
Proceedings on Privacy Enhancing Technologies ; 2020 (2):67–88

Saba Eskandarian*, Mihai Christodorescu, and Payman Mohassel

Privacy-Preserving Payment Splitting
Abstract: Widely used payment splitting apps allow
members of a group to keep track of debts between mem-
bers by sending charges for expenses paid by one mem-
ber on behalf of others. While offering a great deal of
convenience, these apps gain access to sensitive data on
users’ financial transactions. In this paper, we present
a payment splitting app that hides all transaction data
within a group from the service provider, provides pri-
vacy protections between users in a group, and provides
integrity against malicious users or even a malicious
server.
The core protocol proceeds in a series of rounds in
which users either submit real data or cover traffic,
and the server blindly updates balances, informs users
of charges, and computes integrity checks on user-
submitted data. Our protocol requires no cryptographic
operations on the server, and after a group’s initial
setup, the only cryptographic tool users need is AES.
We implement the payment splitting protocol as an An-
droid app and the accompanying server. We find that,
for realistic group sizes, it requires fewer than 50 mil-
liseconds per round of computation on a user’s phone
and the server requires fewer than 300 microseconds per
round for each group, meaning that our protocol enjoys
excellent performance and scalability properties.

Keywords: Privacy, Payment Splitting

DOI 10.2478/popets-2020-0018
Received 2019-08-31; revised 2019-12-15; accepted 2019-12-16.

1 Introduction
Payment-splitting apps solve the problem of keeping
track of debts between members of a group. They pro-
vide a convenient interface and bookkeeping system for
groups to keep track of individual or communal costs
among their members. Common use cases involve split-
ting bills for meals among friends or colleagues, room-

*Corresponding Author: Saba Eskandarian: Stanford
University, E-mail: saba@cs.stanford.edu
Mihai Christodorescu: Visa Research
Payman Mohassel: Facebook (work done while at Visa
Research)

mates keeping track of grocery, utility, or rent charges,
and groups of travelers monitoring expenses during a
trip. Groups can exist for a short term, e.g. a vacation
group, or indefinitely. There exist a great number and
variety of free payment splitting apps1, with multiple
having over 1 million downloads and tens of thousands
of positive reviews on the Google Play app store.

Unfortunately, these apps leak a great deal of pri-
vate user data to the service provider. The privacy pol-
icy for Splitwise [38], perhaps the most well-known pay-
ment splitting app, permits collection of, “for example,
group names, expense descriptions and amounts, pay-
ments and their confirmation numbers, comments and
reminders, receipt images, notes, and memos, in addi-
tion to any other information that you attach or share”
as well as “the types of expenses you add, the features
you use, the actions you take, and the time, frequency
and duration of your activities.”

A recent survey covering person-to-person payment
preferences in the US [13] discovered that three times
as many people prefer cash compared to mobile apps
for person-to-person payments. Among the perceived
benefits of cash, privacy leads in importance by the
largest margin, even when considering the convenience
of mobile payments. This suggests a need for a system
that combines the convenience of mobile payment split-
ting apps with cash-like privacy. Although generic tech-
niques from fully homomorphic encryption [8, 20, 21]
and server-aided multiparty computation [19, 25, 28, 29]
or even a system built on top of privacy-preserving cryp-
tocurrencies [6, 26, 30] could theoretically solve this
problem, these solutions fall short of the need for an
efficient, highly scalable, and secure solution.

In this work, we present a payment splitting app
that hides all transaction data within a group from
the service provider while also providing privacy against
non-involved group members and integrity against ma-
licious users or even a malicious server. Our payment
splitting protocol hides which group member pays in a
transaction, which member is paid, how much is spent,
when the transaction occurs, and even whether a trans-
action has happened at all from the server and entities
external to the group. The server learns only the mem-

1 Some popular payment splitting apps: Splitwise, Receipt Ninja,
BillPin, SpotMe, Conmigo, and Settle Up.

Privacy-Preserving Payment Splitting 68

bership of each group and nothing more. Within a group,
users not involved in a given real-world transaction will
not learn which group members are indebted by that
transaction. Moreover, our protocol is designed to en-
sure that neither a malicious user nor the server itself
can alter balances, frame other users for charges, or oth-
erwise tamper with the system’s operation. Its server-
side computation requires no cryptographic operations,
only arithmetic on 128-bit integers, and, after an ini-
tial setup phase, the only cryptographic operations on
user devices are evaluations of AES. A small-scale user
survey motivates design decisions regarding our security
requirements and the construction of the final system.

Our protocol operates in a setting where users can
connect to a central server but cannot communicate
directly with each other, a common design among ex-
isting (non-private) payment splitting apps. The server
facilitates group setup, and clients then communicate
through a server-assisted protocol in a series of rounds.
Members of each group share a secret key. In each round,
users send either a transaction or cover traffic to the
server. At a high level, each user’s message is a vec-
tor containing masked transaction information. We care-
fully design the structure and content of messages to
allow the server to blindly update balances, to allow
users to reject incorrect charges, to check that no user
has attempted to tamper unfairly with its own or others’
balances, and to minimize information learned by users
not involved in a transaction. Moreover, our protocol
takes advantage of the structure of the payment split-
ting problem to provide integrity protections without
relying on zero-knowledge proof techniques.

We implement an Android app and an accompany-
ing server that run our protocol and evaluate them on
commodity hardware. We find that, for groups of up
to 25 members (a realistic size, as determined by our
survey), our implementation requires fewer than 50 mil-
liseconds per round of computation on a user’s phone
and the server requires fewer than 300 microseconds per
round for each group, with most transactions requiring
only a few rounds to complete at most. Bandwidth re-
quirements are also light, at under 500 bytes of commu-
nication between a client and the server in each round.

Our work is, to our knowledge, the first to con-
sider the problem of privacy-preserving payment split-
ting apps. We demonstrate that other, general-purpose
solutions cannot be easily adapted to efficiently solve
this problem by comparing our system to ZKLedger [34],
a system designed for privacy-preserving audits of dis-
tributed ledgers which can be adapted to serve as a pay-
ment splitting system. Our protocol’s computation time

and bandwidth usage outperform ZKLedger by 7.3×
and 6.8× respectively if it were used for a 10 member
payment splitting group, the largest size for which ZK-
Ledger reports end to end transaction times.

In summary, we make the following contributions:
– We introduce the notion of a privacy-preserving pay-

ment splitting scheme and provide formal defini-
tions that model security for such a system.

– We construct and prove the security of a practical
and scalable privacy-preserving payment splitting
scheme.

– We implement and evaluate our system as an An-
droid app and an accompanying server, finding that
it requires fewer than 300µs of computation per
group on the server and 50ms on the client for each
round of the protocol in realistically sized groups.

2 System Goals
In this section, we present the goals for our system as
well as the notation and security definitions required of
a privacy-preserving payment splitting scheme.
User Survey. Before building our system, we con-
ducted a short survey in order to understand how pay-
ment splitting apps are used and to guide our system
design and evaluation. The survey was sent via email
to approximately 250 individuals (employees in an of-
fice building belonging to a large company) of which 51
responded. All institutional requirements to administer
this survey were satisfied before it was distributed. The
full text of the survey appears in Appendix A.

In terms of privacy preferences, we found that only
4% of respondents prefer to have their transactions be
public, which we take as confirmation of our belief in the
importance of investigating privacy-preserving payment
splitting. 70% of respondents preferred for transactions
to be visible only to their participants, motivating the
inclusion of debtor privacy in our security definitions.
The data considered most sensitive about transactions
was the identity of the parties involved. We will discuss
other aspects of the survey responses as they become
relevant to the design of our solution.

2.1 Functionality Goals

A payment splitting scheme, as we define it, allows users
to establish a group, add/remove members, send each
other charges, reject unwanted charges, and settle the

Privacy-Preserving Payment Splitting 69

group balance. These operations can be categorized into
group management operations, such as setting up a
group and adding/removing users, and payment split-
ting operations that deal with the real functionality of-
fered by the scheme. Our definitions and security argu-
ments primarily focus on modeling payment splitting op-
erations, as the group management operations are fairly
straightforward and do not impact security. We support
the following payment splitting operations.
Request. Any user in a group may send a request for
any amount of money to any other user.
Reject. Since a payment splitting app cannot know
what real-world payments actually occured, users can
reject charges which they dispute or were sent in error.

Splitwise and some of its competitors immediately
subtract money from a user’s balance when the user is
sent a request and then restore the money if the request
happens to be rejected. As such, we observe that any
system which offers the ability to trace who has made
a given payment request automatically also implicitly
allows rejections because an identical payment request
can be sent in the opposite direction to cancel the first.
For this reason, we focus on including a trace functional-
ity that reveals who initiated a request instead of imple-
menting rejection directly. With the proper application
logic running on top of the core protocol (as in our sys-
tem), this approach provides the same interface to the
user of a private payment splitting app as one that has
a built-in rejection operation.
Settle. Payment splitting apps simplify paying friends
back by treating users’ debts as being owed to the group
instead of to various individuals. While users can pay
each other back directly for each charge, the service can
also simplify payments by telling each user who to pay
and how much to pay in order to most efficiently settle
all the group’s balances at once.

One way to implement a settle operation would be
for users to get a matrix indicating who should pay
whom. We opt to describe this in terms of users getting
a vector of balances because such a matrix can easily be
derived from the vector.

Having described the payment splitting functional-
ity we plan to achieve, we end this section with a correct-
ness property that our payment splitting scheme must
satisfy. The definition states the intuitive notion that,
as long as all parties follow the protocol, the scheme
should maintain an accurate running balance of debts
between group members after each operation in a way
that the originator of each transaction can be traced.

Definition 1 (Correctness). A payment splitting
scheme is correct if, when all users and the server
act honestly,
i) the balances revealed by a settle operation corre-

spond to the sum of all requests made since the
formation of the group when the vector of balances
was filled with zeros, and

ii) after each transaction, each user’s own recorded bal-
ance always matches the corresponding value in the
vector that would be returned by a settle operation.

2.2 Security Goals

Our system achieves the following security properties,
summarized below and described in greater depth later
in this section.
Server Privacy. For any transaction, the server should
not know which group members are involved in the
transaction or how much is spent in the transaction. De-
tails of who makes transactions when, rejected charges,
etc should also be hidden.
Debtor Privacy. Up until the group settles (when it
becomes clear who is indebted because they need to
pay), no transaction will reveal which users it puts into
debt.
User Integrity. No user should be able to take ad-
vantage of privacy to create money for him/herself or
otherwise maliciously tamper with balances.
Server Integrity. A malicious server cannot cause the
protocol to deviate from correct functionality except by
denial of service. This requirement only applies in the
malicious security setting and is not included when we
consider a semihonest server that follows the rules of
the protocol while trying to learn user secrets.

Note that although our system will provide privacy
and integrity guarantess against both malicious users
and servers, it will not protect against collusion between
a malicious user and the server. Fortunately this com-
bination of malicious actors is not a major concern in
practice since the threats posed by a malicious server
and a malicious user are usually orthogonal. For exam-
ple, payment splitting groups typically consist of people
who know each other in real life, making it infeasible
for a malicious server to insert a fake user into a group
so long as the group setup procedure is secure (we dis-
cuss options for setting up groups in our scheme in Sec-
tion 4.1). On the other hand, the owner of a payment
splitting server is not typically invited into a group by
the users of the service, so a malicious server operator
would need to find another way to compromise integrity.

Privacy-Preserving Payment Splitting 70

One shortcoming of this approach is that it prevents a
member of a group from self-hosting a payment split-
ting server, but self-hosting is not supported by most
(non-private) payment splitting apps in use today ei-
ther. Supporting security against malicious clients and
servers that collude is a compelling problem for future
work.

2.3 Security Definitions

We now define the security requirements our system
must meet. In terms of server privacy, we want our
scheme to reveal to the server only group membership
and hide any details of transaction parties, quantities,
frequencies, etc. We formalize this with a security game
where no server can distinguish between two potential
transcripts of requests for a given group. Our server pri-
vacy definition also implies protection against an adver-
sary who eavesdrops on the network or controls users in
other groups in addition to the server itself.

Definition 2 (Server Privacy Experiment). The
server privacy experiment PRIV[A, λ, b] with secu-
rity parameter λ is played between an adversary A who
plays the role of the server and a challenger C who is
given input b and plays the honest users U1...UN .
1. Setup. Adversary A picks a group size N and sets

up a group with C playing the role of the users.
2. Transactions. A sends C two transactions t0 and t1,

both of which are either a request between group
members or a settle operation. If exactly one of t0
and t1 is a settle operation, C aborts the experiment
and outputs 0. Next, C interacts with A to carry out
operation tb. A can repeat this step as many times
as it wishes.

3. Output. A outputs a bit b′.
PRIV[A, λ, b] outputs the value b′ returned by A at the
end of the game.

Definition 3 (Server Private). A payment splitting
scheme is server private if no PPT adversary can win
the server privacy game with greater than negligible
advantage. That is, if the quantity |Pr[PRIV[A, λ, 0] =
1]− Pr[PRIV[A, λ, 1] = 1] ≤ negl(λ)| for any PPT A.

In addition to complete privacy against the server, we re-
quire a notion of privacy against other users in a group
as well, which we call debtor privacy. Debtor privacy
protects the privacy of users who become indebted to
other group members by hiding the target of any request.

Informally, we say that a payment splitting scheme is
debtor private if any coalition of compromised users can-
not determine the identity of the requestee in a given
transaction before the group settles. Note that since the
adversary in this game corrupts members of the group,
it has access to any group-wide secrets used to hide in-
formation from the server.

Definition 4 (Debtor Privacy Experiment). The
debtor privacy experiment DEBTPRIV[A, λ, b] with
security parameter λ is played between an adversary A
who plays the role of compromised users, and a chal-
lenger C who plays the server and uncompromised users
and is given input b.
1. Setup. Adversary A picks a group size N and a set of

indexes M ⊂ [N] of users to corrupt, |M | = n, n <

N . Adversary A and challenger C set up a group
with A playing the role of users Ui for i ∈M ′ where
M ′ ⊆ M is a subset of the adversary’s choosing.
Challenger C plays the role of the server and all
users Ui, i /∈ M ′. After the group is set up, C sends
A all secrets and any other state it holds for users
Ui, i ∈M .

2. Transactions. A sends C two transactions t0 and t1,
both of which are either a request between group
members or a settle operation. If any of the following
conditions are met, C aborts the experiment and
outputs 0.
(a) Exactly one of t0 and t1 is a settle operation.
(b) A user Ui, i ∈ M is either making a charge or

being charged and t0 6= t1.
(c) A user Ui making a request differs between t0

and t1.
(d) t0 and t1 are settle operations, but the balances

returned differ for any user.
Next, C interacts with A to carry out operation tb.
A can repeat this step as many times as it wishes.

3. Output. A outputs a bit b′.
DEBTPRIV[A, λ, b] outputs the value b′ returned by A
at the end of the game.

Definition 5 (Debtor Private). A payment splitting
scheme is debtor private if no PPT adversary
can win the debtor privacy game with greater
than negligible advantage. That is, if the quantity
|Pr[DEBTPRIV[A, λ, 0] = 1] − Pr[DEBTPRIV[A, λ, 1] =
1] ≤ negl(λ)| for any PPT A.

Our definition of debtor privacy only applies in the con-
text of requests and not settlements. Since money must
change hands outside of the system when a group set-

Privacy-Preserving Payment Splitting 71

tles, it is necessary that some information about who is
in debt be revealed at that point.

One could imagine even stronger notions of privacy
against other users, but we leave the task of building
stronger security notions that precisely quantify leakage
in settlement and also provide privacy for the requester
to future work. We feel that protecting debtors provides
a good balance between security and functionality where
critical privacy needs are addressed while the resulting
system can still be built from the most lightweight cryp-
tographic tools.

We also require groups to have integrity, which we
separate into user integrity and server integrity. User
integrity requires three properties. First, we want to en-
sure that users cannot silently corrupt the balances kept
by the server. We capture this property by observing
that the balances kept by the server are valid so long
as they all sum to zero, meaning that if everyone who
is in debt pays, then everyone who is owed money gets
all their money back. Second, we need to ensure that
even if some users are malicious, they cannot “confuse”
other users by causing them to have a locally stored
balance that differs from their reported balance if the
group were to settle. Third, we want to prevent ma-
licious charges between users, but a malicious charge
(i.e., a charge disputed by a user, though processed cor-
rectly by the system) can simply be rejected or charged
back by the user who does not want to pay (just like
in payment apps widely in use today). We must ensure,
however, that an attacker cannot get away with fram-
ing a different group member as the originator of an
unwanted charge to avoid being charged back. We in-
clude both properties in the definition of user integrity
below. Section 6 describes how we can achieve stronger
notions of user integrity, e.g., where we identify which
user attempted to corrupt the sum of user balances or
allow a framed user to not only detect but also prove
that she has been framed.

Definition 6 (User Integrity). Consider a PPT adver-
sary A who corrupts up to N − 1 users Ui in a group of
size N . We say that a payment splitting scheme has user
integrity if the following properties are satisfied except
with negligible probability in the security parameter λ:
– After each request, either the server detects it as an

invalid transaction (and can roll it back) or, if the
members of the group were to settle at that time,
the resulting vector of user balances would sum to
zero.

– After each request, either the server detects it as an
invalid transaction (and can roll it back) or, if the

members of the group were to settle at that time,
each honest user’s entry in the vector returned by
settling would match its locally stored balance.

– Any attempt to tamper with the output of the trace
functionality such that it falsely points to an honest
user who was not involved in a transaction can be
detected by the framed honest user.

Finally, server integrity requires that a malicious server
cannot tamper with user balances without being de-
tected by the users.

Definition 7 (Server Integrity). Consider a (poten-
tially malicious) PPT server S∗ operating a group of
size N . We say that a payment splitting scheme has
server integrity if, after each transaction, if members of
the group were to settle at that point, they would either
detect that S∗ has acted maliciously or output the same
vector of balances as they would when interacting with
an honest server S, except with negligible probability in
the security parameter λ.

3 Architecture Overview
Our architecture consists of a mobile app and a server
operating in the setting where devices running the mo-
bile app have a secure network connection with the
server but no connection with each other, as is com-
monly the case in payment apps used today. In ad-
dition to being widely used in practice, this architec-
ture enables convenient group management and enjoys
faster latency than decentralized systems. We leave the
investigation of alternative settings, e.g. peer-to-peer
distributed networks between phones, as an interesting
problem for future work and briefly discuss some possi-
bilities in Section 8.

Users of our app organize themselves into groups,
and users within a group can send charges to each
other to request money. Different groups operate inde-
pendently of each other, and one server can support
many groups at once. We describe our solution in the
context of a single group, but the protocol can be re-
peated separately in parallel for as many groups as a
server can support.

Similar to many other privacy-preserving protocols
(for example, [4, 18, 37, 39, 43]), our core protocol pro-
ceeds in a series of rounds. To hide which users are and
are not participating in transactions, users in each round
send the server either a message representing a transac-

Privacy-Preserving Payment Splitting 72

tion or cover traffic to hide real transactions. With all
users online, this provides complete anonymity within
the group for the user sending a real transaction (pro-
vided the protocol used provides server privacy). We dis-
cuss the resilience of our solution’s anonymity to users
going offline in Section 6.
Inadequacy of Trivial Solutions. The rest of this
section discusses a number of solutions to the problem
of privacy-preserving payment splitting that use power-
ful generic ideas from cryptography or attempt to use
simple tools naïvely. We sketch each approach and then
explain why it is inadequate either in terms of perfor-
mance or security.

The most generic cryptographic tools available for
this problem come from fully homomorphic encryption
(FHE) [8, 20, 21] or server-aided multiparty computa-
tion [19, 25, 28, 29]. These techniques allow users to
upload ciphertexts to a server who can then compute ar-
bitrary functions on the encrypted data and send users
back the result. Unfortunately, techniques from fully ho-
momorphic encryption remain too slow for use in all but
the most limited settings. Although adding subtracting
from a user’s balance only requires support for addi-
tion and subtraction, which can be achieved with sig-
nificantly more lightweight cryptographic tools, one of
the core technical challenges of our work lies in finding
ways to allow a server to blindly route payments be-
tween users without the full power of general FHE. An-
other possibility is to use multiparty computation, but
multiparty computation techniques in the server-aided
setting rely on garbled circuits [41, 42], which operate
on boolean circuits and therefore incur an additional
evaluation of AES for each gate in the boolean circuit
representing the function to be calculated. We further
discuss related work in generic techniques applicable to
payment splitting in Section 9.

Instead of using powerful cryptographic tools, one
may also try to achieve our security goals through naïve
use of basic cryptographic tools such as encryption or
signatures. Consider the trivial scheme where users sim-
ply broadcast their encrypted transactions to all other
users in a group, using the server to route each message
to all other group members. In order to ensure user in-
tegrity, users could then gossip the messages they re-
ceive by re-sending them to all other group members.
This results in a scheme with O(λN2) communication
between the client and servers and can be further re-
duced to O(λN) communication by having users only
gossip signatures over the messages they receive instead
of the messages themselves.

The scheme above can provide some of the prop-
erties we want from a privacy-preserving payment split-
ting scheme, but not all of them. In particular, all trans-
actions in that approach are visible to every member of
the group, so it does not achieve debtor privacy. In gen-
eral, it is easy to provide one or the other of our privacy
requirements – debtor privacy without server privacy
could easily be achieved in an existing payment split-
ting app modified to hide some transaction information
from users – but combining them in the same scheme
requires more work.

4 Core Functionality
This section presents the core functionality for privacy-
preserving payment splitting. We begin with a simplified
version of our protocol that provides neither efficiency
nor security and add in features to improve security and
performance one at a time. We will present two variants
of our system: one that is only secure against a semihon-
est server who adheres to the rules of the protocol while
trying to learn user secrets and another that is secure
against a fully malicious server who can arbitrarily de-
viate from the protocol. Proofs of security appear in
Section 5, and we discuss a number of extensions to the
core functionality in Section 6.

Our constructions derive their security from the as-
sumption that there exists a pseudorandom function
(PRF), e.g. that AES is a secure PRF. Informally, a
PRF has the property that an adversary cannot distin-
guish between a random string and the output of a PRF
on a given input. The formal definition of a PRF follows.

Definition 8 (Pseudorandom Functions [23]). Let F :
{0, 1}n ×{0, 1}n → {0, 1}n be an efficiently computable,
length-preserving keyed function. We say that F is a
pseudorandom function (PRF) if for all probabilistic
polynomial time distinguishers D,

|Pr[DFk(1n) = 1]− Pr[Dfn(1n) = 1]|

is negligible where k ← {0, 1}n is chosen uniformly at
random and fn is chosen uniformly at random from the
set of functions mapping n-bit strings to n-bit strings.

Setup and sharing keys. A group begins when its
N members agree on a shared key. The details of how
group members share a key are covered by prior work
and constitute an orthogonal problem. One possibility is
for one group member to pick the key and send it to the

Privacy-Preserving Payment Splitting 73

0 1 00

0 1 00

0 0 01

0 0 10

-1 -1 -1-1

-1 1 00

+

A

B

C

D

-1 -2 -8-4

1

1

0

1

-1 -1 -1-1+

x
1 0 00

Request Tracing

1Σ

A

A

B

C

D

-1 0 00

Fig. 1. Our basic payment splitting protocol. The full protocol
uses the output of a PRF whose key is known to all group mem-
bers to mask and authenticate each user-submitted value. The
server also sums all user-submitted values and polls users to
ensure the sum matches the group size. Left: an example transac-
tion where user A charges user B one unit of currency. Each user
submits a vector with a single nonzero entry, and the server sub-
tracts one from each user’s balance, leaving “-1” in user A’s entry
and “+1” in user B’s entry. Right: the tracing procedure for the
same transaction. The server subtracts 1 from what users put in
their own entries in the vectors they submit. This results in zero
everywhere except for user A, who made a request. The resulting
differences are multiplied by increasing powers of 2 and summed
to uniquely identify which user(s) made a request in that round.
In case of collisions, all users making requests are identified by
the sum – they roll back and resend their requests one by one.

others, encrypting it with a public key for each other
member. The server can keep a bank of users’ public
keys, as is common in encrypted messaging apps, or use
a system such as CONIKS[32] in the malicious server
setting.

4.1 The Basic Protocol

Over 90% of our survey respondents reported that trans-
actions in their payment splitting groups are for values
under $100, meaning that large transactions rarely oc-
cur. We take advantage of this by designing our protocol
to restrict the amount of money that can be transferred
in a single transaction and then using the structure re-
sulting from this restriction to enforce integrity require-
ments without relying on zero knowledge. In the simpli-
fied protocol presented here, only one unit of currency
changes hands in each round, thus exchanging $X re-
quires X rounds. Later, we will show how to allow users
to exchange $X using only logX rounds and how to run
several rounds in parallel without increasing bandwidth

costs. Since payment splitting apps are most frequently
used for small quantities of money, these restrictions do
not pose a significant performance obstacle for day to
day transactions, and an occasional larger transaction
can simply be split across multiple rounds. In our final
design, a transaction of $1, 000.00 requires only 3 rounds
to complete. Although we describe our protocol in terms
of dollars, we do not require users to round transactions
to the nearest dollar, and, in particular, we allow trans-
actions at the 1 cent granularity.

To introduce the structure of our approach, we will
begin by describing our system such that it is missing
most privacy and integrity properties. We will then add
privacy and integrity one at a time. This basic version
of our protocol is demonstrated in Figure 1.
Setup. The group begins when its N members agree
on a secret key. The server creates a vector of N zeros
to represent user balances, with users being assigned
numbered 1 through N .
Group membership operations. An existing mem-
ber adds a new member to the group and sends it the
key. The server adds another 0 to the vector of balances
and informs the other group members. To leave a group,
a user who has paid all his debts and has a balance of
0 notifies the server (who informs other users), and has
his entry removed from the vector of balances. A former
member who has left a group still holds the group key, so
if remaining group members do not trust former mem-
bers with the key, they must form a new group using a
different key.
Requests. Payment proceeds in a series of rounds. In
each round, a user can request one unit of currency from
another. Each user sends the server a vector of size N
where all entries are zeros except for a single 1 in the
cell corresponding to the user who will be charged. Users
wishing not to make a transaction in a given round put
their 1 in the cell for their own account.

The server sums the vectors it receives from each
user and adds that to the balance vector. Then it sub-
tracts 1 from the balance of each user. This results in
each user either breaking even or transferring one unit
to another user. The values in users’ balances in this
scheme represent the amount of debt they owe to the
group, so putting a 1 in the balance of another user
means “giving” them one unit of debt. Note that since
users only receive updates to their own balance in a
given round, the scheme naturally satisfies the notion
of debtor privacy.
Tracing. In order to support tracing, we first assign
each member of the group a power of 2, so group mem-
ber i is assigned the value 2i. Each user then has an addi-

Privacy-Preserving Payment Splitting 74

tional value associated with them by the server, formed
by subtracting 1 from the ith element of their request
vector. Thus a user who is not making any charges has
a 0 and a user who is requesting a payment has a -1. De-
riving users’ values from the vectors they already sent
instead of sending them separately saves one message
of bandwidth from each group member to the server.
The server multiplies each value with the power of 2 as-
signed to that group member and sends the sum of the
resulting values to each user.

The users learn from this sum exactly which parties
are charging in this round since the resulting value will
be unique for each subset of powers of 2. When only one
party is charging, a user who disagrees with a charge can
reject the charge by initiating a charge of the same value
in the opposite direction. Integrity against framing can
easily be built on this mechanism by having a user who
has been framed report that she has been framed.

In the event that multiple users are charging in
the same round, a chargee cannot know which of the
chargers originated a particular transaction, so the next
few rounds are used to resolve the collision. In the first
round, all the transactions of the previous round are
“rolled back” by having the chargers submit a +2 in
their own indexes and the chargees a −1. In subsequent
rounds, each of the charges are made again with the
lowest numbered charger making its request in the first
round, the second lowest numbered charger making its
request in the second round, and so on. Other users
wanting to make a charge wait until the resolution pro-
cess completes to make their charges. This technique
can be used to resolve nested collisions too. Since by
the time a request completes, the value sent to identify
the charger will definitely be a power of 2, there can
only be one user who has been charged and the log of
that power of 2 will be the identity of the charger.

At first glance, it may appear inconvenient that our
system processes transactions within a group one at a
time and requires rollbacks and serialization for colliding
transactions. However, we found that over 90% of our
survey respondents’ groups had no more than 3 transac-
tions in a typical day, meaning that a rollback like the
one described here will not need to be used frequently.
Given that our protocol supports nested collisions and
can operate transparently to the end-user, we see this
mechanism as a favorable bandwidth-saving mechanism
over a scheme where the server sends much more infor-
mation to users in each round to avoid rollbacks.

Note that our user tracing functionality (and user
integrity definition) only ensures that the requestor in
a transaction has not been modified to frame an un-

involved party. This is critical in order for users being
charged to reject false charges. It is, however, possible
for a malicious user to change who is being charged. For
example, a malicious user who knows that a particular
user is going to be charged in a given round can put a 1
in his own index, a -1 in the index of the user who is sup-
posed to be charged, and a 1 in the index of the user to
which he wants to attempt to redirect the charge. Fortu-
nately, as long as users do not accept charges when they
do not owe debts in real life, the fact that the requestor
of a charge cannot be tampered with ensures that this
kind of framing has limited impact. If the user interface
appropriately notifies users about who is charging them
(as is common in payment splitting apps used today),
they can reject unexpected charges due to this kind of
attack just as they would an accidental charge.
Settling. Users settle by downloading the balance vec-
tor from the server and handling payments via another
channel.

4.2 Adding Privacy and Integrity

We now show how to modify the scheme described above
to achieve privacy and integrity.
Privacy. We provide privacy by masking all the values
sent by clients with the outputs of a PRF f evaluated
with a key sk chosen during group setup. Let vi,j rep-
resent the value in the jth position of a vector sent by
user i. For every value vi,j in round m, there will be a
PRF output ri,j = f(sk,m||i||j) and the value sent to
the server instead of vi,j will be vi,j + ri,j .

In order to maintain correctness, each user will com-
pute all values of ri,j in each round and keep a running
sum of all the rs that have been added into their own bal-
ances. They can do this because the PRF key is shared
by all members of the group. When receiving balances
from the server, users will subtract off the sum of all
the r values that have been added to the balance to
retrieve their actual balance. When receiving the sum
used for tracing, users must subtract off the relevant r
values multiplied by the corresponding powers of 2 with
which they will have been multiplied by the server.
Integrity. After receiving inputs from the clients, the
server takes the sum of the values it wishes to add to
the balance vector and polls each user to make sure
the value is equal to the number of members in the
group plus the sum of all r values used as masks in
that round. This check protects against silent growth in
the total balance of the group. The checks can be done

Privacy-Preserving Payment Splitting 75

asynchronously with other operations and rounds can
be rolled back after-the-fact if an issue is found. Note
that this integrity mechanism will work even if the group
members are in the middle of rolling back a transaction
(as described in the previous subsection) because even
though individual users will not send vectors that con-
tain exactly one non-zero entry, the sum of all users’
vectors will be the same as in any other round. This
mechanism provides the first of our two requirements
for integrity, and protection against framing is provided
implicitly by our technique for tracing because a user’s
app can automatically detect if it is traced as the orig-
inator of a charge in a round where it did not actually
make a request.

4.3 Malicious Security

We can make our construction secure against malicious
servers with no changes to the server, no increase in per-
round bandwidth, minimal changes on the client, and a
one-round increase in the case of colliding transactions.
In place of masking each value sent to the server with
a pseudorandom ri,j , we send the value svi,j + ri,j for a
fixed s also generated at group creation time from the
PRF. This value is very similar to the homomorphic
MAC tag of Agrawal and Boneh [2] but we use it to
achieve different security properties.

We must verify that our scheme still works under
this change. The integrity check needs to check that the
sum sent from the server equals s ·N plus the sum of rs
instead of just N but otherwise works unmodified. We
must also add an integrity check to the setup process
because the server cannot generate a vector of 1s on its
own and needs to be sent such a vector from one of the
users. Other users must check that the vector sent to
the server actually consists of all 1s.

Next, users, upon receiving their new balance from
the server, know that the new value will be at most one
away from the old value. As such, they can check each
of the three possible values by multiplying the possible
balances by s and seeing which matches the sent value
after removing the r values. If the new value does not
match one of the three possibilities, there has either
been a collision in payment requests or the server has
been caught behaving maliciously.

The tracing mechanism will require a slightly larger
change. First, users do a linear scan of the N possible
cases where only one member of the group is making a
request by checking if the value received from the server
is equal to −s ·2i for i ∈ [N] after removing the r values.

If none of these match, then there has been a collision,
but we are no longer able to determine which users col-
lided. We solve this by using the next round of the pro-
tocol to re-send values from this round but without the
s multiplied in – just as we would have in the plain PRF-
based construction. After the server sends its responses,
the tags from the previous round are used to verify that
it did not modify the values and then the identities of
the chargers can be checked just as before. The roll-back
round must increase the amount by which balances are
rolled back to account for the repeat of the colliding
transactions being added by the server into balances.

Finally, this construction requires some extra work
to settle the group because users will not know what
value to expect for each other user’s balance. This can
be solved by having each user upload a masked value rep-
resenting their balance and then other users can check to
make sure that the value matches the one sent by the
server. Since the values sent by a user and the server
must match, allowing the users to upload their masked
values does not allow users to lie about their balances.

4.4 Larger Transactions

Sending one unit of currency at a time leads to too
many rounds to transact larger amounts. We can mod-
ify the round structure so each round is accompanied by
a value multiplier. In this version of our scheme, each
round has a predetermined value, and all transactions
in that round are of that value instead of just 1. The
schedule of round values can be fixed at some reasonable
configuration (e.g. the first several powers of 2). It is im-
portant that the multiplier be applied on the server side
(by multiplying each received vector) or else this would
open the scheme to attacks on user integrity and break
the correctness of our approach for rejecting charges.

In order to further speed up transactions, several
rounds corresponding to different values can take place
in parallel. This can be done with little to no increase
in bandwidth by using transaction packing, where we
take advantage of the fact that we instantiate our PRF
with AES, which has a 128-bit output. If user balances
are unlikely to exceed some large value, say 221, we can
split each masked value sent to the server into 6 separate
“slots” where users can put transactions, treating each
message as 6 separate transactions, each using 21-bit
messages. This will result in the server keeping 6 sepa-
rate 21-bit “sub-balances” for each user. The user’s total
balance is their sum. Summing the sub-balances occurs

Privacy-Preserving Payment Splitting 76

transparently to the human user whose interaction with
the app is unaffected by the optimization.

4.5 Full Protocol

Here we formalize the malicious-secure PRF-based con-
struction described above. The semihonest construction
is a similar but simpler version of the same protocol and
appears in Appendix B. The construction assumes that
users share a key sk as described above and omits details
of the key-sharing mechanism. To focus on the core pro-
tocol, the construction is written such that each round
has value 1 and does not use the transaction-packing
optimization described above, but these can easily be
added. We say that a party outputs ⊥ to indicate that
an integrity violation has been detected that must be
handled out of band, e.g. by users moving to a more
trustworthy server or kicking someone out of the group.

Our fully malicious secure payment splitting scheme
Pm with security parameter λ and group size N uses
a PRF f with range {0, 1}λ. After setup, the scheme
proceeds in rounds, and messages are sent from each
client at a rate of one per round. Let m at any time
denote the round number at which the current operation
began, let s = f(sk, 0), and let rm,i,j denote f(sk,m||i||j)
except rm,i,j = 0 for values of m smaller than the round
in which user Ui joined the group or after it left.
Setup. The server stores a vector b of length N con-
structed from copies of 0. User U1 sends the server a
value a, which represents a masked version of 1. Let
a represent a vector of length N constructed from N

copies of a. The server sends a to each user, and the
users reject if a 6= s + f(sk, 1). The users then store
values bi = 0, b′i = 0, and the key sk.
Request. User i requests a unit of currency from user
j according to the following steps.
1. Clients prepare vectors. In the next round m, user
Ui creates a vector vi where vi,j = s + rm,i,j and
vi,k = 0 + rm,i,k∀k 6= j. All other users Uk create
vectors vk where vk,k = s + rm,k,k and vk,k′ =
0 + rm,k,k′∀k′ 6= k. Each user sends its vector vi or
vk to the server.

2. Server processes vectors. Upon receiving the mes-
sages from clients for the round, the server takes
the sum v = ΣNi=1vi and also sums the values in v
to get v′. The server then sets b = b + v − a and
computes the value c = ΣNi=1(vi,i−a) ·2i. The server
sends the tuple (v′, c, bl) to user Ul, l ∈ [N].

3. Clients check integrity, update balances. Each user
receives the values (v′∗, c∗, b∗l) from the server. Then
there are a number of cases:
(a) Integrity failure. If v′∗ 6= sN + ΣNi=0ΣNj=0rm,i,j ,

the user sends an error message to the server
who sets b = b− v + a and outputs ⊥.

(b) Balance update or framing failure. Otherwise, if
c∗ = −2i · s − ΣNj=1((rm,j,j + f(sk, 1)) · 2j) for
some i ∈ [N], the user checks whether b∗l = bl +
xs+ΣNj=1rm,j,l−f(sk, 1) for x ∈ {−1, 0, 1}. If so,
it sets bl = b∗l and b′l = b′l+x for the appropriate
x. If vi,i = 1 (if user i did not make a request),
user i sends an error message to the server who
in turn outputs ⊥.

(c) Request collision. If neither of the above cases
apply, then more than one request collided in
the same round m (or the server misbehaved).
The next two rounds are used to resolve the
potential collision.

Round m+1. In the next round (m+1), the users
send the same vectors they sent in round m but
with updated values for r and without multiply-
ing anything by s. Denote the values sent from
the server (which behaves the same as above)
in round m + 1 as (v′∗∗c∗∗, b∗∗l). Upon receiv-
ing their responses from the server, users check
that the values received from the server in this
round correspond to the same values received
in the previous round (modulo differences due
to lack of s and the new values for r). If any of
these checks fail, users output ⊥.

Round m + 2. In the next round (m+2), each
party Ui, i ∈ [N] submits a vector vi such that
vi,i = b∗∗i − bi − rm,i,i − rm+1,i,i + rm+2,i,i and
vi,k = 0+rm+2,i,k∀k 6= i and the server behaves
as above. Then the various requests that col-
lided in this round are repeated, each in a sub-
sequent round, in order from smallest to largest
value of ij as the requester.

Trace. User j checks if anyone has charged her in round
m∗ as follows. The user checks whether b∗j = bj + xs +
ΣNl=1rm∗,l,j − f(sk, 1) for x ∈ {−1, 0, 1} and, if so, knows
she has been charged x units of currency. If no value of
x matches, she outputs ⊥. If her balance has shrunk as
a result of the transaction, she looks at the value of c∗

in that round and sets i∗ ∈ [N] to be the value for which
c∗ = −2i∗ · s − ΣNl=1((rm∗,l,l + f(sk, 1)) · 2l). User i∗ is
the number of the user who made the charge.

Privacy-Preserving Payment Splitting 77

Settle. The server outputs the vector b to the users.
Users respond by sending a fresh masking of their stored
values b′i to the server, who forwards the value to all
other users, which in turn unmask and retrieve the value.
Users then check that for each i ∈ [N], b′i · s = bi −m ·
f(sk, 1)−Σmm′=1ΣNj=1rm′,i,j , and reject if any check fails.
The output vector b is formed by concatenating the b′is.

5 Complexity & Security
We state the protocol’s complexity in terms of a single
round, but since our scheme limits the size of transac-
tions, O(logX) rounds may be needed to send $X in
the general case, resulting in a multiplicative O(logX)
overhead. However, our transaction packing technique
can run several rounds in parallel without increasing
bandwidth or requiring additional AES evaluations.

The bandwidth per round for our scheme is O(N)
ciphertexts from each user to the server and then 3 ci-
phertexts from the server back to each client, each of
size λ. In practice, the ciphertexts in the PRF-based
schemes can just be λ = 128 bits long.

Our construction proceeds in rounds such that there
is one transaction per round as long as there is no colli-
sion between users trying to make charges at the same
time. In the case of a collision, the semihonest scheme
loses 2 rounds (detect collision, roll back transactions)
whereas the malicious secure scheme loses 3 rounds (re-
trieve non-tag version of values, detect collision, roll
back transactions).

Settling requires one message of size O(λN) from
the server to each user in the semihonest case, and in
the malicious server case this is preceded by messages
of size O(λ) from each user to the server.
Server. The server does the same process in each round
in both the semihonest and malicious constructions and
runs in time O(λN2). The settle operation requires
O(λN) work on the server to send the stored balances,
and server storage is O(λN) to hold balances.
Client. Our solution requires O(λN2) time to generate
the PRF outputs and take the necessary sums. Achiev-
ing malicious security adds lower order terms for various
checks but still requires O(λN2) time in a normal round,
with the potential cost of an extra round in case of a col-
lision (see above). Settling can be done in O(λN) time
by the client if the large sum that needs to be taken
is built incrementally and saved during each round. Al-
though O(λN) computation for each round would be

more desirable, we find in our evaluation that perfor-
mance for realistic group sizes remains quite fast.
Security. We now state our security theorems for both
the semihonest and fully malicious constructions. We de-
fer proofs to Appendix C, which proves that our scheme
satisfies the properties of a secure payment splitting
scheme as described in Section 2.

Theorem 9. Assuming f is a secure PRF, the semihon-
est secure payment splitting scheme Pp has correctness,
server privacy, debtor privacy, and user integrity.

Theorem 10. Assuming f is a secure PRF, the fully
malicious secure payment splitting scheme Pm has cor-
rectness, server privacy, debtor privacy, user integrity,
and server integrity (against a malicious server).

6 Extensions
This section briefly describes a number of extensions to
the core protocol that may be useful in practice.
Identifying misbehaving users. Our user integrity
checks, as described thus far, allow users to detect
whether a user has misbehaved, but we would also like
to be able to determine which users have misbehaved
in order to punish them or prevent membership in fu-
ture groups. We can easily accomplish this by having
the server send each user all the messages it received
in the previous round, so users can check to see whose
input was malformed. Unfortunately, this approach re-
quires the server to send each user N2 ciphertexts and,
more importantly, compromises debtor privacy by re-
vealing who was charged in that round. It is, however,
possible to identify misbehaving users without breaking
privacy. User integrity requires that the sum of all val-
ues in all users’ vectors is 1. Observe that in order to tell
whether a user violated integrity, other users only need
to learn whether the user submitted a vector whose en-
tries do not sum to 1. As such, the server only needs to
distribute the sum of each user’s vector, and any user
whose vector does not sum to 1 must be misbehaving
(except in the case of a transaction that rolls back a
collision, but all users will be aware that this is happen-
ing). This does not compromise debtor privacy because
the sum for an honest user will always be 1 regardless
of whether or not that user is involved in a transaction.
Moreover, the server now only needs to send each user
N ciphertexts instead of N2.

Privacy-Preserving Payment Splitting 78

Handling framing. User integrity also requires that
a user who has not initiated a charge can detect that
she is being framed. An additional practical concern is
for the victim of framing to prove his or her innocence
to other users and to identify the misbehaving user who
did the framing. Our basic scheme does not offer a mech-
anism for other users to verify a claim that someone has
been framed. We can, however, add such a mechanism
without much work. A user can prove innocence when
framed by asking the server to send every user the single
entry in her vector corresponding to the index of the user
she has purportedly charged. If that entry is a zero (as it
will always be if she did not really make a charge), then
she has clearly been framed. We stress that it is not the
human user herself who detects and proves that she has
been framed, but the user’s app, which sees it has been
traced as the requester in a charge yet knows that the
human user has not charged anyone in that round. The
problem of detecting who has done the framing without
weakening debtor privacy appears more difficult, and we
leave this problem for future work.
Handling users going offline. Our schemes can be
modified to handle users going offline. Intuitively, the
server supplies a vector that represents making no
charges on behalf of any user who does not send any-
thing in a round. The server adds in a plaintext vector
for any missing users and notifies others about who did
not send a message in a given round so that they know
whose r values to omit from the various sums.

The same approach works in the malicious security
solution, but here we need to make a tradeoff. Allowing
the server to be resilient to offline users means giving it
the power to exclude any users’ transactions by saying
that they were not present for that round. Of course,
the server does not know what a user is doing in any
round, meaning this kind of attack amounts to a de-
nial of service possibility (and the server could always
deny service more directly), but our security definition
would need to be modified to explicitly allow this kind
of omission on the part of the server. We do note that
this denial of service attack would be undetectable by
other users, a consideration which should be taken into
account before deciding whether or not to enable this
feature.

Our security guarantees degrade gracefully in the
absence of some users, with a transaction’s anonymity
set always being equal to the number of online users and
user integrity holding so long as one honest user is online.
The definitions in Section 2 all describe a setting where
users are always online, providing an anonymity set of

size N for each transaction and enforcing user integrity
against N − 1 malicious users. When the number of on-
line users is reduced to N ′ < N , our scheme provides
an anonymity set of size N ′ and user integrity against
N ′ − 1 users. Even if no honest users are online when
a malicious transaction is made, they can still detect a
malicious transaction when they come back online later
and the server sends them messages they missed.
Improving usability for tracing and charge re-
quests. A user making a charge can indicate the to-
tal amount they wish to charge (split across several
rounds) by sending a second encrypted value containing
the amount whereas other users upload an encryption of
zero. The server sums the encrypted values and sends
the result to each client. This way clients know how
much they will be charged at once and can give the app
permission to accept charges for the appropriate num-
ber of rounds. This would enable a UI not so different
from that used in payment splitting apps today while
the app handles the details of the underlying protocol.
At the same time, this does not introduce new security
concerns because additional charges beyond the amount
claimed will register as new transactions, and users’ real
balances are not affected by this bookkeeping shortcut.
Payment splitting with collateral. Payment-
splitting groups sometimes encounter a problem where
one member incurs debt to others and repeatedly fails to
pay. One solution to this problem involves users putting
up money as collateral when joining a group in order to
insure their debts with a deposit should they prove un-
trustworthy. We can make our scheme compatible with
this remedy as well. The core idea is simple. At regular
billing intervals, say monthly, users provide the service
provider with an additively homomorphic Pedersen com-
mitment [36] to their current balance and a proof that
the commitment is to a value less than their deposit. If
they cannot produce such a proof, they must deposit
more money until they reach a point where they can.

The challenge lies in producing a commitment to
a value that provably corresponds to a user’s balance.
This can be accomplished by soliciting the assistance
of other users, each of which can submit to the server
a commitment to the masking value hiding the target
user’s balance. Since all users share a PRF key, they
can use the PRF to generate randomness for the com-
mitment, resulting in every member sending the same
commitment to the same value. Thus, so long as one
user is honest, the server will not be deceived as to the
masking value. Next, the server can, on its own, create a
commitment to the target user’s masked balance, which

Privacy-Preserving Payment Splitting 79

Fig. 2. A screenshot of our Android app. The user has sent
charges to Bob and Carol and also been charged $1 by Carol,
which can be rejected via the “Reject Charge” button.

200 400 600 8001,000
100
101
102
103
104
105

Transaction Amount ($)

N
um

be
r
of

R
ou

nd
s

Rounds Needed to Process Transactions

Unoptimized naïve scheme
With rounds in powers of 2
With transaction packing

Fig. 3. Number of rounds needed for transactions of different
amounts as we add our bandwidth-saving optimizations. Over
90% of users in our survey reported that their typical transactions
fell to the left of the vertical dotted line, and even a $1, 000
transaction requires only 3 rounds, a 3, 300× improvement over
the naïve scheme.

it already knows. Once the server has a commitment to
the masked balance and the mask value, it can subtract
the mask and get a commitment to the user’s actual bal-
ance, which the user can then (in zero-knowledge) prove
is less than the deposit.

7 Implementation and Evaluation
We implemented our system as an Android app and an
accompanying server application using the Java Spark
framework [1]. Our app allows users to create and join
groups, send charges to each other, reject unwanted
charges from other users, and settle the group balance
if desired. We did not implement the optimizations for

20 40 60 80 100

200
400
600
800

1,000
1,200

Group Size

T
im

e
[µ
s]

Server Computation per Group

Fig. 4. Server round computation time (in microseconds) for one
group. The same computation applies for both the semihonest
and malicious server settings. 92% of users in our survey reported
that their largest group size fell to the left of the vertical dotted
line (271µs).

20 40 60 80 100

50
100
150
200
250
300

Group Size

T
im

e
[m

s]

Client Computation

Semihonest
Malicious

Fig. 5. Client round computation time (in milliseconds) for the
semihonest and malicious server settings. 92% of users in our
survey reported that their largest group size fell to the left of the
vertical dotted line (36.4/43.5ms).

supporting large transactions and rollbacks. Figure 2
shows a screenshot of a group’s page in the app.

We implemented our app as a simple front-end for
the functionality provided by our protocol, but there is
no technical limitation preventing more complex user in-
terfaces – such as those available in non-private payment
splitting apps in use today – being placed in front of our
protocol. For example, our app allows users to individ-
ually charge other users in a group. A more complex
app could provide an interface where the user enters
a charge that is assigned to the whole group or some
subset of the group, e.g. $80.56 split among 4 people,
and the app could split this into three charges of $20.14
each for other diners to repay whoever paid the bill. Ob-
serve that such a splitting would not run into issues with
colliding charges because the same user is initiating all
the charges and can stagger them over several rounds.
This way charges from the same real-world transaction
always take place one at a time.

Privacy-Preserving Payment Splitting 80

We evaluated the performance of our implementa-
tion on a MacBook Pro with a 2.9 GHz Intel Core i7
processor and 16GB RAM running macOS Sierra Ver-
sion 10.12.6 for the server and a Google Pixel (1.6GHz
quad-core processor, 4GB RAM) running Android 8.1.0
for the app. Our performance tests measure the server
and client running time for one round, using AES128
(default Android implementation) as our PRF. The re-
ported times include all computation outside of network
communication and are averages over 10 rounds each on
the server side and 5 each on the app. We measured per-
formance for groups of up to size 100 because no users
reported having a group of size greater than 100 in our
survey. Most groups were reported to be of less than
10 members (69%) or less than 25 members (92%), a
setting where our protocol performs particularly well.
Rounds. Since we operate and measure our system
in terms of rounds, it is important to understand how
many rounds would be required to make realistic pay-
ments. Figure 3 shows the number of rounds required
to process transactions of various sizes and the impact
of our optimizations in reducing the number of rounds.
Our optimizations reduce the number of rounds required
from linear to logarithmic in the transaction value, re-
sulting in savings of 500× and 3, 300× for $10 and $100
transactions respectively. A $100 transaction requires 2
rounds to complete, and transactions of over $1, 000 still
require only 3 rounds. Recall that we support transac-
tions at the granularity of 1 cent, so a $1, 000 transaction
corresponds to the transfer of 100, 000 cents. Returning
to the example from the beginning of this section, three
$20.14 charges sent to participants in a dinner that cost
$80.56 would run in two rounds each, resulting in six
rounds to complete the transaction.
Server Performance. Figure 4 shows the per-round
server side running time for a single group, which ranges
from about 200 microseconds for a group of 10 mem-
bers to about 1.2 milliseconds for a group of size 100.
Since there are no server side changes to the protocol
between the semihonest and malicious server settings,
performance in the two regimes is identical. Computa-
tion for each group operates entirely independently of
other groups, so a server can scale perfectly to a larger
number of cores, enabling a server only as powerful as a
commodity laptop to handle several thousands of groups
per second. The extreme efficiency and scalability of our
scheme results from the fact that the server does not
execute any cryptographic operations, only addition on
128-bit integers. Server memory requirements per group
are also small because the server can add users’ inputs

into running totals for each round as they arrive, remov-
ing the need to keep all messages for a given round in
memory until it completes.
Client Performance. Figure 5 shows the running time
for the Android app to compute its inputs and process
the outputs for each round. Running times range from
26-286ms in the semihonest setting and 36-299ms in the
malicious setting. The overhead of malicious server secu-
rity over semihonest security is quite small in both rela-
tive and absolute terms – less than 5% for groups of 100
members and never more than 20ms. Recall that the dif-
ference between semihonest and malicious security here
applies only to the server security protections, and both
protocols provide security against malicious users. The
lightweight nature of this computation, consisting pri-
marily of PRF evaluations and 128-bit additions, means
it can conveniently run as a regular background process
without causing an undue burden on a user’s phone.
Bandwidth. The bandwidth of each round is 16N
bytes, where N is the group size, from each user, and
52 bytes—three 16-byte values and one 4-byte status
code—sent back from the server to each user regardless
of group size (plus a negligible constant for sending the
data in JSON format). For group sizes used in practice,
this does not prove to be prohibitively large. A user in a
group of size 100 would only send about 1.6KB of data,
and users in the more commonly reported group sizes
of 10 or 25 would send 160B or 400B respectively.
Comparison to ZKLedger. ZKLedger [34] allows par-
ties with access to a distributed ledger to privately
record transactions and ensure the public integrity and
auditability of the ledger, primarily targeting large fi-
nancial institutions. Somewhat similarly, our scheme
aims to allow groups of private individuals to record
debts without compromising transaction privacy or in-
tegrity. It should be noted that there are important dif-
ferences between the two settings. Our scheme runs in a
continuous series of rounds to hide who initiates transac-
tions whereas entries are only added to ZKLedger when
a transaction takes place. ZKLedger offers additional
auditing functionalities that are not relevant to our
use case. On the other hand, ZKLedger does not offer
an in-protocol mechanism for users to contest charges,
whereas our protocol does. Finally, ZKLedger’s trans-
actions must go on an ever-growing ledger to enable
external auditing whereas we have no such requirement.
Both systems, however, could potentially be used for
payment splitting applications.

To compare fairly with ZKLedger, we modify our
scheme so a round only takes place when a user initi-

Privacy-Preserving Payment Splitting 81

ates a transaction. This leaks the identity of the user
initiating a charge, similar to ZKLedger. The change
does not affect other security properties.

ZKLedger’s code is not public, so we can at best
compare to performance numbers reported by their pa-
per, which were taken using virtual machines, each with
4 cores of Intel Xeon E5-2640 2.5 GHz processors, 24GB
of RAM, and running 64-bit Linux 4.4.0 on Ubuntu
16.04.3. Our system outperforms ZKLedger in the pay-
ment splitting application despite running most of its
computation on a mobile phone processor.

We calculate our system’s computation time as the
sum of client and server running times for each round.
Figure 6 compares our performance to ZKLedger for
a ten member group (the largest for which ZKLedger
reports complete transaction times). Our scheme pro-
cesses a $1, 000 transaction with 7.3× less computation
and with 6.8× lower bandwidth than ZKLedger, and
it splits a $80.56 dinner bill among 4 diners with 3.7×
less computation and with 3.4× lower bandwidth. The
tipping point where ZKLedger outperforms our system
is when a single transaction requires over 22 rounds
to complete. Our faster performance comes from using
only AES in each round (ZKLedger uses Pedersen com-
mitments [36]) and the absence of large zero-knowledge
proofs from our design.

Note that if we were to use our unmodified sys-
tem (where the initiator of each charge is hidden from
the server and rounds occur at fixed time intervals) to
make each transaction above, the transaction latency
would be determined by the time taken per round, a
configurable parameter. As such, we would expect such
a transaction to clear more slowly if we also wish to hide
who initiates transactions.

8 Future Work
This section covers modifications to our architecture and
security model that could be explored in future work.
Alternative system architectures. We built our sys-
tem to conform with the prevailing architecture of pay-
ment splitting apps in use today, where clients connect
to a central server which provides the payment splitting
service. Although this architecture is particularly inter-
esting due to its relevance to practice, a number of other
possibilities remain unexplored. For example, the tech-
niques used for query compression in Riposte [18, 22]
could be directly applied to a multiserver port of our sys-
tem, reducing per-round bandwidth per user to square

4 8 12 16 20 24

200
400
600
800

1,000
1,200

Number of Rounds

T
im

e
[m

s]

Computation Costs

ZKLedger
Our System

4 8 12 16 20 24

10
20
30
40
50
60
70

Number of Rounds

C
om

m
un

ic
at
io
n
[k
B
]

Communication Costs

ZKLedger
Our System

Fig. 6. Computation and communication cost comparison to
ZKLedger [34]. The vertical lines represent the number of rounds
needed for a single $1,000 transaction (in 3 rounds) and splitting
a $80.56 dinner among 4 people (in 6 rounds).

root or even logarithmic [7] in the group size. Settings
where group members communicate among themselves
may also lead to more efficient schemes.
Alternative applications. In addition to considering
other architectures for solving the payment splitting
problem, we may also consider other problems that may
be solved by our current system architecture. Although
we have focused on payment splitting, our solution can
apply to many situations where a group needs to pri-
vately keep records. For example, our system could be
used to allow a third-party IOT device manufacturer to
provide private analytics software. Devices send “pay-
ment requests” when they use energy or when a user
interacts with them, with a separate balance allocated
for each aggregate being measured by the software. The
group of devices could “settle” at the end of a month and
reveal aggregated analytics information to the manufac-
turer without revealing the details of when a given de-
vice was used. Most generally, our solution to payment
splitting can be seen as an approach to metadata-hiding
communication that sends particularly structured mes-
sages.
Group hiding. A natural extension of our scheme
would be to hide group membership from the server.

Privacy-Preserving Payment Splitting 82

We observe that hiding group membership fundamen-
tally changes the parameters of the problem. In our set-
ting, the server can treat each group separately, allowing
the number of groups to scale rapidly for realistic group
sizes. In the group hiding setting, however, since the
server cannot determine which users belong to the same
group, server behavior must be independent of group
constitution. At this point, it may be more effective to
dispense with the structure of groups and focus on the
more general problem of processing confidential transac-
tions between arbitrary users. Our work solves the real-
world problem of privacy in payment splitting groups,
but our techniques do not appear to extend directly to
handling general confidential transactions.

9 Related Work
A number of generic cryptographic tools could be used
to achieve a functionality similar to ours. Most directly,
fully homomorphic encryption (FHE) [8, 20, 21] could
be used for clients with a shared key to outsource any
computation to an untrusted server. Although payment
splitting is a special case of what can be accomplished
with FHE, FHE remains impractical for most use cases
today. Moreover, even with FHE, we would require addi-
tional safeguards for integrity against a malicious server.

Somewhat more practical are multiparty computa-
tion (MPC) techniques. Although the typical setting
for MPC [24] where multiple parties interact with each
other to compute a function does not apply to our set-
ting, there are works that focus on MPC between users
with the assistance of a single server [19, 25, 28, 29]. Ka-
mara et al. [28, 29] extend an earlier garbled-circuits [41,
42] based approach of Feige et al. [19] to such a setting,
but since they work with garbled boolean circuits, their
approach would incur a sizeable overhead in keeping
track of user balances compared to ours.

To our knowledge, our work is the first to directly
consider privacy in payment splitting. However, many
works deal with related problems in the space of pay-
ments and privacy. The notion of an anonymous digi-
tal currency in a centralized setting was first proposed
by Chaum [15, 16] and has been the subject of almost
continuous study since [5, 9–12, 14, 17, 35, 40]. Since
the advent of Bitcoin [33], decentralized cryptocurren-
cies have come to the forefront of research on privacy
and digital payments. While Bitcoin itself only provides
pseuodonymity to its users and has been shown to admit
tracing of user identities [3, 31], a number of proposals

for modifications or alternative cryptocurrencies provide
stronger privacy guarantees [6, 26, 30]. ZKLedger [34]
has a similar flavor to our work in terms of private au-
diting but targets a very different setting and at higher
cost, see Section 7. By focusing on the special case of
payment splitting, we build more efficient solutions than
are possible in the general case of anonymous payments.

Our solution for malicious security is similar to the
Homomorphic MACs of Agrawal and Boneh [2], which
belong to a class of works dealing with computation on
authenticated data first proposed by Johnson et al [27].
Our construction can be viewed as a special case of the
MACs of Agrawal and Boneh, but the security notions
we require do not exactly align with theirs. Their secu-
rity game allows an adversary to produce a valid tag
on any linear combination of previously produced mes-
sages, but we require that an adversary can only send
the exact results of the server’s designated computation
and no other function of user-provided inputs.

10 Conclusion
We have presented a payment splitting app that hides all
transaction data from the service provider. We showed
how we achieve privacy and integrity in the face of ma-
licious users or a malicious server while only relying
on lightweight cryptography on user devices and com-
puting no cryptographic operations whatsoever on the
server side. Our core protocol operates in rounds, and
we showed in our evaluation that it can scale to large
numbers of groups, requiring less than 300 microsec-
onds of computation per round for the vast majority
of groups. Likewise, the mobile app requires less than
50 milliseconds of computation per round on a user’s
phone, providing users with improved privacy in a pay-
ment splitting app at very little computational cost.

Acknowledgment
We would like to thank the anonymous reviewers and
our shepherd Melissa Chase for their helpful feedback
in improving the paper.

The majority of this work was completed during a
summer internship at Visa Research. In addition, this
work was supported by NSF, DARPA, ONR, and the
Simons Foundation.

Privacy-Preserving Payment Splitting 83

References
[1] Spark java framework, http://sparkjava.com, 2018.
[2] Shweta Agrawal and Dan Boneh. Homomorphic macs:

Mac-based integrity for network coding. In ACNS, 2009.
[3] Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias

Scherer, and Srdjan Capkun. Evaluating user privacy in
bitcoin. In Financial Cryptography, 2013.

[4] Sebastian Angel and Srinath T. V. Setty. Unobservable
communication over fully untrusted infrastructure. In OSDI,
2016.

[5] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and
Markulf Kohlweiss. Anonymous transferable e-cash. In PKC,
2015.

[6] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from bitcoin.
In IEEE Symposium on Security and Privacy, 2014.

[7] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing: Improvements and extensions. In CCS, pages 1292–
1303, 2016.

[8] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
Fully homomorphic encryption without bootstrapping. IACR
Cryptology ePrint Archive, 2011.

[9] Stefan Brands. Untraceable off-line cash in wallets with
observers (extended abstract). In CRYPTO, 1993.

[10] Jan Camenisch. Group signature schemes and payment
systems based on the discrete logarithm problem. PhD thesis,
ETH Zurich, Zürich, Switzerland, 1998.

[11] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya.
Compact e-cash. In EUROCRYPT, 2005.

[12] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya.
Balancing accountability and privacy using e-cash (extended
abstract). In SCN, 2006.

[13] Cardtronics. Health of cash study, u.s. edition, 2017.
[14] Agnes Hui Chan, Yair Frankel, and Yiannis Tsiounis. Easy

come - easy go divisible cash. In EUROCRYPT, 1998.
[15] David Chaum. Blind signatures for untraceable payments. In

CRYPTO, 1982.
[16] David Chaum. Blind signature system. In CRYPTO, 1983.
[17] David Chaum, Amos Fiat, and Moni Naor. Untraceable

electronic cash. In CRYPTO, 1988.
[18] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.

Riposte: An anonymous messaging system handling millions
of users. In IEEE Symposium on Security and Privacy, 2015.

[19] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for
secure computation (extended abstract). In STOC, pages
554–563, 1994.

[20] Craig Gentry. Fully homomorphic encryption using ideal
lattices. In STOC, pages 169–178, 2009.

[21] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. IACR Cryptology
ePrint Archive, 2013.

[22] Niv Gilboa and Yuval Ishai. Distributed point functions and
their applications. In Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 640–658,

2014.
[23] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the

cryptographic applications of random functions. In CRYPTO,
1984.

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game or A completeness theorem for
protocols with honest majority. In STOC, pages 218–229,
1987.

[25] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure
computation on the web: Computing without simultaneous
interaction. In CRYPTO, 2011.

[26] Tom Elvis Jedusor. Mimblewimble, 2016.
[27] Robert Johnson, David Molnar, Dawn Xiaodong Song, and

David A. Wagner. Homomorphic signature schemes. In
CT-RSA, 2002.

[28] Seny Kamara, Payman Mohassel, and Mariana Raykova.
Outsourcing multi-party computation. IACR Cryptology
ePrint Archive, 2011.

[29] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: a
system for server-aided secure function evaluation. In CCS,
2012.

[30] Gregory Maxwell. Confidential transactions, 2015.
[31] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill

Levchenko, Damon McCoy, Geoffrey M. Voelker, and Stefan
Savage. A fistful of bitcoins: characterizing payments among
men with no names. In IMC, 2013.

[32] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau,
Edward W. Felten, and Michael J. Freedman. CONIKS:
bringing key transparency to end users. In USENIX Security,
2015.

[33] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2008.

[34] Neha Narula, Willy Vasquez, and Madars Virza. zkledger:
Privacy-preserving auditing for distributed ledgers. In NSDI,
2018.

[35] Tatsuaki Okamoto and Kazuo Ohta. Disposable zero-
knowledge authentications and their applications to un-
traceable electronic cash. In CRYPTO, 1989.

[36] Torben P. Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In CRYPTO,
1991.

[37] Anh Pham, Italo Dacosta, Bastien Jacot-Guillarmod, Kévin
Huguenin, Taha Hajar, Florian Tramèr, Virgil D. Gligor,
and Jean-Pierre Hubaux. Privateride: A privacy-enhanced
ride-hailing service. PoPETs, 2017.

[38] Splitwise. Splitwise privacy policy, 2018.
[39] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and

Nickolai Zeldovich. Stadium: A distributed metadata-private
messaging system. In SOSP, 2017.

[40] Karl Wüst, Kari Kostiainen, Vedran Capkun, and Srdjan
Capkun. Prcash: Centrally-issued digital currency with privacy
and regulation. IACR Cryptology ePrint Archive, 2018.

[41] Andrew Chi-Chih Yao. Protocols for secure computations (ex-
tended abstract). In 23rd Annual Symposium on Foundations
of Computer Science, Chicago, Illinois, USA, 3-5 November
1982, pages 160–164, 1982.

[42] Andrew Chi-Chih Yao. How to generate and exchange secrets
(extended abstract). In FOCS, pages 162–167, 1986.

[43] Ennan Zhai, David Isaac Wolinsky, Ruichuan Chen, Ewa
Syta, Chao Teng, and Bryan Ford. Anonrep: Towards

Privacy-Preserving Payment Splitting 84

tracking-resistant anonymous reputation. In NSDI, 2016.

A Survey Text
This is a survey about your use of payment splitting
apps. This refers to apps which track credit/debit be-
tween peers, such as Splitwise, and does NOT include
apps that are designed mainly for one-off payments, like
Venmo. Since both kinds of apps can make charges to
your credit card, a good way to tell them apart is that
your balance can only go negative in a payment splitting
app.

Some examples of payment splitting apps: Splitwise,
Receipt Ninja, BillPin, SpotMe, Conmigo, and Settle
Up.

The results of this survey will be used as part of an
ongoing [redacted] Research project on payment split-
ting apps. Feel free to contact [redacted] with any ques-
tions or comments.
1. What payment splitting app(s) do you use? If you

don’t use any, write “none” and answer the ques-
tions below with regard to however you do split pay-
ments.

2. How big is the largest group you have in such an
app?
(a) < 10
(b) 10− 25
(c) 25− 50
(d) 50− 100
(e) > 100

3. How much money is used (per person) in one of your
typical transactions on this app?
(a) <$10
(b) $10− 30
(c) $30− 50
(d) $50− 100
(e) >$100

4. What is the typical number of transactions made in
one of your groups in a given day? Someone paying
for everyone’s lunch counts as 1 transaction.
(a) <= 1
(b) 2− 3
(c) 4− 5
(d) 6− 9
(e) 10+

5. Is there a particular time of day where you use the
app most?
(a) Morning

(b) Midday
(c) Evening
(d) Weekend
(e) No Particular Time

6. When charging your friends for payments, to what
degree do you usually round the cost?
(a) Nearest cent (no rounding)
(b) Nearest 5 cents
(c) Nearest 10 cents
(d) Nearest 50 cents
(e) Nearest $1
(f) Other (please specify)

7. How often do you reject charges on this app?
(a) I never have
(b) Very rarely (less than Monthly)
(c) Monthly
(d) Weekly
(e) Daily

8. What are some issues you see as barriers to use for
existing payment splitting apps? Please select all
that apply.
(a) Peers not using them
(b) Slowness or crashing
(c) Lack of privacy of personal finance/behavior

data from app provider
(d) Poor usability: difficult to form groups, enter

charges, settle balances, etc.
(e) None: payment splitting apps are fine as-is
(f) Other (please specify)

9. If your app has a social media component, do you
set your transactions to “Public,” “Friends Only,”
or “Participants Only”? If it does not, which would
you choose if it did?
(a) Public
(b) Friends Only
(c) Participants Only

10. Suppose your payment splitting app is hacked and
all the information in it is stolen. Please rank the
following in order of how sensitive the information
is to you, with 1 being most sensitive.
(a) Businesses/locations where transactions take

place
(b) Dollar amounts of transactions
(c) Knowing who has rejected a charge and which

charges they rejected
(d) Knowing who is in the group
(e) Knowing who is involved in each transaction

and who pays
(f) The time when each transaction took place

Privacy-Preserving Payment Splitting 85

B Full Semihonest Construction
Here is a formal description of the version of our scheme
providing security only against a semihonest server.

Our semihonest secure payment splitting scheme Pp
with security parameter λ and group size N uses a PRF
f with range {0, 1}λ. After setup, the scheme proceeds in
rounds, and messages are sent from each client at a rate
of one per round. Let m at any time denote the round
number at which the current operation began, and let
rm,i,j denote f(sk,m||i||j) except rm,i,j = 0 for values
of m smaller than the round in which user Ui joined the
group or after it left.
Setup. The server stores a vector b of length N con-
structed from copies of 0. Let a represent a vector of
length N constructed from N copies of 1. The users
store a value bi = 0 and the key sk.
Request. User i requests a unit of currency from user
j according to the following steps. In the next round
m, user Ui creates a vector vi where vi,j = 1 + rm,i,j
and vi,k = 0 + rm,i,k, ∀k 6= j. All other users Uk create
vectors vk where vk,k = 1+rm,k,k and vk,k′ = 0+rm,k,k′ ,
∀k′ 6= k. Each user sends its vector vi or vk to the server.

Upon receiving the messages from clients for the
round, the server takes the sum v = ΣNi=1vi and also
sums the values in v to get v′. The server then sets b =
b+v− a and computes the value c = ΣNi=1(vi,i − 1) · 2i.
The server sends the tuple (v′, c, bl) to user Ul, l ∈ [N].

Each user receives the values (v′∗, c∗, b∗l) from the
server. Then there are a number of cases:
1. If v′∗ 6= N + ΣNi=0ΣNj=0rm,i,j , the user sends an error

message to the server who sets b = b − v + a and
outputs ⊥.

2. Otherwise, if c∗ = −2i − ΣNj=1(rm,j,j · 2j) for some
i ∈ [N], each user Ul sets bl = b∗l . In this case, user i
outputs ⊥ if vi,i = 1 (if it did not make a request).

3. If neither of the above cases apply, then more than
one request collided in the same round. Let the
vector c consist of the values i1, ..., iN such that
c∗ = ΣNj=1(−2ij − rm,j,j). In the next round (m+ 1),
each party Ui, i ∈ [N] submits a vector vi such
that vi,i = b∗i − bi − rm,i,i + rm+1,i,i and vi,k =
0 + rm+1,i,k∀k 6= i and the server behaves as above.
Then the various requests that collided in this round
are repeated, each in a subsequent round, in order
from smallest to largest value of ij as the requester.

Trace. User j checks if anyone has charged her in
round m∗ as follows. First she computes v∗ = b∗j − bj −
ΣNl=1rm∗,l,j for the values of bj and b∗j before/after the

round m∗ in question to see if she has been charged at
all. If her balance has shrunk as a result of the transac-
tion, she looks at the value of c∗ in that round and sets
i∗ = log2(−c∗ − ΣNl=1(rm∗,l,l · 2l)).
Settle. The server outputs the vector b to the users.
The output vector for users is formed by setting bi =
bi − Σmm′=1ΣNj=1rm,i,j for each entry bi ∈ b.

C Deferred Proofs
Theorem 11. Assuming f is a secure PRF, the semi-
honest secure payment splitting scheme Pp has correct-
ness, server privacy, debtor privacy, and user integrity.

Proof. Correctness follows from the construction, so we
do not discuss it further. For server privacy, it’s impor-
tant that the protocol proceeds in fixed rounds and that
the server does not know when a collision has happened
or is being resolved, so the server just gets a vector of
masked values from each user in each round. The proof
will rely on the fact that the PRF outputs we use to
mask values are indistinguishable from random, mean-
ing that an adversary can never tell what masked values
it has received.

Lemma 1. Assuming f is a secure PRF, the semihon-
est secure payment splitting scheme Pp has server pri-
vacy.

Proof (server privacy). We proceed by a series of in-
distinguishable hybrids beginning with the experi-
ment PRIV[A, λ, 0] and ending with PRIV[A, λ, 1]. Let
PRFADV be the advantage of adversary A (playing the
role of the server) in distinguishing an output of f from
a random string. The list of hybrids is as follows:
– H0: The real privacy experiment, PRIV[A, λ, 0]
– H1: Same as the previous hybrid, but the outputs of

f(sk, ·) are replaced by outputs of a random function.
This is indistinguishable from the previous hybrid
by the PRF security of f .

– H2: Same as the previous hybrid, but the transaction
executed by C is t1 instead of t0.

– H3: Same as the previous hybrid, but the random
function outputs used to mask each value sent to
the server are replaced by evaluations f(sk, ·) as de-
scribed in the construction of the scheme Pp. This
is indistinguishable from the previous hybrid by the
PRF security of f and is exactly the security exper-
iment PRIV[A, λ, 1].

Privacy-Preserving Payment Splitting 86

We use a standard argument to show that adversary
A distinguishes between experiments H0 and H1 with
advantage at most PRFADV. The argument for experi-
ments H2 and H3 is the same, so we omit it.

We use the adversary A that distinguishes between
the outputs of H0 and H1 to construct an adversary B
that wins the PRF security game for f with the same
advantage. B acts as the challenger in the privacy game
with A while simultaneously playing as the adversary in
the PRF security game. It reproduces the game for H0
exactly except that any queries to f(sk, ·) are replaced
by queries to the PRF security game challenger. Ob-
serve that if the PRF challenger is using a PRF on a
randomly sampled key, then B provides a perfect simu-
lation of the game H0. On the other hand, if the PRF
challenger is using a random function, B provides a per-
fect simulation of the game H1. Thus the output of A
wins the PRF security game with the same probability
that it distinguishes between H0 and H1.

Observe that since values sent to the server in H1
and H2 are masked with independently random strings,
the distributions of messages sent to the server in these
two worlds is identical. As such, the advantage of ad-
versary A in distinguishing between PRIV[A, λ, 0] and
PRIV[A, λ, 1] is at most 2·PRFADV = 2·negl(λ) = negl(λ),
completing the proof.

Next, we prove that our scheme satisfies the definition
of debtor privacy. Note that because the debtor privacy
adversary can corrupt users in the group, it has access
to the group key. As such, debtor privacy will not use
the security of the PRF f , relying instead only on the
structure of our protocol.

Lemma 2. The semihonest secure payment splitting
scheme Pp has debtor privacy.

Proof (debtor privacy). We will directly prove debtor
by privacy by showing that the view of the adversary
in the games DEBTPRIV[A, λ, 0] and DEBTPRIV[A, λ, 1]
are distributed identically. The view of each user con-
trolled by the adversary in each round of the debtor
privacy game consists of an updated masked balance
(which will be different for each user), a check value v′

corresponding the sum of all entries in every user’s in-
put vector for that round, and the tracing value c used
to find out who sent a charge in that round. In a settle
operation, each user gets an identical vector b. We will
show that all of these values are independent of b.

Note that the balances of corrupted users are never
affected differently in transactions t0 and t1 (or else C
outputs 0), so the balances of the corrupted users will al-

ways be the same at all points regardless of b. Thus the
balances of corrupted users after a transaction where
t0 and t1 differ will be the same as they were before
with some new masking values added in. These mask-
ing values do not depend on b (they only depend on the
round number and the PRF key), so malicious users’ bal-
ances are distributed identically in DEBTPRIV[A, λ, 0]
and DEBTPRIV[A, λ, 1].

Next, since honest users always submit vectors
whose entries sum to 1 in every round, the contribution
of every honest user to v′ will be independent of b.

The tracing value c depends only on the entry each
user’s vector places in the user’s own index. An honest
user who is making a charge will put a masked 0 in this
position, but all other honest users will put a masked
1 because they will not be making any charges. Thus
the input of a user being charged and a user not be-
ing charged (with the exception of the one making the
charge) will always be the same value. This means that
the tracing value c will be distributed the same regard-
less of the value of b.

The security definition requires that all balances be
identical across both transcripts when a settlement oc-
curs (or else C outputs 0), so the vectors b sent by the
server during settlement will naturally be the same re-
gardless of b.

Since we have shown that every element of
the adversary’s view is distributed identically in
DEBTPRIV[A, λ, 0] and DEBTPRIV[A, λ, 1], we can con-
clude that no PPT adversary can distinguish between
the two experiments with any advantage.

Lemma 3. The semihonest secure payment splitting
scheme Pp has user integrity.

Proof (user integrity). To prove user integrity, we need
to prove three separate claims. First, we must show that
any input that would cause the sum of user balances (if
the group were to settle) to sum to a nonzero value
must be detected, even if all but one member of the
group is controlled by a malicious adversary. Second,
we must show that a user’s locally held balance always
matches the balance reported when settling. Third, we
must show that an honest user who did not initiate a
transaction in a given round can always detect if he has
been framed as having done so.

The first component of user integrity is satisfied by
the server polling all users to ensure that the sum of
their inputs equals the (masked) group size N . Since
all users are polled, as long as one honest user remains
to catch an error, the server will learn that a user has

Privacy-Preserving Payment Splitting 87

violated integrity in that round. This suffices to prove
the desired property because all balances are set to zero
at the time of a group’s creation, so the only opportunity
for the balances to sum to a nonzero value when a group
settles is if there is a round where the sum of all the
users’ inputs is not equal to the group size N (the sum
is N instead of 0 because the server subtracts off 1 from
each index before adding the sum of user inputs into the
balances). The sum of all users’ inputs will equal N in
an honest round by the correctness of the protocol.

The fact that a user’s balance always matches the
output of settling follows directly from the construction
because the server sends each user its current entry in
the balance vector in each round.

Proving that an honest user can detect whether he
has been framed follows from the correctness of the con-
struction. By this we mean that the security property
does not rely on any particular property of the tracing
mechanism except that users will agree on who appears
to be making a charge according to the rules of the pro-
tocol. Our protocol, when executed honestly, always re-
sults in the tracing value c containing a (masked) power
of two −2i corresponding to a charge coming from user
i. As such, whenever c contains −2i for a user i who did
not make a charge in the corresponding round, user i
can tell that he is being framed.

Theorem 12. Assuming f is a secure PRF, the fully
malicious secure payment splitting scheme Pm has cor-
rectness, server privacy, debtor privacy, user integrity,
and server integrity (against a malicious server).

Proofs of correctness, server privacy, debtor privacy, and
user integrity for the malicious secure scheme Pm closely
resemble those of the semihonest scheme Pp. The server
privacy proof is identical because replacing the various
rm,i,j values in the construction with random values suf-
fices to render the games PRIV[A, λ, 0] and PRIV[A, λ, 1]
indistinguishable. Proofs of debtor privacy and user in-
tegrity only replace the integrity check and balance val-
ues seen by the users with the more complex values in-
volving s that appear in the malicious secure scheme.

Server integrity holds because it is hard for the
server to generate a message to a client that will be ac-
cepted as legitimate. This is the case because there are
only a limited number of values a client will accept in a
given round, and the server can do no better than guess-
ing at correct ones. For example, a client knows that its
balance will either be incremented or decremented, and

that the charger will be one of N possible parties. Since
the pseudorandom value s and the per-message random-
ness mask messages from the server, the server has a
negligible probability of finding a message that can be
correctly unmasked to an acceptable multiple of s.

Lemma 4. Assuming f is a secure PRF, the fully ma-
licious secure payment splitting scheme Pm has server
integrity (against a malicious server).

Proof (server integrity). Let PRFADV be the advantage
of adversary A in distinguishing an output of f from a
random string. First, using a hybrid analogous to the
step between hybrids H0 and H1 in the server privacy
proof above, we can replace all evaluations of f with
evaluations of a random function.

In each round, the server sends each client an up-
dated balance, an integrity check value, and a value c
which identifies anyone making a charge in that round.
Whatever value the server produces must be of the form
v∗ = s · x+ y where s and y are known to the users but
not the server, with y changing for every message and s
fixed. In the case of the integrity value, x must be N , in
the case of the balance, x must be the previous balance
+/ − 1 (unless the requester value indicates a collision,
where it doesn’t matter what it is), and for the requester
value, x must be a power of 2 or a sum of at most N
powers of 2. In the case a second round is used for users
to send their masked inputs without multiplying by s,
each value x sent by the server must correspond to the
same value sent in the previous round. This means that
the malicious server has at most z = O(N) acceptable
values that it can set x to be for any message.

Since each value sent from the server to the users
in each round is a distinct combination of a subset of
users’ inputs, s and y are independently random. As a
result, the probability that v∗− y = s ·x for a value of x
expected/acceptable to a client is 1

2λ for each acceptable
value. Since there are O(N) acceptable values, there will
be an O(N2λ) probability that a server successfully forges
a given message. Taking a union bound over all server
messages in the course of the protocol (m rounds of
O(N) messages each), we get that A can break server
integrity with probability at most O(mN

2

2λ).
We have now covered server integrity for requests

and tracing (both are included in the round by round
structure of our protocol), but we must cover settling
separately. Fortunately, settling operates according to
more or less the same principles as the round proto-
col. The server sends each user a value corresponding to
every other user’s balance pi masked with an indepen-

Privacy-Preserving Payment Splitting 88

dently random value yi followed by a second value v∗

which must correspond to s ·pi+y′i for another indepen-
dently random y′i. As above, the probability of success-
fully fooling a user into accepting an incorrect value p∗i
is 1

2λ , and the union bound over all messages sent to all
users for each of n settlements is less than nN2

2λ .
Finally, the probability that a message from a mali-

cious server S∗ deviates from what an honest server S
would send without being caught is at most the sum of
the distinguishing advantage between H0 and H1, and
the probabilities of failure for the rounds and for settle-
ment. That is PRFADV +O(mN

2

2λ) + nN2

2λ < negl(λ).

	Privacy-Preserving Payment Splitting
	1 Introduction
	2 System Goals
	2.1 Functionality Goals
	2.2 Security Goals
	2.3 Security Definitions

	3 Architecture Overview
	4 Core Functionality
	4.1 The Basic Protocol
	4.2 Adding Privacy and Integrity
	4.3 Malicious Security
	4.4 Larger Transactions
	4.5 Full Protocol

	5 Complexity & Security
	6 Extensions
	7 Implementation and Evaluation
	8 Future Work
	9 Related Work
	10 Conclusion
	A Survey Text
	B Full Semihonest Construction
	C Deferred Proofs

