
Proceedings on Privacy Enhancing Technologies ; 2020 (2):175–208

Peeter Laud*, Alisa Pankova, and Martin Pettai

A Framework of Metrics for Differential Privacy
from Local Sensitivity
Abstract: The meaning of differential privacy (DP) is
tightly bound with the notion of distance on databases,
typically defined as the number of changed rows. Con-
sidering the semantics of data, this metric may be not
the most suitable one, particularly when a distance
comes out as larger than the data owner desired (which
would undermine privacy). In this paper, we give a
mechanism to specify continuous metrics that depend
on the locations and amounts of changes in a much more
nuanced manner. Our metrics turn the set of databases
into a Banach space. In order to construct DP informa-
tion release mechanisms based on our metrics, we in-
troduce derivative sensitivity, an analogue to local sen-
sitivity for continuous functions. We use this notion in
an analysis that determines the amount of noise to be
added to the result of a database query in order to ob-
tain a certain level of differential privacy, and demon-
strate that derivative sensitivity allows us to employ
powerful mechanisms from calculus to perform the anal-
ysis for a variety of queries. We have implemented the
analyzer and evaluated its efficiency and precision.

Keywords: differential privacy, sensitivity

DOI 10.2478/popets-2020-0023
Received 2019-08-31; revised 2019-12-15; accepted 2019-12-16.

1 Introduction
Differential privacy [8] (DP) is one of the most promi-
nent ways to quantitatively define privacy losses from re-
leasing derived information about data collections, and
to rigorously argue about the accumulation of these
losses in information processing systems. Differentially
private information release mechanisms invariably em-
ploy the addition of noise somewhere during the pro-
cessing, hence reducing the utility of the result. For spe-
cific information processing tasks, or families of tasks,

*Corresponding Author: Peeter Laud: Cybernetica AS,
E-mail: peeter@cyber.ee
Alisa Pankova: Cybernetica AS, E-mail: alisa@cyber.ee
Martin Pettai: Cybernetica AS, E-mail: martin@cyber.ee

there exist carefully designed methods to achieve DP
with only a little loss in utility [16]; for some methods,
this loss asymptotically approaches zero as the size of
the processed dataset grows [24]. But a general method
for making an information release mechanism differen-
tially private is to add noise of appropriate magnitude to
the output of this mechanism. This magnitude depends
on the sensitivity of the mechanism — the amount of
change of its output when its input is changed by a unit
amount. This paper is devoted to the study of comput-
ing (or safely approximating) the sensitivity of informa-
tion release mechanisms given by their source code.

The definition of the ratio of changes of the out-
puts and inputs of the information release mechanism
requires metrics on both of them. A common approach
is requiring the outputs to be numeric. In fact, the out-
put of the mechanism is a single real number, and the
distance between outputs is their difference. This ap-
proach can be generalized to mechanisms that output
histograms, i.e. tuples of numbers.

The definition of the metric on inputs is a richer
question, and really reflects how the data owner wants to
quantify its privacy. DP can be defined with respect to
any metric on the set of possible inputs [5]. For database
tables and databases, a common metric has been the
number of different rows [23]. But the data owner may
consider different changes in one row of some database
table as different, particularly if it involves some nu-
meric attributes. A small change in such attribute in a
single row may be considered as “small”, and the DP
mechanism should strive to hide such change. A large
change in the same attribute in a single row may be
allowed to be more visible in the output. A change in
geographic coordinates may be defined differently from
a change in the length or the quantity of something.
Finally, when several attributes change in a single row,
then there are many reasonable ways of combining their
changes (including summing them up, or taking their
maximum) in defining how much the row has changed.
A variety of definitions for the combination of changes is
also possible if several rows change in a table, or several
tables change in a database. We note that for inputs
to the information release mechanism, the overestima-
tion of their distance leads to the underestimation of the

A Framework of Metrics for Differential Privacy from Local Sensitivity 176

amount of noise added to achieve a certain level of DP.
Hence it is crucial to handle a wide range of metrics,
from which the data owner may select the one that he
considers to best reflect his privacy expectations.

With new definitions of DP come the questions of
achieving it. DP w.r.t. different metrics has been con-
sidered before [5], but only with global sensitivity of the
query being used to scale the noise necessary for achiev-
ing it. In this paper, we generalize the notion of local
sensitivity [24] to real-valued metrics and at the same
time simplify it, tying it with the fundamental notions
of functional analysis and expanding the kinds of in-
put data to which it may be applied. We give a general
framework for defining different metrics on databases,
and computing the sensitivities of queries with respect
to these input metrics. It has the following scope:
– Being based on local sensitivity, we require the ac-

tual content of the database in order to compute the
distribution of added noise for achieving DP.

– Our metrics for rows, tables, and databases are
combinations and compositions of `p-metrics with
1 ≤ p ≤ ∞. Certain rows or columns may be left
out from the computation of the metric, effectively
declaring them as public. The columns that remain
should be numeric (or encoded as numeric). The
number of table rows defines dimensionality of the
metric space, and is considered public.

– Computation of sensitivity of a function is based
on its derivative, so the framework primarily covers
continuous functions. Non-continuous constructions
(like filtering) are approximated by continuous func-
tions, which itself introduces some noise.

– As queries we support a significant subset of SQL
with projections, filters, joins and also certain types
of subqueries. The final output is numeric, i.e. an
aggregation or a couple of aggregations. We do not
support DISTINCT queries, and GROUP BY is
limited to public and discrete attributes.

We start from presenting the metric-defining framework
(Sec. 4.1). We follow it up with the definition of sensitiv-
ity that makes use of the continuity of the metrics; this
sensitivity is applicable for mappings from the defined
metric spaces to real numbers (Sec. 4.2). We show that
this sensitivity can be used to measure the amount of
noise to be added to the outputs of these maps in order
to make them differentially private. We describe how to
compute this sensitivity and its smooth upper bounds
from the description of mappings. We show how these
results can be applied to SQL queries (Sec. 5).

The multitude of different metrics presents a novel
problem. The computations of derivative sensitivity
(our name for the analogue of local sensitivity, defined
in this paper) for various functions out of metric spaces
can be done only for certain metrics, depending on the
particular function. At the same time, the data owner
has defined a particular metric for the databases, and
wants the queries against his database to be differen-
tially private with respect to this metric. In Sec. 5.3 we
show how to approximate and upper-bound sensitivities
of the same function with respect to different metrics,
and thereby provide a solution to this problem.

We evaluate a concrete implementation of our the-
ory in Sec. 7, demonstrating its benefits on particular
examples. Our analyzer takes as inputs the description
of the database and the metric on it, the query to be
performed, as well as the actual contents of the database
(as required by local sensitivity based approaches), and
returns the value of smooth derivative sensitivity of this
query at this database. The returned value can be used
to scale the added noise in order to obtain a certain
level of DP. The analyzer is integrated with the database
management system in order to perform the computa-
tions specific to the contents of the database.

2 Related Work
Differential privacy was introduced by Dwork [8].
PINQ [23] is a worked-out example of using it for pro-
viding privacy-preserving replies to database queries. In
an implementation, our analyzer of SQL queries would
occupy the same place as the PINQ wrapper which anal-
yses LINQ queries and maintains the privacy budget.

It has been recognized that any metric on the set of
possible inputs gives us a definition of DP with respect
to this metric [5, 13], but there has been no investigation
of a systematic construction of such metrics that are also
usable in constructing DP mechanisms. A particular ap-
plication of DP w.r.t. a particular metric has been the
privacy-preserving processing of location data [6]. The
personalized differential privacy [12] can also be seen as
an instance of using an arbitrary metric, albeit with a
more complex set of distances. In Blowfish [17, 20], the
metric rises from the distance on a graph where vertices
are the possible database instances.

We use norms to state the privacy requirements
on input data. Normed vector spaces have appeared in
the DP literature in the context of K-normed mech-
anisms [3, 15], which extend the one-dimensional and

A Framework of Metrics for Differential Privacy from Local Sensitivity 177

generalize the many-dimensional Laplace mechanism.
These mechanisms are rather different from our tech-
niques and they do not explore the use of complete-
ness of norms and differentiability of information release
mechanism to find their sensitivity.

Nissim et al. [24] introduce local sensitivity and its
smooth upper bounds, and use them to give differen-
tially private approximations for certain statistical func-
tions. The local sensitivity of a function is similar to its
derivative. This has been noticed [19], but we are not
aware of this similarity being thoroughly exploited, ex-
cept perhaps for devising DP machine learning meth-
ods [28]. In this paper, this similarity will play a central
role.

A couple of different static approaches for determin-
ing sensitivities of SQL queries or their upper bounds
have been proposed. Palamidessi and Stronati [25] ap-
ply abstract interpretation to an SQL query, following
its abstract syntax tree, combining the sensitivities of
relational algebra operations (projection and filter have
sensitivity at most 1, set operations have sensitivity at
most 2, etc.) similarly to [11]. Additionally, they track
the diameters of the domains of the values in the out-
come of the query; the sensitivity cannot be larger than
the diameter. Pierce et al. [14, 26] use linear and/or de-
pendent types to derive bounds on the sensitivities of
programs.

The computability of the precise sensitivity of the
queries is studied by Arapinis et al. [2]. They identify a
subclass of queries (Conjunctive queries with restricted
WHERE-clauses) for which the sensitivity can be precisely
determined. However, they also show that the problem
is uncomputable in general. In addition, they show how
functional dependencies and cardinality constraints may
be used to upper-bound sensitivities of join-queries.

Cardinality constraints are also used by Johnson et
al. [18] in their abstract interpretation based approach.
For a database, they consider the maximum frequency
of a value of an attribute in one of the tables, maxi-
mized over all databases at most at some distance to
the original database, thereby building on the notion of
(smooth) local sensitivity.

3 Preliminaries

3.1 Sensitivity and Differential Privacy

Let X be the set of possible databases. We assume that
there is a metric dX(x, x′) for x, x′ ∈ X, quantifying the

difference between two databases. For example, we could
define dX(x, x′) = n for two datatables whose tables
differ in exactly n rows in total.

For a set Y , let D(Y) denote the set of all probability
distributions over Y (seen as mappings from Y to [0, 1]).
For n ∈ N, let [n] denote the set {1, . . . , n}. Let [1,∞]
denote the set {x ∈ R |x ≥ 1} ∪ {∞}.

Suppose that someone wants to make a query to the
database. If the data is (partially) private, the query
output may leak some sensitive information about the
data. Noise can be added to the output to reduce pri-
vacy leakage. One possible definition of privacy is that,
from the output one should not be able to learn whether
an individual row is present in the table or not. More
generally, we may consider two neighbouring databases
x, x′ ∈ X, i.e. such that dX(x, x′) = 1.

Definition 1 (differential privacy, [9]). Let X be a
metric space and f : X → D(Y). The mapping f is (ε, δ)-
differentially private if for all (measurable) Y ′ ⊆ Y , and
for all x, x′, where dX(x, x′) = 1, the following inequality
holds:

Pr[f(x) ∈ Y ′] ≤ eεPr[f(x′) ∈ Y ′] + δ . (1)

The mapping f is ε-differentially private if it is (ε, 0)-
differentially private.

The noise magnitude depends on the difference between
the outputs of f . The more different the outputs are, the
more noise we need to add to make them indistinguish-
able from each other. This is quantified by the global
sensitivity of f .

Definition 2 (global sensitivity). For f : X → Y , the
global sensitivity of f is GSf = maxx,x′∈X dY (f(x),f(x′))

dX(x,x′) .

Sensitivity is the main tool in arguing the differential
privacy of various information release mechanisms. For
mechanisms that add noise to the query output, this
value serves as a parameter for the noise distribution.
The noise is proportional to GSf . One suitable noise dis-
tribution is Lap(GSfε), where Lap(λ)(z) ∝ e−|z|/λ. The
sampled noise is sufficient to make the output of f dif-
ferentially private, regardless of the input of f .

Differential privacy itself can also be seen as an in-
stance of sensitivity. Define the following distance ddp
over D(Y):

ddp(χ, χ′) = inf{ε ∈ R+ | ∀y ∈ Y : | ln(χ(y)/χ′(y))| ≤ ε}.

Then a mechanism M from X to Y is ε-DP iff it is ε-
sensitive with respect to the distances dX on X and ddp
on D(Y).

A Framework of Metrics for Differential Privacy from Local Sensitivity 178

3.2 Local and Smooth Sensitivity

Our work extends the results of [24], which makes use
of instance-based additive noise. Since noise is always
added to the output of a query that is applied to a
particular state of the database, and some state may
require less noise than the other, the noise magnitude
may depend on the data to which the function is applied.

Definition 3 (local sensitivity). For f : X → Y ,
an integer-valued metric dX : X × X → N, and
x ∈ X , the local sensitivity of f at x is LSf (x) =
maxx′∈X:dX(x,x′)=1 dY (f(x), f(x′)).

The use of local sensitivity may allow the use of less
noise, particularly when the global sensitivity of f is
unbounded. However, LSf (x) may not be directly used
to determine the magnitude of the noise, because this
magnitude may itself leak something about x. To solve
this problem, Nissim et al. [24] use a smooth upper bound
on LSf (x). It turns out that such an upper bound is
sufficient to achieve differential privacy for f ; potentially
with less noise than determined by GSf .

Definition 4 (smooth bound). For β > 0, a function
S : X → R+ is a β-smooth upper bound on f if it satisfies
the following requirements:
– ∀x ∈ X : S(x) ≥ f(x) ;
– ∀x, x′ ∈ X : S(x) ≤ eβ·dX(x,x′)S(x′) .

Nissim et al. [24] showed how to add noise based on the
smooth bound on LSf . The statement that we present
in Theorem 1 is based on combination of Lemma 2.5
and Example 2 of [24].

Definition 5 (generalized Cauchy distribution). For a
parameter γ ∈ R+, γ > 1, the generalized Cauchy dis-
tribution GenCauchy(γ) ∈ D(R) is given by the propor-
tionality

GenCauchy(γ)(x) ∝ 1/(1 + |x|γ) .

Theorem 1 (local sensitivity noise [24]). Let η be
a fresh random variable sampled according to
GenCauchy(γ). Let α = ε

4γ and β = ε
γ . For a func-

tion f : X → R, let S : X → R be a β-smooth upper
bound on the local sensitivity of f . Then the informa-
tion release mechanism f(x) + S(x)

α · η is ε-differentially
private.

3.3 Norms and Banach Spaces

The local sensitivity in Def. 3 is defined for integer-
valued metrics on inputs. Let us try to generalize it to
real-valued metrics. We may choose a small value δ > 0
and round dX up to the nearest higher multiple of δ:

d̃δX(x, x′) := δ

⌈
dX(x, x′)

δ

⌉
It is easy to see that d̃δX is still a metric. Then we can
define local sensitivity as

LSδf (x) = 1
δ

max
x′∈X:d̃δ

X
(x,x′)=δ

dY (f(x), f(x′)) .

This is very similar to rescaled Def. 3. Finally, we define

LSf (x) = lim
δ→0

LSδf (x)

= lim
δ→0

1
δ

(max
x′∈X:0<dX(x,x′)≤δ

dY (f(x), f(x′)))

This looks quite similar to the definition of derivative
(except for the use of max). If X = Y = R and dX
and dY are the absolute-value metrics then this will be
equal to the absolute value of the derivative f ′ of f at
x if f ′(x) exists. In this case we get LSf (x) = |f ′(x)|.
Because it is based on derivative, we call it derivative
sensitivity and write DS[f](x) = |f ′(x)|.

We would like to extend derivative sensitivity to
metrics other than absolute value and to functions with
more than one variable. One such extension of derivative
is the Fréchet derivative in Banach spaces.

First, we recall some basics of Banach space theory.
Throughout this paper, we denote vectors by x, and
norms by ‖·‖N , where N specifies the particular norm.
Banach spaces do not allow arbitrary metrics and in-
stead require norms, but many useful metrics can also
be viewed as norms.

Definition 6 (norm and seminorm). A seminorm is a
function ‖·‖ : V → R from a vector space V , satisfying
the following axioms for all x,y ∈ V :
– ‖x‖ ≥ 0;
– ‖αx‖ = |α| · ‖x‖ (implying that ‖0‖ = 0);
– ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).
Additionally, if ‖x‖ = 0 holds only if x = 0, then ‖·‖ is
a norm.

Some of the most useful norms in practice are `1 (i.e.,
sum), `2 (geographical distance), and `∞ (maximum).
These are instances of `p-norms.

Definition 7 (`p-norm). Let Xi ⊆ R, p ∈ [1,∞]. The
`p-norm of x ∈ X1 × · · · ×Xn, denoted ‖x‖p is defined

A Framework of Metrics for Differential Privacy from Local Sensitivity 179

as

‖x‖p =

(
n∑
i=1
|xi|p

)1/p

.

For p =∞, `∞ is defined as

‖x‖∞ = lim
p→∞

(
n∑
i=1
|xi|p

)1/p

= nmax
i=1
|xi| .

Definition 8 (Banach space). A Banach space is a vec-
tor space with a norm that is complete (i.e. each con-
verging sequence has a limit).

Banach spaces combine vector spaces with distances,
which are necessary for defining differential privacy. The
completeness property allows us to define derivatives.
Using the norm of a Banach space, we may generalize
the notion of continuous function from real numbers to
Banach spaces.

Definition 9 (Continuous function in Banach space).
Let V and W be Banach spaces, and U ⊂ V an open
subset of V . A function f : U →W is called continuous
if

∀ε > 0 : ∃δ > 0 :
∥∥x− x′∥∥

V
≤ δ ⇒

∥∥f(x)− f(x′)
∥∥
W
≤ ε.

The notion of the derivative of a function can be also
extended to Banach spaces.

Definition 10 (Fréchet derivative). Let V and W be
Banach spaces, and U ⊂ V an open subset of V . A
function f : U → W is called Fréchet differentiable at
x ∈ U if there exists a bounded linear operator dfx :
V → W such that limh→0

‖f(x+h)−f(x)−dfx(h)‖W
‖h‖V

= 0.
Such operator dfx is called Fréchet derivative of f at
the point x.

The mean value theorem can be generalized to Banach
spaces (to a certain extent).

Theorem 2 (Mean value theorem ([4], Chapter XII)).
Let V and W be Banach spaces, and U ⊂ V an open
subset of V . Let f : U → W , and let x, x′ ∈ U . As-
sume that f is defined and is continuous at each point
(1 − t)x + tx′ for 0 ≤ t ≤ 1, and differentiable for
0 < t < 1. Then there exists t∗ ∈ (0, 1) such that∥∥f(x)− f(x′)

∥∥
W
≤ ‖dfz‖V→W

∥∥x− x′∥∥
V

for z = (1−t∗)x+t∗x′, where ‖·‖V→W denotes the norm
of operator that maps from V to W .

4 Metrics and Derivative
Sensitivity

4.1 Banach Spaces of Databases

Let us have a database with a number of tables. The
schema for each table is fixed. We see that database as a
point in some Banach space (thus the distance between
databases is the norm of their difference), where each
cell in each table corresponds to a dimension of that
space. As dimensions of Banach spaces are fixed (in-
deed, they are vector spaces Rn with some extra struc-
ture), the number of rows in each table is also fixed, and
each row can be seen to have a public identity (simi-
larly to [17]). In this paper, we consider the following
composite norms and seminorms as possible norms for
databases:

Definition 11 (composite seminorm). Let ‖·‖N be a
seminorm of the vector space Rn. It is a composite
seminorm if one of the following holds for all x =
(x1, . . . , xn) ∈ Rn:
– There exists i ∈ [n], such that ‖x‖N = |xi|. Such

seminorm uses the variable xi.
– There exists a composite seminorm ‖·‖M and a ∈

R+, such that ‖x‖N = a ·‖x‖M . The seminorm ‖·‖N
uses the same variables as ‖·‖M .

– There exist composite seminorms ‖·‖M1
, . . . , ‖·‖Mk

and p ∈ [1,∞], s.t. ‖x‖N =
∥∥‖x‖M1

, . . . , ‖x‖Mk

∥∥
p
.

The seminorm ‖·‖N uses the union of the variables
used by all ‖·‖Mi

.
Let vars(N) be the set of variables used by ‖·‖N .

We normally define the norms for rows of each table us-
ing the constructions allowed in Def. 11. We then state
that the norm of the table is some `p-norm of the vec-
tor of the norms of its rows (last item of Def. 11) and
the norm of the database is some `p-norm of the vec-
tor of the norms of its tables. Note that the notion of
seminorm is used only for building blocks of compos-
ite `p-norms, and a seminorm constructed as in Def. 11
becomes a norm if vars(N) = {x1, . . . , xn}.

4.2 From Derivative Sensitivity to DP

Having defined a database as a point in some Banach
space, we propose constructions that allow us to achieve
differential privacy for functions defined over Banach
spaces.

A Framework of Metrics for Differential Privacy from Local Sensitivity 180

Definition 12. Let X be (an open convex subset of) a
Banach space. Let f : X → R. Let f be Fréchet differ-
entiable at each point of X. The derivative sensitivity
of f is the following mapping from X to R+:

DS[f](x) = ‖dfx‖ .

where dfx is the Fréchet derivative of f at x and ‖dfx‖
is the operator norm of dfx.

Similarly to the local sensitivity of [24], we will need to
find smooth upper bounds on derivative sensitivity to
compute the noise. We extend the definition of smooth-
ness (Def. 4) to the case where X is any Banach space:

Definition 13. Let p : X → R and β ∈ R. The map-
ping p is β-smooth, if p(x) ≤ eβ·‖x

′−x‖ · p(x′) for all
x,x′ ∈ X.

The next theorem shows how to compute the magnitude
of noise to be added to f(x) in order to obtain a differen-
tially private information release mechanism. A smooth
upper bound to DS[f] plays the central role here. We
consider the same noise distributions as in [24].

Theorem 3. Let γ, b, β ∈ R+, γ > 1. Let ε = (γ +
1)(b + β). Let η be a random variable distributed ac-
cording to GenCauchy(γ). Let c be a β-smooth upper
bound on DS[f] for a function f : X → R. Then
g(x) = f(x) + c(x)

b · η is ε-differentially private.

Theorem 3 can be proven similarly to Theorem 1, which
has been done in [24]. The main difference is that, since
we are using derivative sensitivity instead of local sensi-
tivity, we apply the mean value theorem to find an upper
bound on ‖f(x)− f(y)‖ for two neighbouring databases
x and y. The detailed proof can be found in App. C.2.

Cauchy noise has heavy tails. In its stead, we may
use Laplace noise to achieve DP, but this requires a more
complex proof and only gives us (ε, δ)-DP. The strength
of our result depends on a technical condition on the β-
smooth upper bound on DS[f], for which the key notion
is the following.

Definition 14. A path in a Banach space X is a con-
tinuous function h : [0, 1] → X. The path h is shortest,
if for all x1, x2, x3 ∈ [0, 1], x1 ≤ x2 ≤ x3, the equality
dX(h(x1), h(x3)) = dX(h(x1), h(x2)) + dX(h(x2), h(x3))
holds.

Theorem 4. Let b, β, ε ∈ R+, b > 0, b + β ≤ ε. Define
k = 1 + (ε− b)/β. Let δ = e−k. Let η be a random vari-
able distributed according to Lap(1). Let c be a β-smooth

upper bound on DS[f] for a function f : X → R, where
X is Banach space and dX is the distance corresponding
to the norm of X. Define g(x) := f(x) + c(x)

b ·η. Then g
is (ε, 2eεδ)-differentially private. If, additionally for any
two points x1,x2 ∈ X there exists a shortest path be-
tween them, such that c is monotonic along that path,
then the factor “2” may be removed.

This theorem is proved in App. C.3.

4.3 Computing Derivative Sensitivity and
Smooth Upper Bounds

Given a description of a function f : Rn → R, how do
we determine (a β-smooth upper bound) on its deriva-
tive sensitivity? This question is ill-posed, because we
have not stated the norm on Rn; Def. 11 gives us many
possibilities to define it. If two norms are related, then
the derivative sensitivity with respect to one of them
should tell us something about the other, too.

A composite seminorm in Rn can be seen as the
semantics of a formal expression over the variables
x1, . . . , xn, where the term constructors are ‖. . .‖p of
any arity. We write N � M for two seminorms N and
M , if ‖x‖N ≤ ‖x‖M for all x ∈ Rn. The following results
about � are proved in App. C.4.

Lemma 1. Let N be a composite norm over
x = (x1, . . . , xn). Let composite seminorms N ′ and
V1, . . . , Vm be such, that N = N ′(V1, . . . , Vm), and for
all i ∈ [n] let Wi be a seminorm such that Vi � Wi.
Then, N ′(V1, . . . , Vm) � N ′(W1, . . . ,Wm).

Lemma 2. Let x = (x1, . . . , xn) ∈ Rn. Let N be a
composite norm, defined over variables x. There exist
0 ≤ αi, βi ∈ R for i ∈ [n], such that ‖α1x1, . . . , αnxn‖p ≤
‖x1, . . . , xn‖N ≤ ‖β1x1, . . . , βnxn‖q, where:
– p is the largest `p-norm constructor in N ;
– q is the smallest `p-norm constructor in N .

The following three lemmas give us the basic combina-
tors for statements about derivative sensitivity, reducing
the task of finding the derivative sensitivity of a par-
ticular function with respect to a particular norm on
its domain, to a series of tasks from basic calculus. We
prove these lemmas in App. C.5.

Lemma 3. Let f : Rn → R, and let Rn be equipped with
the norm `p. Then ‖dfx‖ is the `q-norm of the gradient

A Framework of Metrics for Differential Privacy from Local Sensitivity 181

vector ∇f(x), where q = p
p−1 (if p = 1 then q =∞ and

vice versa).

The `q-norm is the dual norm of the `p-norm; we denote
q by dual(p).

Lemma 4. Let f : Rn → R have the derivative sensi-
tivity g with respect to the norm N . Let a ·N denote the
scaling of the output of the norm N by a ∈ R+. Then f
has the derivative sensitivity g/a with respect to a ·N .

Lemma 5. (a) Let (V1, ‖·‖V1
) and (V2, ‖·‖V2

) be Ba-
nach spaces. Let V = V1 × V2. Let for all (v1, v2) ∈ V ,

‖(v1, v2)‖V = ‖(‖v1‖V1 , ‖v2‖V2)‖p

Then (V, ‖·‖V) is a Banach space.
(b) Suppose furthermore that a function f : V → R
is differentiable at each point of V . Fix a point v =
(v1, v2) ∈ V . Let g : V1 → R be such that g(x1) =
f(x1, v2) and h : V2 → R be such that h(x2) = f(v1, x2).
Let c1 = DS[g](v1) and c2 = DS[h](v2). Then DS[f](v) =
‖(c1, c2)‖dual(p).

These lemmas reduce the computation of the derivative
sensitivity of a function to the computation of certain
partial derivatives. We note that while the computation
of the local sensitivity of a mapping may have a high
computational complexity [24], the continuity of our
functions ensures that the computation of the deriva-
tives falls into the polynomial complexity class under
some mild conditions [21].
Example. Consider computing differentially privately
the time that a ship takes to reach the port. This time
can be expressed as

f(x, y, v) = ‖x, y‖2
v

, f : R3 → R

where (x, y) are the coordinates of the ship (with the
port at (0, 0)) and v is the speed of the ship. When
thinking about sensitivity of the information, and ex-
pressing it in terms of the change to the variables x, y, v,
we consider the distance between geographic locations
to be the Euclidean distance, and the distance between
speeds to be their arithmetic difference. We are inter-
ested in hiding both the location and the speed, and
would like to combine the distances by adding them up,
i.e. a change in both the location and speed is considered
a greater change than only one of these two changes. As
the change in location and change in speed are measured
in different units, and may have different significance,
we add scalings to these two norms. Hence we want to

compute the sensitivity of f with respect to the norm
‖a · ‖x, y‖2, b · ‖v‖1‖1. Here a, b ∈ R+ are scalings.

Let fv(x, y) = fx,v(y) = fy,v(x) = fx,y(v) =
f(x, y, v), where the f -s with superscripts are consid-
ered functions with less arguments; the superscripts are
interpreted as parameters instead.

The partial derivatives of f (as well as f -s with su-
perscripts) are

∂f

∂x
= ∂fv

∂x
= dfy,v

dx
= x

v
√
x2 + y2

∂f

∂y
= ∂fv

∂y
= dfx,v

dy
= y

v
√
x2 + y2

∂f

∂v
= dfx,y

dv
= −

√
x2 + y2

v2 (2)

By Lemma. 3, the absolute values of these derivatives
are the derivative sensitivities of fy,v, fx,v and fx,y, re-
spectively. Also by Lemma. 3, the derivative sensitivity
of fv with respect to the `2-norm ‖x, y‖2 is

DS[fv](x, y) = ‖(DS[fy,v](x),DS[fx,v](y))‖2 =
√

2
|v|

.

(3)
By Lemma. 4, we have to divide (3) and (2) by respec-
tively a and b, in order to obtain the derivative sensi-
tivities of fv and fx,y with respect to the scaled norms
a·‖x, y‖2 and b·‖v‖1. Finally, we use Lemma 5 to obtain
the derivative sensitivity of f :

DS[f](x, y, v) = ‖(DS[fv](x, y),DS[fx,y](v))‖∞ =

max{
√

2/(a|v|),
√
x2 + y2/(bv2)} . � (4)

In this example, we have used the `1 norm to
compare speeds. This is perhaps not the most useful
measure, because it states that the difference between
speeds “1” and “2” is the same as between the speeds
“101” and “102”, although the first change would affect
the arrival time greatly, and the second, not so much.
A more reasonable approach is to apply the norm not
to the speed v itself, but to something derived from it.
One reasonable choice seems to be 1/v. In this way, a
multiplicative change in speed would correspond to a
multiplicative change in the arrival time. An even bet-
ter way to define the norm on speeds is to apply the `1
norm to ln v. We explore this variant below.

To achieve differential privacy, we need to find a
smooth upper bound on the derivative sensitivity. We
have combining lemmas for deriving the smoothness
properties of functions from Banach spaces, and their
derivative sensitivities. The following lemma, proved
in App. C.6, gives an alternative definition of β-
smoothness. It is easier to use, and implies Def. 13.

A Framework of Metrics for Differential Privacy from Local Sensitivity 182

Lemma 6. Let X be a Banach space. If DS[f] exists
then f : X → R is β-smooth if DS[f](x)

|f(x)| ≤ β for all
x ∈ X.

As a particular instance of Lemma 6, a differentiable
function f : R→ R is β-smooth if

∣∣∣ f ′(x)
f(x)

∣∣∣ ≤ β.
The following three lemmas describe the different

possibilities for computing β-smooth upper bounds for
composite functions. They are proved in App. C.7.

Lemma 7. Let f(x) : R → R be βf -smooth, and let
g(x) : R→ R be βg-smooth.
1. If f(x), g(x) > 0, then f(x) + g(x) is max(βf , βg)-

smooth;
2. f(x) · g(x) is βf + βg-smooth;
3. f(x) / g(x) is βf + βg-smooth.

Lemma 8. Let Xi for i ∈ {1, . . . , n} be Banach spaces,
and let X =

∏n
i=1 Xi. Let fi : Xi → R be βi-

smooth. Then, f(x1, . . . , xn) = ‖f1(x1), . . . , fn(xn)‖p is
‖(βi)ni=1‖p-smooth as well as maxni=1(βi)-smooth, where
the norm of X is the `dual(p)-combination of the norms
of all Xi.

In general, the smoothness is worse if the variables of
different fi are not disjoint, as shown in the next lemma.

Lemma 9. Let Xi for i ∈ {1, . . . , n} be Banach spaces,
X =

∏n
i=1 Xi. Let fi : X → R be βji -smooth for Xj .

Let x = (x1, . . . , xn). Then, f(x) = ‖f1(x), . . . , fn(x)‖p
is
∥∥∥(maxj βji)ni=1

∥∥∥
p
-smooth.

Example. Extending the previous example, let us find a
smooth upper bound for the derivative sensitivity of the
function expressing the time it takes for some ship (out
of n) to reach the port at the coordinates (0, 0). This
3n-variable function is

f(x1, y1, v1, . . . , xn, yn, vn) =
n

min
i=1

‖xi, yi‖2
vi

.

Note that vi is in the power −1 and we do not know how
to find the smooth derivative sensitivity of the function
fv,i(vi) = v−1

i (we only know how to do it for power
functions with exponent ≥ 1). Let us define wi = ζ ln vi.
The coefficient ζ is used to control the distance by which
the whole input vector changes if ln vi is changed by 1.
Similarly, we add a coefficient to the geographical coor-
dinates: si = αxi, ti = αyi. The ratio between ζ and α

shows how much the privacy of the speed is valued com-
pared to privacy of the geographic coordinates, relative
to each other. The smaller ζ/α is, the more we value the
privacy of the speed.

We consider (s1, t1, w1, . . . , sn, tn, wn) as an element
of the Banach space (R3n, ‖ ‖) where

‖(s1, t1, w1, . . . , sn, tn, wn)‖ =
‖(‖(‖(s1, t1)‖2, w1)‖1, . . . , ‖(‖(sn, tn)‖2, wn)‖1)‖p

Then vi = ewi/ζ , xi = si
α , yi = ti

α and

g(s1, t1, w1, . . . , sn, tn, wn) = 1
α

n
min
i=1

‖si, ti‖2
ewi/ζ

Now the derivative sensitivity of gw,i(wi) = e−wi/ζ is

DS[gw,i](wi) = 1
ζ
e−wi/ζ

which is 1
ζ -smooth. The function gw,i itself is also

1
ζ -smooth. The derivative sensitivity of gst,i(si, ti) =
‖si, ti‖2 in (R2, `2) is

DS[gst,i](si, ti) = 1

which is β-smooth for all β. The function gst,i is 1
ζ -

smooth if 1
‖si,ti‖2

≤ 1
ζ , i.e. if ‖si, ti‖2 ≥ ζ. A 1

ζ -smooth
upper bound on gst,i is

ĝst,i(si, ti) =

{
‖si, ti‖2 if ‖si, ti‖2 ≥ ζ

ζe
‖si,ti‖2

ζ −1 otherwise

An upper bound on the derivative sensitivity of
gi(si, ti, wi) = ‖si,ti‖2

ewi/ζ
is cgi(si, ti, wi) =

‖(DS[gst,i](si, ti) · gw,i(wi),DS[gw,i](wi) · ĝst,i(si, ti))‖∞

=
∥∥∥∥(1 · e−wi/ζ , 1

ζ
e−wi/ζ · ĝst,i(si, ti)

)∥∥∥∥
∞

=
max

(
1, ĝst,i(si,ti)ζ

)
ewi/ζ

,

and it is 1
ζ -smooth because DS[gw,i](wi), DS[gst,i],

gw,i(wi), and ĝst,i(si, ti)) are 1
ζ -smooth.

A 1
ζ -smooth upper bound on DS[g] is

c(u) =
maxi cgi(si, ti, wi)

α
= 1
α

max
i

max
(

1, ĝst,i(si,ti))
ζ

)
ewi/ζ

where u = (s1, t1, w1, . . . , sn, tn, wn).
Now we can use Theorem 3 to compute an ε-

differentially private version of g:

h(u) = g(u) + c(u)
b
· η

ε = (γ + 1)(b+ 1
ζ

)

γ > 1, b > 0, η ∼ GenCauchy(γ)

To compute an ε-differentially private version of f , we
first transform (x1, y1, v1, . . . , xn, yn, vn) into u and then
compute h(u). �

A Framework of Metrics for Differential Privacy from Local Sensitivity 183

Continuous function Approximated condition name
eαx

eαx + 1
x ≥ 0 sigmoid

2
e−αx + eαx

x = 0 tauoid

Table 1. Continuous approximations of step functions

5 Application to SQL Queries
In this section, we describe how the theory of Sec. 4
can be applied to SQL queries, computing the smooth
upper bounds of their derivative sensitivities, such that
an appropriate amount of noise may be added to turn
them differentially private. Our theory deals with func-
tions that return a numeric value, so the query should
return a single output. We consider queries of the form

SELECT aggr expr FROM t1 AS s1,...,tn AS sn

WHERE condition ,

where:
– expr is an expression over table columns, computed

as a continuous function.
– condition is a boolean expression over predicates

P (x) ∈ {x < 0, x = 0}, where x is an expression of
the same form as expr. Since all functions have to
be continuous, these predicates are computed using
continuous approximations to the step functions,
listed in Table. 1.

– aggr is one of the operations SUM, COUNT, MIN, MAX.

GROUP BY queries can be simulated by generating
for each group a separate query, with a filter selecting
that particular group. Hence, we can group either by a
public or a discrete attribute to get a finite number of
groups. We do not support DISTINCT queries, as we do
not know how to efficiently continuously approximate a
function that removes repeating elements from a list of
arguments.

Let our database have n tables. Let Ri be the Ba-
nach space of the potential values of rows for the i-
th table, and ni the number of rows in this table. Let
Ti = Rnii and D = T1×· · ·×Tn. Starting from the norms
on Ri, and applying `p-norms, define a norm for D.

5.1 Derivative Sensitivity of Queries with
Respect to a Component

Our ultimate goal is to enforce differential privacy w.r.t.
a certain component of a database. A component is a

rectangular subset of cells in a table, given by the sub-
sets of columns and rows, into which they belong. The
set of all (sensitive) entries is a vector over Rm. The
possible vectors of sensitive entries together with the
norm forms a Banach space. As next we describe, how
the SQL query is converted into a function from Rm to
R. In Sec. 5.2 and 5.3 we explain, how we compute a
smooth upper bound of the derivative sensitivity of this
function.

5.1.1 Query without a Filter

To make a query on the database, we want to join those
n tables. Consider an input (t1, . . . , tn) ∈ D. Let us first
consider the cross product t = t1 × · · · × tn, i.e. joining
without any filters. First, let us assume that the n joined
tables are distinct, i.e. no table is used more than once.
Each row of the cross product is an element of R =
R1 × · · · ×Rn, thus t is an element of T = Rn1···nn .

The query contains an aggregating function f : T →
R. All non-sensitive entries of the data tables are treated
as constants. Suppose we want to compute the sensitiv-
ity of f w.r.t. a subset s of rows of ti. Then the sub-
set of rows of the cross product, filtered through s, is
ts = t1 × · · · × ti−1 × s× ti+1 × · · · × tn. Each row in ts
is depends from exactly one row in s.

Let s = r1, . . . , rk and let ts =
⋃k
j=1 trj where trj

is the subset of rows that depend from the row rj . The
sets of rows trj are disjoint. Let trj = {uj1, . . . , ujmj}.
For each row ujk, we select the same (semi)norm as
the norm for the row rj , with the additional columns
not contributing to the norm. The norm for trj is com-
puted by combining the norms for uj1, . . . , ujmj using
`∞-norm. The norm for ts is then computed by combin-
ing the norms for trj using the norm that combined the
norms of the rows of ti, i.e. `pi .

5.1.2 Query with a Filter

A filter that does not depend on sensitive data can be
applied directly to the cross product of the input tables,
and we may then proceed with the query without a fil-
ter. A filter that does depend on sensitive data is treated
as a part of the query. We treat this filter as a continuous
function, applied in such a way that the discarded rows
would be ignored by the aggregating function. We com-
bine sigmoids and tauoids to obtain the approximated
value of the indicator σ(xi) ∈ {0, 1}, denoting whether
the row xi satisfies the filter.

A Framework of Metrics for Differential Privacy from Local Sensitivity 184

Hence, if the filter depends on sensitive data, we
have the following set-up:
– There is a set of rows {x1, . . . , xm}.
– There is a function fi applied to the row xi, return-

ing a real number. For different rows, this function
may be different, e.g. it may be determined by the
public cells of the row.

– There is a filtering function σi applied to the row xi.
It returns a real number. It approximates a boolean
condition, i.e. its values are mostly near 0 and 1.

– There is an aggregation function applied to a sub-
set of the values f1(x1), . . . , fm(xm). Only such i ∈
{1, . . . ,m} are selected, where the condition holds.

To convert the SQL query into a continuous function,
the functions fi and σi are combined as follows, depend-
ing on the aggregation function:
– SUM. The values 0 do not affect the sum, hence we

compute the result as
∑m
i=1 fi(xi) · σi(xi).

– COUNT: The values of fi do not affect the result.
We compute the result as

∑m
i=1 σ(xi), counting all

entries for which σi(xi) = 1. The sensitivity of such
query only depends on the sensitivity of σ.

– MIN, MAX: If σi(xi) is 0, then we need to replace
the actual value fi(xi) with some large [resp. small]
value that would not affect the result of MIN [resp.
MAX]. Our conversion of the SQL query proceeds
by first defining ∆ := MAX(f(x1), . . . , f(xn)) −
MIN(f(x1), . . . , f(xn)), and then computing the re-
sult by applying MIN to the values fi(xi) + (1 −
σi(xi)) · ∆. MAX is computed similarly, changing
the first “+” into a “−”.

If we know that the compared values are integers and
hence d(x, x′) ≥ 1 for x 6= x′, we can do better than
using sigmoids or tauoids from Table 1, defining precise
functions:
– x > y ⇐⇒ min(1,max(0, x− y)).
– x = y ⇐⇒ 1−min(1,max(0, |x− y|)).

An advantage of these functions is that they do not lose
precision due to addition and multiplication.

For real numbers, we may bound the precision and
assume e.g. that d(x, x′) ≥ 1/k for some k ≥ 1, which
allows to use similar functions. The sensitivity of such
comparisons will be k times larger than for integers.

5.2 Inferring Derivative Sensitivities

Previously we saw, how to convert an SQL query into
a continuous function from Rm to R, where each vari-
able refers to the contents of a particular cell in a ta-
ble of the database. Using the lemmas in Sec. 4.3, we
can compute smooth upper bounds to their derivative
sensitivities. The results given there can be specified
to the concrete computation steps arising in the con-
versions of SQL queries. These specifications are given
below; they are used to convert a SQL query to another
query that computes the smooth upper bound of the
derivative sensitivity of the original query. Examples of
the whole conversion workflow can be seen in App. B,
where the database schema is described in App. B.1,
the privacy-sensitive parts of the database in App. B.2,
the considered SQL queries in App. B.3, and, finally,
the conversion results in App. B.5. These conversion re-
sults include both the conversion of the original query
to a query with smooth semantics, and the query that
computes an upper bound on the derivative sensitivity.

Let the write-up DS[f] ≤′N h ∼ β mean that h is a
β-smooth upper bound on the derivative sensitivity of
f , according to the norm ‖ · ‖N on the domain of f . For
compositions, we also need the upper bounds for the
(absolute values of) functions f themselves; let f ∼N β

denote that f is β-smooth, and f ≤ g ∼N β denote
that g is a β-smooth upper bound of |f |, again accord-
ing to the norm ‖ · ‖N on the domain of f . Table 2
lists the smooth upper bounds of some simple uni- and
multivariate functions and their derivative sensitivities
(using absolute value as the norm on R). These upper
bounds are proved in App. C.8. For composite functions,
the rules for computing the β-smooth upper bounds are
given in Fig. 1. This summarizes the statements of lem-
mas of Sec. 4.3, which are proven in App. C.9.

5.3 Query Norm vs Database Norm

The facts and rules in Table 2 and Fig. 1 are in prin-
ciple sufficient to compute the smooth upper bounds of
derivative sensitivity of functions resulting from SQL
queries with respect to all composite norms. Still, when
we naïvely apply them, we end up finding the sensitivity
for a particular norm that is somehow “natural” for the
function. In practice, it may happen that we actually
need sensitivity w.r.t. some different norm, because the
data owner specified so. For example, we know how to
compute the sensitivity w.r.t. the norm ‖x1, x2‖1, but
are interested in differential privacy w.r.t. ‖x1, x2‖2.

A Framework of Metrics for Differential Privacy from Local Sensitivity 185

∀i : DS[fi] ≤′N hi ∼ β
DS[
∑
i cifi] ≤

′
N

∑
i cihi ∼ β

(+D)

∀i : fi ≤ gi ∼N β∑
i cifi ≤

∑
i cigi ∼N β

(+S)

fi ≤ gi ∼N βi

f1 · f2 ≤ g1 · g2 ∼N β1 + β2
(∗S)

fi ≤ gi ∼Ni β vars(f1) ⊥ vars(f2)
f1 · f2 ≤ g1 · g2 ∼N1+N2 β

(∗⊥S)

DS[f] ≤′N g ∼ β N �M
DS[f] ≤′M g ∼ β

(�D)

f ∼N β

f ∼a·N β/a
(NS)

f2 ∼|·| β ∀x : DS[f1](x) ≤ B
f2 ◦ f1 ∼N βB

(◦S)

DS[fi] ≤′Ni hi ∼ βi ∀i, j : vars(Ni) ⊥ vars(Nj) ∧ fi · fj ≥ 0
DS[
∑k
i=1 fi] ≤

′
`p(N1,...,Nk) ‖h1, . . . , hk‖dual(p) ∼ ‖β1, . . . , βk‖dual(p)

(+⊥D)

fi ≤ gi ∼N βi DS[fi] ≤′N hi ∼ β′i
DS[f1 · f2] ≤′N g1 · h2 + g2 · h1 ∼ max(β1 + β′2, β

′
1 + β2)

(∗D)

fi ≤ gi ∼Ni β DS[fi] ≤′Ni hi ∼ β vars(N1) ⊥ vars(N2)
DS[f1 · f2] ≤′N1+N2

g1 · h2 + g2 · h1 ∼ β
(∗⊥D)

DS[f] ≤′N g ∼ β N �M
DS[f] ≤′M g ∼ β

(�D)

DS[f] ≤′N g ∼ β ∀x : ḡ(x) = g(x)/a
DS[f] ≤′a·N ḡ ∼ β/a

(ND)

DS[f1] ≤′N h1 ∼ β1 ∀x : h1(x) ≤ B f ′2 ∼|·| β2
DS[f2 ◦ f1] ≤′N |f ′2 ◦ f1| · h1 ∼ β2B + β1

(◦D)

DS[fi] ≤′Ni hi ∼ β ∀i, j : vars(Ni) ⊥ vars(Nj)
DS[min{fi, . . . , fk}] ≤′`p(N1,...,Nk) max{h1, . . . , hk} ∼ β

(min⊥D)

fi ≤ gi ∼Ni β ∀i, j : vars(Ni) ⊥ vars(Nj)
min{f1, . . . , fk} ≤ min{g1, . . . , gk} ∼`p(N1,...,Nk) β

(min⊥S)

Fig. 1. Upper bounds for composite functions

f(x) cond.s g, s.t. h, s.t.
f ≤ g ∼|·| β DS[f] ≤′|·| h ∼ β

xr
r ≥ 1
x > 0

{
xr if x ≥ r

β

pwrβ(x) oth.

{
rxr−1 if x ≥ r−1

β

r · pwr−1
β (x) oth.

f(x) cond.s g, s.t. h, s.t.
f ≤ g ∼|·| β DS[f] ≤′|·| h ∼ β

erx |r| ≤ β erx |r|erx

c c ∈ R c 0
eαx

eαx+1 β ≥ α eαx

eαx+1
αeαx

(eαx+1)2

eαx

eαx+1 β < α 1 αeβx

(eβx+1)2

2eαx
1+e2αx β ≥ α 2eαx

1+e2αx
2|α|eαx
1+e2αx

f(x) g, s.t. f ≤ g ∼`p β h, s.t. DS[f] ≤′`p h ∼ β

‖x‖p

{
‖x‖p if ‖x‖p ≥ 1

β

pw1
β(‖x‖p) oth.

1

Here pwrβ(x) =
(
r
β

)r
· eβx−r

Table 2. Upper bounds for uni- and multivariate functions

Let the query norm (denoted Nqr) be the norm for
which we can compute derivative sensitivity. Let the
database norm (denoted Ndb) be the norm for which we
want to compute derivative sensitivity.

IfNqr � Ndb, then the rule (�D) allows us to use the
computed DS[f] for Nqr also with the norm Ndb. But if
Nqr 6� Ndb, then we cannot directly use the sensitivity
w.r.t. Nqr.

According to rule (ND), if a the upper bound to
the derivative sensitivity of the function f is β-smooth
according to Nqr, then, its 1

α -times scaled version is β
α -

smooth in according to the norm α ·Nqr for any α > 0.

We compute sensitivity w.r.t. such norm α · Nqr, that
α·Nqr � Ndb. The sensitivity becomes βα -smooth instead
of β-smooth, which affects the amount of noise required
to achieve differential privacy.

We show that a suitable α always exists for a com-
posite norm (Def. 11) if Ndb uses all the variables
x1, . . . , xn. This assumption is reasonable: any variable
that Ndb does not use is not treated as sensitive, so we
may treat it as a constant when computing the sensitiv-
ity, reducing the total number of variables. We can find
α as follows.
1. Use Lemma 2 to get ai, bi ≥ 0, p, q > 0 satisfying

the conditions ‖a1x1, . . . , anxn‖q ≥ ‖x1, . . . , xn‖Nqr
and ‖b1x1, . . . , bnxn‖p ≤ ‖x1, . . . , xn‖Ndb . We have
a · ‖x1, . . . , xn‖p ≥ ‖a1x1, . . . , anxn‖p for a =
maxi ai, and b · ‖x1, . . . , xn‖p ≤ ‖b1x1, . . . , bnxn‖p
for b = mini bi.
We get a · ‖x1, . . . , xn‖p ≥ ‖x1, . . . , xn‖Nqr . Since
Ndb uses all variables x1, . . . , xn, we have bi 6= 0
for all i, and hence b 6= 0. This allows to write
‖x1, . . . , xn‖p ≤

1
b · ‖x1, . . . , xn‖Ndb .

2. If p ≤ q, we have a ·‖x1, . . . , xn‖q ≤ a ·‖x1, . . . , xn‖p.
If p > q, we can use equivalence of `p-norms that
gives us a·‖x1, . . . , xn‖q ≤ n1/q−1/p ·a·‖x1, . . . , xn‖p.
Let c = (p ≤ q) ? 1 : n1/q−1/p.

3. We have now come up with scalings a, b, c that
satisfy c · a · ‖x1, . . . , xn‖p ≥ ‖x1, . . . , xn‖Nqr , and
‖x1, . . . , xn‖p ≤

1
b · ‖x1, . . . , xn‖Ndb . Putting these

inequalities together, we get c·a· 1b ·‖x1, . . . , xn‖Ndb ≥
‖x1, . . . , xn‖Nqr . By construction, we always have
c > 0. It is possible that a = 0 only in the case

A Framework of Metrics for Differential Privacy from Local Sensitivity 186

if ai = 0 for all i, i.e. the query uses no sensitive
variables, which is not the case. Take α = b

c·a .

If Nqr = N ′(V1, . . . , Vm) and Ndb = N ′(W1, . . . ,Wm) for
some composite seminorms N ′, Vi, Wi, then it suffices
to apply the aforementioned procedure only to such i ∈
[m], where Vi � Wi. Let αi be such, that αi · Vi �
Wi. By Lemma 1, we get N ′(α1 · V1, . . . , αm · Vm) �
N ′(W1, . . . ,Wm). We can now take α = mini αi.

6 Precision and Utility

6.1 Choosing the Norm and ε

In the standard definition of differential privacy, we are
concealing an addition/removal of one table row. In a
Banach space, the notion of unit change can be different.
Even if we have decided on the set of sensitive rows and
columns, it may be unclear whether/which scaling of
norm variables is reasonable. For example, if we scale
the norm by a and keep noise level the same, the ε will
increase proportionally to a, so we need to know which
ε is “good enough” to choose appropriate a. For this,
we need to understand what the table attributes mean.
For example, if the length is presented in meters, and
we want to conceal a change in a kilometer, we scale the
location norm by 0.001 to capture a larger change.

To give a better interpretation to ε, we may relate
it to other security definitions such as guessing prob-
ability advantage, as done e.g. in [22]. Adapting this
approach to our metrics, we could answer questions like
“how likely the attacker guesses that the location of an
object is within X miles from the actual location”.

Let X ′ ⊆ X be the subset of inputs for which we
consider the attacker guess as successful (e.g. he guesses
an object’s location coordinates precisely enough). Let
the posterior belief of the adversary (after seeing the
output) be expressed by the probability distribution
Prpost[·]. Let the prior belief (before seeing the output)
be Prpre[·], and fX the corresponding probability den-
sity function, i.e. Prpre[X ′] =

∫
X′
fX(x)dx. We need an

upper bound on Prpost[X ′] = Prpre[X ′ | y], where y is
the observed output. Let fY be the probability density
function of noisy outputs. Using Bayesian inference,

Prpost[X ′] = Prpre[X ′ | y] ≤ 1

1 +
∫
X′′

fY (y|x)fX(x)dx∫
X′
fY (y|x′)fX(x′)dx′

for any X ′′ ⊆ X \ X ′. Let X ′′ := {x | r < d(x, x′) ≤ a}
for some a ∈ R (e.g. a := supx∈X d(x, x′) if it exists).

Differential privacy gives us Pr[Mq(x′)∈Y]
Pr[Mq(x)∈Y] ≤ eε·a for all

Y , and hence also fY (y|x′)
fY (y|x) ≤ e

ε·a. We get

Prpost[X ′] ≤
1

1 + e−εa · Prpre[X′′]
Prpre[X′]

.

The optimal value of a depends on the distribution
of X. In practice, we may use brute force search for a.

6.2 Sigmoid Precision

In Sec. 5, we mentioned that we use sigmoids eαx

eαx+1 to
approximate filtering of the form x ≥ 0, where α > 0
can be arbitrary. The derivative αeαx

(eαx+1)2 of a sigmoid
is α-smooth.

To get a higher precision than that of an ordinary
sigmoid but still maintain α-smoothness, we use an ex-
tra parameter a in addition to α. We use the sigmoid
σ(x) = eax

eax+1 (note that the precision parameter is now
a) but instead of its actual sensitivity σ′(x), which would
itself be a-smooth, we use c(x) = aeαx

(eαx+1)2 , which is an
α-smooth upper bound on σ′(x). The smooth sensitiv-
ity is a

α times higher than that of the original sigmoid
but the difference from the precise filter value (0 or 1)
is eax+1

eαx+1 times smaller. If the probability density func-
tion of x is roughly constant near x = 0 then, for all
y ∈ (0, 1), the probability that the difference from the
precise filter value is larger than y is

Pr(1
eax + 1 > y) = Pr

(
x <

ln(1
y − 1)
a

)

≈ α

a
Pr(x < 1

α
ln(1

y
− 1)) = α

a
Pr(1

eαx + 1 > y)

i.e. aα times smaller than in the original sigmoid.
The goodness of a depends on both the query and

the data. Since a sigmoid error affects each row, preci-
sion becomes more important when the number of rows
grows large. An optimal a will increase proportionally
to
√
n, where n is the number of rows. The details are

given in App. A.

6.3 Comparing Laplace and Cauchy noise

While generalized Cauchy distributions have heavy
tails, the heaviness can be reduced by increasing the
parameter γ. Taking γ = 4 seems to give a good bal-
ance between tail heaviness and median absolute value
of noise. The 99.9999% quantile of |GenCauchy(4)| is
about 120 times its median which does not seem too

A Framework of Metrics for Differential Privacy from Local Sensitivity 187

much worse than |Lap(1)|, whose 99.9999% quantile is
about 20 times its median.

Now let us compare noise magnitudes (which are
roughly proportional to median absolute noise). When
using Laplace noise, the smoothness β will need to be
smaller (for a fixed ε) than for generalized Cauchy noise.
This will in general increase the β-smooth upper bound
c(x). On the other hand, the value b will also be larger.
Whether the noise magnitude c(x)

b will be smaller for
Laplace or for generalized Cauchy noise, depends on the
concrete query.

Using Laplace noise does not seem to have enough
advantages over generalized Cauchy noise to justify the
more complex properties and worse privacy guarantee
of (ε, δ)-DP over ε-DP. Hence, in this paper we only
evaluate generalized Cauchy noise.

7 Implementation and Evaluation

7.1 Implementation

Our analyzer (available on GitHub) has been imple-
mented in Haskell. As an input, it takes an SQL query,
a database schema, and a description of the norm w.r.t.
which we want to achieve differential privacy. We as-
sume that each table contains a row ID of unique
keys. For each table X, we expect a table named
X_sensRows that contains the same column ID of
keys, and another column sensitive of boolean values
that tell for each row whether it is sensitive or not.

The analyzer computes another query (as a string)
that describes the way in which derivative sensitivity
should be computed. This new query represents the
function c(x) such that the additive noise would be
c(x)
b · η for η ← GenCauchy(γ), according to Theorem 3.

In our analyzer, γ = 4 is fixed (as justified in Sec. 6.3),
and b = ε/(γ + 1)− β, where ε is the desired differential
privacy level, and β the smoothness parameter, which is
provided as an additional input. The resulting query is
fed to a database engine to evaluate the sensitivity on
particular data.

7.2 Evaluation

We performed evaluation on 4 x Intel(R) Core(TM) i5-
6300U CPU @ 2.40GHz laptop, Ubuntu 16.04.4 LTS,
using PostgreSQL 9.5.14.

We have taken the queries of TCP-H set [1] for
benchmarking. Most of these queries contain GROUP
BY constructions with too many possible groups. We
have simplified these queries, adding a filtering that
chooses one particular group.

Another challenge comes from the filters. If some fil-
ter is “public” (i.e. does not depend on sensitive data),
it is easier to apply it beforehand, so that the remaining
table with “private” filters (that do depend on sensitive
data and hence cannot be applied directly) would be
as small as possible. While it is easy to do with a pure
AND combination of filters, in practice public and pri-
vate filters can be mixed, e.g. related by OR. We had
to manually rewrite the filters in such a way that public
filters would be easily extractable as separate members
of an AND combination.

We generated TCP-H data with scale factors (SF)
0.1, 0.5, 1.0, denoting how much data is generated for
the sample database. For 1.0, the size of the largest ta-
ble is ca 6 million rows. The table schema, together with
numbers of rows for different tables, is given in App. B.1.
To define the database metric, we have considered in-
teger, decimal, and date columns as sensitive, assigning
to them different weights, described more precisely in
App. B.2. All rows are considered sensitive. Row norms
have been combined using `1-norm, which ensures dif-
ferential privacy w.r.t. unit change in sensitive attribute
of one row.

We adjusted (as described above) the queries Q1
(splitting a single query with 5 aggregations to 5 sepa-
rate queries), Q2 (splitting it to 2 queries with MIN and
MAX respectively), Q3-Q11, Q12 (splitting 2 aggrega-
tions to 2 queries), Q16, Q17, Q19 of the TCP-H dataset
to our analyzer. The queries that have been eventually
fed to the analyzer are listed in App. B.3. We treat date
as an integer, i.e. the number of days passed from the
date 1980-01-01. In App. B.4, we present more evalu-
ation results, where we treat date as a floating point
number, so that sigmoids can be used for filtering.

We fix ε = 1. For derivative sensitivity experiments,
we take sigmoid precision α = 5 and smoothness β =
0.1. This choice gives b = 0.1, and the additive noise
with 78% probability is below 10 · c(x), where the value
78% comes from analyzing distribution GenCauchy(4)
(we have

∫ 1
−1 GenCauchy(4)(x) dx = 0.78). Too large

value of β makes b (and hence the noise) larger, and too
small β makes the sensitivity larger, so β is a parameter
that can in general be optimized.

A Framework of Metrics for Differential Privacy from Local Sensitivity 188

7.2.1 Time

The time benchmarks are given in Table 3. Let x be the
database instance. For each scale factor SF, we report
the execution time ti of the initial query qi(x), time tm
of the modified query qm(x) (i.e. in which filtering is
replaced with continuous approximation), and time ts
of the sensitivity-computing query qs(x). The time spent
to generate the queries qm and qs is negligible (below
20ms), and it does not depend on the database size, so
we do not report it. We also do not report the execution
time of sampling the noise, as it does not depend on the
database size either.

The total time overhead of computing noisy out-
put based on derivative sensitivity is tm + ts: since the
sensitivity has been computed for qm, the noise should
also be added to qm(x), and not to qi(x). We estimate
the total time overhead for global sensitivity as ti, as
it is sufficient to execute qi(x), and the computation of
global sensitivity does not depend on the database size.

We see that in general tm and ts are larger than
ti. This overhead comes from filtering. While in qi the
database engine may immediately drop all rows that do
not satisfy the filter, in qm and qs we need to compute
the approximated output and the sensitivity of each row.
In overall, the time overhead of qm and qs compared to qi
(and hence of derivative sensitivity compared to global
sensitivity) depends on the ratio of “number of rows
before filtering” and “number of rows after filtering”.

7.2.2 Precision

The precision benchmarks are given in Table 4. For
each scale factor SF, we report the output qi(x) of
the initial query, and qs(x) of the sensitivity-computing
query. We report the output qm(x) of the modified
query only if it is different from qi(x). The relative er-
ror has been computed as |(qm(x)±ξ)−qi(x)|

qi(x) · 100, where
ξ = c(x)

b = qs(x)
ε/(γ+1)−β = 10 · qs(x). The additive noise

stays below ξ with probability 78% (as discussed above),
so the relative error stays below reported value also with
probability 78%.

The last two columns of Table 4 demonstrate the
global sensitivity of queries, which is the same for all SF
values, as it does not depend on data. The left column
shows global sensitivity w.r.t. the same metric as the
derivative sensitivity (we call it non-standard), and the
right column w.r.t the row difference metric (we call it
standard). We compare these with derivative sensitivity.

Global sensitivity w.r.t. non-standard metric. In
the first case, we compute the global sensitivity w.r.t.
the same metric as the derivative sensitivity. Even using
the same metric, we cannot compare global (GS) and
derivative sensitivity (DS) directly without taking into
account particular noise generating mechanisms. How-
ever, in our results we have either GS=∞ or GS=DS.
If GS=∞, then the noise would be ∞ as well for any
noise generating mechanism. If GS=DS, then we expect
the noise of GS to be lower, as e.g. employing the same
Cauchy mechanism that we use for derivative sensitivity
with β ≈ 0 gives 10 times less noise than with β = 0.1
for the same sensitivity. In our benchmarks, DS gives
advantage over GS in the following main cases.
1. When a sensitive attribute x1 is multiplied by an-

other attribute x2, and there are no bounds on x2,
we get GS=∞, as |(x1 ± 1) · x2 − x1 · x2| = |x2|.

2. The norms of rows are combined into a table norm
using `1-norm. Hence, d(t, t′) = 1 covers not only
the case where the norm of one row changes by 1,
but also the case where each row changes a little. In
an extreme case, all rows of t are already very close
to the filtering bound, and the filtering function re-
turns ≈ 1 for all rows in t, and ≈ 0 for all rows in t′.
This makes no difference for a COUNT query (as in
b1_5), as the sum of all these changes is still 1, but
we get GS=∞ for the query b1_1, which has the
same form as b1_5, except that it is a SUM query.

Global sensitivity w.r.t. standard metric. In the
second case, we compute global sensitivity w.r.t. row
difference metric. That is, d(x, x′) = 1 iff there is ex-
actly one sensitive table in databases x and x′ such that
the respective instances t and t′ of that table differ in
one row. To make the comparison more fair, we consider
an input table sensitive iff the query uses at least one
of its attributes that were considered sensitive by the
`p-metric. For SUM, MIN, MAX queries, the effect of
adding/removing a row is unbounded, and global sen-
sitivity is ∞, as it covers the worst case. For COUNT
queries, we may lose advantage as well if we consider a
JOIN of tables, where adding/removing a row in an in-
put table may result in adding/removing an unbounded
number of rows in the cross product of input tables, as
it happens in b4. Row difference metric gives smaller
sensitivity in the COUNT-queries b12_1, b12_2, b16. In
general, if we filter by a sensitive attribute over a single
input table, then row difference metric contributes 1 to
the COUNT, while defining the distance as `1-norm of
rows allows to split the unit change among several rows,
which may result in higher sensitivity.

A Framework of Metrics for Differential Privacy from Local Sensitivity 189

SF = 0.1 SF = 0.5 SF = 1.0
ti tm ts ti tm ts ti tm ts

b1_1 152.8 534.59 763.19 731.11 3.17K 4.08K 1.5K 5.6K 8.01K
b1_2 151.8 559.58 1.04K 1.47K 4.02K 5.86K 1.62K 6.59K 11.92K
b1_3 168.08 590.1 2.05K 862.07 3.24K 10.37K 1.75K 5.87K 19.66K
b1_4 184.24 574.28 2.2K 888.35 2.98K 10.08K 1.69K 5.96K 20.45K
b1_5 149.96 527.38 520.85 744.5 2.69K 2.86K 1.48K 5.46K 5.86K
b2_1 19.68 45.3 144.78 134.21 294.14 1.04K 289.53 563.79 2.25K
b2_2 29.04 49.37 165.62 158.94 273.06 1.28K 288.18 632.38 2.49K
b3 111.92 117.41 391.47 544.22 623.87 2.19K 349.06 521.31 1.2K
b4 131.52 379.05 778.47 799.9 2.63K 5.16K 1.56K 5.05K 10.69K
b5 6.66K 204.08 2.18K 696.38 685.59 3.61K 1.51K 2.2K 9.71K
b6 118.31 3.12K 13.21K 687.4 16.09K 67.29K 1.26K 31.73K 123.64K
b7 238.74 137.21 713.28 1.19K 861.55 3.9K 2.42K 1.67K 8.34K
b8 308.08 117.53 782.37 1.3K 1.73K 5.89K 4.08K 1.45K 8.38K
b9 133.34 128.58 3.82K 1.79K 728.07 4.21K 1.59K 1.42K 9.17K
b10 131.97 137.03 483.38 882.12 719.65 2.46K 202.05 1.48K 4.88K
b11 10.74 10.16 42.12 62.0 62.02 254.81 126.47 128.67 529.29
b12_1 215.13 736.64 1.27K 879.2 3.65K 7.5K 1.95K 7.34K 14.04K
b12_2 148.5 473.72 877.42 846.66 3.26K 6.19K 2.44K 4.8K 10.84K
b16 22.14 174.35 303.68 127.95 711.93 1.63K 264.52 1.66K 3.66K
b17 111.7 88.31 276.69 486.16 455.85 1.38K 938.62 1.12K 2.96K
b19 139.16 296.41 1.42K 737.53 1.47K 6.67K 1.39K 2.86K 13.56K

Table 3. Time benchmarks (ms) for the initial query (ti), modified query (tm), and the sensitivity query (ts). K denotes ·103

SF = 0.10 SF = 0.50 SF = 1.00 global sens.
qi(x) qs(x) %noise qi(x) qs(x) %noise qi(x) qs(x) %noise non- std.
(qm(x)) (qm(x)) (qm(x)) std.

b1_1 3.79M 50.0 0.01 18.87M 50.0 0.0026 37.72M 50.0 0.0013 ∞ ∞
b1_2 5.34G 95.89K 0.02 27.35G 99.65K 0.0036 56.57G 104.9K 0.0019 ∞ ∞
b1_3 5.07G 107.36K 0.02 25.98G 111.18K 0.0043 53.74G 117.34K 0.0022 ∞ ∞
b1_4 5.27G 114.87K 0.02 27.02G 119.06K 0.0044 55.89G 124.38K 0.0022 ∞ ∞
b1_5 148.3K 1.0 0.0067 739.56K 1.0 0.0014 1.48M 1.0 0.0007 1 1
b2_1 1.07 100.0 93.46K 1.0 100.0 100.0K 1.0 100.0 100.0K 100 ∞
b2_2 999.98 100.0 100.0 1.0K 100.0 100.0 1.0K 100.0 100.0 100 ∞
b3 3.62K 41.28K 11.4K 3.21K 41.1K 12.8K 0.0 0.0 0.0 ∞ ∞
b4 2.92K 7.0 2.4 14.17K 7.0 0.49 28.07K 7.0 0.25 7 ∞
b5 5.37M 260.44K 48.53 25.23M 359.6K 14.25 47.6M 484.12K 10.17 ∞ ∞
b6 17.45M 125.0K 7.14 88.13M 127.0K 1.44 181.93M 130.0K 0.71 ∞ ∞

(17.13K) (86.86M) (179.15)
b7 22.07M 106.13K 4.81 95.63M 111.24K 1.16 212.11M 115.33K 0.54 ∞ ∞
b8 470.8K 145.15K 308.31 2.74M 172.5K 63.04 3.29M 178.96K 54.4 ∞ ∞
b9 30.32M 40.0K 1.32 137.73M 49.2K 0.36 283.82M 49.2K 0.17 ∞ ∞
b10 100.31K 357.71K 3.57K 149.6K 398.13K 2.66K 0.0 312.54K ∞ ∞ ∞
b11 1.63G 199.98K 0.12 7.73G 199.98K 0.03 15.18G 199.98K 0.01 ∞ ∞
b12_1 3.12K 3.0 0.96 15.4K 3.0 0.19 30.83K 3.0 0.1 3 1
b12_2 1.29K 3.0 2.33 6.2K 3.0 0.48 12.37K 3.0 0.24 3 1
b16 9.95K 4.0 0.4 49.35K 4.0 0.08 98.97K 4.0 0.04 4 1
b17 31.54K 16.8K 533 256.24K 17.8K 69.3 531.93K 18.0K 33.9 ∞ ∞

(31.17K) (250.83K) (520.87K)
b19 155.25K 651.72K 4.2K 1.1M 813.52K 738.04 1.73M 827.69K 479.67 ∞ ∞

Table 4. Precision benchmarks for ε = 1, β = 0.1, sigmoid α = 5, where qi(x) is the initial query result, qm(x) the modified
query result (if different from qi(x)), qs(x) is the sensitivity query result, and %noise = |(qm(x)±10·qs(x))−qi(x)|

qi(x) · 100. The last
two columns show global sensitivity w.r.t. the same non-standard `p-induced metric as derivative sensitivity (non-std.) and the
standard “row difference” metric (std.). K denotes ·103, M denotes ·106, and G denotes ·109

A Framework of Metrics for Differential Privacy from Local Sensitivity 190

8 Discussion
Let us summarize the limits and advantages of the
framework proposed in this paper. We compare `p-
metric vs row distance metric, and local sensitivity vs
global sensitivity. In the following, we mark with + the
clear advantages, and with − some caveats.

Applicability.
+ Metrics induced by `p-norms allow to state different

privacy goals, and can be useful in cases where the
standard row distance metric is not applicable.

– Computation of derivative sensitivity requires a par-
ticular data instance. This is similar to local sensi-
tivity. Since execution of the sensitivity-computing
query can be deferred, and the data will anyway be
needed at the point where a noisy output is released,
we do not treat it as an applicability issue.

– Derivative sensitivity is limited to continuous func-
tions. This is not a problem as far as there exist
efficiently computable approximations. We can still
cover a wide range of SQL queries.

Complexity.
+ In the first phase of the analysis, the initial query

it transformed to sensitivity-computing query. The
execution time of this transformation is negligible
and does not depend on the data.

– In the second phase of the analysis, when the out-
put is ready to be released, we need to execute the
sensitivity-computing query to estimate amount of
noise. Compared to the initial query, additional time
overhead comes from filtering, as we cannot ignore
the rows that have been discarded by the filter.

Amount of noise
+ Changing a numeric attribute of a row in general has

smaller effect on the query result than adding/re-
moving an entire row.

+ As global sensitivity always covers the worst-case
data instance, it is in general larger than local and
derivative sensitivity.

– Compared to global sensitivity w.r.t. standard met-
ric, there are more parameters to be tuned in order
to optimize the amount of noise, such as smoothness
and sigmoid precision.

– While `p-norms allow to define a variety of metrics
over databases, they are not a superset of standard
metrics, and for some privacy goals we can get less
noise using standard metric.

Possible improvements. Adding noise before filtering
is the path towards solving the issue of complexity and
noise overhead that comes from filtering over sensitive
attributes. While we believe that our framework allows
to locate the points where the noise has to be added,
this is not the topic of the current paper.

So far, similarly to Blowfish [17], we have assumed
that the number of rows in the tables is fixed. It is ac-
tually possible to define the derivative sensitivity w.r.t.
number of rows, treating it as a real number. Our frame-
work would then cover the row difference metric as well.
We defer this research to future work.

9 Conclusion
We have started the study of complete norms to de-
fine the quantitative privacy properties of information
release mechanisms, and have discovered their high ex-
pressivity for different kinds of numeric inputs, as well
as the principles of the parallel composition of norms in
a manner that allows the sensitivity of the information
release mechanism to be found. Our results show how
the similarity of local sensitivity and the derivative can
be exploited in constructing differentially private mech-
anisms. The result is also practically significant because
of the need to precisely model the privacy requirements
of data owner(s), for which the flexibility of specifying
the metric over possible inputs is a must.

Our results open up the study of the combinations
of metrics over more varied types of input data, in-
cluding categorical and structured data, or data with
consistency constraints. Such study would also look for
possibilities to express the constraints through suitable
combinations of metrics over components. We note that
inputs with constraints [20] or with particular structure
(sequences indexed by time points) [7, 10] have been
considered in the literature. We hope that it is possible
to find suitable complete norms that define the metrics
used in the privacy definitions for such data, and thereby
express these constructions inside our framework.

Acknowledgements. This research has been
funded by Estonian Research Council, grant no. IUT27-
1, by ERDF through the Centre of Excellence EXCITE,
and by the Air Force Research laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA)
under contract FA8750-16-C-0011. The views expressed
are those of the author(s) and do not reflect the official
policy or position of the Department of Defense or the
U.S. Government.

A Framework of Metrics for Differential Privacy from Local Sensitivity 191

References
[1] TPC BENCHMARKTM H, revision 2.17.3. Transaction

Processing Performance Council, 2017. http://www.tpc.org/
TPC_Documents_Current_Versions/pdf/tpc-h_v2.17.3.
pdf.

[2] Myrto Arapinis, Diego Figueira, and Marco Gaboardi. Sen-
sitivity of counting queries. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide San-
giorgi, editors, 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15,
2016, Rome, Italy, volume 55 of LIPIcs, pages 120:1–120:13.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[3] Jordan Awan and Aleksandra Slavkovic. Structure and sensi-
tivity in differential privacy: Comparing k-norm mechanisms.
arXiv preprint arXiv:1801.09236, 2018.

[4] L.W. Baggett. Functional Analysis: A Primer. Chapman &
Hall Pure and Applied Mathematics. Taylor & Francis, 1991.

[5] Konstantinos Chatzikokolakis, Miguel E. Andrés,
Nicolás Emilio Bordenabe, and Catuscia Palamidessi. Broad-
ening the scope of differential privacy using metrics. In
Emiliano De Cristofaro and Matthew Wright, editors, Pri-
vacy Enhancing Technologies - 13th International Sympo-
sium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013.
Proceedings, volume 7981 of Lecture Notes in Computer
Science, pages 82–102. Springer, 2013.

[6] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and
Marco Stronati. Geo-indistinguishability: A principled ap-
proach to location privacy. In Raja Natarajan, Gautam
Barua, and Manas Ranjan Patra, editors, Distributed Com-
puting and Internet Technology - 11th International Con-
ference, ICDCIT 2015, Bhubaneswar, India, February 5-8,
2015. Proceedings, volume 8956 of Lecture Notes in Com-
puter Science, pages 49–72. Springer, 2015.

[7] Yan Chen, Ashwin Machanavajjhala, Michael Hay, and
Gerome Miklau. Pegasus: Data-adaptive differentially private
stream processing. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1375–1388. ACM, 2017.

[8] Cynthia Dwork. Differential privacy. In Michele Bugliesi,
Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
Automata, Languages and Programming, 33rd International
Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II, volume 4052 of Lecture Notes in Com-
puter Science, pages 1–12. Springer, 2006.

[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam D. Smith. Calibrating noise to sensitivity in private
data analysis. In Shai Halevi and Tal Rabin, editors, Theory
of Cryptography, Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006, Proceed-
ings, volume 3876 of Lecture Notes in Computer Science,
pages 265–284. Springer, 2006.

[10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N.
Rothblum. Differential privacy under continual observation.
In Schulman [27], pages 715–724.

[11] Hamid Ebadi and David Sands. Featherweight PINQ. Jour-
nal of Privacy and Security, 7(2):159–184, 2016.

[12] Hamid Ebadi, David Sands, and Gerardo Schneider. Dif-
ferential privacy: Now it’s getting personal. In Sriram K.
Rajamani and David Walker, editors, Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2015, Mumbai,
India, January 15-17, 2015, pages 69–81. ACM, 2015.

[13] Ehab ElSalamouny, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. Generalized differential privacy: Re-
gions of priors that admit robust optimal mechanisms. In
Franck van Breugel, Elham Kashefi, Catuscia Palamidessi,
and Jan Rutten, editors, Horizons of the Mind. A Tribute
to Prakash Panangaden - Essays Dedicated to Prakash
Panangaden on the Occasion of His 60th Birthday, volume
8464 of Lecture Notes in Computer Science, pages 292–318.
Springer, 2014.

[14] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun
Narayan, and Benjamin C. Pierce. Linear dependent types
for differential privacy. In Roberto Giacobazzi and Radhia
Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
’13, Rome, Italy - January 23 - 25, 2013, pages 357–370.
ACM, 2013.

[15] Moritz Hardt and Kunal Talwar. On the geometry of differ-
ential privacy. In Schulman [27], pages 705–714.

[16] Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan
Chen, and Dan Zhang. Principled evaluation of differentially
private algorithms using dpbench. In Fatma Özcan, Georgia
Koutrika, and Sam Madden, editors, Proceedings of the
2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June
26 - July 01, 2016, pages 139–154. ACM, 2016.

[17] Xi He, Ashwin Machanavajjhala, and Bolin Ding. Blowfish
privacy: tuning privacy-utility trade-offs using policies. In
Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors,
International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, pages 1447–
1458. ACM, 2014.

[18] Noah M. Johnson, Joseph P. Near, and Dawn Song. To-
wards practical differential privacy for SQL queries. Proceed-
ings of the VLDB Endowment, 11(5):526–539, 2018.

[19] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya
Raskhodnikova, and Adam Smith. Analyzing graphs with
node differential privacy. In Amit Sahai, editor, Theory of
Cryptography, pages 457–476, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[20] Daniel Kifer and Ashwin Machanavajjhala. Pufferfish: A
framework for mathematical privacy definitions. ACM Trans.
Database Syst., 39(1):3:1–3:36, 2014.

[21] Ker-I. Ko and Harvey Friedman. Computational complexity
of real functions. Theoretical Computer Science, 20:323–
352, 1982.

[22] Jaewoo Lee and Chris Clifton. How much is enough? choos-
ing ε for differential privacy. In Xuejia Lai, Jianying Zhou,
and Hui Li, editors, Information Security, 14th International
Conference, ISC 2011, Xi’an, China, October 26-29, 2011.
Proceedings, volume 7001 of Lecture Notes in Computer
Science, pages 325–340. Springer, 2011.

[23] Frank McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In Ugur Çet-
intemel, Stanley B. Zdonik, Donald Kossmann, and Nesime

http://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-h_v2.17.3.pdf
http://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-h_v2.17.3.pdf
http://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-h_v2.17.3.pdf

A Framework of Metrics for Differential Privacy from Local Sensitivity 192

Tatbul, editors, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2009,
Providence, Rhode Island, USA, June 29 - July 2, 2009,
pages 19–30. ACM, 2009.

[24] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith.
Smooth sensitivity and sampling in private data analysis. In
David S. Johnson and Uriel Feige, editors, Proceedings of
the 39th Annual ACM Symposium on Theory of Computing,
San Diego, California, USA, June 11-13, 2007, pages 75–84.
ACM, 2007.

[25] Catuscia Palamidessi and Marco Stronati. Differential pri-
vacy for relational algebra: Improving the sensitivity bounds
via constraint systems. In Herbert Wiklicky and Mieke
Massink, editors, Proceedings 10th Workshop on Quanti-
tative Aspects of Programming Languages and Systems,
QAPL 2012, Tallinn, Estonia, 31 March and 1 April 2012.,
volume 85 of EPTCS, pages 92–105, 2012.

[26] Jason Reed and Benjamin C. Pierce. Distance makes the
types grow stronger: a calculus for differential privacy. In
Paul Hudak and Stephanie Weirich, editors, Proceeding
of the 15th ACM SIGPLAN international conference on
Functional programming, ICFP 2010, Baltimore, Maryland,
USA, September 27-29, 2010, pages 157–168. ACM, 2010.

[27] Leonard J. Schulman, editor. Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cam-
bridge, Massachusetts, USA, 5-8 June 2010. ACM, 2010.

[28] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri,
Somesh Jha, and Jeffrey F. Naughton. Bolt-on differential
privacy for scalable stochastic gradient descent-based analyt-
ics. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages
1307–1322. ACM, 2017.

A Sigmoid Precision
Using sigmoids instead of the original filters causes a
precision loss, as we use the value eαx

eαx+1 instead of 0 or
1. Suppose we have a SUM query using `1-norm to join
row norms and input rows are chosen from a certain
distribution that does not change when input size (n,
the number of rows) changes, which would be a quite
common scenario. Then the relative error from added
noise goes to 0 but the relative error from sigmoids is
roughly constant as n → ∞. Thus the total error does
not go to zero as n→∞.

To improve on this, we replace sigmoids with precise
sigmoids, keeping α constant but increasing the second
parameter a as n increases, allowing a tradeoff that (as-
suming the probability density function of the input is
roughly constant near the pivot point of the filter) in-
creases the relative error from added noise

√
n times

and decreases that from sigmoids
√
n times, making the

total error inversely proportional to
√
n, thus going to

zero as n → ∞. This also holds if more than one sig-
moid is used. If no sigmoids are used then no tradeoff is
needed and the total error inversely proportional to n.

We can get similar results for tauoids. If the filtered
values are integers then we do not have to use sigmoids
and tauoids but instead use the precise functions as de-
scribed before. Then the only error is from adding noise
and it would be inversely proportional to n.

B Evaluation Details

B.1 Database Schema

The TPC-H testset [1] puts forth the following database
schema, as given below. The tables are (randomly) filled
with a number of rows, generated by a program that
accompanies the schema. The number of rows depends
on the scaling factor SF . The tables, and the numbers
of rows in them are the following:

Part: SF · 200, 000 rows.
column type
P_PARTKEY identifier
P_NAME text
P_MFGR text
P_BRAND text
P_TYPE text
P_SIZE integer
P_CONTAINER text
P_RETAILPRICE decimal
P_COMMENT text

Customer: SF · 150, 000 rows.
column type
C_CUSTKEY identifier
C_NAME text
C_ADDRESS text
C_NATIONKEY identifier
C_PHONE text
C_ACCTBAL decimal
C_MKTSEGMENT text
C_COMMENT text

Partsupp: SF · 800, 000 rows.
column type
PS_PARTKEY identifier
PS_SUPPKEY identifier
PS_AVAILQTY integer
PS_SUPPLYCOST decimal
PS_COMMENT text

A Framework of Metrics for Differential Privacy from Local Sensitivity 193

Supplier: SF · 10, 000 rows.
column type
S_SUPPKEY identifier
S_NAME text
S_ADDRESS text
S_NATIONKEY identifier
S_PHONE text
S_ACCTBAL decimal
S_COMMENT text

Orders: SF · 1, 500, 000 rows
column type
O_ORDERKEY identifier
O_CUSTKEY identifier
O_ORDERSTATUS text
O_TOTALPRICE decimal
O_ORDERDATE date
O_ORDERPRIORITY text
O_CLERK text
O_SHIPPRIORITY integer
O_COMMENT text

Lineitem: SF · 6, 000, 000 rows
column type
L_ORDERKEY identifier
L_PARTKEY identifier
L_SUPPKEY identifier
L_LINENUMBER integer
L_QUANTITY decimal
L_EXTENDEDPRICE decimal
L_DISCOUNT decimal ∈ [0, 1]
L_TAX decimal
L_RETURNFLAG text
L_LINESTATUS text
L_SHIPDATE date
L_COMMITDATE date
L_RECEIPTDATE date
L_SHIPINSTRUCT text
L_SHIPMODE text
L_COMMENT text

Nation: 25 rows
column type
N_NATIONKEY identifier
N_NAME text
N_REGIONKEY identifier
N_COMMENT text

Region: 5 rows
column type
R_REGIONKEY identifier
R_NAME text
R_COMMENT text

B.2 Sensitive Components

In all tables except Lineitem, we consider the change
that is the scaled sum of changes in all sensitive at-
tributes. All attributes that are not a part of the norm
are considered insensitive. We assumed that textual
fields as well as the keys (ordinal data) are not sensi-
tive. The columns of type date (e.g. o_orderdate) have
been converted to a floating-point number, which is the
number of months passed from the date 1980-01-01.
– Part: ‖p_size, 0.01 · p_retailprice‖1. The values of

p_retailprice are measured in hundreds, so we con-
sider larger changes (i.e. make such change causing
a change of 1 in the output correspond to unit sen-
sitivity).

– Partsupp: ‖ps_availqty, 0.01 · ps_supplycost‖1.
– Orders: ‖30 · o_orderdate, 0.01 · o_totalprice‖1.
– Customer: ‖0.01 · c_acctbal‖1.
– Supplier: ‖0.01 · s_acctbal‖1.
– Nation: no sensitive columns.
– Region: no sensitive columns.

In table Lineitem, several different norms would make
sense and it is up to the data owner to choose the
“right” one. We could again add up the sensitive at-
tributes of a row, after suitably scaling them. But we
could also think that the three different dates would
probably move rather synchronously, and it is the max-
imum change among them that really matters. Hence
we performed the tests with the row norm

‖l_quantity, 0.0001 · l_extendedprice, 50 · l_discount,
30 · ‖l_shipdate, l_commitdate, l_receiptdate‖∞‖1 .

Here the values of l_discount are very small (all around
0.1), so we aim to protect the change in 0.02 units. On
the other hand, l_extendedprice can be tens of thou-
sands, and we want to capture larger changes for it. The
dates are measured in months, so we capture a change
of one day. which we treat as 1/30 of a month. Alter-
natively, we may use the number of days, and get the
same result removing the scaling by 30.0.

B.3 Benchmark Queries

We list the rewritten queries of TCP-H dataset that
were used in benchmarking, to give an impression of
what we actually feed to the analyzer. The constant
0.142857 in b_17 comes from translating an AV G query
to a SUM query, and 7 = 1/0.142857 is the number of
rows to sum, which is public, as the filter does not use
sensitive attributes.

A Framework of Metrics for Differential Privacy from Local Sensitivity 194

--b1_1
SELECT SUM(lineitem.l_quantity)
FROM lineitem
WHERE

lineitem.l_shipdate <= 230.3 - 30
AND lineitem.l_returnflag = ’R’
AND lineitem.l_linestatus = ’F’

;
--b1_2
SELECT SUM(lineitem.l_extendedprice)
FROM lineitem
WHERE

lineitem.l_shipdate <= 230.3 - 30
AND lineitem.l_returnflag = ’R’
AND lineitem.l_linestatus = ’F’

;
--b1_3
SELECT SUM(lineitem.l_extendedprice

*(1-lineitem.l_discount))
FROM lineitem
WHERE

lineitem.l_shipdate <= 230.3 - 30
AND lineitem.l_returnflag = ’R’
AND lineitem.l_linestatus = ’F’

;
--b1_4
SELECT SUM(lineitem.l_extendedprice

*(1-lineitem.l_discount)
*(1+lineitem.l_tax))

FROM lineitem
WHERE

lineitem.l_shipdate <= 230.3 - 30
AND lineitem.l_returnflag = ’R’
AND lineitem.l_linestatus = ’F’

;
--b1_5
SELECT COUNT(*)
FROM lineitem
WHERE

lineitem.l_shipdate <= 230.3 - 30
AND lineitem.l_returnflag = ’R’
AND lineitem.l_linestatus = ’F’

;
--b2_1
SELECT MIN(partsupp.ps_supplycost)
FROM partsupp, supplier,

nation, region, part
WHERE

part.p_partkey = partsupp.ps_partkey
AND supplier.s_suppkey = partsupp.ps_suppkey
AND supplier.s_nationkey = nation.n_nationkey
AND nation.n_regionkey = region.r_regionkey
AND region.r_name = ’ASIA’

;
--b2_2
SELECT MAX(partsupp.ps_supplycost)
FROM partsupp, supplier,

nation, region, part
WHERE

part.p_partkey = partsupp.ps_partkey

AND supplier.s_suppkey = partsupp.ps_suppkey
AND supplier.s_nationkey = nation.n_nationkey
AND nation.n_regionkey = region.r_regionkey
AND region.r_name = ’ASIA’

;
--b3
SELECT SUM(lineitem.l_extendedprice

*(1-lineitem.l_discount))
FROM customer, orders, lineitem
WHERE

customer.c_mktsegment = ’BUILDING’
AND customer.c_custkey = orders.o_custkey
AND lineitem.l_orderkey = orders.o_orderkey
AND orders.o_orderdate < 190
AND lineitem.l_shipdate > 190
AND lineitem.l_orderkey = ’162’
AND orders.o_shippriority = ’0’

;
--b4
SELECT COUNT(*)
FROM orders, lineitem
WHERE

orders.o_orderdate >= 180
AND orders.o_orderdate < 180 + 3
AND lineitem.l_orderkey = orders.o_orderkey
AND lineitem.l_commitdate < lineitem.l_receiptdate
AND orders.o_orderpriority = ’1-URGENT’

;
--b5
SELECT SUM(lineitem.l_extendedprice

*(1-lineitem.l_discount))
FROM customer, orders,

lineitem, supplier,
nation, region

WHERE
customer.c_custkey = orders.o_custkey
AND lineitem.l_orderkey = orders.o_orderkey
AND lineitem.l_suppkey = supplier.s_suppkey
AND customer.c_nationkey = supplier.s_nationkey
AND supplier.s_nationkey = nation.n_nationkey
AND nation.n_regionkey = region.r_regionkey
AND region.r_name = ’ASIA’
AND orders.o_orderdate >= 213.3
AND orders.o_orderdate < 213.3 + 12
AND nation.n_name = ’JAPAN’

;
--b6
SELECT SUM(lineitem.l_extendedprice

*lineitem.l_discount)
FROM lineitem
WHERE

lineitem.l_shipdate >= 170.5
AND lineitem.l_shipdate < 170.5 + 12
AND lineitem.l_discount BETWEEN 0.09 - 0.01

AND 0.09 + 0.01
AND lineitem.l_quantity < 24

;
--b7
SELECT SUM(lineitem.l_extendedprice

*(1 - lineitem.l_discount))

A Framework of Metrics for Differential Privacy from Local Sensitivity 195

FROM supplier, lineitem, orders, customer,
nation as n1,
nation as n2

WHERE
supplier.s_suppkey = lineitem.l_suppkey
AND orders.o_orderkey = lineitem.l_orderkey
AND customer.c_custkey = orders.o_custkey
AND supplier.s_nationkey = n1.n_nationkey
AND customer.c_nationkey = n2.n_nationkey
AND (

(n1.n_name = ’JAPAN’ and n2.n_name = ’INDONESIA’)
OR
(n1.n_name = ’INDONESIA’ and n2.n_name = ’JAPAN’)

)
AND lineitem.l_shipdate between 182.6 and 207

;
--b8
SELECT SUM(lineitem.l_extendedprice

*(1 - lineitem.l_discount))
FROM

part, supplier, lineitem,
orders, customer,
nation AS n1, nation AS n2, region

WHERE
part.p_partkey = lineitem.l_partkey
AND supplier.s_suppkey = lineitem.l_suppkey
AND lineitem.l_orderkey = orders.o_orderkey
AND orders.o_custkey = customer.c_custkey
AND customer.c_nationkey = n1.n_nationkey
AND n1.n_regionkey = region.r_regionkey
AND region.r_name = ’ASIA’
AND supplier.s_nationkey = n2.n_nationkey
AND orders.o_orderdate >= 5478
AND orders.o_orderdate <= 6210
AND part.p_type = ’MEDIUM BRUSHED COPPER’
AND n2.n_name = ’JAPAN’

;
--b9
SELECT SUM(lineitem.l_extendedprice

*(1-lineitem.l_discount)
- partsupp.ps_supplycost*lineitem.l_quantity)

FROM
part, supplier,
lineitem, partsupp,
orders, nation

WHERE
supplier.s_suppkey = lineitem.l_suppkey
AND partsupp.ps_suppkey = lineitem.l_suppkey
AND partsupp.ps_partkey = lineitem.l_partkey
AND part.p_partkey = lineitem.l_partkey
AND orders.o_orderkey = lineitem.l_orderkey
AND supplier.s_nationkey = nation.n_nationkey
AND part.p_name LIKE ’%violet%’
AND nation.n_name = ’UNITED KINGDOM’

;
--b10
SELECT SUM(lineitem.l_extendedprice

*(1 - lineitem.l_discount))
FROM

customer, orders,

lineitem, nation
WHERE

customer.c_custkey = orders.o_custkey
AND lineitem.l_orderkey = orders.o_orderkey
AND orders.o_orderdate >= 183.3
AND orders.o_orderdate < 183.3 + 3
AND lineitem.l_returnflag = ’R’
AND customer.c_nationkey = nation.n_nationkey
AND customer.c_custkey = ’64’
AND nation.n_name = ’CANADA’

;
--b11
SELECT SUM(partsupp.ps_supplycost

* partsupp.ps_availqty * 0.2)
FROM partsupp, supplier, nation
WHERE

partsupp.ps_suppkey = supplier.s_suppkey
AND supplier.s_nationkey = nation.n_nationkey
AND nation.n_name = ’JAPAN’

;
--b12_1
SELECT COUNT(*)
FROM orders, lineitem
WHERE

orders.o_orderkey = lineitem.l_orderkey
AND (orders.o_orderpriority <> ’1-URGENT’

OR orders.o_orderpriority <> ’2-HIGH’)
AND lineitem.l_shipmode in (’TRUCK’, ’SHIP’)
AND lineitem.l_commitdate < lineitem.l_receiptdate
AND lineitem.l_shipdate < lineitem.l_commitdate
AND lineitem.l_receiptdate >= 183.3
AND lineitem.l_receiptdate < 183.3 + 12

;
--b12_2
SELECT COUNT(*)
FROM orders, lineitem
WHERE

orders.o_orderkey = lineitem.l_orderkey
AND (orders.o_orderpriority = ’1-URGENT’

OR orders.o_orderpriority = ’2-HIGH’)
AND lineitem.l_shipmode in (’TRUCK’, ’SHIP’)
AND lineitem.l_commitdate < lineitem.l_receiptdate
AND lineitem.l_shipdate < lineitem.l_commitdate
AND lineitem.l_receiptdate >= 183.3
AND lineitem.l_receiptdate < 183.3 + 12

;
--b16
SELECT COUNT(partsupp.ps_suppkey)
FROM partsupp, part, supplier
WHERE

part.p_partkey = partsupp.ps_partkey
AND partsupp.ps_suppkey = supplier.s_suppkey
AND part.p_brand <> ’Brand#34’
AND NOT (part.p_type LIKE ’%COPPER%’)
AND part.p_size in (5, 10, 15, 20, 25, 30, 35, 40)
AND NOT (supplier.s_comment LIKE

’%Customer%Complaints%’)
AND part.p_brand = ’Brand#14’
AND part.p_type = ’LARGE ANODIZED TIN’

;

A Framework of Metrics for Differential Privacy from Local Sensitivity 196

--b17
SELECT SUM(lineitem.l_extendedprice * 0.142857)
FROM lineitem, part
WHERE

part.p_partkey = lineitem.l_partkey
AND part.p_brand = ’Brand#34’
AND part.p_container = ’JUMBO PKG’
AND lineitem.l_quantity < 0.2 * 32

;
--b19
SELECT SUM(lineitem.l_extendedprice

*(1-lineitem.l_discount))
FROM lineitem, part
WHERE

part.p_partkey = lineitem.l_partkey
AND lineitem.l_shipmode IN (’AIR’, ’AIR REG’)
AND lineitem.l_shipinstruct = ’DELIVER IN PERSON’
AND part.p_size >= 1
AND
((

part.p_brand = ’Brand#34’
AND part.p_container IN (’SM CASE’, ’SM BOX’,

’SM PACK’, ’SM PKG’)
AND lineitem.l_quantity >= 35
AND lineitem.l_quantity <= 35 + 10
AND part.p_size <= 5
)
OR
(
part.p_brand = ’Brand#22’
AND part.p_container IN (’MED BAG’, ’MED BOX’,

’MED PKG’, ’MED PACK’)
AND lineitem.l_quantity >= 12
AND lineitem.l_quantity <= 12 + 10
AND part.p_size <= 10
)
OR
(
part.p_brand = ’Brand#14’
AND part.p_container IN (’LG CASE’, ’LG BOX’,

’LG PACK’, ’LG PKG’)
AND lineitem.l_quantity >= 90
AND lineitem.l_quantity <= 90 + 10
AND part.p_size <= 15

));

B.4 Integer vs Float Type Filtering

Since the date datatype of SQL is measured within day
precision, it makes sense to treat is as an integer. How-
ever, we could as well represent it as a floating-point
number. This allows us to use sigmoids, as discussed in
Sec. 5.1.2. For sigmoids, we have to choose precision in
such a way that the noise would be smaller. Since pre-
cision itself cannot depend on the data, we have empir-
ically evaluated appropriate precision level on an inde-
pendently generated TCP-H instance with scale factor

SF=0.05. As described in Sec. A, the precision has to be
increased proportionally with

√
n, where n is the num-

ber of analyzed rows. Hence, the sigmoid precisions for
the cases of SF 0.1, 0.5, 1.0 had to be multiplied with√

2,
√

10 and
√

20 respectively.
While Table 3 and Table 4 use integer approxima-

tion for date filtering, the tables Table 5 and Table 6
show the results for sigmoid approach. The results have
been computed for different β and α values, where β ≈ 0
means that the sensitivity could be computed for an ar-
bitrarily small β, and the third column shows the base
α that has been computed for SF=0.05. The comput-
ing time for a modified query is much higher for float-
ing points, since the SQL engine now needs to compute
exponentiation for each row and each private filter, so
for the most complicated queries we present the results
up to SF=0.5. We see that, except the queries b12_1
and b12_2, the error gets smaller compared to integer
datatype approach. The problem of b12_1 and b12_2
seems to be that the sigmoid precision that we found
for SF=0.05 is not the best for SF=0.1, which indeed
may happen as the final result depends not only on the
number of rows, but also on the actual data, so even
though the sensitivity of these queries is smaller, they
suffer from precision error. The disadvantages of sig-
moid approach are that it takes more time to execute
the modified query, and that exponentiations tend to
cause overflow errors in PSQL engine when the expo-
nents get large. The time overheads are more significant
for the cases with many private filters, where sigmoid er-
ror gets larger due to multiplication, so it seems more
reasonable to use integer datatype there.

B.5 Examples of Analyzer Output

We give some examples of shorter queries that have been
output by the analyzer. We present the modified query
and the sensitivity query, demonstrating where compu-
tation overhead may come from.

Query b1_1

Modified query.

SELECT sum((lineitem.l_quantity * (exp((0.1 * (200.3 +
((-1.0) * lineitem.l_shipdate)))) / (exp((0.1 * (200.3 +
((-1.0) * lineitem.l_shipdate)))) + 1.0))))
FROM lineitem
WHERE (lineitem.l_linestatus = ’F’)

AND (lineitem.l_returnflag = ’R’);

Sensitivity query.

A Framework of Metrics for Differential Privacy from Local Sensitivity 197

SF = 0.1 SF = 0.5 SF = 1.0
ti tm ts ti tm ts ti tm ts

b1_1 144.36 11.43K 1.74K 761.36 157.38K 9.49K 1.47K 535.97K 18.51K
b1_2 141.57 11.43K 1.74K 742.35 163.8K 9.57K 1.46K 518.45K 19.08K
b1_3 154.66 11.75K 1.89K 886.02 157.73K 9.93K 1.67K 538.28K 21.61K
b1_4 165.84 11.64K 2.81K 851.84 154.48K 15.4K 1.97K 558.75K 29.17K
b1_5 149.43 6.6K 1.06K 769.5 65.65K 6.16K 1.43K 189.94K 11.0K
b2_1 19.08 36.87 139.14 141.1 268.5 1.28K 269.94 524.61 2.24K
b2_2 19.11 42.29 135.36 146.93 278.97 1.07K 265.5 724.23 2.07K
b3 96.29 110.48 376.65 567.6 645.44 2.15K 288.72 451.16 1.03K
b4 127.72 59.0K 2.37K 653.65 1.8M 12.67K – – –
b5 6.25K 242.1 2.13K 715.05 877.75 3.37K 1.32K 2.49K 7.96K
b6 115.36 284.1K 9.37K 586.04 6.34M 46.5K – – –
b7 218.87 329.15 623.63 1.16K 2.93K 3.74K 2.45K 9.05K 7.13K
b8 238.62 113.11 637.68 1.15K 719.8 3.9K 3.43K 1.22K 6.54K
b9 127.56 121.25 3.23K 746.92 719.1 4.22K 1.29K 1.3K 7.83K
b10 129.26 134.37 445.86 676.09 790.71 2.4K 205.47 1.45K 4.92K
b11 10.49 9.87 38.92 62.34 61.11 244.71 125.13 126.73 524.31
b12_1 157.39 110.13K 4.62K 849.04 2.49M 26.3K – – –
b12_2 146.71 44.21K 2.12K 727.03 961.28K 10.6K – – –
b16 21.45 130.13 216.23 155.18 735.92 1.65K 237.25 1.42K 3.38K
b17 86.52 83.86 269.3 481.85 463.56 1.43K 872.76 861.25 2.55K
b19 130.1 264.35 1.21K 718.78 1.48K 7.74K 1.3K 2.72K 12.73K

Table 5. Time benchmarks (ms) for the initial query (ti), modified query (tm), and the sensitivity query (ts). K denotes ·103,
and M denotes ·106

SELECT max(abs(sdsg)) FROM (
SELECT sum(abs(greatest(abs((exp((0.1 * (200.3

+ ((-1.0) * lineitem.l_shipdate)))) / (exp((0.1 *
(200.3 + ((-1.0) * lineitem.l_shipdate)))) + 1.0))),
abs(case when ((((0.1 * exp((0.1 * (200.3 + ((-1.0)
* lineitem.l_shipdate))))) / ((exp((0.1 * (200.3 +
((-1.0) * lineitem.l_shipdate)))) + 1.0) ^ 2.0)) *
0.03) = 0.0) then 0.0 else ((((0.1 * exp((0.1 * (200.3
+ ((-1.0) * lineitem.l_shipdate))))) / ((exp((0.1 *
(200.3 + ((-1.0) * lineitem.l_shipdate)))) + 1.0) ^
2.0)) * 0.03) * case when (abs(lineitem.l_quantity) >=
10.0) then abs(lineitem.l_quantity) else (exp(((0.1 *
abs(lineitem.l_quantity)) - 1.0)) / 0.1) end) end)))) AS
sdsg

FROM lineitem, lineitem_sensRows
WHERE ((lineitem.l_linestatus = ’F’)

AND(lineitem.l_returnflag = ’R’)
AND lineitem_sensRows.ID = lineitem.ID)
AND lineitem_sensRows.sensitive

GROUP BY lineitem_sensRows.ID) AS sub;

Query b1_5

Modified query.

SELECT sum(abs((exp((0.1 * (200.3 + ((-1.0) *
lineitem.l_shipdate)))) / (exp((0.1 * (200.3 + ((-1.0) *
lineitem.l_shipdate)))) + 1.0))))
FROM lineitem
WHERE (lineitem.l_linestatus = ’F’)

AND (lineitem.l_returnflag = ’R’);

Sensitivity query.

SELECT max(sdsg) FROM (
SELECT sum(abs((((0.1 * exp((0.1 * (200.3 + ((-1.0) *

lineitem.l_shipdate))))) / ((exp((0.1 * (200.3 + ((-1.0)
* lineitem.l_shipdate)))) + 1.0)^2.0)) * 0.03))) AS sdsg

FROM lineitem, lineitem_sensRows
WHERE ((lineitem.l_linestatus = ’F’)

AND (lineitem.l_returnflag = ’R’)
AND lineitem_sensRows.ID = lineitem.ID)
AND lineitem_sensRows.sensitive

GROUP BY lineitem_sensRows.ID) AS sub;

Query b16

Modified query.

SELECT sum(abs(((((((((2.0 / (exp(((-0.1) * (part.p_size
- 10.0))) + exp((0.1 * (part.p_size - 10.0))))) + (2.0
/ (exp(((-0.1) * (part.p_size - 15.0))) + exp((0.1
* (part.p_size - 15.0)))))) + (2.0 / (exp(((-0.1) *
(part.p_size - 20.0))) + exp((0.1 * (part.p_size -
20.0)))))) + (2.0 / (exp(((-0.1) * (part.p_size -
25.0))) + exp((0.1 * (part.p_size - 25.0)))))) + (2.0
/ (exp(((-0.1) * (part.p_size - 30.0))) + exp((0.1
* (part.p_size - 30.0)))))) + (2.0 / (exp(((-0.1) *
(part.p_size - 35.0))) + exp((0.1 * (part.p_size -
35.0)))))) + (2.0 / (exp(((-0.1) * (part.p_size -
40.0))) + exp((0.1 * (part.p_size - 40.0)))))) + (2.0
/ (exp(((-0.1) * (part.p_size - 5.0))) + exp((0.1 *
(part.p_size - 5.0))))))))

A Framework of Metrics for Differential Privacy from Local Sensitivity 198

SF = 0.1 SF = 0.5 SF = 1.0
β sigmoid qi(x) qs(x) %noise qi(x) qs(x) %noise qi(x) qs(x) %noise

prec. α (qm(x)) (qm(x)) (qm(x))
b1_1 ≈ 0 0.1 3.79M 1.8 0.0002 18.87M 4.03 0.0001 37.72M 5.7 7.6e-05
b1_2 ≈ 0 0.1 5.34G 10.0K 0.0009 27.35G 10.0K 0.0002 56.57G 11.18K 9.9e-05
b1_3 ≈ 0 0.1 5.07G 19.0K 0.0019 25.98G 19.0K 0.0004 53.74G 21.24K 0.0002
b1_4 0.1 0.1 5.27G 12.11K 0.0023 27.02G 12.11K 0.0004 55.89G 13.91K 0.0002
b1_5 ≈ 0 0.05 148.3K 0.02 6e-05 739.56K 0.04 2.7e-05 1.48M 0.06 1.9e-05
b2_1 0.1 0.1 1.07 100.0 93.46K 1.0 100.0 100.0K 1.0 100.0 100.0K
b2_2 0.1 0.1 999.98 100.0 100.0 1.0K 100.0 100.0 1.0K 100.0 100.0
b3 ≈ 0 0.01 3.62K 19.0K 2.58K 3.21K 19.0K 2.93K 0.0 0.0 0.0

(2.1K) (2.17K)
b4 ≈ 0 0.5 2.92K 1.24 1.73 14.17K 3.32 0.76 – – –

(2.96K)
b5 0.1 0.01 5.37M 11.21K 8.1 25.23M 11.21K 1.5 47.6M 11.21K 1.27

(4.82M) (24.74M) (46.88M)
b6 ≈ 0 0.4 17.45M 105.0K 5.67 88.13M 105.0K 1.81 – – –

(17.91M) (89.71M)
b7 ≈ 0 0.1 22.07M 19.0K 0.06 95.63M 19.0K 0.1 212.11M 21.24K 0.0078

(21.99M) (95.44M) (212.02M)
b8 0.1 0.1 470.8K 11.21K 23.83 2.74M 13.64K 5.31 3.29M 20.01K 6.44

(470.86K) (2.75M) (3.3M) 6.44
b9 0.1 0.1 30.32M 40.0K 1.32 137.73M 49.2K 0.36 283.82M 49.2K 0.17
b10 0.1 0.1 100.31K 12.65K 125.84 149.6K 31.48K 206.34 0.0 34.94K ∞

(100.06K) (143.52K)
b11 0.1 0.1 1.63G 199.98K 0.12 7.73G 199.98K 0.03 15.18G 199.98K 0.01
b12_1 ≈ 0 0.5 3.12K 0.53 8.43 15.4K 1.19 7.32 – – –

(3.38K) (16.52K)
b12_2 ≈ 0 0.5 1.29K 0.53 8.88 6.2K 1.19 7.61 – – –

(1.4K) (6.67K)
b16 0.1 0.1 9.95K 4.0 0.4 49.35K 4.0 0.08 98.97K 4.0 0.04
b17 ≈ 0 0.5 31.54K 2.53K 68.66 256.24K 5.65K 9.83 531.93K 7.99K 5.21

(40.57K) (253.19K) (519.68K)
b19 0.1 0.1 155.25K 651.72K 4.2K 1.1M 813.52K 738.04 1.73M 827.69K 479.67

Table 6. Precision benchmarks for ε = 1, where qi(x) is the initial query result, qm(x) the modified query result (if different
from qi(x)), qs(x) is the sensitivity query result, and %noise = |(qm(x)±10·qs(x))−qi(x)|

qi(x) · 100. K denotes ·103, M denotes ·106,
and G denotes ·109

FROM part, partsupp, supplier
WHERE NOT((supplier.s_comment LIKE

’%Customer%Complaints%’))
AND NOT((part.p_type LIKE ’%COPPER%’))
AND NOT((part.p_brand = ’Brand#34’))
AND (part.p_partkey = partsupp.ps_partkey)
AND (partsupp.ps_suppkey = supplier.s_suppkey);

Sensitivity query.

SELECT max(sdsg) FROM (
SELECT sum(abs((((((((((0.1 * (2.0 / (exp(((-0.1)

* (part.p_size - 10.0))) + exp((0.1 * (part.p_size
- 10.0)))))) * 8.0) + ((0.1 * (2.0 / (exp(((-0.1) *
(part.p_size - 15.0))) + exp((0.1 * (part.p_size -
15.0)))))) * 8.0)) + ((0.1 * (2.0 / (exp(((-0.1) *
(part.p_size - 20.0))) + exp((0.1 * (part.p_size -
20.0)))))) * 8.0)) + ((0.1 * (2.0 / (exp(((-0.1) *
(part.p_size - 25.0))) + exp((0.1 * (part.p_size -

25.0)))))) * 8.0)) + ((0.1 * (2.0 / (exp(((-0.1) *
(part.p_size - 30.0))) + exp((0.1 * (part.p_size -
30.0)))))) * 8.0)) + ((0.1 * (2.0 / (exp(((-0.1) *
(part.p_size - 35.0))) + exp((0.1 * (part.p_size -
35.0)))))) * 8.0)) + ((0.1 * (2.0 / (exp(((-0.1) *
(part.p_size - 40.0))) + exp((0.1 * (part.p_size -
40.0)))))) * 8.0)) + ((0.1 * (2.0 / (exp(((-0.1) *
(part.p_size - 5.0))) + exp((0.1 * (part.p_size -
5.0)))))) * 8.0)))) AS sdsg

FROM part, partsupp, supplier, part_sensRows
WHERE NOT((supplier.s_comment LIKE

’%Customer%Complaints%’))
AND NOT((part.p_type LIKE ’%COPPER%’))
AND NOT((part.p_brand = ’Brand#34’))
AND (part.p_partkey = partsupp.ps_partkey)
AND (partsupp.ps_suppkey = supplier.s_suppkey)
AND part_sensRows.ID = part.ID
AND part_sensRows.sensitive

GROUP BY part_sensRows.ID) AS sub;

A Framework of Metrics for Differential Privacy from Local Sensitivity 199

C Postponed Proofs

C.1 Useful Facts and Lemmas

Fact 10. For all (x1, . . . , xm) ∈ Rm, p ≥ q, we have

‖x1, . . . , xm‖p ≤ ‖x1, . . . , xm‖q
≤ m1/q−1/p · ‖x1, . . . , xm‖p .

Fact 11. For all x ∈ R+, ‖x‖p = x, and ‖x‖∞ = x.

Fact 12 (a part of Lemma 2.3 of [24]). Let f : X → R.
For β > 0, a β-smooth upper bound on f is

gf,β = max
x′∈X

(f(x) · e−β·d(x,x′)) .

Lemma 13. Let x = (x1, . . . , xk) ∈ Rk, y =
(y1, . . . , yn) ∈ Rn, z = (z1, . . . , zm) ∈ Rm. If p ≥ q ≥ 1,
then
1.

∥∥‖x‖q , ‖y‖q , z1, . . . , zm
∥∥
p
≤
∥∥‖x|y‖q , z1, . . . , zm

∥∥
p
;

2.
∥∥‖x‖p , ‖y‖p , z1, . . . , zm

∥∥
q
≥
∥∥‖x|y‖p , z1, . . . , zm

∥∥
q
;

where x|y denotes concatenation. If p = q, then the in-
equalities become equalities.

Proof. Since p, q ≥ 1, we may raise both sides of equa-
tions to the powers p or q. The main inequalities that
we use in the proof are an+ bn ≤ (a+ b)n for n ≥ 1, and
an + bn ≥ (a+ b)n for n ≤ 1.∥∥‖x‖q , ‖y‖q , z1, . . . , zm

∥∥p
p

=

(
k∑
i=1

xqi

) p
q

+

(
n∑
i=1

yqi

) p
q

+
m∑
i=1

zpi

≤

(
k∑
i=1

xqi +
n∑
i=1

yqi

) p
q

+
m∑
i=1

zpi

= ‖x|y‖pq +
m∑
i=1

zpi =
∥∥‖x|y‖q , z1, . . . , zm

∥∥p
p
.

∥∥‖x‖p , ‖y‖p , z1, . . . , zm
∥∥q
q

=

(
k∑
i=1

xpi

) q
p

+

(
n∑
i=1

ypi

) q
p

+
m∑
i=1

zqi

≥

(
k∑
i=1

xpi +
n∑
i=1

ypi

) q
p

+
m∑
i=1

zqi

= ‖x|y‖qp +
m∑
i=1

zqi =
∥∥‖x|y‖p , z1, . . . , zm

∥∥q
q
.

If p = q, then all inequalities in these derivations are
equalities.

Lemma 14. For all x ∈ R, (α1, . . . , αk) ∈ Rk,
(y1, . . . , ym) ∈ Rm: ‖α1x, . . . , αkx, y1, . . . , ym‖p =∥∥∥∥ p

√∑k
i=1 α

p
i x, y1, . . . , ym

∥∥∥∥
p

.

Proof. Since an `p-norm is defined for p ≥ 1, we may
raise both sides of equation to the power p. We use the
definition of `p-norm and rewrite the term.

‖α1x, . . . , αkx, y1, . . . , ym‖pp

=
k∑
i=1

(αix)p +
m∑
i=1

ypi

=

(
k∑
i=1

αpi

)
xp +

m∑
i=1

ypi

=

∥∥∥∥∥∥ p

√√√√ k∑
i=1

αpi x, y1, . . . , ym

∥∥∥∥∥∥
p

p

.

Putting αi = 1 for all i ∈ [n], we get the following
corollary.

Corollary 15. We have∥∥∥∥∥∥
k︷ ︸︸ ︷

x, . . . , x, y1, . . . , ym

∥∥∥∥∥∥
p

=
∥∥∥ p
√
k · x, y1, . . . , ym

∥∥∥
p
.

Lemma 16. Let Xi for i ∈ {1, . . . , n} be Banach
spaces, fi : Xi → R. Let x = (x1, . . . , xn), and let
f(x1, . . . , xn) = ‖f1(x1), . . . , fn(xn)‖p. Then ∂f

∂xi
(x) =

∂fi
∂xi

(xi) ·
(
fi(xi)
f(x)

)p−1
≤ ∂fi

∂xi
(xi).

Proof. Let yi = fi(xi) and y = (y1, . . . , yn). We have

∂f

∂xi
(x) = ∂f

∂yi
(y) · ∂fi

∂xi
(xi) =

(
yi
‖y‖p

)p−1
· ∂fi
∂xi

(xi) .

Since yi
‖y‖p = fi(xi)

f(x) = fi(xi)
‖(fi(xi))n

i=1‖p
, we have fi(xi)

f(x) ≤

1, and hence also
(
fi(xi)
f(x)

)p−1
≤ 1, getting ∂f

∂xi
(x) ≤

∂fi
∂xi

(xi).

Lemma 17. Let Xi for i ∈ {1, . . . , n} be Banach spaces.
Let x = (x1, . . . , xn), and let f(x) = ‖f1(x), . . . , fn(x)‖p.

Then ∂f
∂xi

(x) =
∑n
j=1

(
fj(x)
f(x)

)p−1
· ∂fj∂xi

(x). This can be
upper bounded as:
1.

∑n
j=1

∂fj
∂xi

(x);
2. maxnj=1

f(x)
fj(x) ·

∂fj
∂xi

(x).

A Framework of Metrics for Differential Privacy from Local Sensitivity 200

Proof. Let yj = fj(x), z =
∑n
j=1 y

p
j . We have

∂f

∂xi
(x) = ∂f

∂z
(z) ·

n∑
j=1

(
∂fj(x)p

∂yj
(yj) ·

∂fj
∂xi

(x)
)

=
n∑
j=1

(
yj
‖y‖p

)p−1
·
∂fj
∂xi

(x)

=
n∑
j=1

(
fj(x)
f(x)

)p−1
·
∂fj
∂xi

(x) .

As in the proof of Lemma 16,
(

yj
‖y‖p

)p−1
=(

fj(x)
f(x)

)p−1
≤ 1. We get ∂f

∂xi
(x) ≤

∑n
j=1

∂fj
∂xi

(x). We can
proceed with the inequality in another way.

∑n
j=1

(
fj(x)
f(x)

)p−1
· ∂fj∂xi

(x)

=
∑n
j=1 fj(x)p−1 · ∂fj∂xi

(x)
f(x)p−1

=

∑n
j=1 fj(x)p · ∂fj∂xi

(x) · 1
fj(x)

f(x)p−1

≤ nmax
j=1

(
1

fj(x) ·
∂fj
∂xi

(x)
)
·
∑n
j=1 fj(x)p

f(x)p−1

= nmax
j=1

(
1

fj(x) ·
∂fj
∂xi

(x)
)
· f(x)p

f(x)p−1

= nmax
j=1

(
f(x)
fj(x) ·

∂fj
∂xi

(x)
)

.

C.2 DP from Cauchy Noise

Proof. Let ddp be defined as in Sec. 3.1. The con-
struction of differentially private mechanisms based on
adding noise distributed according to a generalized
Cauchy distribution, with the magnitude depending on
the smooth upper bounds on the derivative sensitivity
of the original query, was given in Theorem 3. Let η ∼
GenCauchy(γ). The generalized Cauchy distribution is
relatively stable under shifts and stretchings, satisfying
the following inequalities for all a1, a2, c1, c2 ∈ R [24]:

ddp(a1 + c1 · η, a2 + c1 · η) ≤ (γ + 1) ·
∣∣∣∣a2 − a1

c1

∣∣∣∣
ddp(c1 · η, c2 · η) ≤ (γ + 1) ·

∣∣∣∣ln c2
c1

∣∣∣∣ .

The combination of these two inequalities gives

ddp(a1 + c1 · η, a2 + c2 · η) ≤

≤ (γ + 1) ·
(

|a2 − a1|
max{|c1|, |c2|}

+
∣∣∣∣ln c2

c1

∣∣∣∣) . (5)

Let x,x′ ∈ X. Denote L = ‖x′ − x‖. We have to
show that ddp(g(x′), g(x)) ≤ εL = (γ + 1)(b+ β)L.

Let n ∈ N be arbitrary. Let v0 = x, vn = x′, and
vi = n−i

n ·x + i
n ·x

′, i.e. the values v0, . . . ,vn are evenly
distributed in the segment connecting x to x′. These
values are in X because X is convex. Theorem 2 im-
plies that there exist t1, . . . , tn with ti in the segment
connecting vi−1 to vi, satisfying

|f(vi)− f(vi−1)| ≤ ‖dfti‖ · ‖vi − vi−1‖

≤ c(ti) ·
L

n
≤ eβL/n · c(vi−1) · L

n

for all i ∈ {1, . . . , n}. Here the last inequality follows
from the β-smoothness of c. We can use these claims
together with the triangle inequality and obtain

ddp(g(x), g(x′)) ≤
∑n
i=1 ddp(g(vi−1), g(vi))

=
n∑
i=1

ddp(f(vi−1) + c(vi−1)
b

· η, f(vi) + c(vi)
b
· η)

≤ (γ + 1)
n∑
i=1

(
b · |f(vi)− f(vi−1)|

|c(vi−1)| + βL

n

)

≤ (γ + 1)
n∑
i=1

(
b · eβL/n · L

n
+ βL

n

)
= (γ + 1)(beβL/n + β)L .

This inequality holds for any n ∈ N. If n → ∞ then
eβL/n → 1 and we obtain the inequality that we had to
show.

C.3 DP from Laplace Noise

C.3.1 A Metric for (ε, δ)-Differential Privacy

In Sec. 3.1, we defined a distance ddp that is related to
ε-differential privacy. We would like to define a similar
distance dDP that is related to (ε, δ)-differential privacy.

Usually, we measure the distances with non-
negative real numbers, but it is possible to be more gen-
eral. In principle, the distances may come from any set
equipped with addition and a partial order, where the
addition is monotone and has the neutral element that
is also the least element in this set. With this signature,
we can state all axioms of a metric.

Consider the set R+ × R+ of pairs of non-negative
real numbers, where addition and ordering is compo-
nentwise. This set can serve as the set of distances, and
we could consider it as the range of dDP; the compo-
nents somehow corresponding to “ε” and “δ”. However,

A Framework of Metrics for Differential Privacy from Local Sensitivity 201

two probability distributions can be (ε, δ)-far from each
other for different values of ε and δ; one can be traded
for the other.

For a partially ordered set V , let F(V) denote the
set of all upwards closed subsets of V . I.e. U ⊆ V is an
element of F(V) if u ∈ U and u ≤ v imply v ∈ U for all
u, v ∈ V . For an arbitrary U ⊆ V we let ↑U denote the
upwards closure of U , i.e. the smallest upwards closed
set that contains U as a subset.

If V is a set of distances, then F(V) can also be
turned into a set of distances. Let Z1, Z2 ∈ F(V). We
have Z1 ≤ Z2 iff Z2 ⊆ Z1. In this way, the entire set
V (this is the only element of F(V) that contains the
least element of V) is the least element. The addition
on F(V) is defined by

Z1 + Z2 = ↑{v1 + v2 | v1 ∈ Z1, v2 ∈ Z2} . (6)

It is easy to see that the operation + is associative,
commutative, has the zero element F(V) and is com-
patible with ordering (meaning that Z1 ≤ Z2 implies
Z1 + Z3 ≤ Z2 + Z3 for any Z3).

We let F(R+ × R+) be the range of dDP. Note that
for this set, the ↑-operation can be left out from (6), due
to the continuousness of R. If X is a set, and χ, χ′ ∈
D(X), then define

dDP(χ, χ′) =
⋂

X′⊆X

{
(ε, δ) P (X ′, χ, χ′, ε, δ)

}
, (7)

where

P (X ′, χ, χ′, ε, δ) =
Pr[x ∈ X ′ |x← χ] ≤ eε

(
Pr[x ∈ X ′ |x← χ′] + δ

)
∧ Pr[x ∈ X ′ |x← χ′] ≤ eε

(
Pr[x ∈ X ′ |x← χ] + δ

)
.

Clearly, dDP(χ, χ′) ∈ F(R+ × R+). Now, a mapping f :
X → D(Y) from a metric space X is (ε, δ)-differentially
private, if it is ↑{(ε, δ)}-sensitive for the distance dDP
being used on D(Y).

The following proposition shows that dDP satisfies
the triangle inequality.

Proposition 18. Let χ1, χ2, χ3 ∈ D(X). Then
dDP(χ1, χ3) ≤ dDP(χ1, χ2) + dDP(χ2, χ3).

Proof. Let (ε1, δ1) ∈ dDP(χ1, χ2) and (ε2, δ2) ∈
dDP(χ2, χ3). According to the definition of +, the pair
(ε1+ε2, δ1+δ2) is a member of dDP(χ1, χ2)+dDP(χ2, χ3).
We have to show that it is also a member of dDP(χ1, χ3)
according to (7). Let X ′ ⊆ X. Then

Pr[x ∈ X ′ |x← χ1]

≤ eε1
(
Pr[x ∈ X ′ |x← χ2] + δ1

)
≤ eε1

(
(eε2

(
Pr[x ∈ X ′ |x← χ3] + δ2

)
+ δ1

)
= eε1+ε2Pr[x ∈ X ′ |x← χ3] + eε1+ε2δ2 + eε1δ1

≤ eε1+ε2
(
Pr[x ∈ X ′ |x← χ3] + δ2 + δ1

)
as necessary.

C.3.2 Relating the Metric to (ε, δ)-Differential
Privacy

Comparing (7) to the definition of (ε, δ)-DP (Def. 1), we
see the difference in one important aspect. Namely, in
(7), the quantity δ is multiplied with eε, while in (1),
it is not. While the difference of the factor eε seems
small in first glance, it is not if we start considering
“group privacy”, i.e. distances (in X) different from 1.
Let dX(x, x′) = L. If f : X → D(Y) is ↑{(ε, δ)}-sensitive
with respect to the distance dDP on D(Y), then we
know that (Lε, Lδ) ∈ dDP(f(x), f(x′)). But if f is (ε, δ)-
differentially private, then we only get

Pr[f(x) ∈ Y ′] ≤ eLεPr[f(x′) ∈ Y ′] + eLε − 1
eε − 1 δ

from Definition 1.
It is not difficult to show that if we do not multiply

δ with eε, then dDP is no longer a distance; in particular,
it would not satisfy the triangle inequality. For example,
let us pick

χ1 = Ber(0.01) χ2 = Ber(0.03) χ3 = Ber(0.07)
ε = ln 2 δ = 0.01 .

Here Ber(p) is the Bernoulli distribution. It returns 1
with probability p and 0 with probability 1−p. We have
(ε, δ) ∈ dDP(χ1, χ2) and also (ε, δ) ∈ dDP(χ2, χ3), but
not (2ε, 2δ) ∈ dDP(χ1, χ3). Indeed,

Pr[x = 1 |x← χ2] = 0.03 = 2 · 0.01 + 0.01
= eε · Pr[x = 1 |x← χ1] + δ

Pr[x = 1 |x← χ3] = 0.07 = 2 · 0.03 + 0.01
= eε · Pr[x = 1 |x← χ2] + δ

Pr[x = 1 |x← χ3] = 0.07 > 4 · 0.01 + 0.02
= e2ε · Pr[x = 1 |x← χ1] + 2δ .

C.3.3 Self-similarity of Laplace Distribution

Theorem 4 makes use of the distribution Lap(1) ∈ D(R),
defined by Lap(1)(x) ∝ e−|x|. We first have to state the

A Framework of Metrics for Differential Privacy from Local Sensitivity 202

results about the self-similarity of Lap(1) under shifting
and stretching.

Lemma 19. Let η ∼ Lap(1). Let a1, a2 ∈ R, c1, c2 ∈
R+, c1 ≤ c2. Define β = ln(c2/c1) and let ε ≥ β. Let
δ ≥ e−ε−(ε+β)/(eβ−1). Then the following holds.(

|a2 − a1|
c1

, 0
)
∈ dDP(a1 + c1 · η, a2 + c1 · η)

(ε, δ) ∈ dDP(c1 · η, c2 · η) .

Proof. The probability density functions (pdf) and the
cumulative density functions (cdf) of the distributions
named above are the following:

pdfc1·η(x) = 1
2c1

e−|x|/c1

pdfa1+c1·η(x) = 1
2c1

e−|x−a1|/c1

pdfc2·η(x) = 1
2c2

e−|x|/c2

pdfa2+c1·η(x) = 1
2c1

e−|x−a2|/c1

and

cdfc1·η(x) =

{
ex/c1/2, if x < 0
1− e−x/c1/2, if x ≥ 0

cdfc2·η(x) =

{
ex/c2/2, if x < 0
1− e−x/c2/2, if x ≥ 0

The first claim of the lemma is shown by

max
x∈R

∣∣∣∣ln pdfa1+c1·η(x)
pdfa2+c1·η(x)

∣∣∣∣ = max
x∈R

∣∣∣∣ln e−|x−a1|/c1

e−|x−a2|/c1

∣∣∣∣
≤ ln e|a1−a2|/c1 = |a2 − a1|

c1
, (8)

showing that |a2−a1|
c1

≥ ddp(a1 + c1 · η, a2 + c1 · η). To
show the second claim, consider the following function
f :

f(x) =
∣∣∣∣ln pdfc1·η(x)

pdfc2·η(x)

∣∣∣∣ .
We are interested in the set of x-s that satisfy f(x) ≤ ε.
We have

f(x) =
∣∣∣∣ln(c2

c1
· e|x|/c2−|x|/c1

)∣∣∣∣ =
∣∣∣∣β − c2 − c1

c1c2
|x|
∣∣∣∣ .

The condition f(x) ≤ ε is equivalent to

|x| ≤ (ε+ β) c1c2
c2 − c1

. (9)

To obtain the distance ↑{(ε, δ)}, it is sufficient to take δ
equal to e−ε times the probability that either x, when

sampled according to either c2 ·η or c1 ·η, does not satisfy
(9). This probability is larger for c2 · η because c2 ≥ c1.
Let us compute this probability.

Pr[x < 0 ∧ f(x) > ε |x← c2 · η] = 1
2e

(ε+β) c1
c2−c1

= 1
2e

(ε+β) 1
eβ−1 . (10)

The probability that we are looking for is twice the
quantity above. Multiplying it with e−ε gives us the
statement of the lemma.

The next lemma provides a more coarse, but simpler
upper bound for the DP-distance between stretched ver-
sions of the Laplace distribution.

Lemma 20. Let η ∼ Lap(1). Let c1, c2 ∈ R+, c1 ≤ c2.
Define β = ln(c2/c1). Let ε ≥ β. Let k = 1 + ε/β. Then
(ε, e−k) ∈ dDP(c1 · η, c2 · η).

Proof. Let δ = e
−ε− ε+β

eβ−1 . By the previous lemma,
(ε, δ) ∈ dDP(c1 ·η, c2 ·η). We will now show that e−k ≥ δ.

Indeed,

δ ≤ e−k ⇔ e
−ε− ε+β

eβ−1 ≤ e−k ⇔ −ε− ε+ β

eβ − 1
≤ −k

⇔ (k − 1)β + kβ

eβ − 1
≥ k

⇔ 1
eβ − 1

≥ 1
β
− k − 1

k

⇐ 1
eβ − 1

≥ 1
β
− 1

2 ⇔
1
β
≤ 1

2 + 1
eβ − 1

⇔ β ≥ 2(eβ − 1)
eβ + 1

⇔ β + 4
eβ + 1

≥ 2 ,

where the “⇐” claim holds because k ≥ 2. Consider now
the function f(x) = x + 4/(ex + 1). We have f(0) = 2.
Also, f is a monotone function. Hence the claim β +
4/(eβ + 1) ≥ 2 holds.

C.3.4 Proof of Theorem 4

Let us restate the theorem about achieving (ε, δ)-DP
using Laplace noise.

Theorem 4. Let b, β, ε ∈ R+, b > 0, b + β ≤ ε. Define
k = 1 + (ε− b)/β. Let δ = e−k. Let η be a random vari-
able distributed according to Lap(1). Let c be a β-smooth
upper bound on DS[f] for a function f : X → R, where
X is Banach space and dX is the distance corresponding
to the norm of X. Define g(x) := f(x) + c(x)

b · η. Then
– for any x1,x2 ∈ X, (ε · L, 2δ) ∈ dDP(g(x1), g(x2)),

where L = dX(x1,x2);

A Framework of Metrics for Differential Privacy from Local Sensitivity 203

– (in particular,) g is (ε, 2eεδ)-differentially private.
If, additionally for any two points x1,x2 ∈ X there ex-
ists a shortest path h in X, such that c is monotonic
along that path, then the factor “2” in previous state-
ments can be removed..

Proof. Let b, β, ε be as in the statement of the theorem.
Let η ∼ Lap(1) and x1,x2 ∈ X. Let L = dX(x1,x2). Let
h be a shortest path from x1 to x2 (note that a shortest
path always exists in a Banach space). Let xµ be a point
on the path h, such that c(xµ) = maxt∈[0,1] c(h(t)) (the
maximum exists because c and h are continuous). Let
L1 = dX(x1,xµ) and L2 = dX(xµ,x2). Note that L =
L1 + L2. Define the following probability distributions:

χ1 = f(x1) + c(x1)
b
· η

χ2 = f(x1) +
c(xµ)
b
· η

χ3 = f(x2) +
c(xµ)
b
· η

χ4 = f(x2) + c(x2)
b
· η .

We want to show that (εL, 2δ) ∈ dDP(χ1, χ4).
By Lemma 19, (b · |f(x2) − f(x1)|/c(xµ), 0) ∈

dDP(χ2, χ3). The difference between f(x2) and f(x1)
can be upper-bounded as follows:

|f(x2)− f(x1)|

=

∣∣∣∣∣∣
∫
h

f ′(h) ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

1∫
0

f ′(h(t))‖h′(t)‖ dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1∫

0

c(h(t))‖h′(t)‖ dt

∣∣∣∣∣∣ ≤
1∫

0

c(xµ)‖h′(t)‖ dt

= c(xµ) · dX(h(1)− h(0)) = L · c(xµ),

hence (bL, 0) ∈ dDP(χ2, χ3). Note that, in
∫
h
f ′(h) ds,

the integral is over the path h, the derivative f ′ is
w.r.t. distance dX along the path h (the existence of
this derivative follows from the existence of the Fréchet
derivative in the definition of DS[f]), the ds is an in-
finitesimal distance (according to dX) along the path h,
and the h in f ′(h) denotes the point on the path h.

We will now compare χ1 and χ2. We use the previ-
ous lemma with the following instantiations:

Quantity in Lemma 20 Instantiation
c1 c(x1)
c2 c(xµ)
β ln(c(xµ)/c(x1))
ε (ε− b)L1
k 1 + (ε− b)L1/ ln(c(xµ)/c(x1))

Lemma 20 required that ε ≥ β. This condition is
translated to

(ε− b)L1 ≥ ln
c(xµ)
c(x1) .

Let us verify that it holds:

ln
c(xµ)
c(x1)) ≤ β · dX(x1,xµ) ≤ βL1 ≤ (ε− b)L1 � .

We also lower-bound the value of k from Lemma 20, in
order to simplify its expression:

1 + (ε− b)L1

ln c(xµ)
c(x1))

≥ 1 + (ε− b)L1
βL1

= k .

We obtain

((ε− b)L1, e
−k) ∈ dDP(χ1, χ2) .

Similarly, we can obtain

((ε− b)L2, e
−k) ∈ dDP(χ3, χ4) .

Using the triangle inequality, we can combine
dDP(χi, χi+1) for i ∈ {1, 2, 3}:

(εL, 2e−k) ∈ dDP(χ1, χ4)

as required. If dX(x1,x2) = 1, then (ε, 2e−k) ∈
dDP(g(x1), g(x2)), i.e. g is (ε, 2δ)-differentially private.

If c is monotone along the path h, then the point xµ
coincides with either x1 or x2. W.l.o.g. assume xµ = x1.
Then χ1 = χ2 and (0, 0) ∈ dDP(χ1, χ2). The triangle
inequality now gives (εL, e−k) ∈ dDP(χ1, χ4).

C.4 Domination between Norms

C.4.1 Proof of Lemma 1

Let N = N ′(V1, . . . , Vm). The relation Vi � Wi implies
‖x1, . . . , xn‖Vi ≤ ‖x1, . . . , xn‖Wi

for all x1, . . . , xn ∈ Rn.
Define a new normM = N ′(W1, . . . ,Wm). By definition
of a composite norm, we have the three cases for N ′.
– If N ′ = |xj | for some j ∈ [n], then m = 0, and hence
‖x1, . . . , xn‖N = ‖x1, . . . , xn‖M = |xj |.

– If N ′ = αz, then m = 1, and we
have ‖x1, . . . , xn‖N = α ‖x1, . . . , xn‖V1

, and
‖x1, . . . , xn‖M = α ‖x1, . . . , xn‖W1

, so N �M .
– If N ′ = ‖z1, . . . , zm‖p, then ‖x1, . . . , xn‖N =∥∥‖x1, . . . , xn‖V1

, . . . , ‖x1, . . . , xn‖Vm
∥∥
p

≤∥∥‖x1, . . . , xn‖W1
, . . . , ‖x1, . . . , xn‖Wm

∥∥
p

=
‖x1, . . . , xn‖M , so N �M .

In any case, we get N � M , which is equivalent to
N ′(V1, . . . , Vm) � N ′(W1, . . . ,Wm).

A Framework of Metrics for Differential Privacy from Local Sensitivity 204

C.4.2 Proof of Lemma 2

Without loss of generality, we assume that all scalings in
N are applied directly to the variables, as we can always
apply the equality α ‖x‖ = ‖αx‖ to push all scalings
as deep as possible, directly in front of variables. Let
the variable xi occur ki times in N , and let αij be the
scaling of the j-th occurrence of xi. We define αi and βi
of Lemma 2 as follows.
– αi = p

√∑ki
j=1 αij .

– βi = q

√∑ki
j=1 αij .

We prove the first inequality, and the proof would be
analogous for the second one. Let N = ‖M1, . . . ,Mk‖r.
Since p is the largest `p-norm used as a term constructor
of N , we have ‖M1, . . . ,Mk‖r � ‖M1, . . . ,Mk‖p. Repeat
the same procedure with all M1, . . . ,Mk recursively,
substituting all instances of `r with `p. By Lemma 1,
each step of the transformation keeps the resulting norm
smaller (or equal). Finally, we are left with a composite
norm N ′ that only contains ‖·‖p for the same p ≥ 1 as a
term constructor. We can now apply Lemma 13 and get
a norm of the form N ′ = ‖α11x1, . . . , αnknxn‖p, such
that N ′ � N .

Some variables xi used by N ′ may repeat if they
were repeating in N before. We may now use Lemma 14
to merge repeating variables into one, rewriting∥∥∥∥∥∥α11x1, . . . ,

ki︷ ︸︸ ︷
αi1xi, . . . , αikixi, . . . , αnknxn

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥α11x1, . . . ,
p

√√√√ ki∑
j=1

αijxi, . . . , αnknxn

∥∥∥∥∥∥
p

.

After doing it for all i ∈ [n], we get a norm N ′′ =
‖α1x1, . . . , αnxn‖p, which satisfies N ′′ � N .

C.5 Basic Results of Derivative Sensitivity

C.5.1 Proof of Lemma 3

Let ∇f(x) = (ai)ni=1. Assuming ai 6= 0 for all i (oth-
erwise remove the indices i for which ai = 0 from the
summations containing ai):

|dfx(y)| = |∇f(x) · y| ≤
n∑
i=1
|ai||yi|

=
∑
|ai|

p
p−1 · |yi|

|ai|
1
p−1

≤
(∑

|ai|
p
p−1

)(∑
|yi|p∑
|ai|

p
p−1

) 1
p

=
(∑

|ai|
p
p−1

) p−1
p
(∑

|yi|p
) 1
p

= ‖∇f(x)‖q · ‖y‖p

for all y ∈ X. The second inequality used here is the
weighted power means inequality with exponents 1 and
p. Equality is achievable (and not only for y = 0): for
example, by taking yi = |ai|

1
p−1 . Thus ‖∇f(x)‖q is the

smallest value of c such that for all y, |dfx(y)| ≤ c ·‖y‖p,
i.e. it is the operator norm ‖dfx‖.

The cases p = 1 and p =∞ can be achieved as limits
of the general case.

C.5.2 Proof of Lemma 4

The derivative sensitivity of f at x is the operator norm
of a particular linear operator dfx. It is equal to the
minimal possible c, such that for all vectors y, the ab-
solute value of of dfx(y) ∈ R is at most c times larger
than the norm ‖y‖N . If we replace N with a · N , then
the norm ‖y‖a·N is increased by a times. Hence we may
now reduce c by a times and still have the inequality.

C.5.3 Proof of Lemma 5

(a) We first prove that (V, ‖·‖V) is a normed vector
space. We prove only the triangle inequality. The rest
of the properties of norm are easy to check.

‖(v1, v2) + (v′1, v′2)‖V = ‖(v1 + v′1, v2 + v′2)‖V
‖(‖v1 + v′1‖V1 , ‖v2 + v′2‖V2)‖p ≤
‖(‖v1‖V1 + ‖v′1‖V1 , ‖v2‖V2 + ‖v′2‖V2)‖p ≤
‖(‖v1‖V1 , ‖v2‖V2)‖p + ‖(‖v′1‖V1 , ‖v′2‖V2)‖p =
‖(v1, v2)‖V + ‖(v′1, v′2)‖V

The first inequality uses the triangle inequalities of ‖·‖V1

and ‖·‖V2
and the monotonicity of ‖·‖p in the absolute

values of the coordinates of its argument vector. The
second inequality uses the triangle inequality of ‖·‖p.

Thus (V, ‖·‖V) is a normed vector space. It remains
to prove that it is complete. Consider a Cauchy sequence
{xn} in V . Then

∀ε > 0. ∃N ∈ N. ∀m,n > N. ‖xm − xn‖V < ε

A Framework of Metrics for Differential Privacy from Local Sensitivity 205

Let xn = (yn, zn) where yn ∈ V1 and zn ∈ V2. Note that

‖ym − yn‖V1 = ‖(ym − yn, 0)‖V
≤ ‖(ym − yn, zm − zn)‖V = ‖xm − xn‖V

Thus

∀ε > 0. ∃N ∈ N. ∀m,n > N. ‖ym − yn‖V1 < ε

i.e. {yn} is a Cauchy sequence in V1. Because V1 is a
Banach space, there exists y ∈ V1 such that

lim
n→∞

‖yn − y‖V1 = 0

Similarly, we get that there exists z ∈ V2 such that

lim
n→∞

‖zn − z‖V2 = 0

Let x = (y, z). Note that

‖xn − x‖V = ‖(yn − y, zn − z)‖V
= ‖(‖yn − y‖V1 , ‖zn − z‖V2)‖p

Then, because ‖ ‖p is continuous,

lim
n→∞

‖xn − x‖V

= ‖(lim
n→∞

‖yn − y‖V1 , lim
n→∞

‖zn − z‖V2)‖p

= ‖(0, 0)‖p = 0

Thus V is a Banach space.

(b) Let c1 = ‖dgv1‖, c2 = ‖dhv2‖. Note that

lim
x1→0V1

|g(v1 + x1)− g(v1)− dfv(x1, 0)|
‖x1‖V1

=

lim
x1→0V1

|f(v1 + x1, v2)− f(v1, v2)− dfv(x1, 0)|
‖(x1, 0)‖V

=

lim
(x1,0)→0V

|f(v + (x1, 0))− f(v)− dfv(x1, 0)|
‖(x1, 0)‖V

=

lim
x→0V

|f(v + x)− f(v)− dfv(x)|
‖x‖V

= 0

The last equality holds by the definition of Fréchet
derivative. The equality before that holds because the
limit on the right-hand side exists. Then, again by
the definition of Fréchet derivative, we get that the
linear map that maps x1 to dfv(x1, 0), is dgv1 . Thus
dfv(x1, 0) = dgv1(x1). Similarly, we get dfv(0, x2) =
dhv2(x2). Now

|dfv(x1, x2)| = |dfv(x1, 0) + dfv(0, x2)|
= |dgv1(x1) + dhv2(x2)| ≤ |dgv1(x1)|+ |dhv2(x2)|
≤ c1‖x1‖V1 + c2‖x2‖V2

≤ ‖(c1, c2)‖q · ‖(‖x1‖V1 , ‖x2‖V2)‖p
= ‖(c1, c2)‖q · ‖(x1, x2)‖V .

The last inequality follows from the weighted power
means inequality, similarly to the proof of Lemma 3.
Equality is also achievable: because c1 = ‖dgv1‖ and
c2 = ‖dhv2‖, there exist x1 and x2 that achieve equal-
ity in the second inequality. Then scale x1 and x2 by
constants such that ‖x1‖V1 and ‖x2‖V2 (which scale by
the same constants) achieve equality in the third in-
equality. To achieve equality in the first inequality, we
may further need to multiply x1 and/or x2 by −1. Thus
‖dfv‖ = ‖(c1, c2)‖q.

C.6 Alternative Definition of Smoothness

In this Section, we prove Lemma 6. By Def. 13, the
mapping f is β-smooth, if f(x) ≤ eβ·‖x

′−x‖ · f(x′)
for all x, x′ ∈ X. We may rewrite it as f(x)

f(x′) ≤
eβ·‖x

′−x‖ · f(x′). Applying ln to both sides, it suffices
to prove that ln(f(x)) − ln(f(x′)) ≤ β · ‖x′ − x‖, which
is ln(f(x))−ln(f(x′))

‖x′−x‖ ≤ β.
Applying mean value theorem to the function ln ◦f :

X → R, we get |ln(f(x))−ln(f(x′))|
‖x′−x‖ = ‖d(ln ◦f)v‖ for some

v ∈ X. Applying derivative chain rule, since ∂ ln
∂x (x) =

1
|x| , we get ‖d(ln ◦f)v‖ = ‖dfv‖

|f(v)| = DS[f](v)
|f(v)| ≤ β, where

the last inequality comes from the lemma statement.

C.7 Smoothness of Composite Functions

C.7.1 Proof of Lemma 7

We have:
1.

∣∣∣ (f(x)+g(x))′
f(x)+g(x)

∣∣∣ = |f
′(x)+g′(x)|
|f(x)|+|g(x)| ≤

|f ′(x)|+|g′(x)|
|f(x)|+|g(x)|

≤ max
(∣∣∣ f ′(x)

f(x)

∣∣∣ , ∣∣∣ g′(x)
g(x)

∣∣∣) ≤ max(βf , βg).

2.
∣∣∣ (f(x)·g(x))′
f(x)·g(x)

∣∣∣ =
∣∣∣ f ′(x)·g(x)+f(x)·g′(x)

f(x)·g(x)

∣∣∣
≤
∣∣∣ f ′(x)
f(x)

∣∣∣+
∣∣∣ g′(x)
g(x)

∣∣∣ ≤ βf + βg.

3.
∣∣∣ (f(x)/g(x))′
f(x)/g(x)

∣∣∣ =
∣∣∣ f ′(x)·g(x)−f(x)·g′(x)

g(x)2 · g(x)
f(x)

∣∣∣
=
∣∣∣ f ′(x)
f(x) −

g′(x)
g(x)

∣∣∣ ≤ ∣∣∣ f ′(x)
f(x)

∣∣∣+
∣∣∣ g′(x)
g(x)

∣∣∣ ≤ βf + βg.

C.7.2 Proof of Lemma 8

LetX =
∏n
i=1 Xi and x = (x1, . . . , xn). Let β = maxi βi.

By Lemma 16, an upper bound on ∂f
∂xi

(x) is ci(x) =

A Framework of Metrics for Differential Privacy from Local Sensitivity 206

f ′i(xi). We have

|ci(x)| =
∣∣f ′i(xi)∣∣ ≤ DS[fi](xi) = |fi(xi)| ·

DS[fi](xi)
|fi(xi)|

≤ |fi(xi)| · βi .

By Lemma 3 and Lemma 5, the derivative sensitiv-
ity of f in (X, ` p

p−1
) is

DS[f](x) = ‖(c1(x), . . . , cn(x))‖p

Using inequality |fi(xi)| ≤ |f(x)|, we get

DS[f](x)
|f(x)| ≤

∥∥(|fi(xi)| · βi)ni=1
∥∥
p

|f(x)|

≤
|f(x)| ·

∥∥(βi)ni=1
∥∥
p

|f(x)| ≤ ‖(βi)ni=1‖p .

On the other hand, using inequality βi ≤ β, we get

DS[f](x)
|f(x)| ≤

∥∥(|fi(xi)| · β)ni=1
∥∥
p

|f(x)|

≤
β · ‖(|fi(xi)|)ni=1‖p

|f(x)| = β

C.7.3 Proof of Lemma 9

Let X =
∏n
i=1 Xi and x = (x1, . . . , xn). By Lemma 17,

an upper bound on ∂f
∂xi

(x) is ci(x) = maxnj
f(x)
fj(x) ·

∂fj
∂xi

(x).
We have

|ci(x)| =
∣∣∣∣max
j

f(x)
fj(x) ·

∂fj
∂xi

(x)
∣∣∣∣

≤ |f(x)| · nmax
j

∣∣∣∣∂fj∂xi
(x) · 1

fj(x)

∣∣∣∣ ≤ |f(x)| ·max
j
βji .

By Lemma 3 and Lemma 5, the derivative sensitiv-
ity of f in (X, `dual(p)) is

DS[f](x) = ‖(c1(x), . . . , cn(x))‖p

We get

DS[f](x)
|f(x)| ≤

|f(x)| ·
∥∥∥(maxj βji

)n
i=1

∥∥∥
p

|f(x)|

≤
∥∥∥∥(max

j
βji)ni=1

∥∥∥∥
p

.

C.8 Derivative Sensitivity of Simple
Functions

The following functions were considered in Table 2.
Power function. Let f(x) = xr, r ∈ R+, x > 0. We

have

f ′(x)
f(x) = rxr−1

xr
= r

x
;

∣∣∣ r
x

∣∣∣ ≤ β ⇔ x ≥ |r|
β

.

For x ≤ r
β , the function f ′(x) achieves its maximum at

the point r
β . By Lemma 12, a β-smooth upper bound

on f is

UBf (x) =

xr if x ≥ r
β

eβx−r
(
r
β

)r
otherwise

If r ≥ 1, we may also find a smooth upper bound
on the derivative sensitivity DS[f] of f . We have

DS[f](x) = |f ′(x)| = |r|xr−1 .

A β-smooth upper bound on DS[f] is

UBDSf (x) =

rx
r−1 if x ≥ r−1

β

reβx−(r−1)
(
r−1
β

)r−1
otherwise

Exponent. Let f(x) = erx, r ∈ R, x ∈ R. We have
DS[f](x) = |f ′(x)| = |r|erx, hence:
–

∣∣∣ f ′(x)
f(x)

∣∣∣ = rerx

erx = r ;
∣∣∣ f ′′(x)
f(x)

∣∣∣ = r2erx

rerx = r.

Thus both f and DS[f] are β-smooth if |r| ≤ β.
Sigmoid. Consider the (sigmoid) function σ(x) =

eαx

eαx+1 . This function can be viewed as a continuous ap-
proximation of the indicator function IR+ : R → {0, 1},
which is less precise for values close to 0, and the error
decreases when α increases. We have:
– σ′(x) = αeαx

(eαx+1)2 ; σ′′(x) = α2eαx(eαx−1)
(eαx+1)3 ;

–
∣∣∣σ′(x)
σ(x)

∣∣∣ =
∣∣α · 1

eαx+1
∣∣ ≤ α; ∣∣∣σ′′(x)

σ′(x)

∣∣∣ =
∣∣α · eαx−1

eαx+1
∣∣ ≤ α.

Thus both σ(x) and DSσ(x) = |σ′(x)| are α-smooth. If
we want less DP noise, we should decrease α, which in
turn makes the sigmoid itself less precise, so there is a
tradeoff.

Tauoid. Consider the function τ(x) = 2
e−αx+eαx

(let us call it a tauoid). This function can be viewed
as a continuous approximation of the indicator function
I{0} : R → {0, 1}, which works similarly to a sigmoid.

A Framework of Metrics for Differential Privacy from Local Sensitivity 207

We have:

τ ′(x) = −2α(eαx − e−αx)
(e−αx + eαx)2

= 2α(e−αx − eαx)
(e−αx + eαx)2 = 2αeαx(1− e2αx)

(1 + e2αx)2∣∣∣∣τ ′(x)
τ(x)

∣∣∣∣ = |α| · |e−αx − eαx|
e−αx + eαx

≤ |α|

|τ ′(x)| ≤ 2|α|eαx

1 + e2αx = 2|α|
e−αx + eαx

= |α|τ(x) =: UBDSτ (x)
UB′DSτ (x) = |α|τ ′(x)∣∣∣∣UB′DSτ (x)

UBDSτ (x)

∣∣∣∣ =
∣∣∣∣τ ′(x)
τ(x)

∣∣∣∣ ≤ |α| .
Thus both τ itself and UBDSτ , an upper bound on its
derivative sensitivity, are α-smooth.

An `p-norm. Consider the function f(x) = ‖x‖p =(∑
xpi
)1/p, x ∈ Rn, x = (x1, . . . , xn). We have

∂f

∂xi
(x) =

pxp−1
i

p
(∑

xpi
)(p−1)/p =

(
xpi∑
xpi

)(p−1)/p
.

By Lemma 3, the derivative sensitivity of f in (Rn, `p)
is

DS[f](x) =
(∑ xpi∑

xpi

) p−1
p

= 1 .

This is constant and thus β-smooth for all β. The func-
tion f itself is β-smooth if 1

‖x‖p ≤ β, i.e. if ‖x‖p ≥ 1
β .

By Lemma 12, a β-smooth upper bound on f is

UBf (x) =

{
‖x‖p if ‖x‖p ≥ 1

β
eβ‖x‖p−1

β otherwise

This also holds for p =∞.
The `∞-norm. Let f(x) = ‖x‖∞ = maxi |xi|. We

have

∂f

∂xi
(x) =

1 if i = argmaxj |xj |
undefined if argmaxj |xj | is not unique
0 otherwise

The derivative sensitivity of f in (Rn, `∞) is

DS[f](x) =

{
1 if argmaxj |xj | is unique
undefined if argmaxj |xj | is not unique

Because we are interested in upper bounds on the
derivative sensitivity, we define

DS[f](x0) := lim sup
x→x0

DS[f](x) = 1

for those x0 for which DS[f](x0) is undefined. Thus
DS[f](x) = 1, which is constant and β-smooth for all
β. The smooth upper bound on the function f itself can
be found similarly to the `p-norm case.

C.9 Composing Derivative Sensitivity

The following constructions are considered in Fig. 1.
Product. Let f :

∏n
i=1 Xi → R, f(x1, . . . , xn) =∏n

i=1 fi(xi) where Xi are Banach spaces. Let X =∏n
i=1 Xi and x = (x1, . . . , xn). First, suppose that

variables xi are independent. We have ∂f
∂xi

(x) =∏n
i6=j=1 fj(xj) · f

′
i(xi), and

∣∣∣ ∂f∂xi (x) · 1
f(x)

∣∣∣ =
∣∣∣ f ′i(xi)fi(xi)

∣∣∣,
hence:
– If

∣∣∣ f ′i(xi)fi(xi)

∣∣∣ ≤ β, then f is β-smooth w.r.t. xi.

– By Lemmas 3 and 5,

‖dfx‖ =

∥∥∥∥∥∥
 n∏
i6=j=1

fj(xj) · f ′i(xi)

n

i=1

∥∥∥∥∥∥
p
p−1

in (X, `p), so we have ‖dfx‖
|f(x)| = ‖dfx‖∣∣∏n

i=1
fi(xi)

∣∣ =∥∥∥(f ′i(xi)fi(xi)

)n
i=1

∥∥∥
p
p−1

≤
∥∥(βi)ni=1

∥∥
p
p−1

, where βi is the

smoothness of fi. Hence, if fi is β-smooth w.r.t.
xi for all i, then f is β-smooth in (X, `1) and nβ-
smooth in (X, `∞).

The derivative sensitivity of f w.r.t. xi is ci(x) =
DS[fi](xi) ·

∣∣∣ f(x)
fi(xi)

∣∣∣. The derivative sensitivity
of f in (X, `p) is, by Lemma 5, DS[f](x) =
‖(c1(x), . . . , cn(x))‖ p

p−1
=
∥∥∥(DS[fi](xi)

|fi(xi)|

)n
i=1

∥∥∥
p
p−1

·|f(x)| .

We have ci(x) = DS[fi](xi) ·
∣∣∣ f(x)
fi(xi)

∣∣∣ = DS[fi](xi) ·∏
j 6=i |fj(xj)|. Since

∏
j 6=i |fj(xj)| does not depend on xi

and DS[fi](xi) ≥ 0, by Lemma 7, if DS[fi] is β-smooth in
Xi then ci(x) is also β-smooth in Xi. Similarly, if fj(xj)
is β-smooth, then ci(x) is also β-smooth in Xj . Hence,
if fi and DS[fi] are β-smooth for all i, by Lemma 9,
DS[f] is β-smooth in (X, `1) and nβ-smooth in (X, `∞).
If DS[fi] are not all β-smooth then we can use their β-
smooth upper bounds when computing ci. Then we get
a β-smooth upper bound on DS[f] instead of the actual
DS[f]. This shows the correctness of the rules (∗⊥D) and
(∗⊥S).

We may also consider the case where the variables xi
are fully dependent, i.e. equal (the case where they are
partially dependent is currently not considered). Con-
sider a function f(x) = g(x) · h(x) where g, h : X → R+
and X is a Banach space. We have

DS[f](x) = g(x) ·DS[h](x) + h(x) ·DS[g](x) .

By Lemma 7, if g is βg-smooth, h is βh-smooth, DS[g]
is βg′ -smooth, and DS[h] is βh′ -smooth, then DS[f] is

A Framework of Metrics for Differential Privacy from Local Sensitivity 208

max(βg + βh′ , βh + βg′)-smooth. The function f itself
is (βg + βh)-smooth. This shows the correctness of the
rules (∗D) and (∗S).

Sum. Let f :
∏n
i=1 Xi → R, f(x1, . . . , xn) =∑n

i=1 fi(xi) where Xi are Banach spaces. Let X =∏n
i=1 Xi and x = (x1, . . . , xn). First, suppose that the

variables xi are independent. The derivative sensitiv-
ity of f w.r.t. xi is DS[fi](xi). By Lemmas 3 and 5,
the derivative sensitivity of f in (X, `p) is DS[f](x) =
‖DS[f1](x1), . . . ,DS[fn](xn)‖ p

p−1
.

– Let fi ≥ 0 for all i ∈ {1, . . . , n} (or fi ≤ 0 for
all i ∈ {1, . . . , n}) and βi-smooth w.r.t. Xi. Now
we have |f(x)| =

∑n
i=1 |fi(xi)| =

∥∥|fi(xi)|ni=1
∥∥

1. By
Lemma 8, f(x) is β := maxi(βi)-sensitive in (X, `p).
We do not get a good bound in the case when fi
may have different signs, since then fi(x) may can-
cel each other out and make f(x) arbitrarily small
even if |fi(x)| are large.

– Let DS[fi] be βi-smooth for i ∈ {1, . . . , n}. By
Lemma 8, DS[f] is ‖(βi)ni=1‖ p

p−1
-smooth in (X, `p),

and if all DS[fi] are β-smooth, then DS[f] is also
β-smooth. This shows the correctness of the rule
(+⊥D).

Consider the case where xi are equal: f(x) =
∑n
i=1 gi(x)

where gi : X → R and X is a Banach space. Then

DS[f](x) =
n∑
i=1

DS[gi](x)

By Lemma 7, if all DS[gi] are β-smooth then DS[f] is
β-smooth. If all gi are non-negative and β-smooth then
f is β-smooth. This shows the correctness of the rules
(+D) and (+S).

Min / max. Let f :
∏n
i=1 Xi → R, f(x1, . . . , xn) =

minni=1 fi(xi) where Xi are Banach spaces (the case with
max instead of min is similar). Let X =

∏n
i=1 Xi and

x = (x1, . . . , xn). Let the variables xi be independent.
If for all i, fi is β-smooth in Xi then f is β-smooth

in (X, `p). The same holds with max or sum (with non-
negative fi) or `p′ -norm instead of min.

The derivative sensitivity of f w.r.t. xi is DS[fi](xi)
if i = argmin fi(xi) and 0 otherwise. The derivative sen-
sitivity of f in (X, `p) is DS[f](x) = DS[fi](xi) where
i = argmin fi(xi). In general, DS[f] is discontinuous at
points where argmin fi(xi) is not unique.

A possible valid β-smooth (in (X, `p)) upper bound
on DS[f] is max ci(xi) where ci is a β-smooth upper
bound on DS[fi]. This shows the correctness of the rules
(min⊥D) and (max⊥D).

Norm scaling. Let f : X → R in the Banach space
(X, ‖·‖). Scaling the norm by a scales the derivative

f ′(x) by 1
a while keeping the value of f(x) the same.

Hence, if f is β-smooth in (X, ‖·‖) then it is β
a -smooth

in (X, a · ‖·‖). Hence the rule (NS) is correct.
Let c(x) be a β-smooth upper bound on the deriva-

tive sensitivity of f at x in (X, ‖·‖). Then c(x)
a is a β

a -
smooth upper bound on the derivative sensitivity of f
at x in (X, a · ‖·‖) by Lemma 4. Hence the rule (ND) is
correct.

Sensitivity w.r.t. a larger norm. Let f : X → R
in the Banach space (X, ‖·‖N). Let ‖·‖M � ‖·‖N .

If f is β-smooth in (X, ‖·‖N), then f(x) ≤
eβ‖x−x

′‖
N ·f(x′) ≤ eβ‖x−x

′‖
M ·f(x′) for all x, x′ ∈ X, so

f is also β-smooth in (X, ‖·‖M). The same holds about
any function that is β-smooth in (X, ‖·‖N), including a
β-smooth upper bound on the derivative sensitivity of
f .

Let us show that the derivative sensitivity of f w.r.t.
‖·‖N is a valid upper bound on the derivative sensitivity
of f w.r.t. ‖·‖M . First, note that ‖·‖dual(N) � ‖·‖dual(M).
Indeed, by definition of a dual norm, ‖T‖dual(M) =
sup{T (x) | ‖x‖M ≤ 1} for an operator T from the
dual space X → R of X. Since ‖x‖N ≤ ‖x‖M , we
have ∀x : {T (x) | ‖x‖N ≤ 1} ⊇ {T (x) | ‖x‖M ≤ 1}.
Hence, ‖T‖dual(N) = sup{T (x) | ‖x‖N ≤ 1} ≥
sup{T (x) | ‖x‖M ≤ 1} = ‖T‖dual(M).

By definition, we have DS[f](x) = ‖dfx‖dual(N),
where dfx is the Fréchet derivative of f at x.
Since ‖·‖dual(N) � ‖·‖dual(M), we have ‖dfx‖dual(N) ≥
‖dfx‖dual(M). Hence the rule �D is correct.

Composition with a real function. Let f(x) =
h(g(x)), x ∈ X where g : X → R, h : R → R and X is a
Banach space.

DS[f](x) = |h′(g(x))| ·DS[g](x)

DS[f](x)
|f(x)| = |h

′(g(x))|
|h(g(x))| ·DS[g](x)

Suppose that h is βh-smooth and DS[g](x) ≤ B for all
x. Then f is βhB-smooth. We have

DS[DS[f]](x)
= |h′′(g(x))|(DS[g](x))2 + |h′(g(x))| ·DS[DS[g]](x) ,

DS[DS[f]](x)
DS[f](x) = |h

′′(g(x))|
|h′(g(x))| ·DS[g](x) + DS[DS[g]](x)

DS[g](x) .

By Lemma 7, if h′ is βh′ -smooth, DS[g] is βg′ -smooth,
and DS[g](x) ≤ B for all x then DS[f] is (βh′B + βg′)-
smooth. Hence the rules (◦S) and (◦D) are correct.

	A Framework of Metrics for Differential Privacy from Local Sensitivity
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Sensitivity and Differential Privacy
	3.2 Local and Smooth Sensitivity
	3.3 Norms and Banach Spaces

	4 Metrics and Derivative Sensitivity
	4.1 Banach Spaces of Databases
	4.2 From Derivative Sensitivity to DP
	4.3 Computing Derivative Sensitivity and Smooth Upper Bounds

	5 Application to SQL Queries
	5.1 Derivative Sensitivity of Queries with Respect to a Component
	5.1.1 Query without a Filter
	5.1.2 Query with a Filter

	5.2 Inferring Derivative Sensitivities
	5.3 Query Norm vs Database Norm

	6 Precision and Utility
	6.1 Choosing the Norm and e
	6.2 Sigmoid Precision
	6.3 Comparing Laplace and Cauchy noise

	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Evaluation
	7.2.1 Time
	7.2.2 Precision

	8 Discussion
	9 Conclusion
	A Sigmoid Precision
	B Evaluation Details
	B.1 Database Schema
	B.2 Sensitive Components
	B.3 Benchmark Queries
	B.4 Integer vs Float Type Filtering
	B.5 Examples of Analyzer Output

	C Postponed Proofs
	C.1 Useful Facts and Lemmas
	C.2 DP from Cauchy Noise
	C.3 DP from Laplace Noise
	C.3.1 A Metric for (e,d)-Differential Privacy
	C.3.2 Relating the Metric to (e,d)-Differential Privacy
	C.3.3 Self-similarity of Laplace Distribution
	C.3.4 Proof of Theorem 4

	C.4 Domination between Norms
	C.4.1 Proof of Lemma 1
	C.4.2 Proof of Lemma 2

	C.5 Basic Results of Derivative Sensitivity
	C.5.1 Proof of Lemma 3
	C.5.2 Proof of Lemma 4
	C.5.3 Proof of Lemma 5

	C.6 Alternative Definition of Smoothness
	C.7 Smoothness of Composite Functions
	C.7.1 Proof of Lemma 7
	C.7.2 Proof of Lemma 8
	C.7.3 Proof of Lemma 9

	C.8 Derivative Sensitivity of Simple Functions
	C.9 Composing Derivative Sensitivity

