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Abstract: Location privacy has became an emerging
topic due to the pervasiveness of Location-Based Ser-
vices (LBSs). When sharing location, a certain degree
of privacy can be achieved through the use of Location
Privacy-Preserving Mechanisms (LPPMs), in where an
obfuscated version of the exact user location is re-
ported instead. However, even obfuscated location re-
ports disclose information which poses a risk to pri-
vacy. Based on the formal notion of differential pri-
vacy, Geo-indistinguishability has been proposed to de-
sign LPPMs that limit the amount of information that
is disclosed to a potential adversary observing the re-
ports. While promising, this notion considers reports to
be independent from each other, thus discarding the po-
tential threat that arises from exploring the correlation
between reports. This assumption might hold for the
sporadic release of data, however, there is still no formal
nor quantitative boundary between sporadic and contin-
uous reports and thus we argue that the consideration
of independence is valid depending on the frequency of
reports made by the user. This work intends to fill this
research gap through a quantitative evaluation of the
impact on the privacy level of Geo-indistinguishability
under different frequency of reports. Towards this end,
state-of-the-art localization attacks and a tracking at-
tack are implemented against a Geo-indistinguishable
LPPM under several values of privacy budget and the
privacy level is measured along different frequencies of
updates using real mobility data.
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1 Introduction
Mobile devices and ubiquitous connectivity fostered ser-
vices that take into consideration users’ contextual in-
formation. One emergent category of these services is
the Location-Based Services (LBSs), in which users
share their location to obtain geographically and tempo-
rally related information (e.g. finding the nearest open
restaurant). While beneficial to the user, sharing loca-
tion data poses a threat to privacy that goes beyond
physical safety. In fact, visited locations can reveal users’
identity, habits, addictions, health conditions and even
social connections [1, 2].

Untrustworthy LBS providers, that may share or
publish the data, passive eavesdroppers and security
breaches can cause disclosure of location data thus
putting at risk the privacy of its users. Preserving pri-
vacy against this range of attack vectors requires Loca-
tion Privacy-Preserving Mechanisms (LPPMs) at col-
lection time, i.e. mechanisms that run in-device in an
online scenario [3]. LPPMs report an obfuscated ver-
sion of the exact user location as to preserve a certain
level of privacy at the expense of a degraded quality of
service.

Geo-indistinguishability [4], a recently proposed for-
mal notion based on differential privacy [5] has seen in-
creasing research interest due to its simplicity of im-
plementation, efficiency and effectiveness [6–8]. Geo-
indistinguishability guarantees that any two points
within a given radius around the user are statistically
indistinguishable independently of an adversary’s back-
ground information. Specifically, the reported (obfus-
cated) point is generated with (almost) the same prob-
ability for any point within this circle, consequently con-
cealing the exact location of the user.

Depending on the LBS, location data can be re-
ported either continuously or rather sporadically [9, 10].
This frequency of reports directly impacts the tem-
poral correlation between subsequent reports which in
turn can be used by an adversary to track users over
time and even predict future locations [1, 6, 11]. While
geo-indistinguishability bounds the amount of disclo-
sure, it considers reports to be independent between
each other. In fact, in the context of sporadic release
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of data this consideration has been assumed when de-
signing LPPMs [9, 12]. However, there is no formal nor
quantitative distinction between sporadic and continu-
ous reports and thus, the distinction is often based on
the type of LBS application [10]. In this work we ar-
gue that the consideration of independence depends on
the frequency of updates, even in the context of spo-
radic reports. Therefore and to evaluate our premise,
we quantitatively study the impact of the frequency
of reports on the achieved privacy level through geo-
indistinguishability. The contributions of this work are
as follows.
– We evaluate the effect of the frequency of updates

in the privacy level of the Planar Laplace [7], a
geo-indistinguishable LPPM, using state-of-the-art
localization attacks and a tracking attack on real
datasets. The variation of the frequency of updates
is made such that typical values for both continu-
ous and sporadic are considered as well as values
in between both ends. Results showed that the pri-
vacy level when considering localization attacks is
roughly constant over the range of tested frequen-
cies of updates, while the effectiveness of tracking
attacks decays as the frequencies of updates low-
ers. These results suggest that the consideration of
independence between reports can be effectively as-
sumed in the sporadic scenario.

– We evaluate the effectiveness of several values of ε,
the privacy budget, in the privacy level of the Planar
Laplace against the state-of-the-art localization at-
tacks. The choice of a privacy budget in differential
privacy, and consequently based approaches such as
geo-indistinguishability, is still an open problem as
it strongly depends on the application [8]. In fact,
it has been discussed that the definition of ε in geo-
indistinguishability may be misleading in terms of
the privacy level [13]. In contrast with [12], our re-
sults showed that the relation between the average
quality loss and average adversary error is only lin-
ear after a non-negligible threshold. That is, there
exists an upper bound on the value of the privacy
budget necessary to guarantee relevant privacy pro-
tection, which in our setting was ε = 4 km−1.

– We assess the effects of the grid resolution in the ef-
fectiveness of the implemented localization attacks.
These results show a linear correlation between the
cell width and the average adversary error, and
thus suggest that a powerful adversary (with infinite
computational power) could potentially defeat ob-
fuscation. However, increasing the obfuscation (by
decreasing ε) decreases the slope of the linear corre-

lation. Consequently, by increasing the obfuscation,
a higher decrease in cell width, and consequently an
increase in computational complexity, is required for
the same reduction in the average adversary error.

A previous work [14] has shown that the correlation
between subsequent reports can be explored by an ad-
versary using simple regression models as estimators.
From such results it was concluded that not only does
the frequency of updates greatly impacts the tempo-
ral correlation but also that the estimation function af-
fects the results significantly. However, the privacy level
evaluation in that work was limited due to the use of
simple regressions as attacks. This work greatly expands
those results by providing a quantitative privacy evalua-
tion with state-of-the-art attacks under both continuous
and sporadic release of location data. While map-aware
LPPMs have been proposed in the literature (e.g. [15])
and map knowledge has been used to reduce obfusca-
tion areas (e.g. [16]), to the best of our knowledge, we
are the first to consider road network map-matching as
a tracking attack.

The remainder of this document is structured as fol-
lows. Section 2 presents an overview of the location pri-
vacy paradigm and details the implemented localization
attacks and LPPM. Section 3 describes the empirical
methodology whose results are displayed and discussed
in Section 4. Section 5 presents the related work and
this document concludes in Section 6.

2 Location Privacy Overview
This section provides an overview of the location pri-
vacy paradigm. Section 2.1 presents the notation used
throughout this work and formalizes the problem to be
tackled. The implemented geo-indistinguishable LPPM
is described in Section 2.2 and Section 2.3 presents the
localization attacks carried by a possible adversary.

2.1 Problem Definition

As in previous relevant works [7, 10, 12, 14, 17], we shall
consider a user of an LBS which reports his location to
the LBS provider to obtain information. We consider as
adversary any entity with access to the location reports
attempting to infer private information [2, 16], includ-
ing the LBS provider or any passive eavesdropper. Fur-
thermore, the adversary can have arbitrary background
information (prior) and computational power. In order
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Table 1. Summary of notation

Symbol Description
xr rth location from X , with r ∈ {1, . . . , |X |}
xi Exact user location at timestamp i.
zi Obfuscated location at timestamp i.
x̂i Adversary’s estimated location at timestamp i.
ti Time at timestamp i.
x, z, x̂ Vector of all real, obfuscated or estimated locations, respectively.
xi, zi, x̂i Vector of real, obfuscated or estimated locations up to timestamp i.
X , Z, X̂ Set of all possible real/obfuscated/estimated locations.
∆t Minimum interval between consecutive reports.
f , p(zi|xi) Location Privacy-Preserving Mechanism (LPPM).
ε Geo-indistinguishability privacy parameter.
h, p(x̂i|zi) Adversary’s attack.
PAE(f, h, x, z) Mean adversary error of x̂ given z and h.
Q(f, x, z) Mean quality loss given the LPPM f and locations x.
d(·) Euclidean distance metric.
g(·) Great-circle distance.
oi Noisy GPS reading at timestamp i.
si,k kth candidate location for oi at timestamp i.
p(oi|si,k) Map-matching emission probability.
p(si,k|si−1,j) Map-matching transition probability
σ Standard deviation of the (GPS) measurement error.
λy Parameter for the exponential of the measure of circuitousness.
λz Parameter for the exponential of the measure of temporal plausibility.

to protect his privacy, the user uses an LPPM to report
an obfuscated version of his exact location, consequently
trading the quality of the LBS response for privacy.

Formally, let xi ∈ X denote the exact user’s loca-
tion at the report with timestamp i ∈ {1, 2, . . . , T} and
zi ∈ Z the reported obfuscated location at the same i
computed using the LPPM f . For convenience, we use ti
to express the real time of timestamp i. The adversary
has access to zi and it is assumed to know f and pos-
sibly have some a priori knowledge and thus computes
x̂i ∈ X̂ , an estimation of xi at each timestamp i, using
an attack h. We shall denote xi and zi the vectors of
real and obfuscated locations up to timestamp i, respec-
tively, that is, xi = {x1, . . . , xi} and zi = {z1, . . . , zi}.
We assume the exact location to be placed in a finite
grid X but let Z and X̂ to be R2, i.e., the obfuscated
report and the adversary estimation can be any point
in the map. In the context of frequency of updates,
we define ∆t in seconds as the minimum interval be-
tween any two consecutive location reports. Formally,
∆t = argmini (ti+1 − ti).

Generically [12], online user-centric obfuscation
mechanisms can be described as a probability distribu-
tion in the form of equation (1).

p(zi|zi−1,xi) (1)

Intuitively, an LPPMmaps the real location xi ∈ X with
the knowledge of past locations xi−1 and past reports
zi−1 to a new report zi ∈ Z. In the context of sporadic
location privacy, existing LPPMs consider location re-
ports to be independent, and consequently, each obfus-
cated report zi is made only with respect to the exact
position xi at the same timestamp i. Therefore, equa-

tion (1) is reduced to the form:

p(zi|zi−1,xi) = p(zi|xi) (2)

LPPMs of this form are referred to as memoryless [12].
In the context of localization attacks, the primary

privacy metric is the correctness of an adversary mea-
sured by the expected estimation error [18, 19] and mod-
eled through a distance metric between the exact loca-
tions and the adversary’s estimations. Given an LPPM
f , an attack h and observations z, the expected adver-
sary estimation (AE) error is defined by the following
equation:

PAE(f, h,x, z) = E{d(xi, x̂i)} (3)

where the expected value is taken over xi and x̂i and
d(·) is a distance metric which is typically the Euclidean
distance [18].

From the user perspective, the LPPM f introduces
a quality loss due to reporting the obfuscated location
instead of the exact position [10, 19]. The average qual-
ity loss is therefore given by:

Q(f,x, z) = E{d(xi, zi)} (4)

The objective of this work is to evaluate the impact
of the interval between reports (∆t) in the achieved pri-
vacy level. We challenge the consideration of indepen-
dence between reports taken by previous sporadic loca-
tion privacy approaches through empirical experimen-
tation. We focus on a particular geo-indistinguishable
LPPM, the Planar Laplace [4, 7], and implement state-
of-the-art localization attacks. We measure the adver-
sary’s correctness for the different attacks and under
different values of ∆t. The following sections detail this
LPPM and the implemented attacks, respectively.

2.2 Planar Laplace

The Planar Laplace (PL) mechanism was the first
proposed mechanism to achieve the notion of geo-
indistinguishability which itself is a variant of differen-
tial privacy applied to location based systems [4]. While
other mechanisms have been proposed, including opti-
mal approaches w.r.t. utility [7, 17, 20], the PL is ef-
ficient and therefore practical to be used in an online
setting such as the one described above. Remapping
techniques have been proposed for this LPPM to in-
crease the utility of the queries without degrading the
privacy level [7]. In fact, the PL mechanism with opti-
mal remapping is considered the state-of-the-art of geo-
indistinguishability in sporadic location privacy [12].
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The optimal remapping techniques only uses the current
obfuscated LPPM output (zi) and the mobility profile
of the user [7]. Consequently, an adversary with knowl-
edge of the mobility profile, which is typically assumed
(c.f. Section 2.3.1) and with access to the remapped
obfuscated report is able to reverse this mapping. To
reduce computational complexity, we assume, without
loss of generality, the adversary to have the data after
reversing the remapping, that is, the obfuscated reports
as computed by the LPPM.

Prior to explaining the PL, one must first intro-
duce geo-indistinguishability and differential privacy. In
the context of statistical databases, differential privacy
guarantees that the presence or absence of a single in-
dividual in a database does not considerably impact
the disclosure of information [5]. In fact, information
disclosure in differential privacy is quantitatively mea-
sured as the difference between the prior knowledge and
the posterior (after the data is added/removed) knowl-
edge which is bounded by the privacy budget, which
is a small pre-defined constant. Geo-indistinguishability
on the other hand guarantees that the disclosed loca-
tion is indistinguishable from any other point within
a variable radius, thus concealing the exact location,
while allowing for enough information release [4]. For-
mally and following [4], an LPPM f satisfies ε-geo-
indistinguishability iff:

dP
(
f(x), f(x′)

)
≤ εdx(x, x′) ∀x, x′ ∈ X (5)

where ε is the pre-defined constant referred to as privacy
budget, dx(·) is any distance function and dP(·) is the
multiplicative distance between two distributions, de-
fined as dP(σ1, σ2) = supS∈S

∣∣∣log σ1(S)
σ2(S)

∣∣∣, where σ1 and
σ2 are two distributions on some set S, with the con-
vention that L =

∣∣∣log σ1(S)
σ2(S)

∣∣∣ = 0 if σ1(S) = σ2(S) = 0
and L =∞ if one of the two is 0.

Intuitively, from equation (5), the probability of
generating z using an ε-geo-indistinguishable LPPM
from either x or x′ is bounded by the distance between
these two points factored by the privacy budget ε. Com-
monly [4, 7], ε is set to ε = l/r, where r and l are a
user specified radius and privacy level, such that for any
x, x′ s.t. dx(x, x′) ≤ r, dP (f(x), f(x′)) ≤ l. This enforces
that closer x and x′ locations will have similar proba-
bility functions, thus better concealing the true location
while allowing higher dissimilarity for distant locations
to preserve a certain degree of utility.

The PL mechanism consists in adding 2-dimensional
Laplacian noise centered at the exact user location x and

with pdf:

p(z|x) = Dx(z) = ε2

2π e
−εdx(x,z) (6)

Obtaining z from x using equation (6) can be effi-
ciently done by adding a randomly drawn vector ex-
pressed as a radius r and angle Θ. Θ is uniformly cho-
sen from [0, 2π) and r is computed by drawing p uni-
formly from [0, 1) and feeding it to the inverse pla-
nar Laplacian cumulative distribution function defined
as C−1(p) = −1

ε

(
W−1

(
p−1
e

)
+ 1
)
, where W−1 is the

negative branch of the Lambert W function. Finally,
z = x+ 〈r cos Θ, r sin Θ〉.

2.3 Location Privacy Attacks

Location privacy attacks are diverse with respect to
both the objective and the applied methods [21]. In this
work we focused on the objective of locating the user at
each timestamp. This objective is general in the sense
that it allows for the reconstruction of the true mo-
bility of the user and consequently, for posterior infer-
ence attacks, that is, attacks which produce additional
knowledge from the geolocation data [2] (e.g. extraction
of user’s points-of-interest). Furthermore, since we con-
sider varying the frequency of updates, this requires con-
sidering both localization and tracking attacks. Recall
that tracking techniques consist in following a user over
time and space, whereas localization techniques have as
objective to localize the user at certain points in time [9].

For localization attacks, we focused on the state-of-
the-art by considering the optimal attack given a mo-
bility profile [18] and an heuristic which learns the mo-
bility profile as locations are shared [12]. Section 2.3.1
and 2.3.2 detail these attacks, respectively.

In tracking attacks, one can consider regression
analysis, Kalman filtering, particle filters and map-
matching [1, 21]. In a previous work [14], regression
analysis has been used to produce simple estimators
(such as linear and polynomial) as a tracking at-
tack. However, results showed that such solution gen-
erates a non-negligible amount of outliers due to time-
gaps in reports, which occur due to failures in the
GPS/communications. Kalman filters have been used
effectively in navigation to reduce uncertainties aris-
ing from the noisy measurements. Particle filters can
be used for the same purpose incurring in higher com-
putational complexity. However, these two techniques
are oblivious of the underlying map and consequently
generate positions that are not physically possible (e.g.
inside a building if the user is driving). A knowledgeable
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adversary can make use of the map to reduce this kind of
uncertainties and thus locate the user with higher preci-
sion [21]. This process is known as map-matching and it
is typically used to locate vehicles on road-networks [22].
Therefore, in this work we have selected a state-of-the-
art road network map-matching attack which is detailed
in Section 2.3.3. It should be noted that the considered
localization attacks can also be used for trajectories [23].
However, these attacks require the discretization of the
space (and possibly time), which becomes computation-
ally infeasible for finer resolutions.

Even though map-matching has been used as an at-
tack, for instance, against area obfuscation [21], to the
best of our knowledge, this is the first work to consider
road-network map-matching as a tracking attack. We
also note that this choice was further supported by the
fact that hidden Markov chains, which are used in map-
matching, have been shown effective in modelling the
temporal correlations of location traces [11, 24]. A nat-
ural extension of this work is to consider other types of
both localization and tracking attack, or even inference
attacks, such as the extraction of sensitive semantic lo-
cations.

2.3.1 Optimal Localization Attack

As aforementioned, the adversary observes z, knows the
used LPPM f and has some priory knowledge in the
form p(x). Consequently, it computes x̂ by means of an
attack h. We focus on the case that the adversary esti-
mates xi using only observed reports up to i, that is, zi.
This case can be generalized to the estimation of xi us-
ing zk with i ≤ k [12], however this is rarely the case in
tracking approaches. Following [12, 18], the optimal lo-
calization attack minimizes the estimation error defined
by equation (3). Formally:

x̂i = argmin
x̂i

∑
xi∈X

p(xi|zi) · dP (xi, x̂i) (7)

where p(xi|zi) is the posterior probability of xi given all
reports up to i:

p(xi|zi) = p(zi|xi) · p(xi)
p(zi)

=
∏i
l=1 p(zl|zl−1, xi) · p(xi)

p(zi)
(8)

Note that since zl is conditionally independent of xi
for l 6= i and since we are considering only memoryless
LPPMs, we have:{

p(zl|zl−1, xi) = p(zl|zl−1) if l 6= i

p(zl|zl−1, xi) = p(zi|zi−1, xi) = p(zi|xi) if l = i

Furthermore, since equation (7) is a minimization, we
can ignore the denominator and thus reach the attackers
objective function as:

x̂i = argmin
x̂i

∑
xi∈X

p(zi|xi) · p(xi) · dP (xi, x̂i) (9)

The final consideration of an attacker is the char-
acterization of p(x). Traditionally [10, 18], p(x) is de-
scribed by a mobility profile π which is a probabilistic
representation of the user mobility, where each user lo-
cation is considered an i.i.d. sample of π. Formally, let
π(x) denote the probability that the user is at x ∈ X
given the mobility profile π, then p(x) =

∏
i π(xi).

Therefore, and in practice [7], a realistic adversary
would use a mobility profile built with training data,
πtrain. An omniscient adversary is sometimes consid-
ered as one who has access to the test data and thus,
builds the mobility profile from this data, πtest. This
latter adversarial consideration gives a lower bound for
the expected privacy. We refer to the optimal attack
using πtrain as optHW and using πtest as omniHW.

Recently, Oya et al. [12] observed that building the
mobility model a priori with the training data might fail
to capture the true mobility of the users. The closer the
model is to the real mobility, the better performant is
the attack1. Consequently, the authors propose a new
approach towards building mobility profiles which con-
siders the true mobility to be unknown, and therefore
learned based on real user behavior in an a posteriori
fashion. An attack using this approach was proposed
in [12] and results showed to have better performance
than the optimal attack using the a priori model. The
attack is denominated Profile-Estimation Based Attack
(PEBA) and described in the following section.

2.3.2 Profile-Estimation Based Attack (PEBA)

The Profile-Estimation Based Attack (PEBA) [12] is
based on the idea that the real mobility profile is un-
known and consequently has to be learned/adapted af-
ter each query. Formally, let p(π) be the probability of
being assigned a profile π ∈ Fπ, then the real locations
are i.i.d samples of the distribution given by π, such
that:

p(x) =
∑
π∈Fπ

p(π)p(x|π) =
∑
π∈Fπ

p(π)
∏
i

π(xi) (10)

1 Note that the mobility profile might not only be used by an
adversary in the attack but also by the user in the LPPM [23].
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This consideration creates a dependency between exact
locations due to the fact that a previous location gives
information on the unknown profile π which in turn af-
fects the probability of the following locations. There-
fore, the real locations and obfuscated locations will also
be dependent as a location at xj affects distribution of a
location at xi with i > j which in turn affects zi. Conse-
quently, it becomes mathematically intractable to find
the optimal attack considering equation (10) [12]. Thus,
PEBA is a sub-optimal attack.

Following [12], PEBA is decomposed in two sequen-
tial steps: 1) estimation of the mobility profile using the
observed obfuscated reports zi up to the current times-
tamp, i. In the original proposal the Maximum Like-
lihood (ML) estimator is used and thus, this mobility
profile is denoted by π̂ML

i ; 2) estimate the real location
x̂i using zi and assuming that xi follows the estimated
mobility profile π̂ML

i . We skip the foundational details
of the method and focus on the implementation steps.
The interested reader should refer to [12].

The procedure of the steps is as follows. From the
training data an initial average mobility profile πavg is
built from all the users. Then, this initial profile is used
to estimate π̂ML

i , through an iterative Expectation-
Maximization method, following equation (11).

πr,t+1 = 1
i

i∑
l=1

p(xrl |zl, πt) =

= 1
i

i∑
l=1

πr,t · f(zl|zl−1, x
r
l )∑|X |

k=1 π
k,t · f(zl|zl−1, x

k
l )

(11)

where t is an iteration counter and πr ≡ p(x = xr) with
xr ∈ X and r ∈ {1, . . . , |X |} denotes the probability
mass function defined by π. Furthermore, π0 = πavg.
This step is repeated while the change from πt to πt+1 is
significant. Then, a normalization of the profile is made
following equation (12). This latter equation holds that
for the initial queries, the initial mobility profile πavg is
dominant, and then fading out as the number of queries
increase in favor of the ML estimator.

π̂i = 1
i0.5
· πavg +

(
1− 1

i0.5

)
· π̂ML
i (12)

The posterior is then computed as:

p(xi|zi, π̂i) = p(zi|xi, π̂i) · π̂i(xi)/p(zi) (13)

=
i∏
l=1

p(zl|zl−1, xi, π̂i)π̂i(xi)/p(zi) (14)

And finally, using the posterior, the PEBA estimation
of the exact location of the user is calculated as:

x̂i = argmin
x̂i

∑
xi∈X

p(xi|zi, π̂i) · dP (xi, x̂i) (15)

2.3.3 Map-Matching

The previous sections described attacks against spo-
radic reports, referred to as localization attacks. This
section focus on a tracking problem, known as map-
matching. Map-matching (MM) is the process of con-
tinuously identifying the position of a vehicle on the
road network given noisy location readings [22]. How-
ever, map-matching can also be used as an adversary
tracking/locating a user as detailed in this section.

In the context of MM, it is typically considered high
frequency of updates when reports are made up to ev-
ery 1 minute. Any value above this interval is considered
low frequency of updates, and commonly, low frequency
MM techniques are evaluated up to a maximum of 5-6
minutes [25]. In the context of LBSs however, 5 to 6 min-
utes is still considered continuous reports. Nevertheless,
using a MM technique allows to evaluate the impact
of frequency in highly continuous updates and conse-
quently, assess the privacy level under the full range of
frequencies.

The criteria for selecting the implemented MM tech-
nique was the effectiveness over noise, as the Planar
Laplace applies additive noise, and the effectiveness over
low frequency of updates, which results in sparse data.
A seminal work fulfilling these criteria is found in [26],
where their method is evaluated over frequency of up-
dates (referred to as sampling period) varying from 1
second to 600 seconds and over the addition random
Gaussian noise to the GPS readings with multiple stan-
dard deviation values. A follow up on this work was
made by Jagadeesh and Srikanthan [27], where locations
were measured with cellular network positioning instead
of the GPS. The measurement error from the former
positioning system is higher by almost 2 orders of mag-
nitude and therefore the MM technique was adapted to
be more robust against noise.

Comparative results between [27] and the seminal
work from [26] showed the former technique to be more
robust to both low frequency of updates and noisy mea-
surements. Consequently, we have implemented the MM
technique from [27], which we describe next. We refer
the reader to [27] for a more detailed explanation of the
original method.

Let us denote oi ∈ R2 as the location report (re-
ferred to as observation in [27]) at timestamp i. This
report is not obfuscated but it is assumed to be noisy
due to measurement imprecision. The road network is a
direct graph G = (V,E), where V is a set of nodes rep-
resenting intersections and endpoints of road segments
and E is the set of these segments. A path p between
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nodes u and v is a sequence of edges e1, . . . , en such that
u is the tail of e1 and v is the head of en. The objective
of a MM algorithm is to find a path p that corresponds
to a sequence of T locations given noisy observations
o1, . . . , oT . Towards this goal, an Hidden Markov Model
(HMM) is used in [27].

At each noisy observation oi, the HMM’s hidden
states at time step i correspond to potential locations
on the road where the user can be. We denote the kth
potential location at time step i by si,k and the hidden
true state by s∗i = xi. Given that the location mea-
surement error can be assumed effectively to follow a
Gaussian distribution with zero mean [26, 27], the prob-
ability that the observation oi was generated from state
si,k, referred to as emission probability, is given by:

p(oi|si,k) = 1
σ
√

2π
e−

g(oi,si,k)2

2σ2 (16)

where σ is the standard deviation of the measurement
error and g(oi, si,k) is the great-circle distance, that is,
the shortest distance along the surface of the earth, be-
tween the observation oi and the state si,k. Note that
from equation (16), it is clear that closer states to the
observation will have a higher probability than farther
states, as the denominator increases exponentially with
the increase of the distance g(·).

The transition probability, that is, the probability
that the vehicle moved from state si−1,j to si,k depends
on both the circuitousness of the path and on the tem-
poral plausibility, that is, if the travelled distance is
plausible given the time interval between timestamps
(ti − ti−1). To measure the circuitousness of the path,
the authors of [27] defined the following equation:

y(si−1,j , si,k) =
d(si−1,j , si,k)− g(si−1,j , si,k)

(ti − ti−1) (17)

where g(si−1,j , si,k) is the great circle distance between
the states and d(si−1,j , si,k) the driving distance, calcu-
lated using Dijkstra’s shortest path algorithm [28]. For
the temporal plausibility, the equation is given as:

z(si−1,j , si,k) =
max

(
f(si−1,j , si,k)− (ti − ti−1), 0

)
(ti − ti−1)

(18)
where f(si−1,j , si,k) is the free-flow travel time, in sec-
onds, of the optimal path between the states si−1,j and
si,k. Finally, the transition probability comes in the
form:

p(si,k|si−1,j) = λye
−λyy(si−1,j ,si,k)λze

−λzz(si−1,j ,si,k)

(19)
where λy and λz are empirically determined parameters
from equations (17) and (18), respectively.

To compute the most likely path from the HMM, a
Viterbi algorithm is used as follows:

V1,k = p(o1|s1,k)
Vi,k = p(oi|si,k) max

j

(
Vi−1,jp(si,k|si−1,j)

) (20)

where Vi,k is the joint probability of the most likely state
sequence ending at state si,k based on the observations
o1, . . . , oi. The index j that maximizes Vi,k is stored for
each potential location k as it points to the predecessor
state si−1,j that most likely lead to si,k. Consequently,
the most likely sequence for observations o1, . . . , oT is
obtained by saving the indices j at each timestamp that
maximize Vi,k, starting in maxw VT,w. The path p is then
obtained by concatenating the optimal (shortest) paths
between successive states in the most likely sequence.

Using the shortest segments to connect the states
might not be the optimal solution. Therefore, in [27]
is also presented an heuristic that uses features to take
into consideration drivers’ preferences and thus increase
the likelihood of getting the right segment between
states. However, this additional heuristic achieves only
marginal improvements (c.f. [27]) at the expenses of
computational power. Since we will be computing map-
matching under several configurations (see Section 3.2),
we did not implement the heuristic as to decrease exe-
cution time.

Returning to the problem defined in Section 2.1,
MM is typically used as a pre-processing phase of an
LBS service in which the noisy locations are mapped to
the most likely position for xi. Therefore, in our prob-
lem the user is considered to already have the real lo-
cation xi, ∀i. Nevertheless, an adversary can use MM
to track/locate users in a road given obfuscated loca-
tion/versions of xi. In this latter scenario, the location
readings (observations) are the obfuscated locations.

As for measuring privacy, we can use the adversary
error from equation (3) using zi. However, a point-by-
point metric would fail to assess the effectiveness of the
tracking, as the adversary error could be 0 and the es-
timated trajectory be different from the true trajectory.
This can occur for instance when the true location is at
a cross-road and the true path crosses the matched path.
In such case, the true position matches the MM estima-
tion, but the paths only overlap on that single point.
Thus, we further consider a trajectory metric from the
original authors of the MM technique [27], the F1 score
computed as:
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precision = Lcorrect
Lmatched

recall = Lcorrect
Ltruth

F1 = 2 ∗ precision ∗ recall
precision+ recall

(21)

where Lmatched is the length of the output path, Ltruth
is the length of the corresponding ground truth and
Lcorrect is the length of the portions of the output path
that overlap with the ground truth path. Intuitively, the
precision and recall measure the length of the segments
that were correctly matched as a fraction of the map-
matching output and the true path, respectively. The F1
score is then the harmonic mean between both metrics.

3 Impact of Frequency
The main objective of this work is to evaluate the im-
pact of the frequency of location reports on the pri-
vacy level of a Geo-indistinguishable LPPM, namely
the Planar Laplace (PL) [7] described in Section 2.2.
Towards this goal, we obfuscate the location reports us-
ing the PL mechanism to several sub-samples of real
datasets, where each sub-sample corresponds to a differ-
ent frequency of reports. Subsequently, we apply state-
of-the-art localization attacks as to measure the privacy
level obtained through the PL mechanism against possi-
ble adversaries. The following sections will describe the
datasets used in this work and detail the carried out
methodology.

3.1 Datasets Characterization

To evaluate the impact of frequency one must consider
both continuous and sporadic release of data. As men-
tioned in Section 1 there is no formal nor quantitative
boundary for the frequency of updates that defines what
intervals belong to the continuous or sporadic scenarios.
In fact, this distinction is made based on the type of LBS
application [9]. Therefore, and to allow for tuning the
frequency of updates from highly frequent to “sporadic"
reports, we selected three highly continuous datasets:
the Cabspotting [29] and Portocabs [30] datasets,
which are composed of taxi trajectories from the city of
San Fracisco, USA, and Porto, Portugal, respectively;
and the Geolife dataset [31], a dataset of GPS data
captured by handheld devices.

The Cabspotting dataset [29] contains trajectories
from over 500 taxis navigating in San Francisco Bay
Area in a period of 30 days. It contains not only geo-
location collected through a GPS at an average rate of
10 seconds, but also whether the cab is occupied or not.
The Portocabs dataset is composed of trajectories be-
longing to 441 taxis in the city of Porto, Portugal, col-
lected over a full year (from 2013/07/01 to 2014/06/30)
with a sampling rate of 15 seconds [30]. The Geolife
dataset [31] is a well known repository of GPS traces
collected from 182 worldwide users in the period from
April 2007 to August 2012. It contains a total of 18670
trajectories reflecting the movements under a variety of
transportation means, where 91% of these have a sam-
pling rate of 1 to 5 seconds or 5 to 10 meters per point.
The majority of the trajectories lie in Beijing.

While the datasets of taxi mobility are highly con-
tinuous, these movements often have a limited timespan.
In fact, most of these trajectories present a timespan un-
der 1 hour. On the other hand, [14] shows that the Ge-
olife dataset contains a significant amount of time-gaps
between reports, that is, discontinuities in the frequency
of reports. Furthermore, since our tracking attack is a
road network map-matching technique [27], only vehic-
ular trajectories can be considered. Consequently, we
use the Cabspotting and Portocabs datasets to evalu-
ate highly continuous reports and the Geolife dataset in
a more sporadic scenario. It should be noted that while
the Geolife is not a sporadic dataset, the continuity of
reports allows to fine-tune the frequency of updates by
periodically suppressing points to cover the full spec-
trum. Intuitively, this subsampling can be perceived as
users in their quotidian trajectories making sporadic ac-
cesses to a LBS.

Our pre-processing for each dataset is as follows:
Geolife – since in a sporadic scenario there are no

trajectories, we first append all traces of each user as a
single array of locations and subsequently sort by date.
We then filter out locations that fall outside a bounding
box containing the 5th ring road of Beijing as illustrated
in Figure 1a. This filtering reduces the space of possible
user locations (X ), which in turn allows for a finer grid
for the localization attacks. A total of 65.4% of points
belonging to 179 of the 182 initial users remained after
this pre-processing.

Cabspotting – we first limit the trajectories to
a bounding box within the San Francisco peninsula as
specified in Figure 1b. Then we consider only trajecto-
ries with passenger as to remove cases where the taxi is
stopped waiting for a client. Finally, we select trajecto-
ries with a duration of at least one hour, with intervals
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(a) Bounding box over 5th ring road of Beijing
used for the Geolife dataset. Approximately
defined from South and North by the latitudes
39.753, 40.026, and from West and East by
longitudes 116.199, 116.547.

(b) Bounding box over the peninsula of San
Francisco used for the Cabspotting dataset. Ap-
proximately defined from South and North by
the latitudes 37.600, 37.811, and from West
and East by longitudes −122.517, −122.354.

(c) Bounding box over the city of Porto, Por-
tugal, used for the Portocabs dataset. Approx-
imately defined from South and North by the
latitudes 41.0524, 41.257, and from West and
East by longitudes −8.727, −8.456.

Fig. 1. Bounding boxes used in this work for each of the three datasets.

between reports of at most (approximately) 2 minutes
as to avoid temporal discontinuities between reports.
After this pre-processing, 85 trajectories remained.

After manual inspection of some of these trajecto-
ries in the map we were able to observe that the dataset
contains noisy readings. For example, some GPS loca-
tions are reported in the ocean instead of in a bridge.
Thus, to improve the original (noisy) data so as to build
our ground-truth, we apply the MM technique described
in section 2.3.3 to the original dataset. This way, we ob-
tain a set of locations in the road network that serves as
our ground-truth to compare against the locations af-
ter obfuscation and being subject to adversary attacks,
as illustrated in the diagram of Figure 2. For that, we
use the parameters from [32], which uses GPS data and
is the work that served as baseline to the development
of [27]. In [32] the estimated standard deviation was
σ = 6.86m and they limited the potential locations si,k
to a circular radius of 50m from oi. This discards candi-
date locations with low emission probability (c.f. equa-
tion (16)) and speeds up the map-matching process. For
the remaining parameters we used the original values
from [27]: λy = 0.69 and λz = 13.35. The restriction of
the 50m radius around oi produced observations with-
out candidate points in some trajectories due to both
the considered road network (explained in the following
section) and to the noisy dataset. For these observa-
tions, we considered the nearest road network node as
candidate. Furthermore, after manual inspection of the
85 trajectories, we observed that in some the taxi stays
roughly in the same place to which we attribute to heavy
traffic. Consequently, we removed those trajectories and
ran our tests for the 63 remaining trajectories.

Portocabs – following a similar procedure to the
one taken for the Cabspotting dataset, we limit the se-
lected trajectories to a bounding-box containing the city
of Porto, as illustrated in Figure 1c. From these trajec-
tories, we select only the ones that present no missing
data, that is, there is a location report every 15 sec-
onds. Finally, we select the trajectories with a duration
of 1 hour and 1 hour and 15 seconds, as to increase the
number of trajectories. This resulted in 134 trajecto-
ries, which after some manual inspection as performed
for the Cabspotting dataset, reduced to 123. To these
final trajectories, we perform the same procedure as in
the Cabspotting to obtain the ground-truth data.

The Geolife, Cabspotting and Portocabs datasets
can be found in [33], [34] and [35], respectively.

3.2 Experimental Setup

The methodology for the experiments consists in sub-
sampling the datasets, applying the Planar Laplace
mechanism described in Section 2.2 and subsequently
apply the localization and tracking attacks from Sec-
tion 2.3. As explained in the dataset characterization,
the Cabspotting and Portocabs datasets are more suit-
able for the map-matching attack due to being highly
continuous, present no temporal discontinuities between
reports and for being vehicular trajectories. Conse-
quently, we only apply the localization attacks to the
Geolife dataset, while executing both localization and
map-matching attacks to the Cabspotting dataset. We
use the Portocabs dataset to further validate the map-
matching results.
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Fig. 2. Diagram of the methodology conducted for the Map-Matching attack.

3.2.1 Subsampling

To vary the frequency of reports we subsample the
datasets by suppressing reports such that the interval
between consecutive points is at least ∆t. To contem-
plate both continuous and sporadic scenarios, several
values of ∆t are considered. For the Cabspotting and
Portocabs datasets, we set ∆t = [60, 120, 180, 240, 300,
360, 420, 480, 540, 600] seconds as our highly continuous
reports. Note that in the context of map-matching, the
previous values of ∆t are already considered low sam-
pling rate [22, 26]. For the Geolife dataset we consider a
larger range of frequencies and thus set ∆t = [480, 540,
600, 1800, 5400, 16200, 48600, 145800, 437400, 1312200]
seconds. This interval goes from 8 minutes up to 15 days,
and thus is comprehensive enough to encompass both
continuous and sporadic scenarios.

3.2.2 LPPM

To each dataset subsample we apply the Planar Laplace
described in Section 2.2 under multiple values of ε. Since
map-matching is computationally expensive, we have
used fewer ε values for the Cabspotting dataset. Specif-
ically, for the Cabspotting and Portocabs datasets we
have used ε = [16, 32, 64, 128] km−1 and for the Geolife
dataset
ε = [1, 1.5, 2, 3, 4, 8, 12, 16, 24, 32, 48, 64] km−1. The aver-
age quality loss is measured using equation (4).

3.2.3 Localization Attacks

Following [7, 12], we use part of the dataset for train-
ing and the remainder for testing. Thus, and as de-
scribed in Section 2.3, we consider three types of attacks:
optHW, the optimal attack using the training dataset
to build the mobility profile πtrain; omniHW, the op-
timal attack using the test dataset to build the mobility
profile πtest, which corresponds to an omniscient ad-
versary; and PEBA as described in Section 2.3.2 and
using the parameters from its original work [12], with

πavg = πtrain. The adversary error defined in equa-
tion (3) is used to measure the privacy level against
these attacks.

The considered localization attacks assume the
space of exact user locations X to be discrete. Therefore,
and similarly to previous works [7, 10, 24], we have dis-
cretized the space for both datasets in a grid of equally
spaced cells, where the center of the cell corresponds to
a locationstamp that is common to any GPS observa-
tion within the cell. For the Geolife dataset, the 5th ring
road of Beijing was partitioned in cells of 2000 × 2000
meters for a total of 17 × 16 cells. For the Cabspotting
dataset, and for a fair comparison between MM and the
localization attacks we measure the adversary error not
as the distance from the estimation x̂i to the center of
the grid xi (as in equation (3)), but instead from x̂i
to the ground-truth point, as the tracking attack would
naturally consider it. Therefore, we also evaluate the ef-
fect of the grid resolution in the adversary error. This
evaluation is done for the Cabspotting dataset using the
subsample corresponding to ∆t = 300s, to decrease exe-
cution time, and several grid sizes composed by squared
cells of [80, 90, 100, 125, 150, 175, 200, 250] m.

The selection of the train/test data partition for the
Geolife dataset was done as follows. We select the users
with at least 20 points for ∆t = 1312200 seconds, our
highest ∆t. The test data for each ∆t is then the loca-
tions of these selected users. Using these users ensures
that the training data does not contain data pertaining
the victims of the attacks, the same users are present in
all subsamples of the dataset, and that enough test data
is present to allow for profile tuning in the PEBA attack,
even for the sparsest subsample (highest ∆t value). The
training data corresponds to using the locations of all
users that were not selected as testing data for ∆t = 480
seconds, the lowest ∆t. That is, the training data is the
same for all ∆t values. This avoids having poorer re-
sults for higher ∆t due to the sparseness of the dataset.
For the same reason, in the OmniHW attack the mobil-
ity profile πtest is also constant for all values of ∆t and
is built with the testing data with ∆t = 480. The mo-
bility profiles πtrain and πtest are therefore built using
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respectively 73.4% and 26.6% of the ∆t = 480 subsam-
pled dataset.

For the Cabspotting dataset we use the 63 trajecto-
ries as test set and all remaining trajectories contained
within the bounding box from Figure 1b as training
data. To be precise, we use 905255 trajectories as train-
ing data. However, it should be noted that, contrary to
training a classifier, using all this data as training data
does not lead to overfitting. In fact, this corresponds to
an adversary which has a very precise statistic model of
the average mobility profile, or in other words, a model
of how a “normal" individual moves in this area.

3.2.4 Map-Matching

The diagram from Figure 2 illustrates the methodol-
ogy taken when using the MM technique. The “Pre-
Processing MM" computes a ground-truth from the
noisy dataset as explained in Section 3.1 to which is then
applied the subsampling considering the aforementioned
values of ∆t. To the subsampled locations is applied the
Planar Laplace (PL) using the described values of ε to
obtain the obfuscated reports. Finally, MM is executed
on the obfuscated locations to obtain the adversary’s
estimations. To assess the privacy level, we compare the
ground-truth against the adversary estimations using
the adversary error from equation (3) and the F1 score
from equation (21). The parameters σ, λy and λz for
the MM attack were estimated following the original
proposal [27]. For the Cabspotting data we used tra-
jectories within the bounding-box from Figure 1b with
duration between 1 and 5 minutes with at least 2km of
travelled distance (a total of 6003 trajectories). Equiva-
lently, for the Portocabs dataset we selected trajectories
within the bounding-box from Figure 1c with a dura-
tion of 5 minutes and with at least 2.5 km travelled
distance, resulting in 4598 trajectories. For efficiency,
and similarly to [32], we only consider candidates points
within a radius r which we calculate using the inverse
cumulative distribution function of the Gaussian distri-
bution. The radius r is computed such that the circle
centered at the observation contains the exact location
with 90% probability. When this circle contains no can-
didates, which can happen due to the use of the LPPM
and selected road network, the nearest road network
node is used as candidate. The road network was ob-
tained from OpenStreetMap using the OSMnx tool [36]
over the area defined by the respective bounding boxes.

4 Results
This section details the obtained results. A separation
based on the dataset is made, such that Section 4.1 de-
tails the results using the Geolife dataset, which focuses
the sporadic scenario, and Section 4.2 describes the re-
sults using the Cabspotting and Portocabs datasets, the
continuous case.

4.1 Geolife Results

For the Geolife dataset, only the localization attacks
were executed. Figure 3 shows the average adversary
error per ∆t for all ε values and for each of the three
attacks. The first thing we can observe is that the ad-
versary error is roughly similar for any ∆t. This allows
to conclude that the frequency of updates has no signif-
icant impact on the privacy level. This is to be expected
since in contrast with the tracking attack, the selected
localization attacks do not take into account the tempo-
ral correlation. Consequently, the consideration of inde-
pendence between reports is valid for the sporadic case.
We note that while there are localization attacks which
take into account the correlation between reports, such
as [37], and thus our results with such attacks could
differ, the reported performance in [37] is significantly
lower to the attacks we consider.

Figure 3 also shows that omniHW performed better
than the optHW attack, which was to be expected as
the test mobility profile is used in the former. At the
same time, the PEBA attack was even better than the
omniHW for most values of ∆t, thus confirming the re-
sults of the original work [12]. For the two highest values
of ∆t this was not the case, which we justify with the
fact that not enough test data was present for PEBA
to learn the mobility profile. Consequently, the PEBA
results for these higher ∆t are closer to the results of
the optHW, which is in accordance with equation (12).

The last observation from Figure 3 is the amount
of values of privacy budget (ε) that resolve in near zero
average adversary error. Only the lowest 5 of the 12
experimented values of ε produced a non-negligible ad-
versary error. For the setup we considered, values of
ε ≥ 8 km−1 lead to basically no privacy protection. Our
results indicate that for this setup a maximum value of
ε = 4 km−1 is needed for relevant privacy protection. As
future work we intend to formulate a relation between
the effectiveness of the optimal attack (measured by the
adversary error) and the value of ε.
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(a) optHW (b) omniHW (c) PEBA

Fig. 3. Geolife average adversary error and respective 95% confidence intervals per ∆t for all values of ε for the three localization at-
tacks. The x axis is logarithmic and the y axis and legend are shared between the three plots.

(a) optHW (b) omniHW (c) PEBA

Fig. 4. Geolife privacy versus utility for all values of ∆t for the three localization attacks. Each color represents a ∆t value, where the
points are the pair (PAE , Q), which is obtained for a particular value of ε. Dashed vertical lines indicate the epsilon at the empirical
quality loss averaged over all values of ∆t. The solid line represents an adversary using the report as the estimation, for reference. The
y axis and legend are shared between the three plots.

(a) optHW (b) omniHW (c) peba

Fig. 5. Effect of the grid resolution on the average adversary error (and respective confidence intervals) for each localization attack
using the Cabspotting dataset with ∆t = 300 (to decrease execution time).

The last results for the Geolife dataset are displayed
in Figure 4. These results show the average adversary
error PAE as a function of the average quality loss Q,

which corresponds to the performance of an LPPM, for
all values of ∆t. Each color represents a ∆t value, where
the points are the pair (PAE , Q), which is obtained for
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a particular ε. The dashed dark lines illustrate aver-
age quality loss averaged over all values of ∆t for each
specific ε. The results obtained in [12] showed that the
relation between PAE and Q is highly linear. Looking
at Figure 4, we observe this to be the case only when
PAE > 0, which as we have seen from Figure 3 occurs
for ε < 8 km−1.

The second result observable from Figure 4 is the
similarity of the curve for the different ∆t, which proves
again that the frequency of updates has no major effect
on the privacy level using these localization attacks. In
fact, it is not possible to identify a specific ∆t that has
highest average adversary error for all values of ε.

4.2 Cabspotting and Portocabs Results

The Cabspotting dataset is employed to assess the ef-
fect of attacks (both localization attacks as well as MM)
on the continuous scenario. Since the effectiveness of the
localization attacks is highly dependent on the grid reso-
lution employed, we start by evaluating the effect of the
cell size on localization attacks, as depicted in Figure 5.
We can observe that for any epsilon and for any attack,
there is a linear correlation between the cell resolution
and the adversary error. As the cells get smaller, so does
the average adversary error. Given these results, a re-
sourceful adversary can potentially defeat obfuscation
by using a very small cell resolution. However, it should
be noted that as the privacy budget ε decreases (i.e. the
obfuscation increases) the slope of the linear regression
diminishes. For example, for the omniHW (Figure 5b),
a grid of 100m squared cells is required to get an ad-
versary error of around 75m for ε = 16 km−1. For the
remaining values of ε (ε = [32, 64, 128]) however, a simi-
lar adversary error is achieved using a cell resolution of
250m. That is, increasing the obfuscation also increases
the computational complexity required for an attack.
From the user point of view, the privacy budget ε thus
additionally relates (with inverse proportionality) to the
computational power that an adversary must employ
to compromise user privacy. While the smallest average
adversary error is achieved using the smallest grid reso-
lution (80m), to decrease execution time we opt to use
squared cells of 125 meters for the remainder of the re-
sults. This corresponds to a total of 189× 115 cells over
the peninsula of San Francisco.

Figure 6 shows the average adversary error per
∆t and for all ε values for the map-matching attack
(MM) and the localization attacks (optHW, omniHW
and PEBA). Similarly to the results obtained for the

Geolife dataset, we can observe that the average adver-
sary error is similar for any ∆t, which does not reveal
the effect of the frequency of reports. Another relevant
result from Figure 6 is that the adversary error in the
map-matching is lower than the localization attacks in
all epsilon values. However, as the obfuscation increases
the difference in the adversary error between MM and
the localization attacks diminishes. This is due to the
fact that the localization attacks take into considera-
tion the use of the LPPM and hence, the localization
attacks surpass the MM performance for higher obfus-
cation or for a smaller grid resolution. Notwithstanding
note that the adversary error is not an effective privacy
metric for tracking attacks. In fact, the adversary error
can be close to or even zero and the F1 score can also be
zero. This extreme case occurs, for instance, when be-
tween two exact locations the matched trajectory and
the true trajectory only overlap in those two points, that
is, the trajectories are disjoint except in the end-points.

To assess the impact of the frequency of updates
in the privacy level of geo-indistinguishability, Figure 7
presents the effect of the privacy budget ε in the F1
score. It is visible that varying the value of ε has more
effect when higher sampling rates (i.e. lower values of
∆t) are employed. As the frequency becomes smaller
(larger ∆t values), there is fewer correlation between
points, which naturally harms the efficacy of MM, irre-
spectively of the ε value employed. This indicates a rele-
vant trade-off between the value of the privacy budget ε
of geo-indistinguishability and the sampling frequency,
in where lower values of ε can cause more obfuscation,
thus possibly compensating higher frequency rates.

Comparing our results with those of the proposal
of the MM technique [27], it is clear that our F1 scores
are significantly lower. The two main differences that
can be the source for this disparity are the dataset and
the road network. Our dataset is from San Francisco
and therefore requires the road network from San Fran-
cisco, which is significantly denser than Singapure’s road
network and, more importantly, highly symmetric. Con-
sequently, multiple optimal (shortest) paths might ex-
ist between states of the map-matching leading to a F1
score of zero for these segments.

As aforementioned, to further validate our map-
matching results we considered Portocabs as an ad-
ditional dataset of highly continuous location reports.
Figure 8 presents the results obtained for this dataset.
Comparing with the results obtained for the Cabspot-
ting dataset and illustrated in Figure 7, it is clear that
the same conclusions can be drawn. Specifically, the
degradation of the F1 score with the increase in ∆t (de-
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(a) MM (b) optHW

(c) omniHW (d) PEBA

Fig. 6. Cabspotting average adversary error and respective 95% confidence intervals per ∆t for all values of ε for the MM technique
and the three localization attacks.

Fig. 7. Effect of the epsilon and frequency of reports (∆t) in the
F1 score of the MM technique for the Cabspotting dataset. 95%
confidence intervals are represented as the vertical lines.

crease in frequency of reports) and with the decrease in
ε. It is observable that the F1 score for this third dataset
is slightly higher than for the Cabspotting case. This dif-
ference can be attributed to the already raised fact that
the road network in San Francisco is highly symmetric,
which can produce a relevant number of equally optimal
(shortest) paths between nodes.

Fig. 8. Effect of the epsilon and frequency of reports (∆t) in the
F1 score of the MM technique for the Portocabs dataset. 95%
confidence intervals are represented as the vertical lines.

4.3 Limitations

From the previous results it was possible to conclude
that, given our setup, the frequency of updates does
not have a significant impact on the adversary error.
An inherent limitation of this finding is the limited
number of attacks considered, and specifically, track-
ing attacks. However, we do note that, the choice of
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this specific attack was justified by the effectiveness in
modelling temporal correlations using hidden Markov
models [11, 24]. As future work, we would like to ex-
pand this work by considering other tracking attacks,
such as Kalman filtering. Similarly, we would like to con-
sider the effects of the frequency of updates in LPPMs
which take into consideration the correlation between
reports (e.g. [11, 23, 38]). These type of LPPMs are often
output-based as opposed to the memoryless considered
in this work, that is, the previous reports are consid-
ered when reporting the new obfuscated location [12].
Consequently, the frequency of updates should not only
impact the attack success, but also the effectiveness of
the privacy-preserving mechanism.

The conducted methodology also had some limita-
tions. For example, the datasets are not sporadic, and
arguably, subsampling for different values of minimum
interval between reports (∆t) might not necessarily re-
semble a sporadic dataset. Nonetheless, to allow for fine-
tuning the frequency a continuous dataset is required.
Additionally, and similarly to [38], we argue that such
subsample can be perceived as users in their quotidian
trajectories making sporadic accesses to a LBS.

5 Related Work
LBSs have been classified as either sporadic or contin-
uous based on the frequency of location reports [9].
In turn, the amount of disclosed information shapes
the possible attacks that can be carried by an adver-
sary [21]. In fact, preserving location privacy is chal-
lenging due to the fact that human mobility traces are
highly unique [39, 40], that points-of-interest (POI) act
as quasi-identifiers [41, 42], that is, data that can be
used in combination with other available information to-
wards deanonymization, and that individual’s traces are
extremely predictable given past location history [40].
Furthermore, visited locations may reveal personal in-
terests, habits and even social connections [1, 6].

Localization and tracking techniques are the most
general type of attacks in the context of user-centric lo-
cation privacy [9]. Having exact geolocation data then
allows for more specific inference attacks [2, 16, 43],
such as the extraction of sensitive locations, as the data
becomes more precise [6]. Tracking techniques consist
in following a user over time and space, whereas lo-
calization techniques have as objective to localize the
user at certain points in time [10]. Therefore, track-
ing attacks make use of the continuous releases of data

while localization attacks are commonly used in the spo-
radic case [9]. Surveys on location attacks can be found
in [1, 6, 21].

In this work, we implemented state-of-the-art lo-
calization and tracking attacks to effectively measure
the privacy level from the point-of-view of a power-
ful yet realistic adversary. As future work we intend
to complement our experiments with specific inference
attacks, such as the extraction of sensitive locations.
For the tracking attack we have focused on a state-
of-the-art map-matching technique [27]. Map-matching
(MM) is used in navigation systems to continuously
pin-point vehicles on road-networks given noisy loca-
tion readings [22]. While other techniques, such as us-
ing a Kalman Filter [1], have been showed to work
when tracking users, the MM technique from [27] uses
a Markov chain to model temporal transitions, which
has shown effective in modeling temporal correlations
in location data [11, 24]. For the localization attacks,
we have implemented the state-of-the-art: the optimal
attack given a mobility model [10] and PEBA [12] an
heuristic that learns the user profile as the user re-
ports locations. While these localization attacks disre-
gard temporal correlation, they have been shown to per-
form well even when considering a coarsed discretization
of the user locations’ space [10, 12].

Similarly to the attacks, LPPMs have been devel-
oped for both continuous [11, 23] and sporadic scenar-
ios [4, 7, 12]. While in the continuous scenario, tempo-
ral correlation between subsequent reports is typically
considered, in the sporadic scenario reports are consid-
ered to be independent [9, 12]. Thus, this latter type
of LPPMs completely disregard the frequency of usage
and temporal correlations.

Geo-indistinguishability [4, 7], a formal privacy no-
tion based on differential privacy [5] has been proposed
to design LPPM with privacy guarantees irrespectively
of the background information available to an adversary.
Due to these properties, geo-indistinguishability has
been raising increasing research interest [7, 12, 14, 44]
and we therefore focus on this particular notion.

As in standard differential privacy, the privacy dis-
closure of geo-indistinguishability degrades linearly with
the number of queries [4]. Therefore, this LPPM is only
effective while the number of queries remains low as in a
sporadic scenario. In a later work [38], the same authors
proposed an adaptation to the case of location traces to
reduce the privacy budget (ε) consumption through the
use of a private prediction test. This test predicts the
next location based on the correlations of past reports.
If the correlation is high, no obfuscation occurs and the
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predicted location is report instead. This test consumes
a privacy budget that is smaller than generating a new
obfuscation, and therefore improves on the linear pri-
vacy degradation.

The work in [44] also proposes an adaptation to
geo-indistinguishability in which the privacy budget (ε)
is adjusted for each location report according to the
correlation between past reports. If the correlation is
high, measured through a simple linear regression, then
the mechanism adjusts to increase privacy (utility de-
creased) by decreasing ε, and vice-versa for low correla-
tion.

A novel approach to differential privacy in contin-
uous location reports was studied in [11], in where the
proposed mechanism achieves the optimal lower privacy
bound. Specifically, instead of a linear (w.r.t. the num-
ber of queries) privacy degradation, a logarithmic degra-
dation is achieved instead. In fact, this work is con-
sidered state-of-the-art for differentially private LPPM
for the continuous release of data in an online scenario
(c.f. [7]).

From the above-mentioned LPPMs it is clear that
for effective privacy protection in location traces, cor-
relation between reports must be effectively captured.
However, and to the best of our knowledge, the evalua-
tion on how the frequency of updates (or equivalently,
the correlation) impacts the privacy level was yet to
be made. Differential privacy provides formal guaran-
tees on the privacy disclosure of data. Nevertheless, in
the context of location data, this privacy metric may be
misleading when compared to the adversarial error [13].
This work attempts to fill this gap through an empiri-
cal analysis and consequently to challenge/validate the
consideration of independence between reports under
varying frequencies of reports. [14] and [44] showed that
regression analysis can be used by an adversary to es-
timate the user position due to the temporal correla-
tions. However, [14] showed that these results varied
greatly depending on the estimator function and that
additionally, discontinuities in the traces produced non-
negligible outliers. In contrast, this work uses state-
of-the-art localization attacks and a tracking attack
against geo-indistinguishability under multiple privacy
and adversary configurations.

6 Conclusion
As users report even an obfuscated variant of their lo-
cation to a Location-Based Service (LBS), information

is being disclosed. The amount of usage of these ser-
vices, or in other words, the frequency of reports di-
rectly impacts the correlation between reports which in
turn can be used by an adversary to further degrade
privacy. Geo-indistinguishability has been proposed as a
formal notion based on differential privacy to bound the
amount of information released on independent queries.
However, the analysis on how the frequency of queries
impacts the level of privacy in geo-indistinguishability
was yet to be made.

In this work we analyze the effects of the fre-
quency of updates in the privacy level of geo-
indistinguishability. We evaluate privacy and utility
against state-of-the-art localization attacks and a track-
ing attack. Results show that the frequency of updates
has in fact low significance in the privacy level, princi-
pally in the sporadic release of data. These results pro-
vide practical evidence that the consideration of inde-
pendence between reports can effectively be assumed in
the sporadic scenario. However, in the continuous sce-
nario, the frequency of updates directly impacts the ef-
fectiveness of the attacks, with high frequencies lead-
ing to more privacy disclosure. In such case, obfusca-
tion degraded the correlation between reports and con-
sequently the effectiveness of the attack, thus acting
as a countermeasure to high update frequencies. Our
experiments with several values of the privacy bud-
get reveal that there is an upper bound that is re-
quired for effective privacy protection, such that val-
ues above that threshold will result in no effective pri-
vacy. Moreover, our evaluation depicts a trade-off be-
tween the frequency of reports and the privacy budget of
geo-indistinguishability, showing that lowering the fre-
quency or increasing the the level of noise (i.e. decreas-
ing the privacy budget) are effective measures that can
be applied independently against continuous gathering
of location data.
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