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Abstract: Besides their security, the efficiency of search-
able encryption schemes is a major criteria when it
comes to their adoption: in order to replace an unen-
crypted database by a more secure construction, it must
scale to the systems which rely on it. Unfortunately, the
relationship between the efficiency and the security of
searchable encryption has not been widely studied, and
the minimum cost of some crucial security properties is
still unclear.
In this paper, we present new lower bounds on the trade-
offs between the size of the client state, the efficiency
and the security for searchable encryption schemes.
These lower bounds target two kinds of schemes:
schemes hiding the repetition of search queries, and
forward-private dynamic schemes, for which updates are
oblivious.
We also show that these lower bounds are tight, by ei-
ther constructing schemes matching them, or by show-
ing that even a small increase in the amount of leaked in-
formation allows for constructing schemes breaking the
lower bounds.
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1 Introduction
Searchable encryption aims at making efficient a seem-
ingly easy task: outsourcing the storage of a database to
an untrusted server, while keeping search features. With
the development of Cloud storage services, for both pri-
vate individuals and businesses, efficiency of searchable
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encryption is crucial: inefficient constructions would not
be deployed at a large scale because they would not
be usable. The key problem with searchable encryp-
tion is that any construction achieving ‘perfect security’
induces a computational or a communication overhead
that is unacceptable for the cloud providers or for the
cloud users — at least with current techniques and by
today’s standards.

Indeed, constructions based on Fully Homomorphic
Encryption (FHE) [Gen09], or on Multi-Party Compu-
tations (MPC) have a huge computational overhead as
their asymptotic complexity is linear in the size of the
database, as the result of a search is the output of the
evaluation of a circuit that uses the whole database
as input. This has to be compared to unencrypted
databases, which are able to resolve any query in time
that is linear in the number of results of the query. Us-
ing Oblivious RAM (ORAM) [GO96], or Garbled RAM
programs [LO13] would help, but these tools also suffer
from an inherent cost, either in terms of computation
or of communication, poly-logarithmic in the size of the
database.

On the other hand, ‘legacy compatible’ schemes,
which use deterministic encryption, or order preserv-
ing encryption (OPE) such as CryptDB [PRZB11],
are very efficient (they often have the same asymp-
totic efficiency as an unencrypted database), but offer
a poor level of security, as demonstrated by recent at-
tacks [NKW15, CGPR15, GSB+17].

In between those two extrema, there exist con-
structions that do leak information, but not as much
as the legacy compatible schemes, and that are suffi-
ciently efficient to be used in practice, e.g. [CGKO06,
KO12, KPR12, KP13, CJJ+13, PKV+14, SPS14,
Bos16, BMO17, EKPE18]. This raises the question of a
tradeoff between the efficiency of searchable encryption
schemes and the amount of information they leak. Are
there lower bounds on the computational complexity of
searchable encryption schemes given a certain leakage
profile, or a certain security feature?

This work studies this question and gives a positive
answer for two types of searchable encryption schemes:
(1) schemes that only reveal the size of the database
and the number of results of a query, and (2) forward-
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private dynamic schemes — schemes that do not leak
information about updated keywords during database
modifications [Bos16].

Besides stating and proving these lower bounds, we
also show that they are essentially tight by presenting
constructions that match the bounds. Also, we show
that, by slightly increasing the leakage compared to
what is prescribed by the lower bounds, we can often
drastically improve the asymptotics of schemes.

Our Contributions.
We start by studying static schemes that only leak the
number of entries N in the database, and the num-
ber nw of entries matching the queried keyword w. In
that case, as a corollary of a generic lower bound re-
sult, we show that the computational complexity of the

first query is Ω
(

log ( Nnw)
log |σ|

)
, where |σ| is the size of the

client’s state. To do so, we proceed with similar ideas
to the ORAM lower bound of Goldreich and Ostro-
vsky [GO96]. This result unfortunately precludes any
scalable searchable encryption scheme that completely
hides the search queries. We then show that we can con-
struct a scheme with less overhead, but at the expense
of a little bit more leakage during the setup phase.

In a second part, we show that any forward-private
scheme has a minimal update overhead: either the com-
putational complexity of an update is Ω( logK

log |σ| ), where
K is the number of distinct keywords in the database,
or the search complexity is Ω( t logK

log |σ| ), where t is the
number of updates prior to the search query. Again, to
prove this lower bound, we use a canvas similar to the
one used in [GO96], but we adapt the details to forward-
private SSE. We explain that this lower bound is tight,
as there exist forward-private schemes with constant-
time updates and Θ(K ) client state, and which can be
easily transformed in schemes with constant-size client
state and Θ

(
log2K

)
update complexity with current

techniques.

2 Related Work
Symmetric Searchable Encryption (SSE) was first in-
troduced in [SWP00] by Song et al.. The security def-
initions that we use today, and in this paper, for SSE,
and which brought the formal notion of leakage into
use, were described by Curtmola et al. in [CGKO06]. In
that paper, the authors also presented the first efficient

SSE construction, whose search query running time is
linear in the number of results matching the query. Note
that SSE is an instance of structured encryption [CK10],
in which the data structure to encrypt is a multi-map
(a.k.a. T-Set or reversed index).

Subsequently, many constructions arose, with var-
ious security features, and efficiency properties, such
as database dynamism [KPR12], secure database up-
dates [SPS14, BMO17], advanced searches [CJJ+13,
PKV+14, KM17], reduced leakage [Nav15, GMP16],
security against malicious adversaries [KO12, KO13]
(a.k.a. verifiable SSE).

SSE can also be implemented using property pre-
serving encryption (PPE), such as deterministic encryp-
tion, order-preserving encryption (OPE) [BCLO09], or
order-revealing encryption (ORE) [PLZ13]. Such sys-
tems based on PPE, e.g. CryptDB, are very efficient,
but extremely sensitive to attacks based on frequency
analysis [NKW15, CGPR15, GSB+17].

Some works focus on public-key searchable encryp-
tion [BDOP04, BKOS07], on multi-user searchable en-
cryption [PZ13], or on more complex settings [JJK+13].
These schemes consider a setting where more than
one user can update the database and/or query it
(e.g. [BBO07]). Here, we focus on symmetric search-
able encryption, where the data owner and the querier
are the same party, but many of the lower bounds we
present in this paper can be ported to the aforemen-
tioned cases.

Related work on lower bounds.
A recent line of work studies the tradeoffs between the
locality of the memory accesses, the amount of memory
read during a search and the server storage size, from
lower bounds [CT14, ANSS16, ASS18] to tight construc-
tions [ASS18, DPP18].

Lower bounds on the efficiency of searchable encryp-
tion has previously been studied in the case of verifi-
able SSE, i.e. when an active and malicious adversary
returns invalid search results to the client. Bost et al.
showed in [BFP16] that a verifiable SSE scheme with a
client state of size |σ| = ω (K ) has a computational over-
head of Ω( logK

log logK ) either for search or update queries,
and proposed a tight construction based on incremental
hashing and authenticated dictionaries.

On a related topic, Goldreich and Ostrovsky showed
in [GO96] that any secure ORAM protocol between
a server (supporting only read and write calls) and a
client with local storage |σ| has a bandwith overhead
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Ω
(

logN
log |σ|

)
. We will actually use a very similar tech-

nique to the one employed for the ORAM lower bound
to show two of the lower bounds in this paper.

The lower bound of Goldreich and Ostrovsky is ac-
tually limited by a very specific setting: it applies to a
balls and bin memory model where the data is modeled
as balls and server-side and client-side storage are bins,
and moving data between bins is the only allowed op-
erations (in particular, the server cannot perform any
computation). As such, the result in [GO96] only lower
bounds the communication overhead between the client
and the server.

However, as mentioned by Devadas et al.
in [DDF+16], even in the case where server computa-
tions are allowed, the Goldreich-Ostrovsky lower bound
is in the number of operations that have to be per-
formed: the overhead of the communication between
the server and the client can be reduced below the
lower bounds, but the computational overhead cannot.
In this paper, we are actually going to take a similar
approach.

Recently, a new line of work tried to fully un-
derstand the limits of the Goldreich and Ostrovsky
lower bound, starting with the paper by Boyle and
Naor [BN16], showing that, in the offline setting (where
the queries are given ahead of time), in the RAM compu-
tation model (server-side computation is not allowed),
by using specific data encodings (outside of the balls
and bin model), the lower bouds can be overcome. This
result was extended by Weiss and Wichs [WW18] to set-
tings like read-only ORAM. Finally, Larsen and Nielsen
proved in [LN18] a lower bound for online ORAM
constructions, very similar to the original Goldreich-
Ostrovsky lower bound, that applies to any data repre-
sentation, even in the case where we only require com-
putational complexity.

3 Background and Definitions

3.1 Preliminaries

In this paper, we use the following common notations.
The security parameter is denoted λ and negl(λ) denotes
a function that is negligible in the security parameter.
We only consider (probabilistic) algorithms and proto-
cols running in time polynomial in the security parame-
ter λ. Adversaries are probabilistic polynomial-time al-
gorithms. For a finite set X, x $← X means that x is
sampled uniformly from X.

3.1.1 Games.

Our security and correctness notions are defined using
the code-based games introduced in [BR06]. A game G
is a set of oracle procedures – including an initialization
Init procedure and a finalization Final procedure – that
is executed with an adversary A, i.e. A has access to
the procedures, with some possible restrictions. For in-
stance, the Init oracle is always the first one to be called
and Final the last one, once A halted, taking A’s output
as input. The output of Final is called the output of the
game and is denoted GA(λ). When Final is omitted, it
just forwards the adversary’s output.

At startup, the boolean variables are initialized to
false and the integer variables to 0. When the variable
T is a dictionary, T [v] denotes the item associated to v,
if there is one, whereas ⊥ denotes the absence of this
item.

3.1.2 Protocols.

In the paper, we will construct and use some two-party
protocols, involving a client C and a server S. We will
denote a protocol P as

P (inputC ; inputS) = (PC(inputC), PS(inputS))

meaning that PC (resp. PS) is executed by the client
(resp. the server) with input inputC (resp. inputS). We
write

(outC ; outS) $← C(inputC)↔ S(inputS)

to mean that outC and outS are the outputs of the
interaction between C on input inputC and S on input
inputS . When C and S run a protocol P , we simplify
the notation, and we denote the result of P as

(outC ; outS) $← P (inputC ; inputS).

In this formalism, we consider the messages τC→S (resp.
τC←S) sent by C to S (resp. S to C) as part of the
output outC (resp. outS). These messages are called the
transcript of C (resp. S). Transcripts might be omitted
from the output of the protocol for simplicity.

3.2 Formalism of Symmetric Searchable
Encryption

A database DB is defined as:

DB = {(indi,Wi) : 1 ≤ i ≤ D} ,
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with indi ∈ {0, 1}`,Wi ∈ {{0, 1}∗}∗ and where indi are
distinct document indices, represented by `-bit strings,
and Wi is a finite set of keywords matching document
indi, represented by binary strings of arbitrary finite
length. Note that, in this paper, a document is identified
with its index: indeed we focus on index-based search-
able encryption, where the documents are encrypted
(and stored) separately from the data structure used
to search among these. In addition, let us define:
– D = |DB| the number of documents;
– DB(w) = {indi|w ∈ Wi} the set of documents

matching w;
– W =

⋃D
i=1 Wi the set of keywords;

– K = |W| the number of keywords;
– Kn = |{w|DB(w) = n}| the number of keywords

matching n documents;
– N =

∑D
i=1 |Wi| the number of document/keyword

pairs, also referred to as the size of the database;
– DB(w) = {indi|w ∈Wi and (indi,Wi) ∈ DB} the set

of documents containing the keyword w;
– nw = |DB(w)| the number of documents matching
w.

We consider structure-only, symmetric SSE schemes
supporting single-keyword search. The dynamic schemes
we consider support addition and deletion of keywords.
Formally, a dynamic symmetric searchable encryption
(SSE) scheme is a triple Σ = (Setup,Search,Update) con-
sisting of one algorithm and two protocols between a
client and a server:

– Setup(DB) is a probabilistic algorithm that is run by
the client, and takes as input the initial database
DB. It outputs a triple (EDB,KΣ, σ), where KΣ
is the master secret key, EDB is an encrypted
database, and σ is the client’s state (his permanent
memory).

– Search(KΣ, q, σ; EDB) is a protocol between the
client with input the master secret key KΣ, the
client’s internal state σ, and a search query q; and
the server with input the encrypted database EDB.
After completing the Search protocol, the client out-
puts a list R of results and a new internal state σ′.
Both R and σ′ can take the special value ⊥ to signify
an error or a failure in the execution of the protocol.
The server possibly outputs an updated encrypted
database EDB′.
The query q can be of any kind, but in this pa-
per, we will focus on search queries restricted to a
single-keyword w (and hence often identify q with
w). More generally, DB(q) denotes the set of doc-

uments matching the query q. The transcript τ of
the client (the messages sent by the client) is also
included in its output when needed in the formal
definitions.

– Update(KΣ, σ, op, in; EDB) is a protocol between the
client with input the keyKΣ and internal state σ, an
operation op, and an input in for the operation; and
the server with input EDB. Again, this formalism
covers a wide range of different update operations,
such as merges, duplications, etc. Yet, as we will see
in the next section, this paper focuses on simpler
operations: the update operations are taken from
the set {add, del}, meaning, respectively, the addi-
tion and the deletion of a keyword to a document.
The input in is thus parsed as an index ind, point-
ing to the modified document, a keyword w to insert
or delete. Insertion of a new document is modeled
by using a completely new and previously unused
index ind. At the end of the execution of the pro-
tocol, the client outputs a new state σ′, which can
take the special value ⊥, and the server outputs a
new encrypted database EDB′. In the security defi-
nitions, as mentioned in Section 3.1, we also include
the transcript τ of the client in its output.

These searchable encryption schemes are called sym-
metric because the same key KΣ is used for both the
updates and the search queries. One could extend the
definition to support two different keys: a private key
for search and a public key for updates, so that any-
one can enrich the encrypted database (e.g. by send-
ing an email encrypted with the public key). This set-
ting, called ‘Public key encryption with keyword search’
(PEKS) has been well defined [BDOP04, BKOS07], but
in this paper, we will focus on the symmetric setting.
Similarly, some works looked at how to let anyone with
a public key issue some search queries [BBO07].

In this formalism, we explicitly separate the client’s
state and the key. Informally, we want the key to be fixed
while the state is mutable. We do not require a scheme
to have a state (beyond the key), and when it is empty,
we may omit it from the protocol’s signature. Also, we
do not require the size of the state to be upper bounded,
e.g. by the number of keywords. For example, we could
imagine a scheme working only on the client side, with
no storage on the server. This would be a perfectly valid
(and secure), but very costly scheme. Hence, the size of
the client’s state is an important parameter regarding
the tradeoff between security and performance.

An important restriction of this definition is static
symmetric searchable encryption. Such schemes do not
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support update requests, and hence do not implement
the Update protocol.

Finally, in the rest of the paper, when we look at the
computational complexity of a query, we are considering
the sum of the complexities one the client side and on
the server side.

Database structure.
In our formalism, the document/keyword pairs (w, ind)
such that ind ∈ DB(w), also named entries, are the
atomic elements of the databases. Entries are the ele-
ments that are manipulated by the protocols, and the
encrypted database can be modeled as N atomic en-
tries, each encoding a document/keyword pair of the
dataset. This database representation is common to the
entire SSE literature to our knowledge (e.g. [CGKO06,
CK10, KO12, CJJ+13, CT14] and many more).

Our lower bounds rely on this representation, as it
is closely related to the balls and bin model in use in the
Goldreich-Ostrovky lower bound. Similarly to the work
of Boyle and Naor [BN16], by using more complex data
encoding, our lower bounds might be overcome.

3.3 Searchable Encryption Security
Definitions

Modern definitions to formalize the secrecy of an SSE
scheme come from [CGKO06]. In this paper, the au-
thors give two definitions, one based on indistinguisha-
bility, the other based on simulatability, both using the
notion of leakage (a.k.a trace in [CGKO06]). Indeed,
the leakage is formally taken into account and plays an
important role in the security definitions: the indistin-
guishability-based definition states that two executions
of SSE protocols with the same leakage are indistin-
guishable, while the simulation-based definition states
that an execution of the SSE protocol can be simulated
using the leakage. Informally, both definitions ensure
that the server should not learn any information beyond
the leakage (which is a parameter of the definitions).

In [CGKO06], the authors show that the simulation-
based definition implies the indistinguishability-based
definition (and that they are actually equivalent in
their non-adaptive version). As, in our paper, we
will only need the indistinguishability-based definition,
only this version will be formally stated. Also, as
the simulation-based definition is stronger than the
indistinguishability-based one, it means that our results

are entirely applicable to the more common former def-
inition.

Leakage Function.
Before going further, it is essential to clearly formalize
this leakage. First let us define a history.

Definition 1 (Database and queries history). An his-
tory H is a tuple H = (DB, r1, . . . , rm) consisting of a
database DB and m queries r1, . . . , rm. Each query ri
can either be a search query ri = qi, or an update query
ri = (opi, ini).

To do so, as explained before, the definition will be
parametrized using a leakage function L, more exactly a
triple of stateful algorithms (LStp,LSrch,LUpdt), captur-
ing what is leaked by, respectively, the setup algorithm,
the search protocol and the update protocol.

This notation, introduced by Chase and Ka-
mara for the generic case of structured encryption
in [CK10], generalizes the trace definition of Curtmola
et al. [CGKO06]. Because the leakage function is state-
ful, it will not be necessary to pass the whole history
as an argument of the leakage function every time, as
in [CJJ+13].

A very common leakage pattern in searchable en-
cryption is the repetition of search queries: often, the
tokens sent by the client to the server are determinis-
tically generated, e.g. with a PRF. As a consequence,
if a token sent to the server during a search query is
generated using only the queried keyword, he will im-
mediately detect when this query is repeated. This leak-
age, call the search pattern, is formally defined as fol-
lows: the leakage function L keeps in its state the query
list Q, the list of all queries issued so far, and whose
entries are (i, w) for a search query on keyword w, or
(i, op, in) for an op update query with input in. The in-
teger i is a timestamp, initially set to 0, and is incre-
mented at each query. The search pattern of a search
query r is then defined as sp(x) = {j | (j, x) ∈ Q} (this
only matches search queries). Phrased differently, the
search pattern of the keyword w corresponds to the list
of search queries’ timestamps whose searched keyword
was w.

In the following, we will slightly overload the
notations, and, for a history H = (DB, r1, . . . , rm),
use L(H) to denote (LStp(DB),L(r1), . . . ,L(rm)) where
L(ri) = LSrch(qi) if ri is a search query, and L(ri) =
LUpdt(opi, ini) if ri is an update query.
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Security definition.
The indistinguishability-based security definition of
Curtmola et al. [CGKO06] can be reformulated (equiva-
lently) using a security game, SSEIndΣ,L, parametrized
by the scheme Σ and the leakage function L, which picks
a random bit b, and to which the adversary’s goal is to
guess b. To do so, the adversary (adaptively) submits
two histories H0 and H1, and receives the encrypted
database and runs the server-side part of the Search and
Update protocols (the client-side part being run by the
game). To be valid, the histories submitted by the ad-
versary must satisfy a very important constraint: the
leakage must be the same for both histories. Otherwise,
the game aborts as soon as the adversary submits two
queries (or two databases) having a different leakage.
Finally, the adversary outputs a bit b′, and wins the
game if he successfully guesses b.

In the ‘honest-but-curious’ (or ‘passive’) adversarial
setting, the adversary has to follow the specification of
the Search and Update protocols to the letter: this can
be seen as the adversary only receiving the resulting
transcript of the execution of the protocols.

On the other hand, in the ‘malicious’ (or ‘active’)
setting, the adversary can try to get additional infor-
mation by deviating from the protocols, and is allowed
to do so in the definition. This is particularly impor-
tant for schemes whose protocols use more than a single
round-trip, e.g. ORAM-inspired constructions such as
the ones described in [SPS14, GMP16]. A single round-
trip scheme secure against honest adversaries is secure
against malicious ones because no adversary can, by
construction, influence the messages sent by the client
(i.e. the client’s transcript) by providing incorrect or
incomplete responses. To the contrary, when multiple
round-trips are involved, the adversary can trick the
client by sending an incorrect message so that the client
reveals sensitive information later in the search or up-
date protocol.

Both these settings can be formalized using the se-
curity game of Figure 1, leading to Definition 2. Note
that, we introduce the case of an unbounded adversary
in our definition, as our lower bounds will be proven
against such adversaries.

Definition 2. Let Σ be an SSE scheme. For an ad-
versary A, the advantage AdvSSE-ind

Σ,L,A (λ) of A in the
indistinguishability-based confidentiality game is

AdvSSE-ind
Σ,L,A (λ) =

∣∣∣∣12 − P[SSEIndAΣ,L(1λ) = 1]
∣∣∣∣ .

Init(DB0,DB1)
if LStp(DB0) 6= LStp(DB1)

Abort game
b

$← {0, 1}
(EDB,KΣ, σ) $← Setup(DBb)
return EDB

Search(q0, q1)
if LSrch(q0) 6= LSrch(q1)

Abort game
(R, σ, τ ; EDB) $← SearchC(KΣ, σ, qb; EDB)↔ A

return τ

Update((op0, in0), (op1, in1))
if LUpdt(op0, in0) 6= LUpdt(op1, in1)
Abort game

(σ, τ ; EDB) $← UpdateC(KΣ, σ, opb, inb; EDB)↔ A

return τ

Final(b′)
return b = b′

Fig. 1 – SSEIndΣ,L: Indistinguishability game for the SSE scheme
Σ = (Setup,Search,Update), with the leakage function L. The
notation ↔ A represents interactions with the adversary.

An SSE scheme Σ is L-adaptive-indistinguishability
secure if for any polynomial-time adversary A,
AdvSSE-ind

Σ,L,A (λ) is negligible in λ. If the adversary A is
unbounded, we say that the scheme is L-unconditionally
secure.

3.4 An Order Relation over Leakage
Functions

To formally state our lower bounds, we have to give a
formal definition to the proposition “L1 leaks less than
L2”. By that, we mean that any information given by L1
can be inferred from L2. To do so, we use the order rela-
tion on leakage functions introduced in [Bos18] (similar
to the leakage upper bounds defined in [KMO18]).

Definition 3 (The order � on leakage functions). Let
L1 = (LStp

1 ,LSrch
1 ,LUpdt

1 ) and L2 = (LStp
2 ,LSrch

2 ,LUpdt
2 )

be two leakage functions. We say that L1 leaks less
than L2, denoted by L1 � L2 if and only if, there
exists a triple of stateful polynomial-time algorithms
T = (T Stp, T Srch, T Updt), such that, for any database DB
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and sequence of queries (r1, . . . , rn),

LStp
1 (DB) = T Stp ◦ LStp

2 (DB),
∀1 ≤ i ≤ n,LSrch

1 (ri) = T Srch ◦ LSrch
2 (ri) for search,

and LUpdt
1 (ri) = T Updt ◦ LUpdt

2 (ri) for update.

In other words, L1’s output is simulatable from L2’s out-
put. Also note that � is a partial order. An important
(and easy) application of this relation in our paper, is
that if a scheme is L-adaptively-secure, then it is L′-
secure for every L � L′.

Proposition 1. Let L1 and L2 be two leakage functions
such that L1 � L2. If Σ is a L1-adaptively-secure SSE
scheme, then Σ is L2-adaptively-secure.

4 Searchable Encryption Hiding
the Search Pattern

One crucially important question about searchable en-
cryption is the one of the tradeoff between the se-
curity of constructions and their performance. We
would like to design efficient schemes with the best
possible security, or, symmetrically, design highly se-
cure schemes with the best performance. In particular,
legacy-compatible constructions are not really secure
(see [CGPR15, NKW15]), although being very efficient
(asymptotically as efficient as unencrypted databases).
In this section, we will see that some minimal leakage
is absolutely necessary to achieve even reasonable per-
formance.

4.1 An Efficiency Lower Bound on Search
Pattern Hiding SSE

In almost every construction, except for the ones based
on ORAM, the search pattern is leaked: the server learns
the repetition of search queries. One can wonder if the
cost of ORAM is necessary to hide the search pattern,
or if there is another means to achieve this security level
without paying the high cost of ORAM.

A first step towards this goal is to study a simple re-
duction from ORAM to SSE (i.e. implement an ORAM
protocol from a search-pattern-hiding SSE scheme): we
use the address of ORAM blocks as keywords for the
SSE scheme, and the blocks’ data as the documents in-
dices. In this artificial encrypted database, each key-

word and each document index only appears once, and
we have K = D = N .

As a consequence, by applying the ORAM lower
bounds [GO96, LN18], this reduction would only offer
us a Ω(logK ) lower bound on the search complexity
of a search-pattern hiding of SSE. On the other hand,
by using a naive ORAM-based implementation of SSE,
we expect having a search complexity of the order of
nw logN .

Differences between ORAM and search-pattern-hiding
SSE
Indeed, there is an important difference between ORAM
and search-pattern-hiding SSE that has an impact on
the way to construct such schemes. ORAM only sup-
ports access to fixed-size blocks, and each access fetches
a single block. As a consequence, in the above reduction,
the underlying SSE construction only has to support a
database with a single match per document, while the
specificity of SSE is to be able to return a set of results,
a set which can be of arbitrary size (but revealed to
the adversary). This difference is crucial when studying
what are the information the adversary is allowed to
learn, and the one which will have to be hidden from
him.

Namely, in the case of two search queries to an SSE
scheme, suppose that the first query matches n1 entries.
If the second query matches n2 6= n1 entries, the adver-
sary will immediately learn that the queries are differ-
ent, and hence that the result entries are different. Yet,
if n2 = n1, this is not true anymore, and we have to hide
the possible repetition of the first query in this case.

Similarly, the server already knows that he will have
to access at least nw distinct entries during a search
query on w: we do not have to hide this information,
and we can use this fact to speed the search algorithm
up. Also, as we are only interested in the result set, not
in the result order, we might be able to chose the order
that minimizes number of operations. We will see that
both of these points play a huge role in the proof of the
SSE lower bound.

Summary of the Goldreich-Ostrovsky lower bound for
ORAM
In order to sketch the proof for the SSE lower bound,
we have to give an insight of the proof given in [GO96]
for ORAM. In that paper, Goldreich and Ostrovsky
model the ORAM security using a balls-and-bins game
involving a (probabilistic) player, who can hold at most
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b balls representing the data, and which impersonates
the client, and an observer (the server/adversary). The
(external) memory is represented as an array of m non-
transparent cells, each capable of storing a single ball,
the total number of balls being m. The player is allowed
to access any cell and perform some actions on these
(get the ball in the cell, place a ball in the cell, or do
nothing). The observer sees which cell is accessed, but
cannot see the action, nor the content of the cell.

For each round of the game, the player has to answer
to a (secret) access request r for one of the m balls: his
goal is to hold the r-th ball at the end of the round. Yet,
he must not leak any information to the observer about
the value of r: the observer must not learn anything
about the request sequence. Hence, any action sequence
(i.e. a sequence of memory accesses by the player and
their associated action) must be ‘compatible’ with any
possible request.

The [GO96] proof hence proceeds using a counting
argument, by lower bounding the number of request se-
quences that can be satisfied by a given action sequence
of length q in t rounds. The resulting inequality gives a
relation between the number of actions q, the number
of access t, the size of the client memory b, and the size
of external memory m: this gives us the lower bound on
the number of actions, i.e. the overhead, necessary to
obliviously access a memory value (a ball).

Our result
The main difference between our result and the ORAM
lower bound lies in the fact that counting the number of
possible search queries at each step is much more com-
plicated than in the original proof, due to the functional
differences between ORAM and SSE, as we studied ear-
lier. For example, because the number of matches be-
tween queries might differ and is leaked to the observer,
we have to take it into account: for the i + 1-st search
query, the query being done on keyword w, the observer
will know that the searched keyword is not in the set
{wj |1 ≤ j ≤ i and nwj 6= nw}, i.e. the set of previously
searched keywords matching a number of documents dif-
ferent from the one of w. More precisely, if there has
been a previous request wj with nw 6= nwj , the ob-
server knows that nwj entries will not be ‘touched’ by
the search algorithm for the i + 1-st query, making the
number of entries ‘available’ be N −nwj (for a database
of size N).

This reasoning is applicable to the other previous
queries whose number of match is different from nw: if
nwj 6= nwk 6= nw, we do not have to consider nwj + nwk

entries. Yet, if there are two queries wj and wk such
that nwj = nwk , we cannot remove from consideration
2nwj entries: we can be in a case where wj = wk.

If we do this with every query preceding w, for a
partial history Hi = (DB, w1, . . . , wi), the number en-
tries that can be considered is

N(Hi, w) = N −
∑

n∈{|DB(wj)|6=|DB(w)|}

n.

In the proof, we then have to consider how many
search requests having nw results can be satisfied with
N(Hi, w) candidate entries. This is done using simple
combinatorics: there are

(
N(H,w)
nw

)
such possibilities. We

end up the proof by simplifying the inequality we ob-
tained.

Our whole proof heavily relies on the fact that the
studied scheme only leaks the number of entries and the
number of distinct keyword in the database, and that
the search protocols only reveals the number of matches
of a query. Formally, we use the Lsp leakage function,
defined as

LStp
sp (DB) = (N,K), LSrch

sp (w) = nw.

This leads to the formal statement of our theorem:

Theorem 1. Let Σ be a (static) SSE scheme that is
(non-adaptively) L-unconditionally secure ( i.e. secure
against unbounded adversaries ), with L � Lsp, with a
client state (permanent memory) σ of size |σ|, and an
encrypted database containing N entries exactly. Then
the overall computational complexity of the Search pro-
tocol (the sum of the computational complexity for the
client and the server) for a keyword w matching nw doc-
uments, after the execution of the history H is

Ω

 log
(
N(H,w)
nw

)
log |σ| · log log

(
N(H,w)
nw

)
 .

Proof. To start the proof, we are going to introduction
that the client uses at most b (transient) memory blocks
to run the query on w (b can depend on the history).
Without loss of generality, we can suppose that the ad-
versary only gets to see the read (and write) accesses to
the encrypted database generated by the search proto-
col: this will only reduce his capabilities. We also only
consider a non-adaptive attacker who chooses two fixed
histories. In this setting, the SSE indistinguishability
game can be modeled as follows:

– a player, who can hold at most b balls, makes (prob-
abilistic) accesses to the encrypted database to an-
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swer the sequence of t search queries corresponding
to the keywords (w1, . . . , wt) on the database DB;

– an observer, who gets to see the accesses.

The observer/adversary will win the game if he is
able to distinguish the execution of two search se-
quences (w1, . . . , wt) and (w′1, . . . , w′t), respectively on
the databases DB and DB′ such that |DB| = |DB′| and
|DB(wi)| = |DB′(w′i)| for i = 1, . . . , t.

The encrypted database is modeled as N atomic en-
tries, each encoding a document/keyword pair of the
dataset, equivalent to the balls in the ORAM lower
bound proof of Goldreich and Ostrovsky [GO96]. These
entries are stored in non-transparent cells holding a sin-
gle entry. At any time the player accesses a cell, he can
either fetch the entry residing in this cell, place an entry
in it, or do nothing. The observer will see that the player
accessed this cell, but not what he just did with it. It
is important to note that it is not because the scheme
is static that the encrypted database cannot be modi-
fied by the Search algorithm: the fact that the scheme
is static only implies that it does not support Update
operations.

To answer these t search queries, the player will
make a sequence of q visible accesses V = (v1, . . . , vq),
observable by the adversary. For each access vi, the
player will perform a hidden action hi, which the ob-
server cannot see. As mentioned before, the player
can take an entry from the cell, place an entry in
the cell or do nothing. In particular, there are b + 2
possible actions (b ‘placing’ actions, the ‘taking’ ac-
tion, and the ‘nothing’ action). This action sequence
(v1, h1), . . . , (vq, hq) satisfies the search queries sequence
(w1, . . . , wt) if and only if there exists a sequence 1 =
j0 ≤ j1 ≤ · · · ≤ jt ≤ q such that for every i-th
search request, the player has held every entry corre-
sponding to the entries (wi, ind), for ind ∈ DB(wi), af-
ter the actions (vji−1+1, hji−1+1), . . . , (vji , hji). We note
δqi = ji − ji−1 + 1.

Let us focus on the i-th search request. As the
player holds at most b entries, a fixed sequence
(vj , hj), . . . , (vj+δq, hj+δq) can satisfy at most (b + 1)δq

different search queries: at every step one can pick one
or zero ball to form the result (this is a very large upper
bound on the number of entries that the player can fetch
in δq actions). Also, each δq-long visible accesses sub-
sequence (vj , . . . , vj+δq) may be coupled with (b + 2)δq

hidden action sequences. In the end, we can say that
each sub-sequence δVi of length δqi can satisfy at most
(b+ 1)δqi(b+ 2)δqi search queries.

Finally, as the search pattern is hidden, but the
size pattern is revealed, the number of search queries
matching n documents in the database DB after the
search queries w1, . . . , wi is

(
N(H,w)

n

)
, where H =

(DB, w1, . . . , wi) is the history of previous executions.
The reason for this non-trivial expression is first that the
order in which the entries are fetched does not matter
(we are only interested in the result set), then that the
player does not have to hide that he does not access the
entries that were previously fetched for searches match-
ing a different number of results. Namely, after the ex-
ecution of the history H, there are at most N(H,w)
non-touched entries matching n 6= nw entries: the en-
crypted database consists, by hypothesis, of N entries,
and there have been

∑i
j=1,|DB(wj)|6=|DB(w)| |DB(wj)| en-

tries touched by previous search queries. As the i-th
sub-sequence Vi, of length δqi must satisfy

(
N(Hi−1,wi)

nwi

)
possible search queries, we have

(b+ 1)δqi(b+ 2)δqi >
(
N(Hi−1, wi)

nwi

)

=⇒ δqi = Ω

 log
(
N(Hi−1,wi)

nwi

)
log(b+ 1)(b+ 2)

 .

The computational complexity of the search protocol is

Ω

 log
(
N(H,w)
nw

)
log(b+ 1)(b+ 2)

 .

The memory b used during the execution of the
Search protocol can be separated into two parts. First,
there is the client’s state, his permanent memory, and
then the additional transient memory b′ used by either
the client or the server to execute the protocol itself:
b = |σ|+ b′. Without loss of generality, we can suppose
that the Search protocol touches each of the b′ memory
blocks at least once: these memory blocks are local to
the client, and not observed by the adversary, so if one of
these blocks is not touched, then the protocol does not
need it (there is no need for dummy accesses). Hence,
the complexity of the protocol is at least Ω(b′ ).

To conclude, we use the previous bounds on the
computational complexity and apply the following
lemma, whose proof is given in Appendix B.

Lemma 2. Let C > 8, D ≥ 0 and f : [D + 1,+∞) →
[1,+∞) defined as f(x) = max

{
x−D, C

log(x+1)(x+2)

}
.

Then C
4 log(D+2)·logC −1 < f(x) for all x in [D+1,+∞).

From all what precedes, and by applying the lemma
with C = log

(
N(H,w)
nw

)
and D = |σ|, we have that the
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computational complexity of a search query is

Ω

 log
(
N(H,w)
nw

)
log |σ| · log log

(
N(H,w)
nw

)
 .

The log log factor, which is not present in the ORAM
lower bound of [GO96], comes from the fact that we
consider separately the transient and the non-transient
(i.e. the state) memory of the client, although it is, in
some sense an artifact of the proof. As explained at the
end of Appendix B, we can improve the result of Theo-
rem 1, asymptotically get rid of the artificial log log fac-
tor in the denominator, and end up with the following
lower bound on the computational efficiency of search-

pattern hiding schemes: Ω
(

log (N(H,w)
nw

)
log |σ|

)
.

The binomial coefficient in the lower bound also
has a practical interpretation: it leverages the fact that,
when the protocol fetches the matching entries, a single
entry cannot be accessed twice, and that the order in
which they are accessed does not matter. If it had, we
would have a bound in N(H,w)!

nw! . This leaves space for
practical optimizations, as the entries corresponding to
the documents matching the search query will have to
be (randomly) relocated only once they have all been ac-
cessed (leaking the search pattern otherwise), the player
can optimize the number of visible accesses he makes,
something he cannot do with ORAM: it is not a problem
to leak that different entries/balls were accessed during
a given search query as this information is obvious.

It is interesting to see that, when all the keywords
only have a single matching document, i.e. in a setting
similar to the ORAM one (see the discussion at the be-
ginning of the section), our lower bound matches exactly
the ones of [GO96] and [LN18].

Note that the lower bound was proven in a non-
adaptive setting: we did not rely on the capacity of the
adversary to adaptively query the scheme. It is unclear
whether adaptivity would actually have an impact on
this lower bound. Also, Theorem 1 only targets static
SSE schemes (i.e. without updates), but a similar result
can be given for dynamic schemes hiding both the search
and update patterns. Indeed, Section 5 treats the case of
forward-private schemes, i.e. schemes that do not leak
information about the updated keywords.

4.2 Discussion about the Lower Bound

Here, we want to quickly discuss about limitations of
the above result, and possible ways to lift them.

About the restriction on the encrypted database.
The previous result heavily relies on the fact that the en-
crypted database consists of N entries exactly. One way
to overcome the lower bound would indeed be to du-
plicate the encrypted database, to make non-oblivious
accesses to the first database for the first query, and
then oblivious accesses to the second database for the
other queries.

Hence, the restriction on the number of database
entries is crucial in the proof. However, all existing
SE schemes (e.g. [CGKO06, KO12, CJJ+13, Bos16,
BMO17]) fall under this restriction. Also, it does not
preclude an encrypted database containing more than
the entries strictly speaking: it could also store addi-
tional information that is used during the search pro-
tocol by the client and/or the server. Accesses to this
part of the memory are not considered in our proof, we
only look at the memory blocks containing the entries
of the database. Similarly, adding dummy entries to the
database might help designing an Lsp-secure scheme, as
it is when constructing ORAM schemes, without im-
pacting the lower bound, as in the ORAM case. Indeed,
in both proofs, what really matters in the number of
useful balls, i.e. the balls with the actual content. The
other balls, such as the ones containing meta-data and
dummy entries, are not accounted for.

The data representation
As mentioned in Section 3.2 and described in the pre-
vious section, the lower bound is proven in some kind
of balls and bins model, inheriting its weaknesses such
as the simplicity of the data representation. Although
Larsen and Nielsen overcame these limits for ORAM
in [LN18] by using a different model, called the oblivi-
ous cell probe model, applying this model to static SSE
to obtain a lower bound similar to the one of Theo-
rem 1 looks far from trivial due to the differences be-
tween ORAM and SSE (especially the variable number
of results). We leave that as an intriguing open question.

Postponing result delivery.
The way we defined the search functionality of SSE en-
cryption schemes is very important in the proof : we
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require that, at the end of the execution of the Search
algorithm, all the results of the search query must be
returned to the client. This actually plays an impor-
tant role in the proof. This constraint is satisfied by all
the existing SSE schemes, except the piggyback scheme
(PBS) of Kamara et al. [KMO18].

Indeed, the PBS transforms the data so that a fixed
number of entries are fetched during each query (called
a batch), and it queues incoming queries so they can
be processed at a later time. As stated by the authors,
this trades leakage for latency: to be sure to get all the
results of a query, the client has to wait for the execution
of subsequent queries. As such, PBS does not satisfy
our hypothesis, and might overcome our lower bound
(although computing the exact efficiency of the scheme
is not trivial as is heavily depends on the keyword and
on the query distribution).

Practicality of the lower bound
Although it is unclear if leaking the search pattern can
lead to a real attack in general, in settings where the dis-
tribution of search queries is known, it can definitely be
an issue. Studying the Lsp leakage is interesting though,
as this is essentially the minimal leakage for an “effi-
cient” SSE scheme running is time less than O(N ). As
such, our result is a theoretical refinement to Naveed’s
study of the composition of ORAM and SSE [Nav15]:
it shows that targeting the the Lsp leakage (called LC1
in [Nav15]) cannot be practical, even without relying
directly on ORAM.

Also, a search-pattern-hiding scheme does not pro-
tect against all attacks: the count attack of Cash et
al. [CGPR15] uses the number of matches of a query to
recover the queried keyword when the adversary knows
the database, for keywords that have a unique number
of matching documents in the data set. However, such
leakage-abuse attacks are beyond the scope of this pa-
per.

4.3 On the Tightness of the Lower Bound

It is interesting to see that this lower bound does not
hold anymore when the leakage is slightly increased:
suppose that besides N , the setup also leaks, for each
n ∈ N, the number Kn of keywords w such that
|DB(w)| = n. We can then design a scheme Σ whose
search complexity for a keyword w is O

(
nw · log2Knw

)
.

To do so, the construction uses a derivative from
ORAM, an oblivious map (or oblivious dictionary) data

structure, as defined by Wang et al. in [WNL+14], which
has the same functionalities as a regular associative
map with the additional security property that a query,
whether is it a read or a write query, does not reveal
any information about the accessed key, nor about its
associated value.

Formally, an oblivious map (OMap) consists of one
Setup algorithm, and two protocols, Read and Write.
Setup takes a (regular) map as input and outputs the
oblivious map data structure OMap per se, that will
be given to the server, and the corresponding client
state OMapState. To run Read, the client gives a key
and the OMap state, and the server takes the OMap
structure, and the client is returned the matching value
to the key (or ⊥ if the key matches nothing). Finally,
Write(k, v,OMapState; OMap) modifies the structure and
the state so that subsequent calls to Read on key k return
v. Note that OMap and OMapState can be modified dur-
ing the execution of both protocols. The obliviousness
security property required for an OMap states that the
execution of two same-size sequences of Read and Write
queries are indistinguishable to the server. A formal de-
scription of oblivious maps and their security properties
is given in Appendix A.

Concretely, for a map storing N elements of size
B, the oblivious map constructed in [WNL+14] has a
client state of O(B · logN ) bits, and the computational
complexity of an access is O

(
B · log2N

)
. Note that the

client state can also be stored on the server, at the ex-
pense of downloading, re-encrypting and re-uploading
the state after each access. This does not change the
asymptotic complexity of the oblivious map, and this is
the oblivious map instantiation that we will use here.

The SSE scheme matching the complexity claimed
above, Melinoe, is described in Algorithm 2. For each
n such that Kn 6= 0, Σ initializes an oblivious map
(OMap) of size Kn where each block corresponds to
a keyword w such that |DB(w)| = n and stores DB(w).
Also, for each keyword w ∈ K, the client stores nw.
Then a search query only consists in reading the block
corresponding to the search keyword w in the OMap for
keywords with nw results. With the OMap described
in [WNL+14], this only requires O(nw logKnw ) opera-
tions as we use Knw blocks of nw keywords.

Melinoe can be shown Lsize-adaptively-secure with
Lsize defined as

LStp
size(DB) = {(n,Kn)} =

{(
n, |{w|DB(w) = n}|

)}
,

LSrch
size (w) = nw.
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Setup(DB)
1: OMapState,OMap,W← empty maps
2: for all n such that ∃w, |DB(w)| = n do
3: Tmp← empty map
4: for all w such that |DB(w)| = n do
5: Tmp[w]← DB(w)
6: W[w]← n

7: end for
8: (OMapState[n],OMap[n])← Θ.Setup(Tmp)
9: end for

10: return (OMap,∅, (W,OMapState))
Search(KΣ, w, σ; EDB)

Client:
1: n←W[w]
2: Run w ← Θ.Read(w,OMapState[n]; OMap[n]) with

the server. . Access w in the n-th OMap: run the
oblivious map data structure protocol between the
client and the server. OMapState[n] gets updated in
the process.

3: Parse the value as (ind1, . . . , indn).
4: return (ind1, . . . , indn).

Fig. 2 – Description of Melinoe.

If we use the OMap described earlier, our con-
struction has a O (K ) client state (we have to store
at most one OMap state and one integer per keyword
in the worst case), and the search complexity for the
keyword w is O

(
nw · log2Knw

)
, as the OMap associ-

ated with w has Knw elements of size nw. We can also
outsource W and OMapState using an OMap, with-
out altering the leakage profile (accesses to w are hid-
den by the use of an OMap). In this variant, which
is formally described in Algorithm 5, the client has a
constant-sized state, but the search complexity increases
to O

(
log2K + nw · log2Knw

)
= O

(
nw · log2K

)
.

Let us now consider a database such that N = Kα,
and with a set of keywords w such that nw = L (con-
stant). We suppose that we want to repeatedly want
to search for one of these keyword. In the Melinoe con-
struction, the search complexity is O

(
L log2K

)
, while

the lower bound gives us Ω
(

log
(
Kα

L

))
. From Stirling’s

formula,
(
Kα

L

)
∼ 1√

2πL
· K

αL

LL
, and the lower bound ends

up being Ω(Lα logK ). By taking α = log2K, we can
see that the lower bound is completely broken by the
Melinoe scheme.

4.4 Communication vs Computational
Complexity

Theorem 1 states a lower bound on the total compu-
tational complexity of the client and the server during
a search query, but does not specify how the work is
shared between the two. This is similar to the ORAM
lower bound of [GO96], as explained in [DDF+16]. In-
deed, in the setting of [GO96], the server is not allowed
to do computations, so we end up with a lower bound
on the bandwidth overhead. But once the server is al-
lowed to ‘help’ the client, this bandwidth overhead does
not hold anymore, but the total number of atomic op-
erations still has to satisfy the lower bound.

We are exactly in the same case with our SSE lower
bound: if the server is supposed to be completely passive
(i.e. act like some basic storage device), our computa-
tional lower bound will also be a communication lower
bound. On the other hand, the searchable encryption
scheme could be implemented as a garbled RAM pro-
gram (see [LO13]) executed by the server on its own: the
size of the search token (i.e. the garbled program) would
only depend on the security parameter, and there would
not be any bandwidth overhead, whereas the computa-
tional overhead is very high.

This shows that even a small relaxation in the hy-
pothesis of Theorem 1 invalidates the lower bound.

5 Forward Privacy
In this section, we study a very important security prop-
erty for dynamic searchable encryption schemes, called
forward privacy. Informally, it states that updates do
not leak information about the updated keywords. We
start with a motivation and the formal definition of for-
ward privacy, continue by presenting a lower bound on
the efficiency of the update protocol of a forward-private
searchable encryption scheme, and finish this section by
presenting constructions that tightly match this lower
bound.

5.1 File Injection Attacks and Forward
Privacy

File injection attacks aim at breaking the confidentiality
of the user’s queries by injecting adversarially-controlled
documents in the database (think of an encrypted email
service attacked using spam). The first of these attacks



Security-Efficiency Tradeoffs in Searchable Encryption 144

was presented by Cash et al. in [CGPR15], but only
targeted legacy-compatible encrypted databases, with
much more leakage than what we usually consider in
this paper.

Zhang et al. [ZKP16] improved this attack against
any dynamic scheme leaking, during a search query,
the results of the search or when the matching docu-
ments have been inserted in the database. They also pre-
sented a devastating adaptive variant of this attack that
uses the update leakage, namely which are the previous
search queries that the inserted document matches.

More specifically, their attack reveals the keyword
w associated to a past search query q by inserting log 2T
documents if the adversary knows the keyword distribu-
tion in the database, orK/T+log T new documents if he
does not. Here, T is the threshold parameter, a public
parameter used to thwart the non-adaptative version
of the file injection attack, and that needs to be kept
small to efficiently counter it (but not too small, as it
has an impact on the efficiency of the schemes). The
value T = 200 is used in the experiments of [ZKP16]:
inserting 8 fake documents is sufficient for the adversary
to break the confidentiality of any search query.

Hence, to avoid this attack, it is necessary that
dynamic searchable encryption schemes are forward-
private, i.e. leak no information about the updated key-
words during an insertion. This notion, that is now a
de facto standard for dynamic searchable encryption
schemes [GMP16, KKL+17, BMO17, EKPE18], was in-
troduced by Stefanov et al. in [SPS14], and formalized
by Bost in [Bos16]. We restate this formalization in the
following definition.

Definition 4 (Forward privacy). An L-adaptively-
secure SSE scheme Σ is forward private if the update
leakage function LUpdt can be written as

LUpdt(op, in) = L′(op, {(indi, µi)})

where {(indi, µi)} is the set of modified documents paired
with the number µi of modified keywords for the updated
document indi, and L′ is a stateless function ( i.e. does
not depend on previous queries).

5.2 Lower Bounding the Search and
Update Complexities of
Forward-Private Searchable
Encryption

Unfortunately, forward privacy has a non-negligible
performance impact: when compared to non-forward

private SSE schemes such as the one in [CJJ+13],
which has constant client size and constant up-
date complexity, every existing forward-private con-
struction has an important overhead on the client
storage (e.g. Σoφoς [Bos16] and subsequent works
[KKL+17, EKPE18] have a Θ(K ) client storage), on
the query complexity (e.g. Õ

(
log3N

)
overhead for

TWORAM [GMP16]), or on both (Θ
(
log2N

)
update

overhead and O (Nα ) client storage for SPS [SPS14]).
This leads to the question of the minimal cost of
forward-private SSE.

General ideas
To study the computational complexity of such con-
struction, we proceed similarly to the lower bound of
Theorem 1. Unfortunately, because we have to con-
sider both search and update queries, the analysis is
slightly more involved. Indeed, we have to consider the
case where the Update protocol does essentially noth-
ing, just appending an encrypted entry to a log, and the
Search protocol does all the work: during a search, the
client downloads the log, decrypts the entries and sees
which ones match the searched keyword. This sketched
scheme has constant update complexity, constant client
size (the client can stream the log, and not download it
at once), but extremely high search complexity as the
update work is piggy-backed to the Search protocol.

Also, as the forward-privacy security notion only
makes sense against an adaptive adversary, we have to
account for this, contrary to the previous bound where
the considered adversary was non-adaptive, adding a bit
of complexity in the proof.

Here, for simplicity, we suppose that the scheme
only supports atomic insertions, i.e. additions of single-
keyword/document pairs. Note that we can do that
without loss of generality as more general updates can
be expressed as a sequence of atomic updates, and as all
the previously mentioned schemes are indeed inserting
documents by processing them entry-by-entry.

The choice of the leakage function
Although we want our lower bound to be as general as
possible, we need some restrictions on the leakage to
make the result easier to state and to prove. For ex-
ample, we could have a leakage function which reveals
everything about the database and the previously is-
sued queries during a search, and nothing during an up-
date. This will still be a forward-private construction,
although not very secure in practice. Instead, we will
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consider a leakage function that only reveals informa-
tion about the queried keyword and its matches during
a search.

This can be formalized as follows: remember that,
in Section 3.3, to define the search pattern, we used
the query list Q, that is the list of all issued queries,
marked as (i, w) for a search query on keyword w and
(i, op, w, ind) for an update on the (w, ind) entry, i being
the timestamp of the query. From this notation, we can
define the list Q(w) of queries involving w as

Q(w) = {q ∈ Q|q = (i, w) or q = (i, op, w, ind)}.

From this, we can define a generic leakage function LFP ,
that achieves forward-privacy and only reveals informa-
tion about the searched keywords, as:

LStp
FP (DB) = DB, LSrch

FP (w) = Q(w)

and LUpdt
FP (op, w, ind) = L′(op, ind)

where L′ is a stateless function. It easy to see that any
of the forward-private schemes from [SPS14, GMP16,
Bos16, KKL+17, EKPE18] have a leakage profile that
leaks less than LFP (in the sense of Definition 3).

We can now formally state our lower bound theo-
rem on the computational complexity of forward-private
SSE schemes:

Theorem 3. Let Σ be an L-unconditionally-secure for-
ward private SSE scheme supporting insertion and dele-
tion of entries in the database, with L � LFP . Suppose
Σ has a client state (permanent memory) of size |σ|.
Then, either the average computational complexity of
the Update protocol (when summing the contributions of
the client and of the server) is Ω

(
logK

log |σ|·log logK

)
or the

complexity of the Search protocol is Ω
(

t logK
log |σ|·log logK

)
where t is the number of updates since the last search
query.

Proof. We proceed in a similar spirit to the proof
of Theorem 1, with a player, able to hold at most
b entries (atomic document/keyword pairs), making
accesses to the encrypted database in order to an-
swer a sequence of t update queries, and an ob-
server who sees these accesses. As we supposed that
the updates are atomic (i.e. are insertions or dele-
tions of single keyword/document pairs), a sequence
of t updates following by a search can be written
as [(op1, w1, ind1), . . . , (opt, wt, indt), w∗]. Suppose that
there exists 1 ≤ k ≤ t such that w∗ = wk, and
that ∀i 6= k,wi 6= wk. The observer will win the
game if he is able to distinguish the execution of this

query sequence with the execution of a query sequence
[(op′1, w′1, ind′1), . . . , (op′t, w′t, ind′t), w′k] such that, for all
1 ≤ i ≤ t, L′(opi, indi) = L′(op′i, ind′i), and ∀i 6= k,w′i 6=
w′k. Note that if (opi, indi) = (op′i, ind′i) for 1 ≤ i ≤ t,
then the first condition clearly holds.

To answer these t+ 1 queries, the player will make
a sequence of q visible accesses V = (v1, . . . , vq), ob-
servable by the adversary, and a sequence (h1, . . . , hq)
of hidden actions hi, which the observer cannot see. As
before, the player can do one of the b+ 2 actions among
taking an entry from the cell, placing an entry in the
cell or doing nothing.

As in the case of the proof of Theorem 1, the action
sequence can answer at most (b + 1)q(b + 2)q update
queries followed by a search query. On the other hand,
the number of query sequences with the same LFP -
leakage as [(op1, w1, ind1), . . . , (opt, wt, indt), wk], and
such that ∀i 6= k,wi 6= wk, is at least (K − 1)t−1: also,
w′k must be fixed to wk, we can generate such sequence
by choosing and w′i in W \ {wk} for ∀i 6= k. Indeed, wk
cannot be used in the other update queries as it will
be searched by the search query. As a consequence, we
must have that

(b+ 1)q(b+ 2)q ≥ (K − 1)t−1 ⇔ q ≥ (t− 1) log(K − 1)
log(b+ 1)(b+ 2) ,

which implies that we cannot have both that the
amortized complexity of an update is less than be

logK−1
log(b+1)(b+2) , and that the complexity of a search is
less than (t−1) log(K−1)

log b(b+2) . Also, we know that the com-
putational complexity of a query has to be larger than
b − |σ| (every memory cell used during the execution
of the protocol has to be used unless it is useless). In
the end, we are in one of these two cases: either the
amortized complexity of an update is Ω

(
logK

log |σ|·log logK

)
(from Lemma 2), or the complexity of a search is
Ω
(

(t−1) logK
log |σ|·log logK

)
.

5.3 On the Tightness of the Lower Bound

It happens that the lower bound of Theorem 3 is es-
sentially tight. Indeed, there exist three schemes —
Σoφoς [Bos16], KKLPK [KKL+17], and EKPE [EKPE18]
— that match the lower bound. For all these schemes,
the client storage complexity is Θ(K ) (at least one
counter is stored for each keyword on the client side),
and the updates have a constant time complexity.

Also, we can modify these schemes so as to reach the
other side of the tradeoff: forward-private schemes with
constant client storage. It is very important that the
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outsourcing of these schemes’ keyword-to-counter map
does not leak that the same counter was accessed when
a search query on w is followed by an update query on
w. A natural way to avoid that is to put the counter
map in an ORAM, as every access would be hidden.

More precisely, we can use oblivious maps, as in
Section 4.3, to outsource the storage of the counters to
the server. The OMap of Wang et al. [WNL+14] will
produce a scheme with update complexity O

(
log2K

)
andO(logK ) client storage. The client storage, as in the
Melinoe construction, be reduced to O(1) by storing the
OMap state on the server, fetching it and re-encrypting
it for every access.

Also, one can construct a scheme, described in Al-
gorithm 3, with constant update complexity, constant
client size and O

(
log2K + nw

)
amortized search com-

plexity. It uses an underlying forward-private scheme Σ
with a constant-size client state and O

(
log2K

)
search

and update complexity (such as the ones described just
before). The search complexity of the first two steps is
O(t logK ), as the client must first decrypt the entries in
L, each of size O(logK ) at least (there is at least one en-
try per keyword, and there are K keywords). The total
complexity of the Search protocol is O

(
t log2K + nw

)
as

the client makes t insertions, of complexity O
(
log2K

)
and one search of complexity O

(
log2K + nw

)
. This

scheme is hence optimal as the complexity of the search
algorithm has to be Ω(nw ) anyways, which, combined
with our lower bound, means that the search complexity
is at least Ω

(
log2K + nw

)
.

Yet, it is unclear if we can construct schemes whose
efficiency is on the trade-off curve, between the extrema,
e.g. a scheme with O(

√
K) client storage and O(1) up-

date complexity. We think this is an interesting question
for future work.

Also, it would be interesting to see if we can trans-
form the log2K term into a logK term in both of the
previous tight schemes with constant-size client state.
The squaring comes from the use of OMaps/tree-based
ORAM to outsource the client’s state, and it might be
asymptotically overcome using more recent ORAM con-
structions, such as OptORAMa [AKL+18].

Variants of the LF P leakage function
One could wonder what is the impact of slightly chang-
ing the leakage function. First, reducing the leakage
would essentially mean that the scheme hides the ’his-
tory’ of the searched keyword, i.e. when the entries
matching the keyword have been inserted. A scheme
with such leakage would be very close to ORAM, and

Setup(DB)

1: KE
$← {0, 1}λ

2: L← empty list
3: (EDBΣ,KΣ, σΣ)← Σ.Setup(DB)
4: return ((EDBΣ, L), (KΣ,KE), σΣ)

Update((KΣ,KE), σΣ, w, ind; EDB)
Client:

1: e← Enc(KE , (w, ind))
2: Send e to the server.

Server:
3: Appends e to L.

Search((KΣ,KE), w, σ; EDB)
1: For each e ∈ L, the client downloads and decrypts
e, getting the pair (w′, ind).

2: The client and server run Σ.Update(KΣ, σ, w
′, ind).

3: The server resets L to an empty list.
4: Run Σ.Search(w), and return the result.

Fig. 3 – Description of a forward private scheme with constant up-
date complexity and constant client size. Σ is a forward-private
scheme with O

(
nw + log2K

)
search and O

(
log2K

)
update

complexity.

the only existing construction achieving this leakage is
actually ORAM-based [GMP16]. As such, we believe it
is unlikely to construct such a scheme that would be
significantly better than ORAM, as shown in Section 4.

On the other side, increasing the leakage would
mean leaking information about keywords different from
the one being searched. In some sense, this would break
the intention behind the forward privacy requirement:
leaking information only about the query itself (in the
case of an update, the nature of the operation and its
size). Hence, we did not really study this case, although
we can easily see that, in this setting, we can achieve a
better complexity, for example by revealing all the up-
dates since the last search during a search query, and
not just the updates related to the searched keyword.

6 Conclusion
We studied two lower bounds on searchable encryption
schemes, targeting static schemes hiding the search pat-
tern, and forward-private dynamic schemes. We showed
that these lower bounds are tight in the last case, and
allow different efficiency tradeoffs, e.g. between the size
of the client’s state and the queries’ computational com-
plexity.
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Although, as explained in Section 4.2, the chosen
models for the lower bounds might have their limits, we
think that our results provide a better understanding of
what is possible, and what is not, to do with searchable
encryption schemes. Improving the strength of results,
e.g. by using a more general model for the database rep-
resentation, is a very interesting question left for future
work.
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A Oblivious Maps

A.1 Definition

As we explained in Section 4.3, an oblivious map is com-
posed of one algorithm and two protocols between a
client and a server:

– Setup(T ) is a probabilistic algorithm that takes as
input the initial content of the OMap T . It outputs
a couple (OMapState,OMap), OMap is the oblivious
data structure stored on the server, and OMapState
is the client’s state.

– Read(k,OMapState; OMap) is a protocol between the
client with input the (non cryptographic) key k (the
query), and the client’s internal state OMapState;
and the server with input the OMap data structure
OMap.
After completing the Search protocol, the client out-
puts a value v and a new state OMapState′. The
value v can be > to signify that k does not match
any value in the map. Both v and OMapState′ can
take the special value ⊥ to signify an error or a
failure in the execution of the protocol. The server
possibly outputs an updated structure OMap′.

– Write(k, v,OMapState; OMap) is a protocol between
the client with input the key k, the value v, and
the client’s internal state OMapState; and the server
with input the OMap data structure OMap. At the
end of the execution of the protocol, the client out-
puts a new state OMapState′, which can take the
special value ⊥, and the server outputs a new data
structure OMap′.

In this paper, we assumed that the OMap instanti-
ations we were using are correct, namely that Read(k)
return the latest value v for key k, i.e. the value v of the
latest call to Write(k, v) or T [k] where T is the initial
map used during setup.

A.2 Security

The security requirement of oblivious maps state that
two sequences of access (read or writes) are indistin-
guishable. It can be formalized using the security game
of Figure 4.

Definition 5. Let Θ be an OMap scheme. For an ad-
versary A, the advantage AdvOVM-ind

Θ,A (λ) of A in the
indistinguishability-based confidentiality game is defined

Init(T0, T1)
if |T0| 6= |T0|

Abort game
b

$← {0, 1}
(OMapState,OMap) $← Setup(Tb)
return OMap

Access(q0, q1)
if qb is a Read access then

Parse qb as k
(v,OMapState, τ ; OMap) $←

ReadC(k,OMapState; OMap)↔ A

else
Parse qb as (k, v)
(OMapState, τ ; OMap) $←

WriteC(k, v,OMapState; OMap)↔ A

end if
return τ

Final(b′)
return b = b′

Fig. 4 – Security game OMapInd capturing malicious adversaries.
The notation ↔ A represents interactions with the adversary.

as

AdvOVM-ind
Θ,A (λ) =

∣∣∣∣12 − P[OMapIndAΘ(1λ) = 1]
∣∣∣∣ .

An OMap scheme Θ is adaptively-indistinguishability
secure if for any polynomial-time adversary A,
AdvOVM-ind

Θ,A (λ) is negligible in λ.

As in the SSE case, this definition covers both pas-
sive and active adversaries (depending on whether A
respects or not the protocols).

B Additional Proofs
We are giving here the formal proofs of Lemma 2.

Proof. This lemma can be shown using simple analysis.
We start by a simple variable change:

max
x∈[D+1,+∞)

{
x−D, C

log(x+ 1)(x+ 2)

}
= max
x∈[1,+∞)

{
x,

C

log(x+D + 1)(x+D + 2)

}
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Then, notice that, that, as log is an increasing func-
tion,

C

log(x+D + 1)(x+D + 2) ≥
C

2 log(x+D + 2)

= C

2(log(x/D′ + 1) + log(D′))

where D′ = D + 2. Also, by denoting C′ = C
2 logD′ , we

have that
C

log(x+D + 1)(x+D + 2) ≥
C′

logD′(x/D′ + 1) + 1

≥ C′

logD′(x+ 1) + 1
again, because log is an increasing function. As a con-
sequence

max
x∈[D+1,+∞)

{
x−D, C

log x(x+ 2)

}
≥ max
x∈[1,+∞)

{
x,

C′

logD′(x+ 1) + 1

}
Let g(x) = max

{
x, C′

logD′ (x+1)+1

}
. Lower bounding f

on [D + 1,+∞) is equivalent to lower bounding g on
[1,+∞). Let us separate two cases, whether x ≥ D′ − 1
or x < D′ − 1.

If x < D′ − 1, then logD′(x+ 1) + 1 ≤ 2 and

g(x) ≥ max
{
x,C′/2

}
≥ C

4 logD′ .

If x ≥ D′ − 1, then logD′(x+ 1) + 1 ≤ 2 logD′(x+ 1)
and

g(x) ≥ max
{
x,

C′/2
logD′(x+ 1)

}
.

Also, as x 7→ x is an increasing function and x 7→
C′

2 logD′ (x+1) is decreasing, the minimum is reached when
x = C′

2 logD′ (x+1) . Finding this minimum is equivalent to
finding x∗ such that h(x∗) = 0 where

h(x) = x− C′

2 logD′(x+ 1) = x− C

4 log(x+ 1)

as C′ = C
2 logD′ . In particular, f(x) ≥ x∗. Note that we

are actually only looking for a lower bound of x∗, not
its exact value. Hence, as h is a continuous and strictly
increasing function on [1,+∞), x∗ is the only value on
which h annihilates and h(x) ≤ 0 ⇔ x ≤ x∗. Also, we
have that

(x+ 1)− C

4 log(x+ 1) ≤ 0⇒ x ≤ x∗,

Let C′′ = C/4 and suppose that logC′′ > log logC′′ ≥ 0.
Then, we directly have that

1
logC′′ −

1
log C′′

logC′′
= 1

logC′′ −
1

logC′′ − log logC′′ ≤ 0,

and for x0 = C′′

logC′′ − 1, we have that (x0 + 1) −
C

4 log(x0+1) ≤ 0, and then that x0 ≤ x∗.
To conclude, we just have to check that logC′′ >

log logC′′ ≥ 0. The last inequality is verified for C ≥ 8.
For the first inequality, we have to study t : x 7→ x−log x
on the interval [1,+∞). Its derivative x 7→ 1 − 1

x·ln 2
(where ln is the natural logarithm) is negative on [1, 1

ln 2 ]
and positive on [ 1

ln 2 ,+∞[. Thus, t reaches its minimum
for x = 1

ln 2 ≈ 1.443, and

t(x) ≥ t
(

1
ln 2

)
≈ 0.914 > 0.

As a consequence, and because we supposed that C > 8,
logC′′ > 0, and logC′′ > log logC′′, we have that x0 ≥

C
4(logC)−2 − 1 ≥ C

4 logC − 1.
We can conclude the proof of this lemma by stating

that

max
x∈[D+1,+∞)

{
x−D, C

log x(x+ 2)

}
≥ min

{
C

4 logD′ ,
C

4 logC − 1
}

≥ C

4 log(D + 2) · logC − 1

Note that we can show a variant of Lemma 2, that allows
for better lower bounds.

Lemma 4. For all a ∈ N∗, if C > 4 ·

a times︷ ︸︸ ︷
22.

. .
20

, then

max
{
x−D, C

log(x+ 1)(x+ 2)

}
>

C

4 log(D + 2) · log(a) C
.

where log(1) x = log x and log(a) x = log log(a−1) x for
a > 1.

Hence, in the proof of Theorems 1 (resp. Theorem 3), we
can apply Lemma 4 instead of Lemma 2 with a well cho-
sen value a ∈ N∗ such that 1 ≤ log(a) (N(Hi−1,wi)

nwi

)
< 2

(resp. 1 ≤ log(a)K < 2), and end up with a larger lower

bound, namely Ω
(

log (N(H,w)
nw

)
log |σ|

)
(resp. Ω

(
logK
log |σ|

)
), than

stated originally.
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Setup(DB)

1: KE
$← {0, 1}λ

2: W← empty maps
3: OMapState,EncOMapState,OMap,← empty array
4: for all n such that ∃w, |DB(w)| = n do
5: Tmp← empty map
6: for all w such that |DB(w)| = n do
7: Tmp[w]← DB(w)
8: W[w]← n

9: end for
10: (OMapState[n],OMap[n])← Θ.Setup(Tmp)
11: EncOMapState[n]← Enc(KE ,OMapState[n])
12: end for
13: (OMapState-W,OMap-W)← Θ.Setup(W)
14: EncWState← Enc(KE ,OMapState-W)
15: return

((OMap,EncOMapState,OMap-W,EncWState),
KE ,∅)

Search(KΣ, w, σ; EDB)
Client:

1: Fetch EncWState from the server.
2: OMapState-W← Dec(KE ,EncWState)
3: Run n← Θ.Read(w,OMapState-W; OMap-W) with

the server. . n←W[w]: run the oblivious map
data structure protocol between the client and the
server. OMapState-W gets updated in the process.

4: Fetch EncOMapState[n] from the server.
5: OMapState[n]← Dec(KE ,EncOMapState[n])
6: Run w ← Θ.Read(w,OMapState[n]; OMap[n]) with

the server. . Access w in the n-th OMap: run the
oblivious map data structure protocol between the
client and the server. OMapState[n] gets updated in
the process.

7: Parse the value as (ind1, . . . , indn).
8: EncWState← Enc(KE ,OMapState-W)
9: EncOMapState[n]← Enc(KE ,OMapState[n])

10: Send EncWState and EncOMapState[n] to the
server.

11: return (ind1, . . . , indn).

Fig. 5 – Description of the Melinoe variant with constant size state.
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