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Abstract: In today’s data-centric economy, data flows
are increasingly diverse and complex. This is best ex-
emplified by mobile apps, which are given access to an
increasing number of sensitive APIs. Mobile operating
systems have attempted to balance the introduction of
sensitive APIs with a growing collection of permission
settings, which users can grant or deny. The challenge is
that the number of settings has become unmanageable.
Yet research also shows that existing settings continue
to fall short when it comes to accurately capturing peo-
ple’s privacy preferences. An example is the inability to
control mobile app permissions based on the purpose for
which an app is requesting access to sensitive data. In
short, while users are already overwhelmed, accurately
capturing their privacy preferences would require the
introduction of an even greater number of settings. A
promising approach to mitigating this trade-off lies in
using machine learning to generate setting recommen-
dations or bundle some settings. This article is the first
of its kind to offer a quantitative assessment of how ma-
chine learning can help mitigate this trade-off, focusing
on mobile app permissions. Results suggest that it is
indeed possible to more accurately capture people’s pri-
vacy preferences while also reducing user burden.
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1 Introduction
Managing one’s data privacy is an increasingly challeng-
ing task for the average person. As research has shown,
not everyone feels the same way about the collection and
use of their data, hence the need to provide users with
privacy options or settings that enable them to config-
ure data flows and ensure that these flows are aligned
with their individual privacy preferences. Regulations
such as the EU General Data Protection Regulation
(GDPR) actually mandate that users be given proper
control over the collection and use of their data such
as securing informed consent [31]. Effectively, as data
continues to be collected and used in ever more diverse
ways, users are also expected to make an increasingly
unrealistic number of privacy decisions. This situation
reflects a fundamental trade-off between the accuracy
at which we capture and enforce people’s privacy pref-
erences, and the burden we impose on users to specify
their preferences by configuring ever more complex and
diverse privacy settings [7, 21].

This trade-off between accuracy and user burden
when it comes to capturing people’s privacy preferences
arises in many domains (e.g., browser privacy settings,
Facebook privacy settings, or car privacy settings). A
rather prominent example is found in the context of
mobile app privacy settings (or app permissions), which
allow users to control the sensitive APIs an app can
access. Prompts appear when apps first request access
to sensitive data categories (e.g., contacts, location, au-
dio, calendar, camera, etc.). A permission is the ability
for an app to access a specific category of data on the
smartphone. Many apps ask users to grant them ac-
cess to multiple permissions. On average, Android users
would have to make over a hundred privacy decisions to
configure the permission settings associated with their
apps [3, 23]. It is no surprise that the vast majority
of users do not take the time to configure many of
these settings, even though research shows that they
truly care about many of them. Indeed, many users ex-
press both surprise and discomfort when asked to take
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a look at what their permission settings actually al-
low [3, 20, 23].

Recent research has shown that, using machine
learning techniques, it is often possible to predict many
of people’s privacy preferences based on a relatively
small number of factors such as prior privacy decisions
or answers to privacy-related questions [22–24, 28]. This
approach offers the promise of helping reduce the num-
ber of decisions users have to make by possibly giving
users individual recommendations on how they might
want to configure their permission settings, or by pos-
sibly combining multiple closely correlated privacy de-
cisions for individual users. While research on how to
best take advantage of these findings is still ongoing,
early results involving the deployment of personalized
privacy assistants that use these models to recommend
privacy settings to users suggest that such an approach
can make a big difference [23]. The question that no one
has attempted to answer yet is to what extent more ex-
pressive mobile app privacy settings might possibly lend
themselves to the construction of privacy preference
models with greater predictive power and to what ex-
tent these stronger predictive models might in turn help
mitigate the greater user burden that would otherwise
be associated with the configuration of more expressive
privacy settings. In this article, we present a first study
aimed at addressing this question. Specifically, we fo-
cus on answering this question in the context of mobile
app permissions, comparing models with permission set-
tings that take the purpose of permissions into account
versus models that do not. We present quantitative re-
sults aimed at evaluating this trade-off between accu-
racy and user burden across a number of parameter
configurations. Results suggest that machine learning
can indeed help mitigate trade-offs between accuracy
and user burden. In particular in the context of models
that take the purpose of permissions into account, our
study suggests that it is possible to get the “best of both
worlds”, namely doing a better job at accurately cap-
turing people’s privacy preferences while simultaneously
reducing the number of privacy decisions they have to
make. While similar studies would need to be conducted
in other domains to determine whether they might ben-
efit from more expressive privacy settings and to what
extent machine learning would help mitigate the poten-
tial increase in user burden associated with the intro-
duction of such settings, our results are significant in
their own right. They show that greater expressiveness
in privacy settings does not have to necessarily translate
into greater user burden and that machine learning can
help mitigate tradeoffs between user burden and accu-

racy. In addition, our results also strongly argue for the
introduction of purpose-specific permissions in mobile
operating systems such as Android and iOS:
– As our results show, people’s privacy preferences

are strongly influenced by the purpose for which
permissions are requested. Regulations such as the
EU GDPR further mandate obtaining consent from
users for the collection of their data for specific pur-
poses.

– Our results further suggest that, using machine
learning, interfaces could be built to mitigate the
increase in user burden that would otherwise result
from the introduction of purpose-specific mobile app
permissions.

Main Contributions

Our study sampled 5964 observations of privacy pref-
erences toward three sensitive Android app permissions
(calendar, location, contacts), across a corpus of 108
apps, from a large sample of Android users (n = 994) in
the United States.

We performed a logistic regression analysis, confirm-
ing that purpose has a significant effect on participants’
expressed preferences for app permissions, and observed
patterns across many factors (including demographics).
These patterns are indicative of predictive power. We
used these factors to improve recommendation models
for privacy preferences, leveraging privacy profiles that
incorporate a combination of supervised and unsuper-
vised machine learning (agglomerative hierarchical clus-
ters and conditional inference trees). We empirically de-
termined the number of questions required to success-
fully profile users and count the instances where addi-
tional user input is required to make strong predictions.
We measured the differences in efficiency and accuracy
between the models which consider purpose and those
which do not. We find that models which incorporate
purpose make more accurate predictions, and can also
reduce the overall user burden, even when compared
to other similar state of the art approaches [23]. Using
machine learning, our approach demonstrates that it is
possible to improve the expressiveness of the Android
permissions model without trading efficiency for effec-
tiveness.

We address the following research questions:
1. What is the impact of purpose (and other con-

textual factors) on the predictive power of ma-
chine learning models for Android permission pref-
erences?
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2. What effect does this predictive power have on the
accuracy of recommendations made by privacy pro-
files?

3. Can we make better predictions without increasing
user burden?

2 Related Work
This research builds on existing work in mobile app pri-
vacy management and privacy preference modeling and
prediction.

2.1 Evolving Mobile App Privacy

Today, smartphones gather myriad sensitive data about
users. Many mobile apps access users’ sensitive data not
only to deliver their core functionality, but also for ad-
vertising [2, 9, 20], and unspecified purposes [35, 43] – a
common practice in the age of data economy where per-
sonal data is increasingly commoditized [47]. However,
users often express surprise and concern when they learn
about the extent of such collection and use of sensitive
data by mobile apps [18, 20, 29, 38, 44]. A recent study
showed that both when and why a data practice occurs
influence users’ comfort levels, with nuances pertaining
to a variety of contextual factors, including purposes in
particular [45].

Ask On First Use (AOFU) is the current privacy
management scheme of Android, the largest mobile plat-
form. AOFU incorporates some contextual factors which
have been shown to influence privacy decision mak-
ing [4, 8, 26, 42]. However, Android does not support
purpose-specific permissions, despite prior work sug-
gesting purpose is an important factor in privacy de-
cision making [22, 37]. Even where notice is informally
provided, there is no affordance to grant permissions
for one purpose and not another. Mobile ecosystems are
now pressured to incorporate purpose-specific mecha-
nisms for controlling data access and obtaining user
consent under GDPR. Since GDPR, improvements have
been made to AOFU, but meaningfully expressing con-
trol over purpose is still elusive [5, 27, 34]. Outside of
Android, iOS requires app developers to use text de-
scriptions to explain the purpose for app permissions in
request dialogues. However, Tan et al. [40] found that
many iOS developers did not meaningfully express ac-
curate purposes and that users tended to allow permis-
sions with some explanations. Another study suggested

that participants tended to allow permissions without
explanations, but were less permissive with vague ex-
planations [37]. It remains a challenge to effectively in-
corporate purpose into mobile permissions. Our aim is
to explore how to best incorporate purpose into the per-
missions system, using machine learning to achieve more
expressive permissions without increasing user burden.

2.2 Improving Permission Management

AOFU requires that users endure the burden to express
their privacy preferences by making permissions deci-
sions when permissions are requested by apps. Under
the backdrop of increasing app functionality, both iOS
and Android apps require users to make more permis-
sions decisions than ever. Usability research shows that
increasing the number of controls leads to serious effi-
ciency problems. Many users are habituated to dismiss-
ing prompts, and do not consider their actual prefer-
ences when permission management comes in the way
of achieving their immediate goals. Often, this results in
disappointment, frustration, and a feeling of cynicism or
loss of control [1, 22, 36, 37].

Early permission managers have difficulty align-
ing the increasing number of configurable settings with
users’ individual preferences [3, 32]. One approach is
for mobile platforms to share the burden, by provid-
ing default settings based on crowd-sourcing or expert
opinions [2, 33]. These solutions cannot sufficiently cap-
ture individual users’ diverse privacy preferences [24].
Instead, machine learning techniques can be used to
model and predict segments of users’ preferences. These
techniques include collaborative filtering [15, 52] and
privacy profiles [10, 50]. Privacy profiles are collections
of privacy and sharing rules that reflect the preferences
of similar-minded people [19, 50]. It is possible to iden-
tify privacy profiles that sufficiently capture diverse pri-
vacy preferences in both social media settings [10, 51]
and mobile app privacy management [22, 24]. A recent
field study demonstrates that profiles can provide effec-
tive app privacy recommendations for basic permissions
without overwhelming users [23]. Building on the prior
work, we provide an unambiguous measure of the effec-
tiveness and efficiency, to compare privacy profile-based
models that include purpose and those which do not.
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2.3 Specifying or Inferring Purposes

Contextual integrity theory argues that privacy should
be evaluated in context [30], and the purpose for data
collection is a fundamental contextual factor [20, 25, 37].
Recent research has used various contextual factors,
such as the extent of data practices and foreground ver-
sus background data access to model finer-grained app
privacy preferences [4, 25, 48, 49]. Many researchers
have attempted to incorporate purposes into privacy
preference modeling and prediction [22, 23, 25]. Since
purpose-specific control options currently do not exist
on mobile app platforms, researchers must either assume
or infer the purpose for permissions, or provide separate
ways for app developers to express them outside of the
permissions model.

Purpose specification and inference approaches rely
on static code analysis of apps [9, 14, 46] or context-
aware and network traffic analysis [4, 17, 49]. Some tools
rely on taxonomies to specify and infer categories of
purposes. TaintDroid [9] categorized purposes into le-
gitimate or non-legitimate. Others have adopted more
complicated taxonomies with hierarchies of purpose cat-
egories [17, 22, 25, 46]. Data Controller Indicators [44]
distinguished among core functionality, non-core func-
tionality, and marketing.

Solving the purpose specification and inference
problem is outside the scope of our work. Our aim is
to explore a hypothetical Android permissions model
which enables users to express control over permissions
subject to purpose. A recent study showed that a gran-
ular taxonomy of purposes affected smartphone users’
comfort levels in a nuanced way [45]. However, prior
work also suggests that complicated purpose explana-
tions can often confuse users [40]. To avoid potential
confusion, we decided to use a simplified taxonomy re-
vised from prior work [20, 23, 44] to include three basic
purposes: internal (to provide basic app functionality),
advertising, and other/unspecified. We also designed a
purpose-independent null condition that is aligned with
AOFU to elicit users’ preferences to allow or deny per-
missions, where control with respect to purpose is not
expressible and no purpose is mentioned. We provided
clear definitions of each purpose to participants, based
on the understanding that the way in which express-
ible purposes (or the lack thereof) may be subjectively
interpreted is variable. This variability may also be in-
fluenced by other factors, including demographics and
smartphone usage behavior, which were measured in
post-survey questionnaires.

3 Methodology
We elicited the privacy preferences of Android users us-
ing a large-scale IRB approved survey with 994 par-
ticipants. Participants were recruited and compensated
via the Amazon Mechanical Turk platform. A consent
form with screening questions was presented prior to
participation and data collection. All participants were
required to be Android smartphone users located in the
United States, and at least 18 years old. Participants
were required to affirm that they meet all required cri-
teria when signing the consent form, otherwise, they
were ineligible to participate and were removed from
the participant pool. Additionally, we designed atten-
tion check questions to reconfirm the answers to the
screening questions elsewhere in the survey.

First, participants were asked about their prefer-
ences independent of purpose, where no purpose was
expressible. We generally refer to these preferences
and their associated analyses as purpose-independent.
Next, participants were asked to reconsider their pref-
erences under three expressed purposes: internal, ad-
vertisement, and unspecified/other purposes. These are
referred to as purpose-specific.

Survey responses were first analyzed using logis-
tic regression. We believe that purpose as a contex-
tual factor may impact two usability aspects: effi-
ciency and effectiveness [16]. Efficiency is the mea-
sure of user burden, such as time and energy required
for privacy management. Effectiveness is the measure
of the accuracy and completeness of a particular pri-
vacy management scheme. Next, we applied machine
learning techniques to evaluate if privacy profile-based
models could improve app privacy permission man-
agement in terms of efficiency and effectiveness. We
generated agglomerative hierarchical clusters for simi-
lar individuals in our dataset, aggregating their prefer-
ences into privacy profiles. A profile is a model of ei-
ther (app category × permission) recommendations or,
(app category × permission × purpose) recommenda-
tions.1 Once an unknown individual has been matched
to a profile (referred to as profiling), the profile can be
queried for recommendations across all permissions and
app categories. Conditional inference decision trees are
used to perform profiling and to evaluate the number

1 We refer to purpose-specific and purpose-independent per-
missions as permissions generically, for brevity. All models ei-
ther contain purpose-specific or purpose-independent permis-
sions, but not both.
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of questions needed to profile. Profiles and the decision
trees used in profiling are static models. Once trained,
they do not continue to learn from profiling or queries.

One way that privacy profiles differ from traditional
classifiers and recommendation systems is that in some
cases profiles cannot make a recommendation for a par-
ticular permission. This can be due to sparse data or
lack of consensus. Where the clusters of individuals that
make up a profile have greater than a specified threshold
for consensus about a preference, the profile makes a rec-
ommendation. In our study, we tested multiple thresh-
olds between 70% and 90%. Where recommendations
cannot not be made (known as null recommendations),
we default to AOFU: the user is directly asked whether
to allow or deny a permission instead. Traditional mea-
sures of classifier performance (such as precision and re-
call) are limited to evaluate our techniques, since they
cannot account for null recommendations. We employ
two alternative measures of performance. Our measure
of effectiveness is the accuracy in cases where recom-
mendations are made that coincide with participants’
surveyed preferences, divided by the total number of
recommendations made. Efficiency, in contrast, is the
measure of user interactions required to both perform
profiling plus the number of AOFU-style preference elic-
itation prompts (in cases of null recommendations).

3.1 Survey Design

We designed our survey to collect data about partici-
pants’ app permission preferences through a large num-
ber of realistic vignette scenarios. It consists of a main
survey and a post-survey demographic questionnaire.
The first subsection is a primer on Android permissions
in layperson’s terms, which we revised from the An-
droid developers’ documentation [12]. The primer gave
participants of varying technical fluency basic knowl-
edge about Android permissions, necessary to complete
the survey. The primer also explained the 3 sensitive
permissions we asked about in the survey (i.e. contacts,
location, and calendar), and the 3 general categories of
purposes we considered: (1) internal, which is required
for the app to deliver its basic functionality; (2) adver-
tising, including personalized advertisement, generally
collecting, and analyzing data about the user; and (3)
unspecified, including any other unspecified or unknown
purpose.

The second subsection elicits app permission prefer-
ences. Participants answered questions about their pri-
vacy preferences towards 6 different Android apps ran-

domly selected from a pool of 108 Android apps. We
curated the pool by randomly selecting 54 popular apps
(> 5M downloads) and 54 less popular apps (between
50K and 5M) across all app categories in the Play Store.
3 popular apps and 3 less popular apps were shown to
each participant in randomized order. The distribution
of apps from each category roughly approximated the
frequency in the Play Store at the time of surveying.
Apps were revealed along with questions about the par-
ticipants’ privacy preferences towards permissions to al-
low or deny each permission.

First, we showed a screenshot of an app from the
Google Play Store, in the identical format seen on a typ-
ical Android device. To simulate a realistic app down-
load scenario, we instructed participants to examine the
screenshot as they would normally do when making the
decision to download and install an app on their phone.
Following the app screenshot, we asked questions about
their familiarity with the app, their frequency of use,
and their preferences to allow or deny the app access to
the three permissions. Throughout the survey, partici-
pants could hover over information icons to see the def-
inition of each permission as introduced in the primer.
These questions serve as the baseline of participants’
purpose-independent privacy preferences – no mention
of purposes is made, and the specific purpose for the per-
mission is not expressible. Last, we asked participants
about their preferences to allow or deny the app access
to the same permissions in 3 scenarios, where the 3 pur-
poses described in the primers are expressed. For each
app, we collected 12 binary preferences (allow or deny)
in total: 3 purpose-independent, and 9 purpose-specific.
A generic version of the survey instrument (without
app-specific information or Play Store screenshots) can
be found in the appendix.

The post-survey questionnaire asked about partic-
ipants’ demographics and smartphone usage behavior,
including frequency of use, number of apps installed,
number of apps used. These questions helped to deter-
mine the likely number of permissions decisions a typical
participant would encounter. The number of privacy-
related surveys participants had previously completed
was also measured. All responses were mutually exclu-
sive categorical factors. In total, the instrument sampled
16 control factors, including app familiarity, app usage,
demographics, and smartphone usage. Traditional rank-
ings of privacy awareness such as IUIPC were omitted
from our survey, due to lack of statistical significance
in prior work [23]. Additionally, we embedded attention
check questions throughout the survey. We withdrew
participants who failed to correctly answer 2 or more
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attention check questions, and their responses were au-
tomatically discarded. Participants who completed the
survey were each compensated $3.00 for the 15-minute
nominal survey duration. The comprehensive list of fac-
tors and their statistical significance in regression mod-
els can be seen in the appendix.

3.2 Feature Selection with Logistic
Regression

To test the statistical significance of all 16 control fac-
tors included in the survey, we used a matrix of bi-
nomial mixed-effects multiple regression models. Each
model was fit by maximum likelihood (Laplace Approx-
imation) [6]. We modeled the random identifier assigned
to each participant and the names of the apps they were
shown as random effects. The 12 outcome variables and
16 factors were modeled as fixed effects. A priori power
calculations were performed using G*Power [11] to de-
termine the required number of participants and error
rates to achieve a statistical power of 95%. We assumed
a small effect size (f2 = 0.03) with an error probability
of α = 0.05 (Power = 1 − β = 0.95), which required
n = 873 to achieve noncentrality of λ = 26.19, a critical
F score of F = 1.76, and an expected actual power of
Power = 0.950.

Bonferroni-corrected hypothesis tests were used to
determine whether any of the tested predictors were in-
fluenced by the control factors. Each regression model
in the matrix was tested using χ2 analysis of variance
(ANOVA) against a random-effects-only null model.
The design matrix consisted of each permission on one
axis, with all fixed effects on the opposing axis. 12 inde-
pendent hypothesis tests were performed on each fixed
effect, one for each of the tested predictors (permis-
sions). Fixed effects which were shown to be statistically
significant (prχ2 ≤ 0.05) were kept as features for fur-
ther analysis with machine learning. Fixed effects with
weak or no significance (prχ2 > 0.05) are reported on
in our results, but were not included in later models –
these may have some limited predictive power.

Once the design matrix was tested, the purpose-
specific models were subjected to ANOVA against the
purpose-independent models. This tested the hypoth-
esis that, given the same effects, the outcomes (ex-
pressed preferences) differ, depending on the purpose.
The purpose-independent model was used as the null
model. By determining that there was a statistically
significant difference between the models in the design
matrix, hypothesis testing confirmed whether the affor-

dances related to purpose influenced the participants’
expressed preferences. If the null hypothesis was re-
jected, there are measurable differences in responses
when purpose is expressible. Based on the rejection of
the null hypotheses, we show that purpose is a signifi-
cant factor in the regression model. By examining the
fixed effects coefficients in each regression model, we can
quantify the impact of of each factor on likelihood to al-
low or deny, based on the levels of each factor. These
manifest as changes in regression β-coefficients per dif-
ferences in age, app category, and so on.

3.3 Building and Evaluating Privacy
Profiles

Logistic regression allowed for a systematic and princi-
pled approach to feature selection for machine learning
models. We built privacy profiles that can make rec-
ommendations for individuals based on the features in-
cluded in the model. Profiles can further tailor predic-
tions about privacy preferences to representative seg-
ments of Android users and mitigate the need to ask
additional questions to get personalized recommenda-
tions. Participants’ responses were clustered and aggre-
gated using individual feature vectors comprised of the
fixed effects found to be significant in logistic regression,
across each permission and app category. The survey
dataset was divided into a validation set and training
set for machine learning with a 90/10 split, using 10-
crossfold validation. A summary of the approach can be
seen in Figure 1.

3.3.1 Clustering and Profile Generation

Our approach employs agglomerative hierarchical clus-
tering to cluster similar individuals, which is a paramet-
ric unsupervised machine learning method. Each collec-
tion of profiles for a given k hyperparameter is referred
to as a single model. The parameter k refers to the
number of profiles to be used, dividing up the train-
ing data into k clusters, and matching the individuals
in the test data to these clusters during profiling. A
generalization of Gower’s distance was used to measure
individual dissimilarity, applying a standardization and
normalization based on the data type of each element in
the feature vectors agglomerated into clusters. Gower’s
distance is a harmonized dissimilarity metric, suitable
for the mixed categorical and binary data types in in-
dividuals’ survey response feature vectors [13]. Features
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Fig. 1. Our approach to training and evaluating privacy profiles.
Recommendation queries originate from unknown individuals in
the held-out test portion of the dataset in each crossfold. The
process is repeated for each k in the hyperparameter sweep.

related to permissions preferences were transformed into
range-normalized quantitative scales from 0 to 1, where
1 was most likely to allow, and 0 was most likely to
deny. This transformation was necessary to aggregate
the likelihood for an individual to allow a permission for
a particular app category, rather than individual apps.
Where users were shown multiple apps from the same
Google Play Store category, the mean across all apps in
the same category was used. Participants were surveyed
about apps which were distributed uniformly randomly
across all Google Play Store categories, thus, individuals
were shown apps according to the same frequency as the
distribution of categories in the Play Store. There are
over 2 million apps in the Google Play Store, belong-
ing to 25 mutually exclusive categories at the time of
data collection. Since making predictions about individ-
ual apps would require information about all apps in the
Play Store, we instead make generalized recommenda-
tions based on their categories. To arrive at a normalized
measure of individual preference to allow/deny permis-
sions based on app category, rather than for individual
apps, between-subjects responses collected about mul-
tiple apps were bucketed based on their app categories
and the resulting mean was used.

Transformed and aggregated app category prefer-
ences are compared using Manhattan distance. For the
remaining features (i.e. demographics, which are all
mutually-exclusive nominal categorical responses), each
feature is converted to mutually exclusive binary vec-
tors and the Dice coefficient is used. The cluster hierar-

chy is cut at the specified k, organizing all individuals
into k separate clusters with minimal feature dissimi-
larity. Each participants’ feature vector is labeled with
their cluster number, 1 through k. Unique individual
identifiers (i.e. survey completion codes) are omitted,
clustered preferences are aggregated, and the result is
k profiles. The agreement thresholds where the aggre-
gated preferences for a cluster are sufficient to make a
recommendation were tested at 70%, 80% and 90%. In-
dividuals in the test set are profiled, queried, and the
recommendations made by their profile are compared
against the individual’s expressed preferences from their
survey responses to evaluate accuracy.

To evaluate our parametric hierarchical clustering
approach, we created a mapping of the hyperparam-
eter space with respect to effectiveness and efficiency.
The process of clustering, building profiles, and count-
ing the number of traversed nodes in the inference trees
was repeated for each even value of k from 2 through
40, in a hyperparameter sweep. We then repeated this
same hyperparameter sweep, simulating and evaluating
the performance for up to 36 apps, which is known to
be a common number of apps installed and used on
Android smartphones [41] and was consistent with our
survey results. The sweep was performed at each of the
three agreement thresholds – 80% was found to be opti-
mal for both efficiency and effectiveness. The sweep and
simulation results are reported on in section 4.3.

3.3.2 Evaluation Procedure and Assumptions

We evaluate the ability of privacy profiles to make
accurate recommendations, while limiting the number
of user interactions. Since each survey participant was
shown 6 apps (to limit fatigue and maximize ecological
validity), our initial evaluation was limited to scenarios
with a maximum of 6 apps per user. Further evaluation
using simulations was performed, based on the Boot-
strap distribution of the performance characteristics of
profiles built using our 6-app dataset. These simulations
were used to predict and evaluate the effectiveness and
efficiency of our approach with the expected number of
apps found in real-world scenarios, using conservative
assumptions.

One part of evaluating efficiency is characterizing
the number of interactions required up-front to pro-
file users. The formula for calculating efficiency (E), in
terms of the number of user interactions, is given as
E = profile + ask, where profile represents the num-
ber of questions required to profile an individual. The
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Fig. 2. Detail of one branch in the k = 20 decision tree for
the purpose-specific model, showing 2 decision nodes and 3 leaf
nodes. The remainder of the tree is not shown.

second part, ask, counts the number of instances where
a user would need to answer an AOFU prompt in the
absence of a recommendation.

Profiling uses conditional inference decision trees to
re-estimate the regression relationship between clusters
and individual preferences. Trees are composed of uni-
directional connected decision nodes based on the most
statistically significant model features: app categories,
demographic factors, and permissions from the design
matrix used in the logistic regression analysis. The per-
mutation tests used in the tree generation are based
on Strasser and Weber’s method, using Bonferroni-
corrected p-values [39]. Significance is the same as the
original logistic regression models (α = 0.05). The
length of the tree path traversals from root to leaf
nodes are used to characterize the number of ques-
tions required to profile an unknown individual from
the test dataset. The decision nodes in the trees are
questions that must be answered by the participant
which determine which profile they should be assigned
to. The answers are known a priori from their survey
responses. The leaf nodes represent a probabilistic con-
clusion about which profile that the individual ought
to be assigned to (see Figure 2). By counting the num-
ber of decision nodes required to arrive at a leaf node,
we can directly observe the number of user interactions
required to profile an individual.

Regardless of the number of recommendations a pri-
vacy profile is queried about, profiling need only oc-
cur once per individual user. For any given individ-
ual’s profile, the ability to make a recommendation does
not change based on the number of queries it under-
goes or the number of recommendations it makes over

time. Profiles and the decision trees used in profiling
are static. Therefore, with respect to efficiency, no addi-
tional assumptions are required for our analysis or eval-
uation. Privacy profiles can be queried for recommenda-
tions ad infinitum, and can be asked to make recommen-
dations for an unlimited number of new apps without
the need to profile individuals more than once. As such,
the number of interactions required for profiling is al-
ways constant for any given individual, and efficiency
can only decrease proportionally to the number of in-
stances where no recommendation is made. Querying a
profile about additional apps for a particular individ-
ual introduces opportunities to make more recommen-
dations and possibly null recommendations, decreasing
efficiency.

Measuring effectiveness is based on the proportion
of correct recommendations, and is not sensitive to
the number of user interactions. Effectiveness is es-
sentially a measure of profile accuracy (A), given as
A = (C+null)/Q where C is the number of correct rec-
ommendations, null is the number of instances where
recommendations were not made, and Q is the number
of queries for recommendations. Based on this formula,
in an instance where no recommendations can be made,
the accuracy is assumed to be 100%, as we must assume
that the AOFU user interactions that would take place
in lieu of a recommendation always elicit user prefer-
ences accurately. Accuracy is not penalized when rec-
ommendations are not made, so accuracy alone is not
the sole measure of effectiveness. Evaluation must also
consider the contextual factors that are included in the
model, and determine what the acceptable trade-off in
efficiency is for a given accuracy requirement, or vice
versa.

To simulate the effectiveness of a profile when
queried about an arbitrary number of apps, we must
make an additional conservative assumption; that the
expected accuracy of the profiles’ recommendations for
an arbitrary number of apps lies within the Bootstrap
distribution of accuracy for our 6-app dataset. We use
the mean of this distribution for 6 apps when simulating
querying profiles for 36 apps, for all values of k in our
hyperparameter sweep. This is a reasonable assumption
given that the profiles that are being queried in our sim-
ulation are the same static profiles that were trained and
evaluated with 6 apps, subjected to additional queries.

Because of our limited assumptions, our analysis,
simulation, and evaluation are conservative. Our results
show that privacy profiles can help mitigate the need
for additional interactions by users to elicit their prefer-
ences as more apps are installed, in many circumstances.
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In contrast, the current AOFU model in Android always
requires the maximum number of additional interactions
to elicit preferences for new apps, in all circumstances.

4 Results
In this section, we report the results of our survey, find-
ings made during our regression analysis, and the eval-
uation of our privacy profile-based models.

4.1 Survey Responses

In total, our survey gathered 1092 responses. 98 partic-
ipants’ responses were removed. Of those 98, 38 were
removed due to withdrawal or incomplete surveys (3%
withdrawal rate). 60 responses were rejected due to fail-
ure to correctly answer several attention checks (6%
overall rejection rate). Rejected responses were analyzed
for evidence of systematic survey abuse; the mean time
for responses was approximately 13 minutes, similar to
the overall expected duration of the survey based on pi-
lots. However, the median time for rejected responses
was only 8 minutes, with a standard deviation of 12.2
minutes. Among all respondents, there was a mean of
0.24 erroneous responses to attention check questions,
with median 0 errors, and standard deviation of 0.94
errors per survey. When respondents did fail attention
checks, they failed most of them. Based on this data,
we observe that overall most participants did not fail
any attention checks, and approximately 95% of respon-
dents made no mistakes on attention checks. This seems
to suggest that most participants filled out the survey
in earnest, and were paying close attention.

4.2 Logistic Regression and Feature
Selection

For each of the 3 purpose-independent permissions, and
the 9 purpose-specific permissions, logistic regression
models identified clear patterns of significance in the
fixed effects factors. The final design matrix contained
only the factors which were shown to be strong pre-
dictors based on strong statistical significance (prχ2 <

0.05). These included Familiarity with App, App Cate-
gory, App Usage Frequency, Age, Education Level, Par-
ticipant City Size, Marital Status, and Number of Apps
Used.

Factors with marginal or weak significance were
discarded; these included Gender, Employment Status,
Smartphone Usage Frequency, Smartphone Usage Du-
ration, Android Version, and Participant’s Number of
Recently Completed Privacy Surveys. Gender showed
weak significance across all permissions, regardless of
purpose. Surprisingly, Marital Status was a very strong
predictor across all permissions preferences. In particu-
lar, participants who were divorced, widowed, or never
married were most similar and were more likely to deny
permissions broadly. Participants who were married or
separated were more likely to allow, in comparison to
those who were divorced. While Employment Status
was generally a very weak predictor, it was observed to
have strong significance for Calendar permissions. Par-
ticipants who are not working because they were retired
or disabled were more likely to deny, while those who are
students, paid employees, laid off, or otherwise looking
for work were more likely to allow.

The variance in Participant Smartphone Usage Fre-
quency and Participant Smartphone Usage Duration
was the likely explanation for the observation that
these two factors had very weak significance, with only
marginal significance (if any) in many cases. This sug-
gests that this aspect of smartphone usage behavior is
not a useful predictor. However, Number of Apps In-
stalled and Number of Apps Used appeared to be a
very strong predictor in almost all cases; there is a clear
trend where participants are more likely to allow ac-
cess to permissions if they have many apps installed,
and if they report that they use many of them. Partic-
ipants with small numbers of apps installed and used
were more likely to deny permissions in many cases,
perhaps because participants who are more privacy con-
scious download fewer apps.

Android Version and Participant’s Number of Re-
cently Completed Privacy Surveys had too little signifi-
cance to observe any clear response trend. Participants’
number of recently completed privacy-related surveys
did not appear to correlate with any particular charac-
teristic of responses, nor did Android version. Many par-
ticipants self-reported outdated Android versions, in-
cluding some which do not support AOFU, which sug-
gests that they may not have the technical knowledge
to determine what version they had.

The significance levels of all factors, and all per-
missions, can be found in the appendix. The results
of the final ANOVA are summarized in Table 1. The
null hypothesis is that there are no differences in
responses between the purpose-specific and purpose-
independent models. The purpose-independent model
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Contacts
Df χ2 χDf pr(> χ2)

Null vs. Internal 57 ≈ 0 0 ≈ 1
Null vs. Advertisement* 57 1039.1 0 ≤ 2.2× 10−16

Null vs. Other/Unspec.* 57 1577.6 0 ≤ 2.2× 10−16

Calendar
Null vs. Internal 57 ≈ 0 0 ≈ 1
Null vs. Advertisement* 57 1292.1 0 ≤ 2.2× 10−16

Null vs. Other/Unspec.* 57 2025 0 ≤ 2.2× 10−16

Location
Null vs. Internal 57 ≈ 0 0 ≈ 1
Null vs. Advertisement* 57 1180.7 0 ≤ 2.2× 10−16

Null vs. Other/Unspec.* 57 1952.1 0 ≤ 2.2× 10−16

Table 1. ANOVA of purpose-independent regression models
(Null) versus purpose-specific models. Those marked with an
asterisk reflect the rejected null hypothesis.

is the null model, which is subjected to ANOVA ver-
sus the purpose-specific models across the three permis-
sions. The alternative hypothesis is that the purpose-
specific information has measurably different responses.
It is clear based on the rejection of the null hypothe-
ses that there are measurable differences when compar-
ing purpose-independent to purpose-specific regression
models, except in the case of Internal. One possible ex-
planation is that participants already assumed that the
app permissions which were purpose independent are
already declared because they are ostensibly for Inter-
nal purposes. Regardless, rejecting the null hypothesis
provides strong evidence that the participants’ purpose-
independent expressed preferences do not intersect with
their purpose-specific expressed preferences in a signif-
icant number of instances. There is a significant differ-
ence in expressed preferences between the two types of
affordances – this implies that users would clearly ben-
efit from the ability to express purpose-specific prefer-
ences. We elaborate on this in section 4.3.

4.3 Analyzing and Evaluating Privacy
Profiles

Here we present the measures of efficiency and effec-
tiveness in our analysis using machine learning. We use
hierarchical clustering to build privacy profiles and con-
ditional inference decision trees to do profiling. We then
evaluate the recommendation accuracy and number of
additional interactions required by each model.

Our hyperparameter sweep of k values showed
two dominant tendencies of values for k, for both
the purpose-independent and purpose-specific models.
There appeared to be a relationship between efficiency

and effectiveness as the agreement threshold changes;
as the threshold is raised, the profiles are able to make
slightly more accurate recommendations, at the cost of
an increased number of user interactions. In our results,
we report on the hyperparameter sweep with an agree-
ment threshold of 80%, as it was found to be the best
trade-off between efficiency and effectiveness. We found
that with an agreement threshold of 70%, the mean ac-
curacy of our recommendations decreased by approxi-
mately 5%, and the average number of additional inter-
actions decreased by 3 nearly uniformly for all values of
k. At a threshold of 90%, the mean accuracy increased
by 5%, and the average number of additional interac-
tions increased by 3 for all values of k.

As can be seen in Figure 3, the accuracy overall ap-
pears to be within the range of approximately 75% to
90% across all values of k in both models. The accuracy
of the purpose-specific model is a few percent higher on
average, particularly at k > 14, even though it incorpo-
rates additional context.

While the difference in effectiveness between the two
models is not particularly large, there are larger differ-
ences in efficiency. This can be seen at a glance in Figure
4a and 5a. Questions about the overall “best” models
and k are best answered using the scatterplots in Fig-
ure 4b and 5b. In these graphs, the x-axis is the overall
efficiency measure, showing the number of user inter-
actions in the expected case to perform profiling and
recommendations for 6 apps (the sum of the two lines
in Figure 4a and 5a respectively). The y-axis represents
the overall recommendation accuracy (seen in Figure 3).
The individual points are labeled with the value of k,
colored by model type. What is evident is the relation-
ship between accuracy and the number of user interac-
tions. Where the highlighted regions show the central
tendency of the two models, one can observe that the
purpose-specific model consistently shows fewer user in-
teractions for proportionally higher accuracy overall.

There are outliers from the highlighted areas in Fig-
ure 4b. In particular, it’s worth noting k = 2 and k = 4
are outliers in both models, appearing to suggest that
the best accuracy/efficiency trade-off might occur with
very small numbers of profiles. However, using such a
small number of profiles is impractical for the same rea-
sons identified in prior work, which found that a single
set of defaults or a very small number of profiles are
too internally heterogeneous to generalize well [22, 23].
With 36 apps, small values of k prove far worse than
they appeared in Figure 4b with only 6 apps, because
they cannot make recommendations in a much higher
percentage of instances. With low values of k, it takes
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Fig. 3. There is a minimal difference in accuracy between the
purpose-specific and purpose-independent models. The effective-
ness is higher for most values of k in the purpose-specific model.

a very small number of questions to profile individuals,
the highest numbers of additional interactions are re-
quired as these profiles seldom make any recommenda-
tions. As such, they sub-optimally trade higher accuracy
for many more additional user interactions.

Profiles with small values of k are far more timid
about making recommendations due to lack of con-
sensus, but make accurate recommendations in limited
cases when they can. In contrast, in terms of user in-
teractions, they will always be worse than more per-
sonalized models with more clusters. Recall that once
trained, profiles do not change, so the number of ques-
tions required to profile an individual is always the same
regardless of the number of queries they are subjected
to. As one would expect, the overall number of aver-
age user interactions increases in the 36-app simulation
(Figure 5b, but the points under the red and blue high-
lighting show a much more consistent manifold and the
outliers now fall within the central tendency.

We observe that while it is easy to profile individu-
als with a very small number of profiles, the true cost in
additional user interactions comes from the profiles’ in-
ability to make recommendations afterward. Recall that
efficiency is the measure of user interactions required to
both profile users, and additionally to ask their pref-
erences when a recommendation cannot be made for a
particular app. As the number of profiles increases, the
number of questions required to profile individuals in-

creases, but this increase flattens out substantially after
k > 10. This can be seen in Figure 4a and 5a as well.
Note that there is a similar inflection point in the de-
creasing trend for additional interactions where recom-
mendations could not be made.

4.3.1 Choosing k for a Given User Interaction Budget

Instantiating a profile-based privacy assistant requires
that one model (either purpose-specific or purpose-
independent) be chosen, using a single value of k. Ide-
ally, one would choose a value which is best suited to a
desired efficiency and effectiveness trade-off – either by
choosing an upper limit for the number of user interac-
tions or achieving a particular accuracy percentage.

Choosing one of the values seen in the purpose-
specific model (yellow-highlighted point cloud) in Figure
4b or 5b would be most ideal overall, as they lie within a
Pareto-optimal grouping with higher accuracy and fewer
user interactions. A helpful way to frame this is to de-
scribe the graph in terms of the maximum accuracy that
can be achieved for a given limit on interactions for 36
apps. Note that there is no single optimal k value over-
all; the choice must be made based on either a maximum
budget of user interactions, or a target accuracy figure.
Thus, for a budget of around 30 user interactions, we can
see that the purpose-specific model is optimal at k = 28
or k = 24, achieving an accuracy of around 78%. In con-
trast, the purpose-independent model has no value of
k which can work within this budget. For a budget of
around 40 user interactions, the purpose-specific model
is optimal at k = 16, achieving an accuracy of around
83%. In contrast, the purpose-independent model is op-
timal at k = 18, achieving an accuracy of only 80%. For
a budget of around 50 user interactions, the purpose-
specific model is optimal at k = 14, achieving an accu-
racy of 85%, well under budget (with only around 45 in-
teractions). In contrast, the purpose-independent model
is optimal at k = 12, achieving an accuracy of around
83%. It is worth noting that the purpose-independent
model is able to achieve the highest accuracy at k = 6
– in this case, the accuracy is misleading, because the
model makes recommendations in the fewest circum-
stances, requiring the highest budget of 60 user interac-
tions.

Our assumptions (detailed in section 3.3.2) allow
the possibility to achieve maximal 100% accuracy by
abandoning privacy profiles altogether and resorting to
AOFU. In the case of 36 apps, 3 permissions, and 3
purposes, 36 × 3 × 3 = 324 user interactions would be
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(a) This graph breaks apart the efficiency measurement into the number
of interactions required to profile a user (profile), and the number of addi-
tional interactions required when recommendations cannot be made (ask).
The sum of the two is also shown.

(b) This plot shows the overall relationship between efficiency and effec-
tiveness at different values of k, using the data for 6 apps. Higher accuracy
and fewer user interactions are more desirable.

Fig. 4. Hyperparameter sweep for 6 apps.

(a) The number of interactions required to profile a user is static, as can
be seen when comparing with the profile line in Figure 4a. The ask line
increases proportionally to the number of apps; both models are queried for
more recommendations, but the purpose-independent model makes fewer
recommendations, and must ask additional questions more often.

(b) The overall relationship between efficiency and effectiveness. Note that
the number of user interactions varies, as can be seen between the two
figures 4a and 5a.

Fig. 5. Hyperparameter sweep for 36 apps, simulated using the Bootstrap distribution from 6 apps.
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required. In contrast, profiles would require new inter-
actions in only 17% of instances in the worst case (28 in-
teractions at k = 6 in the purpose-independent model),
and only 8% of instances in the best case (k = 34 in the
purpose-specific model).

4.3.2 Example at k = 20

To highlight differences in the characteristics of the
purpose-specific and purpose-independent models, we
show an illustrative example at one value of k. We can
see in Figure 6a that at k = 20, the purpose-independent
model shows several dominant clusters. This suggests
that a large proportion of users fit into a small number
of dominant categories, however, the remaining clus-
ters still account for the majority of users overall. In
the purpose-specific model (Figure 6b) we observe that
there is a greater tendency towards a single dominant
cluster, but there is greater variability in the propor-
tions of the other clusters. A similar trend in cluster
membership was observed across other values of k, par-
ticularly those where k > 8. This supports the idea that
while many individuals generally tend towards similar
preferences, there is broad variability that can be better
expressed along the extra dimension of purpose. Vari-
ability makes preferences more heterogeneous when in-
dividuals are clustered among a small number of pro-
files. This observation is further supported by mea-
sures of intra-cluster similarity. Larger numbers of pro-
files are more internally homogeneous in the purpose-
independent model. Comparing silhouette coefficients,
we see the average silhouette coefficient for the purpose-
independent model in the k = 20 example is 0.03, and
for the purpose-specific model is −0.07. Both coeffi-
cients suggest overlapping clusters, which is unremark-
able considering the nuances of individual preferences,
but the purpose-specific model has slightly less internal
homogeneity. However, balanced against the efficiency
of higher values of k, it is clear that small numbers
of profiles, while able to achieve accurate recommenda-
tions, fail to make recommendations in a large number
of instances. Models with low values of k group everyone
into a small number of clusters that are largely hetero-
geneous.

The k = 20 example is again illustrative of the kind
of predictive power that purpose-specific profiles are ca-
pable of. Given 3 permissions, and 25 app categories,
there are a total of 1350 recommendations made across
k = 20 profiles (75 per profile), with 326 null recom-
mendations (where profiles achieved less than 80% con-

(a) Purpose-independent model. (b) Purpose-specific model.

Fig. 6. Cluster membership histogram for k = 20 profiles. Note
the the overall flatter characteristic for 6a, and the tendency to-
wards more dominant clusters for 6b.

sensus on allowing or denying), and 1024 recommenda-
tions. Once an individual is profiled, recommendations
can be made in approximately 76% of circumstances
overall, with only very small differences among more or
less popular app categories. There are on average 18
null recommendations per profile, and 57 recommenda-
tions per profile across all app categories. The purpose-
independent model can profile an individual within an
approximate range of 3 to 7 questions, across all values
of k. The purpose-specific model can profile an individ-
ual within a range of 2 to 6 questions on average.

5 Discussion and Limitations
In this section, we discuss the implications of our results
as well as potential limitations of our work. We remark
upon the practical implications of our work, towards
mobile app privacy management, including modeling,
prediction, and recommendations. We find that there
are implications for our work towards permissions-based
notice and control methods broadly.

5.1 Potential Limitations of Our Work

Due to the limits of the data collected in our survey,
the specific profiles built using this data are not suffi-
cient to make recommendations for all apps and all app
categories. At the same time, our results indicate that
our approach is capable of making accurate recommen-
dations in most circumstances. This simply reflects the
fact that our limited resources enabled us to only collect
data about a limited subset of apps in the Google Play
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Store. In addition, some app categories are more popu-
lar than others. For example, Games is the predominant
category of apps in general. Other more esoteric cate-
gories (such as Health apps) have more limited numbers
of apps. The Google Play Store is in a constant state of
flux, with new apps being added, apps being removed,
and their categorization being modified over time. There
are also limits to the number of apps which can practi-
cally be surveyed with a given participant without in-
troducing survey fatigue, which would diminish the va-
lidity of elicited preferences. We limited our survey to 6
apps per participant, which allowed us to demonstrate
our approach empirically without an overly burdensome
survey, and generalized those results using simulations.
Our findings suggest that our approach would be in-
creasingly effective for users with more than 6 apps,
due to the static number of user interactions required
to profile a given individual. In other words, the number
of user interactions required to assign a user to a profile
does not change with the number of apps the user has
on his or her phone. Once the user has been assigned
to a profile, the number of recommendations that can
be generated for that user increases with the number of
apps the user has on his or her phone. If you were to
think of the number of interactions required to assign a
profile to a user, you could say that there is a greater
return on investment for a user with more apps. With
only 6 apps, this return on investment is still small com-
pared to what it would be for a user with 30 or 50 apps.
We defer further exploration of our approach with large
numbers of apps to future work.

During the course of our survey, we observed
changes to the categories of some apps on the Play
Store, which may suggest a limitation to our approach.
App developers are ultimately responsible for app cat-
egorization, which can potentially result in variability
in interpretations of app categories. For example, the
Waze app is categorized as “Maps & Navigation”, while
Google Maps (which has ostensibly the same functional-
ity) is categorized as “Travel & Local”. The categoriza-
tion can also change, based on the developer changing
it or the Play Store categories changing. The result is
that the ability for an app category to generalize well
to all apps that are categorized as such may be limited.
However, our observation was that the categories that
were selected for apps seemed to be meaningful repre-
sentations of the apps in terms of their overall theme and
functionality. In general, this limitation does not appear
to prevent our approach from making good recommen-
dations – there are a small overall number of categories
for apps to belong to, and they are mutually exclusive.

One can imagine that if there was a stricter categoriza-
tion scheme imposed by the Play Store, this limitation
would be mitigated. Yet another approach would be to
automatically generate our own categories (e.g., mining
the text found in descriptions of apps in the Google Play
store and possibly also taking into account other factors
such as the particular permissions requested by apps).

We also noted that there were differences in the
descriptions of the permissions as they are presented
in the Play Store versus Android developer documen-
tation. We revised permission descriptions from devel-
oper documentation, as it provided the most internally
consistent description. In our study, we control for the
variability of interpretation by not priming participants
about the category for the apps which were surveyed.
We also analyzed correlations across the app category
factor in post-hoc tests. Survey participants may have
taken app categories into consideration, but our method
can only infer whether this factor influenced their re-
sponses to allow or deny permissions, not what their
interpretation was.

It is not possible to enumerate and measure the sig-
nificance of every possible contextual factor that may
have had an influence on participants’ responses. There
might be confounding factors which were not controlled
for, such as reports of privacy violations in the media at
different points during our study. We are not aware of
any such factor having had a meaningful impact on the
data we collected.

Finally, we acknowledge that our study is based on
self-reported privacy preferences and that such prefer-
ences are not necessarily representative of user behavior,
namely the way users would actually configure the per-
mission settings considered in the study. In fact, prior
research has shown that both self-reported privacy pref-
erences and actual configuration of privacy settings are
malleable. This includes research on nudging users to
more carefully consider the configuration of mobile app
permissions [3]. The vignettes presented to participants
in our study share similarities with those used in sim-
ilar studies of people’s privacy preferences (e.g. [29]).
The selection of a methodology that focuses on collect-
ing self-reported privacy preferences simply reflects the
difficulty of collecting actual user behavior, given that
current mobile app permission settings do not support
purpose-specific permissions.
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5.2 Models With Purpose Are More
Usable

Our results strongly suggest that there is value in the
added expressiveness inherent in modeling permissions
subject to purpose; they are more efficient and more ef-
fective. In particular, we find that there are significant
differences in how users would express their preferences
when they have the ability to distinguish among pur-
poses. We also find evidence to support the conclusion
in prior work, that the inability to express purposes may
lead users to assume that permissions are required for
apps to provide their basic functionality. We refer to
this category of purposes as “internal purposes” in our
study, as others have done in the past [20, 23, 44]. Many
prior studies have found that purpose is an important
contextual factor for a variety of reasons, and our work
supports this conclusion [24, 45]. We also find diverse
preferences along the axis of purpose, particularly for
specific purposes such as advertising.

In incorporating purpose into permissions models,
we find that there is a dramatic increase in the user
burden required to elicit comprehensive preferences us-
ing the existing AOFU model – trivially, the number
of questions increases proportionally to the number of
purposes. Our methodology shows great promise in re-
ducing user burden, such that the average user would
experience less burden even with this new dimension,
compared to the current model that cannot express pur-
poses. While it is outside the scope of our study, there
still exists a problem wherein the purpose for app per-
missions needs to be specified, and no canonical set of
purposes has been specified for the Android platform.
Based on our findings, we believe that such a taxonomy
of purposes needs to be formalized and incorporated into
the Android and iOS permissions systems. Perhaps as-
sisted by the platform itself through inference, or using
other tools, it would be possible to extend our method-
ology across a range of specific purposes. The benefit of
our approach would be compounded in these instances,
as the number of potential purposes could potentially
be numerous.

5.3 Implications for GDPR Compliance

Our findings about the importance of the purpose for
which an app requests a given permission is consistent
with regulatory requirements such as those introduced
by the EU GDPR, where consent for the collection of
sensitive data is qualified by one or more specific pur-

poses. Current regulation however does not explicitly
consider the possibility of using machine learning to
support data subjects in making privacy decisions. Yet,
as already discussed earlier in this article, the burden
on users associated with the increasing number of pri-
vacy decisions they have to make has become unrealis-
tic. Machine learning offers the prospect of mitigating
this burden, whether by providing recommendations to
users, aggregating some decisions that are closely corre-
lated for a given user (e.g., based on a privacy profile)
or some other yet-to-be explored approach (e.g. dialog
with a privacy assistant). Future UX research will need
to look at how to best take advantage of machine learn-
ing functionality to empower users to regain control over
their data, enabling them to more accurately specify
their privacy preferences without imposing an unrealis-
tic burden on them and without taking away their sense
of autonomy.

5.4 Sacrificing Privacy to Gain Privacy

We note that, beyond the collection of mobile app pri-
vacy preferences, some of the additional information
used in our predictive model is also sensitive (e.g. mari-
tal status, employment status). Additional research will
be required to check whether people are comfortable
disclosing this information for the purpose of getting
help configuring their mobile app permission settings.
Addressing this question would require comparing to
what extent they might be more comfortable sacrific-
ing user burden (i.e., spending more time configuring
more app permissions) in return for revealing less in-
formation about themselves. Our intuition tells us that
with strong guarantees that this information would be
solely used for the purpose of helping them configure
their mobile app permission settings, many users would
likely be comfortable sharing this information with a
privacy assistant, but this will need to be verified. In
the worst case, we would end up with models that have
somewhat less predictive power, or would need to ask
users additional questions about their mobile app pri-
vacy preferences.

6 Conclusion
In this work, we administered a survey which collected
participants’ Android permissions preferences for a va-
riety of apps under two conditions: one with purpose-
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specific permissions and another with permissions that
extend across all possible purposes. We analyzed re-
sponses using logistic regression and machine learning.
Our aim was to discover whether machine learning could
help mitigate the trade-off between effectiveness and ef-
ficiency when it comes to configuring Android app per-
missions. In doing so, we found that we can achieve
the best of both worlds; app permissions can be made
more expressive and thus more effective, but without
sacrificing efficiency and overburdening users. In this
paper, this is accomplished using machine learning to
assign users to privacy profiles and using these pro-
files to infer many permissions for each user. In gen-
eral, we would expect to see similar results with other
machine learning techniques (e.g. collaborative filtering
techniques or techniques such as those discussed in prior
work [24]). In examining the studied contextual factors,
we found that preferences change significantly subject
to the more expressive permissions which incorporate
purpose. There is also evidence that participants cannot
distinguish between cases where purpose is unspecified
and cases where the purpose is “internal” (for the app
to provide basic functionality). This finding is consistent
with prior research results. The added dimension of pur-
pose, as well as the other tested contextual factors, do
indeed make the Android permissions model more ef-
fective – namely the resulting permission settings can
be configured to better align with people’s actual pri-
vacy preferences. Beyond regulatory requirements, these
findings further advocate for the introduction of mobile
app permission settings that enable users to differenti-
ate between different purposes.

Our results further show that models of people’s
mobile app privacy preferences that take into account
the purpose(s) for which apps request permissions have
greater predictive power than models that ignore pur-
pose information. We leverage this additional predic-
tive power to overcome the increase in user burden that
would otherwise result from the introduction purpose-
specific mobile app permission settings.
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Appendix
Main Survey

Your Android phone has settings, called app permissions, that
allow you to control what data your apps can access. When a given
permission setting is denied for a particular app, that app is not
able to access the corresponding data.
Examples of app permissions include permission to access your
location, your contacts, your calendar, and more. Some apps
request certain permissions for internal purposes, namely to
deliver their basic functionality. They might not work prop-
erly if the permission is not granted. Some apps request cer-
tain permissions for other purposes, such as showing you per-
sonalized advertisements, or generally collecting and analyz-
ing data about you. Some apps request certain permissions
for unspecified purposes, or for no particular purpose at all.

The following are the permissions we will ask you questions about
in our survey.

Calendar
If you allow an app access to the Calendar permission, the app is
allowed to:
• Read your calendar data, including your events, appointments,

and any other data you have added to your calendar
• Make changes to your calendar

Location
If you allow an app access to the Location permission, the app is
allowed to:
• Access and record your approximate location (using the cellular

network and WiFi networks in your vicinity)
• Access and record your precise location (using your phone’s

GPS, as well as the cellular network and WiFi networks in your
vicinity)

Contacts
If you allow an app access to the Contacts permission, the app is
allowed to:
• Read what contacts you have saved on your device, and the

contact entries’ information (such as phone number, email ad-
dress, social media account IDs)

• Write and make changes to contact entries you have saved on
your device, and add new contact entries

• Access the different accounts you have saved on your device,
including your Google accounts (and their associated con-
tacts), Facebook accounts, and any other accounts you have
registered on your phone which have information that can ap-
pear on your contact list

If you need help to remember what the different permissions allow
access to, look for the

V

icon in the survey - you can hover over it
with your mouse and read the description.

On the following page, you will see a screenshot of the Google Play
Store page for an app. Look through and think about things that

you would normally look for when making the decision to download
and install an app on your phone.
Please note that you will see a screenshot and not an interactive
webpage. You can’t click on things in the screenshot, and it won’t
react to your mouse cursor like the real website would. (The user is
presented with a screenshot of an app’s Google Play Store page.)
Approximately how often do you use this app now?
◦ Daily
◦ Weekly
◦ Monthly
◦ Yearly
◦ I uninstalled it and/or I don’t use it anymore
◦ I have never used this app before

What is the name of the app in the screenshot? (Attention check
question.)

How familiar are you with the functionality and features of the
app? (Likert scale response from Not familiar at all to Extremely
familiar.)

Suppose the app asks for access to permissions on your phone.
Think carefully about the app and what you would do if the app
requested these permissions. For each permission, tell us whether
you would allow access or deny access.
If you need help to remember what the permissions allow access to,
look for the

V

icon in the survey - you can hover over it with your
mouse and read the description.

I would allow access I would deny access
Calendar

V

Location

V

Contacts

V

In this section you will be asked questions about whether you would
allow access to the Calendar, Location, and Contacts permissions
for the app, for different purposes. Although you have already
answered general questions about your preferences to allow or deny
this app’s permissions earlier in the survey, note that the following
questions are different. Take a moment to carefully consider how
you would answer them, given the more specific information they
are asking about.
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Given the 3 different purposes listed below, would you allow or deny
this app access to your Calendar?

I would allow
access to Calendar

I would deny
access to Calendar

Suppose the app requests access to your Calendar for internal purposes,
which allow the app to deliver its basic functionality...
Suppose the app requests access to your Calendar for personalized advertisements,
or generally collecting and analyzing data about you...
Suppose the app requests access to your Calendar for any other,
unspecified or unknown purpose...

Given the 3 different purposes listed below, would you allow or deny
this app access to your Location?

I would allow
access to Location

I would deny
access to Location

Suppose the app requests access to your Location for internal purposes,
which allow the app to deliver its basic functionality...
Suppose the app requests access to your Location for personalized advertisements,
or generally collecting and analyzing data about you...
Suppose the app requests access to your Location for any other,
unspecified or unknown purpose...

Given the 3 different purposes listed below, would you allow or deny
this app access to your Contacts?

I would allow
access to Contacts

I would deny
access to Contacts

Suppose the app requests access to your Contacts for internal purposes,
which allow the app to deliver its basic functionality...
Suppose the app requests access to your Contacts for personalized advertisements,
or generally collecting and analyzing data about you...
Suppose the app requests access to your Contacts for any other,
unspecified or unknown purpose...

Post-Survey Questions
• Please select the category which best describes your age range.
• What is the highest level of school you have completed or the

highest degree you have received?

• What is your gender assigned at birth?

• What is your ZIP code?

• What category best describes where you live?

• Please select the category which best describes your marital
status.

• Which statement best describes your current employment sta-
tus?

• Approximately how long have you been using a smartphone?

• What kind of smartphone do you use?

• Approximately how frequently do you use a smartphone?

• Approximately how many apps do you have installed on your
smartphone?

• Approximately how many apps on your smartphone have you
used in the past week?

• What Android version do you have on your smartphone?

• Not including this survey, approximately how many privacy-
related surveys have you completed in the past year?

• How did you find the privacy-related surveys you completed in
the past?
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Logistic Regression Table

Factors with very strong significance (prχ2 ≤ 0.01) are marked with two asterisks. Factors with strong significance (prχ2 ≤ 0.05) are
marked with a single asterisk.

Factors df Calendar Location Contacts Calendar ×
Internal

Calendar ×
Ads

Calendar ×
Other

χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p

App Familarity 4 312.5 ≤0.01∗∗ 341.23 ≤0.01∗∗ 308.76 ≤0.01∗∗ 238.26 ≤0.01∗∗ 222.32 ≤0.01∗∗ 169.75 ≤0.01∗∗

App Usage Freq. 5 450.22 ≤0.01∗∗ 413.52 ≤0.01∗∗ 394.26 ≤0.01∗∗ 262.22 ≤0.01∗∗ 350.66 ≤0.01∗∗ 248.2 ≤0.01∗∗

App Category 24 82.747 ≤0.01∗∗ 138.02 ≤0.01∗∗ 76.292 ≤0.01∗∗ 74.084 ≤0.01∗∗ 56.923 ≤0.01∗∗ 0 N.S.
Age 3 27.96 ≤0.01∗∗ 6.4626 N.S. 29.984 ≤0.01∗∗ 11.065 ≤0.05∗ 27.596 ≤0.01∗∗ 6.1866 N.S.

Education 7 24.61 ≤0.01∗∗ 42.512 ≤0.01∗∗ 29.992 ≤0.01∗∗ 19.97 ≤0.01∗∗ 37.923 ≤0.01∗∗ 0 N.S.
Gender 2 1.0494 N.S. 1.329 N.S. 0.3974 N.S. 0.262 N.S. 0.6321 N.S. 0.8382 N.S.
City Size 3 31.3 ≤0.01∗∗ 17.002 ≤0.01∗∗ 27.854 ≤0.01∗∗ 28.013 ≤0.01∗∗ 38.87 ≤0.01∗∗ 8.4015 ≤0.05∗

Marital Status 5 40.956 ≤0.01∗∗ 45.998 ≤0.01∗∗ 59.944 ≤0.01∗∗ 26.021 ≤0.01∗∗ 65.398 ≤0.01∗∗ 19.835 ≤0.01∗∗

Employment 8 13.672 N.S. 12.362 N.S. 15.509 N.S. 6.9251 N.S. 23.735 N.S. 0 N.S.
Phone
Usage Freq.

3 12.741 ≤0.01∗∗ 5.5258 N.S. 11.169 ≤0.05∗ 9.1237 ≤0.05∗ 9.0246 ≤0.05∗ 6.1913 N.S.

Phone Usage
Duration

3 30.637 N.S. 15.135 ≤0.01∗∗ 30.347 N.S. 15.516 N.S. 24.36 N.S. 10.594 N.S.

# Apps
Installed

3 17.775 ≤0.01∗∗ 20.769 ≤0.01∗∗ 22.761 ≤0.01∗∗ 10.305 ≤0.05∗ 9.801 ≤0.05∗ 2.4036 N.S.

# Apps
Used

3 70.021 ≤0.01∗∗ 49.999 ≤0.01∗∗ 87.794 ≤0.01∗∗ 26.238 ≤0.01∗∗ 96.416 ≤0.01∗∗ 43.322 ≤0.01∗∗

Android Version 9 40.407 N.S. 35.401 N.S. 34.189 N.S. 37.186 N.S. 35.28 N.S. 8.0093 N.S.
# Privacy
Surveys

3 5.8137 N.S. 12.443 ≤0.01∗∗ 20.343 ≤0.01∗∗ 7.7106 N.S. 20.689 ≤0.01∗∗ 6.535 N.S.

Factors df Location ×
Internal

Location ×
Ads

Location ×
Other

Contacts ×
Internal

Contacts ×
Ads

Contacts ×
Other

χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p

App Familarity 4 238.8 ≤0.01∗∗ 271.31 ≤0.01∗∗ 232.24 ≤0.01∗∗ 265.09 ≤0.01∗∗ 216.17 ≤0.01∗∗ 186.84 ≤0.01∗∗

App Usage Freq. 5 246.27 ≤0.01∗∗ 415.82 ≤0.01∗∗ 336.8 ≤0.01∗∗ 297.34 ≤0.01∗∗ 372.51 ≤0.01∗∗ 238.93 ≤0.01∗∗

App Category 24 127.62 ≤0.01∗∗ 86.111 ≤0.01∗∗ 53.21 ≤0.01∗∗ 74.404 ≤0.01∗∗ 18.726 N.S. 0 N.S.
Age 3 2.0877 N.S. 13.709 ≤0.01∗∗ 5.8693 N.S. 7.9095 ≤0.05∗ 8.7713 N.S. 4.6471 N.S.

Education 7 25.153 ≤0.01∗∗ 39.567 ≤0.01∗∗ 28.776 ≤0.01∗∗ 24.874 ≤0.01∗∗ 0 N.S. 4.8749 N.S.
Gender 2 0.7467 N.S. 1.4218 N.S. 5.1683 N.S. 2.432 N.S. 0.4015 N.S. 0.4795 N.S.
City Size 3 15.654 ≤0.01∗∗ 31.437 ≤0.01∗∗ 12.221 ≤0.01∗∗ 25.16 ≤0.01∗∗ 19.745 ≤0.01∗∗ 6.3056 N.S.

Marital Status 5 23.716 ≤0.01∗∗ 57.664 ≤0.01∗∗ 36.609 ≤0.01∗∗ 38.645 ≤0.01∗∗ 36.342 ≤0.01∗∗ 19.447 ≤0.01∗∗

Employment 8 7.3579 N.S. 19.532 N.S. 0 N.S. 6.931 N.S. 0 N.S. 0 N.S.
Phone
Usage Freq.

3 8.7472 ≤0.05∗ 9.8276 ≤0.05∗ 7.9295 ≤0.05∗ 5.7587 N.S. 6.6361 N.S. 6.0856 N.S.

Phone Usage
Duration

3 8.0061 N.S. 23.226 ≤0.01∗∗ 13.106 ≤0.01∗∗ 20.373 ≤0.01∗∗ 18.491 ≤0.01∗∗ 7.9586 N.S.

# Apps
Installed

3 14.084 ≤0.01∗∗ 11.648 ≤0.01∗∗ 5.589 N.S. 8.7129 N.S. 1.7364 N.S. 1.7594 N.S.

# Apps
Used

3 16.346 ≤0.01∗∗ 91.588 ≤0.01∗∗ 81.582 ≤0.01∗∗ 35.207 ≤0.01∗∗ 60.961 ≤0.01∗∗ 37.508 ≤0.01∗∗

Android Version 9 26.003 N.S. 54.676 N.S. 26.133 ≤0.01∗∗ 24.407 N.S. 16.092 N.S. 0 N.S.
# Privacy
Surveys

3 14.175 ≤0.01∗∗ 26.155 ≤0.01∗∗ 11.267 ≤0.05∗ 8.3121 ≤0.05∗ 11.466 ≤0.01∗∗ 6.9094 N.S.
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