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The privacy of the TLS 1.3 protocol
Abstract: TLS (Transport Layer Security) is a widely
deployed protocol that plays a vital role in securing In-
ternet traffic. Given the numerous known attacks for
TLS 1.2, it was imperative to change and even redesign
the protocol in order to address them. In August 2018,
a new version of the protocol, TLS 1.3, was standard-
ized by the IETF (Internet Engineering Task Force).
TLS 1.3 not only benefits from stronger security guaran-
tees, but aims to protect the identities of the server and
client by encrypting messages as soon as possible dur-
ing the authentication. In this paper, we model the pri-
vacy guarantees of TLS 1.3 when parties execute a full
handshake or use a session resumption, covering all the
handshake modes of TLS. We build our privacy models
on top of the one defined by Hermans et al. for RFIDs
(Radio Frequency Identification Devices) that mostly
targets authentication protocols. The enhanced mod-
els share similarities to the Bellare-Rogaway AKE (Au-
thenticated Key Exchange) security model and consider
adversaries that can compromise both types of partic-
ipants in the protocol. In particular, modeling session
resumption is non-trivial, given that session resumption
tickets are essentially a state transmitted from one ses-
sion to another and such link reveals information on
the parties. On the positive side, we prove that TLS 1.3
protects the privacy of its users at least against pas-
sive adversaries, contrary to TLS 1.2, and against more
powerful ones.
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1 Introduction
The TLS protocol is one of the most commonly used
secure-channel establishment protocols today. It en-
sures the security of, for example, messages exchanged
over the Internet when incorporated in https [14, 29],
secure emailing, and even Voice-over-IP (VoIP) com-
munications [31]. As other authenticated key-exchange
(AKE) protocols, TLS consists of two steps: a hand-
shake and subsequently, secure message-exchange. Dur-
ing the handshake, a client and a server exchange in-
formation over an insecure channel, allowing for (uni-
lateral or bilateral) authentication and for the compu-
tation a tuple of symmetric keys. Subsequently, during
the secure message-exchange step (also called the record
layer for TLS), these keys are used with authenticated
encryption. This process guarantees the most basic se-
curity properties of a protocol for secure-channel estab-
lishment, namely the confidentiality and authentication
of the messages.

In this paper, however, we shift the focus away from
the security of secure-channel establishment, and in-
stead consider the privacy it provides.

In TLS, parties can choose to execute a full hand-
shake each time they communicate, or they can resume
a past session using session resumption. The TLS 1.3 full
handshake that is most likely to be used in practice con-
sists of a unilaterally (server-only) authenticated Diffie-
Hellman-based key-exchange, which guarantees perfect
forward secrecy, i.e., compromising a party’s long term
keys does not affect past sessions. Once a client and
a server have successfully completed a full handshake,
it is possible to resume that handshake later, by using
a pre-shared key and optionally an additional Diffie-
Hellman element. This improves performance by avoid-
ing authentication.

Session resumption in TLS 1.3 strongly depends on
so-called session tickets. Upon the completion of a (full
or resumed) session, the server sends the client a ticket
as part of the secure session-traffic. In order to resume
that session the client sends the unencrypted ticket back
in a following session, and both parties use the associ-
ated pre-shared key (PSK) to compute new session keys.
Unfortunately, session resumption, in its pre-shared key
only mode, yields no forward secrecy.
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In this paper we show that, in addition to forward
secrecy, PSK-based session resumption also loses the
degree of privacy guaranteed by full-mode handshakes.
The same problem holds for PSK-DHE resumption.

1.1 The TLS 1.3 protocol

The history of the TLS protocol is littered with attacks
against both the handshake and the record layer sub-
protocols [1–4, 6, 9–13, 21, 27, 28, 30, 32]. The plethora
of flaws discovered in the TLS 1.2 version have led the
IETF to propose TLS 1.3 as the future de-facto AKE
protocol to safeguard Internet connections.1

In many ways, the design of TLS 1.3 revolutionizes
real-world authenticated key-exchange, by employing
modern cryptographic mechanisms. All messages in the
the protocol are encrypted using AEAD (Authenticated
Encryption with Auxiliary Data). Additionally, HKDF
(Hash Key Derivation Function), replaces HMAC in the
key schedule. The key schedule itself is much more com-
plex than in previous versions, respecting the paradigm
of separating keys used at different layers and for dif-
ferent purposes. Insecure or obsolete algorithms from
previous versions of TLS are no longer supported by
TLS 1.3. The protocol is designed with modularity in
mind, which should make it easier to implement or for-
mally analyse. We give a more detailed description of
the design elements that affect the privacy of TLS 1.3
in Appendix A.

1.2 Privacy notions for AKE

Beyond confidentiality, the notion of user privacy has
been increasingly required for practical cryptographic
countermeasures. Such requirements were exacerbated
by Edward Snowden’s revelations of mass surveillance
attacks and large data centers storing massive amounts
of user metadata [34], which co-motivated the emer-
gence of GDPR [17] and e-Privacy [18] regulations. In
addition, designers of cryptographic primitives and pro-
tocols have taken to an “encrypt as early as possible”
paradigm, which formed the backbone of TLS 1.3.

At the very minimum, a privacy-protecting protocol
can hide the identity of the participants (both client and
servers). At the level of the protocol, this can be done

1 For this paper, we have relied on the August 2018 ver-
sion of RFC 8446, available at https://datatracker.ietf.org/doc/
rfc8446/.

by never using identifiers in plaintext; for lower layers,
more complex mechanisms such as Tor might have to be
put into place. But, while learning a party’s identity is
a complete privacy breach, partial information leakage
–such as realizing whether the protocol has been run be-
fore, or linking a single, anonymous user to two distinct
sessions – can also be exploited. This is the reason why
modern privacy-preserving protocols aim to guarantee
various flavours of unlinkability, rather than the weaker
property of identity-hiding. This is also the approach
we take in this paper, modelling strong adversaries and
minimal restrictions on winning conditions.

Even less ambitious goals, such as identity-hiding,
can be difficult to achieve in practice, for instance in the
context of authentication. Krawczyk [25] noted that it
is impossible to design a protocol that will protect both
peers’ identities from active attacks, since the first peer
must disclose its identity to its partner before authenti-
cation can take place. As TLS 1.3 is expected to mainly
run – like its predecessors – with only unilateral authen-
tication, we may hope that it protects the identity of the
server from passive and active adversaries. This would
be a vast improvement with respect to previous versions
of TLS, in which the server’s identity is usually sent in
clear together with its certificate.

In addition to the revolutionary design of its full
handshake, TLS 1.3 enables session resumption in two
modes: PSK and PSK-DHE. This latter mode adds
freshness in session key computation. Both modes make
use of the so-called session tickets. However, there seems
to be no consensus about its implementation, especially
that TLS 1.3 specification gives only generic guidelines
about its construction. In this paper, we analyse the
privacy of the different modes of TLS handshake and
discuss the privacy impact of the way session tickets are
constructed.

1.3 Our contributions

Our three main contributions are as follows: we for-
malized a game-based Left-or-Right indistinguishability
definition for the properties attained by the protocol; we
described a number of inevitable attacks in AKE pro-
tocols (providing for them in our model); and finally
we proved the privacy properties guaranteed by the full
handshake and the session-resumption mechanisms. We
discuss below in more detail each of these contributions.

Our privacy model. We define the privacy of TLS as
a type of unlinkability of protocol sessions. The adver-

https://datatracker.ietf.org/doc/rfc8446/
https://datatracker.ietf.org/doc/rfc8446/
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sary is an active Man-in-the-Middle, who can interact
with protocol participants arbitrarily, akin to Bellare-
Rogaway AKE adversaries [8]. However, as opposed
to [8] models, in which the adversary knows whom he
is interacting with, in our definitions we use the notion
of virtual identifier taken from the RFID privacy frame-
work of Hermans et al. [23]. Our adversaries will repeat-
edly be able to query a drawing oracle, which takes as
input two (possibly distinct) parties of the same type
(clients or servers) and outputs either the left or the
right party, depending on a secret bit b. The goal of our
adversary will be to guess b with a probability signifi-
cantly larger than 1

2 .
A key aspect of our model is that we view resumed

sessions as being linked to the previous session in which
the PSK (and the ticket) is computed; we account for
this by allowing clients and servers to have a state. The
concept of tying sessions together in this way lies at
the core of our model, and is one of the strongest ways
in which the adversary can try to link sessions. Unfor-
tunately, this inter-connection between the session also
implies some restrictions in terms of the Left-or-Right,
Corruption, and Revealing queries that the adversary is
allowed to make.

A non-trivial design choice in our model concerns
Left-or-Right queries. Ideally, we would like the adver-
sary to be able to make multiple drawing queries, under
reasonable restrictions (such as: one cannot make draw
the same party twice without first freeing it). Unfor-
tunately this seems impossible: during the proof the re-
duction to the AEAD security of the channel over which
the ticket is sent would require guessing a large, com-
binatorial number of instances. Consequently, we have
a choice of whether to define selective privacy (the ad-
versary declares in advance which parties it will later
draw), or allowing a single DrawParty query, which is
–however– adaptive. We choose the latter approach.

Trivial Attacks. Ideally, we would have liked our
games to have a “clean” winning condition: the adver-
sary would win if he managed to output a correct guess
for the bit b. Unfortunately, this is not possible. Even
for the full TLS 1.3 handshake an adversary can win by
impersonating a client – since we consider server-only
authentication. We call such an attack trivial, in the
sense that it automatically allows the adversary to win,
regardless of the design of the protocol.

Resumption brings out many more attacks against
user privacy, which we detail in Section 3. The easiest
way in which an attacker can break our Left-or-Right
privacy notion is to choose (by using the Draw oracle)

two parties such that, for some given partner, one of the
two parties holds a resumption ticket with that partner,
while the other does not. In that case, the adversary’s
strategy would be to force resumption and distinguish
between the drawn parties based on whether resump-
tion worked (the handshake runs to completion) or not
(there is an abort). Thus, we must restrict the adver-
sary’s winning conditions to capture the indistinguisha-
bility between two parties that have similar resumption
profiles. We note that these threats are generalizable to
a wider category of protocols supporting resumption.
Indeed, the attacks do not exploit features specific to
TLS 1.3, but rather, weaknesses of session resumption
in general.

Proving the privacy of TLS 1.3. In order to prove
the privacy of TLS 1.3, we employ techniques often
used in provable security for analysing AKE or other
types of protocols. We reduce the problem of breaking
the privacy of TLS users to either breaking down the
atomic cryptographic primitives (like the signature or
the authenticated encryption) or solving computational
problem presumed hard (such as computational Diffie-
Hellman). As long as these assumptions hold true, TLS
guarantees the privacy of its users up to a certain num-
ber of intrinsic trivial attacks that we exclude from the
model.

1.4 Applicability and impact

Our results are, to some degree, tailored to TLS 1.3, and
to some degree more generic, covering a wider class of
protocols. We point out some of the limitations below.

Protocol limitations. Analysing the privacy of com-
plex protocols, such as TLS 1.3, is a daunting task. As
a result, we only focus on some of its features, includ-
ing the full handshake, session resumption in PSK and
PSK-DHE mode, but not 0-RTT. The precise protocol
we analyse in this paper is described in Section 2.2.

Although we strove to include as many of the proto-
col’s privacy-preserving features as possible, some seem
difficult to model, including parameter negotiation and
error messages. The former can be serious privacy risks,
since they can be used to profile the server’s or client’s
behaviour, which in turn can help link sessions of the
same party. Another feature we omit is the Server Name
Indication (SNI) extension, which allows a single server
to run TLS handshakes on behalf of multiple domains,
using multiple public keys. Defining privacy in this con-
text is tricky, since we would have to model the fact
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that certain servers are allowed to run handshakes for
one domain, while others cannot.

Finally, we only considered one possible implemen-
tation of session tickets, which is also implemented by,
for instance, WolfSSL2: namely, the server will encrypt
the resumption master secret and a nonce within the ses-
sion ticket, using a long-term symmetric key. However,
we also discuss other implementations in our concluding
remarks. Session tickets are non-reusable in our model.

Model limitations. Our model is also restricted
to unilaterally, server-only-authenticated protocols in
which the client sends the first message. However, we
can trivially transform a protocol for which the server
is the initiator into one in which it is the responder (by
just adding a dummy message from the client, prompt-
ing the communication) without impacting the security
analyses; It is only slightly more complicated to cap-
ture a mutually-authenticated handshake: we must add
a winning condition that prohibits the adversary from
impersonating a client.

We also assume that servers have a way of a priori
distinguishing whether the handshake will be run in full,
PSK, or PSK-DHE modes, thus excluding some tamper-
ing attempts by the adversary. In the TLS 1.3 protocol,
no such a priori knowledge is needed since the server ad-
justs to the format of the client’s first message. Finally,
the mechanics of the Left-or-Right party-drawing ora-
cle amount to a number of artificially destroyed tickets,
which have no correspondence in real life.

Our attacks. In this paper we present a number of
ways in which a generic adversary can link protocol ses-
sions, both when session resumption is used (most at-
tacks), and when it is not. These attacks exploit weak-
nesses which appear in TLS 1.3, but that are generaliz-
able to larger classes of protocols. Informally speaking,
it is the resumption mechanism in general introduces
weakness, not the TLS 1.3 resumption in particular.

For session resumption, most of our attacks are,
to some extent, parallelizable, but have a limited real-
world impact. The attacks generally exploit the fact
that resumed sessions imply the existence of a previ-
ous, linked session in which the ticket was forwarded.
This allows an attacker to always distinguish between
a party that should be able to resume a session, and a
party that cannot. In the real world, even if an adver-
sary can distinguish between such two parties, he would
require auxiliary information to fully identify the par-

2 https://www.wolfssl.com/

ties as the sets of resuming and non-resuming parties,
depending on the use case, can be prohibitively large.
Nonetheless, as resumption is often used, for instance,
when accessing multiple resources on the same webpage,
this would still give an attacker important information
about a user’s access patterns. Consequently, such at-
tacks are included in our analysis.

Privacy in isolation. In this paper, we prove the pri-
vacy of the TLS 1.3 protocol in isolation, without con-
sidering its composition with lower-layer protocols, nor
other encapsulating primitives. We argue that this is
still meaningful, for two main reasons. First, note that
as a general rule, privacy tends to be either preserved or
lost: it is much harder to “create” it. In other words, if
TLS 1.3 did not preserve privacy, then its use – even en-
capsulated in privacy-preserving lower-layer protocols –
would still lead to privacy breaches. In this paper, our
goal was to show precisely what kind of privacy TLS
1.3 preserves. In some ways, this indicates how much
privacy we can hope for, when TLS 1.3 is used as a pro-
tocol in computer networks.3 We do note that one way
to extend our result would be to verify the possibility of
composing it with known results on privacy-preserving
routing protocols, such as Tor. This deserves to be the
subject of a separate paper.

1.5 Related work

To the best of our knowledge, this work proposes the
first analysis of the privacy achieved by TLS 1.3. Our
model has some similarities with existing work on pri-
vacy. We combine authenticated key-exchange models
akin to Bellare-Rogaway [8] with game-based privacy in
authentication, as defined by Hermans et al. [23]. This
approach was previously taken by Fouque et al. [20]
but in the context of mobile network communications
(without public-key primitives and session resumption).
Although we rely on both the Bellare-Rogaway defini-
tion of secure AKE and on the Hermans et al. notion
of privacy-preserving RFID authentication, our model
is a non-trivial extension of these two frameworks. The
definitions in this paper are much closer to characteris-
tics such as the unilateral server-only authentication of

3 Note, however, that the reverse is unfortunately not true: even
if TLS 1.3 does preserve privacy, this does not by default guar-
antee the privacy of its encapsulation in lower-layer protocols.
This is an important limitation of our result.

https://www.wolfssl.com/
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TLS 1.3, its complex key schedule, and the ticket-based
mechanism of session resumption.

Since TLS is a network protocol, our work also
touches upon the field of anonymous communication in
computer networks. An early formalization of anony-
mous channels is provided by Hevia and Micciancio [22],
who describe an adversary that is given a matrix of mes-
sages in a given protocol, and his goal is to distinguish
between them. The adversary is passive and cannot cor-
rupt parties. Their framework defines several types of
privacy properties (such as sender and/or receiver un-
linkability, anonymity) and shows existing reductions
(either trivial, or by using techniques such as cryptog-
raphy or padding). The model of Hevia and Micciancio
focuses more on the number of messages, their sender,
receiver, and size, and can be seen as a more global view
of a network protocol when subjected to traffic analy-
sis. Our goal here is different: we aim to describe the
properties that are achieved by the TLS 1.3 protocol
somewhat in isolation (thus characterizing the design of
TLS 1.3, rather than the way it is used). We argue that
this allows us to consider the effects of stronger adver-
saries, which are allowed to corrupt parties, reveal keys,
and play active Man-in-the-Middle roles.

Hermans et al. [23] take an approach closer to ours
and formalize privacy in authentication protocols, par-
ticularly in the context of RFID authentication. They
build on previous work dating back to the privacy model
of Vaudenay [33]. The adversary is an active Man-in-
the-Middle which can interact with parties, adaptively
corrupt them, and learn the result of protocol execu-
tions. A central concept of this framework is that of vir-
tual tag, which is a handle meant to hide the identity of
a party (namely an RFID tag) from the adversary while
the latter interacts with that tag. We adopt this concept
here, and follow the general design of the Left-or-Right
(LoR) indistinguishability game used by Hermans et al..
As a result, our definition captures the unlinkability of
TLS 1.3 sessions.

Our results are orthogonal to those of research
on the security achieved by the TLS protocol, such
as [15, 24], although our model does rely on a simplifi-
cation of the multistage security defined by Fischlin and
Günther [19].

We assume that implementers follow best practices
and ticket anti-replay measure are in place. Therefore,
the Selfie attack [16] would not occur in our model.

This paper focuses on the privacy achieved by TLS
1.3 in isolation. We do not focus on its privacy when
composed with lower-level protocols, a limitation which
we discuss in Section 1.4. In that sense, our results are

orthogonal to work which covers the privacy of anony-
mous networking protocols like Tor [7].

Outline of the paper. The paper is structured as fol-
lows. In Section 2, we model the TLS 1.3 protocol and
introduce cryptographic assumptions. In Section 3 we
describe several trivial attacks. We develop a model for
privacy of the full handshake in Section 4 and extend the
model by adding resumption in Section 5. We conclude
in Section 6.

2 Preliminaries
The results in this paper are proved for an abstract form
of the full and resumed TLS 1.3 handshake. We stress
that our model of the TLS 1.3 handshakes is incom-
plete as detailed in Section 1.4. In this section we first
describe the way we model the TLS 1.3 full handshake
and two resumption modes. We then describe in more
detail the key scheduling and a protocol idealization in
Section 2.1. We introduce cryptographic assumptions in
Section 2.2. We illustrate, in Figure 1, an idealization of
the TLS 1.3 handshake in full mode. We designate this
protocol as ΠTLS. Then, we also illustrate, in Figure 2,
session resumption in both pre-shared key (PSK) and
in pre-shared key with ephemeral Diffie Hellman (PSK-
DHE) modes. We denote this by ΠTLS+res. To clarify, in
ΠTLS+res the parties can execute either full handshakes
or session resumptions, while in ΠTLS they can only ex-
ecute full handshakes. The notations we use when de-
scribing the protocols are summarized in Table 1. The
key schedule is presented in Figure 3.

2.1 TLS 1.3 handshake and session
resumption

In TLS 1.3, the client chooses the handshake mode by
the way it constructs its first message protocol. From
that point onward, the execution of the protocol follows
the path illustrated in the figures. If a message is ill-
formed, incomplete, invalid or out of order, the session is
terminated with a relevant error message. Anticipating
a bit, we model this by having the Send oracle returning
⊥ (we do not model the multiple error messages defined
in the RFC).
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es early secret
hs handshake secret
ms master secret
C.hs/ S.hs client/server handshake secret
C.htk/ S.htk client/server handshake traffic key
C.fk/ S.fk client/server finished key
C.ts/ S.ts client/server traffic secret
C.tk/ S.tk client/server traffic key
rms resumption master secret
psk preshared key
STicket session ticket
NT ,in.NT ticket nonces

in. (out.) prefixes (see Fig 2, Fig 11)
bk binder key
bnd preshared key binder
`0...`9 labels/strings
PRF pseudo-random fct.
MAC message auth. code
RO random oracle
k server’s ticket encrypt. key
CHello...FinC TLS messages
g generator of a group G
‖ concatenation
| or operator

{}key AE encryption with key
{}−1
key

AE decryption with key
"" empty string
Hτ hash of the partial transcript:

C.hs, S.hs: H(CHello....KES)
C.ts, S.ts: H(CHello....FinS)
rms: H(CHello....FinC )
FinS : H(CHello....CVf)
FinC : H(CHello....FinS)
resumption specific:
bnd: H(CHello....STicket)
FinS : H(CHello....KES)

Table 1. List of notations used in Figure 1 and Figure 2.

Client C Server S
(skS , kS)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·Key Exchange · · · · · · · · · · · · · · · · · · · · · · · · · · ·

es := RO(0; 0)
1.CHello,KEC =gx

−−−−−−−−−−→ es := RO(0; 0)
2.SHello,KES=gy

←−−−−−−−−−−
hs := RO(gxy ; es‖`0) hs := RO(gxy ; es‖`0)
C.hs := PRF(hs; `1, Hτ ) C.hs := PRF(hs; `1, Hτ )
S.hs := PRF(hs; `2, Hτ ) S.hs := PRF(hs; `2, Hτ )
C.htk := PRF(C.hs; `3,"") C.htk := PRF(C.hs; `3,"")
S.htk := PRF(S.hs; `3,"") S.htk := PRF(S.hs; `3,"")
· · · · · · · · · · · · · · · · · · · · · · · ·Server Authentication · · · · · · · · · · · · · · · · · · · · · · · ·

Verify CertS ,CVf
3.{CertS ,CVf}S.htk←−−−−−−−−−− CVf := Sign.Sign(skS , Hτ )

S.fk := PRF(S.hs; `4,"") S.fk := PRF(S.hs; `4,"")
C.fk := PRF(C.hs; `4,"") C.fk := PRF(C.hs; `4,"")
· · · · · · · · · · · · · · · · · · · · · · · ·Session Authentication · · · · · · · · · · · · · · · · · · · · · · · ·

Verify FinS
4.{FinS}S.htk←−−−−−−−−−− FinS := MAC(S.fk;Hτ )

FinC := MAC(C.fk;Hτ )
5.{FinC}C.htk−−−−−−−−−−→ Verify FinC

ms := RO(0; hs‖`0) ms := RO(0; hs‖`0)
C.ts := PRF(ms; `5, Hτ ) C.ts := PRF(ms; `5, Hτ )
S.ts := PRF(ms; `6, Hτ ) S.ts := PRF(ms; `6, Hτ )
C.tk := PRF(C.ts; `3,"") C.tk := PRF(C.ts; `3,"")
S.tk := PRF(S.ts; `3,"") S.tk := PRF(S.ts; `3,"")

rms := PRF(ms; `7, Hτ ) rms := PRF(ms; `7, Hτ )

STicket := {rms,NT}k

Secure record layer with tk(second model only)

6. {STicket,NT}S.tk
←−−−−−−−−−−−−−−−−−−−

Fig. 1. Our modelling of the TLS 1.3 handshake - full handshake
mode. We do not explicitly include the length of parameters. The
sections in boxes concern only the extended protocol, ΠTLS+res.

Overview.We can distinguish three main phases in the
TLS protocol: the key exchange, the server authentica-

Client C Server S

(in.rms,in.NT ,in.STicket) (skS ,k)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·Key Exchange · · · · · · · · · · · · · · · · · · · · · · · · · · ·

psk := PRF(in.rms; `8, in.NT )

es := RO(psk; 0)
1′.CHello, KEC = gx

−−−−−−−−−−→

bk := PRF(es; `9,"")
2′ in.STicket−−−−−−−−−−→

bnd := MAC(bk;Hτ ) (in.rms, in.NT ) :=
3′.bnd−−−−−−−−−−→ {in.STicket}−1

k
psk := PRF(in.rms; `8, in.NT )

es := RO(psk, 0)
bk := PRF(es; `9,"")
bnd := MAC(bk;Hτ )

4′.SHello, KES = gy

←−−−−−−−−−− Verify bnd
hs := RO( gxy |0; es‖`0) hs := RO( gxy |0; es‖`0)
· · · · · · · · · · · · · · · · · · · · · · · ·Session Authentication · · · · · · · · · · · · · · · · · · · · · · · ·

Verify FinS
5′.{FinS}S.htk←−−−−−−−−−− FinS := MAC(S.fk;Hτ )

FinC := MAC(C.fk;Hτ )
6′.{FinC}C.htk−−−−−−−−−−→ Verify FinC

Secure record layer with tk

7′. {out.STicket,out.NT}S.tk←−−−−−−−−−−−−−−−−−−−−

Fig. 2. Our modelling of the TLS 1.3 handshake- session resump-
tion, both preshared key-only and preshared key with Diffie Hell-
man key exchange. In the boxes we have the protocol elements
specific to the pre-shared key with Diffie-Hellman key exchange
mode. We have prefixed the NT , rms, STicket used at the be-
ginning of the session with in, and those created at the end of a
session by out. This emphasises they are different variables.

tion and the session authentication4. During the first
phase, the client and the server exchange desired ses-
sion parameters and key share components. This allows
them to compute an intermediate secret and temporary
encryption keys, which they use to encrypt the rest of

4 We use terminology that is slightly different than the one used
in the RFC, for readability purposes.
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the handshake. In the second phase, the server sends
his certificate and a signature; the client uses them to
authenticate the server. At the end of the protocol, the
client and server exchange a Message Authentication
Code (MAC) over the transcript. If they correctly ver-
ify these messages, they compute a new secret, from
which they derive the traffic encryption keys.

At this stage, the server can send some secret data
(i.e., a ticket) to the user enabling him to later on “jump-
start” a new session. This is so-called session resump-
tion. In order to initiate a resumption, a client will send
a ticket to a server, followed by an associated MAC.
If the ticket is valid, this allows parties to simplify
the negotiation/key exchange phase and completely
eliminate the second phase, that of server authentica-
tion. Resumption comes in two flavours: pre-shared key
(PSK) and pre-shared key with ephemeral Diffie Hell-
man (PSK-DHE) modes, depending on whether or not
a Diffie-Hellman key exchange is executed. Incorporat-
ing the Diffie-Hellman into resumption offers stronger
security guarantees, at the price of extra computation
and protocol messages.

Key schedule. The key schedule of TLS 1.3 appears
in Figure 3. We distinguish three main secrets: the
early secret es, the handshake secret hs and the mas-
ter secret ms. In a full mode handshake, es is simply a
publicly-computable string. However, it is used to “in-
ject” the preshared key psk into the key schedule when
resuming a session. The handshake secret hs is used to
derive client and server handshake secrets (C.hs and
S.hs), from which the parties compute two handshake
traffic keys (C.htk and S.htk) as well as message authen-
tication keys for the Finished messages (C.fk and S.fk).
We introduce the prefix “C.” to designate the client se-
crets and keys used to send data to the server. Similarly,
we use the prefix “S.” to designate the secrets and keys
of the server used to send data to the client. The mas-
ter secret ms is first used to compute the client and
server secrets (C.ts and S.ts), and ultimately the traffic
(encryption) keys: C.tk and S.tk. Optionally, the mas-
ter secret can be used to derive a resumption secret
rms and, from it, the preshared key psk. The preshared
key and associated ticket are needed in order to resume
a session.

0

es0|psk

hs

bnd (ticket MAC key)

gxy|0
C.hs

C.htk (temp. enc. key)
C.fk (MAC key)

S.hs
S.htk (temp. enc. key)
S.fk (MAC key)

ms0
C.ts C.tk (final enc. key)

S.ts S.tk (final enc. key)

rms psk

Fig. 3. The key schedule of TLS 1.3, with bidirectional keys. We
use psk if it is a resumption and 0 otherwise. We use gxy if the
handshake mode requires a Diffie-Hellman key exchange, and 0
otherwise. Encrypting the handshake and record layer messages
with distinct sets of keys is one of the improvements of TLS 1.3.

Modelling the key derivation. In order to per-
form the key derivation, TLS 1.3 uses the Hash Key-
Derivation Function (HKDF) [26], which has two main
operations: Extract and Expand. The Extract operation
is applied to an input key material, with some (optional)
salt. Its role is to transform a sufficiently random in-
put into a secret that has high entropy and is compact.
The Expand operation takes a secret, a label and an
input. The secret is usually the output of a preceding
Extract operation. The label is a publicly-known string
and serves to have different outputs for the same inputs.
For example, two keys might be computed in almost the
same way, but using different labels will produce distinct
and independent keys for different contexts. The input
is usually a session hash (the hash applied to the partial
transcript), but it can sometimes be an empty string "".

Although the original protocol uses the HKDF func-
tion [26] to extract key material, then expand it into
keys, we choose to model the extraction steps as a ran-
dom oracle (RO), and the expansion steps as runs of
a pseudorandom function (PRF). Using the random-
oracle model is a strong idealization; however, we deem
it acceptable for two reasons: (1) previous analyses of
TLS 1.3 do show that the keys obtained through HKDF
are indistinguishable from random [15], under stronger
assumptions like PRF-ODH; (2) our focus here is pri-
vacy, and not the security of keys – in idealizing the key
derivation, our proofs are cleaner and easier to follow.

Protocol messages. A TLS 1.3 protocol run consists
of the following messages. The numbers in brackets in-
dicate where they appear in Fig 1 and Fig 2.
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CHello(1,1’): The Client Hello message consists of the
protocol version(s), a nonce NC generated by the
client, as well as lists of supported cryptographic
primitives and client extensions.

KEC (1,1’): Both in the full handshake, and in the case
of session resumption with PSK+DHE, the client
provides a client key-share message KEC consisting
of (the description of) a series of groups and an el-
ement gx in each group, respectively5.

SHello(2,4’): The Server Hello message includes the
server’s nonce NS , as well as the server’s selection
of the version, extensions, and supported crypto-
graphic primitives (from amongst the alternatives
stated in CHello).

KES(2,4’): The server’s key-share element consists of a
single element gy chosen for one single group, chosen
from amongst those sent in KEC .

CertS(3): The server’s certificate CertS is modelled here
as just a public key, which we assume is only at-
tributed to one legitimate entity holding the corre-
sponding private key.

CVf(3): The server issues the Certificate Verify message
to authenticate to the client as the owner of the key
in CertS . The CVf is a signature on the hash of the
handshake messages, up to, and including CertS .

FinS(4,5’): The server Finished message FinS is a MAC
keyed with the Server Finished Key S.fk, on input
the current session hash, up to, and including CVf.

FinC (5,6’): The client Finished message FinC is a MAC
keyed with the key C.fk, on input the session hash
up to, and including FinS .

STicket(6,2’,7’): At the end of a handshake, the server
may send a client a session resumption ticket STicket
followed by a nonce NT . The STicket encapsulates
rms and a nonce NT in an encrypted and authenti-
cated manner. These values will be used to compute
psk. The NT needs to be forwarded to the client as
well. When resuming a session, a client sends the
STicket after CHello and KEC .

bnd(3’): In the cases of PSK and PSK+DHE, the client
sends a pre-shared key binder bnd, which is a MAC
keyed with the key bk, on input CHello, KEC (if
present) and STicket. The key bk is derived from the
early secret es, which takes as input the pre-shared
key psk.

5 This key-share is also present in the PSK resumption mode;
however, if only PSK resumption is used, the DH element pro-
vided by the client is not used.

2.2 Cryptographic assumptions

Let A designate an algorithm, commonly referred to as
an adversary. We denote a $← A if the element a is uni-
formly randomly sampled from the set A.

The Computational Diffie-Hellman (CDH). Let G
be a multiplicative cyclic group of order |G| and g

a generator. Let us define ExpCDH
G (A) : x, y $← |G|,

g, gx, gy → A, g∗ ← A. We define the advantage of A
as AdvGCDH(A) = P[g∗ = gxy]. Any adversary A against
CDH in the group G running in time t and making
at most q queries has an advantage of at most εCDH:
εCDH ≥ AdvGCDH(A).

Pseudorandom functions (prf). Let K be a keyspace.
Let PRF : K × {0, 1}m → {0, 1}n be some function fam-
ily. Let Rm→n be the set of all functions from {0, 1}m

to {0, 1}n and f a function from Rm→n . We define the
following oracle PRFb(z): If b = 1, output PRF(k; z); oth-
erwise, output f(z). Let us define Expprf

PRF(A): b $← {0, 1},
k

$← K, f $← Rm→n, d← APRFb(·). We define the advan-
tage of A as AdvPRF

prf (A) =
∣∣∣P[b=d] − 1

2

∣∣∣. Any adversary
A against the prf property of PRF running in time t and
making at most q queries has an advantage of at most
εCDH: εCDH ≥ AdvGCDH(A).

Existential unforgeability (EUF-CMA). A digital sig-
nature scheme Sign is a tuple of three algorithms: (Gen,
Sign, Vfy). Gen() outputs a pair of a signing key sk and
a verification key pk. The algorithm Sign takes as input
the key sk and a message msg and outputs a signature σ.
The algorithm Vfy takes as input the key pk, a message
msg, and a signature σ, and outputs 1 if the signature
σ is valid for the message msg and 0 otherwise.

We define an oracle Sign(msg) that returns
Sign.Sign(sk, msg) and stores msg in a list Lsig.
Let us define ExpEUF-CMA

Sign (A): b $← {0, 1}, Lsig ←
∅, sk, pk ← Sign.Gen() ,(msg∗, sk∗) ← ASign(·) .
We define the advantage of A as AdvSign

EUF-CMA(A) =
P[Sign.Vfy(pk; sk∗) = 1 ∧msg∗ /∈ Lsig]. Any adversary A
against the EUF-CMA property of Sign running in time
t and making at most q queries has an advantage of at
most εEUF-CMA: εEUF-CMA ≥ AdvSign

EUF-CMA(A).
AE is a stateful-length hiding authenticated encryp-

tion scheme (or stLHAE). Such a scheme provides con-
fidentiality of communication, integrity of ciphertexts
and additional data, protection against message reorder-
ing and replay, as well as hiding the length of the mes-
sages to some degree. An adversary A against stLHAE is
given access to encryption and decryption oracles, AEncb

and ADec. Informally, an adversary wins the security
game if he can distinguish between two possible outputs
of AEnc (he chooses two messages and receives a cipher-
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text encrypting one of them) or if he can desynchronize
the ADec oracle by inputting a successful forgery.

We formally define the stLHAE security experiment
in the full version of the paper [5].

3 Trivial attacks
In this section we detail trivial attacks applicable to
TLS and related protocols, using an intuitive pseudo-
protocol notation.

Parties (Alice, Bob, or a website W/W’) exchange
messages. The messages are written on top of arrows go-
ing from a sender to a receiver of that message. Rather
than formally defining a full protocol and its set of mes-
sages, we informally describe message contents or their
intended role in between commas. If a party knows a
symmetric encryption key k or a session resumption
ticket t, this is noted as a superscript. An encrypted
text is written within accolades, with the encryption
key specified as a subscript.
A denotes the adversary. If a text is emphasised,

this is a precondition or an assumption (on the powers
of the adversary) needed for the attack. Non-emphasised
text is a comment or an explanation. If we list two par-
ties, followed by a question mark, this means the ad-
versary is unsure which of the two is the real sender or
receiver of the message.

3.1 Full handshake attacks

Trivial privacy leaks (Figure 4). Messages used
to authenticate a user are, by their nature, privacy-
sensitive. The party sending the first authentication
message in a protocol has no way of knowing, at the
time the message is sent, if they are communicating
with an honest or malicious party. In previous versions
of TLS, the server used to send its certificate in the
clear. This trivially leaks the identity of the server to
any eavesdropper. Encrypting the message protects it to
some degree. Sessions between honest parties no longer
leak sensitive information, but active adversaries could
mount a man-in-the-middle attack by initiating a proto-
col session. As discussed in [25], AKE protocols cannot
hide the identity of both parties against active adver-
saries.

Impersonating a server leaks information about
clients. Specifically, if they want to connect or

a)Alice “I am W’’←−−−−−−−W
Eavesdroppers can read the message.

b)Ak {“I am W”}k←−−−−−−−−−Wk

Man-in-the-middle attack against privacy.

Fig. 4. Unencrypted versus encrypted authentication messages:
encrypting provides stronger privacy guarantees, but it cannot
defend against adversaries impersonating the unauthenticated
party.

not to that server. (Figure 5). Assume Alice wants
to have a session with a website, either W or W’. How-
ever, assume there exists an adversary that can convince
Alice that he is, for example, the website W. Alice will
accept the session if and only if the adversary imperson-
ated the correct website. Even if the adversary imper-
sonates the wrong server, he still ends up learning some-
thing about Alice that he didn’t know before mounting
the attack: namely, Alice did not wish to initiate a ses-
sion with that particular server.

A is able to impersonate W.
Alice “Start new session ”−−−−−−−−−−−−−−−−−−→W or W’?

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Alice “I am W’’←−−−−−−− A(W)

a)If Alice accepts the session, W is the intended partner.
b)If Alice rejects, W’6=W is the intended partner.

Fig. 5. If an adversary can convince Alice he is W, he can learn
whether Alice intended to start a session with W or with another
server.

3.2 Resumption attacks

Client with a ticket, distinguishable from a client
without a ticket (Figure 6). Alice and Bob wish to
connect to a website W. Alice has a resumption ticket,
Bob does not. An adversary sees either Alice or Bob
establishing a session with W. If it is a session resump-
tion, he can, by process of elimination, conclude that it
was Alice who initiated the resumption.

We can apply the same argument for servers. As-
sume that Alice has a resumption ticket from a website
W, but she doesn’t have such a ticket from a website
W’. If she resumes, she is clearly in a session with W,
and not with W’.
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a)Alicet “Start new session”−−−−−−−−−−−−−−−−−→W
b)Bob “Start new session”−−−−−−−−−−−−−−−−−→W
c)Alicet “Resume session using t”−−−−−−−−−−−−−−−−−→W

Fig. 6. Alice can either start a new session or resume an older
one, while Bob can only start a new session. This makes them
distinguishable.

Session Linking (Figure 7). An adversary can learn
more about the identity of the participants in a session,
if he is able to “link” it to another one he knows more
about. This is possible due to session resumption tickets
that appear identical in succeeding sessions. However,
to mount this attack, the adversary must first retrieve
the ticket, e.g., by decrypting the first message encod-
ing the ticket. The attack works as follows. We assume
the adversary obtains the transcripts of various proto-
col sessions, amongst which, a full handshake and its
resumption. Let us assume he has a way of “accessing”
the ticket the server sent in the first session. Because he
sees the same ticket in both sessions, he can conclude
that one session is the resumption of the other.

Assume the adversary is uncertain about the iden-
tity of the parties in one of the sessions. Due to this
additional information (having linked the two sessions),
he may now resolve this uncertainty. We illustrate one
such example in Figure 7.

Alicek {Ticket t}k←−−−−−−−−Wk

A retrieves Alice’s ticket t.
Alice or Bob?t “Resume session using t”−−−−−−−−−−−−−−−−−−−−−→W

A concludes Alice, and not Bob resumed the session.

Fig. 7. By seeing the same ticket in two sessions, the adversary
concludes that one session is the resumption of the other one.
Alice, who received the ticket in the initial session, is the party
who resumed the session.

Ticket redirection (Figure 8). Assume Alice wishes
to resume a session with a server unknown to the adver-
sary. To find out to whom Alice wishes to connect, the
adversary will intercepts her first message in the proto-
col and forward it to various servers. When he encoun-
ters a server W that accepts the ticket, he has identified
Alice’s intended website.

Cascading pre-shared key compromise (Figure
9). It’s not exactly a stand-alone attack, but a “feature”

Alicet “Resume session with W using t”−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A
A “Resume session with W using t”−−−−−−−−−−−−−−−−−−−−−−−−−−−→W or W’?

Fig. 8. The adversary reroutes a ticket meant for W to a server
he is uncertain about. If the server accepts, it is W. If not, it is
some other website.

that exacerbates other types of attacks, such as session
linking.

TLS’s pre-shared key only resumption mode does
not ensure perfect forward secrecy. Thus, once the ad-
versary obtains the key material in a session, he can
compute the keys and secrets of their session resump-
tion.

Session linking appeared when an adversary identi-
fied the same ticket in a session and its resumption. If
that session is instead resumed n number of times using
pre-shared key only resumption and the first session is
compromised, then an adversary could pair any of the
n sessions in order to obtain information about one of
the parties.

Alicek {Ticket t}k←−−−−−−−−Wk

A obtains t and its associated preshared key.
Using the preshared key, A computes the
key schedule of subsequent resumptions.

......................
Alicek′ {Ticket t′}k′←−−−−−−−−−Wk′

Alice or Bob?t′ “Resume session using t′”−−−−−−−−−−−−−−−−−−−−−−→W

Fig. 9. Assume the adversary compromises a session. Then he can
compromise any subsequent resumptions if they do not include a
Diffie Hellman exchange. This allows him to mount the session
linking attack even after an n-th resumption.

Ticket encryption key compromise (Figure 10).
Assume an adversary that knows the key a website W
is using to encrypt its tickets. Next, the adversary tries
to decrypt any tickets he sees on the network. If the
decryption succeeds, he knows the messages are meant
for W.

3.3 Other attacks

There exist other implicit trivial attacks. First of all,
TLS allows the parties to propose from and choose be-
tween various cryptographic primitives and extensions.
As a consequence, one can certainly distinguish between
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A has W’s ticket encryption key.
Alicek {Ticket t}k←−−−−−−−−W or W’?k

A decrypts t, concludes Alice is talking to W
if and only if decryption succeeds.

Fig. 10. Assume that A has the long term ticket encryption key
of a server W. He then decrypts any tickets on the network. If
decryption succeeds, the ticket is meant for W.

parties that implement the protocol differently or do not
support the same extensions. This will happen in any
protocol that offers “freedom of choice”. But for sets of
parties that implement the protocol in the same man-
ner, our results apply. Secondly, traffic in the record
layer can also be a distinguishing factor, for example
by number of messages sent and received during a ses-
sion. The model by Hevia and Micciancio [22] better
captures what happens at the record layer in terms of
privacy, what guarantees we have and do not have. In
our model, we only analyse the handshake.

4 TLS full handshake mode
In this section, we formally model the privacy of TLS’
full handshake mode (unilateral authentication and no
resumption). We begin by introducing the concept of a
virtual identifier. Next, we formally define the parties
and instances involved in the protocol, including their
attributes. In the following section, we describe a set of
auxiliary functions and lists that allow us to elaborate
the oracles and the winning conditions. We provide a
theorem and a proof regarding the privacy achieved by
ΠTLS in this model.

4.1 Virtual identifiers

Central to our model is the concept of virtual identifier,
or vid. The adversary has access to an oracle allowing
him to bind together two parties, Pi and Pj . The output
of the oracle is a string vid=Pi|Pj , the concatenation
of the two parties. The adversary will use the vid to
interact with the party “behind” it, which is either Pi
or Pj , based on a secret bit b. The adversary wins if he
correctly identifies b, given certain winning conditions.

The adversary can choose Pi = Pj . Such sessions
help him learn more about the party and the protocol,
but they leak no information about the bit b.

The adversary can create multiple vids, as long as a
party is not bound inside two or more “active” vids at a
time. He can also “activate” and “deactivate” the same
vid multiple times.

4.2 Parties, instances and attributes

Let C = {Ci ,Cj ...} be a set of clients and S = {Si ,Sj ...}
a set of servers. We denote by P = {Pi ,Pj ...} the set
of parties, namely the disjoint union S ] C. Each party
has the following attributes:

– pk and sk: the public key in the certificate and
the corresponding secret key. Clients have undefined
certificates (⊥);

– corr: a corruption attribute which is initialized to 0
(uncorrupted) and becomes 1 if the adversary has
corrupted that party using a query;

A party may run multiple instances. We denote by πsi
the sth instance of the party Pi . We often substitute i
by vid, and πsvid instantiates the real party behind a vid.
Each instance possesses a series of attributes:

– pk, sk and corr, inherited from the real party behind
a vid;

– sid, a unique session identifier, used for matching
instances. What constitutes the session identifier is
protocol specific. In some protocols, one party gen-
erates a unique string as the session identifier. In
Bellare-Rogaway models, two instances are involved
in the same session if their transcript, up to the
last message, is the same. In the case of ΠTLS and
ΠTLS+res, we will consider the sid to be the concate-
nation of the nonce of the client and the nonce of
the server. Note that this constitues a subset of the
transcript;

– pid, the partner of πsi , initialized to ⊥;
– the accept bit, initialized to ⊥. It takes the value

1 when the instance finishes in an accepting state
and 0 if the instance aborts/rejects. A value of 1
also implies that partner authentication succeeded
(if it was the case);

– the keys: C.htk - the client handshake traffic key,
S.htk - the server handshake traffic key, C.tk - the
client traffic key and S.tk - the server traffic key;

– for all session keys key ∈ {C.htk, S.htk, C.tk, S.tk},
there exists a reveal bit ρkey, set to 1 when the ad-
versary obtains the value of the key.
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At the beginning of the privacy game we run an al-
gorithm called Setup(·). Setup(1λ) takes as input a secu-
rity parameter λ in unary notation. From the security
parameter we determine the nrsv (number of servers),
nrcl (number of clients), and the keyspaces for all cryp-
tographic primitives. We then initialize the parties and
create the keys for the servers. We initialize all lists to
the empty list and any required cryptographic primi-
tives involved in the protocol. The set P containing all
parties is then given to the adversary.

4.3 Auxiliary functions and lists

We also define a set of auxiliary functions and lists.
These are simply tools we use in modelling.

type(Pi) If Pi ∈ S, return S . Otherwise return C .
type(vid) Specifies whether the vid corresponds to a

client or a server. Let vid = Pi|Pj . If Pi,Pj ∈
S, return S . Otherwise return C .

real(vid) Outputs the true party behind a vid. For all
i, j, including i = j:
If vid = Pi|Pj ∧ b = 0, return Pi .
If vid = Pi|Pj ∧ b = 1, return Pj .
The bit b is uniformly randomly sampled by
the challenger at the beginning of the privacy
game. This function is not accessible by the
adversary.

We further denote:

Lvid The list of active vids. A vid is active if it is the
output of a DrawParty and it was not deactivated by
a corresponding Free query. We detail these queries
in the next section. A party can appear in at most
one active vid at a time.

Lact The list of active parties. A party is active if it is
part of an active vid.

Linst The list of all instances πsvid ever created.
Lchg The challenge list contains the list of server in-

stances such that their vid is binding distinct
servers and they execute a full handshake. Oth-
erwise said, it contains instances πsvid such that
vid = Sk|Sl, with Sk 6= Sl.

4.4 Adversarial oracles

The attack capabilities of a probabilistic polynomial
time adversary A are modelled by providing him ac-

cess to the following oracles (we provide an extended
pseudocode form in Appendix B):

– DrawPartyb(Pi , Pj) allows the adversary to obtain a
vid binding two parties, activating it. It adds Pi,Pj
to Lact, creates a vid = Pi|Pj , adds vid to Lvid and
returns vid. This oracle aborts if type(Pi) 6= type(Pj)
(they are a server and a client) or one of the parties
is already bound in an active vid at the time of the
query: Pi ∈ Lact ∨ Pj ∈ Lact. We also abort if the
adversary queries two distinct clients: type(Pi) =
type(Pj) = C ∧ Pi 6= Pj ;

– NewSession(vid, vid′) creates a new instance of a
given active vid that will communicate with a speci-
fied partner vid′. It returns a new instance πsvid, with
πsvid.pid = real(vid′). Its other attributes are set to
default values. If vid = Pi|Sj with either Pi.corr = 1
or Pj .corr = 1, then πsvid.corr = 1. If vid = Sk|Sl
with Sk 6= Sl, we add πsvid to Lchg. We add πsvid to
Linst and return πsvid. This oracle aborts if vid /∈ Lvid,
if vid′ /∈ Lvid, or if type(vid) = type(vid′). The vids
should be active at the time of the oracle call, and
they should partner with a party of the opposite
type.

– Send(πsvid, msg) enables an adversary to send the
message msg to πsvid and outputs msg′, the next mes-
sage in the protocol. If πsvid is a freshly-initialized
client instance and msg is the string prompt, πsvid
starts the protocol with πsvid.pid.

– Reveal(πsvid, key) returns to the adversary the key
πsvid.key, where key ∈ {C.htk, S.htk, C.tk, S.tk}, and
sets πsvid.ρkey to 1.

– Corrupt(Pi) is an oracle that returns Pi .sk and sets
Pi .corr to 1. This automatically updates any exist-
ing and future instances of a vid containing Pi:
∀πsvid, vid = Pi|Pj ∨ Pj |Pi, πsvid.corr = 1.

– Free(vid) allows the adversary to release the parties
from the binding of a vid and terminates any ses-
sions involving that vid. It removes vid from Lvid
and the corresponding parties from Lact. For all in-
stances of vid and all instances with pid = real(vid),
if πsi .accept = ⊥, it sets πsi .accept = 0 (session re-
jected/aborted).

4.5 Privacy experiment

Roughly speaking, an adversary is capable of winning
the privacy game if he is able to distinguish between
two parties of his choice, either by identifying them or by
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studying their behaviour. We formally define the privacy
game in Table 2.

Expfull.priv
Π (A):

Setup(1λ);
b $← {0, 1}
d← ADrawPartyb(·,·),NewSession(·,·),Send(·,·),Reveal(·,·),Corrupt(·),Free(·)

∀vid ∈ Lvid,Free(vid)
A wins if b = d and:
• ∀πsvid ∈ Lchg ∃πtvid′ ∈ Linst s.t.
◦ πsvid.sid = πtvid′ .sid
◦ πsvid.accept = πtvid′ .accept = 1
◦ ∀key ∈ {S.htk}, πsvid.ρkey = πtvid′ .ρkey = 0
◦ πsvid.corr = πtvid′ .corr = 0

Table 2. Privacy experiment.

The privacy game proceeds in the following way.
First, the challenger runs Setup(1λ). He then uniformly
samples a bit b. The adversary interacts with the chal-
lenger, using the oracles that have been given to him.
Then the adversary outputs a bit d. The challenger Frees
all active vid, thus terminating any ongoing sessions if
any still exist. The adversary wins the game if d = b
(he correctly determined b) and he fulfilled the winning
conditions:

We require that for all server instances where the
vid binds distinct servers (∀πsvid ∈ Lchg), there exists an
honest client instance (∃πtvid′ ∈ Linst) such that the two
instances have had a matching conversation (πsvid.sid =
πtvid′ .sid), they were not trivially Revealed/opened by
the adversary (∀key ∈ {S.htk}, πsvid.ρkey = πtvid′ .ρkey = 0)
and that they both accepted the session (πsvid.accept =
πtvid′ .accept = 1). This circumvents the first trivial at-
tack, where the adversary creates a session with a chal-
lenge server and obtains its certificate. In addition, the
adversary cannot corrupt the servers involved in the
challenge (∀πsvid ∈ Lchg, π

s
vid.corr = πtvid′ .corr = 0). This

circumvents the second trivial attack, where the adver-
sary impersonates one of the challenge servers to the
users.

Definition 1. The advantage εfull.priv of an adversary
running in time t′ to win the game Expfull.priv

ΠTLS
is :

εfull.priv =
∣∣∣P[A wins Expfull.priv

ΠTLS
]− 1

2

∣∣∣.
Theorem 1. Let G be a group of order |G|, let 2t be
the size of the nonce space, and let 2r be the size of
the codomain of the RO. The advantage εfull.priv of an
adversary running in time t′, interacting with at most
nrsv servers, making at most qi queries to NewSession

and at most qro queries to RO and q′ queries to all its
oracles is:

εfull.priv ≤
q2
i

2t +
q2
i

|G|
+ q2

ro

2r + qroεCDH + 4qiεprf+

+ 2qiεstLHAE + 1
nrsv εEUF-CMA,

where εCDH, εprf , εstLHAE, εEUF-CMA represent the maxi-
mum advantage of an adversary against the CDH, prf,
stLHAE, and EUF-CMA respectively.

We provide the proof of Theorem 1 in the full version
of the paper [5].

5 TLS with session resumption
Session resumption is an integral feature of the TLS
protocol. At the end of a handshake, a server can
choose to send one or multiple tickets to a client. The
client may then use these tickest to “jumpstart” their
next sessions. In our extended model, we limit the ad-
versary to a single pair of clients or servers that he
can challenge in the game. Once he makes a valid
query of the form DrawParty(Pi,Pj) with Pi 6= Pj and
type(Pj) = type(Pj), we register the Pi,Pj parties as
“challenged”. The adversary is not allowed to compro-
mise these parties, their instances or their partnering
parties/instances. He can fully compromise all other
parties and sessions instead.

Remember the trivial attack where Alice has a
ticket, Bob does not, and an adversary can distinguish
them based on their (in)ability to resume a session.
For this reason, we make sure that parties have the
same number of tickets given to/received from all par-
ties when creating a DrawParty query and when releasing
the challenge vid using Free.

5.1 Global Lists

In our model, we introduce two new lists, Lchg.pty and
Lchg.vid and modify the definition of Lchg.

Lchg.pty The list of parties the adversary queried as
DrawParty(Pi,Pj) by the adversary, with Pi 6=
Pj . sessions.

Lchg.vid The list of vids to which particular winning con-
ditions apply. When the adversary queries for
the first time DrawParty(Pi,Pj) with Pi 6= Pj ,
we register in this list Pi|Pj , Pj |Pi, Pi|Pi, Pj |Pj .
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Lchg A subset of Linst, namely instances πvid
s where

vid ∈ Lchg.vid.

5.2 Local ticket management

Each party stores internally information about valid un-
used tickets. We refer to this data as Ltickets and call
Pi.Ltickets the list associated to Pi. If any change oc-
curs to the locally-stored list Pi.Ltickets, then all in-
stances of Pi will instantly have access to the new list.
The elements of Pi.Ltickets contain entries of the type
(STicket, rms,NT ,S), detailed below. Server parties will
store ⊥ for any attribute except the STicket.

STicket: the value of the ticket sent by the server to
the client. The client will resend this string when
resuming. The server will decrypt and authenticate
this string and, if this succeeds, he will use the in-
formation stored inside to compute the pre-shared
key.

rms: the value of the resumption master secret.
NT : the nonce used to compute the pre-shared key.
S: The identity of the server who created the ticket (this

is used by the client to select the right ticket to
resume).

Additionally, every instance stores two ticket tuples:
the so called input ticket (in.STicket, in.rms, in.NT , psk)
referring to the ticket used in the resumption and out-
put ticket (out.STicket, out.rms, out.NT ), the ticket cre-
ated/received at the end of the handshake. The prefixes
in and out distinguish between the two tuples. The psk is
part of the key scheduling, but we don’t need to com-
pute it at the end of session, so there is no need for an
out.psk attribute. Also see Figure 11.

πsvid πtvid′
in.STicket

{..., out.STicket}S.tk

Fig. 11. An intuitive figure to illustrate the in.STicket and
out.STicket. πsvid is a client instance and πtvid′ is a server instance.

5.3 Additional attributes and lists

In addition to the previous lists, we also introduce the
following attributes for both parties and instances.

– The handshake mode mode is an instance-specific
attribute. There are three modes: mode ∈
{dhe, psk, psk + dhe}, corresponding to a full hand-
shake mode, pre-shared key only mode, or a pre-
shared key with Diffie-Hellman key exchange. This
attributes indicates which protocol the instance is
or will be following.

– k, a server party attribute, is the symmetric encryp-
tion key that the server uses to encrypt and decrypt
the tickets. This is ⊥ for clients.

– a (server) party attribute corrk. Initialized to 0, it
becomes 1 when the adversary obtains the long term
encryption key of the server using a TCorrupt query
(defined below). For clients, this is ⊥.

left(vid) If vid = Pi|Pj , returns Pi.
right(vid) If vid = Pi|Pj , returns Pj .
count(Pi,Pj) Returns the number of tuples (tickets) in

Pi.Ltickets received from the Pj (if Pi is a
client and Pj is a server) or given to Pj
(if Pi is a server and Pj is a client).

We add one extra line to the Setup(·, ·) algorithm:
chg = 0. This is a flag we will set once the adversary
makes a DrawParty query using two distinct parties (of
the same type).

5.4 Adversarial oracles

We define privacy in terms of a game similar to that
one defined in the full mode. Indeed, the privacy game
for resumption can be viewed as an extension of the
much-simpler notion that we used on the full mode (cf.
Section 4). The adversary interacts with the system via
oracles, as before. We briefly recall the purpose of each
oracle and mention below only the changes and addi-
tions we make to those oracles. We provide an extended
pseudocode form in Appendix B.

– DrawPartyb(Pi , Pj) outputs a vid binding two par-
ties and activates it. In this model, the adversary
is only allowed to query only one vid of the form
Pi |Pj with Pi 6= Pj . We call this the challenge vid.
We also allow creating the reverse of the challenge
vid, namely Pj |Pi . When creating (or reactivating)
a challenge vid, the query will return ⊥ if the par-
ties do not have the same number of tickets. Succe-
sive reactivations of the challenge vid or it reverse
are permitted, as long as the condition regarding
the number of tickets holds true. If chg = 0 and
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Pi 6= Pj , we set chg to 1 and register Pi ,Pj in Lchg.
If chg = 1 and Pi 6= Pj , we abort if Pi ∨Pj /∈ Lchg. If
type (vid) = S , if there exists a client Ck such that
count(left(vid),Ck) 6= count(right(vid),Ck), we abort.
If type (vid) = C , if there exists a server Sk such that
count(left(vid),Sk) 6= count(right(vid),Sk), we abort.

– NewSession(vid, vid′, mode) serves to create a new
instance of a given active vid that will communicate
with a partner vid′. If the vid is a client, type (vid )
= C , we set πsvid.mode=mode. If resuming, we also
select a ticket from real (vid).Ltickets such that real
(vid′)=S . We set πsvid.in.rms , πsvid.in.NT to the values
from the tuple and compute πsvid.in.psk using the
two values. We abort if resumption is demanded but
no ticket is available in (vid).Ltickets.

– Send(πsvid, msg) enables an adversary to send the
message msg to πsvid and outputs msg′, the next
message in the protocol. Also allows ticket creation.
If πsvid is a server instance receiving its first mes-
sage, we set πsvid.mode accordingly. If πsvid is a
server instance that has accepted the session key
(πsvid.accept = 1) and msg is the string prompt, then
the server creates and sends a new session ticket to
the client, as defined by the protocol.

– TCorrupt(Pi) is a new, resumption-specific oracle. It
allows the adversary to obtain the long-term ticket
encryption key of a server. Therefore, it returns Pi .k
and sets Pi .corrk to 1.

– Free(vid) Inactivates a vid. In case of a challenge
vid or its reverse, we delete the minimum of tickets
to make the parties indistinguishable by number of
tickets given to or received from another party.

5.5 Privacy experiment

Informally speaking, it should be impossible for an ad-
versary to distinguish between two parties, even when
adding the possibility of session resumption. We for-
mally define the privacy experiment Expres.priv

ΠTLS+res
(A) in

Figure 3. The privacy game consists in an interaction
between a challenger and an adversary as described be-
fore.

Expres.priv
ΠTLS+res

(A):

Setup(1λ);
b $← {0, 1}
d← ADrawPartyb(·,·),NewSession(·,·),Send(·,·),Reveal(·,·),Corrupt(·),TCorrupt(·),Free(·)

∀vid ∈ Lact,Free(vid)
A wins if b = d and:
• If Lchg.pty contains two clients:
◦ ∀πsvid ∈ Lchg
∗ πsvid.ρS.tk = 0

◦ ∀πtvid′ ∈ Linst s.t.∃πsvid ∈ Lchg, π
s
vid.sid = πtvid′ .sid

∗ πtvid′ .ρS.tk = πtvid′ .corr = πtvid′ .corrk = 0
• If Lchg.pty contains two servers:
◦ ∀πsvid ∈ Lchg, π

s
vid.ρS.tk = 0

∗ πtvid′ .ρS.tk = πtvid′ .corr = πtvid′ .corrk = 0
∗ If πsvid.mode 6= dhe, πsvid.accept = 1

◦ ∀πtvid′ ∈ Linst s.t. ∃πsvid ∈ Lchg, π
s
vid.sid = πtvid′ .sid

∗ πtvid′ .ρS.tk = 0
◦ ∀πsvid ∈ Lchg s.t. πsvid.mode = dhe∃πtvid′ ∈ Linst s.t.
∗ πsvid.sid = πtvid′ .sid
∗ πsvid.accept = πtvid′ .accept = 1
∗ ∀key ∈ {S.htk}, πsvid.ρkey = πtvid′ .ρkey = 0

Table 3. Resumption privacy experiment.

The winning conditions can be described informally
as follows. We use Lchg to identify the sessions that are
“challenged” and to which certain restrictions apply. For
example, for all sessions of challenge servers (∀πsvid ∈
Lchg), we look for their matching client instances
(∀πtvid′ ∈ Linst s.t.∃πsvid ∈ Lchg, π

s
vid.sid = πtvid′ .sid ). For

client instances, the S.tk key must be fresh(πsvid.ρS.tk =
0). For server instances, their S.tk key must be fresh and
their long term keys must be uncorrupted (πsvid.corr =
πsvid.corrk = 0). If the adversary is trying to attack to dis-
tinguish between two servers, two additional constraints
apply. First of all, the winning conditions from the first
model apply (last white bullet point) to all challenge
full handshake sessions(πsvid.mode = dhe). Additionally,
all resuming challenge server instances must accept the
session(If πsvid.mode 6= dhe, πsvid.accept = 1). This pre-
vents ticket redirection attacks.

Definition 2. The advantage εfull.priv of an adversary
running in time t′ to win the game Expfull.priv

ΠTLS+res
is :

εfull.priv =
∣∣∣P[A wins Expfull.priv

ΠTLS+res
]− 1

2

∣∣∣.
Theorem 2. Let G be a group of order |G|, let 2t be
the size of the nonce space, and let 2r be the size of the
codomain of the RO. The advantage εfull.priv of an adver-
sary running in time t′, interacting with at most nrsv
servers, making at most qi queries to NewSession,qSend
queries to Send, qro queries to RO and q′ queries to all
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its oracles is:

εres.priv ≤
q2
i

2t +
q2
i

|G|
+ q2

ro

2r + qroεCDH + 8qiεprf+

+ (3qi + qSend)εstLHAE + 1
nrsv εEUF-CMA,

where εCDH, εprf , εstLHAE, εEUF-CMA represent the maxi-
mum advantage of an adversary against the CDH, prf,
stLHAE, and EUF-CMA respectively.

We provide the proof of Theorem 1 in the full version
of the paper [5].

6 TLS 1.3 privacy in perspective
Our results show that TLS 1.3, when considered in iso-
lation, does provide some measure of privacy. For full
handshakes, the protocol provides a notion of server un-
linkability, which must be relaxed in order to account
for the server-only authentication of the protocol.

By contrast, session resumption introduces a means
of linking sessions between the same two parties. The
simple fact of possessing and using a resumption ticket
already leaks out some information about a party (the
existence of at least one session in the past). We showed
in this paper that TLS 1.3 privacy does indeed suffer
when resumption is considered; however, this lack of
privacy seems inherent to the use of session tickets. In
that sense, TLS 1.3 offers an optimal degree of privacy.

The results we prove in this paper depend heav-
ily on how session tickets are implemented. In this pa-
per we included only one such implementation, which is
also featured in WolfSSL: namely, the server encrypts
the session resumption-state with a long-term symmet-
ric key known only to itself. Alternative approaches are
also possible. In our proof, we replace the session ticket
in question with a random string of the same length; es-
sentially any other implementation of session tickets for
which this can still hold would provide the same degree
of privacy.

Interestingly, this rules out session tickets that in-
clude public information, such as the session identifier
of the session in which we generated the ticket. This
would allow the adversary to immediately link that ses-
sion with the resumed session, thus winning the game.
Similarly, just using a counter that is incremented at
every session also leads to privacy breaches.

Future work could explore either TLS in conjunc-
tion of protocols in the network layer, or features of the
TLS that we did not model (more significantly, the SNI

extension).TLS 1.3 is run as part of a stack of proto-
cols, not all of which are privacy-preserving. We discuss
the limitations of our results in that sense both in Sec-
tion 1.4 and in Section 1.5. One of the main problems
of the encapsulation of TLS messages appears at the
network layer. The best bet to achieve better privacy in
this context is to use protocols such as Tor; however, to
our knowledge, no current result for Tor would allow for
a composition with the type of property we are proving
here.
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A TLS and privacy-preservation
Please note that we only focus on aspects that concern
privacy, rather than giving a complete analysis of the
entire TLS protocol. For more details about the latter,
we refer the interested reader to the TLS specifications.

The design of the TLS protocol up to, and including
TLS 1.2 was not privacy-centric. Its goal was to sim-
ply allow two parties, a client and a server, to securely
establish session keys. In the following paragraphs we
describe the elements of TLS 1.2 which are relevant to
privacy, then underline the differences between how TLS
1.2 and TLS 1.3 handled those elements.

The full handshake. In the full TLS 1.2 hand-
shake, the client and server compute keys from a se-
cret value called a pre-master secret, which they can
both compute. The standard gives a choice of using
several types of key-exchange methods: RSA, static
Diffie-Hellman, ephemeral Diffie-Hellman or Anony-
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mous Diffie-Hellman. In all but the Anonymous Diffie-
Hellman key-exchange cipher suite, the server has to
provide a certificate for a public key – either used for
signatures, or used for public-key encryption. The cer-
tificate is sent in clear, allowing sessions featuring the
same server to be linked. Moreover, although TLS 1.2
is mostly used in practice with server-only authentica-
tion, RFC 5246 does allow the handshake to use mutual
authentication as well, in which case the client had to
also provide a certificate to be sent in clear.

It is worth noting that although TLS 1.3 does revo-
lutionize the design of modern key-exchange protocols,
its core key-exchange algorithm is signed ephemeral
Diffie-Hellman, which was also used by TLS 1.2. One
key difference is that in TLS 1.3 the certificate is no
longer sent in clear, but rather, it is AEAD-encrypted
with keys derived from the so-called handshake secret.
This has two immediate consequences:

– The certificate, hence server identity, remains con-
fidential as long as the adversary cannot break the
AEAD security of the encrypted message. This al-
lows us to formulate some privacy properties for the
use of ephemeral Diffie-Hellman in TLS 1.3, how-
ever, no such properties can be formulated for TLS
1.2.

– The handshake secret is computed before the au-
thentication step takes place. This, ironically, de-
tracts from the privacy of the full handshake, as it
opens the door to trivial Man-in-the-Middle attacks
which do not harm the security of the keys, but do
affect privacy. This is reflected in our winning con-
ditions for the full-handshake privacy game.

We also note that in giving less choice regarding the
key-exchange algorithm, TLS 1.3 actually gains one pro-
tocol move, reducing the full handshake to three moves
(or 1.5 rounds).

Session resumption. Session resumption was intro-
duced as an orthogonal mechanism that allows TLS 1.2
connections to bypass length authentication and derive
fresh session keys based on previously-authenticated
keys. In the case of TLS 1.2 the new keys are de-
rived from the resumed session nonces and the previous-
session’s master secret. In many ways, TLS 1.2 ses-
sion resumption resembles TLS 1.3 PSK-only session
resumption, with a few key differences:

– In TLS 1.3 all session keys (including the pre-shared
secret psk value) are computed from the same se-
crets (early keys are computed from the handshake

secret, post-authentication keys from the master se-
cret), but this is done via independent calls to the
key-derivation function. This has a dual effect: first
nothing is revealed about the master secret in the
execution of both handshakes and session resump-
tion; and secondly, learning one computed key does
not immediately imply the insecurity of the other
keys computed in that session.

– In TLS 1.3 all session keys (including the psk) are
computed using the entire protocol transcript, and
not just the session nonces. This bypasses attacks
such as the Triple Handshake attack [11] or version-
downgrade problems like FREAK or LogJam [1, 10],
which rely on a Man-in-the-Middle changing pro-
tocol parameters such that the key remains unaf-
fected.

– A ticket-nonce is added in the computation of a new
ticket, to prevent replays.

In terms of privacy, the changes made to the com-
putation of the preshared key psk will allow us to prove
stronger privacy statements, by allowing the adversary
better corruption and revelation capabilities. However,
as we show in this paper, session resumption inherently
brings some session linkability. This is how resumption
was designed, since the only way to authenticate the
resumed key is by linking it to a key established in a
fully-authenticated handshake. In this sense, both TLS
1.2 and TLS 1.3 session resumption present serious pri-
vacy flaws despite not using concrete authentication el-
ements, such as certificates.

In addition to PSK-only resumption, TLS 1.3 also
allows session to resume by using PSK-DHE hand-
shakes. In this case, additional freshness is injected, by
using two Diffie-Hellman elements, which are in their
own turn not authenticated. While this provides a mea-
sure of backward security, it does nothing to improve
privacy.

The Server Name Indication extension. The SNI
extension is indeed a very interesting feature of TLS 1.3,
which somehow expands the scope of the privacy game.
We did initially want to include this extension in our
analysis; however, it soon became clear that the task
of defining and quantifying privacy in that context is
far from being a trivial extension of our current result.
First, note that although non-trivial, it would not be
overly hard to extended the model mechanics (syntax,
oracles) to capture multiple domains. When defining
privacy in that context, however, we would no longer be
speaking of server- and client-, but rather server-, client-
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, and domain-privacy. This raises serious complications
in terms of the restrictions on the adversary’s actions in
the winning conditions, since (a) not all domains exist
on all servers(implicitly allowing an adversary to distin-
guish between potential servers); (b) the fact that the
domain name appears in cleartext in the full handshake
may implicitly make that domain name traceable if the
parties subsequently resume. In our opinion, this topic
is relevant and deserves its own paper.

B Pseudocode oracles
In this section we provide a pseudocode version of the
adversarial oracles appearing in Section 4 and Section
5. In particular, we abstract the features from the Send
oracle that heavily depend on the description of the pro-
tocol in Figure 12 and Figure 13.

– Update sid: Whenever we receive a message, if the
message is valid, we concatenate it to sid. Two sids
are equal if they coincide up to the last message re-
ceived. To sid we concatenate the unencrypted mes-
sage, not the one directly sent on the network.

– Update πsvidLtickets: When the server sends or the
client receives its ticket, we update its internal
Ltickets by adding it. When the client sends its ticket
or server receives it, we update its internal Ltickets
by deleting it. This models ticket anti-replay be-
haviour.

– Update Ltickets (in Free): We delete the minimal
number of tickets such that, at the end of the execu-
tion of Free, the two parties have the same number
of tickets with regards to all parties. This is done in
a “first in, first out” manner.
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Setup(1λ)

Compute nrcl, nrsv from 1λ

P = ∅,Lvid = ∅,Lact = ∅,Linst = ∅,Lchg = ∅

for i := 1 to nrcl do

Ci.pk = ⊥

Ci.sk = ⊥

Ci.corr = 0

P = P ∪ {Ci}

for k := 1 to nrsv do

(Sk.pk,Sk.sk) = Sign.Gen()

Sk.corr = 0

P = P ∪ {Sk}

NewSession(vid, vid′)

if vid /∈ Lvid ∨ vid′ /∈ Lvid

return ⊥

if type(vid) = type(vid)

return ⊥

πsvid.pid← real(vid′)

πsvid.sid← ⊥

πsvid.pk← real(vid).pk

πsvid.sk← real(vid).sk

πsvid.corr← real(vid).corr

if vid = Si|Sj ∧ (Si.corr = 1 ∨ Sj .corr = 1)

πsvid.corr = 1

πsvid.freed← 0

πsvid.accept, πsvid.C.htk, πsvid.S.htk, πsvid.C.tk, π
s
vid.S.tk← ⊥

if vid = Sk|Sl ∧ Sk 6= Sl
Lchg ← Lchg ∪ vid

Linst ← Linst ∪ πsvid

return πsvid

Reveal(πsvid, key)

πsvid.key = 1

return πsvid.key

Corrupt(Pi)

Pi.corr = 1

∀πsvid, vid = Pi|Pj ∨ vid = Pj |Pi
πsvid.corr = 1

return Pi.sk

DrawParty(Pi,Pj)

if Pi ∈ Lact ∨ Pj ∈ Lact

return ⊥

if type(Pi) 6= type(Pj)

return ⊥

if type(Pi) = type(Pj) = C ∧ Pi 6= Pj
return ⊥

Lact ← Lact ∪ {Pi,Pj}

Lvid ← Lvid ∪ vid

vid← Pi|Pj
return vid

Send(πsvid,msg)

if πsvid.freed = 1

return ⊥

if msg = prompt ∧ type(vid) = C ∧ πsvid.sid = ⊥

Update πsvid.sid

return msg′(Start protocol with πsvid.pid)

if msg is valid

Update πsvid.sid

return msg′

else return ⊥

Free(vid)

Lvid = Lvid − vid;

if vid = Pi|Pj
Lact = Lact − {Pi,Pj}

for πsvid ∈ Linst

if πsvid.accept = ⊥

πsvid.accept = 0

πsvid.freed = 1

for πtvid′ ∈ Linst

if πsvid.sid = πtvid′ .sid ∧ πtvid′ .accept = ⊥

πtvid′ .accept = 0

πtvid′ .freed = 1

Fig. 12. Adversarial oracles in the full handshake mode model.
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Setup(1λ)

Compute nrcl, nrsv from 1λ

P = ∅,Lvid = ∅,Lact = ∅,Linst = ∅,Lchg = ∅

for i := 1 to nrcl do

Ci.pk = ⊥,Ci.sk = ⊥,Ci.corr = 0

P = P ∪ {Ci}

for k := 1 to nrsv do

(Sk.pk,Sk.sk) = Sig.Gen()

Sk.corr = 0

P = P ∪ {Sk}

chg = 0

NewSession(vid, vid′,mode)

if vid /∈ Lvid ∨ vid′ /∈ Lvid

return ⊥

if type(vid) = type(vid)

return ⊥

πsvid.pid← real(vid′)

πsvid.sid← ⊥

πsvid.pk← real(vid).pk

πsvid.sk← real(vid).sk

πsvid.corr← real(vid).corr

if vid = Si|Sj ∧ (Si.corr = 1 ∨ Sj .corr = 1)

πsvid.corr = 1

πsvid.freed← 0

πsvid.accept, πsvid.C.htk, πsvid.S.htk, πsvid.C.tk, π
s
vid.S.tk← ⊥

if vid = Sk|Sl ∧ Sk 6= Sl
Lchg ← Lchg ∪ vid

Linst ← Linst ∪ πsvid

if type(vid) = C

πsvid.mode = mode

if πsvid.mode 6= dhe ∧ count(real(vid), real(vid′) = 0

return ⊥

if πsvid.mode 6= dhe

real(vid).Ltickets = real(vid).Ltickets − (STicket, rms, t, real(vid′))

πsvid.in.STicket = STicket, πsvid.in.rms = rms, πsvid.in.NT = NT

return πsvid

TCorrupt(Pi)

Pi.corrk = 1

∀vid, real(vid) = Pi, πsvid.corrk = 1

return Pi.k

DrawParty(Pi,Pj)

if Pi ∈ Lact ∨ Pj ∈ Lact

return ⊥

if type(Pi) 6= type(Pj)

return ⊥

if Pi 6= Pj ∧ chg = 0

chg = 1,Lchg.pty = {Pi,Pj}

if Pi 6= Pj ∧ chg = 1

if Pi /∈ Lchg.pty ∨ Pj /∈ Lchg.pty

if type(Pi) = type(Pj) = C

if ∃Sk, count(left(vid),Sk) 6= count(right(vid),Sk)

return ⊥

if type(Pi) = type(Pj) = S

if ∃Ck, count(left(vid),Ck) 6= count(right(vid),Ck)

return ⊥

Lact ← Lact ∪ {Pi,Pj},Lvid ← Lvid ∪ vid

return vid← Pi|Pj

Send(πsvid,msg)

if πsvid.freed = 1

return ⊥

if msg = prompt ∧ type(vid) = C ∧ πsvid.sid = ⊥

Update πsvid.sid

return msg′(Start protocol with πsvid.pid)

if msg is valid

Update πsvid.Ltickets if/as needed

Update πsvid.sid

return msg′

else return ⊥

Free(vid)

Lvid = Lvid − vid;

if vid = Pi|Pj
Lact = Lact − {Pi,Pj}

for πsvid ∈ Linst

if πsvid.accept = ⊥

πsvid.accept = 0

πsvid.freed = 1

for πtvid′ ∈ Linst

if πsvid.sid = πtvid′ .sid ∧ πtvid′ .accept = ⊥

πtvid′ .accept = 0, πtvid′ .freed = 1

if vid ∈ Lchg.vid update Ltickets such that

∀Pk, count(left(vid),Pk) 6= count(right(vid),Pk)

Fig. 13. Adversarial oracles in the extended model. See Figure 12 for the Reveal and Corrupt oracles.
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