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Abstract: Program authorship attribution has impli-
cations for the privacy of programmers who wish to
contribute code anonymously. While previous work has
shown that individually authored complete files can be
attributed, these efforts have focused on such ideal data
sets as contest submissions and student assignments. We
explore the problem of authorship attribution “in the
wild,” examining source code obtained from open-source
version control systems, and investigate how contribu-
tions can be attributed to their authors, either on an in-
dividual or a per-account basis. In this work, we present
a study of attribution of code collected from collabora-
tive environments and identify factors which make attri-
bution of code fragments more or less successful. For in-
dividual contributions, we show that previous methods
(adapted to be applied to short code fragments) yield an
accuracy of approximately 50% or 60%, depending on
whether we average by sample or by author, at identify-
ing the correct author out of a set of 104 programmers.
By ensembling the classification probabilities of a suffi-
ciently large set of samples belonging to the same author
we achieve much higher accuracy for assigning the set of
samples to the correct author from a known suspect set.
Additionally, we propose the use of calibration curves to
identify which samples are by unknown and previously
unencountered authors.
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1 Introduction
The attribution of source code, be it in the form of small
fragments such as version control system commits to an
open source project or sequential differences in source
code samples, entire single-author project files, or mul-
tiple small fragments all linked to a common account,
has numerous potential applications, from employer-
mandated non-compete clauses to the (potential) at-
tribution of the authors of malicious code. While the
problem of attributing source code samples known to be
written by a single author has been examined in some
depth using the Google Code Jam dataset [2, 9], ex-
tending these techniques to real-world problems – such
as deanonymizing the account of a programmer who has
contributed to an open source project – is much harder,
and has received less attention. Indeed, prior to this
work it was an open question as to whether such attri-
bution could be done in a realistic setting1.

The ability to attribute source code in collaborative
settings has serious privacy implications. Many open-
source software projects are collaborative, so being able
to attribute collaborative code increases the chances
of deanonymizing pseudonymous open-source contrib-
utors. For some, such as activists working on censorship
circumvention, this may pose a very real danger. On
the other side, a lot of malicious software is either writ-
ten collaboratively or evolved over time, and much code
in the corporate world, where copyright or plagiarism
concerns are more likely to arise, is also collaborative.

Collaboratively written source code (or any source
code which has passed through the hands of multiple
programmers) introduces several novel complications to
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1 “I will believe that code stylometry works when it can
be shown to work on big github commit histories instead of
GCJ dataset” by Halvar Flake on Twitter: https://twitter.com/
halvarflake/status/682263306095181824
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the problem of attribution that are not present in pre-
vious work focused on single files. Files may have a pri-
mary author who has contributed the majority of the
code, with other authors making relatively inconsequen-
tial additions. A block of code may be written by one
author and later modified by another, perhaps merging
their respective styles. Individual author contributions
may be scattered across multiple files and consist of
fragments as small as a single line of source code. Using
real world source code collected from the online collab-
orative platform GitHub [1], we show that these prob-
lems can be overcome, or at least mitigated, particularly
when multiple modifications can be linked to a single
unknown identity (for example, a single pseudonymous
version control system account).

More concretely, using the example of a company
which wishes to identify an employee who has con-
tributed to an open source project – perhaps in vio-
lation of a non-compete or intellectual property clause
– we assume a known set of suspect programmers (such
as the employees of the company) and some form of
segmentation and grouping by authorship of the code
that the company wishes to attribute (such as accounts
on a version control system hosting the code in ques-
tion). Within this setting, we present an extension to
the technique used by Caliskan-Islam et al. which per-
forms stylistic authorship attribution of a collection of
partial source code samples written by the same un-
known programmer with high accuracy for a set of 104
suspect programmers [12]. We note that the samples
we work with can be as small as a single line of code,
and so can contain very little information with which
to determine authorship. By contrast, the unmodified
technique used by Caliskan-Islam et al. technique for
source code attribution achieves an individual accuracy
on individual samples of approximately 50% or 60% un-
der standard circumstances, depending on whether we
count accuracy by sample or by author.

To address the open world problem in which the
true programmer could be someone outside of the sus-
pect set (in our working example, perhaps no employee
has actually contributed to the project in question) we
examine a technique using the classifier’s output prob-
ability, or confidence. We construct calibration curves
to indicate the accuracy for collections which were at-
tributed with given confidence, and analysts can use
these curves to set a threshold below which to more
carefully examine authorship due to higher probability
of being outside of the suspect set [22]. We then pro-
ceed to show how this calibration curve can be used at
the level of individual samples to mitigate the cost of

mis-attribution in the absence of grouping of samples.
In this scenario, the threshold will need to be set higher
to catch most mis-attributions, and will cause a larger
percentage of correctly attributed samples to require re-
view.

We demonstrate attribution under various scenar-
ios. The easiest scenario, which we refer to as multiple
sample attribution, features the closed world assump-
tion, under which the author is among our suspects, and
the version control assumption, under which we assume
that the multi-authored code file is segmented and those
segments are grouped by (unknown) author. We also
remove the closed world assumption and address the
open world version of multiple sample attribution. We
also show results with a relaxation of the version control
assumption which only assumes segmentation, and not
grouping, for comparison purposes and to demonstrate
the usefulness of the calibration curve. We refer to this
variant of the problem as single sample attribution, and
observe it both under the closed world assumption and
in the open world.

1.1 Contributions

We present results of the first evaluation of the Caliskan-
Islam et al. technique under the conditions of collab-
orative code, which to our knowledge is also the first
evaluation of any stylometric technique on collaborative
code [12]. Specifically, we use git blame to segment col-
laborative code files into pieces which we can assign to
a singular programmer, and show that, unmodified ex-
cept for excluding feature reduction, the Caliskan-Islam
et al. approach performs much worse on such segments
(achieving accuracy of 50% or 60% as opposed to the
over 98% accuracy expected for whole files based on
their initial work). We also perform attributability anal-
ysis, to determine what factors may make samples easier
or harder to attribute.

We also present two modifications to the Caliskan-
Islam et al. approach which better handle such difficult
conditions. First, we show that a form of ensembling in
which we ensemble outputs of multiple linked samples
for the same classifier, rather than by ensembling the
outputs of different classifiers on the same sample, can
greatly improve accuracy in the event that we are able to
link several samples to the same unknown programmer.
Second, we show that we can use calibration curves to
determine the trustworthiness of our attributions for a
given sample or set of samples.
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2 Related Work
We note two broad, primary categories of related work.
The most similar is past work in source code author-
ship attribution, largely focusing on single files. We also
examine work in the area of plain-text authorship at-
tribution. While the two domains have evolved different
feature sets and classification techniques, recent work in
text authorship attribution is related to our work.

2.1 Source Code Authorship Attribution

An important overall note about related work is that we
are the first to attempt attribution of short, incomplete,
and typically uncompilable code samples. To our knowl-
edge, all past attempts at source code authorship attri-
bution have worked with complete code samples which
solve some problem, while we work with small build-
ing blocks of code which in almost all cases cannot be
compiled when separated from their surrounding code.

The primary piece of prior research related to our
work is the work of Caliskan-Islam et al. using ran-
dom forests to perform authorship attribution of Google
Code Jam submissions, with features extracted from the
abstract syntax tree (AST) [12]. We begin with their
feature set and classification method as the basis for
our work, but are forced to significantly modify their
analysis to be able to handle small pieces of code that
have been attributed to individual authors by use of
git blame, rather than complete source code files. As a
result of focusing on small segments of code, our fea-
ture vectors are much more sparse and we are unable to
prune the feature set through use of information gain as
they did. Their work also looks at the open world prob-
lem, and uses classification confidence to set a threshold
below which to reject classifications, which we further
develop to both address the open world problem and the
single sample attribution problem. They attribute data
from Google Code Jam, which as a programming com-
petition creates laboratory conditions for the data, while
we attribute data from GitHub, giving us real world con-
ditions, including many of the issues presented in the
introduction, and “ground truth” labeling problems in-
troduced by the use of git blame. We demonstrate that
their techniques can be adapted to handle more diffi-
cult attribution tasks which are of interest in real world
situations and have not been previously examined.

Abuhamad et al. proposed a system called DL-CAIS
which highly effectively attributes code at large scale

and cross-language [5]. However, while they do test on
code from GitHub, their work does not address the
problem of collaborative code, nor the problem of small
code samples, and their deep learning approach to learn-
ing feature representations should be less effective for
smaller samples.

There are many other proposed methods and fea-
ture sets for source code de-anonymization, but most
of those methods had worse accuracy and smaller sus-
pect sets. Therefore, while combining these techniques
may allow us to boost accuracy, for the purposes of this
work we do not consider them further. Frantzeskou et al.
used byte level n-grams to achieve high accuracy with
small suspect sets [14–16]. The use of ASTs for author-
ship attribution was pioneered by Pellin and used on
pairs of Java programs in order to ensure that the stud-
ied programs had the same functionality [24]. Ding and
Samadzadeh studied a set of 46 programmers and Java
using statistical methods [13]. MacDonnel et al. ana-
lyzed C++ code from a set of 7 professional program-
mers using neural networks, multiple discriminant anal-
ysis, and case-based reasoning [20]. Burrows et al. pro-
posed techniques that achieved high accuracy for small
suspect sets, but had poor scalability [9–11]

Spafford andWeeber were among the first to suggest
performing authorship attribution on source code [26].
However, while they proposed some features to do so,
they did not propose an automated method nor a case
study. Hayes and Offutt performed a manual statistical
analysis of 5 professional programmers and 15 graduate
students, and found that programmers do have distin-
guishable styles which they use consistently [18].

In no case that we are aware of did any of the pre-
vious authors investigate the various factors that make
attribution more or less difficult via machine learning
techniques.

For ground truth we use git blame to assign author-
ship to individual lines of code. Git blame is a heuristic
which attributes code to the last author to modify that
code. Meng et al. proposed a tool called git-author which
assigns weighted values to contributions in order to bet-
ter represent the evolution of a line of code [21]. This
tool creates a repository graph with commits as nodes
and development dependencies as edges, and then de-
fines structural authorship and weighted authorship for
each line of code, where structural authorship is a sub-
graph of the repository graph with respect to that line of
code and weighted authorship is a vector of programmer
contributions derived from structural authorship.
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2.2 Text Authorship Attribution

The primary piece of related research in the domain of
text authorship attribution is the work by Overdorf and
Greenstadt in cross-domain authorship attribution [23].
This work links authorship between blogs, tweets, and
Reddit comments. This work is related to ours in two
primary ways. First, and most obviously, they work with
short text in the forms of tweets and Reddit comments.
For these domains, they use a technique of merging text
before extracting features. More significantly, they also
use a method of averaging the probabilities for multiple
samples to classify collections of samples. We demon-
strate that this technique is similarly applicable in the
source code domain, and that we get excellent results
even with averaging a small number of samples. How-
ever, they make no effort to classify individual tweets,
while we successfully classify samples of code as short
as a few lines.

To address the open world problem, Stolerman et al.
introduce a method called Classify-Verify which aug-
ments classification with verification [27]. Authorship
verification is the problem of determining if a document
D was written by an author A. Among the verification
methods they consider is classifier confidence. We apply
the same intuition to source code to determine which
classifications to trust and which to reject.

3 Methodology
Our method is summarized in Figure 1. We begin by col-
lecting C++ repositories on GitHub, and then breaking
collaborative files from those repositories into smaller
pieces using git blame, as detailed in Section 3.3. For
each individual piece of code, we extract the AST and
use that to extract a feature vector, as described in Sec-
tion 3.4. We then proceed to perform attribution of each
sample using a random forest as described in Section
3.5. Then we average the classifier probability of linked
samples as described in Section 3.6 and construct a cal-
ibration curve as described in Section 3.7. In Appendix
A we provide an example walkthrough of the method
for a selection of code samples, for those interested.

3.1 Problem Statement

In this paper we take on the role of an analyst attempt-
ing to attribute source code and break anonymity. The
analyst has the job of preparing a report indicating

the conclusions reached through the attribution process.
This may indicate an author, likelihood of an author, a
subset of the suspect set to investigate further, or like-
lihood of the true author not being in the suspect set,
as the data requires.

We assume that the collaboratively written code we
are examining has been pre-segmented by author. This
segmentation may be from version control commits, git
blame, or some other method of decomposition; we only
assume that we have small samples which can be reason-
ably attributed to a single individual. We also assume
that we have training data which consists of similarly
segmented code samples by our suspect programmers,
rather than full files. Note that this later assumption
does not particularly limit us in practical application
because we can artificially segment a single authored
file if necessary.

In our primary case, we assume that we have multi-
ple linked samples by the same (unknown) author, which
we call the version control assumption. For example, we
may have multiple code samples corresponding to an ac-
count on a version control system. We refer to this case
as multiple sample attribution or as account attribution.

Formally, we have a set of source code samples D

written by an unknown author A and a set of n suspects
S = {A1 . . . An}, and for each suspect Ai we have a set
of samples Di. Our goal is to correctly attribute D to an
Ai. Where not otherwise stated, we assume the closed
world, in which one of the n suspects is the true author.

While we believe that most forms of segmentation
naturally lead to linking, we acknowledge that by pre-
senting a technique based on linking we may create the
assumption that to defend against it one only needs
to contribute in a way which prevents linking, such
as through guest “accounts” or throwaway accounts.
Therefore, we not only evaluate the baseline where the
cardinality of our code sample sets is 1, but also present
ways analysts can interpret the results to compensate
for the lower accuracy. We refer to this scenario as single
sample attribution. Thus, while we show that the version
control assumption makes attribution easier and more
accurate, it is not a prerequisite for attribution.

3.2 Problem Model

In this paper we assume an analyst with access to a cor-
pus of source code belonging to each of their suspects
or persons of interest. This corpus could come from an
employer’s system, educational records, a government
database, or publicly claimed code online. Given the
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Fig. 1. Our method for authorship attribution of partial source code samples has multiple preprocessing and postprocessing stages.

large amount of publicly claimed code available from
programmers belonging to various potential communi-
ties of interest, this assumption is not unrealistic. We as-
sume anonymous programmers who have contributed to
a collaborative code file, but have not taken measures to
conceal their coding style. We note that in a real-world
attribution task, stylometric techniques would not be
used in a vacuum, but in conjunction with other in-
vestigative tools and with the final attribution at the
judgment of a human with access to more information
than just a final prediction. For the sake of this pa-
per we assume the role of an analyst limited to stylo-
metric techniques, with outside knowledge limited to a
pre-determined suspect set and possible linkage between
samples belonging to the same version control account.
The role of the analyst is to use the available informa-
tion to identify an author along with a measure of how
likely the identification is to be correct. In order to do
this, the analyst will not only need to run the machine
learning algorithm, but also analyze the output, and will
construct curves to assist in interpreting the results.

3.3 Data Preparation

We collected data from public C++ repositories on
GitHub. We collected repositories which list C++ as
the primary language, starting from 14 seed contribu-
tors and spidering through their collaborators. Doing
this, we collected data from 1649 repositories and 1178
programmers, although in future processing steps we
found that many of these programmers and reposito-
ries had insufficient data. Additionally, some of these
programmers were renamed or group accounts, while
some repositories included text other than C++ code
which had to be discounted. After eliminating those,
completing data processing, and setting the threshold
to at least 150 samples per author with at least 1 line

of code (excluding whitespace), we were left with 104
programmers. We note that this threshold was chosen
with an experimental mindset to ensure that we had
sufficient data for both training and testing sets.

We note that unlike in the work of Caliskan-Islam
et al., we do not strip comments [12]. While comments
can be problematic due to the ease with which they can
be used for obfuscation or imitation and the possibility
of over-specificity, because we are working in an overall
low information environment we judge that using all
information available within the text of the code sample
is necessary to compensate.

We used git blame on each line of code, and for each
set of consecutive lines blamed to the same programmer
we encapsulated those lines in a dummy main function
and extracted features from the AST as in the work of
Caliskan-Islam et al. [12]. However, unlike in their work
we cannot use information gain to prune the feature
set due to having extremely sparse feature vectors and
therefore few features with individual information gain.

We then removed all samples which occurred mul-
tiple times. Our overall dataset included 104 program-
mers, each with at least 150 samples. For each program-
mer, we randomly selected files until we had 100 samples
as training data, discarding left over samples from the
same files. The remaining samples, which could be fewer
than 50 for authors with few files, are our “unknown”
samples. We repeat this split nine times and average our
results across these splits. Figure 2 shows the number of
samples per author in the “unknown” set, ranging from
0 for some authors to over 200 for others. In total, we
had "unknown" samples from 101 of our 104 authors.

While we acknowledge that the ground truth for
git blame is weaker than for commits, we chose to use
git blame for four primary reasons. First, commits can
include deletions and syntactically invalid constructs,
both of which introduce complications in data extrac-
tion. Second, gathering data from git blame is faster
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Fig. 2. The number of test samples per author varies from 0 to
nearly 220.

when attempting to determine authorship of current
parts of chosen files, while collecting commits would be
faster for attempting to determine the authorship of an
individual account. Third, we believe the results of git
blame are closer to the results we would achieve if we
were to use some technique to segment code which is
not version controlled on a publicly accessible reposi-
tory (for example, identifying differences in successive
versions of source code). Fourth, we believe that in gen-
eral it is more likely to want to attribute the current
version of code, rather than some past version.

3.4 Features

In this work we use a feature set derived from the work
of Caliskan-Islam et al. [12]. Our primary features come
from the AST and include nodes and node bigrams [6].
The AST, is a tree representation of source code with
nodes representing syntactic constructs in the code, and
we used the fuzzy parser joern to extract them [29].
This parsing allows generating the AST without a com-
plete build and without the complete build environment.
Thus, it allows us to extract the AST even for our partial
code samples. We also include word unigrams, API sym-
bols, and keywords. Our feature set includes both raw
and TFIDF versions of many of our features. TFIDF, or
term frequency-inverse document frequency, is a mea-
sure combining the raw frequency with a measure of
how many authors use the feature. Due to the spar-
sity of the feature set, we do not use information gain
to prune the set, and instead keep the entire feature
set, minus any features which are constant across all
samples [25]. Information gain is an entropy based mea-

sure of the usefulness of a feature for splitting data into
classes by itself, and because of the sparsity of our fea-
ture vectors is zero for most features. We have a total of
451,369 features, of which 82,272 are trivially removed
as zero-valued across all samples leaving 369,097 fea-
tures, of which an average of 365,690 are zero-valued
for any given sample.

3.5 Single Sample Attribution

For this case, we set aside the version control assump-
tion and assume no external information about author-
ship. As a use case, we can imagine the case where the
sample is git blamed to an anonymous user rather than
to an account, or when a cautious individual is creating
a new account for every commit. Therefore, we can only
classify at the level of the individual sample. For this, we
perform cross-validation with random forests, as in the
work of Caliskan-Islam et al. [12]. Random forests are
ensemble multi-class classifiers which combine multiple
decision trees which vote on which class to assign to
an instance, aimed at reducing variance while perfom-
ing regression or classification [7, 17]. Trees for random
forests are grown to be independent and identically dis-
tributed, and the bias of each tree is equal to the bias
of the forest. By randomly selecting the inputs of each
tree, the intent is to reduce correlation between trees
while keeping the variance of the forest small.

Most of our experiments use 500 random trees (200
more than used by Caliskan-Islam et al.) and log2(M)+1
features, where M is the total number of features in the
dataset. Our parameterization was based on the param-
eters used by Caliskan-Islam et al., expanding the num-
ber of trees to help compensate for the more difficult
problem [12]. However, for our largest open world exper-
iments we used only 50 random trees with 50 features
each in order to show results under the circumstances in
which resources (either time or computational) are lim-
ited. This serves as a baseline for our work. Ideally, we
would then continue as in Section 3.6 for multiple sam-
ple attribution. However, in the event that we cannot,
we apply a technique to help analysts better interpret
the results described in Section 3.7.

3.6 Multiple Sample Attribution

If the version control assumption holds, such as if we
observe that a group of samples belongs to a single ac-
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count, we can leverage all of the samples in the group
of samples to identify their collective author.

Our method requires performing the same classifica-
tion as for single samples but then aggregating results
for the samples which we have identified as belonging
to an account. We aggregate the probability distribu-
tion output of the classifier rather than the predicted
classes to allow more confident attributions to outweigh
less confident attributions, and then take as the pre-
diction for the aggregated samples the class with the
highest averaged probability.

We also attempted a method involving merging in-
dividual samples into larger ones, but while this per-
formed better than attributing single samples it was
outperformed by the probability averaging technique.

3.7 Calibration Curves

Because we suspect that some samples will remain
which are difficult if not impossible to classify, we want
to have a reliable way to separate reliable from unre-
liable attributions. Towards this, we build calibration
curves, which display attribution accuracy on the y-axis
and classification confidence on the x-axis. Classifica-
tion confidence is the classifier’s output probability for
the selected class. For random forests, this refers to the
percentage of trees which vote for the given class.

For our analysis, we bin the samples based on the
highest classifier probability output in increments of
10%, and report the accuracy for samples in each in-
terval. If more granularity is needed for a particular
application, we advise either decreasing the increment
size or foregoing bins altogether. While we acknowledge
that the specifics of such a curve may vary for differ-
ent instances of the problem and we recommend using
cross-validation with known samples to prepare such a
curve in order to identify a threshold for accepting a
prediction based on the stakes, we expect that the over-
all shape of the calibration curve will remain similar for
different datasets, and so ours may be used as a guide.
Through consultation with the calibration curve, ana-
lysts may determine the likelihood of accurate attribu-
tion and what level of resources needs to be dedicated
to further investigation.

3.8 The Open World

For the open world problem, in which the true author
may not be in the candidate set, we use calibration

curves as described in Section 3.5. We perform attribu-
tion as normal according to either single sample attribu-
tion or account attribution, and use a confidence thresh-
old to separate samples by unknown (out of world) au-
thors from samples correctly attributed to a suspect.
This thresholding does have the drawback of grouping
incorrectly attributed samples belonging to a different
author in the candidate set with samples belonging to
samples outside of the suspect set, but as both of these
categories require further investigation we do not con-
sider this drawback to be especially problematic.

For our initial experiment, we used 15 of the more
prolific programmers with 250 samples available for
training data as our suspect set, with a small set of
samples from authors outside that set.

For our main experiments, we divided our 104 pro-
grammer dataset into four disjoint subsets of 26 pro-
grammers. For each of four rounds, we took one of those
sets as our suspect set S, and the remaining 78 program-
mers as the set of unknown authors U . We performed
the same analysis on the samples belonging to the au-
thors in S as before, adding all of the documents from
U to each evaluation set. We then binned the samples
as in our calibration curves, with each bin maintaining
counts of correct attributions, incorrect attributions of
samples belonging to authors in S, and samples belong-
ing to authors in U , which we refer to as being “out
of world”. We chose this set-up to simulate the case in
which an analyst only cares if one of a small number
of people was responsible for a given account or code
sample. We note that devising our experiments in this
way allowed us to heavily bias our evaluation set in fa-
vor of samples by programmers outside of our suspect
set, analyzing 370,529 out of world samples and 29,904
“in world” samples between all rounds, for a total of
400,443 samples of which 92.5% are out of world.

We then evaluated thresholds at the lower bound
of each bin in terms of precision and recall, but rather
than calculate the precision and recall of the classifier
itself we computed precision and recall with respect to
the three classification counts maintained by the bins,
using the threshold as the selector. Precision is a mea-
sure of the percentage of selected instances which belong
to the desired category while recall is a measure of the
percentage of instances belonging to the desired cate-
gory which were selected. We calculated precision and
recall according to the following three criteria: correct
classifications above the threshold, out of world samples
below the threshold, and samples which are either out
of world or classified incorrectly below the threshold.
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For real world applications, we suggest using a sim-
ilar approach, evaluating on a separate labeled dataset
containing some samples from the suspects as well as
samples from numerous other authors, prior to intro-
ducing the actual samples of interest. We then suggest
setting a threshold based on these values and the needs
of the application, and then determine where the sam-
ples to be attributed fall in order to determine whether
to conclude the attribution is correct or incorrect, with
the goal that out of world samples will be determined
as incorrectly attributed. For the purposes of this pa-
per, however, we calculate the F1 score for each of the
three criteria and use this to predict what may be use-
ful thresholds, and to evaluate the power of the tech-
nique. F1 scores are calculated according to the formula
2∗(precision∗recall)/(precision+recall), and are a har-
monic average of the two values.

4 Results
From the 104 programmer dataset, our baseline single
sample attribution accuracy was 48.8%, or 61.4% when
averaging over authors, compared to 5.5% accuracy if
we attribute every sample to the author with the most
samples. Averaging over authors is also known as bal-
anced accuracy and compensates for unbalanced testing
classes by computing accuracy for each author and then
averaging those accuracies [8]. We note that while this
is much lower than the accuracy reported by Caliskan-
Islam et al. [12], the data itself is very different. That
work attributes whole source code files written privately
with an average of 70 lines of code per file, while our
work attributes pieces of files written publicly and col-
laboratively with an average of 4.9 lines of code per file.
Intuitively, it is reasonable to believe that our dataset
contains samples which are much harder to classify. The
difference in accuracy based on how we average means
that overall we have more samples belonging to more
difficult to attribute authors. We will use both measures
going forward, to illustrate both a lower and higher es-
timate of accuracy. While not part of our main results,
we show basic results of relaxed attribution in this en-
vironment for those interested in Appendix B.

4.1 Multiple Sample Attribution

Before starting experiments with the full dataset, we
performed preliminary experiments with a small sub-

set to determine how much data would be necessary for
our aggregation method. Figure 3 shows the results of
varying the number of training samples and aggregated
result classification samples on a small subset of our
data with only 15 programmers using standard cross-
validation, which we note can create the situation in
which we train and test on code segments originating in
the same file, inflating our results and permitting over-
fitting. However, this can simulate the case in which
we know the identity of the author of most lines in a
file, but are attempting to attribute a small number of
lines of code with unknown authorship. The inflation of
accuracy due to cross-validation may change the spe-
cific values, in particular requiring more training data
to better express a general style, but our main exper-
iments show that the overall relationship between the
number of samples of both training and testing data
and accuracy remains.

Fig. 3. Accuracy changes as we vary the number of training in-
stances and the number of aggregated classification samples, with
the units on both axes representing the number of samples.

Figure 4 shows the results for varying numbers
of aggregated results from our full 104 programmer
dataset. We note that as we increase account size, or the
number of linked test samples for multiple sample attri-
bution, we drop from the evaluation set authors with
insufficient samples, which partially explains the lack of
smoothness in the curve, especially as we approach 50
samples per account, as many authors have fewer than
50 remaining test samples as shown in Figure 2. We note
that in many cases, a single collaborative code file will
contain multiple samples for most programmers, and 15
samples is not unreasonable for larger projects or for
programmers who contribute to multiple projects.
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Fig. 4. Accuracy changes (mostly increasing) as we increase from
single sample attribution to aggregating 50 samples.

4.2 Calibration Curves

Figure 5 shows the calibration curve constructed from
our experiments. For ease of reading, we only show sin-
gle sample and accounts of sizes 5, 10, and 20 samples.
The calibration curve shows that our classifier is con-
servative: the predicted probability is lower than the
actual accuracy obtained (a known feature of random
forests). Even when the classifier confidence is less than
10% we still outperform random chance. For account
attribution, we notice that even low confidence attribu-
tions are highly accurate. We note that our experiments
included even larger accounts, but at large accounts we
did not have attributions within all confidence intervals
- typically we only had attributions at less than 40%
confidence and accuracy well over 90%, and in some
cases some attributions at over 90% confidence, with
nothing in between.

We also counted the number of samples which fell
into each confidence interval for the data set. Figure
6 shows the percentages of samples which fall in each
interval. For the 104 programmer dataset, most of the
samples fall in the lower confidence intervals, which ex-
plains why our accuracy is low compared to the median
bin accuracy. We also notice that the sample confidence
distribution is more heavily skewed towards low con-
fidence than the author confidence distribution, again
suggesting that our dataset contains more samples from
more difficult authors than easier authors.

Our calibration analysis suggests that our low over-
all accuracy compared to previous results on full source
code files from Google Code Jam is likely in part a re-
sult of our dataset containing data which is difficult to
classify.

The calibration curve also suggests another poten-
tial reason that our classification result aggregation

Fig. 5. Accuracy mostly increases with the confidence level of
the classifier for sample averaged and author averaged accuracy
for accounts of sizes 1, 5, 10, and 20 samples. The x-axis shows
the probability for the predicted class as output by the classifier,
divided into bins of 10%, starting from the displayed value.

Fig. 6. The percentage of the samples in each of the 10% con-
fidence intervals for the calibration curves in Figure 5, starting
from the displayed value, mostly decreases as confidence in-
creases.

method works so well. Because our classifier is so con-
servative, our mis-attributions tend to have very even
spreads of low probabilities compared to our correct
classifications, which means that they do not easily out-
weigh the probabilities of correctly classified instances.
This leads to the whole group being correctly classified.

4.3 The Open World

Figure 7 shows the results of our initial open world ex-
periment. In this experiment, we used the 15 program-
mer dataset as our suspects and trained a model on
these programmers. We then tested this model on a few
samples from the remaining programmers in our larger
dataset to create open world conditions. Our results sug-
gest that the calibration curve method is a viable way
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to address the open world problem. We notice that for
our dataset, samples which do not belong to the suspect
set usually have classification confidence below 20% and
the highest such confidence is 23%, while most incorrect
classifications occur with confidence below 40%.

We also notice that the percentiles tend to match up
with each other between classification results, however
this is likely a quirk of the specific dataset and exper-
iments. Our results suggest that mis-attributions due
to the open world scenario are similar to general mis-
attributions with respect to classification confidence and
that an open world can similarly be handled by discard-
ing low confidence predictions, which we would likely
already discard or handle skeptically based on our cali-
bration curve (see Figure 5).

Fig. 7. Classifier confidence distributions differ between correct
classifications, mis-classifications of samples belonging to sus-
pect authors, and out of world samples using a suspect set of 15
programmers with 250 samples each with an additional 250 out
of world samples. The x-axis labels also include the number of
samples which belong to each group.

For the remaining open world experiments, we used
the full 104 programmer dataset, with 26 programmers
in the suspect set and 78 in the out of world set for each
run. We used 50 tree random forests with a limit of 50
features per tree, as a weaker classifier which performs
faster and uses fewer computational resources.

Figure 8 shows the results of our open world exper-
iments using 26 suspect programmers and 78 unknown
programmers for the more difficult single sample attri-
bution case with respect to precision and recall of identi-
fying correct or incorrect attributions using a threshold.
We note that the overall accuracy, ignoring the out of
world samples, is 51.7% by sample or 64.5% by author
for 26 suspects with the weak classifier. We also leave
precision for identifying bad attributions for a separate

graph combined with precision for identifying bad attri-
butions with account attribution, as these values were
consistently high, which can be found in Figure 9. As
an example for reading the figures, at a threshold of
0.4 confidence and averaging by sample (discarding all
attributions with confidence under 0.4 and keeping all
attributions with confidence of at least 0.4), recall shows
that we keep 40.3% of correct attributions and discard
96.3% of incorrect attributions and out of world samples
while precision shows that of the samples we keep 30.5%
are correct attributions and 97.6% of samples discarded
are incorrectly attributed (93.9% are out of world).

We consider selecting a threshold to be application
specific because both the importance and values of the
precision and recall measures may vary. With respect to
discarding bad attributions, discarding all attributions
always had the highest F1 score (.984 for identifying in-
correct or out of world samples averaged by sample, .867
for identifying purely out of world samples averaged by
author, and 1 otherwise), likely due in part to the heavy
weighting of the evaluated dataset in favor of out of
world samples. However, with respect to keeping correct
attributions, the best F1 score occured at a threshold of
either 40% or 50%, depending on averaging. If averaging
by sample, the best threshold was 50% with an F1 score
of .348. If averaging by author, the best threshold was
40% with a F1 score of .352. As we increase the thresh-
old the precision for correct attributions rises because
as the confidence increases it becomes much more likely
that the attribution was correct. However, the recall for
correct attributions falls because we have many samples
which are attributed with low confidence, which include
many correct attributions once we reach thresholds of
20% and higher. For the out of world and incorrect sam-
ples, we notice that precision is consistently high but
falls slowly. When combined with the fact that the recall
rises sharply early before leveling off, this suggests that
we quickly identify the majority of the out of world and
incorrect samples while discarding relatively few cor-
rectly attributed samples, and so once we go beyond a
threshold of about 40% or 50% confidence we are mostly
losing correct attributions and not identifying as many
out of world or incorrect attributions. Taken together,
this reinforces what we noticed previously in Figure 7:
correct attributions have a different, although overlap-
ping, confidence distribution from incorrect attributions
and out of world samples.

Figure 10 shows the results of our open world exper-
iments with 26 suspect programmers and 78 unknown
programmers for the multiple sample attribution case
for collections, or accounts, of 10 samples. We chose 10
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Fig. 8. Precision and recall change for our open world experi-
ments for single sample attribution as we increase the accep-
tance/rejection threshold.

Fig. 9. Precision for discarding incorrect attributions and out of
world samples in both single attribution and 10-sample account
attribution decreases as we increase the rejection threshold.

samples because at that level we still have over 400,000
observations, and note that different account sizes will
have different values but similar trends, with the level
of improvement over the single sample attribution case
generally corresponding to the size of the account. We
note that the overall accuracy, ignoring the out of world
samples, is 80.8%. The optimal F1 score for correctly
attributed instances above the threshold is 20%, with
F1 score of .536 averaging by sample or .645 averaging
by author. The optimal F1 score for discarding samples
which are either out of world or otherwise incorrectly at-
tributed is 30%. If we are only interested in out of world
samples, the F1 score is .968 if we average by sample or
.868 if we average by author. If we are interested in all
misattributions, the F1 score is .976 if we average by
sample or .895 if we average by author. We also exper-
imented with collections of 5 samples, with the same
trends but slightly lower accuracy and F1 scores.

Fig. 10. Precision and recall change for our open world experi-
ments for account attribution for collections of 10 samples as we
increase the acceptance/rejection threshold.

Figure 11 shows a receiver operating characteristics
(ROC) curve for the task of identifying false attributions
using a threshold. ROC curves plot true positive rate
on the y-axis and false positive rate on the x-axis. This
analysis can help evaluate acceptable trade-offs, which
can then assist in choosing a threshold. For this curve
a true positive is a correctly identified false attribution,
while a false positive is a correct attribution mistakenly
determined to be false. For example, focusing on the 10
sample account attribution averaged by sample, we can
see that by discarding only 10% of the correct attribu-
tions we can discard 64.9% of the incorrect attributions
and by discarding 44.3% of the correct attributions we
can discard 96.7% of incorrect attributions.

From these experiments, we can conclude several
things. First, while there are cases in which out of world
samples may be mistaken as belonging to one of the sus-
pect programmers by using this technique, these cases
are relatively rare. As we increased the threshold we
started with a few dramatic cuts to the percentage of
out of world samples above the the threshold, correctly
identifying over 90% of such samples in only a few in-
crements for even the harder problem of single sample
attribution and then continuing to identify about 97%
and then over 99% as we continue to increment.

In all of these experiments, while raising the thresh-
old causes us to doubt correct classifications, it allows
us to correctly identify incorrect classifications and out
of world samples more quickly than we reject correct at-
tributions. While we observe that our technique cannot
completely separate correctly classified samples from ei-
ther incorrectly attributed samples or out of world sam-
ples, we can use it to easily find trade-offs that allow us
to identify most out of world samples and to trust our
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remaining attributions to a high degree. It is also no-
table that our results suggest that the reason it is hard
to separate correctly attributable samples from out of
world samples is not because it is hard to identify most
of the out of world samples but because some samples
are harder to attribute than others. We can also ob-
serve that easier problems allow for lower confidence
thresholds and fewer correct attributions misidentified
as incorrect attributions, with the threshold for 10 sam-
ple account attribution requiring classifier confidence of
only about half that needed for single sample attribu-
tion with similar results.

We note again that our open world experiments
were done with a weaker version of the classifier, with
fewer trees of limited depth in the random forest, and
with 92.5% of evaluation samples by programmers out-
side of the suspect set. We would expect a stronger ver-
sion of the classifier to reach the levels of success found
in our experiments at lower thresholds.

Fig. 11. This ROC curve compares false and true positive rates
for identifying false attributions, either due to out of world sam-
ples or incorrect classifications, by setting a threshold.

5 Discussion and Analysis
While the above results show that we are able to at-
tribute source code in the wild with a high degree of
accuracy, they also suggest that a major difficulty in at-
tributing source code samples is the high within-author
variance of such samples: short segments of code from a
single author may be distributed across a range of tasks
and thus contain limited and in many cases ambiguous
stylometric information.

5.1 Attributibility Analysis

We performed a preliminary analysis on the simple
cross-validation results, and we noticed some charac-
teristics shared by many, although not all, of the mis-
attributions. Many of the misclassified samples were
trivial, and contained only very basic programming
structures. The majority of the misclassified instances
had only a few abstract syntax tree nodes per line of
code, with many of the longer samples averaging less
than one node per line of code. 57.4% of the misclassi-
fied samples had only 1 line of code, and 43.4% of the of
the samples with only 1 line of code were misclassified.
The average length of misclassified samples was 3.7 lines
of code, while correctly classified samples were 5.7 lines
of code long on average. Thus many of our misclassified
samples have only a few abstract syntax tree nodes and
most of the information comes from the specific word
unigrams which make up the code. As noted in the work
of Caliskan-Islam et al. [12], word unigrams provide less
information than AST nodes, and intuitively word un-
igrams are easier to obfuscate and are often standard-
ized in collaborative code projects. Additionally, word
unigrams may contain information such as comments,
licensing, and hard-coded strings. Therefore, it is to be
expected that samples for which most of the already
small amount of information comes from word unigrams
rather than from AST nodes would prove more difficult
to classify.

This intuition is further supported by feature anal-
ysis on the dataset, as shown in Table 1. For this anal-
ysis, we reduced the feature space to features occur-
ring at least 6 times in the dataset, removing the most
unique features. We see that word unigrams dominate
the feature importance, with AST node bigrams coming
in second. A manual analysis of samples reveals that the
easiest attributions were of samples including such con-
tent as licensing and highly specific functions, while the
most confident misattributions included similar content
from atypical authors. Similarly, the most difficult attri-
butions included highly generic function calls. Based on
this, it seems that due to the lack of available informa-
tion, the classifier relies on such highly specific features,
making more general attribution more difficult.

As we have identified a lack of information per sam-
ple as a primary limiting factor, we considered whether
length of samples could be an indicator of success. We
measured length by the number of characters in the
sample. Figure 12 shows each evaluation sample plotted
by the classifier confidence and length, with the color
indicating correct or incorrect attribution, and Figure
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Table 1. Feature analysis

FeatureType NumFeatures FeatureImportance
ASTFunctionIDCount 1 0.0029
ASTNodeBigramTF 47910 0.1815
ASTNodeTypeAvgDepth 16231 0.0733
ASTNodeTypeTF 13538 0.0672
ASTNodeTypeTFIDF 11944 0.0285
CFGNodeCount 1 0.0027
CPPKeyword 74 0.0146
FunctionIDCount 1 0.0007
MaxASTLeafDepth 1 0.0017
WordUnigrams 49424 0.5584
Total: 139125 0.9316

Fig. 12. This plot shows correct (labeled 1) versus incorrect (la-
beled 0) attributions by classifier confidence on the x-axis and
sample length in characters on the y-axis.

13 shows the accuracy divided into bins by the length
of the sample. Figure 14 shows the classifier probability
for individual samples grouped by the number of charac-
ters. We note that there does not appear to be a strong
relationship between sample length and classifier proba-
bility, and, while we can see a relationship between sam-
ple length and accuracy, classifier confidence remains
a stronger estimator. The observation that both sam-
ple length and classifier confidence have relationships
to accuracy but lack a clear relationship to each other
suggests that they may be able to be combined to create
an even stronger method of differentiating correct from
incorrect attributions, but this remains an extension for
future work.

As we have also identified that some authors are
easier to attribute than others, as is made clear by the
change in accuracy according to the two methods of av-
eraging our samples, we decided to plot the accuracy per
author. Figure 15 shows the single sample attribution
accuracy, minimum account attribution, and maximum

Fig. 13. This plot shows accuracy, or hit rate, for samples
grouped by the number of characters.

Fig. 14. This plot shows the average prediction probability for
correct (in blue) versus incorrect (in orange) attributions grouped
by the number of characters in the sample.

account attribution accuracy. We note that minimum
account attribution accuracy usually, but not always,
occurs at account size of one (single sample attribution).
Similarly, maximum account attribution accuracy usu-
ally, but not always, occurs at the largest possible ac-
count for that author, although it may also occur with
smaller accounts as well. Notably, we observe two au-
thors we never predict correctly even with account at-
tribution and three authors we always predict correctly
even with single sample attribution.

We also examined the confusion matrix to deter-
mine if the misclassifications are distributed more or
less randomly or if they are highly concentrated. A con-
fusion matrix shows how each sample is classified com-
pared to the true class. Figure 16 shows the confusion
matrix in graphical form. We can observe that while
there are some pairs which are somewhat more com-
monly confused, overall the misclassifications are widely
distributed. This means that while some authors may
resemble each other, overall our low individual snippet
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Fig. 15. This plot shows the minimum account accuracy (the
smallest observed accuracy for an account of any size belonging
to that author), maximum account accuracy (the largest observed
accuracy for an account of any size belonging to that author),
and single sample attribution accuracy for each author with files
in the evaluation set. Authors are sorted first by maximum ac-
count accuracy, then minimum account accuracy, and then single
sample accuracy.

accuracy is likely due to an overall lack of distinguishing
information per snippet.

5.2 Impact of Ensembling

Simple averaging of probabilistic predictors has long
been known to yield an ensemble classifier that has sig-
nificantly improved generalization performance and ro-
bustness to error over any individual component [19].
This improvement has also long been known to be in-
versely related to the degree of correlation between the
predictions of the classifiers on a single example [28].

The standard approach for averaging considers an
ensemble of learners h1, . . . hT , and takes the overall
classification of a single sample x to be:

H (x) = 1
T

T∑
i=1

hi(x)

We examine an interesting variation on this prob-
lem where, instead of submitting a single test sample to
a diverse set of classifiers, we submit a diverse collec-
tion of test samples which are known to share the same
unknown label x

(i)
1 , x

(i)
2 . . . x

(i)
n to a single classifier, and

average their outputs to obtain a final classification:

H (i) = 1
n

n∑
j=1

h
(

x
(i)
j

)
The underlying intuition remains unchanged: if the

erroneous components of any given prediction are ap-
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Fig. 16. This is a graphical representation of the confusion ma-
trix, with the true author on the x-axis and the predicted author
on the y-axis. Darker spots indicate a higher proportion of the
instances belonging to the true author were assigned to the pre-
dicted author.

proximately uncorrelated between different code sam-
ples from a single author (i.e., weight for incorrect
predictions is approximately uniformly distributed over
those incorrect predictions, given a sufficient number of
samples), then in taking the average prediction across
samples these errors will cancel each other out, result-
ing in an improved prediction over any of the individual
samples.

While full details are omitted due to space con-
straints, we evaluated this hypothesis in a 15-author
data set by examining the coefficient of variation (the
ratio of the standard deviation to the mean) across in-
dividual sample predictions across several test ensemble
sizes (data not shown). Reliably, this variation is min-
imized for the correct prediction, indicating that from
individual sample to individual sample within the en-
semble, the predicted probability for the incorrect la-
bels varies significantly relative to the mean, suggesting
that they are in fact approximately uncorrelated. Signif-
icantly, when the coefficient of variation for the correct
label is not the smallest, these samples tend to have the
lowest ensemble confidence and also are most likely to
be incorrectly predicted.

5.3 Ground Truth Considerations

We acknowledge that ground truth in the GitHub envi-
ronment is not perfect. First, we know that it is possible
that code is copied from other sources, and therefore is
not the original contribution of the credited author. Fur-
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Fig. 17. These are the results for ground truth corruption in the
Google Code Jam dataset.

thermore, using git blame at the line level indicates the
last author to touch the line, not the original author
of all of the parts of the line. We note that despite the
inherent “messiness” of the data, it is important to eval-
uate on data collected from the wild which well reflects
realistic application of our techniques. Therefore, we de-
vised an experiment to try to quantify the contribution
of inaccurate ground truth.

For this experiment, we perform cross validation on
Google Code Jam data as is used by Caliskan-Islam et
al. [12] with 250 authors and 9 files each. We then set
a parameter m for number of ground truth corruptions
to perform. Each corruption is an author swap between
two files. We use Google Code Jam data because it gives
us more reliable ground truth than GitHub.

While random forests are known to be robust
against mislabeled data due to using bootstrap sam-
pling, which causes each sample to only affect some of
the trees in the overall classifier, we nevertheless per-
formed a brief empirical assessment of the potential
impact of mislabeled training data. Figure 17 shows
the accuracy for various levels of ground truth corrup-
tion for varying percentages of corrupted labels in the
Google Code Jam dataset. We observe that the magni-
tude of the decline in accuracy is close to the magnitude
of the incorrect ground truth labels for relatively small
amounts of corruption. Therefore, we conclude that in-
dividual incorrect labels have only minimal effect on the
overall quality of the classifier, and that it would take se-
rious systemic ground truth problems to cause extreme
classification problems.

6 Limitations
While our study is the first observing the applicability
of stylometric attribution to code fragments from col-
laborative code, we acknowledge that there are limita-
tions to our study. Although we scraped a large amount
of GitHub data, we ended up with a relatively small
dataset. A large amount of this discard was due to con-
cerns about having sufficient training data, which is a
known problem with all stylometric analysis and a con-
sequence of the laboratory conditions in which we collect
training and evaluation data from the same source. A
more thorough open world study which instead of dis-
carding these samples treats them as part of the out of
world data would be appropriate to fully quantify the
effects of such loss, and a study into the actual avail-
ability of training data would be appropriate to clarify
the overall applicability of source code stylometry. We
also note that while we excluded files which were en-
tirely single authored, many files we used had a dom-
inant author, allowing for some samples which, while
not complete code files, were still very large. A study
which examines attributability in different levels of col-
laboration would be useful. Another limitation is that
many authors only contributed to a single collaborative
project. As a result, code samples are not from as differ-
ent environments as we may expect in real application.
A smaller scale study which enforces a project split for
training and testing would help better understand the
effects of this issue.

7 Future Work
Our main results assume that we know that the correct
programmer is one of our suspects and that we have a
segmentation either in form of commits or git-blame.
We have made strides in removing these assumptions,
and would like to continue to do so.

In this work we present a way to remove the closed
world assumption. This assumption is common to sty-
lometric work, but does not often match real world use
cases. Our technique allows easy elimination of most
out of world samples at the cost of eliminating many
correct, but difficult to trust, attributions in the case of
single sample attribution, and some for account attribu-
tion. While this technique provides a solid start towards
addressing the open world problem, it would be prefer-
able to find a technique which sacrifices fewer correctly
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attributed samples while improving our ability to trust
the attributions of those difficult samples.

The primary assumption which remains can be con-
sidered the version control assumption. While this can
be a reasonable assumption, as most large collaborative
projects are written under version control, we are not
guaranteed access to the repository itself. In order to re-
move this assumption, we would need to perform source
code segmentation which would split a large source code
file into components by author. Alternately, we could at-
tempt to perform sliding window attribution on source
code files. We are also interested in potentially perform-
ing segmentation by the AST instead of by lines, given
that the most important features are AST-based.

We further assume that commits and blames are
similar types of data and that our results for blames
would also be valid for commits. However, it would be
useful to confirm this, and if this hypothesis is false then
we would like to find a technique allowing us to classify
commits as well as blames. Furthermore, we would like
to use git-author as a best of both worlds scenario and
to examine extensions of this work into multi-label clas-
sification for individual samples as well as whole files.

Because the accuracy for account attribution is su-
perior to the accuracy for single sample attribution, we
would like to find an unsupervised method to transform
single sample attribution scenarios into scenarios closer
to account attribution.

Additionally, the reliance of our classifier on highly
specific features suggests that an ensemble classifier
combining AST-based attribution for the general case
and text attribution for highly specific samples may
be worth considering, especially for real-world samples
where comments may have important identifying infor-
mation for some authors but not others. We would also
be interested in investigating the performance of exist-
ing obfuscation tools such as Stunnix[3] and Tigress[4]
for anonymizing short source code samples.

As mentioned in our analysis, we also believe that
we can create stronger predictors of attribution correct-
ness than classifier confidence alone. One such indicator
we suggest is to combine sample length with confidence,
but even better predictors may be possible.

While we believe that there are important security
applications for the ability to perform attribution at this
level, we are also concerned about the serious privacy
ramifications of this technology existing. Therefore, we
hope to develop techniques and tools to allow program-
mers to better anonymize themselves, and repository
owners to facilitate anonymity for contributors. We also

hope to develop additional rules which indicate what
makes a source code sample harder to attribute.

8 Conclusion
We show that it is possible to identify the author of even
small, single code contributions, but easier to attribute
collections of such contributions, such as those belong-
ing to an account. We further show the joint use of con-
fidence metrics and calibration curves can be used to
perform attribution in the open world and in cases with
lower overall accuracy. We observe through our analysis
that it may be possible to use quantifiable higher level
features of code - distinct from the low level machine
learning features - to enhance the calibration curves to
make even better distinctions between trustworthy and
untrustworthy attributions. As a result, we suggest that
analysts need to first perform a calibration step using
labeled data in order to determine the best acceptance
function for their purposes before attempting attribu-
tion of code fragments.

Our results show that attribution is easier if samples
can be linked in advance, such as through a pseudony-
mous account on a version control system or other on-
line platform. We have shown that having even two
classification samples known to be by the same indi-
vidual results in boosted accuracy, and adding more
samples results in greater accuracy. We also observe
that larger samples often, although not always, result
in more trustworthy attributions. We have also observed
that licensing and other pieces of code containing plain-
text tend to be more easily identified, as is code con-
taining highly personalized function declarations and
macros - although these features could also be used to
deceive classifiers. We have shown that some degree of
anonymity for short code fragments may be possible,
but not guaranteed, in the short term if precautions are
taken, but our results also suggest that, as the state of
the art in attribution advances and more features of the
code are utilized, anonymity becomes harder to obtain.
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Appendix A Sample Attributions
In this section, we show the entire attribution pipeline
for selected example code snippets. For these examples,
we will examine a single train-test split in the closed
world. Each of the code samples in this section belong
to author 74 from our dataset, and for simplicity will
be named sample A, B, C, D, E, and F respectively.
Samples A and B were taken from one file and samples
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int main(){
exp2_ = n;
num_ = 1 << n;

}

Fig. 18. Code Sample A

int main(){
buf_ = new float[num_];
tab_ = new float[num_ * 2];

}

Fig. 19. Code Sample B

C through F were taken from another. The samples are
shown in Figures 18 to 23, with line breaks added and
removed for formatting reasons. As stated previously,
all samples are artificially enclosed in a dummy main
function in order to enable parsing with joern [29].

After identifying our samples, the next step is to
extract the abstract syntax trees. Figure 24 shows the
extracted abstract syntax tree for sample A. Once we
extract ASTs we need to transform those into features,
along with text from the code. For example, sample F
would have a word unigram feature representing the
word “reason” while sample A would have a feature
corresponding to the shift expression node, as well as
a feature representing the depth of the node in the tree.

Table 2 shows the classification results for each sam-
ple, indicating the predicted class, the confidence for the
predicted class, and the confidence for the true class. If
we refer back to our calibration curve, we’d say that
sample A has about 30% chance of being by author 42,
sample B has about 30% chance of being by author 44,
sample F has about 30% chance of being by author 51,
samples D and E have about 30% chance of being by
author 74, and sample C has about 55% chance of being
by author 74.

We can then take varying combinations of these
samples for account attribution. Tables 3 to 6 show the
results for the various combinations of samples in ac-

int main(){
const double F =

static_cast<double>(height() - 2) /
(log10(255) * MAX_AMPLITUDE);

}

Fig. 20. Code Sample C

int main(){
updateBandSize(band_count_);
colorChanged();
setMinimumSize(QSize(band_count_ *
kColumnWidth, 10));

}
}

Fig. 21. Code Sample D

int main(){
void BarAnalyzer::colorChanged() {

if (pixBarGradient_.isNull()) {
return;

}
QPainter p(&pixBarGradient_);
QColor rgb;
if (psychedelic_enabled_) {

rgb = getPsychedelicColor(scope_, 50, 100);
} else {

rgb = palette().color(QPalette::Highlight);
}
for (int x = 0, r = rgb.red(),
g = rgb.green(),

b = rgb.blue(), r2 = 255 - r;
x < height(); ++x) {

}

Fig. 22. Code Sample E

int main(){
if (roofVelocityVector_[i] != 0) {

if (roofVelocityVector_[i] > 32)
// no reason to do == 32

roofVector_[i] -=
(roofVelocityVector_[i] - 32) / 20;
// trivial calculation

}

Fig. 23. Code Sample F
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Fig. 24. This is the AST for sample A produced by joern.

Table 2. Example classification confidence results

Sample Prediction P Confidence T Confidence
A 42 9.8% 0.4%
B 44 8.2% 0.6%
C 74 19.6% 19.6%
D 74 6.4% 6.4%
E 74 7.6% 7.6%
F 51 5.8% 4.4%

counts. If we take all of the samples together, we receive
a prediction of author 74 with confidence 6.5%. Refering
back to the calibration curve, most of these predictions
have about a 55% chance of being accurate, with those
with over 10% confidence having between a 55% and
80% chance of being accurate. However, if we consider
the predictions of all of the possible combinations we
can be slightly more optimistic in our prediction accu-
racy. Further, it is reasonable to assume that if we had a
more granular calibration curve we would also evaluate
our chance of success more highly.

Appendix B Relaxed Attribution
In addition to other analyses, we consider relaxed at-
tribution to see to what extent we can reduce the sus-
pect set for more difficult samples. Figure 25 shows the

Table 3. Example pairs classification confidence

Samples Prediction P Confidence T Confidence
AB 44 5.7% 0.5%
AC 74 10.0% 10.0%
AD 42 5.7% 3.4%
AE 42 4.9% 4.0%
AF 46 5.0% 2.4%
BC 74 10.1% 10.1%
BD 44 4.2% 3.5%
BE 44 4.5% 4.1%
BF 44 4.4% 2.5%
CD 74 13.0% 13.0%
CE 74 13.6% 13.6%
CF 74 12.0% 12.0%
DE 74 7.0% 7.0%
DF 74 5.4% 5.4%
EF 74 6.0% 6.0%

Table 4. Example triples classification confidence

Samples Prediction P Confidence T Confidence
ABC 74 6.9% 6.9%
ABD 69 4.1% 2.5%
ABE 44 4.1% 2.9%
ABF 46 4.3% 1.8%
ACD 74 8.8% 8.8%
ACE 74 9.2% 9.2%
ACF 74 8.1% 8.1%
ADE 74 4.8% 4.8%
ADF 46 4.0% 3.7%
AEF 74 4.1% 4.1%
BCD 74 8.9% 8.9%
BCE 74 9.3% 9.3%
BDE 74 8.2% 8.2%
BDF 74 4.9% 4.9%
BEF 74 3.8% 3.8%
CDE 74 4.2% 4.2%
CDF 74 11.2% 11.2%
CEF 74 10.1% 10.1%
DEF 74 6.1% 6.1%
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Table 5. Example quadruples classification confidence

Samples Prediction P Confidence T Confidence
ABCD 74 6.8% 6.8%
ABCE 74 7.1% 7.1%
ABCF 74 6.1% 6.2%
ABDE 74 3.8% 3.8%
ABDF 46 3.8% 3.0%
ABEF 46 3.6% 3.3%
ACDE 74 8.5% 8.5%
ACDF 74 7.7% 7.7%
ACEF 74 8.0% 8.0%
ADEF 74 4.7% 4.7%
BCDE 74 8.6% 8.6%
BCDF 74 7.8% 7.8%
BCEF 74 8.1% 8.1%
BDEF 74 4.8% 4.8%
CDEF 74 9.5% 9.5%

Table 6. Example quintuples classification confidence

Samples Prediction P Confidence T Confidence
ABCDE 74 6.9% 6.9%
ABCDF 74 6.3% 6.3%
ABCEF 74 6.5% 6.5%
ABDEF 74 3.9% 3.9%
ACDEF 74 7.7% 7.7%
BCDEF 74 7.7% 7.7%

results for relaxed attribution for single sample attri-
bution only. In the event of a tie, we consider all tied
elements on the Nth place as equal. We show that it is
possible to reduce the suspect set to approximately one
tenth with nearly 75% accuracy.

Fig. 25. Accuracy increases as the number N of top authors to
accept increases.
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