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Abstract: We present two information leakage attacks
that outperform previous work on membership inference
against generative models. The first attack allows mem-
bership inference without assumptions on the type of
the generative model. Contrary to previous evaluation
metrics for generative models, like Kernel Density Es-
timation, it only considers samples of the model which
are close to training data records. The second attack
specifically targets Variational Autoencoders, achieving
high membership inference accuracy. Furthermore, pre-
vious work mostly considers membership inference ad-
versaries who perform single record membership infer-
ence. We argue for considering regulatory actors who
perform set membership inference to identify the use
of specific datasets for training. The attacks are evalu-
ated on two generative model architectures, Generative
Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs), trained on standard image datasets. Our
results show that the two attacks yield success rates
superior to previous work on most data sets while at
the same time having only very mild assumptions. We
envision the two attacks in combination with the mem-
bership inference attack type formalization as especially
useful. For example, to enforce data privacy standards
and automatically assessing model quality in machine
learning as a service setups. In practice, our work moti-
vates the use of GANs since they prove less vulnerable
against information leakage attacks while producing de-
tailed samples.
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1 Introduction
Machine learning is ubiquitous in software applications
nowadays. However, the success of machine learning
(ML) depends as much on sophisticated algorithms as
it does on the availability of large sets of training data.
Gathering sufficient amounts of training data for satis-
fying model generalization has proven cumbersome es-
pecially for sensitive data and, in some cases, resulted
in privacy violations due to data misuse (e.g., the inap-
propriate legal basis for the use of National Health Ser-
vice (NHS) data in the DeepMind project [10, 22, 24]).
The desire to identify on which data a model was
trained, and thus detect privacy violations gave rise to
model inversion, which aims for reconstructing a train-
ing dataset with missing parts [7], and membership in-
ference (MI) [21]. Within this work we address the lat-
ter, striving to identify whether an individual or a set
of individuals, belong to a certain training dataset.

Motivated by the recent NHS misuse case we con-
sider two membership inference actors: an adversary
performing single record MI and a regulator perform-
ing set MI. Single MI is used in previous work to model
an adversary who is mainly interested in identifying in-
dividuals within a dataset. However, set MI is relevant
for regulatory audits since it can be used to prove that
a specific set of records was used to train a model. If the
practitioner who trained the model was not authorized
to use a specific dataset for this purpose regulators can
apply set MI to prove data privacy violations.

We propose and evaluate two novel membership in-
ference attacks against recent generative models, Gen-
erative Adversarial Networks (GAN) [8] and Variational
Autoencoders (VAE) [12]. These generative models have
become effective tools for (unsupervised) learning with
the goal to produce samples of a given distribution af-
ter training. Generative models thus have many applica-
tions like the synthesis of photo-realistic images, image-
to-image translation, and even text [3] or sound [5]
synthesis. However, the MI attack of Shokri et al. [21]
against discriminative models is not directly applicable
to generative models and thus alternative means are re-
quired. Moreover, previous attacks on generative models
were specialized on GANs [10]. In contrast, our first at-
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tack is applicable to every generative model from which
one can draw samples. The attack only considers sam-
ples which are very close to train or test records giving
it an edge over existing methods like the Euclidean at-
tack [9]. The second proposed attack is solely applicable
to Variational Autoencoders. Hence, our attacks allow
membership inference attacks against a broader class
of generative models. In some cases, the attacks formu-
lated in this work yield accuracies close to 100%, clearly
outperforming previous work. Furthermore, the regula-
tory actor performing set MI helps to unveil even slight
information leakage. Hence, set MI is of high practical
relevance for enforcing data privacy standards.

The close connection of information leakage to over-
fitting provides another motivation for this work. Se-
vere overfitting will result in the replication of given
data in generative models and therefore higher accura-
cies of membership inference attacks. Given that in ex-
treme cases a linear relationship between the success of
membership inference attacks and overfitting has been
observed for discriminative models [7] we also want to
avoid overfitting in the case of generative models. How-
ever, overfitting is neither straightforward to define nor
identify for generative models.

As proposed by Hayes et al. [10], the accuracy of
attacks in single MI can be used as an indicator for
overfitting. We thoroughly compare our attacks against
state of the art attacks on generative models introduced
by Hayes et al. [10] to further investigate this claim.
The proposed type of set membership inference results
in higher accuracy values and is potentially a means for
identifying even slight overfitting in generative models.
For machine learning as a service (MLaaS) our attacks
are therefore potentially a means for automatically as-
sessing the quality of the learned generative model more
accurately than previous approaches. The main contri-
butions of this work are:
– a membership inference attack based on Monte

Carlo integration that exclusively considers small
distance samples from the model,

– a membership inference attack designed for Varia-
tional Autoencoders: the Reconstruction attack,

– and a membership inference variation performing
set membership inference, which is systematically
evaluated and which we envision to be used by reg-
ulators to enforce data privacy standards.

We evaluated the attacks on the image datasets MNIST,
Fashion-MNIST, and CIFAR-10 for both Generative
Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs) which are widely used generative models.

For VAEs, the Reconstruction attack yielded accuracies
close to 100% for set MI and between 57% and 99%
for single MI. The MC attack reached between 72% and
100% set MI accuracy and up to 60% accuracy for single
MI. The attacks were less effective on GANs in our ex-
periments. However, the MC attack accuracies against
GANs range from 65% to 75% for set MI. In general, the
MC attack performs better if the samples drawn from
the model are of high quality.

This paper is structured as follows. Section 2 ex-
plains the threat model and membership inference at-
tacks considered in this work. In particular, we intro-
duce and formalize two actors who perform single and
set membership inference. Furthermore, we argue for
their relevance in real-world use cases. In Section 3 we
introduce and formalize our two attacks which are ap-
plicable to both single and set membership inference.
To this end, details regarding GANs and VAEs are pro-
vided. The subsequent Section 4 contains an evaluation
of our attacks on reference datasets. Related work is dis-
cussed in Section 5. A summary and outlook (Section 6)
concludes the paper.

2 Membership Inference Attacks
In this section, we introduce the threat model and the
two kinds of attacks considered in this paper: single MI
and set MI. We start the section by exposing some back-
ground on MI.

2.1 Background of Membership Inference

The goal of membership inference (MI) is to gather evi-
dence that a specific record or a set of records belongs to
the training dataset of a given machine learning model.
MI thus represents an approach for measuring how much
a model leaks about individual records of a population.
The success rates of MI attacks against a model are
tightly linked to overfitting (i.e., the generalization error
[30]). The poorer a model generalizes the more specifici-
ties it contains about individual training data records.

In this work, two kinds of MI are considered: single
MI and set MI. The single MI is comparable to common
experiment setups for MI[10, 21]. In the set MI setting
a regulator has to recognize which of the two provided
sets contains training data records.
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2.2 Threat Model

This work considers two actors corresponding to single
and set MI, respectively. The first actor is an honest-
but-curious adversary A and the second actor is a reg-
ulatory body R. Each actor focuses on a specific task:
the adversary A is common in MI literature and in-
fers whether a single record was present in the training
dataset using single membership inference. The regula-
tory bodyR performs set membership inference to iden-
tify whether a set of records was present in the training
dataset. This attack can provide evidence that a cer-
tain set of training data was illegally used to train a
generative model.

Both actors are assumed to have no access to the
underlying training dataset of the generative model, and
they refrain from activities that maliciously modify this
target model. The actors A and R can both launch the
Monte Carlo (MC) attack as well as the Reconstruc-
tion attack. (See Section 3 for details.) The choice of
the attack determines the requirements on the informa-
tion that is available to the actor. The MC attack re-
quires samples drawn from the generative model while
the Reconstruction attack has to be able to evaluate the
generative model.

2.3 Adversarial Actor: Single MI

Single MI has been used by previous work to evaluate at-
tacks against GANs [10]. In this setting, the honest-but-
curious adversary A has to identify individual records
which were used to train the model. To this end M

records from the training data and M records from the
test dataset {x1, . . . , x2M} are given. Both the MC at-
tack and the Reconstruction attack rely on a function
f̂(x) that can be computed for each of the records. The
intuition is that this function attains higher values for
training data records. Details on how this function is
realized are given in the next section. In the following
description of the attack types we use the general nota-
tion f̂(x).

For every record xi, A has to decide whether it was
part of the training data. In general, A picks the M
records with theM greatest values of the function f̂(x).

Attack Type 1 (Single Membership Inference). Let
A be an adversary who is able to compute the function
f̂(x) for every record x.
1. Choose records {x1, . . . , xM} from the training data.
2. Choose records {xM+1, . . . , x2M} from the test data.

3. A is presented the set {x1, . . . , x2M}.
4. A labels the M records with highest values f̂(xi) as

training data.

We denote theM records chosen by A as {xA1 , . . . , xAM}.
We call the proportion of actual training data in this
set

1
M
·
∣∣{i | xAi ∈ {x1, . . . , xM}}

∣∣
the accuracy of the attack for single MI.

2.4 Regulatory Actor: Set MI

Set MI corresponds to the needs of regulators and audi-
tors aiming to prove data privacy violations in machine
learning. One set consisting ofM records from the train-
ing data {x1, . . . , xM} and another set consisting of M
records from the test data {xM+1, . . . , x2M} are shown
to a regulator R in either order. The task of R is to
decide which of the two sets is a subset of the original
training data. Contrary to single MI, R knows which
records belong to the same data source (training data
or test data). However, R does not know which set is a
subset of the original training data.

Similar to single MI R computes the function f̂(x)
for every record and selects the M records with the M
highest values f̂(x). For each of the selected records, R
checks to which set it belongs and eventually selects the
set from which most of these records stem as subset of
the original training data.1 Note that this is equivalent
to taking the set with the higher median. Since we do
not have any prior knowledge on the type of distribution
of the f̂ -values this is more robust than considering e.g.
the mean.

Attack Type 2 (Set Membership Inference). Let R
be an adversary able to calculate the function f̂(x) for
every record x.
1. Choose records {x1, . . . , xM} from the training data.
2. Choose records {xM+1, . . . , x2M} from the test data.
3. R is presented the sets {x1, . . . , xM} and
{xM+1, . . . , x2M}.

4. R identifies the M records with highest values f̂(xi).
5. R chooses the set from which most of these records

stem.
6. If both have the same number of representatives R

picks one set randomly.

1 If an equal number of records belong to the first and the
second set, R picks one of the sets with probability 50%.
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Table 1. Comparison of Attacks

Attack Required Access Applicable Idea
White-box Discriminator GANs Evaluate Discriminator
Black-box Samples from Generative Model Generative Models Train auxiliary GAN on samples and evaluate

Discriminator
Monte Carlo Samples from Generative Model Generative Models Monte Carlo approximation on close samples
Reconstruction Attack VAE model VAEs VAE reconstructs training data more precisely

The accuracy of an attack of this type is defined as the
average success rate of R, i.e., the probability that R
identifies the true subset of the training data.

2.5 Relevance for Real-World Use Cases

The formalized MI attack types are an alternative to
assessing a single record x by computing f̂(x) and con-
sidering the record part of the training data if the value
exceeds a threshold. While the single record approach
is conceptually similar, the formalized types contributed
in this work are closer to real-world use cases. For exam-
ple, in machine learning as a service (MLaaS) applica-
tions access to both test and training data is implicitly
given. Hence, the single MI and set MI attack types
can be automatically conducted. Increased MI attack
accuracies suggest that the model quality is insufficient
w.r.t. privacy.

Figure 1 visualizes the regulatory use case. The reg-
ulator R suspects that a certain dataset was illegally
used to train a model (b). Actually, even more data was
used illegally (c). Moreover, some legally obtained data
might have been used. Together with the illegal data,
it represents the complete training data (d). R’s set of
suspected data is used as train set in the set MI attack
(a). R also needs test data (f) from which a subset (e) is
used as test set for the attack. If the attack is successful
the illegal use can be proven. Otherwise, the attack does
not perform better than random guessing. By repeating
the attack for multiple choices of subsets (a) and (f)
R ensures statistical significance. Note that R does not
need to know the entire training data since the MI at-
tacks also work for subsets of the entire training data.
The accuracy does not depend on the concrete subset
choice as we will show in our experiments in Section 4.

Note that in both single and set MI we assume that
there are exactly as many test as train records. In the
regulatory use case of set MI this is realistic since a
sample of the larger of the two sets can be used if they
are not of equal size. To make the results of single and
set MI comparable, and to be in line with the balanced

train set of regulator’s MI attack (a)
suspected illegal use (b)
actual illegal use (c)
complete training data used (d)
test set of regulator’s MI attack (e)
test data of regulator (f)

Fig. 1. Venn diagram of training and test data in the regulatory
use case for R.

setting in previous work [21], we also decided to use
this setup in single MI. Note that this is potentially an
advantage for A.

3 Attack Details
In this section we introduce two novel MI attacks. They
can be used for both single and set MI. The first at-
tack, namely the Monte Carlo attack (Section 3.2) com-
pares samples drawn from the model to either test or
train records. Opposing to existing approaches, only
very close samples are considered. Indeed, this distin-
guishes the attacks from previous approaches like the
Euclidean attack [9] and made the attacks effective. Fur-
thermore, the Reconstruction attack (Section 3.3) which
is optimized for VAEs is presented. A comparison of our
attacks and state-of-the-art attacks is given in Table 1.
Again, an attack is fully specified by the function f̂(x)
which will be introduced in the following. Since in the
description of the attacks details about generative mod-
els are required, we briefly describe VAEs and GANs in
the next section.

3.1 Generative Models

Generative models are ML models that are trained
to learn the joint probability distribution p(X,Y )
of features X and labels Y of training data. In
this paper we apply two decoder based models re-
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D(x)Discriminator D

G(z)Generator Gz ∼ pnoise

Training Data

Fig. 2. Architecture of a Generative Adversarial Network (GAN).

lying on neural networks, namely Generative Adver-
sarial Networks (GANs) [8] and Variational Autoen-
coders (VAEs) [12]. Note, however, that our Monte
Carlo attack is applicable to all generative models from
which one can draw samples. The reconstruction attack
specifically targets VAEs.

3.1.1 Generative Adversarial Networks

A GAN consists of two competing models, a generator
G and a discriminator D, which are trained in an ad-
versarial manner (i.e., compete against each other). We
describe the approach in detail referring to Figure 2.

To generate artificial data a prior z is sampled from
a prior distribution pnoise (e.g., Gaussian) and fed as in-
put into the generator G. The task of the discriminator
D is to output the probability that generated samples
stem either from the training data or G. However, G
tries to fool D by generating samples that D misclas-
sifies. Hence, the outputs G(z) should look similar to
the training data x (i.e. records sampled from pdata).
This is expressed as a two-player zero-sum game via the
following objective function:

min
G

max
D

Ex∼pdata [logD(x)]+Ez∼pnoise [log(1−D(G(z)))].

Gradients are computed for G and D during train-
ing, and usually, after already a few steps of training
G produces realistic outputs. A conditional generative
model is obtained by providing a condition c (e.g., a
class label) as an input both to the generator and the
discriminator [8].

3.1.2 Variational Autoencoders

VAEs [12] consist of two networks - an encoder E and
a decoder D. During training each record x is given to
the encoder which outputs the mean Eµ(x) and variance
EΣ(x) of a Gaussian distribution. A latent variable z is

sampled from this distribution N(Eµ(x), EΣ(x)) and fed
into the decoder D. The reconstruction D(z) should be
close to the training data record x.

During training two terms need to be minimized.
First, the reconstruction error ‖D(z) − x‖. Second
KL(N(Eµ(x), EΣ(x))||N(0, 1)), the Kullback-Leibler di-
vergence between the distribution of the latent variables
z and the unit Gaussian. The second term prevents the
network from only memorizing certain latent variables
because the distribution should be similar to the unit
Gaussian. In practice, both the encoder E and the de-
coder D are neural networks. Kingma et al. [12] provide
details on how to train those networks given the train-
ing objective with the reparametrization trick. More-
over, they motivate the training objective as a lower
bound on the log-likelihood. Sampling from the VAE
is achieved by sampling a latent variable z ∼ N(0, 1)
and passing z through the decoder network D. The out-
puts of the decoder D(z) then serve as samples. Like for
GANs, a conditional variant is obtained by providing a
condition c as input to the decoder and the encoder.

3.2 Monte Carlo Attack

In the following section we introduce the first attack
which is applicable to all generative models. The intu-
ition behind the Monte Carlo attack is that the genera-
tor G overfits if it tends to output datasets close to the
provided training data. Formally, let Uε(x) denote the ε-
neighborhood of x defined as Uε(x) = {x′ | d(x, x′) ≤ ε}
with respect to some distance d. If a sample g of the gen-
erative model G is likely to be close to a record x the
probability P (g ∈ Uε(x)) is increased. It can be rewrit-
ten as

P (g ∈ Uε(x)) = Eg∼pgenerator

(
1g∈Uε(x)

)
and approximated via Monte Carlo integration [17]

f̂MC−ε(x) = 1
n

n∑
i=1

1gi∈Uε(x), (1)
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where g1, . . . , gn are samples from pgenerator. Note that
samples gi of the generator G are ignored if their dis-
tance to the training data record x is higher than ε. In
this attack, the estimation f̂MC−ε(x) plays the role of
the function f̂(x) attaining higher values for training
data records.

An alternative is provided by incorporating the ex-
act distances d(zi, x) between samples g1, . . . , gn and
training data x, and computing

Eg∼pgenerator

(
−1g∈Uε(x) log (d(g, x) + δ)

)
where a small δ is chosen to clip off large values ("avoid
log(0)") if the distance is zero. The logarithm is to ensure
that outliers do not affect the results too much. The
Monte Carlo approximation is then given by

f̂MC−d(x) = − 1
n

n∑
i=1

1gi∈Uε(x) log d(gi, x) . (2)

Here, the estimation f̂MC−d(x) plays the role of the
function f̂(x) used to conduct the attack types pre-
sented above.

In the case of GANs and VAEs one obtains
gi ∼ pgenerator by sampling from zi ∼ pnoise and com-
puting gi = G(zi) and gi = D(zi), respectively. Note
that only a sufficiently large amount of samples has to
be provided and no additional information is required.
Of course, both attack variants depend on the specifi-
cation of the distance d(·, ·). See below for details.

A further alternative to the attacks discussed
could be realized using a Kernel Density Estima-
tor (KDE) [18]. In the following we briefly compare the
Monte Carlo attack with this metric. An estimation of
the likelihood f̂(x) of a data point x using KDE is given
by

f̂KDE(x) = 1
nhd

n∑
i=1

K
(x− gi

hd

)
, (3)

where K is typically the Gaussian kernel and h denotes
the bandwidth. If this likelihood f̂KDE(x) is significantly
higher for training data than for test data the model fails
to generalize. Likewise the approximate likelihood val-
ues f̂KDE(x) can be used as the function f̂(x) to conduct
the single and set MI attack types. However, this attack
variation did not perform better than random guessing
and is therefore not considered in our evaluation section.

Note that KDE (3) can indeed be interpreted as a
special case of the proposed distance based method (2),
where

d(x, gi) = 1/ exp(hd ·K((x− gi)/hd)), and
ε = max

i=1,...,n
d(x, gi) .

As KDE does not perform well for MI against genera-
tive models this stresses that choosing the right distance
function seems to be key. In contrast to KDE, our at-
tacks exclusively consider samples significantly close to
training data x. To fully specify the Monte Carlo attacks
concrete distance measures and heuristics for choosing
ε are required. We describe our approach for this in the
next two subsections.

3.2.1 Distance Measures

Both Monte Carlo (MC) attack variants require a dis-
tance function d(·, ·) and the distance plays an impor-
tant role for the success of the MI attack. Therefore, a
distance metric suited for the specific data under con-
sideration has to be chosen. For neural networks, image
recognition has become a key task and consequently, we
formulate distance metrics for image data in the follow-
ing paragraphs.
Principal Components Analysis. Images are ini-
tially represented as a vector of their pixel intensities.
A principal component analysis (PCA) is then applied
to all vectors in the test dataset. The top 40 compo-
nents are kept while all other components are discarded.
When computing the distance between two new images
the PCA transformation is first applied to their vectors
of pixel intensities. The Euclidean distance of the two
resulting vectors with 40 components each is then de-
fined as the distance of the images.
Histogram of Oriented Gradients. Histogram of
Oriented Gradients (HOG) [4] is a computer vision al-
gorithm enabling the computation of feature vectors for
images. First, the image is separated into cells. Second,
the occurrences of gradient orientations in the cells are
counted and a histogram is computed. The histograms
are normalized block-wise and concatenated to obtain
a feature vector. Again the Euclidean distance of these
vectors is used as image distance. This approach was
successfully used by Ebrahimzadeh et al. [6] for an
MNIST data classifier.
Color Histogram. According to the intensities in the
three color channels, the pixels are sorted into bins. For
the pixels of one image, this results in a color histogram
(CHIST) which can be represented as a feature vector.
The Euclidean distance of these vectors is defined as the
image distance.
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3.2.2 Heuristics for ε

For the attack all pairwise distances d(xi, gj) of the
records xi and samples gj need to be computed. Sam-
ples with distances greater than ε to the training data
records are ignored. Hence, an appropriate choice of ε is
crucial for the success of the attack. We thus formulate
two heuristics in the following.
Percentile Heuristic. The first heuristic is to use a
fixed percentile of all pairwise distances d(xi, gj) as ε.
By choosing the 0.1% percentile of the distances as ε
we can ensure that the corresponding samples in an ε-
neighborhood are sufficiently close. Note that the MC-ε
and MC-d approaches are not necessarily equivalent if
this heuristic is employed.
Median Heuristic. The second heuristic avoids the
need to choose an additional parameter such as the per-
centile value. Again, the idea is to exploit the measured
distances in the Monte Carlo computation. In this ap-
proach, the median of the minimum distance to each
record xi for all the generated samples gj is chosen:

ε = median
1≤i≤2M

(
min

1≤j≤n
d(xi, gj)

)
. (4)

If ε is chosen according to the median heuristic (4) the
results of MC-ε and MC-d are equivalent in both the
single and set MI types as there are always exactly M
records with f̂MC−ε(xi) > 0 and f̂MC−d(xi) > 0. A
comparison of the MC attack variants is provided in
the evaluation in Section 4.

3.3 Reconstruction Attack

The reconstruction attack is solely applicable to VAEs.
During training, reconstructions D(z) close to the cur-
rent training data record x are rewarded. Hence, for
training data more precise reconstructions of the VAE
can be expected. However, the outputs D(z) are not de-
terministic. They depend on the latent variable z which
is sampled from the distributionN(Eµ(x), EΣ(x)) whose
parameters are the output of the encoder network E.
Hence, we repeat this process n times and set

f̂rec(x) = − 1
n

n∑
i=1
‖D(zi)− x‖ (5)

where zi (i = 1, . . . , n) are samples from the distribu-
tion N(Eµ(x), EΣ(x)). This term is frequently used in
practice as part of the loss function of VAEs. One of the
contributions of this work is to apply this loss to the

problem of membership inference. Specifically, the func-
tion f̂rec(x) is applied in the attack types as the discrim-
inating function f̂(x). This induces the Reconstruction
attack. Note that this attack considers a strong adver-
sary A with access to the VAE model.

4 Evaluation
The two MI attacks formulated in this paper are eval-
uated in comparison to the white and black-box MI
attacks of Hayes et al. [10] against generative mod-
els trained on MNIST, Fashion MNIST, and CIFAR-10
throughout Sections 4.3 to 4.7.

The white box attack is solely applicable to GANs
and requires access to the discriminator D. Specifically,
the discriminator D plays the role of the function f̂(x)
in this attack.

The black box attack overcomes the limitation of
the white box attack in that it requires no access to
D. It is therefore not solely applicable to GANs. For
the black box attack, an auxiliary GAN is trained with
samples g1, . . . , gn from the target model and the dis-
criminator D′ of this newly trained model is used in a
white box manner. In experiments, the white box at-
tack performed significantly better than the black box
attack [10].

In general, our MC attacks outperformed state of
the art, i.e. the white box attack of Hayes [9], for both
MNIST and Fashion MNIST which are considered very
hard datasets due to their simplicity. Since it is an up-
per bound for the accuracy, also the black box attack is
outperformed. However, the MC attacks are dominated
by the white box attacks on CIFAR-10. This is due to
the bad sample quality which is essential if only very
close samples are considered. As a consequence of the
low accuracies, we decided not to compare it with the
black-box attacks. In contrast, the Reconstruction at-
tack specialized for VAEs constantly provides the high-
est accuracies with up to 100% single and set accuracies
even for CIFAR-10.

Since several parameters have to be chosen before
the attacks are applied a study of the effect of these
parameters is presented in Section 4.2. Moreover, ad-
ditional experiments on VAEs trained on the MNIST
dataset are provided in Sections 4.4 and 4.5. These ex-
periments are not performed for the other datasets or
GANs to avoid redundancy and are solely for the pur-
pose of evaluating the effect of regularization and train-
ing data sizes.



MC and Reconstruction MI Attacks against Generative Models 239

4.1 Setup

We evaluated the attacks of Hayes et al. [9], the Monte
Carlo and the Reconstruction attacks for differing 10%
subsets of the MNIST, Fashion MNIST and the CIFAR-
10 dataset. The simple nature of MNIST has proven to
result in low MI precision in previous work, the more
complex Fashion-MNIST and CIFAR-10 datasets result
in higher MI precision. Thus, the three chosen datasets
represent three varying difficulties w.r.t. MI. To ensure a
fair comparison we executed all experiments repeatedly
and report standard deviations. Neural networks are im-
plemented with tensorflow [1], and for the HOG and
PCA computations, the python libraries scikit-image
and scikit-learn [19] are used. Experiments were run on
Amazon Web Services p2.xlarge (GAN) and c5.2xlarge
(VAE) instances.

We first describe the datasets and models used be-
fore analyzing the parameters of the attacks.

4.1.1 MNIST

MNIST is a standard dataset in machine learning and
computer vision consisting of 70, 000 labeled handwrit-
ten digits which are separated into 60, 000 training and
10, 000 test records.2 Each digit is a 28 × 28 grayscale
image. In all subsequent datasets only a 10% subset
of the training images is used for training to provoke
overfitting. The remaining 90% of the training data is
used as test data to compute the accuracies of the at-
tacks. The actual MNIST test data is only used to de-
fine the PCA transformation for the PCA based dis-
tance. This ensures that the distance is not influenced
by the specific choice of the training data or the remain-
ing 90%. Attacks are performed against two state of the
art generative models, namely GANs (cf. Section 3.1.1)
and VAEs (cf. Section 3.1.2). For the GAN we employ
the widely used deep convolutional generative adversar-
ial network (DCGAN) [20] architecture which aims to
improve both stability and quality of GANs for image
generation. This network relies on convolutional neural
networks (CNN) which are state of the art for many
computer vision tasks. We trained the DCGAN for 500
epochs (i.e., until convergence) with a mini batch size

2 http://yann.lecun.com/exdb/mnist/

of 128.3 For the VAE we apply a standard architecture4

with 90% Dropout and a mini batch size of 128. Due
to the different convergence behavior, the VAE is only
trained for 300 epochs. For both models, GAN and VAE,
we utilize the conditional variant s.t. we can control
which digit is generated.

4.1.2 Fashion MNIST

This dataset is intended to serve as a direct drop-in re-
placement for MNIST [28]. Like MNIST it consists of
60, 000 training and 10, 000 test 28 × 28 grayscale im-
ages representing 10 fashion classes such as trousers,
pullovers etc. The goal of using this dataset is to over-
come the limitation of MNIST being too simple for var-
ious computer vision tasks. The same model architec-
tures as that for MNIST are used for the conditional
GAN and VAE on this dataset.

4.1.3 CIFAR-10

The CIFAR-10 dataset [13] consists of 60, 000 32 × 32
color images representing 10 classes such as airplane,
automobile etc. There are 50, 000 train and 10, 000 test
records. Within the evaluation a GAN5 and a VAE6 are
trained on a random 10% subset of the original dataset.

4.2 Attack Parameters

The effects of the attack parameters are analyzed in
the following. Specifically, for the MC attacks the effect
of the heuristic for setting ε and the number of sam-
ples n for the Monte Carlo integration are studied. We
expect these to be similar for both GANs and VAEs.
Hence, the analysis is restricted to the case of VAEs.
For the Reconstruction attack, we study how the num-
ber of samples n for the reconstruction error estimation
affects the accuracy.

3 We used https://github.com/yihui-he/GAN-MNIST as a
starting point.
4 We used https://github.com/hwalsuklee/tensorflow-mnist-
VAE as a starting point.
5 We used https://github.com/4thgen/DCGAN-CIFAR10 as a
starting point.
6 We used https://github.com/chaitanya100100/VAE-for-
Image-Generation as a starting point.
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4.2.1 Monte Carlo Attack

The single and set MI accuracies against VAEs trained
on MNIST for different choices of ε are reported in Ta-
ble 2 for A and R, respectively. Note that the results of
the MC-ε and MC-d attacks do not differ significantly.
This suggests that the main contribution is the intro-
duction of ε effectively ignoring samples which are fur-
ther than ε away from the training records. In the case of
the median heuristic, the two MC attack variants yield
equivalent performances as expected. However, the me-
dian heuristic outperforms the percentile heuristic.

Besides the heuristic for ε, a sample size for the
Monte Carlo approximation has to be chosen. Hence,
we also analyze the performance of the MC-ε attack de-
pending on the sample size. Again, the MC-ε attack is
equivalent to the MC-d attack in the case of the median
heuristic. The single and set accuracies are stated in Fig-
ure 3 for A and R, respectively. In general, higher per-
centile values ignore fewer samples since ε is increased.
A smaller sample size is required to achieve optimal ac-
curacy for these percentiles. However, the accuracy of
higher percentile values is inferior to the ones of lower
percentile values.

For example, the 10% percentile attack already
reaches its optimum in the minimal case of 3, 000 sam-
ples and the 1% percentile saturates at 104 samples.
The 0.1% percentile approach is gaining higher accura-
cies and does not level off at 106 samples. It is notice-
able that the median heuristic always outperforms the
other heuristics. We conjecture this heuristic to level off
at a higher sample size. However, in practice there is a
trade-off between computational effort and accuracy of
the attack. To study the effect 20 experiments for the
median heuristic with 107 samples each are conducted,
achieving a single record MI accuracy of 59.80 ± 3.50%
for A and a set MI accuracy of 100.00± 0.00% for R. In
the subsequent experiments, we always use 106 samples
for the Monte Carlo simulations.

The median heuristic is superior to the percentile
heuristic for all sample sizes. Moreover, no parameter
like the percentile is required. Thus, in all subsequent
experiments we apply the median heuristic for which
the MC-ε and MC-d attacks are equivalent. We refer to
these equivalent approaches simply as MC attack.

4.2.2 Reconstruction Attack

We also study the effect of the sample size n to approx-
imate the reconstruction error

f̂rec(x) = − 1
n

n∑
i=1
‖D(zi)− x‖. (6)

In preliminary experiments even small sample sizes of
n = 300 yielded good accuracies. This suggests that the
estimator f̂rec(x) is accurate enough for small n values.
To ensure optimal results we conduct the subsequent ex-
periments with n = 106 for the Reconstruction attacks
against VAEs trained on MNIST and Fashion MNIST.
For CIFAR we just use n = 105 samples as we already
achieve accuracies of ≈ 100% both in single and set MI.

4.3 Results on MNIST

Having analyzed the parameters of our proposed at-
tacks, we now compare their accuracies with the recent
white-box and black-box attacks of [10]. To stabilize the
results 10 different 10% subsets of the MNIST data are
chosen as training data for the GAN and VAE models.
For every subset 10 single and set MI attacks are con-
ducted with M = 100. While we apply the white-box
attack against the GAN, we are limited to the black-
box attack in case of the VAE as the latter model does
not feature a discriminator. In order to test the black-
box attack, a new GAN is trained with 106 samples from
the target VAE.

For the Monte Carlo estimator f̂MC we use the PCA
and HOG based distances introduced in Section 3.2.1.
The CHIST distance is not applicable since MNIST
solely consists of grayscale images. As described in the
previous section we use n = 106 samples and the me-
dian heuristic. The resulting accuracies are depicted in
Figure 5. The dotted horizontal baseline at 50% is the
average success rate of random guessing. In general,
the accuracies of single MI for A are significantly lower
than those of set MI for R. Furthermore, all attacks are
much more successful if applied against VAEs instead of
GANs. This suggests that in general there is less over-
fitting in GANs. This observation is consistent with the
Annealed Importance Sampling measurements by Wu
et al. [27].

The black-box and white-box attack do not perform
significantly better than the baseline in both experi-
ments. The MC attack clearly outperforms these attacks
in the experiments. When used with PCA distance our
MC attack can even infer set membership with nearly
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Table 2. Set accuracies for R depending on ε values

(a) HOG-based distance

Heuristic/Percentile HOG-based distance
GAN Monte Carlo-d GAN Monte Carlo-ε VAE Monte Carlo-d VAE Monte Carlo-ε

Median 63.76±3.83 63.76±3.83 83.50±2.43 83.50±2.43
0.01% 63.76±3.68 66.11±3.70 81.00±2.59 82.25±2.50
0.10% 63.76±3.71 62.08±3.65 74.50±2.90 71.75±2.98
1.00% 60.07±3.84 59.73±3.86 59.50±3.24 54.00±3.29

(b) PCA-based distance

Heuristic/Percentile PCA-based distance
GAN Monte Carlo-d GAN Monte Carlo-ε VAE Monte Carlo-d VAE Monte Carlo-ε

Median 74.84±3.25 74.84±3.25 99.75±0.25 99.75±0.25
0.01% 74.84±3.31 71.94±3.40 95.50±1.34 91.75±1.80
0.10% 64.84±3.69 59.68±3.78 94.75±1.52 95.50±1.43
1.00% 47.42±3.77 51.61±3.76 60.75±3.21 58.50±3.29
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Fig. 3. MC attack accuracy (differing scales) on MNIST with PCA based distance against VAEs depending on sample size.

100% accuracy against a VAE. For the GAN the accu-
racy is still about 75%. In general, accuracies are inferior
if the HOG distance is used. As a side fact, the Monte
Carlo based attacks with PCA distance take ≈ 7 min-
utes each on a p2.xlarge instance on AWS. Currently, at
the cost of 0.90 US $ per hour, the attacks only cause
minor costs. The specialized Reconstruction attack is
superior to the MC attack in the case of the VAE yield-
ing ≈ 70% and 100% in the single and set MI attack,
respectively. The high accuracies of the attacks we pro-
posed make them especially attractive for the regulatory
use case depicted in Section 2.2.

4.4 Effect of Subset Choice

It is unclear how the specific choice of the MNIST 10%
subset influences the accuracy of the MC attack. In Fig-
ure 4 the average MC attack performance with PCA
distance against VAEs trained on different subsets are
plotted. Attack performances seem independent of the
specific subset. We also conduct an F -test to evaluate
whether the single accuracy means of the four VAEs are
different at 106 samples resulting in a p-value ≈ 0.64.
Hence, the hypothesis that the means are equal can be
accepted with high probability, i.e. the choice of the sub-
set does not significantly influence the attack results. We
conclude that the accuracy depends on the size of the
training data rather than its specific members.
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Table 3. Accuracies depending on MNIST training data size

Size Monte Carlo (PCA dist.) Reconstruction attack
Single Set Single Set

40% 50.79±0.27 57.50±3.24 57.35±0.37 98.50±1.11
20% 57.05±0.32 94.75±1.39 62.23±0.38 100.00±0.00
10% 59.93±0.26 99.75±0.25 70.09±0.37 100.00±0.00

We remark that in the experiment setups M = 100
samples of the 10% subset of the training data and 100
samples of the remaining 90% training data are chosen.
The set MI experiments yield high accuracies. There-
fore, if a regulator suspects that some dataset was used
for training a model this can be recognized with the
novel attacks even though other data might have been
part of the training data as well. This is an analo-
gous case to the experiment described. Though of course
more training data was used, we focus on 100 samples.
It is very likely that the inappropriately used data is
not the only data used to train the model. Hence, the
practicability of the MC attack is increased since the
regulator does not need to know all the training data to
prove that a certain subset was used.

4.5 Effect of Training Data Size and
Regularization — Mitigations

We also investigate how the size of the training dataset
influences the success of the attacks for the MNIST
dataset. For this, five VAEs are trained with 20 experi-
ments each since the effect should be similar for GANs.
The results for the MC attack and Reconstruction at-
tack are depicted in Table 3. When using 40% of the
training data instead of the usual 10% the accuracy
shrinks from 60% to 51% for single MI and from nearly
100% to only about 58% for set MI in the case of the
MC attack. As expected, for 20% the effects are less
significant. Clearly, more training data would further
reduce the effectiveness of the attacks. However, in the
case of the Reconstruction attack, the effects are less
significant. Even if 40% are used the set accuracy is still
about 100% meaning that the Reconstruction attack is
more robust.

In general, the performance declines suggest that
generative models make use of the additional informa-
tion provided by additional training data. Similar effects
were observed before in the case of the white-box at-
tack [10]. However, often in practice the amount of train-
ing data is a bottleneck for training generative models.
In consequence, one could use regularization methods

Table 4. Accuracies depending on MNIST Dropout Keep Rates

Rate Monte Carlo (PCA dist.) Reconstruction attack
Single Set Single Set

50% 51.45±0.26 64.75±3.19 53.77±0.34 86.00±3.18
70% 53.17±0.29 78.50±2.71 58.31±0.40 97.00±1.56
90% 59.93±0.26 99.75±0.25 70.09±0.37 100.00±0.00

to improve the generalization such as dropout [23]. In
the case of dropout, certain neurons are switched off
during training with given probability to increase the
resistance of the network. In the standard case we al-
ready use dropout with a keep probability of 90% both
in the encoder and decoder of the VAE. We also conduct
experiments for the MC and Reconstruction attack at
lower keep rates of 70% and 50%. The accuracy in the
set MI type decreases to 79% at a keep probability of
70% and to 65% at an even reduced keep probability of
50% for the MC attack. Again, the effects are less signif-
icant for the Reconstruction attack still yielding ≈ 86%
set MI accuracy for a 50% keep rate. Detailed results are
reported in Table 4. The results indicate that dropout
can indeed be used in practice to mitigate the proposed
MI attacks. This can also be observed in the case of the
white-box attack [10]. However, a lower keep probabil-
ity also causes the generated images to get increasingly
blurry (cf. Appendix, Figure 6). Hence, there is an in-
herent trade-off between high image quality and low MI
attack accuracies.

4.6 Results on Fashion MNIST

Samples of the trained VAE and GAN models are pro-
vided in Figure 7 (Appendix). They show that the GAN
produces more detailed samples compared to the VAE.

To stabilize our results we train five GANs and
VAEs on different 10% subsets of the dataset. For each
model 20 single record MI and set MI experiments are
conducted. We do not evaluate the black-box attack for
the VAE as it performed significantly worse than the
MC attack and Reconstruction attack in the previous
MNIST experiments. The white-box attack is not ap-
plicable since VAEs do not provide a discriminator D.
Figure 5 provides an overview of the results.

Compared to MNIST, the MC attack performs
slightly worse on this dataset. As before, the attacks are
more successful in against the VAE providing additional
evidence that GANs generalize better. This surprises
because the samples created by the GAN are more de-
tailed. The white-box attack performs better with this
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Fig. 4. MC attack accuracy (differing scales) on MNIST with PCA distance depending on sample size for four different training sub-
sets.
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Fig. 5. Average attack accuracy (differing scales) for single and set MI on the datasets.
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dataset achieving about 60% accuracy for set MI against
GANs. However, it is still inferior to the proposed MC
attacks with PCA distance (70% accuracy). Again, our
reconstruction attack significantly outperforms all other
attacks in the case of the VAE yielding ≈ 57% and
≈ 99% in the single and set case.

4.7 Results on CIFAR-10

Samples of the models after training are provided in
Figure 8. Though state of the art models are applied,
they do not succeed in learning the data effectively as
the samples are very blurry and real objects cannot be
identified. This is similar to Hayes et al. [10]. Hence
we expect the MC attacks to perform worse on these
datasets due to their reliance on samples which are very
close to the training data. However, when the overall
quality is bad we do not expect individual samples to
replicate the training data.

MC distances are calculated by the known PCA
based distance with 120 components. Moreover, we ex-
amine the CHIST distance (cf. Section 3.2.1) instead of
the HOG distance for two reasons. First, the images are
very blurry so it is very unlikely that oriented gradients
yield a good distance. Second, it is now possible to em-
ploy the CHIST distance as it relies on colors and could
potentially be less affected by blurry images.

Contrary to the 100 experiments for MNIST and
Fashion MNIST, 40 experiments were sufficient for sig-
nificant results for CIFAR-10. The results of the white-
box attack and the novel MC and Reconstruction at-
tacks are depicted in Table 6. Figure 5 provides an
overview of the results. The MC attack with CHIST
distance is not significantly better than random guess-
ing. If the PCA based distance is employed the accuracy
increases to roughly 51% and 52% for single MI and 65%
and 73% set MI against the GAN and VAE, respectively.
Again, the choice of the distance metric d is crucial. Sur-
prisingly the attack exhibits an accuracy better than
random guessing despite the bad sample quality. How-
ever, unlike the MNIST and Fashion MNIST datasets,
the white-box attack outperforms the MC attack for the
GAN trained on CIFAR-10. This is most likely due to
the bad sample quality of the generator.

The white-box attack achieves an accuracy of nearly
100% in single record MI as well as set MI. This impli-
cates that despite the bad sample quality the discrimi-
nator effectively remembers the training data. A similar
accuracy can be observed for the reconstruction attack
in the case of the VAE. This suggests that the recon-

struction attack we propose is an effective means of as-
sessing VAEs as it constantly outperformed all other
attacks. Note that for GANs the white-box attack can-
not play this role as it performs worse than the novel
MC attacks on MNIST and Fashion MNIST.

5 Related Work
The range of attacks against neural networks and their
applications is wide and various approaches have been
contributed. We now review the prior work and relate
it to our findings.

In the case of adversarial examples, input data is
systematically manipulated to disturb inference as for-
mulated by Huang et al. [11]. In the case of adver-
sarial training, sample data is poisoned, e.g., to intro-
duce stealthy features which may be exploited later on
[16, 29]. Common to these examples is an attacker who
actively influences the result of either learning or infer-
ence of a model.

In contrast, this work considers an honest-but-
curious adversary having access to an already trained
model, or at least to samples from a generative model.
This adversary infers knowledge about the training data
records. Previous work in this setup follows two main
directions: Model inversion attacks as formulated by
Fredrikson et al. [7] and Tramer et al. [26] try to di-
rectly reconstruct training data based on the output of
a model to which the attacker has black-box access. In-
stances of this approach can make use of a confidence
score for the output in a discriminative model [7].

Our approach follows the other main direction of
data leakage attacks: membership inference. The goal
of this attack is to identify the data used to train the
model. Shokri et al. [21] apply such attacks against dis-
criminative networks. We focus on generative models
similar to Hayes et al. [10], and also evaluate our at-
tacks in comparison to their white- and black-box at-
tacks. The white-box attack, where the discriminator of
the trained model must be accessible, is restricted to
GANs. The black box attack solely requires access to
samples from the model. We further structure the class
of membership inference attacks by assuming two differ-
ent types of actors: an honest-but-curious adversary A
performing single MI, and a regulatory actorR perform-
ing set MI. The first attack type has already been used
in previous work to evaluate attacks against generative
models [10]. In parallel to our work, Liu et al. [14] came
up with an approach for the application of MI to a set
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Table 5. Accuracy of the white-box, Reconstruction and MC Attacks on Fashion MNIST for single record MI and set MI.

(a) Single MI

Model Accuracy Single (%)
White-box attack Reconstruction attack Monte Carlo PCA distance Monte Carlo HOG distance

GAN 51.50±0.61 not applicable 51.61±0.38 50.59±0.41
VAE not applicable 56.88±0.35 54.29±0.38 50.67±0.43

(b) Set MI

Model Accuracy Set (%)
White-box attack Reconstruction attack Monte Carlo PCA distance Monte Carlo HOG distance

GAN 60.00±5.22 not applicable 70.00±4.92 57.53±5.40
VAE not applicable 98.50±0.86 90.00±2.99 60.71±5.09

Table 6. CIFAR-10 accuracy for MC and White-box attack

(a) Accuracy of single MI

Model Accuracy Single (%)
White-box attack Reconstruction attack Monte Carlo PCA distance Monte Carlo CHIST distance

GAN 97.60 ± 0.59 not applicable 51.28 ± 0.57 49.45 ± 0.60
VAE not applicable 98.52 ± 0.15 51.80 ± 0.40 49.83 ± 0.55

(b) Accuracy of set MI

Model Accuracy Set (%)
White-box attack Reconstruction attack Monte Carlo PCA distance Monte Carlo CHIST distance

GAN 100.00 ± 0.00 not applicable 65.00 ± 7.21 51.25 ± 7.49
VAE not applicable 100.00 ± 0.00 72.50 ± 6.19 50.00 ± 7.60

of samples simultaneously. Their approach is to train a
network that acts as an inverse for the generator. They
then measure the (L2-)distance of the generator applied
to the thus calculated preimage of a sample to the sam-
ple itself. The decision to classify a sample as training
data is based on a threshold applied to this distance.
In their co-membership inference attack they simulta-
neously train and evaluate the network A on multiple
samples (either all training data or all test data). Hence
their decision function implicitly changes for different
input data. However, our set membership inference pro-
vides a framework where a discriminating function f

(which is fixed per attack) is evaluated by R on a the
members of two sets of samples (from training resp. test
data) in order to amplify subtle differences in the values
of f and to compensate for outliers.

Part of our work can be seen as a generalization
of previous approaches to evaluate generative models.
According to Theis et al. [25] the choice of metrics may
have a strong influence on the result of such model eval-
uations. Specifically, the use of KDE is problematic since

the error may be large. Hence, Theis et al. [25] suggest
not to use KDE for the evaluation of generative mod-
els. A key difference of our MC attack in comparison to
KDE is that it only considers samples very close to the
training data. Arora et al. [2] recently evaluated GANs
by analyzing near duplicate samples of GANs with the
Birthday paradox. Their results lead to the similar con-
clusion that close samples are of high interest to assess
the model quality.

Model quality is related to overfitting. Yeom et
al. [30] study the relationship between overfitting and
the success of both membership inference and model in-
version attacks and quantify the advantage of them. Op-
posed to our work, their analysis considers discrimina-
tive models. We could empirically show a similar effect
for generative models. Overfitting increased the accu-
racy of all examined attacks. This aligns with the results
of Hayes et al. [10] for their white-box attack.

We use histograms of oriented gradients (HOG) [4],
color histograms and PCA to quantify distances be-
tween images. A different approach would be an algo-
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rithm built upon local key point descriptors such as the
scale-invariant feature transform (SIFT) algorithm [15].
In preliminary experiments, SIFT yielded lower accura-
cies while being less efficient to compute. Hence, it is
not considered in our evaluation section.

6 Conclusion
We suggest two membership inference attacks for gen-
erative models: the Monte Carlo (MC) attack and the
Reconstruction attack. While the first is applicable to
all generative models the latter is specialized for VAEs.
Both attacks significantly outperform state of the art
attacks against generative models often yielding accu-
racies close to 100%. In particular, the Reconstruction
attack against VAEs outperformed all other attacks on
all datasets. For CIFAR-10 the single and set MI even
reached ≈ 100%. Even with dropout or more training
data, the accuracies have proven robust.

On datasets with very good sample quality the MC
attack outperformed state of the art. This supports the
use of our formulated attacks to evaluate both overfit-
ting and information leakage of generative models. On
a dataset with very poor sample quality, however, the
white box-attack [9] outperformed our approaches. This
is not very surprising as the MC attacks rely on a repli-
cation of training data characteristics which cannot be
observed if the sample quality is insufficient.

In general, we observed in this work that VAEs are
more vulnerable to the MI attacks. This suggests that
VAEs are more prone to overfitting than GANs if the
same amount of training data is available. Hence, the
novel MI attacks formulated within this work give in-
sights into the performance of different generative mod-
els and regularization techniques. In particular, the use
of GANs being less vulnerable while producing detailed
samples is motivated.
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Appendix: Additional Figures

(a) GAN on MNIST after 500 epochs (b) VAE on MNIST after 300 epochs

(c) VAE with 90% Keep Probability (d) VAE with 70% Keep Probability (e) VAE with 50% Keep Probability

Fig. 6. Generated samples of the trained models.
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(a) GAN on Fashion MNIST after 500 epochs (b) VAE on Fashion MNIST after 300 epochs

Fig. 7. Generated samples of the trained models.

(a) GAN after 1000 epochs (b) VAE after 1200 epochs

Fig. 8. Generated images of a GAN and a VAE after training on CIFAR-10 dataset.
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