
Proceedings on Privacy Enhancing Technologies ; 2020 (2):537–557

Varsha Bhat Kukkala* and S.R.S Iyengar

Identifying Influential Spreaders in a Social
Network (While Preserving Privacy)
Abstract: In order to disseminate information in a so-
cial network, it is important to first identify the influ-
ential spreaders in the network. Using them as the seed
spreaders, the aim is to ensure that the information is
cascaded throughout the network. The traditional ap-
proach to identifying influential nodes is to determine
the top-r ranked nodes in accordance with various rank-
ing methods such as PageRank, k-Shell decomposition,
ClusterRank and VoteRank. In the current work, we
study the problem of ranking the nodes when the under-
lying graph is distributedly held by a set of individuals,
who consider their share of the data as private informa-
tion. In particular, we design efficient secure multiparty
computation (MPC) protocols for k-Shell decomposi-
tion, PageRank and VoteRank. For improved efficiency,
we employ the oblivious RAM construct in conjunction
with efficient data-oblivious graph data structures. We
are the first to propose a secure variant of the VoteRank
algorithm. We prove that the proposed protocols are
asymptotically more efficient and have lower runtime
in practice than the previous best known MPC proto-
cols for computing k-Shell decomposition and PageRank
centrality scores.

Keywords: privacy, social network analysis, secure mul-
tiparty computation

DOI 10.2478/popets-2020-0040
Received 2019-08-31; revised 2019-12-15; accepted 2019-12-16.

1 Introduction
Each year, millions of dollars are invested in analyzing
the spread of information and diseases across a given
population [1, 2]. Understanding the dissemination of
information through word-of-mouth is crucial for ensur-
ing effective advertising strategies [3]. Similarly, discern-

*Corresponding Author: Varsha Bhat Kukkala:
Indian Institute of Technology Ropar, E-mail: var-
sha.bhat@iitrpr.ac.in
S.R.S Iyengar: Indian Institute of Technology Ropar, E-
mail: sudarshan@iitrpr.ac.in

ing the pattern associated with the spread of diseases
can help mitigate them through targeted interventions
[4]. Since the spread of rumors is known to have great
potential for causing harm [5], governmental institu-
tions have been keen on detecting as well as curbing
their propagation. These are a few examples of scenar-
ios where the broader issue of unraveling the patterns
of a spreading phenomenon is addressed.

An approach often used as a solution to the above-
stated problem is to model the interactions among the
members of the population as a social network. Here,
we denote each entity (individual/organization) as a
node and the interaction between two entities by an
edge between the corresponding nodes. This allows the
use of network analysis techniques (Appendix-A) to in-
vestigate the phenomenon of spreading. A more refined
problem in this direction is that of identifying a set of
initial adopters in the network so as to have the extent of
the spread maximized, popularly termed the influence
maximization problem [6]. The influence of each node in
the overall extent of the spread varies greatly [7] based
on its structural position [8, 9]. In order to efficiently
utilize resources, we would require to identify the influ-
ential spreaders in the underlying network. The classical
approach has been to apply various ranking techniques
to determine the importance of each node. Having ob-
tained the rank of all the nodes, we consider the top
ranked nodes as the candidates for initiating the spread
[3]. The popular methods used to rank nodes based on
their influence include PageRank [10], k-Shell decom-
position [11], VoteRank [3], TwitterRank [12], etc. Re-
cently, a few heuristic algorithms have also been pro-
posed [13, 14].

Most of the algorithms designed to rank nodes as-
sume that the entire graph representing the social net-
work is available as input. These algorithms discount
on the fact that the graph may not always be known
in its entirety. More often than not, the network in-
formation is known in bits and pieces by several data
holders, such that each one of them only has a partial
view of the network. One of the major reasons for the
data to be present in such a distributed setting is due
to the sensitive nature of it. Consider, as an example,
the case of a sexual relationship network. The informa-

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 538

tion of who has had a sexual relationship with whom is
considered to be private information and hence each is
aware of only his/her interactions. Thus, the aggregate
structure of the sexual network of a given population
is never known. However, in order to take preventative
measures to deter the spread of sexually transmitted
diseases, an investigation of the hidden sexual network
is essential, as is identifying the influential nodes in the
network. This theme of identifying influential spreaders
in a network containing sensitive data distributedly held
is recurrent in several networks such as supply chain net-
works [15–17], informal networks in organizations [18],
financial transaction network [19] and terrorist/criminal
networks [20]. Clearly, in such scenarios, algorithms de-
signed to run in the centralized setting cannot be di-
rectly used to compute the rank of nodes, without hav-
ing to compromise the privacy of the involved entities.
Not only do the traditional algorithms expect that the
network be known completely, the run of these algo-
rithms also varies based on the input graph. The con-
trol flow and the memory access pattern during the run
of the algorithm are dependent on the input network
structure. That is, the algorithms are not designed to
be data-oblivious. This poses an additional threat to the
privacy of the concerned individuals, since the inconsis-
tency in the run of the algorithm could in itself leak
sensitive information regarding the underlying network.

The current objective is to determine influential
spreaders in a network, where the data is held in a dis-
tributed setting. Furthermore, it is required to do so
while preserving the privacy of the involved individu-
als by guaranteeing that no information apart from the
set of influential spreaders is revealed. We model the
above problem as an instance of secure multiparty com-
putation (MPC), where multiple parties wish to collec-
tively compute a publicly known function of their pri-
vate inputs. The computation is done in such a way
that each party learns nothing apart from the desired
output. In our case, we assume that there are n data
holders, denoted D1, D2 . . . Dn, who collectively hold
the graph G(V,E) representing the underlying social
network. We assume that the set of nodes V in the
graph is known to all of them. However, the set of
edges representing private interactions is known dis-
tributedly. That is, each data holder Di holds a partial
view Gi(V,Ei) of the graph where Ei ⊂ E, such that
G(V,E) =

⋃n
i=1 Gi(V,Ei) = G(V,

⋃n
i=1 Ei). In the cur-

rent work, we rely on ranking the nodes by using secure
variants of the k-Shell decomposition, PageRank and
the VoteRank algorithms.

1.1 Contributions

The current work largely builds on the tools and tech-
niques of secure computation as well as those of social
network analysis. We aim to bridge the gap in the use of
cryptographic tools for performing social network anal-
ysis. The contributions of the current work can be sum-
marized as follows:
– We identify the need to determine influential

spreaders in distributedly held networks consisting
of sensitive information. In particular, we design
MPC protocols for evaluating k-Shell decomposition
(Section 4) , PageRank (Section 5) and VoteRank
(Section 6) algorithms.

– In order to facilitate an efficient solution, we use
an alternative graph representation known as the
edgelist representation [21]. We provide a detailed
description of how to securely construct the edgelist.

– We consider a two-party scenario and design pro-
tocols that are secure in the semi-honest setting.
When the network data is distributed among more
than two data holders, we reduce the problem to two
representative parties securely evaluating the proto-
cols on behalf of the multiple data holders. Further
details of how the data is distributed among the two
parties is described in Section 3.

– In order to guarantee the security of the designed
protocols, we prove their correctness. We also prove
that the designed protocols are data-oblivious and
thereby show that the run of the protocol is inde-
pendent of the input, except on the size of the input
graph (i.e., the size of the edgelist).

– We evaluate the performance of the designed proto-
cols by implementing them on a secure framework
called Obliv-C [22]. We benchmark the performance
of the protocols for varying graph sizes. We individ-
ually account for the cost of running the protocol
for the edgelist construction and that of the actual
network measure protocol.

– In the case of k-Shell decomposition and PageR-
ank algorithms, we draw comparisons of the perfor-
mance of the current protocols with those proposed
previously in the literature. We show that the cur-
rent protocols outperform the ones previously de-
signed and are hence more practical.

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 539

2 Background

2.1 Secure Multiparty Computation

Introduced by Yao [23], secure multiparty computation
is a branch of cryptography which deals with facilitating
two or more parties to securely evaluate a function, in-
volving private data items supplied as input by each of
them. The notion of security here must guarantee that
each of the involved parties learn nothing other than
the output of the function as well as ensure the cor-
rectness of the computed result. The process of evalu-
ating the function in itself must not leak any additional
information other than the output. However, it is im-
portant to note that anything that a party can infer
from the output itself cannot be avoided. MPC proto-
cols have been designed as a solution for a variety of
problems including secure election [24], auction [25], ge-
nomics [26], etc. The literature reports several generic
protocols that allow the secure evaluation of any com-
putable function, described either as an arithmetic cir-
cuit or as a boolean circuit, under various settings [27–
30]. Although the protocols designed in the current work
can be evaluated using any of the generic approaches,
we rely on the Yao’s garbled circuit approach [30] to
implement them.

2.2 Garbled Circuits

One of the most preferred generic approaches to securely
evaluate a function described as a Boolean circuit is
the garbled circuit technique, credited to Yao [30]. It is
designed to securely compute a function f under the 2-
party setting. One of the parties known as the generator
encrypts the boolean circuit equivalent to f by associ-
ating each input i of the circuit with a pair of keys. The
key pair, denoted by k0

i and k1
i , are representative of

the possible input bits, 0 and 1 correspondingly. Using
these keys, the generator creates encrypted tables for
the possible output across all the gates in the circuit in
such a way that the correct output can be obtained only
when one has keys corresponding to the actual inputs.
This garbled circuit is passed onto the party termed the
evaluator, who would require the keys corresponding to
each of the inputs to evaluate the circuit. The keys cor-
responding to the inputs associated with the generator
are directly passed on to the evaluator. The parties use
an oblivious transfer (OT) protocol for the evaluator to
obtain the keys associated with his inputs. An OT pro-

tocol allows the evaluator to learn precisely one of the
keys k0

j or k1
j , without the generator knowing which of

the two keys were transferred. The output of the circuit
is then generated and collectively decoded.

2.3 Oblivious RAM

Consider a scenario where a client stores an array of
length N on an untrusted server, such that each en-
try of the array is protected from the server. The client
wishes to access the array in such a way that the server
remains oblivious to the access pattern and thus any
sensitive data is prevented from being leaked to the
server. Goldreich and Ostrovsky were the first to pro-
pose the cryptographic primitive of Oblivious RAM to
address the above problem [31]. An ORAM scheme al-
lows the server to maintain a memory structure whose
entries can be manipulated obliviously by the client us-
ing essentially two protocols. The initialization proto-
col allows the client to set up the memory structure
on the server by initializing the entries of the array.
Once initialized, the access protocol translates a given
logical address of the array to a sequence of physical
addresses to the memory structure, using which an el-
ement of interest can be retrieved. The security guar-
antees of the ORAM primitive ensures that the access
pattern during neither the initialization nor the access
protocol leaks any sensitive data to the server. That
is, while initializing data elements of two different ar-
rays of the same size, the physical addresses revealed
to the server in both the cases are indistinguishable.
Similar is the case for the access protocol initiated on
two different logical addresses. Since its inception, sev-
eral ORAM schemes have been developed [32–35], each
aiming to optimize different performance metrics such
as bandwidth, client storage, server memory overhead,
etc. Apart from the traditional client server setting, the
applicability of ORAMs to other scenarios such as se-
cure processors [36, 37], outsourced storage [33, 38] and
multiparty computation [39–41] have been considered.

2.4 RAM Secure Computation

In the generic circuit based approaches to MPC, oblivi-
ous access to a specific private memory location involves
reading all the entries of the memory. Thus, an O(1)
memory access in the RAM model essentially requires
O(N) memory accesses in the circuit model, for a mem-
ory of size N . This reveals the inefficiency of the generic

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 540

circuit model approach to MPC. The RAM model of
secure computation (RAM-SC) counters this by utiliz-
ing the ORAM primitive in conjunction with the circuit
based approach to facilitate oblivious memory accesses
in sub-linear time. As in the case of generic protocols,
all the operations apart from memory accesses are eval-
uated securely using the circuit based approach even in
RAM-SC. Each read/write to a memory location is per-
formed by circuits that emulate ORAM operations. Tra-
ditional ORAM schemes are designed to provide single-
sided privacy guarantees, that is they ensure only client
privacy from the server. However, in an MPC setting,
privacy guarantees must extend to all the involved par-
ties. Thus, all the client side computation is performed
using circuit based secure computation protocols. That
is, we construct circuits on the fly that take the secret
logical address as input and output the translated se-
quence of physical addresses. The security guarantees
of the ORAM scheme in itself allows for the physical
locations to be revealed to the parties. The protected
data items retrieved from these locations are further
processed by circuits which return encoded output that
can be used to update the contents of the accessed phys-
ical locations. This way, the memory accesses are also
made oblivious. Gordon et al. [40] was the first to de-
scribe how any ORAM scheme in the client server model
can be adapted for use with any generic two-party se-
cure computation protocol. Following this, several works
in the literature have considered improving ORAMs for
the specific case of secure computation [39, 41–44]. The
Circuit ORAM scheme [43] is known to be the most ef-
ficient for use in MPC with respect to its asymptotic
complexity. However, the recent contribution by Zahur
et al. [44] shows the Square-Root ORAM scheme to be
better than Circuit ORAM for practical data sizes. Fur-
thermore, the Square-Root ORAM scheme offers a more
efficient approach to initializing the oblivious memory
structure. Hence, in the current work, we rely on the
Square-Root ORAM scheme for implementing the de-
signed protocols and refer the reader to [44] for further
details.

2.5 Security Model

While designing MPC protocols, we must define the
computational capabilities of the parties and the ex-
tent of corruption, under which the security guarantees
hold. In the current work, we design protocols under
the 2-party setting that are guaranteed to be secure in
the semi-honest model. That is, we assume that the

two parties neither collude nor do they deviate from
the protocol. Most of the sensitive social interactions
currently investigated use trusted third parties, which
requires that the data holders disclose their private in-
formation completely to a third party. For example, an
external agency such as Keyhubs [45] is hired to per-
form network analytics based on the informal interac-
tions between the employees of the consulting organiza-
tion. In comparison to this, considering a semi-honest
threat model is clearly advantageous since the disclo-
sure of private data can be completely avoided. Addi-
tionally, the semi-honest model fits well with scenarios
where the parties are inherently known to be honest,
as in the case of governmental institutions investigating
criminal networks [20], and are bound by statutory laws
from disclosing their data to one another. Since the pri-
vate data considered is that of a social network, we must
also cater to the possibility that the underlying network
is collectively known among multiple data holders. In
such a case, each of them secret shares (e.g. secure XOR
shares) their view of the network among two representa-
tive parties, who now hold the network data distribut-
edly. The two representative parties, here on referred
to as P1 and P2, run the designed 2-party protocols on
behalf of all the data holders to compute the desired
network measure. Further details of how the network
data is distributed and stored is described in Section 3.
Determining the ideal candidates for the role of parties
P1 and P2 is application scenario specific. Hence, further
details of the same lie beyond the scope of the current
work. Additionally, the stronger threat model of a mali-
cious setting where the parties are capable of colluding
and deviating from the protocol is not addressed here.

2.6 Notation

In order to increase the readability of the protocols as
well as to keep them compact, we follow a few con-
ventions. First is to note the distinction between the
two types of variables used. Some variables store pub-
licly known data values while the others store sensitive
and private data. In order to distinguish between them,
only those with private data are specified within an-
gular brackets (〈 〉). It is indicative of the fact that
the value of the variable is distributedly held (e.g. se-
cret shared) among parties P1 and P2. An array can
be stored in the ORAM when we want to access its
entries in an oblivious manner without revealing the
array indexes. The ORAM protocols discussed previ-
ously are used in this case. We distinguish the read write

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 541

operations of an ORAM scheme through separate sub-
routines of OramRead() and OramWrite(). The routine
OramRead() takes two input parameters, the first is the
name of the ORAM array, while the second is a private
variable that stores the logical address in the memory
that needs to be read. The value read at the input loca-
tion is returned as a private value. On the other hand,
the OramWrite() routine takes three input parameters
and has no return value. The first parameter denotes
the name of the ORAM array, the second and third
are private variables that store the logical address of
the memory location and the new content to be written
correspondingly. Another aspect of the designed proto-
cols is the use of oblivious if-else construct, whose func-
tionality differs from a regular if-else construct. Typ-
ically, the construct allows for selectively executing ei-
ther the statements within the body of if or those within
else, based on the truth/falsity of the associated condi-
tional statement. This leaks sensitive information if the
construct is conditioned on private variables. Hence, to
avoid this, an oblivious if-else construct executes state-
ments within both the branches in such a way that the
effect of only one of the branches is reflected [22]. In
the designed protocols, an oblivious if-else construct is
denoted within angular brackets (i.e. 〈if〉 and 〈else〉).

In general, we consider the data items to consist of
integer values. However, in some cases such as in the
PageRank protocol, we might have to deal with frac-
tional values as well. In order to distinguish these, vari-
ables/arrays storing floating point values are appended
with a tilde over their labels (e.g.. X̃ where X can be
either a variable or an array name). We use the fixed
point notation to deal with real valued data items as
it is easy and efficient to implement. Each real value
is mapped to an integer by scaling and then rounding
off. That is, for a real value r, the integer equivalent
would be int(r) = d(r × S)e, where S is the scaling fac-
tor. Performing arithmetic operations on the real values
followed by obtaining the integer equivalent of the result
can be directly adapted to performing the operations on
the integer representations itself. The real valued end re-
sult is retrieved by mapping the obtained integer result
to its equivalent real value.

3 Graph Representation
An important factor contributing to the efficiency of
the designed protocols is the manner in which the in-
put graph is stored and dealt with. Most of the previous

works that deal with securely computing over network
data prefer to store the underlying graph using the ad-
jacency matrix representation [46–48]. When each entry
of the matrix is protected (i.e. through secret sharing or
encryption), this representation only reveals the number
of nodes (|V |) in the graph. This representation is well
suited for data-oblivious settings and its space complex-
ity is O(|V |2). However, considering real world networks
that are known to be very sparse [49], where the number
of edges is of the order of number of nodes, the adja-
cency matrix representation is space inefficient. As a
space efficient alternative for real world graphs, we uti-
lize the edgelist representation [21]. The edgelist stores
the input graph G(V,E) as a 2-tuple (E , Idx), where E
is an ordered list of edges while Idx stores a list of in-
dexes to particular entries of E . Each node is assigned a
label starting from 0 to |V | − 1. The list E stores all the
neighbors of node 0, followed by the neighbors of node
1, 2, 3 . . . (|V | − 1), in the same order. The last entry of
E is {−1} signifying a null entry and is used for the
purposes of implementation. Thus, the space complex-
ity of E is |E| + 1. In order to delimit the neighbors of
one node from the other, the ith entry of list Idx stores
the first index of E from where the enumeration of the
neighbors of node i begins. The last entry of Idx points
to the last entry of E and the space complexity of it is
|V |+ 1. Thus, the overall space complexity of the edge-
list (E , Idx) is precisely |V |+ |E|+ 2, which in the case
of real world graphs is of O(|V |). Unlike the adjacency
matrix representation, the edgelist reveals not only the
number of nodes but also the total number of edges, by
virtue of the length of lists Idx and E respectively.

3.1 Edgelist Construction

We first consider the scenario where the network data
is collectively known by two data holders and thus they
themselves are the computing parties P1 and P2. Each
of the parties P1, P2 holds a subset of edges E1, E2 cor-
respondingly as their private data, such that the set of
all edges E = E1∪E2. For each edge (u, v) ∈ Ei, party Pi

creates shares of (〈u〉, 〈v〉) and distributes a share each
to the other party. Thus, the parties distributedly hold
shares of the set of all edges, which they obliviously
sort [50–54] based on the first entry 〈u〉 of each tuple
(〈u〉, 〈v〉). After obtaining the sorted list of shares, only
the second entry 〈v〉 of each tuple is retained, which in
turn constitutes entry wise shares of the list E . Append-
ing the corresponding shares of the value −1 to this list
concludes the construction of the list E . Let the entries

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 542

of the list Idx be denoted by Idx[0], Idx[1], . . . Idx[|V |].
By the definition of Idx, we can conclude that the first
entry of Idx is always 0 and hence the parties P1 and
P2 distribute shares of 0 among themselves. In general,
Idx[i] = Idx[i− 1]+ degree of node i− 1. For each node
i, let di1 represent the number of edges emanating from
i reported by party P1 and di2 represent those reported
by P2. Degree of node i, denoted by degi, can be com-
puted as degi = di1 + di2. Each party Pj distributes
a share of 〈dij〉 to the other. Since all the distributed
shares are additive in nature, each party obtains shares
of 〈degi〉 by locally computing the addition of the shares
〈di1〉+ 〈di2〉. This in turn allows the parties to compute
shares of each entry Idx[i]. As in the case of E , the
parties P1 and P2 obtain the shares of the last entry
Idx[|V |] by distributing shares of the value |E| among
themselves. This concludes the construction of the edge-
list, with parties P1 and P2 each having a share of its
entries. These shares are further used to initialize the
edgelist as ORAM arrays if required by the secure pro-
tocol for the corresponding network measure.

The above construction can be extended to the case
where there are more than 2 data holders. The comput-
ing parties P1 and P2 can be picked from the set of data
holders itself or the computation can be outsourced to
two semi-honest third parties. The privacy of the data
holders is guaranteed in either case since the comput-
ing parties are assumed to be semi-honest and provide
the shares of the output to the required data holders.
The changes required in the construction are as listed
below. Firstly, it is required that the number of edges
reported by each data holder is kept hidden. The data
holders fix on a constant k that represents an upper
bound on the number of edges reported by them indi-
vidually. An ideal approach to determine k is to securely
compute the maximum number of edges reported across
all the data holders. Thus, each data holder distributes
k shares of data items representing their private edges
(〈u〉, 〈v〉), padded by dummy entries symbolically de-
noted as (〈∞〉, 〈∞〉). As in the previous case, P1 and P2
obliviously sort the list of obtained shares. The largest
value k can attain is |V |−1, as a node could be neighbors
with every other node in the graph. In such a case, the
complexity of constructing the edgelist would boil down
to the cost of performing oblivious sort on a list with
(|V |2 − |V |) entries. Assuming a data-oblivious sorting
technique such as the Batcher algorithm [51], this would
amount to O(|V |2 log2 |V |) operations. Despite having a
high worst case time complexity, the cost of construct-
ing the edgelist can be seen as a one-time process and is
hence discounted when reporting the asymptotic com-

plexity of the designed protocols. Unlike in the previous
case, the data holders additionally perform secure ad-
dition to determine the total number of edges |E| and
the result is made public. This allows parties P1 and P2
to retain only the first |E| entries of the sorted list as
the shares of valid edges. The shares of the list Idx can
be constructed as described before. The only difference
would be that all the data holders would be involved
in performing secure addition to determine the degree
of each node. We assume that the data holders are also
semi-honest. Thus, it is expected that each of the data
holders not only report a fixed number of edges (valid +
dummy) but also provide correct shares of the number
of valid edges reported.

4 k-Shell Decomposition
As an alternative to measuring cohesiveness of a net-
work through its density, Seidman proposed the idea of
k-cores that recursively decomposes the network into co-
hesive subgraphs known as cores [55]. The process frag-
ments the network into a sequence of subgraphs such
that each is a subgraph of the preceding graph and has
higher cohesiveness. It was later observed that decom-
posing the graph into cores also helps in better identi-
fying the most influential nodes in the network [11, 56].
The innermost core nodes are known to be influential
spreaders of information, diseases, etc. The formal def-
inition of k-cores and the algorithm to identify them is
discussed further.

Definition 1. Given a graph G(V,E), consider the sub-
graph Gk induced by the largest vertex set Vk, such that
Vk ⊆ V and ∀v ∈ Vk the degree of v in Gk is at least
k. Such an induced subgraph Gk is called the k-core of
graph G.

We can thus construct a sequence of subgraphs satisfy-
ing the above definition, as shown below, where Gi ≤ Gj

denotes that the graph Gi is a subgraph of graph Gj :

Gk ≤ Gk−1 ≤ . . . G2 ≤ G1 ≤ G0 = G(V,E)

This process of decomposing the graph into cores assigns
each node a unique shell number.

Definition 2. Given the i and i + 1 cores of a graph
G(V,E) as Gi and Gi+1, for every vertex v ∈ V we
define shell(v) = i if v ∈ Gi −Gi+1.

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 543

Batagelj and Zaversnik were the first to propose an effi-
cient technique known as the k-Shell decomposition al-
gorithm [57] to determine the cores of a given network.
The algorithm follows an iterative approach to prune
few nodes in each iteration. All nodes with degree less
than i are pruned in the ith iteration and assigned shell
value i. The process repeats by considering the graph
that remains, i.e. the (i + 1)-core. The pseudocode for
the same is given in Figure 1. It has two nested for

loops, in steps 2 and 4, of which the number of iterations
of the inner for loop is dependent on the node currently
set to be pruned in the outer loop. This shows that the
algorithm is input graph dependent. We provide a data-
oblivious equivalent in Figure 2 by coalescing the loops
[58] such that, in each iteration we either access an el-
ement of the sorted vertex list or access a neighbor of
the current node in list E .

Input: Graph G(V, E)
Output: shell(v), for each v ∈ V

1: V ← sorted list of vertices based on their degree
2: for each v ∈ V in the order do
3: shell(v) ← degree(v)
4: for each u neighbor of v do
5: if degree(u) > degree(v) then
6: degree(u) ← degree(u) − 1
7: Re-order the vertices in V accordingly
8: end if
9: end for

10: end for

Fig. 1. Pseudocode for k-Shell Decomposition Algorithm

4.1 Protocol Description

The protocol expects that the input graph in the edge-
list representation is made available, with E and Idx

stored as individual ORAM arrays. We initialize other
ORAM arrays namely deg, vert, pos and bin that are
used further in the protocol. The array deg maintains
the degree of all nodes. The array vert maintains the list
of nodes in the sorted order of their degrees throughout
the run of the protocol. As the position of a node in this
array may be affected by the pruning of its neighbors,
a separate array named pos is maintained to keep track
of the position of each vertex in the sorted list vert. Ad-
ditionally, we maintain certain indexes of the vert array
that allows us to group nodes having the same degree.
For this purpose, the array bin maintains a list of point-
ers such that ith entry of the array stores the index of
the first node in vert having degree i. The protocol be-
gins by computing the degree of each node and updates
the deg array accordingly (steps 4-11). We simultane-
ously keep track of the number of nodes encountered of

Input: Graph (E, Idx)
Output: deg(v) ∀v ∈ V , denoting the shell value of node v

1: Initialize deg and pos each as an ORAM array of length |V | with
entries set to 0

2: Initialize bin as an ORAM array of length |V | − 1 with each entry
set to 0

3: Initialize vert as an ORAM array of length |V | with every ith entry
set as i

4: for i = 0 to |V | − 1 do
5: 〈temp1〉 ← OramRead(Idx,〈i + 1〉)
6: 〈temp2〉 ← OramRead(Idx,〈i〉)
7: 〈temp3〉 ← 〈temp1〉 − 〈temp2〉
8: OramWrite(deg,〈i〉,〈temp3〉)
9: 〈temp2〉 ← OramRead(bin,〈temp3〉)+1

10: OramWrite(bin,〈temp3〉, 〈temp2〉)
11: end for
12: Oblivious_sort(vert, deg)
13: 〈start〉 ← 0
14: for i = 0 to |V | − 1 do
15: 〈temp1〉 ← OramRead(bin,〈i〉)
16: OramWrite(bin,〈i〉, 〈start〉)
17: 〈start〉 ← 〈start〉 + 〈temp1〉
18: 〈temp2〉 ← OramRead(vert,〈i〉)
19: OramWrite(pos,〈temp2〉, 〈i〉)
20: end for
21: 〈i〉 ← 0
22: 〈v〉 ← OramRead(vert, 〈i〉)
23: 〈j〉 ← OramRead(Idx, 〈v〉)
24: for iter = 1 to |V | + |E| − 1 do
25: 〈if〉 (〈j〉 == OramRead(Idx, 〈v + 1〉)) then
26: 〈i〉 ← 〈i〉 + 1
27: 〈v〉 ← OramRead(vert, 〈i〉)
28: 〈j〉 ← OramRead(Idx, 〈v〉)
29: 〈else〉
30: 〈u〉 ← OramRead(E, 〈j〉)
31: 〈temp1〉 ← OramRead(deg, 〈u〉)
32: 〈temp2〉 ← OramRead(deg, 〈v〉)
33: 〈if〉 〈temp1〉 > 〈temp2〉 then
34: 〈du〉 ← OramRead(deg, 〈u〉)
35: 〈pu〉 ← OramRead(pos, 〈u〉)
36: 〈pw〉 ← OramRead(bin, 〈du〉)
37: 〈w〉 ← OramRead(vert, 〈pw〉)
38: 〈if〉 (〈u〉! = 〈w〉) then
39: OramWrite(pos, 〈u〉, 〈pw〉)
40: OramWrite(vert, 〈pu〉, 〈w〉)
41: OramWrite(pos, 〈w〉, 〈pu〉)
42: OramWrite(vert, 〈pw〉, 〈u〉)
43: end 〈if〉
44: 〈temp〉 ← OramRead(bin, 〈du〉)+1
45: OramWrite(bin, 〈du〉, 〈temp〉)
46: 〈temp〉 ← OramRead(deg, 〈u〉)−1
47: OramWrite(deg, 〈u〉, 〈temp〉)
48: end 〈if〉
49: 〈j〉 ← 〈j〉 + 1
50: end 〈if〉
51: end for

Fig. 2. Protocol for computing k-Shell decomposition securely

a particular degree which is temporarily stored in bin.
We then sort the list of vertices in vert with respect to
their degree (step 12) using Batcher sort [51]. In steps
14-20, the intended content of the arrays pos and bin are
generated. The temporary information currently stored
in the bin array is itself used to compute the index of
the first node in vert having a particular degree. This
ends the initialization phase of the protocol.

The pruning of nodes to securely determine the shell
number of each node is performed in the for-loop be-
tween steps 24-51. In each iteration of the loop, we ei-
ther determine the next node to be pruned by scanning
through vert array or prune the current node by updat-
ing the degree of its neighbors. The private variable 〈i〉
stores the index of the current node being accessed from
the vert array, while 〈j〉 is used to scan over the list of
neighbors in array E . The oblivious if branch at step 25
scans over vert array and the else branch between steps
29-50 scans over the array E . The private variable 〈v〉
denotes the vertex that is currently being pruned, while
its neighbor currently being processed is stored in 〈u〉.

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 544

In steps 33-48, we process the neighbor u of node v by
reducing the degree of u in case it is of a higher degree
than v. We accordingly adjust the position of node u
to maintain the sorted ordering in vert. This is done by
initially swapping node u with node w, where w denotes
the first node in vert having degree equal to that of u.
Further, the degree of u is reduced and thereby included
as a node in the previous bin. The corresponding index
of the bin array is updated, and the changes to the po-
sitions of node u, w are reflected in the pos array. The
updated degree of each node at the end of the protocol
itself denotes the shell value assigned to the node.

4.2 Analytical Evaluation

4.2.1 Complexity

From the pseudocode described in Figure 1, we can con-
clude that the complexity of performing k-Shell decom-
position is O(|E|). The two nested for-loops contribute
to a total of |E| iterations. Further, assuming that the
re-ordering of nodes in step 7 can be achieved using
a constant number of swaps, the overall complexity of
the algorithm remains O(|E|). Since the described al-
gorithm is not inherently data-oblivious, a direct trans-
lation of the same into an MPC protocol using generic
MPC constructs is not feasible. Considering the pro-
tocol in Figure 2, the major contribution to its com-
plexity is by the for-loop in step 24. The instructions
within the loop are iterated over |V | + |E| − 1 num-
ber of times, which is also an upper bound for the
number of iterations of other loops in the protocol.
Each iteration of the loop consists of performing a con-
stant number of ORAM array accesses. Thus, the com-
plexity of executing |V | + |E| iterations of the loop is
O((|V |+|E|)f(O(|E|))) operations. Henceforth, f(n) de-
notes the overhead of performing an ORAM access over
an array of length n. Since the underlying graphs rep-
resent real world networks that are known to be sparse,
the length of each of the ORAM arrays can be bounded
by O(|E|). Assuming the complexity of performing data-
oblivious sorting is O(n(log(n))2) over an n length array
[51], the overall complexity of the protocol is given by
O((|V |+ |E|)f(O(|E|)) + (|V | log2 |V |)). Although there
are other alternatives with lower asymptotic complex-
ity to oblivious sort an array [50, 52–54], we use the
Batcher sorting technique throughout our work due to
its efficiency in practice as well as its deterministic ap-
proach to sorting.

4.2.2 Security

Since the protocols are designed in the semi-honest ad-
versarial model, proving that the protocol is secure en-
tails to guaranteeing its correctness and privacy. Cor-
rectness of a protocol ensures that the output gener-
ated by the protocol is the same as the intended result.
The correctness of the protocol in Figure 2 follows from
the instruction sequence directly. It can be ascertained
by the protocol description provided in Section 4.1. A
protocol is said to preserve privacy if it ensures that no
information other than the desired output is revealed.
Since each of the designed protocols performs compu-
tation on protected data and no intermediary values
are released apart from the desired output, the secu-
rity of the protocol boils down to what is leaked by
the access pattern during the run of the protocol in it-
self. This is the reason that we focus on proving the
data-obliviousness of the protocols to establish that the
access pattern of the protocol is independent of the un-
derlying graph structure and hence preserves privacy.
Translating a data-oblivious algorithm into its equiva-
lent MPC protocol is feasible when the primitive oper-
ations assumed in the algorithm can be performed se-
curely using MPC constructs. The primitive operations
assumed in our case are limited to arithmetic opera-
tions of addition, subtraction, multiplication and divi-
sion. Since these operations can be securely performed
using the generic construct of garbled circuits, we prove
the data-obliviousness of the designed protocols as fol-
lows. All the arrays - deg, bin, vert, pos, E , Idx are stored
in the ORAM. Hence, the access pattern of these arrays
do not leak any information about the elements being
accessed. Throughout the protocol, apart from access-
ing elements of the arrays in the ORAM, we perform
addition and subtraction operations that are assumed
as primitive operations and hence are oblivious. In step
10, we sort the array vert, which can be performed data-
obliviously. All the for loops in the protocol are exe-
cuted a publicly known number of times. As described
in Section 2, the if-else construct can be realized data-
obliviously. Hence the sequence of operations remain the
same for a fixed-size input and therefore the overall pro-
tocol remains data-oblivious. Moreover, none of the de-
signed protocols modifies these underlying primitives in
any way that has an effect on their security properties,
and hence we claim that the privacy guarantees of the
designed protocols also hold.

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 545

5 PageRank
The World Wide Web can be visualized as a network,
where web pages are denoted by nodes and the hyper-
links between them are represented by edges. Page et
al. [10] proposed an algorithm to rank these web pages
based on the underlying hyperlink structure, popularly
known as the PageRank algorithm. The algorithm as-
sociates a centrality value to each node that quantifies
its importance. The PageRank algorithm recursively de-
fines the centrality of a node to be proportional to the
sum of the centralities of those nodes having incoming
links to the considered node. Since its inception, it has
been used to find influential nodes in networks includ-
ing citation networks and social networks [59, 60]. We
adopt the iterative method to compute PageRank cen-
trality. The method is briefly described here. All the
nodes begin with an equal share of the PageRank cen-
trality value. Every vertex distributes a predetermined
fraction of its PageRank value equally among all of its
neighbors (i.e., through the outgoing links). In the case
of no outgoing links, the node retains this fraction of
the PageRank with itself. The remaining fraction of its
PageRank value is uniformly redistributed to all nodes
in the network. This constitutes an iteration of the
PageRank algorithm. Therefore, in each iteration, the
PageRank value of a node is computed as the sum to-
tal of all the shares it receives through its in-links and
those received through the uniform redistribution. The
uniform redistribution of the PageRank values among
all nodes is performed to ensure that nodes having zero
outgoing links do not end up accumulating the overall
centrality measure. It is well established that the cen-
trality values will converge as the number of iterations
increase [10]. In order to simplify the process of comput-
ing the PageRank centrality, we define the notion of an
update matrix and an update rule. Let G(V,E) represent
the graph of interest. The out-degree of a node u ∈ V is
defined as the number of its outgoing links, denoted as
od(u).

Definition 3. The update matrix for a graph G(V,E)
is denoted by N = [Nij] with size (|V |×|V |). The entries
of the matrix are defined as follows:

Nij =

s

od(i) + (1−s)
|V | if od(i) 6= 0 and {i, j} ∈ E

s+ (1−s)
|V | if od(i) = 0 and i == j

(1−s)
|V | otherwise

The entry Nij of the update matrix denotes the fraction
of the PageRank value that node i contributes to the
overall centrality of node j. The definition includes a
redistribution parameter s that determines the fraction
of PageRank to be reserved for outgoing links. Thus,
the remaining (1− s) fraction of each node’s PageRank
value is uniformly distributed among all nodes in the
network.

Definition 4. Let r(k)
i represent the PageRank value of

node i after k iterations. The PageRank update rule is
defined as follows:

r
(k)
i ←

n∑
j=1

Njir
(k−1)
j

The repeated application of the PageRank update rule
allows us to iteratively compute the PageRank centrali-
ties of all the nodes in the network. To support a space
efficient graph representation, an algorithm to compute
PageRank for the case when the input graph is in the
adjacency list format is provided in Figure 3. There
are several aspects of this algorithm that render it non-
oblivious. The branching of the if-else construct in steps
6-12 is dependent on the input graph structure. Further,
the number of times the for-loop in step 7 is executed
depends on the length of the adjacency list of the current
node. The entries of the PageRank vectors r(k) here are
accessed in an input-dependent manner. The advantage,
however, is that there is no need to maintain the matrix
N explicitly. An equivalent oblivious algorithm to com-
pute PageRank using the adjacency matrix representa-
tion is described in Appendix B. We design an MPC
protocol to compute the PageRank values of nodes, by
incorporating modifications to the algorithm in Figure
3. Our protocol, as described in Figure 4, assumes the
edgelist representation for the input graph.

5.1 Protocol Description

The protocol in Figure 4 takes three input parameters,
consisting of the edgelist representation (E , Idx) of the
underlying graph, the number of iterations denoted by l
and the PageRank redistribution parameter s. The lists
E and Idx are provided as individual ORAM arrays.
The protocol begins by initializing three ORAM arrays
od, ∼rold and ∼rnew, each of length |V |. The ith entry of
od array serves to store the out-degree of node i. Since
updating the PageRank values of nodes in the current it-
eration requires knowledge of their previous PageRank
values, we maintain two different ORAM arrays, ∼rold

and ∼rnew, to store the PageRank values of both the it-

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 546

Input: Graph G(V, E), l, s
Output: The PageRank values of all the nodes

1: Initialize r
(0)
i
← 1/|V | for 1 ≤ i ≤ |V | (all other r(k) vectors are

initialized as zero vectors for k ≥ 1)
2: for k = 1 to l do
3: pool ← 0
4: for i = 0 to |V | − 1 do
5: odi ← out degree of node i
6: if odi 6= 0 then
7: for each j neighbor of i do
8: r

(k)
j
← r

(k)
j

+ {s/odi × r
(k−1)
i
}

9: end for
10: else
11: r

(k)
i
← r

(k)
i

+ {s × r
(k−1)
i
}

12: end if
13: pool ← pool + {(1 − s) × r

(k−1)
i
}

14: end for
15: for i = 0 to |V | − 1 do
16: r

(k)
i
← r

(k)
i

+ {pool/|V |}
17: end for
18: end for

Fig. 3. Pseudocode for iterative PageRank Algorithm using adja-
cency list

erations. To begin with, all the nodes have the same
centrality value 1/|V | as initialized in the array ∼rold.
The for-loop in steps 3-8 determines the out-degree of
each of the nodes using the entries of the Idx array,
and stores the result in the array od. The for-loop in
steps 9-42 is the heart of the protocol that computes
the PageRank values through the repeated application
of the PageRank update rule (Definition 4). Each iter-
ation of the for-loop requires that a few private vari-
ables be maintained. The private variable 〈cur_node〉
maintains the current node whose neighbors are being
explored, while 〈cur_vote〉 stores its PageRank value
available for distribution through the outgoing links.
The variable 〈cur_deg〉 stores the number of neighbors
of 〈cur_node〉. The variable 〈cur_indx〉 stores the index
of the current edge in E that is to be processed. Lastly,
the variable 〈pool〉 accumulates the fraction of PageR-
ank value contributed by all the nodes intended to be
redistributed uniformly across all of them. The private
variables 〈temp〉, 〈temp1〉, 〈temp2〉 and 〈temp3〉 are just
a few temporary variables used for increasing the read-
ability of the protocol. The for-loop between steps 15-
35 either updates the next node to be explored or scans
over the list of edges of the current node stored in the
array E , one after the other, while simultaneously updat-
ing the PageRank value of the nodes accordingly. The
oblivious if -construct in step 17 determines whether all
the neighbors of the current node have been explored.
This in turn would imply that the current node must
be updated with the next node and update the other
private variables accordingly (steps 25-27). Prior to up-
dating the current node, the 〈pool〉 variable accounts for
its contribution of PageRank value intended for uniform
distribution across all nodes (step 24). Additionally, the
special case when the current node has no neighbors is

Input: Graph (E, Idx), l, s
Output: The PageRank values of all the nodes

1: Initialize od as an |V | length ORAM array

2: Initialize
∼
rold and

∼
rnew as |V | length ORAM arrays with each entry

set as 1
|V |

and 0 respectively.

3: for i = 0 to |V | − 1 do
4: 〈temp1〉 ← OramRead(Idx, 〈i〉)
5: 〈temp2〉 ← OramRead(Idx, 〈i + 1〉)
6: 〈temp3〉 ← 〈temp2〉 − 〈temp1〉
7: OramWrite(od, 〈i〉, 〈temp3〉)
8: end for
9: for k = 1 to l do

10: 〈cur_node〉 ← 0

11: 〈cur_vote〉 ← OramRead(
∼
rold, 〈cur_node〉)

12: 〈cur_deg〉 ← OramRead(od, 〈cur_node〉)
13: 〈cur_indx〉 ← 0
14: 〈pool〉 ← 0
15: for i = 0 to |E| + |V | − 1 do
16: 〈temp〉 ← OramRead(Idx, 〈cur_node + 1〉)
17: 〈if〉 {〈cur_indx〉 == 〈temp〉} then
18: 〈if〉 〈cur_deg〉 == 0 then

19: 〈temp1〉 ← OramRead(
∼
rnew, 〈cur_node〉)

20: 〈temp2〉 ← 〈s〉 × 〈cur_vote〉
21: 〈temp3〉 ← 〈temp1〉 + 〈temp2〉

22: OramWrite(
∼
rnew, 〈cur_node〉, 〈temp3〉)

23: end 〈if〉
24: 〈pool〉 ← 〈pool〉 + (〈1 − s〉 × 〈cur_vote〉)
25: 〈cur_node〉 ← 〈cur_node〉 + 1

26: 〈cur_vote〉 ←OramRead(
∼
rold, 〈cur_node〉)

27: 〈cur_deg〉 ← OramRead(od, 〈cur_node〉)
28: 〈else〉
29: 〈nbr〉 ← OramRead(E, 〈cur_indx〉)

30: 〈temp1〉 ← OramRead(
∼
rnew, 〈nbr〉)

31: 〈temp2〉 ← 〈temp1〉 +
(
〈s〉×〈cur_vote〉
〈cur_deg〉

)
32: OramWrite(

∼
rnew, 〈nbr〉, 〈temp2〉)

33: 〈cur_indx〉 ← 〈cur_indx〉 + 1
34: end 〈if〉
35: end for
36: for i = 0 to |V | − 1 do

37: 〈temp1〉 ← OramRead(
∼
rnew, 〈i〉)

38: 〈temp2〉 ← 〈temp1〉 + 〈pool〉
|V |

39: OramWrite(
∼
rold, 〈i〉, 〈temp2〉)

40: OramWrite(
∼
rnew, 〈i〉, 〈0〉)

41: end for
42: end for

Fig. 4. Protocol for computing PageRank values of nodes securely

handled (steps 18-23) by ensuring the node retains a
fraction of its PageRank value with itself. The steps 29-
33 handles the case where the list of neighbors of the
current node are yet to be fully explored. The private
variable 〈nbr〉 stores the neighbor of the current node, as
read from the array E . We update the PageRank value
of node nbr by including the current node’s contribu-
tion to it. Further, we update the variable 〈cur_indx〉
to point to the next edge to be processed. At the end of
the for-loop in step 35, all the nodes in the array E are
processed and their PageRank value received through
the incoming links are accounted for. Thus, the for-loop
in 36-41 accounts for updating the PageRank values of
nodes by uniformly distributing the centrality value ac-
cumulated in the pool variable. The protocol concludes
by repeating the above process a fixed number of times,
as determined by the input parameter l.

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 547

5.2 Analytical Evaluation

5.2.1 Complexity

The iterative approach using the adjacency list rep-
resentation (refer Figure 3) has the overall complex-
ity of O(l(|E| + |V |)). In each of the l iterations, we
require O(|E|) operations to scan through the list of
neighbors of all the nodes and O(|V |) operations to dis-
tribute the PageRank value aggregated in the pool The
non-oblivious nature of the above algorithm prevents
it from being directly implemented using generic MPC
constructs. Since our protocol for computing PageRank
centrality (refer Figure 4) is designed to take advantage
of the sparsity of real world networks (i.e. |E| = O(|V |)),
we can generalize that the ORAM arrays used in the
protocol are of length O(|E|). The protocol essentially
involves computing the PageRank values through scan-
ning the edgelist followed by finalizing the PageRank
value of each node by accounting for the uniform re-
distribution. This is performed over O(|E| + |V |) iter-
ations of the for-loop in steps 15-35. Given that the
above process is repeated l times and that a constant
number of ORAM accesses are made in each iteration,
the overall complexity of the protocol can be given by
O(l(|E| + |V |)f(O(|E|))). Owing to the sparsity of the
underlying graph, the complexity can be further reduced
to O(l|V |f(O(|V |))).

5.2.2 Security

The protocol instructions, as described in Section 5.1,
account for all the three cases of PageRank value dis-
tribution - to the neighboring nodes through the out-
going links, the uniform redistribution to all nodes in
the graph and the special case of retaining the PageR-
ank value when the node has no outgoing links. Thus,
the output generated by the protocol is the same as
the pseudocode described in Figure 3. All of the sensi-
tive data are stored in private variables/arrays, which
are distributedly held, and is ensured that their val-
ues are not disclosed in the open. Furthermore, to pre-
vent the leakage of information through memory ac-
cesses, those arrays with input-dependent memory ac-
cesses are stored as ORAM arrays. The protocol replaces
the input-dependent loops of the algorithm with equiv-
alent loops having a fixed number of iterations. The
two nested for loops in steps 4-14 of the pseudocode
for PageRank (Figure 3) are now coalesced into a sin-
gle for loop as given in step 15 of the protocol. Al-

though this results in an increase in the total number
of iterations from |E| to |E| + |V | − 1, the additional
|V | − 1 iterations are required to obliviously update the
next node to be processed. However, it is important to
note that the overall functionality of the nested loops is
preserved. The input-dependent branch statements are
also replaced by oblivious if-else constructs. The above
mentioned reasons justify the data-obliviousness of the
protocol, which in turn guarantees privacy.

6 VoteRank
There exists a possibility that the sphere of influence of
the top-k influential nodes picked from a given network
overlaps. In order to overcome this undesirable effect,
Zhang et al. [3] proposed a simple yet effective method
to identify most influential nodes in the network. Similar
to PageRank, the authors propose an iterative approach
in which the most influential nodes are elected one by
one, while considering only local information.

Definition 5. Voting score of a node u ∈ V , denoted by
su, is the total votes obtained by u through its neighbors.
Voting ability of u on the other hand, denoted by vau,
is the vote that u contributes to each of its neighbors.
Thus, given the input graph G(V,E), each node u ∈ V
is associated with a tuple (su, vau).

The pseudocode for computing VoteRank and determin-
ing the top r influential nodes is as described in Figure 5.
It begins by initializing the tuple (su, vau) for each node
u as (0, 1). In every iteration (Steps 2-22), we compute
the score of each node by aggregating the votes provided
by its neighbors, as given in Step 3-7. The node with the
highest votes (i.e. node vmax) is picked as the most influ-
ential node in Steps 8-13. From here on, its voting ability
as well as its score is set to zero (Step 14). In Steps 15-21,
the scores and the voting ability of nodes are updated.
The voting ability of only those nodes which have vmax

as one of its neighbors is reduced by a predetermined
factor fact, restricting other nodes in the neighborhood
from being elected. Further, to disallow the participa-
tion of vmax in the up-coming iterations, it is deleted
from the list of neighbors of nodes in step 18. In step
20, the scores of all the nodes are reset to 0 in order
to ensure a fresh start to voting in the next iteration.
This entire process is repeated r times From the pseu-
docode described above, we can conclude the following
regarding the data-oblivious aspects of it. The for-loop

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 548

in step 4 is not data-oblivious as the number of times
it is executed depends on the number of neighbors that
the current node being explored has. Determining the
node with maximum score is part of the desired out-
put, however, the evaluation of the conditional in step
11 can reveal the relative ordering of the scores among
some of the nodes in the network. Such conclusions can
be drawn each time the vmax is updated. Similarly, the if
conditional in step 16 is also input-dependent, possibly
revealing the network structure. In order to counter the
above mentioned issues, we design a secure MPC pro-
tocol for computing VoteRank, as described in Figure
6.

Input: Graph G(V, E)
Output: Computing the top-r ranked nodes based on VoteRank

1: Initialize the (su, vau) tuple for all u ∈ V as (0,1)
2: for i = 1 to r do
3: for each node v ∈ V do
4: for u neighbor of v do
5: su ← su + vav

6: end for
7: end for
8: vmax ← 0
9: for each node v ∈ V do

10: if sv ≥ svmax
then

11: vmax ← v
12: end if
13: end for
14: Set the tuple (svmax

, vavmax
) as (0,0)

15: for each node v ∈ V do
16: if vmax neighbor of v then
17: vav ← vav − fact
18: Delete vmax from the list of neighbors of v
19: end if
20: sv ← 0 . resetting all scores
21: end for
22: end for

Fig. 5. Pseudocode for VoteRank Algorithm

6.1 Protocol Description

The protocol in Figure 6 takes as input the edgelist rep-
resentation of the graph (E , Idx), such that E and Idx

are stored as ORAM arrays. The protocol begins by
initializing three ORAM arrays of size |V | each, named
V ote, Rank and Mark. The V ote array tracks the vot-
ing abilities of all the nodes, while Rank maintains the
score of each node. TheMark array ensures that a node
once picked as an influential node is prohibited from
participating in the voting process further. The vot-
ing ability of all the nodes is set to 1 at the start of
the protocol. In each iteration of the for-loop between
steps 3-48, we pick the top scoring node as one of the
influential nodes in the network. We maintain the fol-
lowing private variables: 〈cur_indx〉 to store the index
of the neighbor stored in E currently being processed;
〈cur_node〉 to store the current node whose neighbors
are being explored; 〈cur_vote〉 to store the voting abil-
ity of the current node; 〈vmax〉 to store the node with
the maximum score so far and 〈vmax_score〉 to store

its score. The for-loop between steps 9-27 performs the
first pass over the entries of the edgelist. In steps 10-13,
the oblivious if construct determines whether all the
neighbors of the current node are explored or not. The
value of the current node is obliviously updated when
the condition is evaluated to be true. Else, the private
variable 〈nbr〉 stores the neighbor of the current node
being explored. We update the score of node 〈nbr〉 by
accounting for the vote of 〈cur_node〉 in its score (steps
16-19) provided that the node 〈nbr〉 is unmarked. We
obliviously determine if this update resulted in the 〈nbr〉
having the highest score (steps 20-23). It is reflected in
the variable 〈vmax〉 accordingly. We also obliviously up-
date the value in 〈cur_indx〉 to hold the index to the
next neighbor to be processed. At the end of the first
pass over the edgelist (step 27), the variable 〈vmax〉
stores the node with the maximum score. Thus, in steps
28-30, its voting ability and score is set to zero. Fur-
ther, the entry corresponding to 〈vmax〉 in array Mark

is set to 1. The for-loop between steps 33-46 performs
the second scan over the elements of edgelist. Similar
to the previous scan, in each iteration of the loop, we
are either updating the next node to be explored or are
processing a neighbor of the current node. We update
the current node as and when we finish exploring all of
its neighbors (steps 34-37). Additionally, we update the
scores of all nodes to zero, in preparation for the voting
to be performed in the next iteration. Else, if 〈vmax〉 is
found in the list of neighbors, we obliviously reduce the
voting ability of 〈cur_node〉 in steps 40-43. After both
the passes over the edgelist terminate, we reveal the top
scoring node of the current iteration in step 47. This
is repeated r times to determine the top-r influential
nodes in the network.

6.2 Analytical Evaluation

6.2.1 Complexity

The overall complexity of the algorithm using the adja-
cency list representation is O(r(|E|+ |V |)) (refer Figure
5). Each iteration essentially requires O(|E|) operations
to compute the scores of all the nodes as well as to up-
date the voting abilities of nodes by scanning over the
edges. The complexity of determining the node with the
maximum score isO(|V |). The overall complexity results
from repeating the above process r times. However, this
representation does not allow for a data-oblivious ex-
ecution of the algorithm. Alternatively, assuming the
adjacency matrix representation, the overall complex-

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 549

Input: Graph (E, Idx)
Output: The top-r ranked nodes based on VoteRank

1: Initialize V ote as an ORAM array of size |V |, with each entry ini-
tialized to 1

2: Initialize Rank and Mark as an ORAM arrays of size |V |, with
each entry initialized to 0

3: for iter = 1 to r do
4: 〈cur_indx〉 ← 〈0〉
5: 〈cur_node〉 ← 〈0〉
6: 〈cur_vote〉 ←OramRead(V ote,〈cur_node〉)
7: 〈vmax〉 ← 〈0〉
8: 〈vmax_score〉 ← 〈0〉
9: for i = 0 to |E| + |V | − 1 do

10: 〈temp1〉 ← OramRead(Idx, 〈cur_node + 1〉)
11: 〈if〉 〈cur_indx〉 == 〈temp1〉 then
12: 〈cur_node〉 ← 〈cur_node〉 + 1
13: 〈cur_vote〉 ←OramRead(V ote,〈cur_node〉)
14: 〈else〉
15: 〈nbr〉 ← OramRead(E,〈cur_indx〉)
16: 〈if〉 OramRead(Mark, 〈nbr〉) == 0 then
17: 〈temp1〉 ← OramRead(Rank,〈nbr〉)
18: 〈temp2〉 ← 〈temp1〉 + 〈cur_vote〉
19: OramWrite(Rank,〈nbr〉, 〈temp2〉)
20: 〈if〉 〈temp2〉 > 〈vmax_score〉 then
21: 〈vmax〉 ← 〈nbr〉
22: 〈vmax_score〉 ← 〈temp2〉
23: end 〈if〉
24: end 〈if〉
25: 〈cur_indx〉 ← 〈cur_indx〉 + 1
26: end 〈if〉
27: end for
28: OramWrite(V ote,〈vmax〉, 〈0〉)
29: OramWrite(Rank,〈vmax〉, 〈0〉)
30: OramWrite(Mark,〈vmax〉, 〈1〉)
31: 〈cur_indx〉 ← 〈0〉
32: 〈cur_node〉 ← 〈0〉
33: for i = 0 to |E| + |V | − 1 do
34: 〈temp1〉 ← OramRead(Idx, 〈cur_node + 1〉)
35: 〈if〉 〈cur_indx〉 == 〈temp1〉 then
36: OramWrite(Rank,〈cur_node〉, 〈0〉)
37: 〈cur_node〉 ← 〈cur_node〉 + 1
38: 〈else〉
39: 〈nbr〉 ← OramRead(E,〈cur_indx〉)
40: 〈if〉 〈nbr〉 == 〈vmax〉 then
41: 〈temp〉 ← OramRead(V ote,〈cur_node〉)
42: OramWrite(V ote,〈cur_node〉, 〈temp − f〉)
43: end 〈if〉
44: 〈cur_indx〉 ← 〈cur_indx〉 + 1
45: end 〈if〉
46: end for
47: Reveal 〈vmax〉 to all parties
48: end for

Fig. 6. Protocol for computing r-top ranked nodes based on
VoteRank securely

ity would amount to O(r|V |2). The first pass to com-
pute the scores of all the nodes would require access to
all the entries of the adjacency matrix once, amount-
ing to O(|V |2) operations. Determining the node with
the maximum score continues to have the complexity
of O(|V |). In order to update the voting ability of all
the neighbors of the top ranked node vmax, a single
scan of the column representing vmax in the adjacency
matrix would require O(|V |) operations. Owing to the
data-oblivious representation of the underlying graph,
implementing the above algorithm using generic MPC
constructs would also incur O(r|V |2) complexity. Con-
sidering the protocol described in Figure 6, the for-loop
in steps 3-48 is the major contributor to the overall
asymptotic complexity. This loop is executed r times,
and within each iteration, we perform 2 scans over the
list of edges in O(|E| + |V |) iterations each. Addition-
ally, we perform a constant number of ORAM accesses
within each of the scans. Since we consider the input
graphs to be sparse (i.e. |E| = O(|V |)), each ORAM ar-
ray is of length O(|E|). Considering the overhead of per-
forming ORAM read/write operations to be f(n) over

an array of length n, the overall complexity of the de-
signed protocol boils down to O(r(|E|+ |V |)f(O(|E|))).

6.2.2 Security

The correctness of the protocol follows directly from the
instruction sequence and protocol description provided
in Section 6.1. The proof of privacy follows along the
same lines as described for the previous protocols, in-
cluding loops with fixed iterations, ORAM arrays, obliv-
ious if-else constructs and non-disclosure of intermedi-
ary private values.

7 Related Work
As discussed previously, the problem of identifying
influential nodes in a network are well investigated
[3, 7, 11, 12]. Each of these approaches computes the
influence score of nodes based on different network
characteristics. However, all of them consider that the
structure of the underlying network is known centrally
and are not designed to cater to the privacy of the
involved individuals. There are only a few works that
have addressed the problem of determining the top-r
influential nodes when the underlying network struc-
ture is private and/or is not known centrally. Tassa
and Bonchi [61] propose MPC protocols to compute the
strength of each edge and the influence score of each
node in a social network. Unlike the current work, the
authors in [61] consider the scenario where one of the
parties (i.e. host) has the entire social network network
G(V,E) on a set of users as its private data. Other par-
ties (i.e. service providers) have individual activity logs
as their private data, that captures the various actions
performed by the users. The objective is for the host
and the service providers to quantify the influence ca-
pabilities of edges as well as nodes in the graph without
each disclosing his private data. Thus, the data model
considered in [61] is different from the current work.
The computed measures are specific to the application
scenario considered, unlike the generic protocols de-
signed in the current work. Additionally, the protocols
designed in [61] require that the host sends across a set
of edges E′ to each of the service providers. Since this
edge set E′ is a superset of the edges of the true graph
(i.e. E′ ⊃ E), it allows the service providers to conclude
that if an edge (vi, vj) /∈ E′, then they are sure that
(vi, vj) /∈ E as well. This constitutes leaking structural

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 550

information of the underlying graph.

The problem of computing network measures se-
curely when the entire graph is distributedly known to a
set of parties has been previously addressed by Kukkala
et al. [46]. In particular, they design MPC protocols
to compute the overall degree distribution of the net-
work, closeness centrality of each node, securely imple-
menting the PageRank and the k-Shell decomposition
algorithms. Although some of the problems addressed
in [46] overlap with the current work, we would like
to briefly highlight some of the differences. Firstly, the
authors in [46] design protocols for the multiparty set-
ting while we design protocols for the two-party setting.
Moreover, the solution proposed in [46] is designed in
the circuit model, whose drawbacks have been discussed
earlier. To counter this, the current work designs proto-
cols using RAM-SC which facilitates more efficient so-
lutions. Secondly, the use of the adjacency matrix rep-
resentation in [46] also adds to the inefficiency of the
protocols, when considering real world networks. We
improve this by using an alternative graph represen-
tation known as the edgelist representation which fares
better. Thirdly, the centrality values computed in both
the works vary in their algorithmic approach. That is,
the PageRank algorithm designed in [46] is based on
the random-walk model while the protocol in the cur-
rent is designed based on the iterative approach. Simi-
larly in the case of k-Shell decomposition, the approach
to pruning nodes significantly varies. These variations
in the underlying algorithm also add to the asymptotic
complexity of the protocols designed based on them. We
implement the protocols designed in both the works, the
results of which are discussed in Section 8.

8 Experimental Results

8.1 Setup

The performance of the protocols in practice is gauged
by implementing them on the popular framework called
Obliv-C [22]. It is a C-language based framework that
allows for compiling and executing secure computation
protocols using garbled circuits at the back-end. The
framework incorporates most of the recent optimiza-
tions such as the use of free XOR gates [62], efficient
OT and its extensions [63], the use of half gates [64]
and fixed-key block ciphers [65]. We also use the ACK
library [66] in conjunction with Obliv-C since it pro-
vides efficient implementations of several ORAM con-

structions. All the protocols were executed on a 64-bit
machine with Intel Xeon E7-8870 v3 CPU clocking at
2.10 GHz and 16 GB RAM under Ubuntu 16.04 operat-
ing system. Further, the programs were compiled using
version 5.4.0 of gcc compiler executed on a single thread.

The dataset considered as input to the protocols
consists of synthetically generated sparse graphs that
mimic real world networks. Since the run time only de-
pends on the number of nodes (|V |) and edges (|E|)
in the graph, each input consists of a randomly picked
Erdos-Renyi graph parameterized by |V | and |E|. In or-
der to maintain the sparsity of the graphs, we consider
the number of edges to be a constant factor times the
number of nodes (i.e. |E| = 10|V |). The factor is ap-
propriately chosen as 10 by taking into account real
world networks provided on SNAP [49]. We consider
small sized datasets owing to memory constraints and
prolonged runtime. In order to draw a comparison, we
also implement the protocols designed in Kukkala et al.
[46] for the k-Shell decomposition and the random surfer
method of computing PageRank centrality. To have a
fair comparison between the two set of protocols de-
signed for the same network measure, we assume that
the underlying network data is collectively known by 2
parties P1 and P2 in both the cases. This way, the high-
light is on the trade-offs achieved between the adjacency
matrix and the edgelist representation of the underlying
graph. Furthermore, by choosing to evaluate the proto-
cols under the same generic scheme of Yao’s garbled
circuits, we are able to achieve a comparison of the al-
gorithmic complexity between the corresponding set of
protocols. The party P1 is assumed to be representative
of a set of nodes V1 ⊂ V while P2 is representative of
V2 ⊂ V , such that V1 ∪ V2 = V and V1 ∩ V2 = φ. In
the case of the edgelist representation, we assume that
P1 distributes shares of all the outgoing edges of nodes
in V1, while P2 shares those in V2. Similarly, for the
case of the adjacency matrix representation, party P1
distributes shares of all the entries of the rows corre-
sponding to the nodes in V1, while P2 shares the entries
of the remaining rows. Since the total number of edges
are known to be public and have only two data owners,
we do not require to hide the number of edges being re-
ported by each of the parties through padding of dummy
edges. Having obtained shares of all the edges, party P1
and P2 perform oblivious sort on the list of shares to
obtain the shares of edgelist as described in Section 3.1.
We report the run time of the protocols under the above
conditions. In the case where the network is known by
multiple data holders, the cost of constructing the edge-
list is briefly described in Section 8.2.1.

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 551

8.2 Results

In the current work, we compare the performance of
the designed protocols under the linear scan and the
Square-Root ORAM [44] schemes. The former refers to
the trivial ORAM scheme which involves linearly scan-
ning through the entire array each time an element at a
private index is to be retrieved. These ORAM construc-
tions are used in conjunction with the edgelist represen-
tation of the graph. The protocol to securely compute k-
Shell decomposition using the adjacency matrix [46] has
an overall complexity of O(|V |3). Thus, considering only
the highest order term contributing to the asymptotic
complexity, we expect to observe an approximate eight-
fold increase in the run time of the protocol when we
increase the number of nodes by twofold. We note that
the reported run time respects the mentioned asymp-
totic complexity since we observe an average increase in
the run time by a factor of 7.6. We note that, through-
out the following discussion, we always refer to a twofold
increase in the number of nodes. Alternatively, when
the edgelist representation is considered, the resulting
asymptotic complexity is O(|V |2) assuming the linear
scan ORAM scheme, while it is O(|V |1.5 log1.5(|V |)) op-
erations under the Square-Root ORAM scheme, assum-
ing sparse input graphs. As described in the previous
case, we expect to observe an approximate increase by
a factor of 4 and 2.8 respectively in each case. The run
time reported in Table 1 shows an average increase by
a factor of 3.7 in the case of the linear scan and by an
average of 2.7 in the case of the Square-Root ORAM.

In the case of the PageRank algorithm, the proto-
col in [46] computes the centrality value based on the
random surfer model. The run time reported for the
same considers random walks of length 10|V | and hence
results in an overall asymptotic complexity of O(|V |3)
operations. Thus, as expected, the run time for the pro-
tocol increases by eightfold. However, the protocol for
computing PageRank centrality in the current work uses
the iterative approach. The run time for the protocol
considers log(|V |) iterations of the algorithm, result-
ing in an overall complexity of O(|V |2 log(|V |)) using
linear scan and O(|V |1.5 log2.5(|V |)) using the Square-
Root ORAM scheme, for the considered sparse graphs.
We observe that the run time for the linear scan vari-
ant approximately quadruples, while in the case of the
Square-Root ORAM the run time approximately triples
(≈ 21.5). Furthermore, we note that that the PageRank
centrality value of each node reaches convergence within
the log(|V |) iterations of the iterative approach, unlike
in the random surfer model even with 10|V | iterations.

The loss due to precision in our fixed point representa-
tion results in marginal error in the absolute value of
the PageRank centrality. However, the relative ranking
of the nodes is preserved allowing the identification of
the top-k influential nodes.

We are the first to implement the VoteRank proto-
col under both the graph representations. The protocols
are designed to identify the top 10% of the nodes based
on their VoteRank. Thus, the overall complexity of the
protocol using the adjacency matrix representation is of
O(|V |3) operations. This tallies with the average eight-
fold increase in the run time of the protocol under this
representation. In the case of the edgelist representa-
tion, the overall complexity is of O(|V |3) operations us-
ing linear scan and O(|V |2.5 log1.5 |V |) operations un-
der the Square-Root ORAM scheme. The run time for
these variants correspondingly increases by a factor of
8 and 5.6, on an average. Unlike the previous central-
ity measures, the break-even points for the variants of
the VoteRank protocols is not captured in Table 1. The
VoteRank protocol has a higher asymptotic complexity
compared to the other two network measure protocols
under the Square-Root ORAM scheme. Furthermore,
since the difference in the asymptotic complexity of the
variants of the VoteRank protocol is small, the scale of
the experiments performed do not suffice to bring out
the break-even points clearly. This is the reason that
the VoteRank protocol with the adjacency matrix rep-
resentation appears to outperform the edgelist variants.

Since the run time reported in Table 1 tallies with
the asymptotic complexity, we conclude that the proto-
cols for computing k-Shell decomposition and PageRank
centrality designed in the current work outperforms the
protocols proposed by Kukkala et al. [46].

8.2.1 Edgelist Construction

When the network is collectively known by multiple
data holders, say D1, D2, . . . Dn, we assume that each
data holder Di is representative of a set of nodes Vi ⊂ V
such that

⋃n
i Vi = V and

⋂n
i Vi = φ. The outgoing

edges of the nodes in Vi is considered to be the pri-
vate data of Di. This is similar to the assumption made
in the 2-party scenario described previously. For each
node u ∈ Vi, data holder Di distributes |V − 1| shares
among the computing parties P1 and P2. Each share
corresponds to either a valid edges (u, v) or a dummy
edge denoted by (∞,∞). Since each node can have a
maximum of |V | − 1 outgoing links to every other node
in the network, we consider distributing |V |−1 shares of

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 552

No. of
Nodes

k-Shell PageRank VoteRank
Edgelist Adjacency

Matrix[46]
Edgelist Adjacency

Matrix[46]
Edgelist Adjacency

MatrixLinear SQRT Linear SQRT Linear SQRT
32 6s 13s 3s 22s 28s 3m 59s 16s 21s 1s
64 23s 31s 27s 1m 28s 1m 19s 31m 54s 2m 10s 1m 37s 7s
128 1m 30s 1m 25s 3m 8s 5m 4s 3m 23s 4h 17m 16m 38s 8m 50s 53s
256 5m 43s 4m 9s 25m 21s 22m 49s 11m 34s 34h 12m 52s 2h 21m 47s 56m 53s 7m 7s
512 22m 27s 12m 53s 3h 19m 44s 1h 41m 58s 40m 17s 11d 9h 42m 57s∗ 19h 2m 28s 6h 16m 49s 58m 13s

Table 1. We report the run time of the various protocols for different graph representations. The column labels Linear and SQRT rep-
resent the usage of the linear scan and the Square Root ORAM schemes respectively. The starred value is an estimate.

data. Having obtained shares of all the edges from the
data holders, party P1 and P2 perform oblivious sort
on the list of shares to obtain the shares of edgelist as
described in Section 3.1. Each of the data holders could
simultaneously distribute shares of their data to parties
P1 and P2. Thus, the cost of constructing the edgelist is
only affected by the length of the list that needs to be
obliviously sorted rather on the number of data hold-
ers. The run time for constructing the edgelist from an
unsorted list of reported edges, having length O(V 2) as
described above, is reported in Table 2. We consider the
input graphs from the same dataset and obliviously sort
the edges using Batcher’s algorithm.

No. of Nodes Run Time
32 1s
64 6s
128 30s
256 2m 34s
512 12m 43s

Table 2. Edgelist construction with multiple data holders.

9 Conclusions
A steady increase in the perceived threat to privacy
has been the major reason for the changing trends in
performing social network analysis. Thus, developing a
privacy preserving approach to mining social network
data is the need of the hour. In this work, we describe
the use of secure multiparty computation as a solution
to analyzing social network data that is distributedly
present. More precisely, we focus on identifying the in-
fluential spreaders in the network by securely perform-
ing k-Shell decomposition, PageRank and VoteRank al-
gorithms. By implementing our protocols, we conclude
that these can be deployed for practical application sce-
narios such as supply chain networks [17], as an al-

ternative to performing analysis using a trusted third
party. The presented protocols are a first step towards
achieving privacy, and can be improved by considering
more challenging adversarial models. Improvements in
the concrete run time can be tested using hybrid ap-
proaches over garbled circuits.

10 Acknowledgements
This research received no specific grant from any fund-
ing agency in the public, commercial, or not-for-profit
sectors.

References
[1] HuffPost-Staff. Whatsapp launches research grants up to

$50,000 to fight fake news. [Online]. Available: https:
//www.huffingtonpost.in/2018/07/09/whatsapp-launches-
research-grants-to-fight-misinformation-offering-up-to-50-
000-per-proposal_a_23477400/

[2] K. Bikoff. Sice receives $1.2 million as part of a darpa grant to
study information spread. [Online]. Available: https://www.
sice.indiana.edu/news/story.html?story=SICE-faculty-part-
of-1.2-million-DARPA-grant-to-study-information-spread

[3] J.-X. Zhang, D.-B. Chen, Q. Dong, and Z.-D. Zhao, “Iden-
tifying a set of influential spreaders in complex networks,”
Scientific reports, vol. 6, p. 27823, 2016.

[4] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignani, “Epidemic processes in complex networks,”
Reviews of modern physics, vol. 87, no. 3, p. 925, 2015.

[5] M. Yahya, “Polio vaccines- "no thank you!" barriers to polio
eradication in northern nigeria,” African Affairs, vol. 106, no.
423, pp. 185–204, 2007.

[6] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the
spread of influence through a social network,” in Proceed-
ings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2003, pp.
137–146.

[7] S. Aral and D. Walker, “Identifying influential and susceptible
members of social networks,” Science, p. 1215842, 2012.

https://www.huffingtonpost.in/2018/07/09/whatsapp-launches-research-grants-to-fight-misinformation-offering-up-to-50-000-per-proposal_a_23477400/
https://www.huffingtonpost.in/2018/07/09/whatsapp-launches-research-grants-to-fight-misinformation-offering-up-to-50-000-per-proposal_a_23477400/
https://www.huffingtonpost.in/2018/07/09/whatsapp-launches-research-grants-to-fight-misinformation-offering-up-to-50-000-per-proposal_a_23477400/
https://www.huffingtonpost.in/2018/07/09/whatsapp-launches-research-grants-to-fight-misinformation-offering-up-to-50-000-per-proposal_a_23477400/
https://www.sice.indiana.edu/news/story.html?story=SICE-faculty-part-of-1.2-million-DARPA-grant-to-study-information-spread
https://www.sice.indiana.edu/news/story.html?story=SICE-faculty-part-of-1.2-million-DARPA-grant-to-study-information-spread
https://www.sice.indiana.edu/news/story.html?story=SICE-faculty-part-of-1.2-million-DARPA-grant-to-study-information-spread

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 553

[8] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg,
“Structural diversity in social contagion,” Proceedings of the
National Academy of Sciences, p. 201116502, 2012.

[9] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, “The role
of social networks in information diffusion,” in Proceedings
of the 21st international conference on World Wide Web.
ACM, 2012, pp. 519–528.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
pagerank citation ranking: Bringing order to the web.”
Stanford InfoLab, Tech. Rep., 1999.

[11] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik,
H. E. Stanley, and H. A. Makse, “Identification of influential
spreaders in complex networks,” Nature physics, vol. 6,
no. 11, p. 888, 2010.

[12] J. Weng, E.-P. Lim, J. Jiang, and Q. He, “Twitterrank: finding
topic-sensitive influential twitterers,” in Proceedings of the
third ACM international conference on Web search and data
mining. ACM, 2010, pp. 261–270.

[13] W. Chen, Y. Wang, and S. Yang, “Efficient influence
maximization in social networks,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2009, pp. 199–208.

[14] S. Ji, L. Lu, C. H. Yeung, and Y. Hu, “Effective spreading
from multiple leaders identified by percolation in social
networks,” arXiv preprint arXiv:1508.04294, 2015.

[15] F. Kerschbaum, A. Schroepfer, A. Zilli, R. Pibernik, O. Cat-
rina, S. de Hoogh, B. Schoenmakers, S. Cimato, and
E. Damiani, “Secure collaborative supply-chain manage-
ment,” Computer, no. 9, pp. 38–43, 2011.

[16] G. Fridgen and T. Z. Garizy, “Supply chain network risk
analysis-a privacy preserving approach.” in ECIS, 2015.

[17] Y. Kim, T. Y. Choi, T. Yan, and K. Dooley, “Structural
investigation of supply networks: A social network analysis
approach,” Journal of Operations Management, vol. 29,
no. 3, pp. 194–211, 2011.

[18] M. Fire and R. Puzis, “Organization mining using online
social networks,” Networks and Spatial Economics, vol. 16,
no. 2, pp. 545–578, 2016.

[19] P. Glasserman and H. P. Young, “How likely is contagion in
financial networks?” Journal of Banking & Finance, vol. 50,
pp. 383–399, 2015.

[20] F. Kerschbaum and A. Schaad, “Privacy-preserving social
network analysis for criminal investigations,” in Proceedings of
the 7th ACM workshop on Privacy in the electronic society.
ACM, 2008, pp. 9–14.

[21] V. B. Kukkala and S. Iyengar, “Computing betweenness
centrality: An efficient privacy-preserving approach,” in In-
ternational Conference on Cryptology and Network Security.
Springer, 2018, pp. 23–42.

[22] S. Zahur and D. Evans, “Obliv-c: A language for exten-
sible data-oblivious computation.” IACR Cryptology ePrint
Archive, vol. 2015, p. 1153, 2015.

[23] A. C. Yao, “Protocols for secure computations,” in Foun-
dations of Computer Science, 1982. SFCS’08. 23rd Annual
Symposium on. IEEE, 1982, pp. 160–164.

[24] J. Alwen, R. Ostrovsky, H.-S. Zhou, and V. Zikas, “Incoercible
multi-party computation and universally composable receipt-
free voting,” in Annual Cryptology Conference. Springer,
2015, pp. 763–780.

[25] A. Aly and M. Van Vyve, “Practically efficient secure
single-commodity multi-market auctions,” in International
Conference on Financial Cryptography and Data Security.
Springer, 2016, pp. 110–129.

[26] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical
privacy for genomic computation,” in Security and Privacy,
2008. SP 2008. IEEE Symposium on. IEEE, 2008, pp.
216–230.

[27] G. Asharov and Y. Lindell, “A full proof of the bgw protocol
for perfectly secure multiparty computation,” Journal of
Cryptology, vol. 30, no. 1, pp. 58–151, 2017.

[28] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness
theorems for non-cryptographic fault-tolerant distributed
computation,” in Proceedings of the twentieth annual ACM
symposium on Theory of computing. ACM, 1988, pp. 1–10.

[29] O. Goldreich, S. Micali, and A. Wigderson, “How to play
any mental game,” in Proceedings of the nineteenth annual
ACM symposium on Theory of computing. ACM, 1987, pp.
218–229.

[30] A. C.-C. Yao, “How to generate and exchange secrets,”
in Foundations of Computer Science, 1986., 27th Annual
Symposium on. IEEE, 1986, pp. 162–167.

[31] O. Goldreich and R. Ostrovsky, “Software protection and
simulation on oblivious rams,” Journal of the ACM (JACM),
vol. 43, no. 3, pp. 431–473, 1996.

[32] B. Pinkas and T. Reinman, “Oblivious ram revisited,”
in Annual Cryptology Conference. Springer, 2010, pp.
502–519.

[33] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving
access of outsourced data via oblivious ram simulation,”
in International Colloquium on Automata, Languages, and
Programming. Springer, 2011, pp. 576–587.

[34] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious
ram with o ((logn) 3) worst-case cost,” in International
Conference on The Theory and Application of Cryptology
and Information Security. Springer, 2011, pp. 197–214.

[35] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious
ram,” arXiv preprint arXiv:1106.3652, 2011.

[36] C. W. Fletcher, M. v. Dijk, and S. Devadas, “A secure
processor architecture for encrypted computation on untrusted
programs,” in Proceedings of the seventh ACM workshop on
Scalable trusted computing. ACM, 2012, pp. 3–8.

[37] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song, “Phantom: Practical oblivious
computation in a secure processor,” in Proceedings of the
2013 ACM SIGSAC conference on Computer & communica-
tions security. ACM, 2013, pp. 311–324.

[38] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam, “Verifiable
oblivious storage,” in International Workshop on Public Key
Cryptography. Springer, 2014, pp. 131–148.

[39] M. Keller and P. Scholl, “Efficient, oblivious data structures
for mpc,” in International Conference on the Theory and Ap-
plication of Cryptology and Information Security. Springer,
2014, pp. 506–525.

[40] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin,
M. Raykova, and Y. Vahlis, “Secure two-party computation
in sublinear (amortized) time,” in Proceedings of the 2012
ACM conference on Computer and communications security.
ACM, 2012, pp. 513–524.

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 554

[41] C. Gentry, K. A. Goldman, S. Halevi, C. Julta, M. Raykova,
and D. Wichs, “Optimizing oram and using it efficiently for
secure computation,” in International Symposium on Privacy
Enhancing Technologies Symposium. Springer, 2013, pp.
1–18.

[42] X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi,
“Scoram: oblivious ram for secure computation,” in Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 191–202.

[43] X. Wang, H. Chan, and E. Shi, “Circuit oram: On tightness
of the goldreich-ostrovsky lower bound,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 850–861.

[44] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner,
D. Evans, and J. Katz, “Revisiting square-root oram: efficient
random access in multi-party computation,” in Security and
Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp.
218–234.

[45] Keyhubs - uncover the hidden organization. [Online].
Available: http://www.keyhubs.com/

[46] V. B. Kukkala, J. S. Saini, and S. Iyengar, “Privacy pre-
serving network analysis of distributed social networks,” in
International Conference on Information Systems Security.
Springer, 2016, pp. 336–355.

[47] A. Aly and M. Van Vyve, “Securely solving classical network
flow problems,” in International Conference on Information
Security and Cryptology. Springer, 2014, pp. 205–221.

[48] A. Aly, E. Cuvelier, S. Mawet, O. Pereira, and M. Van Vyve,
“Securely solving simple combinatorial graph problems,”
in International Conference on Financial Cryptography and
Data Security. Springer, 2013, pp. 239–257.

[49] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large
network dataset collection,” http://snap.stanford.edu/data,
Jun. 2014.

[50] M. Ajtai, J. Komlós, and E. Szemerédi, “An 0 (n log n)
sorting network,” in Proceedings of the fifteenth annual
ACM symposium on Theory of computing. ACM, 1983, pp.
1–9.

[51] K. E. Batcher, “Sorting networks and their applications,”
in Proceedings of the April 30–May 2, 1968, spring joint
computer conference. ACM, 1968, pp. 307–314.

[52] M. T. Goodrich, “Zig-zag sort: A simple deterministic data-
oblivious sorting algorithm running in o (n log n) time,”
in Proceedings of the forty-sixth annual ACM symposium on
Theory of computing. ACM, 2014, pp. 684–693.

[53] ——, “Randomized shellsort: A simple oblivious sorting
algorithm,” in Proceedings of the twenty-first annual ACM-
SIAM symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, 2010, pp. 1262–1277.

[54] ——, “Spin-the-bottle sort and annealing sort: Oblivious
sorting via round-robin random comparisons,” in 2011 Pro-
ceedings of the Eighth Workshop on Analytic Algorithmics
and Combinatorics (ANALCO). SIAM, 2011, pp. 93–106.

[55] S. B. Seidman, “Network structure and minimum degree,”
Social networks, vol. 5, no. 3, pp. 269–287, 1983.

[56] S. Pei and H. A. Makse, “Spreading dynamics in complex
networks,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2013, no. 12, p. P12002, 2013.

[57] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores
decomposition of networks,” arXiv preprint cs/0310049,

2003.
[58] R. S. Wahby, S. T. Setty, Z. Ren, A. J. Blumberg, and

M. Walfish, “Efficient ram and control flow in verifiable
outsourced computation.” in NDSS, 2015.

[59] Q. Liu, B. Xiang, N. J. Yuan, E. Chen, H. Xiong, Y. Zheng, and
Y. Yang, “An influence propagation view of pagerank,” ACM
Transactions on Knowledge Discovery from Data (TKDD),
vol. 11, no. 3, p. 30, 2017.

[60] N. Ma, J. Guan, and Y. Zhao, “Bringing pagerank to the
citation analysis,” Information Processing & Management,
vol. 44, no. 2, pp. 800–810, 2008.

[61] T. Tassa and F. Bonchi, “Privacy preserving estimation of
social influence.” in EDBT, 2014, pp. 559–570.

[62] V. Kolesnikov and T. Schneider, “Improved Garbled Cir-
cuit: Free XOR Gates and Applications,” in International
Colloquium on Automata, Languages, and Programming.
Springer, 2008, pp. 486–498.

[63] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner,
“More Efficient Oblivious Transfer and Extensions for Faster
Secure Computation,” in SIGSAC Conference on Computer
& Communications Security. ACM, 2013, pp. 535–548.

[64] S. Zahur, M. Rosulek, and D. Evans, “Two Halves Make a
Whole,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer,
2015, pp. 220–250.

[65] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway,
“Efficient Garbling from a Fixed-key Blockcipher,” in Security
and Privacy (SP). IEEE, 2013, pp. 478–492.

[66] J. Doerner, “The Absentminded Crypto Kit,” “https:
//bitbucket.org/jackdoerner/absentminded-crypto-kit.git".

[67] A.-L. Barabási and R. Albert, “Emergence of scaling in
random networks,” science, vol. 286, no. 5439, pp. 509–512,
1999.

[68] M. Girvan and M. E. Newman, “Community structure in
social and biological networks,” Proceedings of the national
academy of sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[69] S. Fortunato, “Community detection in graphs,” Physics
reports, vol. 486, no. 3-5, pp. 75–174, 2010.

[70] S. P. Borgatti and M. G. Everett, “Models of core/periphery
structures,” Social networks, vol. 21, no. 4, pp. 375–395,
2000.

[71] J. Travers and S. Milgram, “The small world problem,”
Phychology Today, vol. 1, no. 1, pp. 61–67, 1967.

[72] D. J. Watts and S. H. Strogatz, “Collective dynamics of
‘small-world’networks,” nature, vol. 393, no. 6684, p. 440,
1998.

[73] T. Y. Choi and Y. Hong, “Unveiling the structure of supply
networks: case studies in honda, acura, and daimlerchrysler,”
Journal of Operations Management, vol. 20, no. 5, pp.
469–493, 2002.

A Social Network Analysis
A social network captures the intricate web of interac-
tions among social entities, where each entity could be
representative of an individual or even a group of indi-

http://www.keyhubs.com/
http://snap.stanford.edu/data
https://bitbucket.org/jackdoerner/absentminded-crypto-kit.git"
https://bitbucket.org/jackdoerner/absentminded-crypto-kit.git"

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 555

viduals (e.g. an organization). The type of interaction
captured in a social network can also largely vary, some
of which include friendships, email communications, sci-
entific collaboration, relationship of trust among em-
ployees, buyer-seller interactions among organizations,
etc. Although these interactions seemingly appear dif-
ferent, it has been observed that there are several com-
monalities that characterize the underlying network.
The existence of scale-free degree distribution [67], pres-
ence of a community structure [68, 69], core-periphery
structure [70] and the property of small-world [71, 72]
are a few examples of the characteristics commonly ob-
served across different social networks. Thus, social net-
work analysis deals with modeling social interactions
as a graph consisting of nodes and edges, followed by
applying the common set of tools and techniques devel-
oped to study the structural properties of the underlying
network. Characterizing nodes and edges through vari-
ous centrality measures, detecting communities, identi-
fying influential nodes, determining the spreading pat-
tern, etc. are some of the crucial problems addressed in
the field.

B Iterative PageRank using
Adjacency Matrix

The detailed description of computing PageRank cen-
trality assuming the adjacency matrix graph represen-
tation is provided through the pseudocode in Figure 7.
This iterative method to compute PageRank is obliv-
ious since the execution of the instructions are inde-
pendent of the input graph structure. This approach to
computing PageRank centrality would require O(l|V |2)
operations. This is majorly attributed to the l iterations
of the PageRank algorithm and accessing the entries of
the update matrix N of size |V |2 within each iteration.
Since the above algorithm is inherently data-oblivious,
implementing the same using generic MPC constructs
would continue to have the same asymptotic complexity
of O(l|V |2).

C Real world networks
In this section, we consider the supply chain networks
reported by Choi and Hong [73] and investigated by Kim
et al. [17]. The networks consist of three product lines
including Honda Accord, Acura CL/TL, and Daimler-

Input: Graph G(V, E), l (number of iterations), s (redistri-
bution parameter)

Output: The PageRank values of all the nodes
1: Determine the entries of the update matrix N = [Nij]
2: Initialize r

(0)
i
← 1/n for 1 ≤ i ≤ n (all other r(k) vectors

are initialized as zero vectors for k ≥ 1)
3: for k = 1 to l do
4: for i = 1 to n do
5: for j = 1 to n do
6: r

(k)
i
← r

(k)
i

+ Njir
(k−1)
j

7: end for
8: end for
9: end for

Fig. 7. Pseudocode for the iterative method to PageRank Algo-
rithm using adjacency matrix

Chrysler (DCX) Grand Cherokee. In specific, we con-
sider the contractual relationships that exist between
the different organizations that are a part of the supply
chain network, under each of the three product lines.
Using these networks as input to the designed proto-
cols, we report the run time for each of the computed
network measures. As in the previous case, we assume
that the network is distributedly known between two
parties who run the designed protocols. The results are
presented in Table 3.

D Performance Analysis
The run time for evaluating all the designed protocols,
reported in Table 1, accounts for the overall time taken
in executing them. To present a more thorough anal-
ysis, we include plots in Figures 8-10 that account for
majorly two phases of the overall run time. Each pro-
tocol execution begins with the two parties, who col-
lectively hold the network data, distributing shares of
their private data to one another. Using these shares,
the two parties collectively generate shares for the edge-
list or the adjacency matrix representation, based on
the graph representation under consideration. They also
set up the required private variables, arrays as well as
the ORAM structure. This constitutes the initialization
phase of the protocol. This is followed by the iterative
phase of the protocol. Each of the designed protocols in-
cludes a central looping construct that essentially scans
through the input graph and performs the major part
of the required computation of securely computing the
centrality values. It is this loop that forms the crux of
the protocol and the execution of the same is referred to
as the iterative phase. The results are presented using
a log-log plot in Figures 8-10. We note that the curve

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 556

denoting the overall run time is close to a straight line.
Since the number of edges considered in the graph is a
function of the number of nodes, the overall run time is
directly expressed as a function of the number of nodes,
as described in Section 8.2. We note that the slope of
the straight line observed in each of the plots matches
with the exponent of the independent variable, in our
case it is the number of nodes |V |. This confirms that
the run time of the protocols tallies with the previously
mentioned asymptotic complexities. As an alternative
to measuring the run time of the protocols, we found
that the number of gates required to evaluate them is
a better metric to gauge the performance of the pro-
tocols. The rate at which the gate count increases as
we increase the size of the input graphs, corroborates
with the asymptotic complexity better than as seen in
the case of run time of the protocols. Due to space con-
straints, we do not report the same.

Identifying Influential Spreaders in a Social Network (While Preserving Privacy) 557

Network k-Shell PageRank VoteRank
Edgelist Adjacency

Matrix[46]
Edgelist Adjacency

Matrix[46]
Edgelist Adjacency

MatrixLinear SQRT Linear SQRT Linear SQRT
DCX 1s 3s 3s 4s 6s 2m 21s 1s 3s 1s
Accord 1s 3s 3s 5s 7s 2m 33s 1s 3s 1s
Acura 2s 4s 4s 5s 9s 4m 23s 3s 5s 2s

Table 3. We report the run time of the various protocols for three supply chain networks. The network size of DCX, Accord and Acura
are 27, 28 and 34 nodes respectively. The corresponding edge count for each of the networks is 52, 56 and 74 edges, by accounting for
both directions of the contractual relationship.

(a) Linear Scan (b) Square-Root ORAM (c) Adjacency Matrix
Fig. 8. Secure variants of the k-Shell decomposition protocol

(a) Linear Scan (b) Square-Root ORAM (c) Adjacency Matrix
Fig. 9. Secure variants of the PageRank protocol

(a) Linear Scan (b) Square Root ORAM (c) Adjacency Matrix
Fig. 10. Secure variants of the VoteRank protocol

The run time reported in each of the sub-figures accounts for two phases in the execution of the protocol. The blue region denotes the
initialization phase. The region in orange denotes the iterative phase.

	Identifying Influential Spreaders in a Social Network (While Preserving Privacy)
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Secure Multiparty Computation
	2.2 Garbled Circuits
	2.3 Oblivious RAM
	2.4 RAM Secure Computation
	2.5 Security Model
	2.6 Notation

	3 Graph Representation
	3.1 Edgelist Construction

	4 k-Shell Decomposition
	4.1 Protocol Description
	4.2 Analytical Evaluation
	4.2.1 Complexity
	4.2.2 Security

	5 PageRank
	5.1 Protocol Description
	5.2 Analytical Evaluation
	5.2.1 Complexity
	5.2.2 Security

	6 VoteRank
	6.1 Protocol Description
	6.2 Analytical Evaluation
	6.2.1 Complexity
	6.2.2 Security

	7 Related Work
	8 Experimental Results
	8.1 Setup
	8.2 Results
	8.2.1 Edgelist Construction

	9 Conclusions
	10 Acknowledgements
	A Social Network Analysis
	B Iterative PageRank using Adjacency Matrix
	C Real world networks
	D Performance Analysis

