
Proceedings on Privacy Enhancing Technologies ; 2019 (4):6–33

Kirill Nikitin*, Ludovic Barman*, Wouter Lueks, Matthew Underwood, Jean-Pierre Hubaux und
Bryan Ford

Reducing Metadata Leakage from Encrypted
Files and Communication with PURBs
Abstract: Most encrypted data formats leak metadata
via their plaintext headers, such as format version, en-
cryption schemes used, number of recipients who can de-
crypt the data, and even the recipients’ identities. This
leakage can pose security and privacy risks to users, e.g.,
by revealing the full membership of a group of collabo-
rators from a single encrypted e-mail, or by enabling an
eavesdropper to fingerprint the precise encryption soft-
ware version and configuration the sender used.
We propose that future encrypted data formats improve
security and privacy hygiene by producing Padded Uni-
form Random Blobs or PURBs: ciphertexts indistin-
guishable from random bit strings to anyone without
a decryption key. A PURB’s content leaks nothing at
all, even the application that created it, and is padded
such that even its length leaks as little as possible.
Encoding and decoding ciphertexts with no cleartext
markers presents efficiency challenges, however. We
present cryptographically agile encodings enabling le-
gitimate recipients to decrypt a PURB efficiently, even
when encrypted for any number of recipients’ public
keys and/or passwords, and when these public keys
are from different cryptographic suites. PURBs employ
Padmé, a novel padding scheme that limits informa-
tion leakage via ciphertexts of maximum length M to a
practical optimum of O(log logM) bits, comparable to
padding to a power of two, but with lower overhead of
at most 12% and decreasing with larger payloads.

Keywords: metadata, leakage, padding, traffic analysis

DOI 10.2478/popets-2019-0056
Received 2019-02-28; revised 2019-06-15; accepted 2019-06-16.

*Corresponding Author: Kirill Nikitin: EPFL, E-mail:
kirill.nikitin@epfl.ch
*Corresponding Author: Ludovic Barman: EPFL, E-
mail: ludovic.barman@epfl.ch
Wouter Lueks: EPFL, E-mail: wouter.lueks@epfl.ch
Matthew Underwood: unaffiliated
Jean-Pierre Hubaux: EPFL, E-mail: jean-
pierre.hubaux@epfl.ch
Bryan Ford: EPFL, E-mail: bryan.ford@epfl.ch

1 Introduction
Traditional encryption schemes and protocols aim to
protect only their data payload, leaving related meta-
data exposed. Formats such as PGP [64] reveal in clear-
text headers the public keys of the intended recipients,
the algorithm used for encryption, and the actual length
of the payload. Secure-communication protocols simi-
larly leak information during key and algorithm agree-
ment. The TLS handshake [45], for example, leaks in
cleartext the protocol version, chosen cipher suite, and
the public keys of the parties. This metadata exposure
is traditionally assumed not to be security-sensitive, but
important for the recipient’s decryption efficiency.

Research has consistently shown, however, that at-
tackers can exploit metadata to infer sensitive infor-
mation about communication content. In particular, an
attacker may be able to fingerprint users [40, 52] and
the applications they use use [63]. Using traffic anal-
ysis [17], an attacker may be able to infer websites
a user visited [17, 21, 39, 56, 57] or videos a user
watched [43, 44, 50]. On VoIP, metadata can be used
to infer the geo-location [35], the spoken language [61],
or the voice activity of users [15]. Side-channel leaks
from data compression [32] facilitate several attacks on
SSL [5, 25, 48]. The lack of proper padding might en-
able an active attacker to learn the length of the user’s
password from TLS [53] or QUIC [1] traffic. In social
networks, metadata can be used to draw conclusions
about users’ actions [26], whereas telephone metadata
has been shown to be sufficient for user re-identification
and for determining home locations [36]. Furthermore,
by observing the format of packets, oppressive regimes
can infer which technology is used and use this infor-
mation for the purposes of incrimination or censorship.
Most TCP packets that Tor sends, for example, are 586
bytes due to its standard cell size [27].

As a step towards countering these privacy threats,
we propose that encrypted data formats should produce
Padded Uniform Random Blobs or PURBs: ciphertexts
designed to protect all encryption metadata. A PURB
encrypts application content and metadata into a sin-
gle blob that is indistinguishable from a random string,

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 7

and is padded to minimize information leakage via its
length while minimizing space overhead. Unlike tradi-
tional formats, a PURB does not leak the encryption
schemes used, who or how many recipients can decrypt
it, or what application or software version created it.
While simple in concept, because PURBs by definition
contain no cleartext structure or markers, encoding and
decoding them efficiently presents practical challenges.

This paper’s first key contribution is Multi-Suite
PURB or MsPURB, a cryptographically agile PURB
encoding scheme that supports any number of recipi-
ents, who can use either shared passwords or public-
private key pairs utilizing multiple cryptographic suites.
The main technical challenge is providing efficient de-
cryption to recipients without leaving any cleartext
markers. If efficiency was of no concern, the sender could
simply discard all metadata and expect the recipient to
parse and trial-decrypt the payload using every possi-
ble format version, structure, and cipher suite. Real-
world adoption requires both decryption efficiency and
cryptographic agility, however. MsPURB combines a
variable-length header containing encrypted metadata
with a symmetrically-encrypted payload. The header’s
structure enables efficient decoding by legitimate recip-
ients via a small number of trial decryptions. MsPURB
facilitates the seamless addition and removal of sup-
ported cipher suites, while leaking no information to
third parties without a decryption key. We construct
our scheme starting with the standard construction of
the Integrated Encryption Scheme (IES) [2] and use the
ideas of multi-recipient public-key encryption [7, 34] as
a part of the multi-recipient development.

To reduce information leakage from data lengths,
this paper’s second main contribution is Padmé, a
padding scheme that groups encrypted PURBs into
indistinguishability sets whose visible lengths are rep-
resentable as limited-precision floating-point numbers.
Like obvious alternatives such as padding to the next
power of two, Padmé reduces maximum information
leakage to O(log logM) bits, where M is the maximum
length of encrypted blob a user or application produces.
Padmé greatly reduces constant-factor overhead with
respect to obvious alternatives, however, enlarging files
by at most +12%, and less as file size increases.

In our evaluation, creating a MsPURB ciphertext
takes 235ms for 100 recipients on consumer-grade hard-
ware using 10 different cipher suites, and takes only
8ms for the common single-recipient single-suite sce-
nario. Our implementation is in pure Go without assem-
bly optimizations that might speed up public-key oper-
ations. Because the MsPURB design limits the number

of costly public-key operations, however, decoding per-
formance is comparable to PGP, and is almost indepen-
dent of the number of recipients (up to 10,000).

Analysis of real-world data sets show that many ob-
jects are trivially identifiable by their unique sizes with-
out padding, or even after padding to a fixed block size
(e.g., that of a block cipher or a Tor cell). We show that
Padmé can significantly reduce the number of objects
uniquely identifiable by their sizes: from 83% to 3% for
56k Ubuntu packages, from 87% to 3% for 191k Youtube
videos, from 45% to 8% for 848k hard-drive user files,
and from 68% to 6% for 2.8k websites from the Alexa
top 1M list. This much stronger leakage protection in-
curs an average space overhead of only 3%.
In summary, our main contributions are as follows:
– We introduceMsPURB, a novel encrypted data for-

mat that reveals no metadata information to ob-
servers without decryption keys, while efficiently
supporting multiple recipients and cipher suites.

– We introduce Padmé, a padding scheme that
asymptotically minimizes information leakage from
data lengths while also limiting size overheads.

– We implement these encoding and padding schemes,
evaluating the former’s performance against PGP
and the latter’s efficiency on real-world data.

2 Motivation and Background
We first offer example scenarios in which PURBs may
be useful, and summarize the Integrated Encryption
Scheme that we later use as a design starting point.

2.1 Motivation and Applications

Our goal is to define a generic method applicable to
most of the common data-encryption scenarios such
that the techniques are flexible to the application type,
to the cryptographic algorithms used, and to the num-
ber of participants involved. We also seek to enhance
plausible deniability such that a user can deny that a
PURB is created by a given application or that the user
owns the key to decrypt it. We envision several immedi-
ate applications that could benefit from using PURBs.

E-mail Protection. E-mail systems traditionally use
PGP or S/MIME for encryption. Their packet for-
mats [14], however, exposes format version, encryption
methods, number and public-key identities of the recip-
ients, and public-key algorithms used. In addition, the

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 8

payload is padded only to the block size of a symmetric-
key algorithm used, which does not provide “size pri-
vacy”, as we show in §5.3. Using PURBs for encrypted
e-mail could minimize this metadata leakage. Further-
more, as e-mail traffic is normally sparse, the moderate
overhead PURBs incur can easily be accommodated.

Initiation of Cryptographic Protocols. In most
cryptographic protocols, initial cipher suite negotiation,
handshaking, and key exchange are normally performed
unencrypted. In TLS 1.2 [20], an eavesdropper who mon-
itors a connection from the start can learn many details
such as cryptographic schemes used. The unencrypted
Server Name Indication (SNI) enables an eavesdropper
to determine which specific web site a client is con-
nected to among the sites hosted by the same server.
The eavesdropper can also fingerprint the client [46] or
distinguish censorship-circumvention tools that try to
mimic TLS traffic [23, 29]. TLS 1.3 [45] takes a few pro-
tective measures: e.g., less unencrypted metadata dur-
ing the handshake, and an experimental extension for
encrypted SNI [45, 47]. These measures are only par-
tial, however, and leave other metadata, such as proto-
col version number, cipher suites, and public keys, still
visible. PURBs could facilitate fully-encrypted hand-
shaking from the start, provided a client already knows
at least one public key and cipher suite the server sup-
ports. Clients might cache this information from prior
connections, or obtain it out-of-band while finding the
server, e.g., via DNS-based authentication [28].

Encrypted Disk Volumes. VeraCrypt [30] uses a
block cipher to turn a disk partition into an encrypted
volume where the partition’s free space is filled with
random bits. For plausible deniability and coercion pro-
tection, VeraCrypt supports so-called hidden volumes:
an encrypted volume whose content and metadata is
indistinguishable from the free space of a primary en-
crypted volume hosting the hidden volume. This protec-
tion is limited, however, because a primary volume can
host only a single hidden volume. A potential coercer
might therefore assume by default that the coercee has
a hidden volume, and interpret a claim of non-possession
of the decryption keys as a refusal to provide them.
PURBs might enhance coercion protection by enabling
an encrypted volume to contain any number of hidden
volumes, facilitating a stronger “N +1” defense. Even if
a coercee reveals up to N “decoy” volumes, the coercer
cannot know whether there are any more.

2.2 Integrated Encryption Scheme

The Integrated Encryption Scheme (IES) [2] is a hybrid
encryption scheme that enables the encryption of arbi-
trary message strings (unlike ElGamal, which requires
the message to be a group element), and offers flexibility
in underlying primitives. To send an encrypted message,
a sender first generates an ephemeral Diffie-Hellman key
pair and uses the public key of the recipient to derive a
shared secret. The choice of the Diffie-Hellman group is
flexible, e.g., multiplicative groups of integers or elliptic
curves. The sender then relies on a cryptographic hash
function to derive the shared keys used to encrypt the
message with a symmetric-key cipher and to compute
a MAC using the encrypt-then-MAC approach. The re-
sulting ciphertext is structured as shown in Figure 1.

pks enc(M) σmac

Fig. 1. Ciphertext output of the Integrated Encryption Scheme
where pks is an ephemeral public key of the sender, and σmac and
enc(M) are generated using the DH-derived keys.

3 Hiding Encryption Metadata
This section addresses the challenges of encoding and
decoding Padded Uniform Random Blobs or PURBs in
a flexible, efficient, and cryptographically agile way. We
first cover notation, system and threat models, followed
by a sequence of strawman approaches that address dif-
ferent challenges on the path towards the full MsPURB
scheme. We start with a scheme where ciphertexts are
encrypted with a shared secret and addressed to a sin-
gle recipient. We then improve it to support public-key
operations with a single cipher suite, and finally to mul-
tiple recipients and multiple cipher suites.

3.1 Preliminaries

Let λ be a standard security parameter. We use $ to
indicate randomness, $← to denote random sampling,
‖ to denote string concatenation and |value| to denote
the bit-length of “value”. We write PPT as an abbrevi-
ation for probabilistic polynomial-time. Let Π = (E ,D)
be an ind$-cca2-secure authenticated-encryption (AE)
scheme [8] where EK(m) and DK(c) are encryption and
decryption algorithms, respectively, given a message
m, a ciphertext c, and a key K. Let MAC = (M,V)

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 9

be strongly unforgeable Message Authentication Code
(MAC) generation and verification algorithms. An au-
thentication tag generated by MAC must be indistin-
guishable from a random bit string.

Let G be a cyclic finite group of prime order p

generated by the group element g where the gap-CDH
problem is hard to solve (e.g., an elliptic curve or a
multiplicative group of integers modulo a large prime).
Let Hide : G(1λ) → {0, 1}λ be a mapping that en-
codes a group element of G to a binary string that
is indistinguishable from a uniform random bit string
(e.g., Elligator [10], Elligator Squared [3, 51]). Let
Unhide: {0, 1}λ → G(1λ) be the counterpart to Hide
that decodes a binary string into a group element of G.

Let H : G → {0, 1}2λ and Ĥ : {0, 1}∗ → {0, 1}2λ be
two distinct cryptographic hash functions. Let PBKDF :
{salt, password} → {0, 1}2λ be a secure password-based
key-derivation function [11, 33, 41], a “slow” hash func-
tion that converts a salt and a password into a bit string
that can be used as a key for symmetric encryption.

3.1.1 System Model

Let data be an application-level unit of data (e.g., a
file or network message). A sender wants to send an
encrypted version of data to one or more recipients. We
consider two main approaches for secure data exchanges:

(1) Via pre-shared secrets, where the sender shares
with the recipients long-term one-to-one passphrases
Ŝ1, ..., Ŝr that the participants can use in a password-
hashing scheme to derive ephemeral secrets S1, ..., Sr.

(2) Via public-key cryptography, where sender and
recipients derive ephemeral secrets Zi = H(Xyi) =
H(Yix) using a hash function H. Here (x,X = gx) de-
notes the sender’s one-time (private, public) key pair
and (yi, Yi = gyi) is the key pair of recipient i ∈ 1, ..., r.

In both scenarios, the sender uses ephemeral secrets
S1, ..., Sr or Z1, ..., Zr to encrypt (parts of) the PURB
header using an authenticated encryption (AE) scheme.

We refer to a tuple S = 〈G, p, g, Hide(·),Π,H, Ĥ〉
used in the PURB generation as a cipher suite. This
can be considered similar to the notion of a cipher suite
in TLS [20]. Replacing any component of a suite (e.g.,
the group) results in a different cipher suite.

3.1.2 Threat Model and Security Goals

We will consider two different types of computationally
bounded adversaries:

1. An outsider adversary who does not hold a private
key or a password valid for decryption;

2. An insider adversary who is a “curious” and active
legitimate recipient with a valid decryption key.

Both adversaries are adaptive.
Naturally, the latter adversary has more power, e.g., she
can recover the plaintext payload. Hence, we consider
different security goals given the adversary type:
1. We seek ind$-cca2 security against the outsider ad-

versary, i.e., the encoded content and all metadata
must be indistinguishable from random bits under
an adaptive chosen-ciphertext attack;

2. We seek recipient privacy [4] against the insider ad-
versary under a chosen-plaintext attack, i.e., a re-
cipient must not be able to determine the identities
of the ciphertext’s other recipients.

Recipient privacy is a generalization of the key indistin-
guishability notion [6] where an adversary is unable to
determine whether a given public key has been used for
a given encryption.

3.1.3 System Goals

We wish to achieve two system goals beyond security:
– PURBs must provide cryptographic agility. They

should accommodate either one or multiple recip-
ients, allow encryption for each recipient using a
shared password or a public key, and support dif-
ferent cipher suites. Adding new cipher suites must
be seamless and must not affect or break backward
compatibility with other cipher suites.

– PURBs’ encoding and decoding must be “reason-
ably” efficient. In particular, the number of expen-
sive public-key operations should be minimized, and
padding must not impose excessive space overhead.

3.2 Encryption to a Single Passphrase

We begin with a simple strawman PURB encoding for-
mat allowing a sender to encrypt data using a single
long-term passphrase Ŝ shared with a single recipient
(e.g., out-of-band via a secure channel). The sender and
recipient use an agreed-upon cipher suite defining the
scheme’s components. The sender first generates a fresh
symmetric session key K and computes the PURB pay-
load as EK(data). The sender then generates a random
salt and derives the ephemeral secret S = PBKDF(salt, Ŝ).
The sender next creates an entry point (EP) containing
the session key K, the position of the payload and po-

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 10

tentially other metadata. The sender then encrypts the
EP using S. Finally, the sender concatenates the three
segments to form the PURB as shown in Figure 2.

salt ES(K ‖ meta) EK(data)

entry point payload

Fig. 2. A PURB addressed to a single recipient and encrypted with
a passphrase-derived ephemeral secret S.

3.3 Single Public Key, Single Suite

We often prefer to use public-key cryptography, instead
of pre-shared secrets, to establish secure communication
or encrypt data at rest. Typically the sender or initiator
indicates in the file’s cleartext metadata which public
key this file is encrypted for (e.g., in PGP), or else par-
ties exchange public-key certificates in cleartext during
communication setup (e.g., in TLS). Both approaches
generally leak the receiver’s identity. We address this
use case with a second strawman PURB encoding for-
mat that builds on the last by enabling the decryption
of an entry point EP using a private key.

To expand our scheme to the public-key scenario,
we adopt the idea of a hybrid asymmetric-symmetric
scheme from the IES (see §2.2). Let (y, Y) denote the
recipient’s key pair. The sender generates an ephemeral
key pair (x,X), computes the ephemeral secret Z =
H(Y x), then proceeds as before, except it encrypts K
and associated metadata with Z instead of S. The
sender replaces the salt in the PURB with her encoded
ephemeral public key Hide(X), where Hide(·) maps a
group element to a uniform random bit string. The re-
sulting PURB structure is shown in Figure 3.

Hide(X) EZ(K ‖ meta) EK(data)

encoded pk entry point payload

Fig. 3. A PURB addressed to a single recipient that uses a public
key Y , where X is the public key of the sender and Z = H(Y x) is
the ephemeral secret.

3.4 Multiple Public Keys, Single Suite

We often wish to encrypt a message to several recipients,
e.g., in multicast communication or mobile group chat.
We hence add support for encrypting one message under
multiple public keys that are of the same suite.

As the first step, we adopt the idea of multi-recipient
public-key encryption [7, 34] where the sender gener-
ates a single key pair and uses it to derive an ephemeral
secret with each of the intended recipients. The sender
creates one entry point per recipient. These entry points
contain the same session key and metadata but are en-
crypted with different ephemeral secrets.

As a PURB’s purpose is to prevent metadata leak-
age, including the number of recipients, a PURB cannot
reveal how many entry points exist in the header. Yet
a legitimate recipient needs to have a way to enumer-
ate possible candidates for her entry point. Hence, the
primary challenge is to find a space-efficient layout of
entry points—with no cleartext markers—such that the
recipients are able to find their segments efficiently.

Linear Table. The most space-efficient approach is to
place entry points sequentially. In fact, OpenPGP sug-
gests a similar approach for achieving better privacy [14,
Section 5.1]. However, in this case, decryption is inef-
ficient: the recipients have to attempt sequentially to
decrypt each potential entry point, before finding their
own or reaching the end of the PURB.

Fixed Hash Tables. A more computationally-efficient
approach is to use a hash table of a fixed size. The sender
creates a hash table and places each encrypted entry
point there, identifying the corresponding position by
hashing an ephemeral secret. Once all the entry points
are placed, the remaining slots are filled with random
bit strings, hence a third-party is unable to deduce the
number of recipients. The upper bound, corresponding
to the size of the hash table, is public information. This
approach, however, yields significant space overhead: in
the common case of a single recipient, all the unpopu-
lated slots are filled with random bits but still transmit-
ted. This approach also has the downside of imposing
an artificial limit on the number of recipients.

Expanding Hash Tables. We therefore include not
one but a sequence of hash tables whose sizes are consec-
utive powers of two. Immediately following the encoded
public key, the sender encodes a hash table of length
one, followed (if needed) by a hash table of length two,
one of length four, etc., until all the entry points are
placed. Unpopulated slots are filled with random bits.
To decrypt a PURB, a recipient decodes the public key

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 11

X, derives the ephemeral secret, computes the hash in-
dex in the first table (which is always zero), and tries
to decrypt the corresponding entry point. On failure,
the recipient moves to the second hash table, seeks the
correct position and tries again, and so on.

Definitions. We now formalize this scheme. Let r be
the number of recipients and (y1, Y1), . . . , (yr, Yr) be
their corresponding key pairs. The sender generates a
fresh key pair (x,X) and computes one ephemeral secret
ki = H(Yix) per recipient. The sender uses a second hash
function Ĥ to derive independent encryption keys as
Zi = Ĥ(“key” ‖ ki) and position keys as Pi = Ĥ(“pos” ‖
ki). Then the sender encrypts the data and creates r en-
try points EZ1(K,meta), ..., EZr

(K,meta). The position
of an entry in a hash table j is (Pi mod 2j). The sender
iteratively tries to place an entry point in HT0 (hash ta-
ble 0), then in HT1, and so on, until placement succeeds
(i.e., no collision occurs). If placement fails in the last
existing hash table HTj, the sender appends another
hash table HT(j + 1) of size 2j+1 and places the entry
point there. An example of a PURB encrypted for five
recipients is illustrated in Figure 4.

encoded pk HT0 HT1 HT2 payload

Hide(X) EZ1 (K) EZ3 (K) EZ4 (K) EK(data)

EZ2 (K) random

EZ5 (K)

random

Fig. 4. A PURB with hash tables of increasing sizes (HT0, HT1,
HT2). Five and two slots of the hash tables are filled with entry
points and random bit strings respectively. The metadata “meta”
in the entry points is omitted from the figure. Hash-table entries
are put one after another in the byte representation of a PURB.

To decode, a recipient reads the public key; derives
the ephemeral secret ki, the encryption key Zi and the
position key Pi; and iteratively tries matching positions
in hash tables until the decryption of the entry point
succeeds. Although the recipient does not initially know
the number of hash tables in a PURB, the recipient
needs to do only a single expensive public-key operation,
and the rest are inexpensive symmetric-key decryption
trials. In the worst case of a small message encrypted
to many recipients, or a non-recipient searching for a
nonexistent entry point, the total number of trial de-
cryptions required is logarithmic in the PURB’s size.

In the common case of a single recipient, only a sin-
gle hash table of size 1 exists, and the header is compact.

With r recipients, the worst-case compactness is hav-
ing r hash tables (if each insertion leads to a collision),
which happens with exponentially decreasing probabil-
ity. The expected number of trial decryptions is log2 r.

3.5 Multiple Public Keys and Suites

In the real world, not all data recipients’ keys might use
the same cipher suite. For example, users might prefer
different key lengths or might use public-key algorithms
in different groups. Further, we must be able to intro-
duce new cipher suites gradually, often requiring larger
and differently-structured keys and ciphertexts, while
preserving interoperability and compatibility with old
cipher suites. We therefore build on the above strawman
schemes to produce Multi-Suite PURB or MsPURB,
which offers cryptographic agility by supporting the en-
cryption of data for multiple different cipher suites.

When a PURB is multi-suite encrypted, the recipi-
ents need a way to learn whether a given suite has been
used and where the encoded public key of this suite is
located in the PURB. There are two obvious approaches
to enabling recipients to locate encoded public keys for
multiple cipher suites: to pack the public keys linearly at
the beginning of a PURB, or to define a fixed byte posi-
tion for each cipher suite. Both approaches incur unde-
sirable overhead. In the former case, the recipients have
to check all possible byte ranges, performing an expen-
sive public-key operation for each. The latter approach
results in significant space overhead and lack of agility,
as unused fixed positions must be filled with random
bits, and adding new cipher suites requires either assign-
ing progressively larger fixed positions or compatibility-
breaking position changes to existing suites.

Set of Standard Positions. To address this chal-
lenge, we introduce a set of standard byte positions
per suite. These sets are public and standardized for
all PURBs. The set refers to positions where the suite’s
public key could be in the PURB. For instance, let us
consider a suite PURB_X25519_AES128GCM_SHA256. We
can define—arbitrarily for now—the set of positions as
{0, 64, 128, 1024}. As the length of the encoded pub-
lic key is fully defined by the suite (32 bytes here, as
Curve25519 is used), the recipients will iteratively try
to decode a public key at [0:32), then [64:96), etc.

If the sender wants to encode a PURB for two suites
A and B, she needs to find one position in each set
such that the public keys do not overlap. For instance,
if setA = {0, 128, 256} and setB = {0, 32, 64, 128}, and
the public keys’ lengths are 64 and 32, respectively, one

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 12

possible choice would be to put the public key for suite
A in [0:64), and the public key for suite B in [64:96).
All suites typically have position 0 in their set, so that
in the common case of a PURB encoded for only one
suite, the encoded public key is at the beginning of the
PURB for maximum space efficiency. Figure 5 illus-
trates an example encoding. With well-designed sets,
in which each new cipher suite is assigned at least one
position not overlapping with those assigned to prior
suites, the sender can encode a PURB for any subset of
the suites. We address efficiency hereunder, and provide
a concrete example with real suites in Appendix B.

encoded pkA HT0 HT1 HT2 payload

Hide(XA) rnd Hide(XB) EZ2 (K) EK(data)

EZ1 (K) random

EZ3 (K)

random

Fig. 5. Example of a PURB encoded for three public keys in two
suites (suite A and B). The sender generates one ephemeral key
pair per suite (XA and XB). In this example, XA is placed at the
first allowed position, and XB moves to the second allowed position
(since the first position is taken by suite A). Those positions are
public and fixed for each suite. HT0 cannot be used for storing an
entry point, as XA partially occupies it; HT0 is considered “full”
and the entry point is placed in subsequent hash tables - here HT1.

Overlapping Layers. One challenge is that suites
might indicate different lengths for both their public
keys and entry points. An encoder can easily accom-
modate this requirement by processing each suite used
in a PURB as an independent logical layer. Concep-
tually, each layer is composed of the public key and
the entry-point hash tables for the recipients that use
a given suite, and all suites’ layers overlap. To place
the layers, an encoder first initializes a byte layout for
the PURB. Then, she reserves in the byte layout the po-
sitions for the public keys of each suite used. Finally,
she fills the hash tables of each suite with correspond-
ing entry points. She identifies whether a given hash-
table slot can be filled by checking the byte layout; the
bytes might already be occupied by an entry point of
the same or a different suite or one of the public keys.
The hash tables for each suite start immediately after
the suite public key’s first possible position. Thus, upon
reception of a PURB, a decoder knows exactly where to
start decryption trials. The payload is placed right after

the last encoded public key or hash table, and its start
position is recorded in the meta in each entry point.

Decoding Efficiency. We have not yet achieved our
decoding efficiency goal, however: the recipient must
perform several expensive public-key operations for each
cipher suite, one for each potential position until the
correct position is found. We reduce this overhead to a
single public-key operation per suite by removing the
recipient’s need to know in which of the suite positions
the public key was actually placed. To accomplish this,
a sender XORs bytes at all the suite positions and places
the result into one of them. The sender first constructs
the whole PURB as before, then she substitutes the
bytes of the already-written encoded public key with
the XOR of bytes at all the defined suite positions (if
they do not exceed the PURB length), which could even
correspond to encrypted payload. To decode a PURB,
a recipient starts by reading and XORing the values at
all the positions defined for a suite. This results in an
encoded public key, if that suite was used in this PURB.

Encryption Flexibility. Although multiple cipher
suites can be used in a PURB, so far these suites must
agree on one payload encryption scheme, as a payload
appears only once. To lift this constraint, we decou-
ple encryption schemes for entry points and payloads.
An entry-point encryption scheme is a part of a cipher
suite, whereas a payload encryption scheme is indicated
separately in the metadata “meta” in each entry point.

3.6 Non-malleability

Our encoding scheme MsPURB so far ensures integrity
only of the payload and the entry point a decoder uses. If
the entry points of other recipients or random-byte fill-
ings are malformed, a decoder will not detect this. If an
attacker obtains access to a decoding oracle, he can ran-
domly flip bits in an intercepted PURB, query the ora-
cle on decoding validity, and learn the structure of the
PURB including the exact length of the payload. An ex-
ample of exploiting malleability is the Efail attacks [42],
which tamper with PGP- or S/MIME-encrypted e-mails
to achieve exfiltration of the plaintext.

To protect PURBs from undetected modification,
we add integrity protection to MsPURB using a MAC
algorithm. A sender derives independent encryption
Kenc = Ĥ(“enc” ‖ K) and MAC Kmac = Ĥ(“mac” ‖ K)
keys from the encapsulated key K, and uses Kmac to
compute an authentication tag over a full PURB as
the final encoding step. The sender records the utilized

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 13

MAC algorithm in the meta in the entry points, along
with the payload encryption scheme that now does not
need to be authenticated. The sender places the tag
at the very end of the PURB, which covers the entire
PURB including encoded public keys, entry point hash
tables, payload ciphertext, and any padding required.

Because the final authentication tag covers the en-
tire PURB, the sender must calculate it after all other
PURB content is finalized, including the XOR-encoding
of all the suites’ public key positions. Filling in the tag
would present a problem, however, if the tag’s position
happened to overlap with one of the public key positions
of some cipher suite, because filling in the tag would cor-
rupt the suite’s XOR-encoded public key. To handle this
situation, the sender is responsible for ensuring that the
authentication tag does not fall into any of the possible
public key positions for the cipher suites in use.

To encode a PURB, a sender prepares entry points,
lays out the header, encrypts the payload, adds padding
(see §4), and computes the PURB’s total length. If any
of the byte positions of the authentication tag to be ap-
pended overlap with public key positions, the sender in-
creases the padding to next bracket, until the public-key
positions and the tag are disjoint. The sender proceeds
with XOR-encoding all suites’ public keys, and comput-
ing and appending the tag. Upon receipt of a PURB,
a decoder computes the potential public keys, finds and
decrypts her entry point, learns the decryption scheme
and the MAC algorithm with the size of its tag. She then
verifies the PURB’s integrity and decrypts the payload.

3.7 Complete Algorithms

We summarize the encoding scheme by giving detailed
algorithms. We begin by defining helper HdrPURB al-
gorithms that encode and decode a PURB header’s data
for a single cipher suite. We then use these algorithms
in defining the final MsPURB encoding scheme.

Recall the notion of a cipher suite S =
〈G, p, g, Hide(·),Π,H, Ĥ〉, where G is a cyclic group of
order p generated by g; Hide is a mapping: G→ {0, 1}λ;
Π = (E ,D) is an authenticated-encryption scheme; and
H : G→ {0, 1}2λ, Ĥ : {0, 1}∗ → {0, 1}2λ are two distinct
cryptographic hash functions. Let sk and pk be a private
key and a public key, respectively, for 〈G, p, g〉 defined in
a cipher suite. We then define the full HdrPURB and
MsPURB algorithms as follows:

Algorithms HdrPURB.
HdrPURB.Encap(R,S) → (τ, k1, . . . , kr): Given a set of
public keys R = {pk1 = Y1, . . . , pkr = Yr} of a suite S:
(1) Pick a fresh x ∈ Zp and compute X = gx where

p, g are defined in S.
(2) Derive k1 = H(Y x1), . . . , kr = H(Y xr).
(3) Map X to a uniform string τX = Hide(X).
(4) Output an encoded public key τ = τX and

k1, . . . , kr.
HdrPURB.Decap(sk(S), τ) → k: Given a private key
sk = y of a suite S and an encoded public key τ :
(1) Retrieve X = Unhide(τ).
(2) Compute and output k = H(Xy).

Algorithms MsPURB.
MsPURB.Setup(1λ) → S: Initialize a cipher suite S =
〈G, p, g, Hide(·),Π,H, Ĥ〉.

MsPURB.KeyGen(S) → (sk, pk): Given a suite S =
〈G, p, g, . . .〉, pick x ∈ Zp and compute X = gx. Out-
put (sk = x, pk = X).

MsPURB.Enc(R,m) → c: Given a set of public keys of
an indicated suite R = {pk1(S1), . . . , pkr(Sr)} and a
message m:
(1) Pick an appropriate symmetric-key encryption

scheme (Enc,Dec) with key length λK , a MAC
algorithm MAC = (M,V), and a hash function
H′ : {0, 1}∗ → {0, 1}λK such that the key length
λK matches the security level of the most con-
servative suite.

(2) Group R into R1, . . . , Rn, s.t. all public keys in a
group Ri share the same suite Si. Let ri = |Ri|.

(3) For each Ri:
(a) Run (τi, k1, . . . , kri) = HdrPURB.Encap(Ri, Si);
(b) Compute entry-point keys keysi = (Z1 =

Ĥ(“key” ‖ k1), . . . , Zri = Ĥ(“key” ‖ kri))
and positions auxi = (P1 = Ĥ(“pos” ‖
k1), . . . , Pri = Ĥ(“pos” ‖ kri)).

(4) Pick K $← {0, 1}λK .
(5) Record (Enc,Dec), MAC and H′ in meta.
(6) Compute a payload key Kenc = H′(“enc” ‖ K)

and a MAC key Kmac = H′(“mac” ‖ K).
(7) Obtain cpayload = EncKenc

(m).
(8) Run c′ ← Layout(τ1, . . . , τn, keys1, . . . , keysn,

aux1, . . . , auxn, S1, . . . , Sn,K,meta, cpayload) (see
Algorithm 2 on page 26).

(9) Derive an authentication tag σ =MKmac
(c′) and

output c = c′ ‖ σ.
MsPURB.Dec(sk(S), c) → m/⊥: Given a private key sk
of a suite S and a ciphertext c:

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 14

(1) Look up the possible positions of a public key
defined by S and XOR bytes at all the positions
to obtain the encoded public key τ .

(2) Run k ← HdrPURB.Decap(sk, τ).
(3) Derive Z = Ĥ(“key” ‖ k) and P = Ĥ(“pos” ‖ k).
(4) Parse c as growing hash tables and, using the

secret Z as the key, trial-decrypt the entries de-
fined by P to obtain K ‖ meta. If no decryption
is successful, return ⊥.

(5) Look up the hash function H′, a MAC = (M,V)
algorithm and the length of MAC output tag σ
from meta. Parse c as 〈c′ ‖ σ〉. Derive Kmac =
H′(“mac” ‖ K) and run VKmac

(c′, σ). On failure,
return ⊥.

(6) Derive Kenc = H′(“enc” ‖ K), read the start and
the end of the payload from meta (it is written by
Layout) to parse c′ as 〈hdr ‖ cpayload ‖ padding〉,
and return DecKenc

(cpayload) where Dec is the
payload decryption algorithm specified in meta.

Theorem 1. If for each cipher suite S = 〈G, p, g,
Hide(·),Π,H, Ĥ〉 used in a PURB we have that: the gap-
CDH problem is hard relative to G, Hide maps group
elements in G to uniform random strings, Π is ind$-
cca2-secure, and H, Ĥ and H′ are modeled as a ran-
dom oracle; and moreover that MAC is strongly unforge-
able with its MACs being indistinguishable from ran-
dom, and the scheme for payload encryption (Enc,Dec)
is ind$-cpa-secure, then MsPURB is ind$-cca2-secure
against an outsider adversary.

Proof. See Appendix D.2.

Theorem 1 also implies that an outsider adversary can-
not break recipient privacy under an ind$-cca2 attack,
as long as the two possible sets of recipients N0, N1 in-
duce the same distribution on the length of a PURB.

Theorem 2. If for each cipher suite S = 〈G, p, g,
Hide(·),Π,H, Ĥ〉, used in a PURB we have that: the gap-
CDH problem is hard relative to G, Hide maps group
elements in G to uniform random strings, Π is ind$-
cca2-secure, H and Ĥ are modeled as a random oracle,
and the order in which cipher suites are used for encod-
ing is fixed; then MsPURB is recipient-private against
an ind$-cpa insider adversary.

Proof. See Appendix D.3.

3.8 Practical Considerations

Cryptographic agility (i.e., changing the encryption
scheme) for the payload is provided by the metadata
embedded in the entry points. For entry points them-
selves, we recall that the recipient uses trial-decryption
and iteratively tests suites from a known, public, or-
dered list. To add a new suite, it suffices to add it to
this list. With this technique, a PURB does not need
version numbers. There is, however, a trade-off between
the number of supported suites and the maximum de-
cryption time. It is important that a sender follows the
fixed order of the cipher suites during encoding because
a varying order might result in a different header length,
given the same set of recipients and sender’s ephemeral
keys, which could be used by an insider adversary.

If a nonce-based authenticated-encryption scheme is
used for entry points, a sender needs to include a distinct
random nonce as a part of entry-point ciphertext (the
nonce of each entry point must be unique per PURB).
Some schemes, e.g., AES-GCM [9], have been shown to
retain their security when the same nonce is reused with
different keys. When such a scheme is used, there can
be a single global nonce to reuse by each entry point.
However, generalizing this approach of a global nonce
to any scheme requires further analysis.

Hardening Recipient Privacy. The given instantia-
tion of MsPURB provides recipient privacy only un-
der a chosen-plaintext attack. If information about de-
cryption success is leaked, an insider adversary could
learn identities of other recipients of a PURB by al-
tering the header, recomputing the MAC, and querying
candidates. A possible approach to achieving ind$-cca2
recipient privacy is to sign a complete PURB using a
strongly existentially unforgeable signature scheme and
to store the verification key in each entry point, as simi-
larly done in the broadcast-encryption scheme by Barth
et al. [4]. This approach, however, requires adaptation to
the multi-suite settings, and it will result in a significant
increase of the header size and decrease in efficiency. We
leave this question for future work.

Limitations. The MsPURB scheme above is not se-
cure against quantum computers, as it relies on discrete
logarithm hardness. It is theoretically possible to sub-
stitute IES-based key encapsulation with a quantum-
resistant variant to achieve quantum ind$-cca2 security.
The requirements for substitution are ind$-cca2 secu-
rity and compactness (it must be possible to securely
reuse sender’s public key to derive shared secrets with

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 15

multiple recipients). Furthermore, as MsPURB is non-
interactive, they do not offer forward secrecy.

Simply by looking at the sizes (of the header for
a malicious insider, or the total size for a malicious
outsider), an adversary can infer a bound on the to-
tal number of recipients. We partially address this with
padding in §4. However, no reasonable padding scheme
can perfectly hide this information. If this is a problem
in practice, we suggest adding dummy recipients.

Protecting concrete implementations against timing
attacks is a highly challenging task. The two following
properties are required for basic hardening. First, the
implementations of PURBs should always attempt to
decrypt all potential entry points using all the recipi-
ent’s suites. Second, decryption errors of any source as
well as inability to recover the payload should be pro-
cessed in constant time and always return ⊥.

4 Limiting Leakage via Length
The encoding scheme presented above in §3 produces
blobs of data that are indistinguishable from random
bit-strings of the same length, thus leaking no infor-
mation to the adversary directly via their content. The
length itself, however, might indirectly reveal informa-
tion about the content. Such leakage is already used ex-
tensively in traffic-analysis attacks, e.g., website finger-
printing [21, 39, 56, 57], video identification [43, 44, 50],
and VoIP traffic fingerprinting [15, 61]. Although so-
lutions involving application- or network-level padding
are numerous, they are typically designed for a specific
problem domain, and the more basic problem of length-
leaking ciphertexts remains. In any practical solution,
some leakage is unavoidable. We show, however, that
typical approaches such as padding to the size of a block
cipher are fundamentally insufficient for efficiently hid-
ing the plaintext length effectively, especially for plain-
texts that may vary in size by orders of magnitude.

We introduce Padmé, a novel padding scheme de-
signed for, though not restricted to, encoding PURBs.
Padmé reduces length leakage for a wide range of en-
crypted data types, ensuring asymptotically lower leak-
age of O(log logM), rather than O(logM) for com-
mon stream- and block-cipher-encrypted data. Padmé’s
space overhead is moderate, always less than 12% and
decreasing with file size. The intuition behind Padmé
is to pad objects to lengths representable as limited-
precision floating-point numbers. A Padmé length is
constrained in particular to have no more significant

bits (i.e., information) in its mantissa than in its ex-
ponent. This constraint limits information leakage to
at most double that of conservatively padding to the
next power of two, while reducing overhead through
logarithmically-increasing precision for larger objects.

Many defenses already exist for specific scenarios,
e.g., against website fingerprinting [21, 58]. Padmé does
not attempt to compete with tailored solutions in their
domains. Instead, Padmé aims for a substantial increase
in application-independent length leakage protection as
a generic measure of security/privacy hygiene.

4.1 Design Criterion

We design Padmé again using intermediate strawman
approaches for clarity. To compare these straightforward
alternatives with our proposal, we define a game where
an adversary guesses the plaintext behind a padded en-
crypted blob. This game is inspired by related work such
as defending against a perfect attacker [58].

Padding Game. Let P denote a collection of plaintext
objects of maximum lengthM : e.g., data, documents, or
application data units. An honest user chooses a plain-
text p ∈ P , then pads and encodes it into a PURB
c. The adversary knows almost everything: all possible
plaintexts P , the PURB c and the parameters used to
generate it, such as schemes and number of recipients.
The adversary lacks only the private inputs and decryp-
tion keys for c. The adversary’s goal is to guess the
plaintext p based on the observed PURB c of length |c|.

Design Goals. Our goal in designing the padding func-
tion is to manage both space overhead from padding and
maximum information leaked to the adversary.

4.2 Definitions

Overhead. Let c be a padded ciphertext resulting from
PURB-encoding plaintext p. For simplicity we focus
here purely on overhead incurred by padding, by assum-
ing an unrealistic, “perfectly-efficient” PURB encoding
that (unlikeMsPURB) incurs no space overhead for en-
cryption metadata. We define the additive overhead of
|c| over |p| to be |c|−|p|, the number of extra bytes added
by padding. The multiplicative overhead of padding is
|c|−|p|
|p| , the relative fraction by which |c| expands |p|.

Leakage. Let P be a finite space of plaintexts of max-
imum length M . Let f : N → N be a padding function
that yields the padded size |c| given a plaintext length

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 16

|p|, for p ∈ P . The image of f is a set R of padded
lengths that f can produce from plaintexts p ∈ P .
We quantify the leakage of padding function f in terms
of the number of elements in R. More precisely, we define
the leakage as the number of bits (amount of informa-
tion entropy) required to distinguish a unique element of
R, which is dlog2 |R|e. Intuitively, a function that pads
everything to a constant size larger than all plaintexts
(e.g., f(p) = 1 Tb) leaks no information to the adver-
sary, because |R| = 1 (and observing |c| = 1 Tb leaks
no information about the plaintext), whereas more fine-
grained padding functions leak more bits.

4.3 Strawman Padding Approaches

We first explore two strawman designs, based on differ-
ent padding functions f . A padding function that offers
any useful protection cannot be one-to-one, otherwise
the adversary could trivially invert it and recover |p|.
We also exclude randomized padding schemes for sim-
plicity, and because in practice adversaries can typically
cancel out and defeat random padding factors statisti-
cally over many observations. Therefore, only padding
functions that group many plaintext lengths into fewer
padded ciphertexts are of interest in our analysis.

Strawman 1: Fixed-Size Blocks. We first consider
a padding function f(L) = b · dL/be, where b is a block
size in bytes. This is how objects often get “padded” by
default in practice, e.g., in block ciphers or Tor cells.
In this case, the PURB’s size is a multiple of b, the
maximum additive overhead incurred is b−1 bytes, and
the leakage is dlog2 M/be = O(logM), where M is the
maximum plaintext size.

In practice, when plaintext sizes differ by orders
of magnitude, there is no good value for b that serves
all plaintexts well. For instance, consider b = 1MB.
Padding small files and network messages would in-
cur a large overhead: e.g., padding Tor’s 512B cells
to 1MB would incur overheads of 2000×. In contrast,
padding a 700MB movie with at most 1MB of chaff
would add only a little confusion to the adversary, as
this movie may still be readily distinguishable from oth-
ers by length. To reduce information leakage asymp-
totically over a vast range of cleartext sizes, therefore,
padding must depend on plaintext size.

Strawman 2: Padding to Powers of 2. The next
step is to pad to varying-size blocks, which is the basis
for our actual scheme. The intuition is that for small
plaintexts, the blocks are small too, yielding modest

overhead, whereas for larger files, blocks are larger and
group more plaintext lengths together, improving leak-
age asymptotically. A simple approach is to pad plain-
texts into buckets bi of size varying as a power of some
base, e.g., two, so bi = 2i. The padding function is thus
f(L) = 2dlog2 Le. We call this strawman NextP2.

Because NextP2 pads plaintexts of maximum
length M into at most dlog2Me buckets, the image R
of f contains only O(logM) elements. This represents
only O(log logM) bits of entropy or information leakage,
a major asymptotic improvement over fixed-size blocks.

The maximum overhead is substantial, however, al-
most +100%: e.g., a 17 GB Blu-Ray movie would be
padded into 32 GB. Using powers of another base x > 2,
we reduce leakage further at a cost of more overhead:
e.g., padding to the nearest power of 3 incurs overhead
up to +200%, with less leakage but still O(log logM).
We could reduce overhead by using a fractional base
1 < x < 2, but fractional exponents are cumbersome in
practical padding functions we would prefer to be sim-
ple and operate only on integers. Although this second
strawman succeeds in achieving asymptotically lower
leakage than padding to fixed-size blocks, it is less at-
tractive in practice due to high overhead when x ≥ 2
and due to computation complexity when 1 < x < 2.

4.4 Padmé

We now describe our padding scheme Padmé, which
limits information leakage about the length of the plain-
text for wide range of encrypted data sizes. Similarly
to the previous strawman, Padmé also asymptotically
leaks O(log logM) bits of information, but its overhead
is much lower (at most 12% and decreasing with L).

Intuition. In NextP2, any permissible padded length
L has the form L = 2n. We can therefore represent L as
a binary floating-point number with a blog2 nc + 1-bit
exponent and a mantissa of zero, i.e., no fractional bits.

In Padmé, we similarly represent a permissible
padded length as a binary floating-point number, but
we allow a non-zero mantissa at most as long as the ex-
ponent (see Figure 6). This approach doubles the num-
ber of bits used to represent an allowed padded length
– hence doubling absolute leakage via length – but al-
lows for more fine-grained buckets, reducing overhead.
Padmé asymptotically leaks the same number of bits as
NextP2, differing only by a constant factor of 2, but
reduces space overhead by almost 10× (from +100% to
+12%). More importantly, the multiplicative expansion
overhead decreases with L (see Figure 7).

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 17

blog2 nc+ 1-bit exponent 0-bit mantissa

In the strawman NextP2, the allowed length L = 2n can be rep-
resented as a binary floating-point number with a blog(n) + 1c bits
of exponent and no mantissa.

blog2 nc+ 1-bit exponent blog2 nc+ 1-bit mantissa

Fig. 6. Padmé represents lengths as floating-point numbers, allow-
ing the mantissa to be of at most blog2 nc+ 1 bits.

103 104 105 106

original size L [B]

0

20

40

60

80

100

p
ad
d
in
g
ov
er
h
ea
d
[%

]

PadMé

Next power of 2

Fig. 7. Maximum multiplicative expansion overhead with respect
to the plaintext size L. The naïve approach to pad to the next
power of two has a constant maximum overhead of 100%, whereas
Padmé’s maximum overhead decreases with L, following 1

2 log2 L
.

Algorithm. To compute the padded size L′ = f(L),
ensuring that its floating-point representation fits in at
most 2×blog2 nc+ 1 bits, we require the last E−S bits
of L′ to be 0. E = blog2 Lc is the value of the exponent,
and S = blog2Ec+1 is the size of the exponent’s binary
representation. The reason for the substraction will be-
come clear later. For now, we demonstrate how E and
S are computed in Table 1.

Recall that Padmé requires the mantissa’s bit
length to be no longer than that of the exponent. In Ta-
ble 1, for the value L = 9 the mantissa is longer than the

Table 1. The IEEE floating-point representations of 8, 9 and 10.
The value 8 has 1 bit of mantissa (the initial 1 is omitted), and
2 bits of exponents; 9 has a 3-bits mantissa and a 2-bit exponent,
while the value 10 as 2 bits of mantissa and exponents. Padmé
enforces the mantissa to be no longer than the exponent, hence 9
gets rounded up to the next permitted length 10.

L L E S IEEE representation
8 0b1000 3 2 0b1.0 * 2^0b11
9 0b1001 3 2 0b1.001 * 2^0b11
10 0b1010 3 2 0b1.01 * 2^0b11

exponent: it is “too precise” and therefore not a permit-
ted padded length. The value 10 is permitted, however,
so a 9 byte-long ciphertext is padded to 10 bytes.

To understand why Padmé requires the low E − S
bits to be 0, notice that forcing all the last E bits to 0 is
equivalent to padding to a power of two. In comparison,
Padmé allows S extra bits to represent the padded size,
with S defined as the bit length of the exponent.

Algorithm 1 specifies the Padmé function precisely.

Algorithm 1: Padmé
Data: length of content L
Result: length of padded content L′

E ← blog2 Lc // L’s floating-point exponent

S ← blog2Ec+ 1 // # of bits to represent E

z ← E − S // # of low bits to set to 0

m← (1� z)− 1 // mask of z 1’s in LSB

// round up using mask m to clear last z bits

L′ ← (L+m) & ∼m

Leakage and Overhead. By design, if the maximum
plaintext size is M , Padmé’s leakage is O(log logM)
bits, the length of the binary representation of the
largest plaintext. As we fix E−S bits to 0 and round up,
the maximum overhead is 2E−S − 1. We can estimate
the maximum multiplicative overhead as follows:

max overhead = 2E−S − 1
L

<
2E−S

L

≈ 2blog2 Lc−blog2 log2 Lc−1

L

≈ 1
2 · 2log2 log2 L

= 1
2 log2 L

(1)

Thus, Padmé’s maximum multiplicative overhead
decreases with respect to the file size L. The maximum
overhead is +11.11%, when padding a 9-byte file into 10
bytes. For bigger files, the overhead is smaller.

On Optimality. There is no clear sweet spot on the
leakage-to-overhead curve. We could easily force the last
1
2 (E − S) bits to be 0 instead of the last E − S bits, for
example, to reduce overhead and increase leakage. Still,
what matters in practice is the relationship between L

and the overhead. We show in §5.3 how this choice per-
forms with various real-world datasets.

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 18

5 Evaluation
Our evaluation is two-fold. First, we show the perfor-
mance and overhead of the PURB encoding and decod-
ing. Second, using several datasets, we show how Padmé
facilitates hiding information about data length.

5.1 Implementation

We implemented a prototype of the PURB encoding
and padding schemes in Go. The implementation follows
the algorithms in §3.7, and it consists of 2 kLOC. Our
implementation relies on the open-source Kyber library1

for cryptographic operations. The code is designed to be
easy to integrate with existing applications. The code
is still proof-of-concept, however, and has not yet gone
through rigorous analysis and hardening, in particular
against timing attacks.

Reproducibility. All the datasets, the source code for
PURBs and Padmé, as well as scripts for reproducing
all experiments, are available in the main repository2.

5.2 Performance of the PURB Encoding

The main question we answer in the evaluation of the
encoding scheme is whether it has a reasonable cost, in
terms of both time and space overhead, and whether it
scales gracefully with an increasing number of recipients
and/or cipher suites. First, we measure the average CPU
time required to encode and decode a PURB. Then,
we compare the decoding performance with the perfor-
mance of plain and anonymized OpenPGP schemes de-
scribed below. Finally, we show how the compactness of
the header changes with multiple recipients and suites,
as a percentage of useful bits in the header.

Anonymized PGP. In standard PGP, the identity—
more precisely, the public key ID—of the recipient is
embedded in the header of the encrypted blob. This
plaintext marker speeds up decryption, but enables a
third party to enumerate all data recipients. In the so-
called anonymized or “hidden” version of PGP [14, Sec-
tion 5.1], this key ID is substituted with zeros. In this
case, the recipient sequentially tries the encrypted en-
tries of the header with her keys. We use the hidden

1 https://github.com/dedis/kyber
2 https://github.com/dedis/purb

PGP variant as a comparison for PURBs, which also
does not indicate key IDs in the header but uses a more
efficient structure. The hidden PGP variant still leaks
the cipher suites used, the total length, and other plain-
text markers (version number, etc.).

5.2.1 Methodology

We ran the encoding experiments on a consumer-grade
laptop, with a quad-core 2.2 GHz Intel Core i7 processor
and 16GB of RAM, using Go 1.12.5. To compare with
an OpenPGP implementation, we use and modify Key-
base’s fork3 of the default Golang crypto library4, as the
fork adds support for the ECDH scheme on Curve25519.

We further modify Keybase’s implementation to
add the support for the anonymized OpenPGP scheme.
All the encoding experiments use a PURB suite based
on the Curve25519 elliptic-curve group, AES128-GCM
for entry point encryption and SHA256 for hashing. We
also apply the global nonce optimization, as discussed in
§3.8. For experiments needing more than one suite, we
use copies the above suite to ensure homogeneity across
timing experiments. The payload size in each experi-
ment is 1KB. For each data point, we generate a new
set of keys, one per recipient. We measure each data
point 20 times, using fresh randomness each time, and
depict the median value and the standard deviation.

5.2.2 Results

Encoding Performance. In this experiment, we first
evaluate how the time required to encode a PURB
changes with a growing number of recipients and cipher
suites, and second, how the main computational com-
ponents contribute to this duration. We divide the total
encoding time into three components. The first is au-
thenticated encryption of entry points. The second is
the generation and Elligator encoding of sender’s public
keys, one per suite. A public key is derived by multi-
plying a base point with a freshly generated private key
(scalar). If the resultant public key is not encodable,
which happens in half of the cases, a new key is gen-
erated. Point multiplication dominates this component,
constituting ≈ 90% of the total time. The third is the

3 https://github.com/keybase/go-crypto
4 https://github.com/golang/crypto

https://github.com/dedis/kyber
https://github.com/dedis/purb
https://github.com/keybase/go-crypto
https://github.com/golang/crypto

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 19

1 3 10 100
Number of Recipients

10−2

10−1

100

101

102

103

104

C
P
U
ti
m
e
[m

s]

EncHeader
KeyGen
SharedSecrets
Total time

1 suite
3 suites
10 suites

(a) The CPU cost of encoding a PURB given the number of recip-
ients and of cipher suites. EncHeader: encryption of entry points;
KeyGen: generation and hiding of public keys; SharedSecrets: com-
putation of shared secrets.

100 101 102 103 104

Number of Recipients

10−1

100

101

102

D
ec
od
in
g
ti
m
e
[m

s]

A
ss
em

b
ly
-

op
ti
m
iz
at
io
n

PGP standard

PGP hidden

PURBs flat

PURBs standard

(b) The worst-case CPU cost of decoding for PGP, PGP with hidden
recipients, PURBs without hash tables (flat), and standard PURBs.

Fig. 8. Performance of the PURBs encoding.

100 101 102

Number of Recipients

0

20

40

60

80

100

P
er
ce
nt
ag
e
of

u
se
fu
l
b
it
s
in

th
e
h
ea
d
er

[%
]

1 Suite

3 Suites

10 Suites

Fig. 9. Compactness of the PURB header (% of non-random bits).

derivation of a shared secret with each recipient, essen-
tially a single point-multiplication per recipient. Other
significant components of the total encoding duration
are payload encryption, MAC computation and layout
composition. We consider cases using one, three or ten
cipher suites. When more than one cipher suite is used,
the recipients are equally divided among them.

Figure 8a shows that in the case of a single recipi-
ent, the generation of a public key and the computation
of a shared secret dominate the total time and both
take ≈ 2ms. As expected, computing shared secrets
starts dominating the total time when the number of
recipients grows, whereas the duration of the public-key

generation only depends on a number of cipher suites
used. The encoding is arguably efficient for most cases
of communication, as even with hundred recipients and
ten suites, the time for creating a PURB is 235ms.

Decoding Performance. We measure the worst-case
CPU time required to decipher a standard PGP mes-
sage, a PGP message with hidden recipients, a flat
PURB that has a flat layout of entry points with-
out hash tables, and a standard PURB. We use the
Curve25519 suite in all the PGP and PURB schemes.

Figure 8b shows the results. The OpenPGP library
uses the assembly-optimized Go elliptic library for point
multiplication, hence the multiplication takes ≈ 0.05–
0.1ms there, while it takes ≈ 2–3ms in Kyber. This
results in a significant difference in absolute values for
small numbers of recipients. But our primary interest is
the dynamics of total duration. The time increase for
anonymous PGP is linear because, in the worst case, a
decoder has to derive as many shared secrets as there are
recipients. PURBs in contrast exhibit almost constant
time, requiring only a single multiplication regardless of
the number of recipients. A decoder still has to perform
multiple entry-point trial decryptions, but one such op-
eration would account for only ≈ 0.3% of the total time
in the single-recipient, single-suite scenario. The advan-
tage of using hash tables, and hence logarithmically less
symmetric-key operations, is illustrated by the differ-
ence between PURBs standard and PURBs flat, which

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 20

is noticeable after 100 recipients and will become more
pronounced if point multiplication is optimized.

Header Compactness. Compared with placing the
header elements linearly, our expanding hash table de-
sign is less compact, but enables more efficient decod-
ing. Figure 8b shows an example of this trade-off, PGP
hidden versus PURBs standard.

In Figure 9, we show the compactness, or the per-
centage of the PURB header that is filled with actual
data, with respect to the number of recipients and cipher
suites. Not surprisingly, an increasing number of recip-
ients and/or suites increases the collisions and reduces
compactness: 45% for 100 recipients and 1 suite, 36% for
100 recipients and 10 suites. In the most common case of
having one recipient in one suite, however, the header is
perfectly compact. Finally, there is a trade-off between
compactness and efficient decryption. We can easily in-
crease compactness by resolving entry point hash table
collisions linearly, instead of directly moving to the next
hash table. The downside is that the recipient has more
entry points to try.

5.3 Performance of Padmé Padding

In evaluating a padding scheme, one important met-
ric is overhead incurred in terms of bits added to the
plaintexts. By design, Padmé’s overhead is bounded
by 1

2·log2 L
. As discussed in §4.4, Padmé does not es-

cape the typical overhead-to-leakage trade-off, hence
Padmé’s novelty does not lie in this tradeoff. Rather,
the novelty lies in the practical relation between L and
the overhead. Padmé’s overhead is moderate, at most
+12% and much less for large PURBs.

A more interesting question is how effectively, given
an arbitrary collection of plaintexts P , Padmé hides
which plaintext is padded. Padmé was designed to work
with an arbritrary collection of plaintexts P . It remains
to be seen how Padmé performs when applied to a spe-
cific set of plaintexts P , i.e., with a distribution coming
from the real world, and to establish how well it groups
files into sets of identical length. In the next section, we
experiment with four datasets made of various objects: a
collection of Ubuntu packages, a set of YouTube videos,
a set of user files, and a set of Alexa Top 1M websites.

5.3.1 Datasets and Methodology

The Ubuntu dataset contains 56,517 unique packages,
parsed from the official repository of a live Ubuntu 16.04

Table 2. Datasets used in the evaluation of anonymity provided by
Padmé.

Dataset # of objects
Ubuntu packages 56,517
YouTube videos 191,250
File collections 3,027,460
Alexa top 1M Websites 2,627

instance. As packages can be referenced in multiple
repositories, we filtered the list by name and architec-
ture. The reason for padding Ubuntu software updates
is that the knowledge of updates enables a local eaves-
dropper to build a list of packages and their versions
that are installed on a machine. If some of the packages
are outdated and have known vulnerabilities, an adver-
sary might use it as an attack vector. A percentage of
software updates still occurs over un-encrypted connec-
tions, which is still an issue; but encrypted connections
to software-update repositories also expose which dis-
tribution and the kind of update being done (security
/ restricted5 / multiverse6 / etc). We hope that this
unnecessary leakage will disappear in the near future.

The YouTube dataset contains 191,250 unique
videos, obtained by iteratively querying the YouTube
API. One semantic video is generally represented by
2 − 5 .webm files, which corresponds to various video
qualities. Hence, each object in the dataset is a unique
(video, quality) pair. We use this dataset as if the videos
were downloaded in bulk rather than streamed; that
is, we pad the video as a single file. The argument
for padding YouTube videos as whole files is that, as
shown by related work [43, 44, 50], variable-bitrate en-
coding combined with streaming leak which video is be-
ing watched. If YouTube wanted to protect the privacy
of its users, it could re-encode everything to constant-
bitrate encoding and still stream it, but then the total
length of the stream would still leak information. Alter-
natively, it could adopt a model similar to that of the
iTunes store, where videos have variable bit-rate but
are bulk-downloaded; but again, the total downloaded
length would leak information, requiring some padding.
Hence, we explore how unique the YouTube videos are
by length with and without padding.

The files dataset was constituted by collecting
the file sizes in the home directories (‘~user/’) of 10
co-workers and contains 3,027,460 of both personal files
and configuration files. These files were collected on ma-

5 Contains proprietary software and drivers.
6 Contains software restricted by copyright.

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 21

102 104 106 108 1010 1012

Size of objects [bits]

0

20

40

60

80

100
P
er
ce
nt
ile

alexa

youtube

files home

ubuntu packages

Fig. 10. Distribution of the sizes of the objects in each dataset.

chines running Fedora, Arch, and Mac OS X. The argu-
ment for analyzing the uniqueness of those files is not
to encrypt each file individually – there is no point in
hiding the metadata of a file if the file’s location exposes
everything about it, e.g. ‘~user/.ssh’ – but rather to
quantify the privacy gain when padding those objects.

Finally, the Alexa dataset is made of 2,627 web-
sites from the Alexa Top 1M list. The size of each web-
site is the sum of all the resources loaded by the web-
page, which has been recorded by piloting a ‘chrome-
headless’ instance with a script, mimicking real brows-
ing. One reason for padding whole websites – as op-
posed to padding individual resources – is that related
work in website fingerprinting showed the importance
of the total downloaded size [21]. The effectiveness of
Padmé when padding individual resources, or for in-
stance bursts [58], is left as interesting future work.

5.3.2 Evaluation of Padmé

The distribution of the objects sizes for all the datasets
is shown in Figure 10. Intuitively, it is harder for an effi-
cient padding scheme to build groups of same-sized files
when there are large objects in the dataset. Therefore,
we expect the last 5% to 10% of the four datasets to
remain somewhat unique, even after padding.

For each dataset, we analyze the anonymity set size
of each object. To compute this metric, we group ob-
jects by their size, and report the distribution of the
sizes of these groups. A large number of small groups
indicate that many objects are easily identifiable. For
each dataset, we compare three different approaches:
the NextP2 strawman, Padmé, and padding to a fixed
block size of 512B, like a Tor cell. The anonymity met-
rics are shown in Figure 11, and the respective overheads
are shown in Table 3.

For all these datasets, despite containing very differ-
ent objects, a large percentage of objects have a unique
size: 87% in the case of YouTube video (Figure 11a),
45% in the case of files (Figure 11b), 83% in the case
of Ubuntu packages (Figure 11c), and 68% in the case
of Websites Figure 11d). These characteristics persist in
traditional block-cipher encryption (blue dashed curves)
where objects are padded only to a block size. Even af-
ter being padded to 512 bytes, the size of a Tor cell,
most object sizes remain as unique as in the unpadded
case. We observe similar results when padding to 256
bits, the typical block size for AES (not plotted).

NextP2 (red dotted curves) provides the best
anonymity: in the YouTube and Ubuntu datasets (Fig-
ures 11a and 11c), there is no single object that remains
unique with respect to its size; all belong to groups of at
least 10 objects. We cannot generalize this statement, of
course, as shown by the other two datasets (Figures 11b
and 11d). In general, we see a massive improvement with
respect to the unpadded case. Recall that this padding
scheme is impractically costly, adding +100% to the size
in the worst case and +50% in mean. In Table 3, we see
that the mean overhead is of +45%.

Finally, we see the anonymity provided by Padmé
(green solid curves). By design, Padmé has an accept-
able maximum overhead (maximum +12% and decreas-
ing). In three of the four datasets, there is a constant dif-
ference between our expensive reference point NextP2
and Padmé; despite having a decreasing overhead with
respect to L, unlike NextP2. This means that although
larger files have proportionally less protection (i.e., less
padding in percentage) with Padmé, this is not critical,
as these files are more rare and are harder to protect effi-
ciently, even with a naïve and costly approach. When we
observe the percentage of uniquely identifiable objects
(objects that trivially reveal their plaintext given our
perfect adversary), we see a significant drop by using
Padmé: from 83% to 3% for the Ubuntu dataset, from
87% to 3% for the Youtube dataset, from 45% to 8%
for the files dataset and from 68% to 6% for the Alexa
dataset. In Table 3, we see that the mean overhead of
Padmé is around 3%, more than an order of magnitude
smaller than NextP2. We also see how using a fixed
block size can yield high overhead in percentage, in ad-
dition to insufficient protection.

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 22

(a) Dataset ‘YouTube’:

100 101 102 103 104

Anonymity set size

0

20

40

60

80

100
P
er
ce
nt
ile

Unpadded

Tor cell (512B)

Padmé

Next power of 2

(b) Dataset ‘files’:

100 101 102 103 104 105

Anonymity set size

0

20

40

60

80

100

P
er
ce
nt
ile

Unpadded

Tor cell (512B)

Padmé

Next power of 2

(c) Dataset ‘Ubuntu’:

100 101 102 103 104

Anonymity set size

0

20

40

60

80

100

P
er
ce
nt
ile

Unpadded

Tor cell (512B)

Padmé

Next power of 2

(d) Dataset ‘Alexa’:

100 101 102

Anonymity set size

0

20

40

60

80

100

P
er
ce
nt
ile

Unpadded

Tor cell (512B)

Padmé

Next power of 2

Fig. 11. Analysis of the anonymity provided by various padding
approaches: NextP2, Padmé, padding with a constant block size
and no padding. We measure for each object with how many other
objects it becomes indistinguishable after being padded, and plot
the distribution. NextP2 provides better anonymity, at the cost of
a drastically higher overhead (at most +100% instead of +12%).
Overheads are shown in Table 3.

Table 3. Analysis of the overhead, in percentage, of various padding
approaches. In the first column, we use b = 512B as block size.

Dataset Fixed block size Next power of 2 Padmé
YouTube 0.01 44.12 2.23
files 40.15 44.18 3.64
Ubuntu 14.09 43.21 3.12
Alexa 36.71 47.12 3.07

6 Related Work
The closest related work PURBs build on is Broadcast
Encryption [4, 13, 19, 22, 24], which formalizes the se-
curity notion behind a ciphertext for multiple recipi-
ents. In particular, the most relevant notion in (Private)
Broadcast Encryption is Recipient Privacy [4], in which
an adversary cannot tell whether a public key is a valid
recipient for a given ciphertext. PURBs goes further
by enabling multiple simultaneous suites, while achiev-
ing indistinguishably from random bits in the ind$-cca2
model. PURBs also addresses size leakage.

Traffic morphing [62] is a method for hiding the
traffic of a specific application by masking it as traffic
of another application and imitating the corresponding
packet distribution. The tools built upon this method
can be standalone [55] or use the concept of Tor plug-
gable transport [37, 59, 60] that is applied to prevent-
ing Tor traffic from being identified and censored [12].
There are two fundamental differences with PURBs.
First, PURBs focus on a single unit of data; we do
not yet explore the question of the time distribution
of multiple PURBs. Second, traffic-morphing systems,
in most cases, try to mimic a specific transport and
sometimes are designed to only hide the traffic of one
given tool, whereas PURBs are universal and arguably
adaptable to any underlying application. Moreover, it
has been argued that most traffic-morphing tools do
not achieve unobservability in real-world settings due
to discrepancies between their implementations and the
systems that they try to imitate, because of the un-
covered behavior of side protocols, error handling, re-
sponses to probing, etc. [23, 29, 54]. We believe that for
a wide class of applications, using pseudo-random uni-
form blobs, either alone or in combination with other
lower-level tools, is a potential solution in a different
direction.

Traffic analysis aims at inferring the contents of
encrypted communication by analyzing metadata. The
most well-studied application of it is website fingerprint-
ing [21, 39, 56, 57], but it has also been applied to video
identification [43, 44, 50] and VoIP traffic [15, 61]. In

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 23

website fingerprinting over Tor, research has repeatedly
showed that the total website size is the feature that
helps an adversary the most [16, 21, 38]. In particular,
Dyer et al. [21] show the necessity of padding the whole
website, as opposed to individual packets, to prevent
an adversary from identifying a website by its observed
total size. They also systematized the existing padding
approaches. Wang et al. [58] propose deterministic and
randomized padding strategies tailored for padding Tor
traffic against a perfect attacker, which inspired our §4.

Finally, Sphinx [18] is an encrypted packet format
for mix networks with the goal of minimizing the infor-
mation revealed to the adversary. Sphinx shares similar-
ities with PURBs in its binary format (e.g., the pres-
ence of a group element followed by a ciphertext). Un-
like PURBs, however, it supports only one cipher suite,
and one direct recipient (but several nested ones, due to
the nature of mix networks). To the best of our knowl-
edge, PURBs is the first solution that hides all meta-
data while providing cryptographic agility.

7 Conclusion
Conventional encrypted data formats leak information,
via both unencrypted metadata and ciphertext length,
that may be used by attackers to infer sensitive informa-
tion via techniques such as traffic analysis and website
fingerprinting. We have argued that this metadata leak-
age is not necessary, and as evidence have presented
PURBs, a generic approach for designing encrypted
data formats that do not leak anything at all, except for
the padded length of the ciphertexts, to anyone with-
out the decryption keys. We have shown that despite
having no cleartext header, PURBs can be efficiently
encoded and decoded, and can simultaneously support
multiple public keys and cipher suites. Finally, we have
introduced Padmé, a padding scheme that reduces the
length leakage of ciphertexts and has a modest overhead
decreasing with file size. Padmé performs significantly
better than classic padding schemes with fixed block size
in terms of anonymity, and its overhead is asymptoti-
cally lower than using exponentially increasing padding.

Acknowledgments
We are thankful to our anonymous reviewers and our
meticulous proof shepherd Markulf Kohlweiss for their
constructive and thorough feedback that has helped

us to improve this paper. We also thank Enis Ceyhun
Alp, Cristina Basescu, Kelong Cong, Philipp Jovanovic,
Apostolos Pyrgelis and Henry Corrigan-Gibbs for their
helpful comments and suggestions, and Holly B. Cogliati
for text editing. This project was supported in part by
grant #2017-201 of the Strategic Focal Area “Personal-
ized Health and Related Technologies (PHRT)” of the
ETH Domain and by grants from the AXA Research
Fund, Handshake, and the Swiss Data Science Center.

References
[1] Ring-road: Leaking sensitive data in security protocols.

http://www.ringroadbug.com/.
[2] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Or-

acle Diffie-Hellman Assumptions and an Analysis of DHIES.
In Cryptographers’ Track at the RSA Conference, pages
143–158, 2001.

[3] Diego F Aranha, Pierre-Alain Fouque, Chen Qian, Mehdi
Tibouchi, and Jean-Christophe Zapalowicz. Binary Elligator
Squared. In International Workshop on Selected Areas in
Cryptography, pages 20–37, 2014.

[4] Adam Barth, Dan Boneh, and Brent Waters. Privacy in
Encrypted Content Distribution Using Private Broadcast
Encryption. In International Conference on Financial Cryp-
tography and Data Security, pages 52–64, 2006.

[5] Tal Be’ery and Amichai Shulman. A Perfect CRIME? Only
TIME Will Tell. Black Hat Europe, 2013.

[6] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David
Pointcheval. Key-Privacy in Public-Key Encryption. In
Advances in Cryptology – ASIACRYPT 2001, pages 566–
582, 2001.

[7] Mihir Bellare, Alexandra Boldyreva, Kaoru Kurosawa, and
Jessica Staddon. Multi-Recipient Encryption Schemes: Effi-
cient Constructions and Their Security. IEEE Transactions
on Information Theory, 53(11):3927–3943, 2007.

[8] Mihir Bellare and Chanathip Namprempre. Authenticated
Encryption: Relations among Notions and Analysis of the
Generic Composition Paradigm. Journal of Cryptology,
21(4):469–491, 2008.

[9] Mihir Bellare and Björn Tackmann. The Multi-user Security
of Authenticated Encryption: AES-GCM in TLS 1.3. In
Annual International Cryptology Conference, pages 247–276,
2016.

[10] Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and
Tanja Lange. Elligator: Elliptic-curve points indistinguish-
able from uniform random strings. In ACM Conference on
Computer and Communications Security, CCS ’13, 2013.

[11] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Ar-
gon2: New Generation of Memory-Hard Functions for Pass-
word Hashing and Other Applications. Technical report,
2015.

[12] Tor Blog. Tor at the heart: Bridges and pluggable trans-
ports. https://blog.torproject.org/tor-heart-bridges-and-
pluggable-transports, Dec 2016.

http://www.ringroadbug.com/
http://web.cs.ucdavis.edu/~rogaway/papers/dhies.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/dhies.pdf
https://eprint.iacr.org/2014/486.pdf
https://eprint.iacr.org/2014/486.pdf
https://www.cs.utexas.edu/~bwaters/publications/papers/privatebe.pdf
https://www.cs.utexas.edu/~bwaters/publications/papers/privatebe.pdf
https://www.cs.utexas.edu/~bwaters/publications/papers/privatebe.pdf
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://iacr.org/archive/asiacrypt2001/22480568.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bbks.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bbks.pdf
https://eprint.iacr.org/2000/025.pdf
https://eprint.iacr.org/2000/025.pdf
https://eprint.iacr.org/2000/025.pdf
https://www.iacr.org/archive/crypto2016/98140241/98140241.pdf
https://www.iacr.org/archive/crypto2016/98140241/98140241.pdf
https://elligator.cr.yp.to/elligator-20130828.pdf
https://elligator.cr.yp.to/elligator-20130828.pdf
https://password-hashing.net/argon2-specs.pdf
https://password-hashing.net/argon2-specs.pdf
https://password-hashing.net/argon2-specs.pdf
https://blog.torproject.org/tor-heart-bridges-and-pluggable-transports
https://blog.torproject.org/tor-heart-bridges-and-pluggable-transports

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 24

[13] Dan Boneh, Craig Gentry, and Brent Waters. Collusion
Resistant Broadcast Encryption with Short Ciphertexts and
Private Keys. In Advances in Cryptology – CRYPTO, pages
258–275, 2005.

[14] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer. OpenPGP Message Format. RFC 4880, Nov
2007.

[15] Yu-Chun Chang, Kuan-Ta Chen, Chen-Chi Wu, and Chin-
Laung Lei. Inferring speech activity from encrypted Skype
traffic. In IEEE Global Telecommunications Conference,
GLOBECOM, pages 1–5, 2008.

[16] Giovanni Cherubin, Jamie Hayes, and Marc Juarez. Website
Fingerprinting Defenses at the Application Layer. In Pri-
vacy Enhancing Technologies Symposium, PETS ’17, pages
2:186–2:203, 2017.

[17] George Danezis and Richard Clayton. Introducing Traffic
Analysis. 2007.

[18] George Danezis and Ian Goldberg. Sphinx: A Compact
and Provably Secure Mix Format. In IEEE Symposium on
Security and Privacy, S&P ’09, pages 269–282, 2009.

[19] Cécile Delerablée. Identity-Based Broadcast Encryption with
Constant Size Ciphertexts and Private Keys. In International
Conference on the Theory and Application of Cryptology
and Information Security, pages 200–215, 2007.

[20] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246, Aug 2008.

[21] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-Boo, I Still See You: Why Effi-
cient Traffic Analysis Countermeasures Fail. In IEEE Sym-
posium on Security and Privacy, S&P ’12, pages 332–346,
2012.

[22] Nelly Fazio and Irippuge Milinda Perera. Outsider-
Anonymous Broadcast Encryption with Sublinear Cipher-
texts. In International Workshop on Public Key Cryptogra-
phy, pages 225–242, 2012.

[23] Sergey Frolov and Eric Wustrow. The use of TLS in Cen-
sorship Circumvention. In Network and Distributed System
Security (NDSS) Symposium, 2019.

[24] Craig Gentry and Brent Waters. Adaptive Security in Broad-
cast Encryption Systems (with Short Ciphertexts). In An-
toine Joux, editor, Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages
171–188, 2009.

[25] Yoel Gluck, Neal Harris, and Angelo Prado. BREACH: reviv-
ing the CRIME attack. Black Hat USA, 2013.

[26] B. Greschbach, G. Kreitz, and S. Buchegger. The devil
is in the metadata 2014 – New privacy challenges in De-
centralised Online Social Networks. In IEEE International
Conference on Pervasive Computing and Communications
Workshops, pages 333–339, March 2012.

[27] Dominik Herrmann, Rolf Wendolsky, and Hannes Feder-
rath. Website Fingerprinting: Attacking Popular Privacy
Enhancing Technologies with the Multinomial Naïve-bayes
Classifier. In ACM Workshop on Cloud Computing Security,
CCSW ’09, pages 31–42, 2009.

[28] P. Hoffman and J. Schlyter. The DNS-Based Authentication
of Named Entities (DANE) Transport Layer Security (TLS)
Protocol: TLSA. RFC 6698, August 2012.

[29] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov.
The parrot is dead: Observing unobservable network commu-

nications. In IEEE Symposium on Security and Privacy, S&P
’13, pages 65–79, 2013.

[30] IDRIX. Veracrypt. https://www.veracrypt.fr/en/Home.html.
[31] Jonathan Katz and Yehuda Lindell. Introduction to modern

cryptography. CRC press, 2014.
[32] John Kelsey. Compression and information leakage of plain-

text. In International Workshop on Fast Software Encryp-
tion, Lecture Notes in Computer Science, pages 263–276,
2002.

[33] Hugo Krawczyk. Cryptographic extraction and key deriva-
tion: The HKDF scheme. In Annual Cryptology Conference,
pages 631–648, 2010.

[34] Kaoru Kurosawa. Multi-recipient public-key encryption with
shortened ciphertext. In International Workshop on Public
Key Cryptography, pages 48–63, 2002.

[35] Stevens Le Blond, Chao Zhang, Arnaud Legout, Keith Ross,
and Walid Dabbous. I Know Where You Are and What
You Are Sharing: Exploiting P2P Communications to Invade
Users’ Privacy. In ACM SIGCOMM Conference on Internet
Measurement Conference, IMC ’11, 2011.

[36] Jonathan Mayer, Patrick Mutchler, and John C. Mitchell.
Evaluating the privacy properties of telephone meta-
data. Proceedings of the National Academy of Sciences,
113(20):5536–5541, 2016.

[37] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Der-
akhshani, and Ian Goldberg. SkypeMorph: Protocol Obfus-
cation for Tor Bridges. In ACM Conference on Computer
and Communications Security, CCS ’12, pages 97–108,
2012.

[38] Rebekah Overdorf, Mark Juarez, Gunes Acar, Rachel Green-
stadt, and Claudia Diaz. How Unique is Your .onion?: An
Analysis of the Fingerprintability of Tor Onion Services. In
ACM Conference on Computer and Communications Secu-
rity, CCS ’17, pages 2021–2036, 2017.

[39] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website fingerprinting in onion routing based
anonymization networks. In ACM Workshop on Workshop
on Privacy in the Electronic Society, pages 103–114, 2011.

[40] Jeffrey Pang, Ben Greenstein, Ramakrishna Gummadi, Srini-
vasan Seshan, and David Wetherall. 802.11 User Finger-
printing. In ACM International Conference on Mobile Com-
puting and Networking, MobiCom ’07, pages 99–110, 2007.

[41] Colin Percival. Stronger key derivation via sequential
memory-hard functions. Self-published, pages 1–16, 2009.

[42] Damian Poddebniak, Christian Dresen, Jens Müller, Fabian
Ising, Sebastian Schinzel, Simon Friedberger, Juraj So-
morovsky, and Jörg Schwenk. Efail: Breaking S/MIME and
OpenPGP Email Encryption using Exfiltration Channels. In
USENIX Security Symposium, USENIX ’18, 2018.

[43] Andrew Reed and Benjamin Klimkowski. Leaky streams:
Identifying variable bitrate DASH videos streamed over en-
crypted 802.11n connections. In IEEE Consumer Commu-
nications & Networking Conference (CCNC), pages 1107–
1112, 2016.

[44] Andrew Reed and Michael Kranch. Identifying HTTPS-
protected Netflix videos in real-time. In ACM Conference on
Data and Application Security and Privacy, pages 361–368,
2017.

[45] E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, Aug 2018.

https://iacr.org/archive/crypto2005/36210252/36210252.pdf
https://iacr.org/archive/crypto2005/36210252/36210252.pdf
https://iacr.org/archive/crypto2005/36210252/36210252.pdf
https://tools.ietf.org/html/rfc4880
http://dirl.iis.sinica.edu.tw/pub/chang08_speech.pdf
http://dirl.iis.sinica.edu.tw/pub/chang08_speech.pdf
https://petsymposium.org/2017/papers/issue2/paper54-2017-2-source.pdf
https://petsymposium.org/2017/papers/issue2/paper54-2017-2-source.pdf
https://www.cl.cam.ac.uk/~rnc1/TAIntro-book.pdf
https://www.cl.cam.ac.uk/~rnc1/TAIntro-book.pdf
https://cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf
https://cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf
https://www.iacr.org/archive/asiacrypt2007/48330198/48330198.pdf
https://www.iacr.org/archive/asiacrypt2007/48330198/48330198.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://kpdyer.com/publications/oakland2012-peekaboo.pdf
https://kpdyer.com/publications/oakland2012-peekaboo.pdf
https://www.milinda-perera.com/pdf/FaPe12a.pdf
https://www.milinda-perera.com/pdf/FaPe12a.pdf
https://www.milinda-perera.com/pdf/FaPe12a.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-2-1_Frolov_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-2-1_Frolov_paper.pdf
https://eprint.iacr.org/2008/268.pdf
https://eprint.iacr.org/2008/268.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
https://pdfs.semanticscholar.org/a334/35bb523e314c3bc250368c07acaaef3e9bce.pdf
https://pdfs.semanticscholar.org/a334/35bb523e314c3bc250368c07acaaef3e9bce.pdf
https://pdfs.semanticscholar.org/a334/35bb523e314c3bc250368c07acaaef3e9bce.pdf
http://www.cs.jhu.edu/~sdoshi/jhuisi650/papers/spimacs/SPIMACS_CD/ccsw/p31.pdf
http://www.cs.jhu.edu/~sdoshi/jhuisi650/papers/spimacs/SPIMACS_CD/ccsw/p31.pdf
http://www.cs.jhu.edu/~sdoshi/jhuisi650/papers/spimacs/SPIMACS_CD/ccsw/p31.pdf
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6698
https://www.cs.cornell.edu/~shmat/shmat_oak13parrot.pdf
https://www.cs.cornell.edu/~shmat/shmat_oak13parrot.pdf
https://www.veracrypt.fr/en/Home.html
https://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf
https://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf
https://www.iacr.org/archive/crypto2010/62230625/62230625.pdf
https://www.iacr.org/archive/crypto2010/62230625/62230625.pdf
https://conferences.sigcomm.org/imc/2011/docs/p45.pdf
https://conferences.sigcomm.org/imc/2011/docs/p45.pdf
https://conferences.sigcomm.org/imc/2011/docs/p45.pdf
http://www.pnas.org/content/113/20/5536
http://www.pnas.org/content/113/20/5536
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-08.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-08.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2776.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2776.pdf
https://anonymous-proxy-servers.net/paper/wpes11-panchenko.pdf
https://anonymous-proxy-servers.net/paper/wpes11-panchenko.pdf
http://www.cs.yale.edu/homes/ramki/mobicom07.pdf
http://www.cs.yale.edu/homes/ramki/mobicom07.pdf
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
https://efail.de/efail-attack-paper.pdf
https://efail.de/efail-attack-paper.pdf
http://andrewreed.io/pubs/CCNC2016_Reed_Klimkowski_Identifying_VBR_DASH.pdf
http://andrewreed.io/pubs/CCNC2016_Reed_Klimkowski_Identifying_VBR_DASH.pdf
http://andrewreed.io/pubs/CCNC2016_Reed_Klimkowski_Identifying_VBR_DASH.pdf
http://andrewreed.io/pubs/CODASPY2017_Reed_Kranch_Identifying_HTTPS_Netflix.pdf
http://andrewreed.io/pubs/CODASPY2017_Reed_Kranch_Identifying_HTTPS_Netflix.pdf
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 25

[46] Ivan Ristić. HTTP client fingerprinting using ssl handshake
analysis. https://blog.ivanristic.com/2009/06/http-client-
fingerprinting-using-ssl-handshake-analysis.html, Jun 2009.

[47] Tom Ritter and Daniel Kahn Gillmor. Protecting the TLS
Handshake. IETF Interim, May 2014.

[48] Juliano Rizzo and Thai Duong. The CRIME attack.
Ekoparty, 2012.

[49] Phillip Rogaway. Nonce-based symmetric encryption. In
International Workshop on Fast Software Encryption, pages
348–358, 2004.

[50] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty
and the Burst: Remote Identification of Encrypted Video
Streams. In USENIX Security Symposium, USENIX ’17,
pages 1357–1374, 2017.

[51] Mehdi Tibouchi. Elligator squared: Uniform points on elliptic
curves of prime order as uniform random strings. In Inter-
national Conference on Financial Cryptography and Data
Security, pages 139–156, 2014.

[52] Thiago Valverde. Bad life advice - replay attacks against
https. http://blog.valverde.me/2015/12/07/bad-life-
advice/, Dec 2015.

[53] Guido Vranken. HTTPS Bicycle Attack.
https://guidovranken.com/2015/12/30/https-bicycle-
attack/, Dec 2015.

[54] Liang Wang, Kevin P Dyer, Aditya Akella, Thomas Risten-
part, and Thomas Shrimpton. Seeing through network-
protocol obfuscation. In ACM Conference on Computer and
Communications Security, CCS ’15, 2015.

[55] Qiyan Wang, Xun Gong, Giang TK Nguyen, Amir
Houmansadr, and Nikita Borisov. Censorspoofer: asymmetric
communication using IP spoofing for censorship-resistant
web browsing. In ACM Conference on Computer and Com-
munications Security, pages 121–132, 2012.

[56] Tao Wang and Ian Goldberg. Improved Website Fingerprint-
ing on Tor. In ACM Workshop on Workshop on Privacy in
the Electronic Society, pages 201–212, 2013.

[57] Tao Wang and Ian Goldberg. On realistically attacking Tor
with website fingerprinting. In Privacy Enhancing Technolo-
gies Symposium, PETS ’16, pages 4:21–4:36, 2016.

[58] Tao Wang and Ian Goldberg. Walkie-Talkie: An Efficient
Defense Against Passive Website Fingerprinting Attacks. In
USENIX Security Symposium, USENIX ’17, pages 1375–
1390, 2017.

[59] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran,
Linda Briesemeister, Steven Cheung, Frank Wang, and
Dan Boneh. StegoTorus: a camouflage proxy for the Tor
anonymity system. In ACM Conference on Computer and
Communications Security, pages 109–120, 2012.

[60] Philipp Winter, Tobias Pulls, and Juergen Fuss. Scramble-
Suit: A polymorphic network protocol to circumvent cen-
sorship. In ACM Workshop on Workshop on Privacy in the
Electronic Society, pages 213–224, 2013.

[61] Charles V Wright, Lucas Ballard, Fabian Monrose, and Ger-
ald M Masson. Language identification of encrypted VoIP
traffic: Alejandra y Roberto or Alice and Bob? In USENIX
Security Symposium, USENIX ’07, pages 43–54, 2007.

[62] Charles V. Wright, Scott E. Coull, and Fabian Monrose.
Traffic Morphing: An Efficient Defense Against Statistical
Traffic Analysis. In Network and Distributed Security Sym-
posium, pages 237–250, 2009.

[63] Fan Zhang, Wenbo He, Xue Liu, and Patrick G. Bridges.
Inferring Users’ Online Activities Through Traffic Analysis.
In ACM Conference on Wireless Network Security, WiSec
’11, pages 59–70, 2011.

[64] Philip R. Zimmermann. The Official PGP User’s Guide. MIT
Press, Cambridge, MA, USA, 1995.

A Layout
Algorithm 2 presents the Layout algorithm a sender
uses in step (8) of MsPURB.Enc. Layout arranges
PURB’s components in a continuous byte array.

Notation. We denote by a[i : j] ← b, the operation of
copying the bits of b at the positions a[i], a[i+1], · · · a[j−
1]. When written like this, b always has correct length of
j − i bits, and we assume i < j. If, before an operation
a[i : j] ← b, |a| < j, we first grow a to length j. We
sometimes write a[i :] ← b instead of a[i : |b|] ← b.
We use a “reservation array”, which is an array with a
method array.isFree(start,end) that returns True if and
only if none of the bits array[i], array[i+1], · · · array[j−1]
were previously assigned a value, and False otherwise.

B Positions for Public Keys
This section provides an example of possible sets of al-
lowed public key positions for the suites in the PURB
encoding. We emphasize that finding an optimal set of
positions was not the focus of this work. The intention
is merely to show that such sets exist and to offer a
concrete example (which is used for the compactness
experiment, Figure 9).

Example.We use the required and recommended suites
in the latest draft of TLS 1.3 [45] as an example of suites
a PURB could theoretically support. The suites and
groups are shown in Table 4.

The PURB concept of “suite” combines both
“suite” and “group” in TLS. For instance, a PURB
suite could be PURB_AES_128_GCM_SHA_256-
_SECP256R1. We show possible PURB suites in Ta-
ble 6. For the sake of simplicity, we introduce aliases in
the table, and will further refer to those suites as suite
A-F. In Table 5, we show a possible assignment. For in-
stance, if only suites A and C are used, the public key
for A would be placed in [0, 64], while value in [96, 160]
is changed so that the XOR of [0, 64] and [96, 160] equals
the key for B. Note that a sender must respect the suite

https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://datatracker.ietf.org/meeting/interim-2014-tls-01/materials/slides-interim-2014-tls-1-3
https://datatracker.ietf.org/meeting/interim-2014-tls-01/materials/slides-interim-2014-tls-1-3
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU
https://iacr.org/archive/fse2004/30170349/30170349.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster
https://eprint.iacr.org/2014/043.pdf
https://eprint.iacr.org/2014/043.pdf
http://blog.valverde.me/2015/12/07/bad-life-advice/
http://blog.valverde.me/2015/12/07/bad-life-advice/
https://guidovranken.com/2015/12/30/https-bicycle-attack/
https://guidovranken.com/2015/12/30/https-bicycle-attack/
https://kpdyer.com/publications/ccs2015-measurement.pdf
https://kpdyer.com/publications/ccs2015-measurement.pdf
http://www.cs.wichita.edu/~jadliwala/CS898AB/classpapers/week4/censorspoofer.pdf
http://www.cs.wichita.edu/~jadliwala/CS898AB/classpapers/week4/censorspoofer.pdf
http://www.cs.wichita.edu/~jadliwala/CS898AB/classpapers/week4/censorspoofer.pdf
https://www.cypherpunks.ca/~iang/pubs/webfingerprint-wpes.pdf
https://www.cypherpunks.ca/~iang/pubs/webfingerprint-wpes.pdf
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0027/popets-2016-0027.pdf
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0027/popets-2016-0027.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-wang-tao.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-wang-tao.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.6473&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.6473&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.436.2629&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.436.2629&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.436.2629&rep=rep1&type=pdf
https://www.usenix.org/legacy/events/sec07/tech/full_papers/wright/wright.pdf
https://www.usenix.org/legacy/events/sec07/tech/full_papers/wright/wright.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/wright.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/wright.pdf
http://www.math.unipd.it/~conti/teaching/CNS1415/atpapers/Profiling/profiling.pdf

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 26

Algorithm 2: Layout

// τi is an encoded public key of a suite Si

// keysi = 〈Z1, . . . , Zr〉 are entry-point keys

// auxi = 〈P1, . . . , Pr〉 are entry-point positions

// SuiteAllowedPositions are public values
Input : 〈τ1, . . . , τn〉, 〈keys1, . . . , keysn〉, 〈aux1, . . . , auxn〉,

〈S1, . . . , Sn〉, K, meta, cpayload, SuiteAllowedPositions
Output: byte[]
// determine public-key positions for each suite

1 layout = []; // public-key and entry-point assignments

2 pubkey_pos = []; // chosen primary position per suite

3 pubkey_fixed = []; // all positions fixed so far
4 foreach τi in 〈τ1, . . . , τn〉 do

// decide suite’s primary public key position
5 for pos ∈ SuiteAllowedPositions(Si) do
6 if pubkey_fixed.isFree(pos.start, pos.end) then
7 pubkey_pos.append(〈τi,pos〉);
8 layout[pos.start:pos.end] ← τi;
9 break;

10 end
11 end

// later suites cannot modify these positions

// without disrupting this suite’s XOR
12 for pos ∈ SuiteAllowedPositions(Si) do
13 pubkey_fixed[pos.start:pos.end] ← ‘F’;
14 end
15 end

// reserve entry-point positions in hash tables
16 entrypoints = [];
17 foreach auxi in 〈aux1, . . . , auxn〉 do
18 while auxi not empty do
19 P ← auxi.pop();
20 ht_len = 1; // length of current hash table

21 ht_pos = 0; // position of this hash table
22 while True do
23 index = P mod ht_len; // selected entry
24 start = ht_pos + index * entrypoint_len;
25 end = start + entrypoint_len;
26 if layout.isFree(start, end) then
27 layout[start:end] $← {0, 1}end-start;
28 entrypoints.append(〈start, end, Si〉);
29 break;
30 end

// if not free, double table size
31 ht_pos += ht_len * entrypoint_len;
32 ht_len *= 2;
33 end
34 end
35 end

// fill empty space in the layout with random bits
36 foreach start, end < layout.end do
37 if layout.isFree(start, end) then
38 layout[start:end] $← {0, 1}end-start

39 end
40 end

// place the payload just past the header layout
41 meta.payload_start = |layout|;
42 meta.payload_end = |layout| + |cpayload|;

// fill entry-point reservations with ciphertexts
43 foreach keysi in 〈keys1, . . . , keysn〉 do
44 while keysi not empty do
45 Z = keysi.pop();
46 〈start, end, S〉 ← entrypoints.pop();

// Encrypt an entry point
47 e← EZ(K ‖ meta);
48 layout[start:end] ← e;
49 end
50 end

// compute the padding and append it to layout
51 purb_len ← Padmé (|layout| + |cpayload| + mac_len);
52 mac_pos ← purb_len - mac_len;
53 while not pubkey_fixed.isFree(mac_pos, purb_len) do

// MAC mustn’t overlap public-key positions:

// if so, we pad to the next Padmé size
54 purb_len ← Padmé (purb_len + 1);
55 mac_pos ← purb_len - mac_len;
56 end
57 padding_len ← mac_pos - meta.payload_end;

58 padding $← {0, 1}padding_len; // random padding
59 layout.append(cpayload ‖ padding);

// XOR suites’ public key positions into primary
60 for (τi, pos) ∈ pubkey_pos do
61 buffer = τi;
62 for altpos ∈ SuiteAllowedPositions(Si) do
63 buffer = buffer ⊕ layout[altpos.start : altpos.end];
64 end
65 layout[pos.start:pos.end] ← buffer;

// now
⊕

SuiteAllowedPositions(Si) = τi

66 end
67 return layout

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 27

Table 4. Suites and groups described in the latest draft of TLS 1.3.

Symmetric/Hash Algorithms
TLS_AES_128_GCM_SHA256 Required
TLS_AES_256_GCM_SHA384 Recommended
TLS_CHACHA20_POLY1305_SHA256 Recommended
TLS_AES_128_CCM_SHA256 Optional
TLS_AES_128_CCM_8_SHA256 Optional
Key Exchange Groups
secp256r1 Required
x25519 Recommended
secp384r1 Optional
secp521r1 Optional
x448 Optional
ffdhe2048 Optional
ffdhe3072 Optional
ffdhe4096 Optional
ffdhe6144 Optional
ffdhe8192 Optional

Table 5. Example of Allowed Positions per suite. Here, the algo-
rithm simply finds any mapping so that each suite can coexist in a
PURB. The receiver must XOR the values at all possible positions
of a suite to obtain an encoded public key..

Suite Possible positions
A {0}
B {0, 64}
C {0, 96}
D {0, 32, 64, 160}
E {0, 64, 128, 192}
F {0, 32, 64, 96, 128, 256}

order A-F during encoding. We provide a simple python
script to design such sets in the code repository.

C Default Schemes for Payload
In addition to PURB suites, a list of suitable candidates
for a payload encryption scheme (Enc,Dec), a MAC al-
gorithm MAC, and a hash function H′ must be deter-
mined and standardized. This list can be seamlessly
updated with time, as an encoder makes the choice
and records it in meta on per-PURB basis. The cho-
sen schemes are shared by all the suites included in
the PURB, hence these schemes must match the se-
curity level of the suite with the highest bit-wise se-
curity. An example of suitable candidates, given the
suites from Table 6, is (Enc,Dec) = AES256-CBC,
MAC = HMAC-SHA384, and H′ = SHA3-384.

D Security Proofs
This section contains the proofs of the security proper-
ties provided by MsPURB.

D.1 Preliminaries

Before diving into proving the security of our scheme,
we define what it means to be ind-cca2- and ind$-cca2-
secure for the primitives that MsPURB builds upon.

Key-Encapsulation Mechanism (KEM). Follow-
ing the definition from Katz & Lindell [31], we begin by
defining KEM as a tuple of PPT algorithms.

Syntax KEM.
KEM.Setup(1λ)→ S: Given a security parameter λ, ini-
tialize a cipher suite S.

KEM.KeyGen(S)→ (sk, pk): Given a cipher suite S, gen-
erate a (private, public) key pair.

KEM.Encap(pk)→ (c, k): Given a public key pk, output
a ciphertext c and a key k.

KEM.Decap(sk, c) → k/⊥: Given a private key sk and
a ciphertext c, output a key k or a special symbol ⊥
denoting failure.

Consider an ind-cca2 security game against an adaptive
adversary A:

Game KEM.
The KEM ind-cca2 game for a security parameter λ is
between a challenger and an adaptive adversary A. It
proceeds along the following phases.
Init: The challenger and adversary take λ as input. The
adversary outputs a cipher suite S it wants to attack.
The challenger verifies that S is a valid cipher suite,
i.e., that it a valid output of KEM.Setup(1λ). The chal-
lenger aborts, and sets b? $← {0, 1} if S is not valid.

Setup: The challenger runs (sk, pk)← KEM.KeyGen(S)
and gives pk to A.

Phase 1: A can make decapsulation queries qDecap(c)
with ciphertexts c of its choice, to the challenger who
responds with KEM.Decap(sk, c).

Challenge: The challenger runs (c?, k0) ←
KEM.Encap(pk) and generates k1

$← {0, 1}|k0|. The
challenger picks b $← {0, 1} and sends 〈c?, kb〉 to A.

Phase 2: A continues querying qDecap(c) with the re-
striction that c 6= c?.

Guess: A outputs its guess b? for b and wins if b? = b.

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 28

Table 6. PURB Suites. “Suite A” is a shorthand for the first suite.

Alias PURB Suite |Public key| [B] |EntryPoint| [B]
A PURB_AES_128_GCM_SHA_256_SECP256R1 64 48
B PURB_AES_128_GCM_SHA_256_X25519 32 48
C PURB_AES_256_GCM_SHA_384_SECP256R1 64 80
D PURB_AES_256_GCM_SHA_384_X25519 32 80
E PURB_CHACHA20_POLY1305_SHA_256_SECP256R1 64 64
F PURB_CHACHA20_POLY1305_SHA_256_X25519 32 64

We define A’s advantage in this game as:

Advcca2KEM,A(1λ) = 2
∣∣Pr[b = b?]− 1

2
∣∣ .

We say that a KEM is ind-cca2-secure if Advcca2KEM,A(1λ)
is negligible in the security parameter.

Definition 3. We that a KEM is perfectly correct if
for all (sk, pk) ← KEM.KeyGen(S) and for all (c, k) ←
KEM.Encap(pk) we have k = KEM.Decap(sk, c).

Instantiation IES-KEM.
We instantiate a KEM based on the Integrated Encryp-
tion Scheme [2] (see §2.2 for details).
IES.Setup(1λ): Initialize a cipher suite S = 〈G, p, g,H〉,
where G is a cyclic group of order p and generated by
g, and H : G→ {0, 1}2λ is a hash function.

IES.KeyGen(S): Pick x ∈ Zp, compute X = gx, and out-
put (sk = x, pk = X).

IES.Encap(pk): Given pk = Y , pick x ∈ Zp, compute
X = gx, and output 〈c = X, k = H(Y x)〉.

IES.Decap(sk, c): Given sk = y and c = X, output a key
k = H(Xy).

Theorem 4 (Theorem 11.22 [31] and Section 7 [2]). If
the gap-CDH problem is hard relative to G, and H is
modeled as a random oracle, then IES-KEM is an ind-
cca2-secure KEM.

Multi-Suite Broadcast Encryption. We consider
MsPURB as a multi-suite broadcast encryption
(MSBE) scheme extending the single-suite setting by
Barth et al. [13].

Syntax MSBE.
MSBE.Setup(1λ) → S: Given a security parameter λ,
initialize a cipher suite S.

MSBE.KeyGen(S) → (sk, pk): Given a cipher suite S,
generate a (private, public) key pair.

MSBE.Enc(R,m) → c: Given a set of public keys
R = {pk1, . . . , pkr} with corresponding cipher suites
S1, . . . , Sr and a message m, generate a ciphertext c.

MSBE.Dec(sk, c) → m/⊥: Given a private key sk and
the ciphertext c, return a message m or ⊥ if c does
not decrypt correctly.

Note that MsPURB as described in §3.7 satisfies the
syntax of a multi-suite broadcast encryption scheme.

Barth et al. [4] define the security of broadcast en-
cryption schemes under adaptive chosen-chiphertext at-
tack for single-suite schemes. Here, we adjust this defini-
tion to the multi-suite setting, and instead require that
the ciphertext is indistinguishable from a random string
(ind$-cca2).

Game MSBE.
The MSBE ind$-cca2 game for a security parameter λ
is between a challenger and an adversary A. It proceeds
along the following phases.
Init: The challenger and adversary take λ as input.
The adversary outputs a number of recipients r and
corresponding cipher suites S1, . . . , Sr it wants to at-
tack. Let s be the number of unique cipher suites.
The challenger verifies, for each i ∈ {1, . . . , r}, that Si
is a valid cipher suite, i.e., that it is a valid output
of MSBE.Setup(1λ). The challenger aborts, and sets
b?

$← {0, 1} if the suites are not all valid.
Setup: The challenger generates private-public key
pairs for each recipient i given by A by run-
ning (ski, pki) ← MSBE.KeyGen(Si) and gives R =
{pk1, . . . , pkr} to A.

Phase 1: A can make decryption queries qDec(pki, c)
to the challenger for any pki ∈ R and any ci-
phertext c of its choice. The challenger replies with
MSBE.Dec(ski, c).

Challenge: A outputs m?. The challenger generates
c0 = MSBE.Enc(R,m?) and c1

$← {0, 1}|c0|. The chal-
lenger picks b $← {0, 1} and sends c? = cb to A.

Phase 2: A continues making decryption queries
qDec(pki, c) with a restriction that c 6= c?.

Guess: A outputs its guess b? for b and wins if b? = b.

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 29

We define A’s advantage in this game as:

Advcca2-outmsbe,A (1λ) = 2
∣∣Pr[b = b?]− 1

2
∣∣ .

We say that a MSBE scheme is ind$-cca2-secure if
Advcca2-outmsbe,A (1λ) is negligible in the security parameter.

Finally, we require that the MAC scheme is strongly
unforgeable under an adaptive chosen-message attack
and outputs tags that are indistinguishable from ran-
dom. A MAC scheme is given by the algorithms
MAC.KeyGen,M, and V, where MAC.KeyGen(1λ) out-
puts a key Kmac. To compute a tag on the message
m, run σ = MKmac

(m). The verification algorithm
VKmac

(m,σ) outputs > if σ is a valid tag on the mes-
sage m and ⊥ otherwise. We formalize the strong un-
forgeability and indistinguishability properties using the
following simple games.

Game MAC-sforge.
The MAC-sforge game for a security parameter λ is be-
tween a challenger and an adversary A.
Setup: The challenger and adversary take λ as in-
put. The challenger generates a MAC key Kmac ←
MAC.KeyGen(1λ).

Challenge: The adversary A is given oracle access to
the oraclesM(·) and V(·). On a queryM(m) the chal-
lenger returns σ = MKmac

(m). On a query V(m,σ)
the challenger returns VKmac

(m,σ).
Output: A eventually outputs a message-tag pair

(m,σ). A wins if VKmac
(m,σ) = 1 and A has not

made a queryM(m) that returned σ.

We define A’s advantage in this game as:

AdvsufMAC,A(1λ) = Pr[A wins].

We say that a MAC scheme is strongly unforgeable un-
der adaptive chosen-message attacks if AdvsufMAC,A(1λ) is
negligible in the security parameter.

Game MAC-IND$.
The MAC-IND$ game is between a challenger and an
adversary A.
Setup: The challenger and adversary take λ as in-
put. The challenger generates a MAC key Kmac ←
MAC.KeyGen(1λ) and picks a bit b $← {0, 1}.

Challenge: The adversary outputs a message m.
The challenger computes σ0 = MKmac

(m) and
σ1

$← {0, 1}|σ0| and returns σb.
Output: The adversary outputs its guess b? of b, and
wins if b? = b.

We define A’s advantage in this game as:

Advind$MAC,A(1λ) = 2
∣∣Pr[b = b?]− 1

2
∣∣ .

We say that the tags of a MAC scheme are indistin-
guishable from random if Advind$MAC,A(1λ) is negligible in
the security parameter.

D.2 Proof of Theorem 1

We prove the ind$-cca2 security of MsPURB as
an MSBE scheme. More precisely, we will show that
there exists adversaries B1, . . . ,B5 such that

Advcca2-outmsbe,A (1λ) ≤ r
(

Advcca2KEM,B1(1λ) + Advind$-cca2Π,B2
(1λ)

)
+

AdvsufMAC,B3(1λ) + Advind$MAC,B4
(1λ)+

Advind$-cpa(Enc,Dec),B5
(1λ).

Thus, given our assumptions, Advcca2-outmsbe,A (1λ) is indeed
negligible in λ. To do so we use a sequence of games.
This sequence of games step by step transforms from the
situation where b = 0 in the ind$-cca2 game of MSBE,
i.e., the adversary receives the real ciphertext, to b = 1,
i.e., the adversary receives a random string.

Game G0.
This game is as the original MSBE ind$-cca2 game
where b = 0.

Game G1.
As in G0, but the challenger will no longer call
HdrPURB.Decap to derive the keys ki on ciphertexts
derived from the challenge ciphertext c?. In particu-
lar, for every recipient pki using a suite Sj , we store
(X?

j , k
?
i) when constructing the PURB headers for the

challenge ciphertext. Then, when receiving a decryp-
tion query for a recipient qDec(pki(Sj), c), we proceed
by following MsPURB.Dec. If the encoded public key
τ recovered in step (1) of MsPURB.Dec is such that
Unhide(τ) = X?

j , then we use ki = k?i (as stored when
creating the challenge ciphertext) directly, rather than
computing ki = HdrPURB.Decap(yi, τ) in step (3) of
MsPURB.Dec. If the encoded public key τ does not
match X?

j , then the challenger proceeds as before.

Game G2.
As in G1, but we change how the keys k?1 , . . . , k?r for the
challenge ciphertext are computed in HdrPURB.Encap.
Rather than computing k?i = H(Y xi) as in step (2) of
HdrPURB.Encap, we set k?i

$← {0, 1}λH for all the keys,
where λH is the bit-length of the corresponding hash
function H. Recall that as per the changes in G1, the
challenger will store k?i generated in this way, and use

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 30

them directly (without calling HdrPURB.Decap) when
asked to decrypt variants of the challenge ciphertext.

Game G3.
Let ei be the encrypted entry point under key Zi (de-
rived from ki) for recipient i computed in line 47 of
Layout (step (8) of MsPURB.Enc). The game goes
as in G2, but for the challenge ciphertext, the chal-
lenger saves the mapping of the challenge entry points
and the encapsulated key K? with metadata meta?:
(e?i , k?i ,K? ‖ meta?). If the challenger receives a decryp-
tion query qDec(pki(Si), c) it proceeds as before, except
when it should decrypt e?i using key k?i in step (4) of
MsPURB.Dec. In that case, it acts as if the decryption
returned K? ‖ meta?.

Game G4.
As in G3, but the challenger replaces e?1, . . . , e?r in the
challenge ciphertext with random strings of the appro-
priate length. Note that per the change in G3, the chal-
lenger will not try to decrypt these e?i , but will recover
K? and meta? directly instead.

Game G5.
As in G4, but the challenger replies differently to
the queries qDec(pki(Si), c) where c is not equal the
challenge ciphertext c? but the encoded public key
τ recovered in step (1) of MsPURB.Dec is such that
Unhide(τ) = X?

j and ei = e?i . In this case, the challenger
replies with ⊥ directly, without running VKmac

(·) (step
(5) of MsPURB.Dec).

Game G6.
As in G5, but the challenger replaces the integrity tag
in the challenge ciphertext in step (9) of MsPURB.Enc
with a random string of the same length.

Game G7.
As in G6, but the challenger replaces the encrypted pay-
load cpayload in the challenge ciphertext in step (7) of
MsPURB.Enc with a random string of the same length.

Conclusion. As of G7, all ciphertexts in the PURBs
header, the payload encryption and the MAC have been
replaced by random strings. The open slots in the hash
tables are always filled with random bits. Finally, the
encoded keys τ = Hide(X) are indistinguishable from
random strings as well, since the keys X are random.
Therefore, the PURB ciphertexts c are indeed indistin-
guishable from random strings, as in the MSBE game
with b = 1.

Proof. Let Wi be the event that A outputs b? = 1 in
game Gi. We aim to show that

Advcca2-outmsbe,A (1λ) =
∣∣Pr[b? = 1 | b = 0]− Pr[b? = 1 | b = 1]

∣∣
=
∣∣Pr[W0]− Pr[W7]

∣∣
is negligible. To do so, we show that each of the steps in
the sequence of games is negligible, i.e., that

∣∣Pr[Wi]−
Pr[Wi+1]

∣∣ is negligible. The result then follows from the
triangle inequality.

G0 <–> G1.
As long as the KEMs are perfectly correct, the games
G0 and G1 are identical. Therefore:∣∣Pr[W0]− Pr[W1]

∣∣ = 0.

G1 <–> G2.
We show that the games G1 and G2 are indistinguish-
able using a hybrid argument on the number of recipi-
ents r. Consider the hybrid gamesHi where the first i re-
cipients use random keys k1, . . . , ki as in G2, whereas the
remaining r − i recipients use the real keys ki+1, . . . , kr
as in G1. Then G1 = H0 and G2 = Hr.

We prove that A cannot distinguish Hj−1 from Hj .
Let Sj = 〈G, p, g, Hide(·),Π,H, Ĥ〉, be the suite corre-
sponding to recipient j. Suppose A can distinguishHj−1
from Hj , then we can build a distinguisher B against
the ind$-cca2 security of the IES KEM for the suite
S′j = 〈G, p, g,H〉. Recall that B receives, from its ind$-
cca2-KEM challenger,
– a public key Y ;
– a challenge 〈X?, k?〉, where depending on bit b $←
{0, 1}, we have k? = H(Y x?) if b = 0 or k? $←
{0, 1}λH if b = 1 (where λH is the bit-length of H);

– access to a Decap(·) oracle for all but X?.
At the start of the game, B will set pkj = Y , so that
the public key of recipient j matches that of its IES
KEM challenger. Note that B does not know the cor-
responding private key yj . For all other recipients i, B
sets (ski = yi, pki = Yi) = MsPURB.KeyGen(Si).

The distinguisher B will use its challenge (X?, k?)
to construct the challenge ciphertext for A. In particu-
lar, when running HdrPURB.Encap for a suite Sj , it sets
X = X? in step (1) of HdrPURB.Encap. Moreover, for
recipient j it will use kj = k?. For all other recipients i
with corresponding suites Si it proceeds as follows when
computing ki in HdrPURB.Encap.
– If i < j, then it sets ki

$← {0, 1}λH for appropriate
λH ;

– If i > j and the suite Si for user i is the same as
suite Sj for user j, then it sets ki = H(X?yi); and

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 31

– If i > j, but Sj 6= Si, then it computes ki as per
steps (1) and (2) of HdrPURB.Encap.

Thereafter, B continues running MsPURB.Enc as before.
Whenever B receives a decryption query for a user

pki, it proceeds as before. When it receives a decryption
query for user pkj , it uses its IES-KEM Decap oracle in
step (2) of HdrPURB.Decap. Note that B is not allowed
to call Decap(·) on X?, but as per the changes in G1,
it will directly use k? for user pkj if HdrPURB.Decap
recovers X? in step (1).

If b = 0 in B’s IES KEM challenge, then recipient
j’s key kj = H(Y x?), and hence B perfectly simulates
Hj−1. If b = 1 in B’s IES KEM challenge, then j’s key
kj

$← {0, 1}λH and, hence, B perfectly simulates Hj . If
A distinguishes Hj−1 from Hj then B breaks the ind$-
cca2-KEM security of IES. Hence, Hj−1 and Hj are in-
distinguishable. Repeating this argument r times shows
that G1 and G2 are indistinguishable. More precisely:∣∣Pr[W1]− Pr[W2]

∣∣ ≤ r · Advcca2KEM,A(1λ).

G0 <–> G1.
By perfect correctness of the authentication encryption
scheme, we have that for all keys k and messages m that
Dk(Ek(m)) = m, thus, games G2 and G3 are identical.
Therefore: ∣∣Pr[W2]− Pr[W3]

∣∣ = 0.

G3 <–> G4.
Similarly to the proof above, consider the hybrid games
Hi where the first i entry points are substituted with
random strings e1, . . . , ei as in G4, whereas the remain-
ing r − i are the actual encryptions as in G3. Then
G3 = H0 and G4 = Hr. We show that A cannot distin-
guish Hj−1 from Hj . Let Sj = 〈G, p, g, Hide(·),Π,H, Ĥ〉,
be the suite corresponding to recipient j. We show that
if A distinguishes Hj−1 from Hj then we can build a
distinguisher B against the ind$-cca2 security of Π. B
receives from its ind$-cca2 challenger:
– a challenge ciphertext e?, in response to an encryp-

tion call with a message m such that, depending on
the bit b ∈ {0, 1}, we have that e? = EZ(m) if b = 0
or e? is a random string if b = 1;

– a decryption oracle DZ(·).
When constructing the challenge ciphertext, B calls

its challenge oracle with K ‖ meta to obtain e?, and
then sets e?j = e? for user j’s entry point (in line 47
of Layout). We note that in the random oracle the
real encryption key Zj = Ĥ(“key” ‖ kj) is independent
from adversary A’s view, so we can replace it with the

random key of the ind$-cca2 challenger. For other users
i it proceeds as follows:
– If i < j, it sets e?i to a random string of appropriate

length.
– If i > j, it computes e?i as per line 47 of Layout.

Thereafter, B answers decryption queries as before.
Except that whenever, B derives key kj for user j, it will
use its decryption oracle DZ(·). Note that in particular,
because of the changes in G3, B will not make DZ(·)
queries on e?i from the challenge ciphertext c?.

If b = 0, B simulates Hj−1, and if b = 1, it simulates
Hj . Therefore, if A distinguishes between Hj−1 and Hj ,
then B breaks the ind$-cca2 security of Π. To show that
G3 is indistinguishable from G4, repeat this argument r
times. More precisely:∣∣Pr[W3]− Pr[W4]

∣∣ ≤ r · Advind$-cca2Π,A (1λ).

G4 <–> G5.
The challenger’s actions in G4 and G5 only differ if A
could create a decryption request qDec(pki(Si), c) where
Unhide(τ) = X?

i , ei = e?i , and the integrity tag σ is valid
but c is different from c? (recallA is not allowed to query
c? itself). We show that if A can cause the challenger to
output ⊥ incorrectly, then we can build a simulator B
that breaks the strong unforgeability of MAC.

Assume a simulator B that tries to win an unforge-
ability game. Simulator B receives access to the oracles
M(·) and V(·), and needs to output a pair (c, σ), such
that VKmac

(c, σ) returns true.
Simulator B now proceeds as follows. When creating

the challenge ciphertext c?, it does not compute σ in
step (9) of MsPURB.Enc using K?, but instead uses its
oracle M and sets σ = M(c′). Note that because of
the random oracle model for H′ and the fact that A’s
view is independent of K?, this change of Kmac remains
undetected.

Whenever A makes a decryption query
qDec(pki(Si), c) B proceeds as before, except when it
derives the key K∗. In that case it runs V(c′, σ) to use
its oracle to verify the MAC in step (5) of MsPURB.Dec.
If V(c′, σ) returns > then B outputs (c′, σ) as its forgery
(by construction, c′ was not queried to the MAC oracle
M(·)).

Therefore, A cannot make queries that cause the
challenger to incorrectly output⊥, and therefore the two
games are indistinguishable, provided MAC is strongly
unforgeable. More precisely:∣∣Pr[W4]− Pr[W5]

∣∣ ≤ AdvsufMAC,A(1λ).

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 32

G5 <–> G6.
If A can distinguish between G5 and G6, then we can
build a distinguisher B that breaks the indistinguisha-
bility from random bits (MAC-IND$) of MAC.

Distinguisher B proceeds as follows to compute the
challenge ciphertext c?. It proceeds as before, except
that in step (9) of MsPURB.Enc, it submits c′ to its
challenge oracle to receive a tag τ?. It then sets τ = τ?

and proceeds to construct the PURB ciphertext.
Note that as per the changes before, B never needs

to verify a MAC under the key that was used to create
τ? for the challenge ciphertext. Moreover, as before, A’s
view is independent of the K?, so also this change of
Kmac remains undetected.

If b = 0, B simulates G5, and if b = 1, B simu-
lates G6. Hence, if A can distinguish between these two
games, B breaks the MAC-IND$ game. More precisely:∣∣Pr[W5]− Pr[W6]

∣∣ ≤ Advind$MAC,A(1λ).

G6 <–> G7.
If A can distinguish between G6 and G7, then we can
build a distinguisher B that breaks the ind$-cpa prop-
erty of (Enc,Dec). In the ind$-cpa game [49], B receives:
– a challenge ciphertext cpayload = cb, s.t. c0 =

EncKenc
(m) on a chosen-by-B m, c1

$← {0, 1}|c0|,
and b $← {0, 1}.

B runs MsPURB.Dec as before to create a challenge for
A, except that B uses the ind$-cpa challenge ciphertext
cpayload in step (7), instead of encrypting, as B does not
know Kenc. As before, A’s view is independent of K?,
so also this change of Kenc remains undetected.
B answers decryption queries qDec(pki(Si), c) from

A as before. In particular
– if Unhide(τ) = X?

i and ei = e?i , B returns ⊥ as per
the changes in G5;

– Otherwise, B runs MsPURB.Dec(·).
If b = 0, B simulates G6, and, if b = 1, B simulates G7.
Hence, if A can distinguish between these two games, B
can break the the ind$-cpa property of (Enc,Dec). More
precisely:∣∣Pr[W6]− Pr[W7]

∣∣ ≤ Advind$-cpa(Enc,Dec),A(1λ).

Combining the individual inequalities we find that there
exists adversaries B1, . . . ,B5 such that

Advcca2-outmsbe,A (1λ) ≤ r
(

Advcca2KEM,B1(1λ) + Advind$-cca2Π,B2
(1λ)

)
+

AdvsufMAC,B3(1λ) + Advind$MAC,B4
(1λ)+

Advind$-cpa(Enc,Dec),B5
(1λ),

completing the proof.

D.3 Proof of Theorem 2

For our MsPURB ind$-cpa recipient-privacy game, we
take inspiration from the single-suite recipient-privacy
game defined by Barth et al. [4], but we restate it in the
ind$-cpa setting.

Game Recipient-Privacy.
The game is between a challenger and an adversary A,
and proceeds along the following phases:
Init: The challenger and adversary take λ as input.
The adversary outputs a number of recipients r and
corresponding cipher suites S1, . . . , Sr it wants to at-
tack. Let s be the number of unique cipher suites.
The challenger verifies, for each i ∈ {1, . . . , r}, that
Si is a valid cipher suite, i.e., that it a valid out-
put of MSBE.Setup(1λ). The challenger aborts, and
sets b? $← {0, 1} if the suites are not all valid. Adver-
sary A then outputs two sets of recipients N0, N1 ⊆
{1, . . . , n} such that |N0| = |N1| = r, and the number
of users in N0 and N1 using suite Sj is the same.

Setup: For each i ∈ 1, . . . , n given by A, the challenger
runs (ski, pki) ← MsPURB.KeyGen(Si), where Si is
previously chosen by A. The challenger gives two sets
R0 = {pk0

1 , . . . , pk
0
r} and R1 = {pk1

1 , . . . , pk
1
r} to A,

where R0, R1 are the generated public keys of the re-
cipients N0, N1 respectively. The challenger also gives
to A all ski that correspond to i ∈ N0 ∩N1.

Challenge: A outputs m?. The challenger gen-
erates c0 = MsPURB.Enc(R0,m

?) and c1 =
MsPURB.Enc(R1,m

?). The challenger flips a coin b $←
{0, 1} and sends c? = cb to A.

Guess: A outputs its guess b? for b and wins if b? = b.

We define A’s advantage in this game as:

Advcpa-inmsbe,A(1λ) = 2
∣∣Pr[b = b?]− 1

2
∣∣ .

We say that a MSBE scheme is cpa-secure against in-
siders if Advcpa-inmsbe,A(1λ) is negligible in the security pa-
rameter.

The conditions on N0 and N1 in the game ensure
that A cannot trivially win by looking at the size of
the ciphertext. PURBs allows for suites with different
groups (resulting in different size encodings of the corre-
sponding IES public key) and for suites to use different
authenticated encryption schemes (that could result in
different sizes of encrypted entry points). Since PURBs
must encode groups and entry points into the header, we
mandate that for each suite the number of recipients is
the same in N0 and N1. This assumption is similar to re-
quiring equal-size sets of recipients in a challenge game

Reducing Metadata Leakage from Encrypted Files and Communication with PURBs 33

for single-suite broadcast encryption [4]. As in broad-
cast encryption, if this requirement is an issue, a sender
can add dummy recipients to avoid structural leakage
to an insider adversary.

We will show that

Advcpa-inmsbe,A(1λ) ≤ 2d · Advcca2KEM,B(1λ),

where d is the number of recipients in which N0 and N1
differ.

Proof. Similarly to Barth et al. [4], we prove recipient
privacy when the sets R0 and R1 differ only by one
public key in one suite. The general case follows by a
hybrid argument. Consider the following games:

Game G0.
This game is as the original recipient-privacy ind$-cpa
game where b = 0 and pki = R0 \ R1, pkj = R1 \ R0,
where the public keys pki and pkj are of the same suite
S.

Game G1.
As in G0, but we change how a key k?i corresponding to
the recipient i is computed in HdrPURB.Encap for the
challenge ciphertext. Instead of computing k?i = H(Y xi)
(where Yi = pki) as in step (2) of HdrPURB.Encap, we
set k?i

$← {0, 1}λH . As the challenger generates fresh
public keys for each encryption query and thus a fresh
key ki, and does not have to answer decryption queries,
it does not need to memorize k?i .

Game G2.
As in G1, but we change the random sampling k?i
in HdrPURB.Encap for the challenge ciphertext with
k?i = H(Y xj) = k?j where Yj = pkj . The game now is the
original recipient-privacy ind$-cpa game where b = 1.

Conclusion. G0 represents the recipient-privacy game
with b = 0 and G2 recipient-privacy game with b = 1.
If A cannot distinguish between G0 and G2, A does
not have an advantage in winning the recipient-privacy
game.

Let Wi be the event that A outputs b? = 1 in game
Gi.

G0 <–> G1.
If A can distinguish between G0 and G1, we can build a
distinguisher B against the ind$-cca2 security of the IES
KEM. Recall that B receives, from its ind$-cca2-KEM
challenger,
– a public key Y ;

– a challenge 〈X?, k?〉, where depending on bit b $←
{0, 1}, we have k? = H(Y x?) if b = 0 or k? $←
{0, 1}l(λ) if b = 1;

– access to a Decap(·) oracle for all but X?.
At the start of the game, B will set pki = Y , so that
the public key of recipient i matches that of its IES
KEM challenger. Note that B does not know the cor-
responding private key yi. For all other recipients h, B
sets (skh = yh, pkh = Yh) = MsPURB.KeyGen(Sh). As
A plays an ind$-cpa game, B does not need to use the
Decap(·) oracle (in fact, for ind$-cpa recipient privacy
ind$-cpa security of the IES KEM suffices).

If b = 0 in the IES-KEM challenge, then B simulates
G0, and, If b = 1, B simulates G1. Hence, if A distin-
guishes between G0 and G1, B wins in the ind$-cca2
IES-KEM game. Therefore:

|Pr[W0]− Pr[W1]| ≤ Advcca2KEM,B(1λ)

G1 <–> G2.
The proof follows the same steps as the proof of G0 <–>
G1. Therefore:

|Pr[W0]− Pr[W1]| ≤ Advcca2KEM,B(1λ).

Let d be the number of recipients that differ in N0 and
N1. Then by repeating the above two steps d times in a
hybrid argument, we find that:

Advcpa-inmsbe,A(1λ) ≤ 2d · Advcca2KEM,B(1λ),

as desired.

	Reducing Metadata Leakage from Encrypted Files and Communication with PURBs
	1 Introduction
	2 Motivation and Background
	2.1 Motivation and Applications
	2.2 Integrated Encryption Scheme

	3 Hiding Encryption Metadata
	3.1 Preliminaries
	3.1.1 System Model
	3.1.2 Threat Model and Security Goals
	3.1.3 System Goals

	3.2 Encryption to a Single Passphrase
	3.3 Single Public Key, Single Suite
	3.4 Multiple Public Keys, Single Suite
	3.5 Multiple Public Keys and Suites
	3.6 Non-malleability
	3.7 Complete Algorithms
	3.8 Practical Considerations

	4 Limiting Leakage via Length
	4.1 Design Criterion
	4.2 Definitions
	4.3 Strawman Padding Approaches
	4.4 Padmé

	5 Evaluation
	5.1 Implementation
	5.2 Performance of the PURB Encoding
	5.2.1 Methodology
	5.2.2 Results

	5.3 Performance of Padmé Padding
	5.3.1 Datasets and Methodology
	5.3.2 Evaluation of Padmé

	6 Related Work
	7 Conclusion
	A Layout
	B Positions for Public Keys
	C Default Schemes for Payload
	D Security Proofs
	D.1 Preliminaries
	D.2 Proof of Theorem 1
	D.3 Proof of Theorem 2

