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Not All Attributes are Created Equal:
dX -Private Mechanisms for Linear Queries
Abstract: Differential privacy provides strong privacy
guarantees simultaneously enabling useful insights from
sensitive datasets. However, it provides the same level of
protection for all elements (individuals and attributes)
in the data. There are practical scenarios where some
data attributes need more/less protection than others.
In this paper, we consider dX -privacy, an instantiation
of the privacy notion introduced in [6], which allows this
flexibility by specifying a separate privacy budget for
each pair of elements in the data domain. We describe a
systematic procedure to tailor any existing differentially
private mechanism that assumes a query set and a sensi-
tivity vector as input into its dX -private variant, specifi-
cally focusing on linear queries. Our proposed meta pro-
cedure has broad applications as linear queries form the
basis of a range of data analysis and machine learning
algorithms, and the ability to define a more flexible pri-
vacy budget across the data domain results in improved
privacy/utility tradeoff in these applications. We pro-
pose several dX -private mechanisms, and provide theo-
retical guarantees on the trade-off between utility and
privacy. We also experimentally demonstrate the effec-
tiveness of our procedure, by evaluating our proposed
dX -private Laplace mechanism on both synthetic and
real datasets using a set of randomly generated linear
queries.
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1 Introduction
Differential privacy [8] is a formal notion of privacy
that allows a trustworthy data curator, in possession
of sensitive data from several individuals, to approx-
imately answer a set of queries submitted by an an-
alyst while maintaining individual privacy. Intuitively,
differential privacy guarantees that query answers with
or without any individual’s data are (almost) indistin-
guishable. One common mechanism for achieving dif-
ferential privacy is to inject random noise to the query
answers, carefully calibrated according to the sensitivity
of the query and a global privacy budget ε. Sensitivity
here is defined as the maximum amount of change in
the query answer considering all neighboring datasets,
i.e., datasets differing in the data of one individual (one
row), or equivalently having Hamming distance of one.
One limitation of this definition is that it provides the
same level of protection for all attributes of the dataset,
i.e., all elements in the data universe X .

In many scenarios, a more flexible notion of neigh-
boring datasets may be more useful. For instance, in
some domains it might be more natural to measure
the distinguishability between two datasets by some
generic metric dX : X × X → R+ instead of just Ham-
ming distance. A case in point is location-based sys-
tems where it might be acceptable to disclose coarse-
grained information about an individual’s location in-
stead of his/her exact location. In this case, geographi-
cal distance would be an appropriate measure of distin-
guishability [2]. There are other scenarios where some
attributes of the dataset may need more protection than
others, and vice versa. As an example, consider a clas-
sification problem with instance space X ⊂ Rd where
specific features of X are more sensitive than others
(maybe due to fairness requirements [7]). In this case,
dX (u, v) =

∑d
i=1 εiJui 6= viK,∀u, v ∈ X might be a rea-

sonable choice for the metric, where εi is the privacy
budget for the ith feature.1

In the applications mentioned above, standard dif-
ferential privacy (with a global privacy budget) is too

1 Note that JP K = 1 if predicate P is true.
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strong privacy guarantee and as a result compromises
much in utility. To address this limitation, several re-
laxations of differential privacy have been proposed re-
cently [6, 16]. Despite the existence of these alternative
proposals, they have gained little traction among prac-
titioners. Part of the reason, we believe, is the dearth
of standard procedures to develop algorithms satisfying
these alternative definitions, as compared to differential
privacy. In this work, we attempt to bridge this gap,
by building on the privacy notion of dX -privacy, intro-
duced in [6]. Intuitively, dX -privacy allows specifying a
separate privacy budget for each pair of elements u, v in
the data universe X , given by the value dX (u, v).

We propose a generic strategy to tailor any differ-
entially private mechanism to satisfy dX -privacy for lin-
ear queries. Given any data universe X and any choice
of the metric dX , the procedure shows how to convert
a differentially private mechanism into its dX -private
counterpart tailored to the given utility measure. The
resulting mechanism then provides a better trade-off be-
tween utility and privacy. Our main contributions are
summarized as follows:
– We describe a meta procedure (for any metric)

to tailor any existing differentially private mecha-
nism into a dX -private variant for the case of linear
queries. The main challenge is that the privacy bud-
get, i.e., dX , is specified on the input universe X ,
whereas the noise is added to the query response
which belongs to the outcome space.

– The main component of our approach is a pre-
processing optimization step, which depends on the
utility measure of interest, to choose model param-
eters of the mechanism. We provide explicit formu-
lation of this pre-processing optimization problem
for some commonly used utility measures (under
any dX -metric). In general, these problems are non-
convex and computationally challenging. But we
show that for certain loss functions the optimization
problem can be approximately solved using heuris-
tic approaches (cf. Algorithm 3 in Section 4.2).

– Based on the meta procedure, we describe dX -
private variants of several well-known online and
offline ε-differentially private algorithms. In par-
ticular, we illustrate dX -private variants of the
Laplace [8] and Exponential [21] mechanisms, as
well as the SmallDB [5] and MWEM [14] mecha-
nisms, the latter two being mechanisms for releas-
ing synthetic data. We remark that the choice of
these algorithms is merely for demonstration. Our
meta procedure can similarly be applied to other
differentially private mechanisms.

– We demonstrate the effectiveness of dX -privacy in
terms of utility, by evaluating the proposed dX -
private Laplace mechanism on both synthetic and
real datasets using a set of randomly generated lin-
ear queries. In both cases we define the dX metric
as the Euclidean distance between elements in the
data universe. Our results show that the utility from
the dX -private Laplace mechanism is higher than
its vanilla counterpart, with some specific queries
showing significant improvement.

– Finally, we demonstrate how dX -privacy generalizes
and relates to other alternative privacy notions pro-
posed in literature by extending our techniques to
Blowfish [16] privacy (without constraints).

– Our work is the first to propose dX -private mecha-
nisms for linear queries over histograms in the cen-
tralized model. This is in contrast to the most re-
lated work to ours, i.e., [2] where the authors fo-
cus on location-based systems in the local model,
and [6] which only considers universally optimal
mechanisms under some specific dX metrics.

2 Background and dX -Privacy
This section gives the background on differential pri-
vacy and associated concepts of linear queries, sensitiv-
ity, and utility. We also introduce dX -privacy and its
relation to other privacy notions.

2.1 Notation

Let [n] := {1, . . . , n} for n ∈ N, and R+ := [0,∞).
We write JP K = 1 if P is true and JP K = 0 other-
wise. Let xi denote the ith coordinate of the vector
x, and Ai,: denote the ith row of the matrix A. We
denote the inner product of two vectors x, y ∈ Rn

by 〈x, y〉. The k-element vector of all ones is denoted
1k := (1, . . . , 1)>. For two vectors a, b ∈ Rn, the opera-
tion a � b represents element-wise multiplication. For
a ∈ Rn and B ∈ Rn×d, the operation a � B repre-
sents row-wise scalar multiplication of B by the asso-
ciated entry of a. For a vector a � 0 represents that
the vector is element-wise non-negative. Hamming dis-
tance is defined as ‖x− y‖H :=

∑n
i=1 Jxi 6= yiK. The

`p-norms are denoted by ‖·‖p. For a matrix A, define

‖A‖p :=
(∑

i ‖Ai,:‖
p
p

)1/p
.
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2.2 Differential Privacy

Let X denote the data universe and N := |X | its size.
A database D of n rows is modelled as a histogram
x ∈ NN (with ‖x‖1 = n), where xi encodes the number
of occurrences of the ith element of the universe X .2

Two neighboring databases D and D′ (from Xn) that
differ in a single row (‖D −D′‖H = 1) correspond to two
histograms x and x′ (from NN ) satisfying ‖x− x′‖1 =
2. A mechanism M : NN × Q  Y (where Y is the
outcome space, andQ is the query class) is a randomized
algorithm which takes a dataset x ∈ NN and a query
q : NN → Y, and answers with some a ∈ Y.

Definition 1 (Differential Privacy, [8]). A mechanism
M : NN ×Q Y is called ε-differentially private if for
all x, x′ ∈ NN such that ‖x− x′‖1 ≤ 2, for every q ∈ Q,
and for every measurable S ⊆ Y, we have

P [M (x, q) ∈ S] ≤ exp (ε)P
[
M
(
x′, q

)
∈ S
]
.

Here ε > 0 is a parameter that measures the strength of
the privacy guarantee (smaller ε being a stronger guar-
antee).

2.3 dX -Privacy

We consider a more flexible privacy notion, which is
a particular case of the definition from [6], for statis-
tical databases. Given a metric dX on the data uni-
verse, a mechanism satisfies dX -privacy if the densities
of the output distributions on input datasets x, x′ ∈ NN

with ‖x− x′‖1 ≤ 2 and differing on i, j-th entries are
pointwise within an exp (dX (i, j)) multiplicative factor
of each other.

Definition 2 (dX -Privacy). Let dX : [N ] × [N ] →
R+ be the privacy budget (such that dX (i, j) ≥ 0,
dX (i, j) = dX (j, i), dX (i, i) = 0, and dX (i, j) ≤
dX (i, k) + dX (k, j), ∀i, j, k ∈ [N ]) of the data universe
X . A mechanism M : NN × Q  Y is said to be dX -
private iff ∀x, x′ ∈ NN s.t. ‖x− x′‖1 ≤ 2, xi 6= x′i, and
xj 6= x′j (for some i, j ∈ [N ]), ∀S ⊆ Y and ∀q ∈ Q we
have

P [M (x, q) ∈ S]
P [M (x′, q) ∈ S] ≤ exp (dX (i, j)) .

2 Note that each element of the universe is composed of at-
tribute values from all attributes (columns) in the tuple-wise
representation of the database.

When dX (i, j) = ε,∀i, j ∈ [N ], we recover the standard
ε-differential privacy.

Most of the desirable properties of differential privacy
is carried over to dX -privacy as well, with suitable gen-
eralization [6].

Fact 1 (Properties of dX -Privacy). dX -privacy satis-
fies the following properties:
1. Resistant to post-processing: If M : NN × Q  Y

is dX -private, and f : Y → Y ′ is any arbitrary
(randomized) function, then the composition f ◦M :
NN ×Q Y ′ is also dX -private.

2. Composability: Let Mi : Xn × Qi  Yi be a diX -
private algorithm for i ∈ [k]. If M[k] : Xn ×
Πki=1Qi  Πki=1Yi is defined to be:

M[k]
(
x,Πki=1qi

)
= (M1 (x, q1) , . . . ,Mk (x, qk)) ,

then M[k] is
∑k
i=1 d

i
X -private.

3. Group privacy: IfM : NN ×Q Y is a dX -private
mechanism and x, x′ ∈ NN satisfy ‖x− x′‖1 ≤ k

(with k ≥ 2), then ∀S ⊆ Y and ∀q ∈ Q we have

P [M (x, q) ∈ S]
P [M (x′, q) ∈ S] ≤ exp

(
k · max

i,j∈V
dX (i, j)

)
,

where V is the set of indices in which x and x′ differ.

dX -privacy can naturally express indistinguishability re-
quirements that cannot be represented by the stan-
dard notion of Hamming distance (between neighbour-
ing datasets). But the metric dX in the above definition
must be appropriately defined to achieve meaningful
privacy goals. We present some examples in Section 5.
In this work, we mainly focus on how to convert an
existing differentially private algorithm into dX -private
equivalent, given an already appropriately defined dX -
metric.

2.4 Linear Queries and Sensitivity

Our focus is on the trade-off between privacy and ac-
curacy when answering a large number of linear queries
over histograms. Linear queries include some natural
classes of queries such as range queries [18, 19] and
contingency tables [3, 10], and serve as the basis of
a wide range of data analysis and learning algorithms
(e.g., Perceptron, K-means clustering, PCA [4]). For-
mally, given a query vector q ∈ RN , a linear query over
the dataset x ∈ NN is defined as q (x) = 〈q, x〉. A set of
k linear queries can be represented by a query matrix
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Q ∈ Rk×N with the vector Qx ∈ Rk giving the correct
answers to the queries.

For dX -privacy, we generalize the notion of global
sensitivity, defined in [8], as follows:

Definition 3. For i, j ∈ [N ] (with i 6= j), the gener-
alized global sensitivity of a query q ∈ Q (w.r.t. ‖·‖) is
defined as follows

∆q
‖·‖ (i, j) := max

x,x′∈NN :‖x−x′‖1≤2,
xi 6=x′i,xj 6=x

′
j for i,j∈[N ]

∥∥q (x)− q
(
x′
)∥∥.

Also define ∆q
‖·‖ := maxi,j∈[N ] ∆q

‖·‖ (i, j) (the usual
global sensitivity). When ‖·‖ = ‖·‖p, we simply write
∆q
p.

Consider a multi-linear query Q : NN → Y ⊆ Rk de-
fined as Q (x) = Qx, where Q ∈ Rk×N . Then the gener-
alized global sensitivity of Q (for i, j ∈ [N ]) is given by
∆Q
‖·‖ (i, j) = ‖Q:,i −Q:,j‖. When k = 1, i.e., for a single

linear query q (x) = 〈q, x〉, we have ∆q
‖·‖ (i, j) = |qi − qj |.

Thus, the generalized notion is defined separately for
each pair i, j of elements in X .

2.5 Laplace and Exponential Mechanism

Definition 4 (Laplace Mechanism, [8]). For a query
function q : NN → Rk with `1-sensitivity ∆q

1, Laplace
mechanism will output

Z = M
Lap,

∆q1
ε ·1k

(x, q) := q (x) + (Y1, . . . ,Yk) , (1)

where Yi
iid∼ Lap

(
∆q

1
ε

)
, and Lap (λ) is a dis-

tribution with probability density function f (x) =
1

2λe
− |x|λ , ∀x ∈ R.

The Laplace mechanism satisfies ε-differential pri-
vacy, but it satisfies dX -privacy only with ε ≤
mini,j∈[N ] dX (i, j). This would result in large noise addi-
tion, and eventually unnecessary compromise on overall
utility.

Given some arbitrary range R, the exponential
mechanism is defined with respect to some utility func-
tion u : NN × R → R, which maps database/output
pairs to utility scores. The sensitivity notion that we
are interested here is given by:

Definition 5. For i, j ∈ [N ] (with i 6= j) and u : RN ×
R → R, the generalized utility sensitivity is defined as

follows

∆u (i, j) := max
r∈R

max
x,x′∈NN :‖x−x′‖1≤2,

xi 6=x′i,xj 6=x
′
j for i,j∈[N ]

∣∣u (x, r)− u
(
x′, r

)∣∣.
Also define ∆u := maxi,j∈[N ] ∆u (i, j).

Formally, the exponential mechanism is:

Definition 6 (The Exponential Mechanism, [21]).
The exponential mechanism MExp,∆uε

(x, u) selects and
outputs an element r ∈ R with probability proportional
to exp

(
εu(x,r)

2∆u

)
.

The exponential mechanism satisfies ε-differential pri-
vacy. The resulting mechanism also satisfies dX -privacy
only if we set ε ≤ mini,j∈[N ] dX (i, j).

2.6 Utility

In the differential privacy literature, the performance of
a mechanism is usually measured in terms of its worst-
case total expected error, defined as follows:

Definition 7 (Error). Let q : NN → Y ⊆ Rk and ` :
Rk × Rk → R+. We define the `-error of a mechanism
M : NN ×Q Y as

err` (M, q) = sup
x∈NN

E
Z∼M(x,q)

[` (Z, q (x))]. (2)

Here the expectation is taken over the internal coin
tosses of the mechanism itself.

In this paper, we are mainly interested in the worst case
expected `p-error defined by

`p (y, ŷ) := ‖y − ŷ‖p =

(
k∑
i=1
|yi − ŷi|p

) 1
p

,

for p ∈ {1, 2,∞}, and `22-error (given by `22 (y, ŷ) :=
‖y − ŷ‖22). It is also common to analyze high probability
bounds on the accuracy of the privacy mechanisms.

Definition 8 (Accuracy). Given a mechanism M :
NN × Q  Y, query q : NN → Y ⊆ Rk, sensitive
dataset (histogram) x ∈ NN , and parameters α > 0 and
β ∈ (0, 1), the mechanismM is (α, β)-accurate for q on
x under the ‖·‖-norm if P [‖M (q, x)− q (x)‖ ≥ α] ≤ β

where ‖·‖-norm can be any vector norm definition. In
our analysis, we consider the ‖·‖1-norm and the ‖·‖∞-
norm.
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3 dX -Private Mechanisms for
Linear Queries

In this section, we design dX -private mechanisms by
extending some of the well known ε-differentially pri-
vate (noise adding) mechanisms. Before delving into our
approach, we exemplify potential technical issues when
defining a variable privacy budget across attributes, and
how dX -privacy provides a solution.

Example 1. Consider a simple domain X with three
binary attributes described below.

Gender Native Age

Male (M) Yes (Y) Above 18 (A)
Female (F) No (N) Below 18 (B)

Figure 1 shows an example dataset x (as a his-
togram) from this domain, where we have used abbrevi-
ated attribute value names to describe each element xi,
i ∈ [N ] = [8]. Assume that the attribute value “Native
= Y” is considered sensitive and all other values non-
sensitive. Using differential privacy, the data custodian
might wish to use some privacy budget ε = ε0 for the
attribute value Y, and ε =∞ for all other attribute val-
ues. Any linear query q ∈ R8 with a non-zero value for
coordinates 1, 2, 5 or 6 (containing attribute value Y),
would be answered with the budget ε0, and all remaining
queries with budget ∞ (i.e., noiseless answers). While
this may sound reasonable, notice that an analyst can
obtain noiseless answer to the query (MNA, MNB, FNA, FNB)
= (N),3 and get the answer to (MYA, MYB, FYA, FYB) = (Y)
without noise (since ‖x‖1 = n is assumed to be publicly
known). This simple example shows why attribute-wise
privacy budget allocation should obey properties of a
distance metric.

We can solve this using dX -privacy as follows. De-
note by ε(X) the privacy budget allocated to attribute
value X. Then, set ε(Y) = ε0, and ε(X) = ε1 > ε0, for all
X 6= Y. Denote each of the xi’s as xi = X

(1)
i X

(2)
i X

(3)
i ,

where X(k)
i denotes the kth attribute value of xi. Fi-

3 We are omitting zeroed coordinates in this equivalent nota-
tion.

MYA
x1

MYB
x2

MNA
x3

MNB
x4

FYA
x5

FYB
x6

FNA
x7

FNB
x8

5

10

Fig. 1. Histogram representation of the dataset x used in Exam-
ple 1; horizontal axis contains domain elements, while the vertical
axis shows counts.

nally, we define

dX (i, j) =
3∑
k=1

min{ε(X(k)
i ), ε(X(k)

j )}JX(k)
i 6= X

(k)
j K.

(3)
For instance, dX (1, 1) = 0, dX (1, 2) = ε1 · 0 + ε0 · 0 +
ε1 · 1 = ε1, dX (1, 3) = ε0, and dX (1, 8) = ε0 + 2ε1. It
is easy to verify that this is indeed a distance met-
ric. As we will show in Section 4.1, given any linear
query q ∈ R8, one way to answer through our frame-
work is to let c = maxi,j |qi−qj |dX (i,j) , and then add Laplace
noise of scale c to the answer. Thus, for instance, if
q = (MNA, MNB, FNA, FNB) = (N), then the maximum is
achieved at i = 1, j = 3 (not uniquely), which gives
us c = 1/ε0. We have already seen that this is indeed a
sensitive query, and is equivalent to answering the query
(Y). Thus, the scale of noise is justified. Likewise, for the
query q = (1, 1, 1, 1, 0, 0, 0, 0) = (M), which is not consid-
ered sensitive, the maximum is achieved at i = 1, j = 5
(again, not uniquely), giving us c = 1/ε1. Thus, less
noise is added to the answer to this query. Finally, no-
tice that with the convention a+∞ =∞ for all a ∈ R+,
if we set ε1 = ∞, Eq. 3 still defines a distance metric.
Thus we can even get noiseless answers to the “non-
sensitive” queries.

Consider a query q : NN → R, and the Laplace mecha-
nism (Definition 4). To achieve ε-differential privacy, we
compute the difference in the answers to the query over
all neighbouring databases, given by the global sensitiv-
ity ∆q

‖·‖, and then add noise of scale ∆q
‖·‖/ε. The cor-

responding quantity in dX -privacy is ∆q
‖·‖(i, j)/dX (i, j);

but this is potentially different for all i, j ∈ [N ]. There-
fore, to obtain a dX -private counterpart, we need to
obtain a single optimum noise scale c ≥ 0 subject to
the constraints c ≥ ∆q

‖·‖(i, j)/dX (i, j), for all i, j ∈ [N ]
(to guarantee privacy). Equivalently, if we introduce a
parameter q′ and set it approximately equal to q/c, i.e.,
q′ ≈ q/c, then we perturb the answer to the scaled query
cq′ ≈ q with Laplace noise of scale c subject to the con-
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dition ∆q′

‖·‖(i, j) ≤ dX (i, j), for all i, j ∈ [N ]. The param-
eters c and q′ can be optimized for a given measure of
utility (within the privacy constraints imposed by the
dX metric). Note that the two parameters are not de-
pendent on the input data, and can be optimized using
pre-processing without compromising privacy. To sum-
marize, given a query q, we have a two-step process: (a)
obtain parameters c and q′ through optimization (via
pre-processing), (b) convert the ε-differentially private
Laplace mechanism into its dX -private counterpart by
replacing input (q,∆q

‖·‖/ε) by input (cq′, c). The exact
form of the optimization problem depends on the utility
measure under consideration. We generalize this proce-
dure in the following.

Given a dataset x ∈ NN , and a query q : NN →
Y ⊆ Rk, our approach (meta procedure) to design a
dX -private (noise adding) mechanism is as follows:
1. Choose the (approximately optimal) model parame-

ters c ∈ Rk and q′ : NN → Rk such that ∆q′

‖·‖ (i, j) ≤
dX (i, j), ∀i, j ∈ [N ], and c � 0.

2. Then use an existing ε-differentially private mecha-

nism with (c� q′, c) in place of
(
q,

∆q

‖·‖
ε 1k

)
.

The model parameters q′ and c are chosen by (approx-
imately) solving the following pre-processing optimiza-
tion problem (i.e. (q′, c) := Fpre-opt (q, n, dX (·, ·) , `)):

minimize
q′,c

f`,M
(
q′, c; q, n

)
subject to ∆q′

‖·‖ (i, j) ≤ dX (i, j) , ∀i, j ∈ [N ]

c � 0,

(4)

where f`,M (q′, c; q, n) is a surrogate function of the util-
ity measure that we are interested in. Note that this
pre-processing optimization depends only on the data
universe X (or [N ]), the query set Q, and the database
size n, but not on the dataset x. Thus we don’t com-
promise any privacy during the optimization procedure.
More over, we have to do the pre-processing optimiza-
tion only once in an offline manner (for given X , Q,
and n). The number of constraints in the optimization
problem (4) can be exponentially large (≈ 2N ), but de-
pending on the structure of the dX -metric the constraint
count can be significantly reduced (cf. Appendix C).

Remark 1: Note that the pre-processing optimiza-
tion problem (4) to choose the model parameters of
our new strategy depends on the 1) utility measure 2)
dX -metric 3) ε-differentially private mechanism that we
want to transform. Every ε-differentially private mech-
anism requires a separate (utility) analysis to derive
f`,M of (4). In this work, we consider fundamental on-

line and offline (synthetic data generation) mechanisms
(Laplace, Exponential, SmallDB, and MWEM) under
specific utility measures and any metric. We can simi-
larly extend our analysis to advanced ε-differentially pri-
vate mechanisms (for multi-linear queries) such as the
Matrix [18], and K-norm [15] mechanisms. We leave it
as future work.

Next we apply the above described abstract meta
procedure in extending some ε-differential privacy mech-
anisms under different loss measures such as squared
loss and absolute loss. We first show that the resulting
mechanisms are in fact dX -private, and then we formu-
late the appropriate pre-processing optimization prob-
lems (4) for them.

3.1 dX -Private Laplace Mechanism

For a given query q : RN → Y ⊂ Rk over the histogram
x ∈ RN , consider the following variant of Laplace mech-
anism (with the model parameters q′ : RN → Rk, and
c ∈ Rk which depend on the utility function of the task):

Z =MLap,c
(
x, c� q′

)
:= c� q′ (x) + (Y1, . . . ,Yk) , (5)

where Yi
⊥∼ Lap (ci). When q (x) = Qx (i.e., q is a multi-

linear query), we choose Q′ ∈ Rk×N and c ∈ Rk as
the model parameters i.e., q′ (x) = Q′x. Below we show
that the above variant of Laplace mechanism satisfies
dX -privacy under a sensitivity bound condition.

Theorem 1. If ∆q′

1 (i, j) ≤ dX (i, j), ∀i, j ∈ [N ], then
the mechanism MLap,c (·, c� q′) given by (5) satisfies
dX -privacy.

The sensitivity bound condition of the above theorem
for a multi-linear query Q′ (x) = Q′x can be written
as: ∆Q′

1 (i, j) =
∥∥Q′:,i −Q′:,j∥∥1 ≤ dX (i, j) , ∀i, j ∈ [N ].

The next theorem characterizes the performance of the
MLap,c (·, c� q′) mechanism under different choices of
utility measures:

Theorem 2. Let Q : RN → Rk be a multi-
linear query of the form Q (x) = Qx, and let Z =
MLap,c (x, c�Q′) = c�Q′x+ Y with Yi

⊥∼ Lap (ci).
1. When `22 (y, y′) = ‖y − y′‖22, we have

err`22
(
MLap,c

(
·, c�Q′

)
, Q
)
≤ 2n2 ∥∥c�Q′ −Q∥∥2

2

+ 4 ‖c‖22 ,

where err` (M, Q) is defined in (2).



Not All Attributes are Created Equal: dX -Private Mechanisms for Linear Queries 109

2. When `p (y, y′) = ‖y − y′‖p, we have

err`p
(
MLap,c

(
·, c�Q′

)
, Q
)
≤ n

∥∥c�Q′ −Q∥∥
p

+ E
Yi
⊥∼Lap(ci)

[
‖Y‖p

]
.

Note that E
Yi
⊥∼Lap(ci)

[‖Y‖1] = ‖c‖1.

3. ∀δ ∈ (0, 1], with probability at least 1− δ we have

‖Qx− Z‖∞ ≤ n
∥∥c�Q′ −Q∥∥∞ + ln

(
k

δ

)
· ‖c‖∞ .

Proofs of Theorem 1 and 2 are given in Appendix A.1.
Based on the upper bounds that we obtained in the
previous theorem, we can formulate the pre-processing
optimization problem Fpre-opt (q, n, dX (·, ·) , `) to select
the model parameters c and Q′ of theMLap,c (·, c�Q′)
mechanism as follows:
minimize

Q′,c
f`,MLap,c(·,c�Q′)

(
Q′, c;Q,n

)
subject to

∥∥Q′:,i −Q′:,j∥∥1 ≤ dX (i, j) ,∀i, j ∈ [N ]

c � 0.

(6)

The objective function of the above optimization
problem depends on the utility function that we
are interested in. For example, when `22 (y, y′) =
‖y − y′‖22, we can choose f`22,MLap,c(·,c�Q′) (Q′, c;Q,n) =
n2 ‖c�Q′ −Q‖22 + 2 ‖c‖22. In summary, the dX -private
Laplace mechanism, under `22-error function, can be de-
scribed as follows:
1. Choose the model parameters (Q′, c) by approx-

imately solving the pre-processing optimization
problem Fpre-opt(
Q,n, dX (·, ·) , `22

)
given by (6).

2. Release the response Z = MLap,c (x, c�Q′) given
by (5).

Observe that, when dX (i, j) = ε,∀i, j ∈ [N ], the choices
ci = c = ∆Q

1
ε ,∀i ∈ [k] and Q′ = 1

cQ satisfy the con-
straints of the optimization problem (6) under squared
loss. In fact these choices correspond to the standard
Laplace mechanism M

Lap,
∆q1
ε ·1k

, and thus our frame-

work is able to recover standard ε-differential privacy
mechanisms as well.

The optimization problem (6) is in general non-
convex, which is indeed hard to optimize. However, cer-
tain instances of this problem (instantiated by the util-
ity function) allow efficient solutions in light of recent
results. We discuss this in Appendix B. Also note that
even if globally optimal solutions are infeasible to ob-
tain, an approximate solution might still yield good util-
ity in practice. We show this in Section 4.

3.2 dX -Private Exponential Mechanism

For a given utility function u : NN × R → R over
the histogram x ∈ RN , consider the following variant
of exponential mechanism (with the model parameters
u′ : NN ×R → R, and c ∈ R which will be chosen later
based on the utility function):

Definition 9. The mechanism MExp,c (x, u′) selects
and outputs an element r ∈ R with probability propor-
tional to exp

(
u′(x,r)

2c

)
.

Here we note that for ease of presentation, we do not
consider using cr ∈ R for each r ∈ R. The following
theorem provides a sufficient condition for the above
mechanism to satisfy dX -privacy.

Theorem 3. If ∆u′ (i, j) ≤ cdX (i, j) ,∀i, j ∈ [N ], then
the mechanism MExp,c (·, u′) satisfies dX -privacy.

For a given histogram x and a given utility measure
u : RN ×R → R, let ?u (x) = maxr∈R u (x, r) denote the
maximum utility score of any element r ∈ R with re-
spect to histogram x. Below we generalize the Theorem
3.11 from [9]:

Theorem 4. Fixing a database x, let R?u′ =
{r ∈ R : u′ (x, r) = ?u′ (x)} denote the set of elements in
R which attain utility score ?u′ (x). Also define δu,u′ :=
maxx,r |u (x, r)− u′ (x, r)|. Then for Z =MExp,c (x, u′),
with probability at least 1− e−t, we have

u (x,Z) > δu,u′ + ?u′ (x)− 2c

{
ln

(
|R|∣∣R?u′ ∣∣

)
+ t

}
.

Since we always have
∣∣R?u′ ∣∣ ≥ 1, we get

P [u (x,Z) ≤ δu,u′ + ?u′ (x)− 2c {ln (|R|) + t}] ≤ e−t.

The proofs of the above two theorems are given in
Appendix A.2. The exponential mechanism is a natu-
ral building block for designing complex ε-differentially
private mechanisms. Next we consider two data re-
lease mechanisms (i.e., offline synthetic data generation
mechanisms) which use the Laplace and/or the expoen-
tial mechanism as building blocks. These are the dX -
private variants of the small database mechanism [5],
and multiplicative weights exponential mechanism [14].
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3.3 dX -Private Small Database
Mechanism

Here we consider the problem of answering a large num-
ber of real valued linear queries q : NN → R of the
form q (x) = 〈q, x〉 (where q ∈ RN , and x ∈ NN )
from class Q via synthetic histogram/database release.
For this problem [5] have proposed and studied a sim-
ple ε-differentially private small database mechanism,
which is an instantiation of exponential mechanism.
They have used a utility function u : NN ×R → R (with
R =

{
y ∈ NN : ‖y‖1 = log |Q|

α2

}
) defined as u (x, y) :=

−maxq∈Q |q (x)− q (y)|.
Now we extend the mechanism developed in [5] to

obtain a dX -private version of it using the model pa-
rameters Q′ and c ∈ R (which are determined later).
Algorithm 1 is a modified version of Algorithm 4 from
[9], where the transformation from Q to Q′ is one-to-
one (thus we have |Q′| = |Q|). When answering a query
q ∈ Q over x, we need to output cq′ (y) where q′ ∈ Q′ is
the matching element of q and y is the output of the dX -
private small database mechanism (Algorithm 1). The
following theorem provides the dX -privacy characteriza-
tion of the small database mechanism.

Algorithm 1 Small Database Mechanism [5]:
SmallDB(x,Q′, c, α)

Let R ←
{
y ∈ NN : ‖y‖1 = log |Q′|

α2

}
Let u′ : NN ×R → R be defined to be:

u′ (x, y) := −c max
q′∈Q′

∣∣q′ (x)− q′ (y)
∣∣. (7)

Sample And Output y ∈ R with the mechanism
MExp,c (x, u′)

Theorem 5. If
∣∣q′i − q′j∣∣ ≤ dX (i, j) ,∀i, j ∈ [N ] and

∀q′ ∈ Q′, then the small database mechanism is dX -
private.

The following proposition and theorem characterize the
performance of the dX -private small database mecha-
nism.

Proposition 1 (Proposition 4.4, [9]). Let Q be any
class of linear queries. Let y be the database output by

SmallDB (x,Q′, c, α). Then with probability 1− β:

max
q∈Q

∣∣q (x)− cq′ (y)
∣∣ ≤ nmax

q∈Q

∥∥q − cq′∥∥∞ + αn

+ 2c
{

logN log |Q|
α2 + log

(
1
β

)}
.

Theorem 6 (Theorem 4.5, [9]). By the appropriate
choice of α, letting y be the database output by
SmallDB

(
x,Q′, c, α2

)
, we can ensure that with probabil-

ity 1− β:

max
q∈Q

∣∣q (x)− cq′ (y)
∣∣ ≤ nmax

q∈Q

∥∥q − cq′∥∥∞ +
(
cn2γ

)1/3
,

where γ = 16 logN log |Q| + 4 log
(

1
β

)
. Equivalently,

for any c such that c ≤ α3n
γ with probability 1 − β:

maxq∈Q |q (x)− cq′ (y)| ≤ nmaxq∈Q ‖q − cq′‖∞ + αn.

Proofs of these claims are given in Appendix A.3. From
the upper bound of the above theorem, the model pa-
rameters Q′ and c of the small database mechanism
can be chosen through the following pre-processing op-
timization problem:

minimize
Q′,c

f
(
Q′, c;Q, n

)
subject to

∣∣q′i − q′j∣∣ ≤ dX (i, j) , ∀i, j ∈ [N ] , q′ ∈ Q′

c ≥ 0,
(8)

where f (Q′, c;Q, n) = nmaxq∈Q ‖q − cq′‖∞ +(
cn2γ

)1/3. Once again the optimization problem (8)
is non-convex. See Appendix B, for a brief discussion on
the (non-convex) pre-processing optimization problems
(6), and (8).

3.4 dX -Private Multiplicative Weights
Exponential Mechanism

As in the case of small database mechanism, here
also we consider the problem of answering a large num-
ber of real valued linear queries in dX -private manner
via synthetic histogram/database release. Algorithm 2
is a simple modification of Algorithm 1 from [14]. The
following theorem provides the dX -privacy characteriza-
tion of the MWEM mechanism.

Theorem 7. If
∣∣q′i − q′j∣∣ ≤ dX (i, j) ,∀i, j ∈ [N ] and

∀q′ ∈ Q′, then the MWEM mechanism is dX -private.

The following theorem characterizes the performance of
the MWEM mechanism.
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Algorithm 2 Multiplicative Weights Exponential
Mechanism [14]: MWEM(x,Q′, c, T )
Input: histogram x over a universe [N ], set Q′ of
linear queries, privacy parameter c > 0, and number
of iterations T ∈ N.
Let n denote ‖x‖1, the number of records in x. Let
y0 denote n times the uniform distribution over [N ].
for t = 1, ...T do

1. Exponential Mechanism: Sample a query q′t ∈
Q′ using the MExp,2cT (x, u′t) mechanism and
the score function u′t : NN ×Q′ → R given by

u′t
(
x, q′

)
:= c

∣∣q′ (yt−1)− q′ (x)
∣∣ .

2. Laplace Mechanism: Let measurement mt =
cq′t (x) + Y with Y ∼ Lap (2cT ).

3. Multiplicative Weights: Let yt be n times the
distribution whose entries satisfy ∀i ∈ [N ],

yti ∝ yt−1
i × exp

((
q′t
)
i
×
(
mt − q′t

(
yt−1)) /2n) .

end for
Output y = avgt<T yt

Theorem 8 (Theorem 2.2, [14]). For any dataset x,
set of linear queries Q, T ∈ N, and c > 0, with probabil-
ity at least 1− 2T/ |Q|, MWEM produces y such that

max
q∈Q

∣∣cq′ (y)− q (x)
∣∣

≤ 2n
√

logN
T

+ 10Tc log |Q|+ nmax
q∈Q

∥∥cq′ − q∥∥∞ .

By setting 2n
√

logN
T = 10Tc log |Q|, we get

max
q∈Q

∣∣cq′ (y)− q (x)
∣∣

≤ nmax
q∈Q

∥∥cq′ − q∥∥∞ + 20
52/3

(
n2 logN log |Q|

)1/3
c1/3.

Proofs of both theorems are given in Appendix A.4. The
model parameters Q′ and c of the MWEM mechanism
can be chosen through the optimization problem 8 with

f
(
Q′, c;Q, n

)
= nmax

q∈Q

∥∥cq′ − q∥∥∞
+ 20

52/3

(
n2 logN log |Q|

)1/3
c1/3.

4 Experiments
In this section, we experimentally evaluate the effec-
tiveness of our framework on both synthetic and real

data. We will show that in many situations, we can
drastically improve the accuracy of the noisy answers
compared to the traditional differentially private mech-
anisms. The datasets considered in these experiments
are geographic in nature. More specifically, for the ensu-
ing experiments, the data universes considered consist
of points in Euclidean space which allow an intuitive
Euclidean distance-based dX -metric. Under this met-
ric, fine-grained location information is protected while
larger regions provide better utility. As stated in [6],
when dealing with geographic locations, it might be ac-
ceptable to disclose the region of an individual. On the
other hand, disclosing the precise location (town) of the
individual is less desirable. Thus it is useful to have a
distinguishability level that depends on the geographic
distance.

4.1 Single Linear Queries over Synthetic
Data

We first consider randomly generated single linear
queries (q : NN → R), and compare the following
two mechanisms: (a) the ε-differentially private Laplace
mechanism (with ε = mini,j dX (i, j)):M

Lap,
∆q1
ε

(x, q) =

q (x) + Y, where Y ∼ Lap
(

∆q
1
ε

)
, and (b) the dX -private

Laplace mechanism (with the model parameters c ∈ R
and q′ ∈ RN ):

MLap,c
(
x, cq′

)
= cq′ (x) + Y,

where Y ∼ Lap (c), under the experimental setup given
below.

Data and Privacy Metric: We generate a random
dataset (histogram) with n = 10, 000 records from a
data universe of size N = 50. We then randomly sam-
ple N distinct two-dimensional points {(ui, vi)}Ni=1 from
the set S = [0, 100] × [0, 100] ⊆ R2, and associate each
point (ui, vi) with an element (i ∈ [N ]) of the data
universe. Note that this simulates geographic locations
over a region, e.g., user locations in a city.4 The sam-
pled data universe elements are shown in Figure 2a. We

4 Note that the data universe is fixed at N = 50 locations, each
location exhibiting zero or more of the n = 10, 000 records. Since
this is a synthetic dataset, we choose a random data universe as
well, by randomly sampling N locations. In practice, these N
locations could be N hotspots in a city. Privacy is provided for
the n = 10, 000 subjects who can be in any of the N locations
in the data universe, with higher privacy for nearby locations.
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(a) Elements of the data universe used in the synthetic data ex-
periments
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(b) Histogram of the improvement factor (for 1000 random single
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(d) Improvement factor of multi-linear queries (random binary
coefficients from {0, 1})

Fig. 2. Synthetic experiment with N = 50, and dX metric defined based on Euclidean distance.

define the privacy metric dX : [N ] × [N ] → R based
on the Euclidean distance (metric) on 2-dimensional
space. Specifically, for any i, j ∈ [N ], define dX (i, j) :=√

(ui − uj)2 + (vi − vj)2.

Random Queries: We evaluate the two mechanisms
over 1000 random single linear queries, where the query
coefficients are randomly drawn from a uniform distri-
bution over the real interval [0, 1].

Performance Measure: We measure the individ-
ual performance of the mechanisms by the root mean
squared error (RMSE; between the private response and
the actual output) on the above generated data, i.e., we
consider the squared loss function ` (y, y′) = ‖y − y′‖22.
Then the model parameters c and q′ of the dX -private
Laplace mechanism can be obtained by solving the fol-
lowing pre-processing optimization problem (for each
query q):

minimize
c,q′

f
(
c, q′
)

:= n2 ∥∥cq′ − q∥∥2
2 + 2c2

subject to
∣∣q′i − q′j∣∣ ≤ dX (i, j) , ∀i, j ∈ [N ]
c > 0.

Since n is very large, by fixing cq′ = q in the above
problem, we obtain an approximately optimal (closed
form) solution given by c = maxi,j |qi−qj |dX (i,j) , and q

′ = 1
c q.

Improvement Factor: We define another measure for
cross-comparison of the two mechanisms. For a given
single linear query q, the improvement factor of the dX -
private Laplace mechanism compared to the baseline (ε-
differentially private Laplace) mechanism is defined as
IF (q) := ∆q

1/ε
c . This factor is simply the ratio between

the scales (λ) of the noise (Lap (λ)) added by these two
mechanisms. Then for each random query (1000 in to-
tal), we compute the improvement factor. The resulting
values are presented in a histogram form in Figure 2b,
where the dX -private mechanism exhibits significant im-
provement in utility compared to the baseline mecha-
nism. Notice that IF does not depend on ε, since ε is set
to mini,j dX (i, j), and c is set to be inversely related to
mini,j dX (i, j). Thus, ε effecitvely “cancels out” in the
definition of IF. As a result, the IF results in Figure 2b
hold for any ε > 0. We checked this for multiple values
of ε and obtained similar plots.
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Algorithm 3 Parameter Selection Algorithm:
PSA(dX , Q)
Input: privacy metric dX , and query matrix Q ∈
RK×N .
Let R = 0K , T = 1K .
while T 6= 0K do

1. c′k = maxi,j |Qk,i−Qk,j |dX (i,j) , ∀k ∈ [K]. {near opti-
mal scale of the noise for query Qk,:, if the
whole privacy budget is consumed by it.}

2. dkX (i, j) = dX (i, j) ·
1
c′
k

|Qk,i−Qk,j |∑K

l=1
1
c′
l

|Ql,i−Ql,j |
,

∀k ∈ [K], ∀i, j ∈ [N ].{distribute the privacy
budget between each query, based on c′k’s.}

3. ck = maxi,j |Qk,i−Qk,j |dkX (i,j) , ∀k ∈ [K]. {calculate
the scale of the noise for each single linear query
by considering the privacy budget allocated to
them.}

4. dX (i, j) = dX (i, j) −
∑K
k=1

1
ck

∣∣Qk,i −Qk,j∣∣,
∀i, j ∈ [N ]. {calculate the remaining (total) pri-
vacy budget.}

5. T =
[

1
c1
, . . . , 1

cK

]
, and R = R+T . {accumulate

the share gained at this step.}
end while
Output: c =

[
1
R1
, . . . , 1

RK

]

We note that IF is not a reasonable performance
measure when the spread of the elements of the data
universe is profoundly non-uniform (e.g., two points are
infinitesimally close to each other), in which case the
traditional Laplace mechanism may get heavily penal-
ized. But in both our real and synthetic data, the ele-
ments are (roughly) uniformly spread.

4.2 Multi-Linear Queries over Synthetic
Data

Next we consider random multi-linear queries given
by Q ∈ RK×N , where we vary K from 1 to 10. We con-
sider the same data, privacy metric, and performance
measure (squared loss) used in Section 4.1. We consider
two types of query matrices: the first type consists of
matrices whose entries are drawn from a uniform distri-
bution over the real interval [0, 1], and the second type
has matrices whose entries are random binary numbers,
i.e., elements of the set {0, 1}.

Again, we compare the dX -private Laplace mecha-
nism (5) with the ε-differentially private Laplace mech-
anism (1), with ε = mini,j dX (i, j). The model parame-

ters Q′ ∈ RK×N and c ∈ RK of the dX -private Laplace
mechanism (5) can be obtained from the optimization
problem (6) with loss function ` (y, y′) = ‖y − y′‖22.
Since n is considerably large, by imposing the constraint
c � Q′ = Q, the resulting optimization problem can be
written as follows (for each query Q):

minimize
c

‖c‖22 =
K∑
k=1

c2k

subject to
K∑
k=1

1
ck

∣∣Qk,i −Qk,j∣∣ ≤ dX (i, j) , ∀i, j ∈ [N ]

ck ≥ 0, ∀k ∈ [K].

In particular, we consider the following three dif-
ferent strategies to choose c ∈ RK (with Q′k,: =
1
ck
Qk,:,∀k ∈ [K]), which satisfy the constraints of the

optimization problem above:
1. Strategy 1: ck = maxi,j |Qk,i−Qk,j |dX (i,j)/K , ∀k ∈ [K], i.e., we

share the privacy budget equally (dX (i,j)
K ) between

the queries.
2. Strategy 2: ck = maxi,j

‖Q:,i−Q:,j‖1
dX (i,j) , ∀k ∈ [K], i.e.,

we add same scale noise to all the query response
components.

3. Strategy 3: We obtain c via Algorithm 3, which dis-
tributes the budget between queries proportional to
their privacy budget requirements.

For a given multi-linear query Q ∈ RK×N , the im-
provement factor of the dX -private Laplace mecha-
nism (5) compared to the baseline (ε-differentially pri-
vate Laplace, (1)) mechanism is defined as IF (Q) :={

∆Q
1 /ε
c1
· ∆Q

1 /ε
c2
· · · ∆Q

1 /ε
cK

}1/K
, i.e., as a geometric mean of

the individual improvement factors. For each K ∈ [10],
we randomly draw 100 query matrices Q ∈ RK×N , and
compute the (averaged) improvement factor IF (Q) for
the above three different choices of c. The results are
shown in Figure 2c and 2d. Some interesting insights
are in order.
– Strategy 3 outperforms other strategies for both

types of query matrices. This is understandable, as
this strategy uses a smarter way of allocating bud-
get between queries. More significantly, the strategy
performs much better for the query matrix with bi-
nary coefficients (cf. Figure 2d). This is true since
there is a high likelihood that two query coefficients
are the same (i.e., qi = qj), resulting in no depletion
of the privacy budget dX (i, j).

– Strategy 1 has only marginal gain (IF(Q) ≤ 1.5) for
binary coefficient query matrices. This is because
|Qk,i−Qk,j | ≤ 1 for such matrices and therefore the
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noise scale is essentially ck = K/mini,j(dX (i, j)),
when the query coefficients do not cancel each other
out, i.e., |Qk,i −Qk,j | 6= 0. This is the same scale as
the vanilla Laplace mechanism. The slight improve-
ment is due to the cases where |Qk,i − Qk,j | = 0,
which does not result in budget depletion in the
case of dX -privacy.

4.3 Single Linear Queries over Real Data

Next we empirically evaluate dX -private Laplace mecha-
nism for random single linear queries on a real-world ge-
olocation dataset with longitude, latitude, and elevation
attributes. The dataset is based on the United States
Cities Database [23] which, among other attributes, con-
tains the location (latitude and longitude) and popu-
lation count of the cities in the United States (US).
From this dataset, we extract the location and popu-
lation count of cities with more than 50k inhabitants,
resulting in a total of 741 cities. We further augment
this dataset with elevation information by querying the
Google Maps Elevation API [20] with the corresponding
latitude and longitude values. We translate this dataset
into a histogram over the cities (with N = 741). The
2D-locations (longitude and latitude wise) of the towns
are presented in Figure 3a. We define the privacy bud-
get dX based on the Euclidean distance on this 2D-
representation.

We generate and evaluate 1000 random linear
queries over this dataset. The improvement factors of
these queries are presented in Figure 3b. The aver-
age of the IF values lies between 2 to 3, with some
queries showing an improvement factor of more than
7.5. We also wanted to test the improvement factor over
queries with an obvious real-world interpretation. One
such query is the “average elevation of a US resident’s
house” (the coefficients are simply the elevation of each
city). In this case our algorithm performed particularly
well, with an improvement factor of 202. This scale of
improvement is due to the fact that there is a strong
correlation between the query and the distance map:
two nearby cities (i.e., having strong privacy require-
ment) also have similar elevation. Note that even if the
solutions shown above are sub-optimal, we still perform
better than the baseline for synthetic data, and outper-
form it depending on the query structure and real data.

4.4 Experiments with Blowfish Privacy

In this section, we demonstrate that the dX -privacy no-
tion can generalize some of the other alternative privacy
notions as well, and hence our techniques can be applied
to these other notions. This is true since our general
pre-processing strategy applies to any metric. Thus, for
instance, our techniques can be extended to the Blow-
fish [16] privacy (without constraints) notion as well. We
can carefully define a dX metric for any privacy policy
considered in the Blowfish framework. First, we define
dX such that dX (i, j) =∞,∀i 6= j, and dX (k, k) = 0,∀k.
Then for each pair of neighbors (i, j), we check if there
is a secret to be protected with the Blowfish policy. If so
we just set dX (i, j) = ε (the privacy budget). Finally, we
need to make sure (possibly by some transformations)
that the resulting dX satisfies the triangular inequality
(a necessary condition for a distance metric).

We consider the same data, single linear queries,
mechanism (dX -private Laplace) and performance mea-
sure (squared loss) used in Section 4.1. But here we work
with two different privacy metrics. Given a threshold T ,
and a privacy parameter ε, define:
1. dBlow

X s.t. dBlow
X (i, j) = ε if dEuc

X (i, j) ≤ T, and
dBlow
X (i, j) =∞ otherwise

2. dSmooth
X s.t. dSmooth

X (i, j) = ε if dEuc
X (i, j) ≤ T, and

dSmooth
X (i, j) = εdEuc

X (i,j)
T otherwise,

where dEuc
X (i, j) :=

√
(ui − uj)2 + (vi − vj)2.

The first metric assigns privacy budget ε for any
pair of points within distance T , and ∞ otherwise. The
second metric “smoothly” increases the privacy budget
proportional to the distance between the pair of points.
Our base method for comparison is the ε-differentially
private Laplace mechanism. First, we compute the aver-
age RMSE over 1000 random single linear queries under
both privacy metrics defined above (for different val-
ues of ε and T ). The results are shown in Figure 4. We
can see that the results under both metrics are roughly
the same. The higher the threshold T (i.e., more neigh-
bors are protected), the higher is the average error. The
dSmooth
X metric behaves like the dEuc

X metric after the
threshold value. Thus it induces tighter (and smoother)
privacy than dBlow

X , and results in a higher average error
for the same threshold.

Then we fix ε = 1, and for each random query (1000
in total), we compute the improvement factor. The re-
sulted values are presented in a distribution form in Fig-
ure 5. Observe that for higher threshold values the dis-
tributions under both metrics are roughly similar, but
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(b) Histogram of the improvement factor (for 1000 random single
linear queries)

Fig. 3. Real-data (US cities [23]) experiment with N = 741, and dX metric defined based on Euclidean distance.

0.2 0.4 0.6 0.8 1.0

ε

100

101

E
rr

o
r

Laplace

blowfish : 2

blowfish : 4

blowfish : 8

blowfish : 16

(a) Error under dBlow
X -privacy

0.2 0.4 0.6 0.8 1.0

ε

100

101

E
rr

o
r

Laplace

smooth : 2

smooth : 4

smooth : 8

smooth : 16

(b) Error under dSmooth
X -privacy

Fig. 4. Average RMSE (over 1000 random single linear queries) under different privacy metrics (with N = 50, and T = 2, 4, 8, 16).

for lower threshold values (e.g. T = 2), the improvement
factor under dBlow

X is better than under dSmooth
X .

5 Discussion

Example dX -metric Instantiations: The main con-
tribution of this paper is a meta procedure that con-
verts an existing differentially private mechanism to its
dX -private counterpart, given any metric dX . The in-
terpretation of the privacy guarantees of the resulting
mechanism is tied to how well the metric translates a
given set of privacy requirements. Here we show some
examples of appropriate dX -metrics for different privacy
requirements.

Location Privacy: We have already presented some
location privacy specific dX -metrics, i.e., the Euclidean
distance based metric in Section 4.1 where nearby points
are required to be more indistinguishable than distant
points, and the distance threshold metrics in Section 4.4
(based on an example of sensitive information specifica-
tion for the Blowfish framework [16]), which provides
higher indistinguishability for points that are within a
given distance threshold.

Heterogeneous Privacy for Tabular Data: Notably,
location privacy is not the only application for dX -
privacy. We have shown one such instance in Example 1
where the metric defines some attribute values as more
sensitive than others. First, for binary datasets (each
attribute having a cardinality of two), the metric in Ex-
ample 1 can be generalized for any number of attributes.
This does not generalize to attributes with more than
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Fig. 5. Distribution of the improvement factors (for 1000 random single linear queries) under different privacy metrics (with N = 50,
ε = 1, and T = 2, 4, 8, 16).

2 values, as the min function used in the metric does
not satisfy the triangle inequality in such a case. An
example metric, for the same privacy requirement (i.e.,
providing higher privacy to individuals having selected
attribute values), can be defined as:

dX (i, j) =
d∑
k=1

(
ε(X(k)

i ) + ε(X(k)
j )
)

JX(k)
i 6= X

(k)
j K.

where d is the total number of attributes in the dataset
and ε(X(k)

i ) defines the privacy budget allocated to the
kth attribute value. One can then set ε(X(k)

i ) = εk for all
i ∈ [N ], where εk can be set to be lower for more sensi-
tive attribute values. This closely resembles the metric
dX (i, j) =

∑d
k=1 εkJX

(k)
i 6= X

(k)
j K (discussed in the in-

troduction) which allows to set sensitivity of the entire
attribute via assigning the same εk for all values of the
attribute. Note that this privacy metric relates to the
notion of heterogeneous differential privacy [1] in which
a user (owner of d items) chooses a separate privacy bud-
get εk for its kth item. Similarly, if we require more pri-
vacy for some individuals in the dataset (modelled as el-
ements in the histogram representation of the dataset),
we can use the metric dX (i, j) = (εi+ εj)Ji 6= jK, and as-
sign lower privacy budgets for more sensitive elements.

Data Generalization: Several other examples of dX -
metrics are given in [6]. One example is when the exact
date of a particular event is considered sensitive, but
releasing a slightly generalized date, say within a T -day
period, might be appropriate. In this case the scaled
metric dX (i, j) = ε

|ui−uj |
T can be used, where ui is the

exact date (say, number of days since January 1, 2000)
associated with the ith element in the data universe [6].

Privacy of Time-Series Data: Another example is
protecting time-series data (e.g., smart energy data)
where the privacy requirement is to only prevent fine-
grained inference of the time-series. Here, an l∞ norm
based dX -metric is appropriate which is the maximum
of the distances between each component of the time-
series [6].

Privacy in Social Networks: Another natural metric
based on a minimum spanning tree is given in [16]: ver-
tices represent elements of the data universe, with edges
between them having equal weights. Here the adversary
may better distinguish points farther apart in the tree,
than those that are closer. If some elements of the data
universe are highly sensitive than others, non-uniform
edge weights can capture the requirement. This metric
is suitable for privacy in social networks.

A comprehensive treatment of privacy requirements
and a suitable choice of dX -metric for each of them is be-
yond the scope of this work. The above examples show
that dX -privacy can be used in many different appli-
cations. We stress however that the metric dX must
be appropriately defined to achieve meaningful privacy
goals. A wrong choice of dX -metric may adversely im-
pact privacy. For instance, if we replace the min function
with the max function in Eq. 3 of Example 1, then even
though the resulting function is still a metric, it does
not satisfy the privacy requirement of providing more
protection to more sensitive attributes. In particular,
the query q = (MNA, MNB, FNA, FNB) = (N) will now be
answered with noise of scale c = 1/ε1.

Correlated Data: If the database contains correlated
data, it may be possible to infer about sensitive at-
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tributes even if the mechanism is dX -private. For in-
stance, in Example 1, it may be known that males above
18 years of age are 90 percent more likely to be native.
Then the answer to the query (MA) = (MYA, MNA) will
have less noise added to it as the query is non-sensitive
(noise scale will be c = 1/ε1 in the example). Multiply-
ing the answer by 0.9 gives us a much more accurate
approximate number of native men above the age of 18,
then what would have been possible through the query
(MYA) (noise scale c = 1/ε0). Protecting the answers from
such correlations requires broadening the scope of dX -
privacy to take such information as input, possibly in
the form of constraints, as is done in the Blowfish pri-
vacy framework [16]. We note that susceptibility of dX -
privacy under these column-wise correlations is similar
to the case of differential privacy with correlated rows.
Just like how differential privacy provides privacy for
atypical rows (uncorrelated rows), dX -privacy guaran-
tees privacy for atypical attribute values.

Unbounded Differential Privacy: In many instan-
tiations of our meta procedure (4), we have used the
bounded differential privacy model (in which the num-
ber of elements, i.e., n, in the dataset is public informa-
tion). Our procedure can also be applied to unbounded
differential privacy by spending some privacy budget
to query database size n, similar to the conversion be-
tween the two flavours of differential privacy [22, p. 358].
For the Laplace mechanism (6), by setting cq′ = q, we
could get rid of the dependence on n, which makes it ap-
plicable to unbounded differential privacy as well. For
SmallDB/MWEM, it’s better to exploit the knowledge
n, as we need to do the pre-processing only once for a
given query set Q and dataset x.

6 Related Work
In [2] the notion of geo-indistinguishability is proposed
which protects a user’s exact location while allowing ap-
proximate information for location-based services. Some
mechanisms to achieve privacy under this notion are also
proposed which are variations of the Laplace mechanism
for differential privacy. Geo-indistinguishability can be
considered as an example of dX -privacy where the Eu-
clidean metric within the discrete Cartesian plane is
used as the data universe. Compared to [2], where only
a few variations of the Laplace mechanism are given, we
have proposed a general procedure to convert any dif-
ferential privacy mechanism to its dX -privacy equivalent
for linear queries. Furthermore, the focus of [2] is on lo-

cation based services in the local model, whereas our
work targets dX -private mechanisms for linear queries
over histograms in the centralized model.

As mentioned earlier, the definition of dX -privacy is
an instance of the notion of generalized privacy with a
metric dX which was proposed in [6] for the case of sta-
tistical databases (where each user’s data is one row of
the database). In addition to proposing the definition,
the authors in [6] have only constructed universally op-
timal mechanisms [12]5 under some specific dX metrics
(such as Manhattan metric) for some particular class
of queries such as count, sum, average, and percentage
queries. In comparison, we propose a generic strategy
to tailor any differentially private mechanism to satisfy
dX -privacy for linear queries (which encompass a broad
range of queries including the aforementioned).

Blowfish privacy [16] is a class of definitions that
aims to strengthen differential privacy by the use of pri-
vacy policies that include a set of secrets (i.e., infor-
mation deemed sensitive in the dataset, akin to what is
modelled by the dX -metric) and a set of constraints that
model an adversary’s background knowledge or public
knowledge about the dataset. There are some recent re-
sults on generalizing differentially private mechanisms
to the Blowfish privacy equivalent under a given pri-
vacy policy [13]. In contrast to [13], we (a) consider
any instance of the dX -metric (which covers Blowfish
[16] privacy notion without constraints), and (b) pre-
process the query alone (and not the input database) –
thus we only need to do pre-processing once for a given
data domain, i.e., not having to redo pre-processing
for database changes. Currently, our proposed proce-
dure applies to only a special case of the Blowfish that
does not introduce deterministic constraints (modelling
public knowledge), and extending our results to general
Blowfish which deals with correlations is an interesting
future direction.

The concept of heterogeneous differential privacy is
proposed in [1] in the the user profile setting where
a database itself is attributed to a single user. They
consider the case where a user does not have homo-
geneous privacy requirements for all his/her items. We
note that our meta procedure idea can be extended to
the user profile setting as well. This extension would re-
quire slight modification in privacy and sensitivity def-

5 Roughly, a mechanism is universally optimal if it provides the
same utility to all users, regardless of their background informa-
tion and (legal) loss function (modeling utility loss), as would a
mechanism that is specifically tailored to each user.
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initions and utility analysis. In particular, the metric
dX (u, v) =

∑d
i=1 εiJui 6= viK (that we discussed in the

introduction and at the end of Appendix C) is closely
related to the privacy definition in [1]. For linear queries,
the stretching mechanism in [1] also transforms the orig-
inal query vector q into q′ (similar to our meta pro-
cedure), but their noise term is fixed and depends on
the global sensitivity (in that sense our meta proce-
dure is more general than theirs with noise parameter
c). Moreover, the transformation q 7→ q′ in [1] is not
utility dependent. In the context of user profiles, de-
tailed investigation of the connection between our (ex-
tended) meta procedure and the stretching mechanism
is indeed an interesting future work. Similarly, [17] con-
siders personalized differential privacy (PDP) where dif-
ferent users have different privacy expectations in the
context of statistical databases. However, unlike dX -
privacy, a user can only set the same privacy budget
for all items (column-wise privacy). Moreover, a general
sampling mechanism to convert any differential privacy
mechanism to its PDP counterpart is also proposed in
[17], which samples rows from the original dataset based
on the privacy requirement of each user. This introduces
an additional error term (due to sampling) [17]. In both
these prior works, the utility measure of interest is not
taken into consideration while distributing the privacy
budget, whereas our meta procedure explicitly focuses
on the utility measure.

7 Conclusion
In this paper, we developed new dX -private mecha-
nisms for linear queries by extending the standard ε-
differentially private mechanisms. These new mecha-
nisms fully utilize the privacy budgets of different ele-
ments and maximize the utility of the private response.
We have empirically shown that carefully selecting the
model parameters of the dX -private mechanisms (de-
pending on the utility function and dX -metric) can re-
sult in substantial improvement over the baseline mech-
anisms in terms of utility. Note that our analysis can
be extended to advanced ε-differentially private mecha-
nisms such as the Matrix [18], and K-norm [15] mecha-
nisms. We leave it as future work. Finally, we would like
to remark that for statistical queries (a special case of
linear queries), which are (loosely) defined as the sum
of predicates over the rows of the input dataset, we can
design dX -private mechanisms more efficiently by ex-

ploiting the sum-structure. We refer the reader to Ap-
pendix C for more details.
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A Proofs

A.1 Laplace Mechanism

Theorem 1. If ∆q′

1 (i, j) ≤ dX (i, j), ∀i, j ∈ [N ], then
the mechanism MLap,c (·, c� q′) given by (5) satisfies
dX -privacy.

Proof. Let x, x′ ∈ RN s.t. ‖x− x′‖1 ≤ 2, xi 6= x′i,
and xj 6= x′j , and let q ∈ Q. Let px and px′ denote
the probability density functions of MLap,c (x, q) and
MLap,c (x′, q) respectively. Then for any z ∈ Y we have

px (z)
px′ (z)

= Πki=1

 exp
(
−|ciq

′(x)i−zi|
ci

)
exp

(
−|ciq

′(x′)i−zi|
ci

)


= Πki=1 exp
(
|ciq′ (x′)i − zi| − |ciq′ (x)i − zi|

ci

)
(i)
≤ Πki=1 exp

(
|ciq′ (x′)i − ciq′ (x)i|

ci

)
= exp

(∥∥q′ (x)− q′
(
x′
)∥∥

1

)
(ii)
≤ exp

(
∆q′

1 (i, j)
)

≤ exp (dX (i, j)) ,

where (i) follows from the triangle inequality and (ii)
follows from the definition of generalized global sensi-
tivity and due to the choice of x and x′. That px(z)

px′ (z)
≥

exp (−dX (i, j)), follows by symmetry.

Theorem 2. Let Q : RN → Rk be a multi-
linear query of the form Q (x) = Qx, and let Z =
MLap,c (x, c�Q′) = c�Q′x+ Y with Yi

⊥∼ Lap (ci).
1. When `22 (y, y′) = ‖y − y′‖22, we have

err`22
(
MLap,c

(
·, c�Q′

)
, Q
)
≤ 2n2 ∥∥c�Q′ −Q∥∥2

2

+ 4 ‖c‖22 ,

where err` (M, Q) is defined in (2).
2. When `p (y, y′) = ‖y − y′‖p, we have

err`p
(
MLap,c

(
·, c�Q′

)
, Q
)
≤ n

∥∥c�Q′ −Q∥∥
p

+ E
Yi
⊥∼Lap(ci)

[
‖Y‖p

]
.

Note that E
Yi
⊥∼Lap(ci)

[‖Y‖1] = ‖c‖1.

3. ∀δ ∈ (0, 1], with probability at least 1− δ we have

‖Qx− Z‖∞ ≤ n
∥∥c�Q′ −Q∥∥∞ + ln

(
k

δ

)
· ‖c‖∞ .

Proof. Part 1. Consider

E
Z

[` (Z, Q (x))]

= E
Z

[
‖Z−Qx‖22

]
= E

Yi
⊥∼Lap(ci)

[∥∥c�Q′x+ Y−Qx
∥∥2

2

]
(i)
≤ E

Yi
⊥∼Lap(ci)

[(∥∥c�Q′x−Qx∥∥2 + ‖Y‖2
)2]

(ii)
≤ 2 E

Yi
⊥∼Lap(ci)

[∥∥c�Q′x−Qx∥∥2
2 + ‖Y‖22

]
= 2

{∥∥c�Q′x−Qx∥∥2
2 + E

Yi
⊥∼Lap(ci)

[
‖Y‖22

]}

= 2

{
k∑
i=1

∣∣〈ciQ′i,: −Qi,:, x〉∣∣2 + E
Yi
⊥∼Lap(ci)

[
‖Y‖22

]}
(iii)
≤ 2

{
k∑
i=1

∥∥ciQ′i,: −Qi,:∥∥2
2 ‖x‖

2
2 + E

Yi
⊥∼Lap(ci)

[
‖Y‖22

]}

= 2

{
‖x‖22

k∑
i=1

∥∥ciQ′i,: −Qi,:∥∥2
2 + E

Yi
⊥∼Lap(ci)

[
‖Y‖22

]}
(iv)
≤ 2

{
n2

k∑
i=1

∥∥ciQ′i,: −Qi,:∥∥2
2 + E

Yi
⊥∼Lap(ci)

[
‖Y‖22

]}

= 2

{
n2 ∥∥c�Q′ −Q∥∥2

2 + E
Yi
⊥∼Lap(ci)

[
‖Y‖22

]}
(v)= 2

{
n2 ∥∥c�Q′ −Q∥∥2

2 + 2 ‖c‖22
}

where (i) is by triangle inequality, (ii) is due to the fact
that (a+ b)2 ≤ 2a2 + 2b2, (iii) is by Hölder’s Inequality,
(iv) is due to the fact that ‖x‖2 ≤ ‖x‖1 = n, and (v)
is due to the fact that E

Yi
⊥∼Lap(ci)

[
‖Y‖22

]
= 2 ‖c‖22 (since

E
X∼Lap(λ)

[
X2] = 2λ2 for X ∈ R). This completes the

proof of first part.
Part 2. Consider (by the similar reasoning as of

Part 1)

E
Z

[` (Z, Q (x))]

= E
Z

[
‖Z−Qx‖p

]
= E

Yi
⊥∼Lap(ci)

[∥∥c�Q′x+ Y−Qx
∥∥
p

]
≤ E

Yi
⊥∼Lap(ci)

[∥∥c�Q′x−Qx∥∥
p

+ ‖Y‖p
]

=
∥∥c�Q′x−Qx∥∥

p
+ E

Yi
⊥∼Lap(ci)

[
‖Y‖p

]
=
∥∥c�Q′x−Qx∥∥

p
+ E

Yi
⊥∼Lap(ci)

[
‖Y‖p

]
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=

(
k∑
i=1

∣∣〈ciQ′i,: −Qi,:, x〉∣∣p
)1/p

+ E
Yi
⊥∼Lap(ci)

[
‖Y‖p

]
≤

(
k∑
i=1

∥∥ciQ′i,: −Qi,:∥∥pp ‖x‖pq
)1/p

+ E
Yi
⊥∼Lap(ci)

[
‖Y‖p

]
= ‖x‖q

(
k∑
i=1

∥∥ciQ′i,: −Qi,:∥∥pp
)1/p

+ E
Yi
⊥∼Lap(ci)

[
‖Y‖p

]
≤ n

(
k∑
i=1

∥∥ciQ′i,: −Qi,:∥∥pp
)1/p

+ E
Yi
⊥∼Lap(ci)

[
‖Y‖p

]
= n

∥∥c�Q′ −Q∥∥
p

+ E
Yi
⊥∼Lap(ci)

[
‖Y‖p

]
.

Note that E
Yi
⊥∼Lap(ci)

[‖Y‖1] = ‖c‖1 (since E
X∼Lap(λ)

[|X|] =

λ for X ∈ R).
Part 3. We will use the fact that if Y ∼ Lap (b),

then P [|Y| ≥ t · b] = exp (−t). We have:

P
[∥∥c�Q′x− Z

∥∥
∞ ≥ ln

(
k

δ

)
· ‖c‖∞

]
= P

[
max
i∈[k]

|Yi| ≥ ln
(
k

δ

)
· ‖c‖∞

]
≤ k · P

[
|Yi| ≥ ln

(
k

δ

)
· ‖c‖∞

]
≤ k · P

[
|Yi| ≥ ln

(
k

δ

)
· ci
]

= k ·
(
δ

k

)
= δ

where the first inequality is due to union bound, and the
second to last equality follows from the fact that each
Yi ∼ Lap (ci). That is with probability at least 1− δ we
have

‖Qx− Z‖∞

≤
∥∥c�Q′x−Qx∥∥∞ + ln

(
k

δ

)
· ‖c‖∞

= max
i∈[k]

∣∣〈ciQ′i,: −Qi,:, x〉∣∣+ ln
(
k

δ

)
· ‖c‖∞

≤ max
i∈[k]

∥∥ciQ′i,: −Qi,:∥∥∞ ‖x‖1 + ln
(
k

δ

)
· ‖c‖∞

= nmax
i∈[k]

∥∥ciQ′i,: −Qi,:∥∥∞ + ln
(
k

δ

)
· ‖c‖∞

= n
∥∥c�Q′ −Q∥∥∞ + ln

(
k

δ

)
· ‖c‖∞ .

A.2 Exponential Mechanism

Theorem 3. If ∆u′ (i, j) ≤ cdX (i, j) ,∀i, j ∈ [N ], then
the mechanismMExp,c (·, u′) satisfies the dX -privacy.

Proof. For clarity, we assume R to be finite. Let x, x′ ∈
RN s.t. ‖x− x′‖1 ≤ 2, xi 6= x′i and xj 6= x′j . Then for
any r ∈ R we have

P
[
MExp,c (x, u′) = r

]
P
[
MExp,c (x′, u′) = r

]

=

 exp
(
u′(x,r)

2c

)
∑

r′∈R
exp
(
u′(x,r′)

2c

)
 exp

(
u′(x′,r)

2c

)
∑

r′∈R
exp
(
u′(x′,r′)

2c

)

=
exp

(
u′(x,r)

2c

)
exp

(
u′(x′,r)

2c

) ·
∑
r′∈R exp

(
u′(x′,r′)

2c

)
∑
r′∈R exp

(
u′(x,r′)

2c

)

= exp
(
u′ (x, r)− u′ (x′, r)

2c

)
·

∑
r′∈R exp

(
u′(x′,r′)

2c

)
∑
r′∈R exp

(
u′(x,r′)

2c

)

≤ exp
(

∆u′ (i, j)
2c

)
·

∑
r′∈R exp

(
u′(x,r′)+∆u′(i,j)

2c

)
∑
r′∈R exp

(
u′(x,r′)

2c

)
= exp

(
∆u′ (i, j)

2c

)
· exp

(
∆u′ (i, j)

2c

)
· (1)

= exp (dX (i, j)) .

Similarly, P[MExp,c(x,u′)=r]
P[MExp,c(x′,u′)=r] ≥ exp (−dX (i, j)) by sym-

metry.

Theorem 4. Fixing a database x, let

R?u′ =
{
r ∈ R : u′ (x, r) = ?u′ (x)

}
denote the set of elements inR which attain utility score
?u′ (x). Also define δu,u′ := maxx,r |u (x, r)− u′ (x, r)|.
Then for Z =MExp,c (x, u′), we have

P

[
u (x,Z) ≤ δu,u′ + ?u′ (x)− 2c

{
ln

(
|R|∣∣R?u′ ∣∣

)
+ t

}]
≤ e−t.

Since we always have
∣∣R?u′ ∣∣ ≥ 1, we get

P [u (x,Z) ≤ δu,u′ + ?u′ (x)− 2c {ln (|R|) + t}] ≤ e−t.

Proof.

P
[
u′ (x,Z) ≤ α

]
≤ |R| exp (α/2c)∣∣R?u′ ∣∣ exp (?u′ (x) /2c)
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= |R|∣∣R?u′ ∣∣ exp
(
α− ?u′ (x)

2c

)
.

The inequality follows from the observation that each
r ∈ R with u′ (x, r) ≤ α has un-normalized proba-
bility mass at most exp (α/2c), and hence the entire
set of such “bad” elements r has total un-normalized
probability mass at most |R| exp (α/2c). In contrast, we
know that there exist at least

∣∣R?u′ ∣∣ ≥ 1 elements with
u′ (x, r) = ?u′ (x), and hence un-normalized probabil-
ity mass

∣∣R?u′ ∣∣ exp (?u′ (x) /2c), and so this is a lower
bound on the normalization term. The proof is com-
pleted by plugging in the appropriate value for α, and
by noting that

u (x, r) ≤ u′ (x, r) +
∣∣u (x, r)− u′ (x, r)

∣∣
≤ u′ (x, r) + max

x,r

∣∣u (x, r)− u′ (x, r)
∣∣ .

A.3 Small Database Mechanism

Theorem 5. If
∣∣q′i − q′j∣∣ ≤ dX (i, j) ,∀i, j ∈ [N ] and

∀q′ ∈ Q′, then the small database mechanism is dX -
private.

Proof. First we will find the condition for ∆u′ (i, j) ≤
cdX (i, j) ,∀i, j ∈ [N ] and ∀q′ ∈ Q′:

∆u′ (i, j) = max
y∈R

max
x,x′∈RN :‖x−x′‖1≤2,
xi 6=x′i,xj 6=x

′
j for i,j∈[N ]

∣∣u′ (x, y)− u′
(
x′, y

)∣∣.
For some x, x′ ∈ NN such that ‖x− x′‖1 ≤ 2, xi 6=
x′i, xj 6= x′j for some i, j ∈ [N ], we have:∣∣u′ (x, y)− u′

(
x′, y

)∣∣
=
∣∣∣∣c max
q′∈Q′

∣∣q′ (x′)− q′ (y)
∣∣− c max

q′∈Q′

∣∣q′ (x)− q′ (y)
∣∣∣∣∣∣

(i)
≤ c max

q′∈Q′

∣∣{∣∣q′ (x′)− q′ (y)
∣∣− ∣∣q′ (x)− q′ (y)

∣∣}∣∣
(ii)
≤ c max

q′∈Q′

∣∣q′ (x)− q′
(
x′
)∣∣

= c max
q′∈Q′

∣∣〈q′, x− x′〉∣∣
(iii)
≤ c max

q′∈Q′

∣∣q′i − q′j∣∣ ,
where (i) due to the fact that |maxx |a (x)| −maxx |b (x)|| ≤
maxx |{|a (x)| − |b (x)|}|, (ii) is by triangle inequality,
and (iii) is due to the choice of x and x′. Thus we
require

∆u′ (i, j) ≤ c max
q′∈Q′

∣∣q′i − q′j∣∣ ≤ cdX (i, j) .

The Small Database mechanism is simply an instantia-
tion of theMExp,c (·, u′) mechanism. Therefore, privacy
follows from Theorem 3.

We use the following theorem from [9] directly.

Theorem 9 (Theorem 4.2, [9]). For any finite class of

linear queries Q′, if R =
{
y ∈ NN : ‖y‖1 = log |Q′|

α2

}
then for all x ∈ NN , there exists a y ∈ R such that:

max
q′∈Q′

∣∣cq′ (x)− cq′ (y)
∣∣ ≤ αn.

Proposition 1. Let Q be any class of linear queries.
Let y be the database output by SmallDB
(x,Q′, c, α). Then with probability 1− β:

max
q∈Q

∣∣q (x)− cq′ (y)
∣∣ ≤nmax

q∈Q

∥∥q − cq′∥∥∞ + αn

+ 2c
{

logN log |Q|
α2 + log

(
1
β

)}
.

Proof. Applying the utility bounds for theMExp,c (·, u′)
mechanism (Theorem 4) with − ?u′ (x) ≥ αn (which
follows from Theorem 9), we find:

P
[

max
q′∈Q′

∣∣cq′ (x)− cq′ (y)
∣∣ ≥ αn+ 2c {ln (|R|) + t}

]
≤ e−t.

By noting that R, which is the set of all databases of
size at most log |Q|/α2 (since |Q′| = |Q|), satisfies |R| ≤
|X |log |Q|/α2

and by setting t = log
(

1
β

)
, we get with

probability 1− β:

max
q′∈Q′

∣∣cq′ (x)− cq′ (y)
∣∣

≤ αn+ 2c
{

logN log |Q|
α2 + log

(
1
β

)}
.

Thus with probability 1 − β we have (q′ ∈ Q′ is the
one-to-one mapping of q ∈ Q):

max
q∈Q

∣∣q (x)− cq′ (y)
∣∣

(i)
≤ max

q∈Q

{∣∣q (x)− cq′ (x)
∣∣+
∣∣cq′ (x)− cq′ (y)

∣∣}
(ii)
≤ max

q∈Q

∣∣q (x)− cq′ (x)
∣∣+ max

q∈Q

∣∣cq′ (x)− cq′ (y)
∣∣

= max
q∈Q

∣∣〈q − cq′, x〉∣∣+ max
q∈Q

∣∣cq′ (x)− cq′ (y)
∣∣

(iii)
≤ ‖x‖1 max

q∈Q

∥∥q − cq′∥∥∞ + max
q∈Q

∣∣cq′ (x)− cq′ (y)
∣∣

(iv)= nmax
q∈Q

∥∥q − cq′∥∥∞ + max
q′∈Q′

∣∣cq′ (x)− cq′ (y)
∣∣

≤ nmax
q∈Q

∥∥q − cq′∥∥∞ + αn
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+ 2c
{

logN log |Q|
α2 + log

(
1
β

)}
,

where (i) is by triangle inequality, (ii) is by the fact
that maxx {a(x) + b(x)} ≤ maxx a(x) + maxx b(x), (iii)
is by the Hölder’s Inequality, and (iv) is by the fact that
‖x‖1 = n.

Theorem 6. By the appropriate choice of α, letting y
be the database output by SmallDB

(
x,Q′, c, α2

)
, we can

ensure that with probability 1− β:

max
q∈Q

∣∣q (x)− cq′ (y)
∣∣

≤ nmax
q∈Q

∥∥q − cq′∥∥∞ +
(
cn2γ

)1/3
, (9)

where γ = 16 logN log |Q|+ 4 log
(

1
β

)
. Equivalently, for

any c such that

c ≤ α3n

γ
(10)

with probability 1 − β: maxq∈Q |q (x)− cq′ (y)| ≤
nmaxq∈Q ‖q − cq′‖∞ + αn.

Proof. By Proposition 1, we get:

max
q∈Q

∣∣q (x)− cq′ (y)
∣∣

≤ nmax
q∈Q

∥∥q − cq′∥∥∞ + α

2 n

+ 2c
{

4 logN log |Q|
α2 + log

(
1
β

)}
.

Setting this quantity to be at most
nmaxq∈Q ‖q − cq′‖p + αn and solving for c yields (10).
Solving for α yields (9).

A.4 Multiplicative Weights Exponential
Mechanism

Theorem 7. If
∣∣q′i − q′j∣∣ ≤ dX (i, j) ,∀i, j ∈ [N ] and

∀q′ ∈ Q′, then the MWEM mechanism is dX -private.

Proof. Exponential Mechanism: Consider the utility
function u′ : NN ×Q′ → R given by

u′
(
x, q′

)
:= c

∣∣q′ (y)− q′ (x)
∣∣ , for some y ∈ RN .

First we find a condition for ∆u′ (i, j) ≤
cdX (i, j) ,∀i, j ∈ [N ] and ∀q′ ∈ Q′:

∆u′ (i, j)
= max

q′∈Q′
max

x,x′∈NN :‖x−x′‖1≤2,
xi 6=x′i,xj 6=x

′
j for i,j∈[N ]

∣∣u′ (x, q′)− u′ (x′, q′)∣∣.

For some x, x′ ∈ NN such that ‖x− x′‖1 ≤ 2, xi 6=
x′i, xj 6= x′j for some i, j ∈ [N ], we have:∣∣u′ (x, q′)− u′ (x′, q′)∣∣

=
∣∣c ∣∣q′ (y)− q′ (x)

∣∣− c ∣∣q′ (y)− q′
(
x′
)∣∣∣∣

(i)
≤ c

∣∣q′ (x′)− q′ (x)
∣∣

= c
∣∣〈q′, x− x′〉∣∣

(ii)
≤ c

∣∣q′i − q′j∣∣ ,
where (i) is by triangle inequality, and (ii) is due to the
choice of x and x′. That is we require

∆u′ (i, j) ≤ c
∣∣q′i − q′j∣∣ ≤ cdX (i, j) .

Thus with the above transformed class Q′, if we use the
MExp,2cT (x, u′) mechanism, we get dX (i,j)

2T -privacy.
Laplace Mechanism: If

∣∣q′i − q′j∣∣ ≤
dX (i, j) ,∀i, j ∈ [N ] and ∀q′ ∈ Q′, then the Laplace
mechanism given by m = cq′ (x) + Lap (2cT ) satisfies
dX (i,j)

2T -privacy.
The composition rules for dX -privacy state that c

values accumulate appropriately. We make T calls to
the Exponential Mechanism with parameter 2cT and T
calls to the Laplace Mechanism with parameter 2cT ,
resulting in dX -privacy.

Theorem 8. For any dataset x, set of linear queries Q,
T ∈ N, and c > 0, with probability at least 1− 2T/ |Q|,
MWEM produces y such that

max
q∈Q

∣∣cq′ (y)− q (x)
∣∣

≤ 2n
√

logN
T

+ 10Tc log |Q|+ nmax
q∈Q

∥∥cq′ − q∥∥∞ .

By setting 2n
√

logN
T = 10Tc log |Q|, we get

max
q∈Q

∣∣cq′ (y)− q (x)
∣∣

≤ nmax
q∈Q

∥∥cq′ − q∥∥∞ + 20
52/3

(
n2 logN log |Q|

)1/3
c1/3.

Proof. The following inequality follows directly by re-
placing the ε by 1

c along the proof given in [14]:

max
q′∈Q′

∣∣cq′ (y)− cq′ (x)
∣∣ ≤ 2n

√
logN
T

+ 10Tc log |Q| .

Then with probability at least 1− 2T/ |Q|, we have

max
q∈Q

∣∣cq′ (y)− q (x)
∣∣

≤ max
q∈Q

{∣∣cq′ (y)− cq′ (x)
∣∣+
∣∣cq′ (x)− q (x)

∣∣}
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≤ max
q′∈Q′

∣∣cq′ (y)− cq′ (x)
∣∣+ max

q∈Q

∣∣cq′ (x)− q (x)
∣∣

= max
q′∈Q′

∣∣cq′ (y)− cq′ (x)
∣∣+ max

q∈Q

∣∣〈cq′ − q, x〉∣∣
≤ max

q′∈Q′

∣∣cq′ (y)− cq′ (x)
∣∣+ max

q∈Q

∥∥cq′ − q∥∥∞ ‖x‖1
≤ 2n

√
logN
T

+ 10Tc log |Q|+ nmax
q∈Q

∥∥cq′ − q∥∥∞ .

B Pre-processing Optimization
In Section 3, we have shown that by (approximately)
solving certain pre-processing optimization problems
(e.g. (6),(8)), we can obtain the model parameters of
the dX -private mechanisms with enhanced utility. One
can easily verify that these problems are non-convex op-
timization problems. Recently, in the optimization and
machine learning community, there is a huge interest in
developing efficient algorithms for non-convex optimiza-
tion problems with provable guarantees. One can also
observe that these pre-processing optimization problems
exhibit coordinate friendly structures, and thus the co-
ordinate descent family of algorithms [24] is a natural
choice to solve them.

Consider the optimization problem (6) under
squared loss. One can easily verify that f (c,Q′) =
n2 ‖c�Q′ −Q‖22 + 2 ‖c‖22 is a (smooth) multi-convex
function i.e. f (·, Q′) is convex in c for any fixed Q′,
and f (c, ·) is convex in Q′ for any fixed c, but f

is not jointly convex in (c,Q′). Recently [25] have
shown that under certain conditions, the multi-convex
optimization problem can be efficiently solved via a
variant of cyclic block coordinate descent algorithm.
Now consider the optimization problem (8) with the
objective function f (c,Q′) = nmaxq∈Q ‖cq′ − q‖∞ +

20
52/3

(
n2 logN log |Q|

)1/3
c1/3. In this case, the objective

function is both non-smooth and non-convex, thus the
resulting problem is very hard to optimize. However,
in practice approximate solutions would still yield good
utility.

C Statistical Queries
A statistical query on a data universe X ⊂ Rd is defined
by a mapping q : X → Y ⊂ Rk. Abusing notation,
we define the evaluation of a statistical query q on the
database x ∈ Xn to be the average of the predicate over

the rows

q (x) = 1
n

n∑
i=1

q (xi). (11)

When q (u) = u, ∀u ∈ X , we call it d-way marginal
query. We can actually treat the statistical query as a
linear query over histogram (y ∈ NN ) with query matrix
Q ∈ Rk×N . But we can exploit the sum-structure ((11))
of it to design efficient algorithms.

Definition 10. For u, v ∈ X (with u 6= v), define the
generalized global sensitivity of a query q ∈ Q (w.r.t.
‖·‖) as

∆q
‖·‖ (u, v) := max

x,x′∈Xn:‖x−x′‖
H
≤1,

xi=u,x′i=v for i∈[n]

∥∥q (x)− q
(
x′
)∥∥.

Also define ∆q
‖·‖ := maxu,v∈X ∆q

‖·‖ (u, v) (the usual
global sensitivity). When ‖·‖ = ‖·‖p, we simply write
∆q
p.

The generalized global sensitivity (for u, v ∈ X ) of the
statistical query q is given by

max
x,x′∈Xn:‖x−x′‖

H
≤1,

xi=u,x′i=v for i∈[n]

∥∥∥∥∥ 1
n

n∑
i=1

q (xi)−
1
n

n∑
i=1

q
(
x′i
)∥∥∥∥∥

= ‖q (u)− q (v)‖
n

.

For the d-way marginal query q, we have ∆q
‖·‖ (u, v) =

‖u−v‖
n .

Definition 11. Let X (with φ ∈ X ) be the data uni-
verse, dX : X × X → R be the privacy budget, and q :
Xn → Y be the query. A mechanismM : Xn×Q Y is
said to be dX -private iff ∀x, x′ ∈ Xn s.t. ‖x− x′‖H ≤ 1,
and xi 6= x′i (for some i ∈ [n]), ∀S ⊆ Y and ∀q ∈ Q we
have

P [M (x, q) ∈ S]
P [M (x′, q) ∈ S] ≤ exp

(
dX
(
xi, x

′
i

))
.

When dX (u, v) = ε,∀u, v ∈ X , we recover the standard
ε-differential privacy, and when dX (u, v) = εu ∧ εv for
u, v ∈ X , we recover the instance specific differential
privacy notion introduced in [11].

For a given query q : Xn → Y ⊂ Rk over the database
x ∈ Xn, consider the following variant of Laplace mech-
anism (with the mapping X 7→ X ′, and c ∈ Rk):

Z = MLap,c
(
x′, q

)
:= c� q

(
x′
)

+ (Y1, . . . ,Yk) , (12)

where Yi
⊥∼ Lap (ci). Below we show that the above

variant of Laplace mechanism satisfies the dX -privacy
under a sensitivity bound condition.
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Theorem 10. Let q′ (u) := q (u′) ,∀u ∈ X under the
mapping X 7→ X ′. If ∆q′

1 (u, v) ≤ dX (u, v), ∀u, v ∈ X ,
then the mechanism MLap,c (x′, q) given by (12) satis-
fies the dX -privacy.

Proof. Proof is similar to that of Theorem 1.

The sensitivity bound condition of the above theorem
for a statistical query q can be written as follows:

∆q′

1 (u, v) =
‖q (u′)− q (v′)‖1

n
≤ dX (u, v) , ∀u, v ∈ X .

For the d-way marginal query, the above condition
reduces to ‖u′ − v′‖1 ≤ ndX (u, v) ,∀u, v ∈ X . The
next theorem characterizes the performance of the
MLap,c (x′, q) mechanism under different choices of util-
ity measures:

Theorem 11. Let q : Xn → Rk be a statistical
query of the form q (x) = 1

n

∑n
i=1 q (xi), and let Z =

MLap,c (x′, q) = c� q (x′) + Y with Yi
⊥∼ Lap (ci).

1. When `22 (y, y′) = ‖y − y′‖22, we have

err`22
(
MLap,c, q

)
≤ 2

{
max
u∈X

∥∥c� q (u′)− q (u)
∥∥2

2 + 2 ‖c‖22

}
.

2. When `p (y, y′) = ‖y − y′‖p, we have

err`p
(
MLap,c, q

)
≤ max

u∈X

∥∥c� q (u′)− q (u)
∥∥
p

+ E
Yi
⊥∼Lap(ci)

[
‖Y‖p

]
.

3. ∀δ ∈ (0, 1], with probability at least 1− δ we have

‖Z− q (x)‖∞

≤ max
u∈X

∥∥c� q (u′)− q (u)
∥∥
∞ + ln

(
k

δ

)
· ‖c‖∞ .

Proof. Proof is similar to that of Theorem 2, but with
the following change in the appropriate places (with
q′ (u) := q (u′) ,∀u ∈ X ):

max
x∈Xn

∥∥c� q′ (x)− q (x)
∥∥
p

= max
x∈Xn

1
n

∥∥∥∥∥c�
n∑
i=1

q
(
x′i
)
−

n∑
i=1

q (xi)

∥∥∥∥∥
p

≤ max
x∈Xn

1
n

n∑
i=1

∥∥c� q (x′i)− q (xi)
∥∥
p

= 1
n

n∑
i=1

max
xi∈X

∥∥c� q (x′i)− q (xi)
∥∥
p

= max
u∈X

∥∥c� q (u′)− q (u)
∥∥
p
.

Now we model the following optimization problem to
select the model parameters c and X 7→ X ′ of the
MLap,c (x′, q) mechanism:

minimize
c,X ′

f`,M
(
c,X ′; q, n

)
subject to

∥∥q (u′)− q (v′)∥∥1 ≤ ndX (u, v) ,∀u, v ∈ X

c � 0.
(13)

The objective function f`,M (c,X ′; q, n) depends on the
utility function that we are interested in. For ex-
ample, when `22 (y, y′) = ‖y − y′‖22, we can choose
f`22,M (c,X ′; q, n) = maxu∈X ‖c� q (u′)− q (u)‖22 +
2 ‖c‖22. In fact there are two ways to design dX -private
mechanisms from existing ε differentially private mech-
anisms: either transform the query vector or the data
universe. The approach we used above is X 7→ X ′ (that
is q (u)→ q′ (u) = q (u′)). Thus we can reduce the num-
ber of variables in the pre-processing optimization by a
factor of k.

Consider a privacy budget (metric) of the form
dX (u, v) =

∑d
i=1 di (ui, vi), where for example

di (ui, vi) = εiJui 6= viK. In this case, if |u′i − v′i| ≤
ndi (ui, vi) ,∀ui, vi ∈ Xi (for example, when X =
{−1,+1}d, we have Xi = {−1,+1}), then the d-
way marginal query is dX -private. Moreover, when
`1 (y, y′) = ‖y − y′‖1, we have

f`1,M
(
c,X ′; q, n

)
=

k∑
i=1

fi (ci,Xi)

with fi (ci,Xi) = maxui∈Xi |ciu′i − ui| + ci for d-way
marginal queries (since maxu∈X ‖c� q (u′)− q (u)‖1 +

E
Yi
⊥∼Lap(ci)

[‖Y‖1] = maxu∈X
∑k
i=1 |ciu

′
i − ui| + ‖c‖1 =∑k

i=1 maxui∈Xi |ciu′i − ui| +
∑k
i=1 ci). Thus in this set-

ting, we can instantiate and relax the above optimiza-
tion problem (13) into k independent optimization prob-
lems as follows:

minimize
ci,X ′i

max
ui∈Xi

∣∣ciu′i − ui∣∣+ ci

subject to
∣∣u′i − v′i∣∣ ≤ ndi (ui, vi) , ∀ui, vi ∈ Xi
ci ≥ 0.

(14)
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