf-
fling the table before outputting the pseudonymized
version to L such that no linkage is revealed through
the order of rows. The shuffle is done by sorting the
table along the primary keys which are random values.
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3) Controlled Join & Consistency: As FScrambleDB
outputs random values as pseudonyms nymi,j , the only
way to learn which pseudonyms are correlated is to
send a join request to the functionality. When ap-
proved by C, FScrambleDB converts these pseudonyms
using the internal knowledge of Tables which contains
all data in identifying form. Thus, the functionality
retrieves all requested tables (T1×n1

1 , . . .T1×nl

l ) from
Tables with the uidis as primary keys. It then re-
places each occurrence of uidi with the same random
pseudonym join-idi ←$ N, which naturally enforces the
desired consistency of joins.

4) Non-Transitivity: The consistent join-ids that are
used by the functionality are kept in an ephemeral
state Join-IDs, that is reset to ∅ for every new re-
quest. Thus, consistency is strictly limited to the tables
within a request. As the join-ids are random values in
the pseudonym space N, it follows that join-ids for two
different requests cannot be linked. This property also
holds if L and P are colluding: the functionality ad-
ditionally shuffles the tables (T̃1×n1

1 , . . . , T̃1×nl

l ) before
outputting them to P which prevents linkage through
the order of the rows. Also, the random generation of
the join-ids received by P and the pseudonyms nymi,j

known to L, assures that there is no linkage between
the pseudonyms and join-ids.

4.3 The ScrambleDB Protocol
We now present our protocol that securely instantiates
FScrambleDB. Our ScrambleDB protocol derives the core
of the unlinkable pseudonyms via a coPRF, using a dif-
ferent secret key for every attribute-type, and using
fresh and ephemeral keys when joining tables. The pseu-
donyms get hardened by letting the data lake and data
processors apply a local and standard PRF (or PRP) on
the coPRF output. Further, the associated data gets en-
crypted using a re-randomizable encryption scheme RE.
Finally, we assume that functionalities FCA and FSMT
are available to all parties and that parties call FCA to
retrieve the necessary key material. The detailed pro-
tocol for setup and pseudonym generation is given in
Figure 4 and Figure 5 presents the protocol for convert-
ing pseudonyms in a join request.

Pseudonymization Request & Output. In the pseudo-
nymization request for a table Tm×n, the data source
generates blinded PRF requests xi for all primary keys
uidi in the table. Further, each data field in the table
is encrypted with a re-randomizable encryption scheme
under the data lake’s public key.

When C gets approval to proceed, it breaks the ta-
ble Tm×n into m tables T1×nj

j , and assigns each row
to the blinded attribute-specific pseudonym yi,j for xi
under the coPRF key for attrj . Thus, here we use the
batch evaluation capability of coPRFs and derive mul-
tiple PRF outputs from the same blinded input xi. To
avoid linkage through the data structure, all encrypted
data fields get re-randomized and the individual tables
get re-shuffled by C before they are forwarded to L.

Finally, L unblinds and decrypts the information it
receives from C, and finalizes the pseudonyms by ap-
plying a conventional PRP. The latter ensures that a
corrupt C cannot “de-anonymize” or brute-force the de-
rived pseudonyms as long as L honest.

Join Request & Output. When a certain subset of these
tables should be joined towards a processor P , the data
lake sends a blinded conversion request to C and with
the data being encrypted under P’s public key.

If the converter approves the join, it blindly converts
the pseudonyms towards a random, ephemeral key k∗.
Again, to avoid linkage through the structure of the ta-
bles, all encrypted data gets re-randomized and shuffled.
The data processor finalizes the join-ids by unblinding
the coPRF output, applying an additional PRF and de-
crypting the tables. The additional PRF ensures that a
corrupt converter C, when seeing the transformed pseu-
donyms, cannot de-anonymize the underlying users or
further join the pseudonyms as long as P is honest.

Security of ScrambleDB. We have already informally ar-
gued how the building blocks contribute to the security
of the full protocol. More formally, ScrambleDB achieves
the following security against passive adversaries:

Theorem 4.1 (Passive Security of ScrambleDB). The
ScrambleDB protocol securely realizes FScrambleDB for
leak = leakcoPRF against passive adversaries in the
FCA,FSMT-hybrid model if coPRF is a pseudorandom,
collusion-resistant, fully oblivious and input-hiding con-
vertible PRF, RE is a CPA-secure, re-randomizable
encryption scheme, PRF is a secure pseudorandom func-
tion, and PRP is secure pseudorandom permutation.

To prove that our protocol securely realizes the ideal
functionality FScrambleDB, we have to show that for any
environment E and any adversary A, there exist a sim-
ulator SIM such that E cannot distinguish whether it’s
interacting with A and the protocol in the real world or
with SIM and FScrambleDB. We refer to Appendix C for
the description of this simulator.
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Setup. For a session with sid = (sid ′, C,L,G) the parties generate their key material as follows, where coPRF is a convertible
PRF (as defined in Sec. 3), RE is a re-randomizable encryption scheme, and PRF, PRP are a standard PRF and PRP.

Converter C: generates msk ←$ coPRF.Setup(τ), and stores (sid,msk).
Data lake L: generates (bpkL, bskL)←$ coPRF.BKGen(τ), (epkL, eskL)←$ RE.KGen(τ), kL ←$ PRP.KGen(τ), and Tables← ∅.

It stores (sid, bskL, eskL, kL) and makes (sid, bpkL, epkL) available via FCA.
Data processor P: each data processor generates (bpkP , bskP) ←$ coPRF.BKGen(τ), (epkP , eskP) ←$ RE.KGen(τ), and

kP ←$ PRF.KGen(τ). It stores (sid, bskP , eskP , kP) and makes (sid, bpkP , epkP) available via FCA.

Pseudonymization Request. The data source S requests pseudonymization of the table Tm×n via the converter C.

1.a Data source S, on input (NymReq, sid, pqid,Tm×n):
– Compute Tm×n, a blinded and encrypted version of Tm×n with ID(Tm×n)← ID(Tm×n), ATTR(Tm×n)← ATTR(Tm×n):

– Get (uid1, . . . uidn)← KEY(Tm×n)
– For i = 1, . . . , n:

∗ Compute xi ←$ coPRF.Eval.Blind(bpkL, uidi), and set Tm×n[i, j]←$ RE.Enc(epkL,Tm×n[i, j]) for j = 1, . . . ,m
– Set KEY(Tm×n)← (x1, . . . xn), and sort Tm×n by the primary key (this implements a random shuffle)

– Send (NymReq, sid, pqid,Tm×n) to C (taken from sid) via FSMT

1.b Converter C, upon receiving (NymReq, sid, pqid,Tm×n) from S via FSMT:
– Store (sid, pqid,Tm×n,S) and output (NymReq, sid, pqid,S,ATTR(Tm×n), n)

Pseudonymization Output. The converter C and data lake L jointly produce the pseudonymized and unlinkable output.

2.a Converter C, on input (NymOut, sid, pqid):
– Retrieve (sid, pqid,Tm×n,S) for pqid, get attr1, . . . , attrm ← ATTR(Tm×n) and (x1, . . . xn)← KEY(Tm×n)
– For j = 1, . . . ,m, create the table T1×n

j using the j-th column of Tm×n as follows:
– Get kj ← coPRF.KGen(msk, attrj)
– For i = 1, . . . , n:

∗ Get yi,j ←$ coPRF.Eval.Exec(kj , bpkL, xi) and set T1×n
j [i]←$ RE.ReRand(epkL,T

m×n[i, j])

– Set KEY(T1×n
j )← (y1,j , . . . yn,j), ID(T1×n

j )← (ID(Tm×n), attrj) and sort T1×n
j by the primary key

– Send (NymOut, sid, pqid,S,T1×n
1 , . . . ,T1×n

m ) to L via FSMT

2.b Data lake L, upon receiving (NymOut, sid, pqid,S,T1×n
1 , . . . ,T1×n

m ) from the converter C via FSMT:
– For j = 1, . . . ,m, finalize the unlinkable tables T1×n

j as follows:
– Get (y1,j , . . . yn,j)← KEY(T1×n

j )
– For i = 1, . . . , n:

∗ Get yi,j ← coPRF.Eval.Unblind(bskL, yi,j), set nymi,j ← PRP.Eval(kL, yi,j) and T1×n
j [i]← RE.Dec(eskL,T1×n

j [i])
– Set KEY(T1×n

j )← (nym1,j , . . .nymn,j) and sort T1×n
j by the primary key

– Add T1×n
1 , . . . ,T1×n

m to Tables and output (NymOut, sid, pqid,S,T1×n
1 , . . . ,T1×n

m )

Fig. 4. Setup, pseudonymization request (1.a-b) and unlinkable data output (2.a-b) parts of our ScrambleDB protocol.

Security against active attacks. Similar to coPRFs, our
main security guarantees hold against passive adver-
saries. This is a common trade-off in privacy-preserving
protocols in order to avoid heavy machinery where all
parties have to prove that their inputs are well-formed.
We stress that the pseudonym service still preserves the
crucial security properties under active attacks, mean-
ing that malicious parties cannot learn more pseudo-
nyms or more correlations than they make queries to the
converter C. This follows immediately from the fact that
the converter C only executes the coPRF evaluations.
Thus, if the coPRF has such one-more unpredictability
guarantees under active attacks, then this property is
inherited by the ScrambleDB scheme as well. For space
reasons we omit the formal definition and proof which

closely resemble the one-more unpredictability notion of
coPRFs introduced in Section 3.1.

Lemma 4.1 (Active Security of ScrambleDB).
If coPRF is one-more unpredictable, then ScrambleDB is
one-more unpredictable against actively corrupt S,L,P.

The Need for coPRFs. We have identified convertible
3-party OPRFs as the crucial building block for our
ScrambleDB solution, which might provoke the ques-
tion why conventional 2-party OPRFs are not sufficient.
First, we need the conversion property to realize the
joins in an oblivious and non-transitive fashion. Second,
the 3-party setting is crucial to avoid re-identification
attacks by a colluding data source and data lake. Us-
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Join Request. The data lake L requests a join of the tables (tid1, . . . , tidl) towards a data processor P via the converter C.

3.a Data lake L, on input (JoinReq, sid, jqid, (tid1, . . . , tidl),P):
– Retrieve tables T1×n1

1 , . . . ,T1×nl

l for (tid1, . . . , tidl) from Tables and for j = 1, . . . l, transform T1×nj

j into T̃1×nj

j as follows:
– Set ID(T̃1×nj

j )← ID(T1×nj

j ), ATTR(T̃1×nj

j )← ATTR(T1×nj

j ) and get (nym1,j , . . .nymnj ,j)← KEY(T1×nj

j )
– For i = 1, . . . , nj :

∗ Get yi,j ← PRP.Invert(kL,nymi,j), yi,j ←$ coPRF.Convert.Blind(bpkP , yi,j), and set T̃1×nj

j [i]←$ RE.Enc(epkP ,T
1×nj

j [i])
– Set KEY(T̃1×nj

j )← (y1,j , . . . ynj ,j) and sort T̃1×nj

j by the primary key
– Send (JoinReq, sid, pqid, (T̃1×n1

1 , . . . , T̃1×nl

l ),P) to C via FSMT

3.b Converter C, upon receiving (JoinReq, sid, jqid, (T̃1×n1
1 , . . . , T̃1×nl

l ),P) from L via FSMT:
– Store (sid, jqid, (T̃1×n1

1 , . . . , T̃1×nl

l ),P), get tidj ← ID(T̃1×nj

j ) and output (JoinReq, sid, jqid, (tid1, . . . , tidl),P)

Join Output. The converter C and data processor P jointly produce the joined output with linkable, ephemeral pseudonyms.

4.a Converter C, on input (Join, sid, jqid):
– Retrieve (sid, jqid, (T̃1×n1

1 , . . . , T̃1×nl

l ),P)) for jqid and get k∗ ← coPRF.KGen(msk, e∗) for a random e∗ ←$ {0, 1}τ

– For j = 1, . . . , l, update T̃1×nj

j as follows:
– Get kj ← coPRF.KGen(msk, attrj) for attrj ← ATTR(T̃1×nj

j ) and (y1,j , . . . ynj ,j)← KEY(T̃1×nj

j )
– For i = 1, . . . , nj :

∗ Get yi,e∗ ←$ coPRF.Convert.Exec(kj , k∗, bpkP , yi,j) and set T̃1×nj

j [i]←$ RE.ReRand(epkP , T̃
1×nj

j [i])
– Set KEY(T̃1×nj

j )← (y1,e∗ , . . . ynj ,e∗) and sort T̃1×nj

j by the primary key
– Send (Join, sid, jqid, (T̃1×n1

1 , . . . , T̃1×nl

l )) to P via FSMT

4.b Data processor P, upon receiving (Join, sid, jqid, (T̃1×n1
1 , . . . , T̃1×nl

l )) from the converter C via FSMT:
– For j = 1, . . . , l, finalize the converted tables T̃1×nj

j as follows:
– Get (y1,e∗ , . . . ynj ,e∗)← KEY(T̃1×nj

j )
– For i = 1, . . . , nj :

∗ Get yi,e∗ ← coPRF.Eval.Unblind(bskP , yi,e∗), set join-idi ← PRF.Eval(kP , yi,e∗) and T̃1×nj

j [i]← RE.Dec(eskP , T̃
1×nj

j [i]
– Set KEY(T̃1×nj

j )← (join-id1, . . . join-idnj
) and sort T̃1×nj

j by the primary key
– Output (Joined, sid, jqid, (T̃1×n1

1 , . . . , T̃1×nl

l ))

Fig. 5. Join request (3.a-b) and joined data output (4.a-b) parts of our ScrambleDB protocol.

ing a standard OPRF to derive pseudonyms, the data
source would learn the mapping between every primary-
identifier and their pseudonyms. This is exactly what we
want to avoid, as it can be used by a colluding source
and lake to de-anonymize data from other sources. In
fact, even if a pseudonymization request is made for a
table where all attributes are equivalent, i.e., they do
not reveal any information about the originating user,
an OPRF would still allow a corrupt S and L to know
which pseudonymized attribute in the lake belongs to
which user. By joining such seemingly “harmless” data
with attributes from honest sources, the adversary can
de-anonymize the joined information.

Clearly, a malicious data source could always do
such an attack by uploading a dataset that contains
identifying attributes, and later join this data with in-
formation from other honest sources towards a corrupt
processor. However, proper audit procedures could rec-
ognize and prevent such attempts, whereas a 2-party
OPRF would introduce and require unique and trace-
able identifiers on a low protocol level. Our 3-party

OPRF avoids that and ensures that pseudonymization
does not introduce any handles or subliminal channels
that can be exploited for re-identification attacks.

Efficiency. When using our coPRFDDH from Section 3.3
and the ElGamal-based scheme from Section 2 for the
re-randomizable encryption RE, we obtain the following
efficiency figures measured by the number of exponen-
tiations as the most expensive operation:

S (P in Join) C L
Pseudonymization
of Tm×n

(m+ 1)n · 2ex mn · 5ex mn · 2ex

Join of
T1×n1

1 , . . .T1×nl
l

∑l

j=1(nj · 2ex)
∑l

j=1(nj · 5ex)
∑l

j=1(nj · 4ex)

On efficient curves such as Curve25519 or
gls254prot, an exponentiation takes around 0.045ms and
0.013ms respectively on an Intel Xeon E3-1220, 4x3GHz
CPU (using benchmarks provided on bench.cr.yp.to).
Thus, the conversion of a table with 1000 rows and 10
attribute columns into pseudonymized, unlinkable data
snippets will approximately take 286ms for S, 650ms for
C and 260ms for L.

bench.cr.yp.to
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Fig. 6. ScrambleDB : Unlinkable pseudonymization and controlled join of selected data.

4.4 Privacy Limitations & Improvements
We stress that the privacy guarantees such as unlinka-
bility and non-transitivity hold for the chameleon pseu-
donyms and the process to compute and convert such
pseudonyms. Our model and scheme do not – and can-
not – exclude that additional linkage or inference is pos-
sible via the associated attribute values. In particular
when data gets joined towards a data processor, the
risk of re-identification increases. Thus, to preserve as
much privacy as possible, our chameleon pseudonyms
should ideally be combined with additional data obfus-
cation. We sketch some ideas for such a combination
and consider a more detailed exposition and analysis an
interesting direction for future work.

Obfuscation by the data lake. When the data lake L
receives a request to join certain tables towards a data
processor, it should first analyze the re-identification
risk that would occur when bringing these attributes to-
gether and then apply appropriate generalization tech-
niques (see Figure 6). For instance, when joining sensi-
tive attribute types, such as date of birth and residence
that in combination could de-anonymize users, the data
lake should generalize the attributes, e.g., reducing the
full date of birth to the year or an age range only, and
using more generalized location information instead of
concrete addresses. The data lake can also omit rare
attribute values in each table, enabling a mild form of
k-anonymity, or add controlled noise.

It is crucial that these measures are applied to the
individual tables before they are send to the converter:
this way at no point during the join process a combined
version of the sensitive, high-precision data is created.

Dedicated sanitizer. An interesting extension of our
work is to introduce a dedicated entity that further ob-
fuscates the joined information (in a privacy-preserving
way) before it reaches the actual data processor. For
instance, to realize k-anonymity, the sanitizer would be
the receiver of the converted information (i.e., it would

take the role of the data processor in our ScrambleDB
protocol), but all attribute values will have an ad-
ditional inner layer of deterministic encryption. This
inner encryption is applied on the tables’ content by
the data lake before running the join protocol and using
a dedicated symmetric key for each data table that will
be securely communicated to the actual data processor.
The sanitizer receives joined but encrypted informa-
tion, where the determinism of the encryption allows
him to recognize and omit all rows with rare attribute
combinations before forwarding it to the processor.

Applying obfuscation techniques only at the moment
when the data is used and not when it is collected has
strong advantages in terms of privacy and utility. When
collecting and storing the data, their full quality and
utility is preserved. When certain subsets of the data
are needed, the usage of the data is often clear and the
obfuscation can be tailored to that particular purpose.
The latter achieves better privacy and utility preserva-
tion than generic obfuscation solutions that must pre-
serve the core utility for any subsequent data usage.

5 Conclusion
In this paper we have shown how to realize cryptograph-
ically strong pseudonymization when data is collected
from a multitude of data sources. Our solution does not
require the data sources to share any secret state and
outsources the pseudonymization to a central, yet fully
oblivious converter. Given the severe privacy limitations
that are inherent when consistent pseudonyms are used,
ScrambleDB produces unlinkable pseudonyms and in-
troduces a dedicated join procedure. With ScrambleDB
we achieve the optimal privacy protection when data
is stored at rest, as all data is broken into unlinkable
data snippets. Only when certain subsets of the data
are needed, the linkage is established in a controlled
and non-transitive manner.
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Our work complements the recent results for non-
transitive joins over encrypted databases [22] and pro-
vides a solution for settings where there is no trusted
data curator that learns all accumulated data in fully
identifying form, which is the typical setting in many
real-world applications.

An interesting direction for future research is how to
integrate more fine-grained access control into the con-
verter, e.g., enabling users to upload specific join policies
which the converter will enforce on their behalf; ideally,
without learning the policies of the individual users.

The core of our scheme is a 3-party oblivious and
convertible PRF, which we believe to be of independent
interest, e.g., in the context of key-rotation where a cen-
tral key holder blindly updates PRF values towards a
new key. In particular, coPRFs could be used in pass-
word hashing services and realize a more controlled ver-
sion of the Pythia PRF service proposed in [15], where
the central service blindly re-key the hashes itself in-
stead of sending out update tokens. This reduces the
risk of token corruptions as re-keying is then handled in
a secure environment.

An interesting open question is how to realize such
coPRFs against active adversaries or in a quantum-safe
way. Such improvements will immediately carry over
to our pseudonym scheme which uses these PRFs in a
generic manner.
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A Ommitted Definitions
This section contains the formal definitions for re-
randomizable encryption and input hiding and one-more
unpredictability for coPRFs.

A.1 Re-Randomizable Encryption
The following notion captures that re-randomized ci-
phertexts are indistinguishable from fresh ones:

Definition A.1 (Re-Randomizable Encryption). A
PKE scheme is called re-randomizable if for all PPT ad-
versaries A it holds that

∣∣Pr[ExpEnc
A,rerand(τ) = 1]−1/2

∣∣ ≤
negl(τ) for the following experiment.

Experiment ExpEnc
A,rerand(τ):

(epk, esk)←$ KGen(τ), b←$ {0, 1}
(C, state)←$ A(epk, esk)
proceed only if Dec(esk, C) 6= ⊥
C0 ←$ Enc(epk,Dec(esk, C)), C1 ←$ ReRand(epk, C)
b′ ←$ A(state, Cb)
return 1 if b = b′

All known homomorphic schemes also allow for re-
randomization, as they realize ReRand(epk, C) via C′ ←$
C�Enc(epk, 1) for 1 denoting the neutral element in G.
However, in general re-randomizability is not implied
by homomorphic encryption which is why we make this
property explicit.

A.2 Input Hiding (coPRF)
We now present our definition for the input-hiding prop-
erty of coPRFs. This property requires the blinded PRF
input x to be as “hidden” as possible, even when the
evaluator and the receiver are corrupt.

Definition A.2 (Input Hiding). A coPRF is called
input-hiding w.r.t. to leakage function leak if for all
PPT adversaries A there exists a PPT simulator SIM
such that

∣∣Pr[ExpcoPRF,leak
A,hiding (τ) = 1] − 1/2| ≤ negl(τ) for

the following experiment.
Experiment ExpcoPRF,leak

A,hiding (τ):
b←$ {0, 1}
(x, bpk, state)←$ A(τ)
x0 ←$ coPRF.Eval.Blind(bpk, x)
x1 ←$ SIM(Blind, bpk, leak(x))
b′ ←$ A(state, xb)
return 1 if b = b′

Note that this notion is only needed for blind evaluation,
not for conversion as therein the blinded input y can be
fully recovered by a corrupt E and R by simply running
an inverse conversion.
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A.3 One-more Unpredictability (coPRF)
Our formal definition for one-more unpredictability of
coPRFs that captures security against active attacks is
as follows.

Definition A.3 (One-More Unpredictability). A
coPRF is called one-more unpredictable if for all PPT
adversaries A in the experiment below it holds that
Pr[ExpcoPRF

A,onemore(τ) = 1] ≤ negl(τ).

Experiment ExpcoPRF
A,onemore(τ):

msk ←$ coPRF.Setup(τ)
((i1, x1, y1), ..., (in, xn, yn))←$ AOEval,OConvert(τ)

where OEval on input (i, bpk, x):
returns y ←$ coPRF.Eval.Exec(ki, bpk, x)

and OConvert on input (i, j, bpk, yi):
returns yj ←$ coPRF.Convert.Exec(ki, kj , bpk, yi)

return 1 if all of the following conditions are satisfied:
1) all tuples (i1, x1, y1), ..., (in, xn, yn) are distinct
2) y` = coPRF.Eval(ki` , x`) for ` = 1, . . . , n
3) n > qEval + qConvert where qX denotes the amount

of queries to the OEval and OConvert oracles

B Related Work for coPRFs
In this section we give a detailed comparison between
our coPRFs and related concepts.

Oblivious PRFs. We already discussed that our notion
of coPRFs can be seen as a generalization of standard 2-
party OPRFs to the 3-party setting. Unfortunately, the
simple construction by Jarecki et al. [17] that was shown
to satisfy their UC-based OPRF definition against ac-
tive adversaries is not suitable when we assume the re-
quester and receiver to be different parties. Their DH-
OPRF scheme is y = H1(x,H0(x)k) where the inner
part can be evaluated in a blind way, and the full PRF
is completed by the requester when hashing H0(x)k to-
gether with the input x. This double hashing nicely al-
lows (in the random oracle model) to extract the input
x without requiring heavy zero-knowledge proofs.

It is easy to see that this idea does not extend to
our setting, as it either requires the receiver to be privy
of x, or the requester to learn the PRF output — both
should not be possible for 3-party-coPRFs.

Key-Homomorphic PRFs. The construction we use is
similar to the key-homomorphic PRF (KH-PRF) by
Boneh et al. [7], and thus might raise the question
whether KH-PRFs can be used to realize coPRFs. This
is not the case though. As the name suggests, KH-
PRFs allow for homomorphic operations on the key,
namely given PRF(k1,m) and PRF(k2,m) one can com-
pute PRF(k1,m)⊗PRF(k2,m) = PRF(k1⊕k2,m). Thus,

it can be used to convert two PRF values under keys k1
and k2 to the PRF value for key k1 ⊕ k2. Such a con-
version requires the knowledge of the preimage x, which
makes KH-PRFs not suitable for key conversions where
this information is not available. Pseudonymization is
such a scenario, as requiring knowledge of the corre-
sponding primary identifiers when converting pseudo-
nyms would render the entire pseudonymization useless.

In general, KH-PRFs cannot be used for re-keying
when the goal of the PRF was to deterministically re-
place a sensitive value with a random surrogate. Our
convertible PRFs target exactly such settings as they
allow to convert PRF values based only on the knowl-
edge of yi.

Deterministic Proxy Re-Encryption. The conversion of
PRF values from one key to another is similar in spirit
to proxy re-encryption (PRE) [4], and in particular to
deterministic, symmetric PRE. Again, there are crucial
differences though: First, our coPRFs are, and should
be, non-reversible. Second, and most importantly, we
require the proxy part to be executed in a fully blind
manner, i.e, with the proxy learning nothing about its
inputs, which is not covered by PRE. In fact, coPRFs can
be seen as orthogonal to PRE: In PRE, the proxy is not
privy of the secret keys but is allowed to see the cipher-
texts it is converting. Whereas in coPRFs the converter
does know all secret keys but must do the conversion
blindly.

C Proof of Theorem 4.1
(Security of ScrambleDB)
In this section we give the proof that our ScrambleDB
construction securely realizes our FScrambleDB function-
ality against passive adversaries.

Proof. To prove that our protocol securely realizes the
ideal functionality FScrambleDB, we have to show that
for any environment E and any adversary A, there exist
a simulator SIM such that E cannot distinguish whether
it’s interacting with A and the protocol in the real world
or with SIM and FScrambleDB.

The simulator SIM simulates all honest parties to-
wards the adversary (simulating the real world protocol)
and interacts with F on behalf of all corrupt parties in
the ideal world. We denote by “P” that the simulator
plays the role of the honest party P towards the adver-
sary in the real-world.

As we consider only passive adversaries, the corrupt
parties are also run by the simulator, but with A being
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privy of the party’s secret keys, providing their inputs
and receiving their outputs and all internal values in-
cluding the random coins. We denote such a simulated,
passively corrupt party as P∗.

We split the description along the two main cases,
depending on whether the converter is honest or (pas-
sively) corrupt.

Simulation Case 1: Converter C is honest
When the converter is honest, we simulate all proto-
col communication with other honest parties by invok-
ing FSMT on dummy messages of zeroes. Recall that
the leakage function size will reveal the number of rows
and columns of a table, which we will use through-
out the proof when mimicking encrypted communica-
tion through encrypted dummy messages. For simplic-
ity, we assume that all attributes in the table can be
represented as single group element in G, i.e., there is
no additional leakage of the (block) length of the at-
tributes.

The interesting parts of the simulation are whenever
the honest converter engages with a corrupt data source
or data lake, as then it has to provide correctly look-
ing messages which it has to “extract” via FScrambleDB.
Thus, the proof focuses exclusively on these cases.

Pseudonymization Request. When the data source
is corrupt, the simulation starts when S∗ receives
the input (NymReq, sid, pqid,Tm×n) from the adver-
sary. It then runs the protocol, computing the blinded
pseudonym request and sends it to the simulated, hon-
est “C”. The simulator also triggers an equivalent pro-
cess in the ideal world by sending (NymReq, sid, pqid,
Tm×n) on behalf of the ideal party S to FScrambleDB. S∗
then hands all randomness needed to create the blinded
pseudonyms and ciphertexts to A.

When, “C” receives the message from “S”, SIM mim-
ics the completed transmission in the ideal world by
sending (NymReq, sid, pqid, ok) to FScrambleDB.

Pseudonymized & Unlinkable Data Output. When
the data lake is corrupt, “C” must produce cor-
rect looking outputs towards L∗ which it creates with
the help of FScrambleDB. Thus, when SIM receives
(NymOut, sid, pqid) from FScrambleDB it immediately
returns (NymOut, sid, pqid, ok), upon which it will re-
ceive (NymOut, sid, pqid,S, (T1×n

1 , . . . ,T1×n
m )) from the

functionality in the role of the corrupt, ideal-world L.
The simulated converter “C” then uses this ideal-world
output and transforms it into a real-world output to-
wards the corrupt data lake. To this end, “C” prepares
correct looking blinded pseudonyms and encrypted data

values using the simulator SIMcoPRF of the coPRF scheme
and encrypting each data item from scratch.

Finally, “C” sends these blinded and encrypted ta-
bles as (NymOut, sid, qid,S,T1×n

1 , . . . ,T1×n
m ) to L∗.

When L∗ receives “C”’s message, it correctly un-
blinds and decrypts the response from “C” and hands
the output to A.

Overall, this simulation is indistinguishable to A
by the pseudorandomness and collusion-resistance of
coPRF, the re-randomizability of RE and the authen-
ticity of messages provided by FSMT.

Join Request. When the data lake is corrupt, L∗
receives the input (JoinReq, sid, jqid, (tid1, . . . , tidl),P)
from A and correctly follows the protocol, sending
blinded and encrypted versions of the requested ta-
bles to “C” (as the corrupt data lake knows all the ta-
bles for (tid1, . . . , tidl)). The simulator hands all ran-
domness used by coPRF.Convert.Blind and RE.Enc to A
and mimics the request in the ideal world by sending
(JoinReq, sid, jqid, (tid1, . . . , tidl),P) to FScrambleDB.

When “C” receives the join request message sent
by L∗, it mimics the completion in the ideal world by
sending (JoinReq, sid, jqid, ok) to FScrambleDB.

Join Output. When the data processor is corrupt,
“C” prepares a correctly looking output using the infor-
mation the simulator receives as corrupt data processor
in the ideal world. That is, when the simulator receives
(JoinReq, sid, jqid, `,P) from FScrambleDB it immedi-
ately responds with (JoinReq, sid, jqid, ok) upon which
it will receive (Joined, sid, jqid, (T̃1×n1

1 , . . . , T̃1×nl

l ))
from the functionality in the role of the ideal-world
P. The tables (T̃1×n1

1 , . . . , T̃1×nl

l ) are indexed with
ephemeral, random, but consistent join-ids and contain
the real attribute values. The simulated “C” now uses
the join-ids provided by the functionality as coPRF out-
put towards the corrupt real-world P∗. “C” also encrypts
the received table fields using RE.Enc. Finally, “C” sends
(Join, sid, jqid, (T̃1×n1

1 , . . . , T̃1×nl

l )) to P∗ via FSMT and
ends. These simulated tables (T̃1×n1

1 , . . . , T̃1×nl

l ) are
indistinguishable from correctly derived ones in the
ScrambleDB protocol by the pseudorandomness and
collusion-resistance of coPRF and the re-randomizability
of RE.

When P∗ receives “C”’s, where FSMT guarantees
that A cannot alter the messages being sent by the
simulated converter, it follows the ScrambleDB protocol
and correctly unblinds and decrypts the response from
“C” (which in this case contains the tables received via
FScrambleDB). P∗ also outputs all received and interme-
diate values to A.
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Simulation Case 2: Converter C is corrupt
When the converter is corrupt, the adversary is privy
of the coPRF key and can compute the PRF-core of the
pseudonyms himself. Thus, SIM must ensure that even
with the knowledge of this secret key, the adversary can-
not distinguish the simulated from the real protocol. We
again describe the simulator along the protocol steps
and branch depending on the corruption status of the
involved parties. As the converter is corrupt, the sim-
ulation now needs to “look ahead”, meaning that the
simulation of both the pseudonymization and join re-
quest will be handled differently for honest and corrupt
receivers. As before, the corrupt parties are run by the
simulator, but with A being privy of the party’s secret
keys, providing their inputs and receiving all internal
values including the random coins.

Pseudonymization Request. When the data source
is honest and the data lake is honest too, SIM
starts when it receives (NymReq, sid, pqid, `,S) with
` = size(Tm×n) from FScrambleDB. The simulator im-
mediately returns (NymReq, sid, pqid, ok) upon which
it will receive (NymReq, sid, pqid,S,ATTR(Tm×n), n)
in the role of the corrupt, ideal-world C. “S” then
mimics a real request by sending dummy values for
all blinded coPRF requests and the encrypted data
items. More precisely, “S” assembles the message as
described in ScrambleDB but uses the following xi
and Tm×n[i, j] values instead of the real ones1: For
i = 1, . . . , n: xi ←$ coPRF.Eval.Blind(bpkL, 0); For j =
1, . . . ,m: Tm×n[i, j]←$ RE.Enc(epkL, 0). Finally, “S” sets
KEY(Tm×n) ← (x1, . . . xn), sorts Tm×n by the primary
key and sends (NymReq, sid, pqid,Tm×n) to C∗.

This simulation is indistinguishable to the adver-
sary (having corrupted C) by the obliviousness of coPRF,
and the CPA-security of RE.

When the data source is honest and the data
lake is corrupt, then SIM must prepare a request
message that contains the actual data values and cor-
rectly formed pseudonym requests as expected by the
corrupt data lake. In this corruption setting, the sim-
ulator gains more information from the functionality
as it receives (NymReq, sid, pqid, `,S) with ` being the
table Tm×n sent by the honest (ideal-world) source S
but where the unique identifiers uidi, . . . , uidn are re-
placed by leak(uid1), . . . , leak(uidn) and leak being the

1 As stated before, for simplicity we assume that all attribute
values can be encoded as one group element, and thus there is
no additional leakage of the length of the attributes.

leakage inherited from the coPRF. The simulated “S”
uses these values and the simulator SIMcoPRF(Blind, ·, ·)
from the coPRF scheme to simulate the blinded PRF
requests x1, . . . , xn. The encrypted data values are done
as in the real protocol, leveraging the full knowledge of
Tm×n in this setting.

When the data source is corrupt, the simulation
is the same as in the case of an honest converter de-
scribed above (i.e., here the simulation does not depend
on the corruption status of L).

In all cases, when C∗ receives the message sent by
“S” (or S∗), it outputs the message to A and mimics the
completed transmission in the ideal world by sending
(NymReq, sid, pqid, ok) to FScrambleDB.

Pseudonymized & Unlinkable Data Output. When C∗
receives (NymOut, sid, pqid) from the adversary, the
simulated corrupt converter performs the protocol steps
of ScrambleDB. If the data lake is honest, C∗ blindly
converts and re-randomizes the dummy (but correctly
formed) messages assembled by “S” (or S∗). If the data
lake is corrupt, C∗ has received a proper protocol mes-
sage from “S” (or S∗) and thus behaves exactly as in
the real protocol.

When the data lake receives C∗’s message, it contin-
ues as in the first case, where C is honest. However, to
argue indistinguishability of the simulation when L is
honest, we now rely on the pseudorandomness of the
PRP. This property guarantees that the pseudonyms
output by an honest “L” towards the environment are
still indistinguishable from random, despite the adver-
sary knowing the coPRF key (and possibly controlling S
too).

Join Request. When the data lake is honest and
the data processor is honest too, the simula-
tion starts when SIM receives the message (JoinReq,
sid, jqid, `,P) with ` = (size(T1×n1

1 ), . . . , size(T1×nl

l ))
from FScrambleDB. “L” then creates l simulated tables
of the correct size, i.e., with dummy blinded pseudo-
nyms yi,j ← coPRF.Convert.Blind(bpkP , 0) as keys and
filled with dummy ciphertexts, being encryptions of 0
under epkP . Recall that size(T1×nj

j ) reveals the number
of rows nj of each table which “L” uses to create the
correct amount of dummy values. This is indistinguish-
able to A by the conversion-obliviousness of coPRF and
the CPA security of RE.

If the data lake is honest and the data pro-
cessor is corrupt, then SIM receives (JoinReq,
sid, jqid, `,P) from the functionality where ` =
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(T1×n1
1 , . . . ,T1×nl

l ) are the tables to be joined, each
with primary keys leak(uid1), . . . , leak(uidnj )) and leak
being the leakage inherited from the coPRF. The sim-
ulator uses this information to create a join request
with encrypted and blinded tables (T̃1×n1

1 , . . . , T̃1×nl

l )
that are indistinguishable from ones derived via
the ScrambleDB protocol. First, “L” uses the sim-
ulator SIMcoPRF from the coPRF scheme to obtain
the simulated blinded PRF requests x1, . . . , xnj with
xi ←$ SIMcoPRF(Blind, bpkP , leak(uidi)). Using the con-
verter’s secret coPRF key, “L” then transforms the
simulated x values into the expected y values which
are used as primary keys for (T̃1×n1

1 , . . . , T̃1×nl

l ). It also
sets all data entries in (T̃1×n1

1 , . . . , T̃1×nl

l ) to be the
freshly encrypted values from (T1×n1

1 , . . . ,T1×nl

l ) us-
ing P∗’s public key. Finally, “L” sends (JoinReq, sid,
jqid, (T̃1×n1

1 , . . . , T̃1×nl

l ),P) to C∗. Overall, this simu-
lation is indistinguishable to A by the input-hiding
property of coPRF and the re-randomizability of RE.

If the data lake is corrupt, L∗ receives the input
(JoinReq, sid, jqid, (tid1, . . . , tidl),P) from A and pro-
ceeds according to the ScrambleDB protocol, handing
all randomness to A.

Join Output. When C∗ receives the join request mes-
sage sent by “L” (or L∗) via A, it proceeds according
to the FScrambleDB protocol and hands all messages and
randomness to the adversary. Again, FSMT guarantees
that A cannot alter the messages being sent by the
simulated converter. Note that we have already ensured
in the join request simulation that the request messages
are well-formed. In particular, if L or P are corrupt,
then the message sent to C contains properly blinded
PRF conversion requests and encrypted data values.
Only if L and P are both honest, the input contains
dummy values of the correct format that are indistin-
guishable from real ones.

When the data processor is honest, and “P”
receives the simulated message from C∗, then SIM
finalizes the request in the ideal world by sending
(Join, sid, jqid, ok) to FScrambleDB and ends. The en-
vironment, “being” the honest P in the ideal world
will receive tables indexed with random join-id. That
is, here we rely on the pseudorandomness of the PRF
applied by “P” in the real-world protocol to ensure that
A cannot determine “P”’s output despite knowing the
coPRF key.

When the data processor is corrupt, P∗ receives
C∗’s message via A and follows the ScrambleDB proto-
col: all the input values have the proper format due to

the simulation described for L above. P∗ also hands all
received and intermediate values to A. �
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