
Proceedings on Privacy Enhancing Technologies ; 2020 (3):42–61

Hayim Shaul*, Dan Feldman, and Daniela Rus

Secure k-ish Nearest Neighbors Classifier
Abstract: The k-nearest neighbors (kNN) classifier pre-
dicts a class of a query, q, by taking the majority class
of its k neighbors in an existing (already classified)
database, S. In secure kNN, q and S are owned by two
different parties and q is classified without sharing data.
In this work we present a classifier based on kNN, that is
more efficient to implement with homomorphic encryp-
tion (HE). The efficiency of our classifier comes from a
relaxation we make to consider κ nearest neighbors for
κ ≈ k with probability that increases as the statistical
distance between Gaussian and the distribution of the
distances from q to S decreases. We call our classifier
k-ish Nearest Neighbors (k-ish NN). For the implemen-
tation we introduce double-blinded coin-toss where the
bias and output of the toss are encrypted. We use it to
approximate the average and variance of the distances
from q to S in a scalable circuit whose depth is indepen-
dent of |S|. We believe these to be of independent in-
terest. We implemented our classifier in an open source
library based on HElib and tested it on a breast tumor
database. Our classifier has accuracy and running time
comparable to current state of the art (non-HE) MPC
solution that have better running time but worse com-
munication complexity. It also has communication com-
plexity similar to naive HE implementation that have
worse running time.

Keywords: Homomorphic Encryption, Secure Machine
Learning, Classification

DOI 10.2478/popets-2020-0045
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

1 Introduction
A key task in machine learning is to classify an object
based on a database of previously classified objects. For
example, with a database of tumors, each of them clas-
sified as malignant or benign, we wish to classify a new
tumor based on the pre-classified database. Classifica-

*Corresponding Author: Hayim Shaul: MIT,
hayim@mit.edu
Dan Feldman: University of Haifa, dannyf@mit.edu
Daniela Rus: MIT, rus@mit.edu

tion algorithms have been long studied. For example, k
nearest neighbor (kNN) classifier [5], where a classifica-
tion of a new tumor is done by considering the k nearest
neighbors (i.e. the most similar tumors, for some notion
of similarity). The decision is then taken to be the ma-
jority class of those neighbors.

In some cases, we wish to perform the classification
without sharing the database or the query. In our ex-
ample, the database may be owned by a hospital while
the query is done by a clinic. Here, sharing the database
is prohibited by regulations (e.g. HIPAA [4]) and shar-
ing the query may expose the hospital and the clinic to
liabilities and regulations.

In secure multi-party computation (MPC), several
parties compute an output without sharing their input.
Solutions such as that by Beaver [2] have the disadvan-
tage of having a large communication complexity. Specif-
ically it is proportional to the running time of the com-
putation. Recently, secure-MPC techniques have been
proposed based on homomorphic encryption (HE) (see
Brakerski et al. [3]) that makes it possible to compute a
polynomial over encrypted messages (ciphertexts). Us-
ing HE, the communication complexity becomes propor-
tional to the size of the input and output. In our exam-
ple, the clinic encrypts its query with HE and sends
the encrypted query to the hospital. The polynomial
the hospital applies is evaluated to output a ciphertext
that can be decrypted, (only) by the clinic, to get the
classification of the query. See Figure 1.

The downside of using HE is the efficiency of eval-
uating polynomials. Although generic recipes exist that
formulate any algorithm as a polynomial of its input,
in practice the polynomials generated by these recipes
have poor performance. The main reason for the poor
performance is the lack of comparison operators. Since
comparisons leak information that can be used to break
the encryption, under HE we can only have a polynomial
whose output is encrypted and equals 1 if the compari-
son holds and 0 otherwise. The second reason is an arti-
fact of homomorphic encryption schemes: the overhead
of evaluating a single operation grows with the degree of
the evaluated polynomial. For many “interesting” prob-
lems it is a challenge to construct a polynomial that can
be efficiently evaluated with HE.

In this paper we consider the secure classification
problem. We propose a new classifier which we call k-ish

Secure k-ish Nearest Neighbors Classifier 43

Client Server

neighbors
Find k nearest

Encrypt
q

s1, . . . , sn

Find maximum
JclassqKDecryptclassq

count classes

JqK, pk

Fig. 1. A HE-based protocol for Secure k-nearest neighbors clas-
sifier. (i) A client has a pair (sk, pk) and a query q. The client
encrypts the query JqK = Encpk(q) and sends JqK and pk to the
server. (ii) The Server securely finds the k neighbors of JqK from
s1, . . . , sn. (iii) The Server securely counts the classes among the
k nearest neighbors. Since these are counted with HE the result
is also encrypted. (iv) The server finds the class with the maxi-
mal count and set it to JclassqK, the class of q. (iv) The server
sends the ciphertext JclassqK to the client. (v) The client decrypts
classq = Decsk(JclassqK).

nearest neighbors. In this new classifier the server con-
siders κ nearest neighbors to the query where κ ≈ k with
some probability. Relaxing the number of neighbors sig-
nificantly improves the time performance of our classi-
fier while having a small impact on the accuracy perfor-
mance. Specifically, the time to compute our classifier
on real breast cancer database dropped from months (es-
timated) to less than an hour, while the accuracy (mea-
sured by F1 score) decreased from 96% to 94%, while
using 27GB of RAM. See details in Section 9.

The solution we introduce in this paper assumes the
distances of the database to the query are statistically
close to Gaussian distribution. Although sounding too
limiting, we argue (and show empirically) otherwise. We
show that many times the distribution of distances is
statistically close enough to Gaussian. In future work,
we intend to remove this assumption.

The efficiency of our solution comes from two new
non-deterministic primitives that we introduce in this
paper:
– a new approach to efficiently compute an approx-

imation of 1/m
∑n
i=1 f(JxiK), where n,m are in-

tegers, f is an increasing invertible function and
Jx1K, Jx2K, . . . are ciphertexts.

– a double-blinded coin-tossing algorithm, where the
output and the bias of the coin are encrypted.

We believe these two primitives are of independent in-
terest and can be used in other algorithms as well

We built a system written in C++ and using HE-
lib [9] to securely classify breast tumor as benign or
malignant using k-ish NN classifier. Our code is given
in [18]. Our classifier used the Wisconsin Diagnostic
Breast Cancer Data Set [6], classified a query in less
than an hour with 94% accuracy. This significantly im-
proves over naive running times and makes secure classi-
fications with HE a solution that is practical enough to
be implemented. We also tested our classifier with car
evaluation database [7] and compared it to the state of
the art MPC solution shown by Elmehdwi et al. [8].

2 Related Work
Previous work on secure kNN either had infeasible run-
ning time or had a large communication complexity. For
example, Wong et al. [20] considered a distance recover-
able encryption to have the server encrypt S. The user
encrypts q and a management system computes and
compares the distances. However, this scheme leaks in-
formation to an attacker knowing some of the points in S
(see Xiao et al. [21]), in addition some data leaks to the
management system. Hu et al. [11] proposed a scheme
to traverse an R-tree where a homomorphic encryption
scheme is used to compute distances and choose the
next node in the traversing of the R-tree. However, this
scheme is vulnerable if the attacker knows some of the
points in S (see Xiao et al. [21]). In addition, the com-
munication complexity is proportional to the height of
the R-tree. Elmehdwi et al. [8] proposed a scheme that
is, to the best of our knowledge, the first to guarantee
the privacy of data as well as that of the query. However,
this scheme requires the client to stay active throughout
the protocol (or delegate that work to a trusted server).
This is a requirement not all users are able to follow. In
addition, the communication overhead of this scheme is
very high (proportional to the size of the database). To
recap, previous works suffered either from access pat-
tern leakage or from high communication complexity
and high number of protocol rounds or the existence of
two non-colluding servers.

3 Preliminaries
For an integer m we denote [m] = {1, . . . ,m}. We use
JmsgK to denote a ciphertext that decrypts to the value
msg.

Secure k-ish Nearest Neighbors Classifier 44

The ring Zp is the set {0, . . . , p− 1} equipped with
+ and · done modulo p. If p is prime then Zp is a field.
We denote by dxc, where x ∈ R, the rounding of x to
the nearest integer.

A database of Zdp points of size n is the tuple
S = (s1, . . . , sn), where s1, . . . , sn ∈ Zdp. We denote by
class(si) ∈ [c] the class of si. Let S = (s1, . . . , sn) be a
database of Zdp points of size n and let q ∈ Zdp. The dis-
tance distribution is the distribution of the random vari-
able x = dist(si, q), where i ← [n] is drawn uniformly.
We denote the distance distribution by DS,q.

The statistical distance between two discrete prob-
ability distribution X and Y over the finite set, Zp, de-
noted SD(X,Y), is defined as

SD(X,Y) = max
u∈Zp

|Pr[x = u]− Pr[y = u]| ,

where x ∼ X and y ∼ Y. The cumulative distribu-
tion function (CDF) of a distribution X is defined as
CDFX(α) = Pr[x < α | x ∼ X].

The F1 Score (also called Dice coefficient or
Sorensen coefficient) is a measure of similarity of two
sets. It is given by F1(A,B) = 2 |A∩B||A|+|B| , where A and
B are sets. In the context of classifiers, the F1 score is
used to measure the accuracy of a classifier by repeat-
ing the following for each class j ∈ [c]: take Aj to be
the set of samples classified as j and Bj be the set of
samples whose class is j and compute F1(Aj , Bj). The
F1 score of the classifier is the weighted average over all
F1(Aj , Bj).

3.1 Polynomial Interpolation

For a prime p and a function f : [0, p] 7→ [0, p], we define
the polynomial Pf,p : Zp 7→ Zp, where Pf,p(x) = df(x)c
for all x ∈ Zp. When p is known from the context we
simply write Pf .

An explicit description of Pf,p can be given by the
interpolation

Pf,p(x) =
p−1∑
i=0

(
df(i)c

∏
j 6=i

(x− j)(i− j)−1

)
.

Rearranging the above we can write

Pf,p(x) =
p−1∑
i=0

αix
i

for appropriate coefficients α0, . . . , αp−1 that depend on
f . In this paper we use several polynomial interpola-
tions:

– P√·(x) = d
√
xc.

– P(·)2/p(x) = x2/p.
– P(·=0)(x) = 1 if x = 0 and 0 otherwise.
– P(

√
(·)+p(x) =

√
x+ p.

– P(
√

(·)p(x) = √xp.
– PisNegative(·)(x) = 1 if x > p/2 and 0 otherwise.

Comparing Two Ciphertexts. We also define a two
variate function isSmaller : Zp × Zp 7→ {0, 1}, where
isSmaller(x, y) = 1 iff x < y. In this paper we imple-
ment this two-variate function with a uni-variate poly-
nomial isNegative : Zp′ 7→ {0, 1}, where p′ > 2p and
isNegative(z) = 1 iff z > p′/2. The connection between
these two polynomials is given by

isSmallerp(x, y) = isNegativep′(x− y).

Computing argmax. Using the isSmaller polynomial
we construct the polynomial ArgMaxc : Zcp 7→ [c], where
ArgMax(C) = argmaxj C(j). Here we assume c < p as
will be the case in our work. For completeness we note
that this can be generalized to c ≥ p by returning a
binary vector. We follow the ideas of C̨etin et al. [14]
and define

ArgMaxc(C) =
c∑
j=1

j ·
∏
i6=j

isSmaller
(
C(i), C(j)

)
.

Clearly,
∏
i 6=j isSmaller

(
C(i), C(j)

)
= 1 when C(j) =

maxi C(i) and is zero otherwise. It follows that
ArgMaxc(C) = argmaxi C.
Computing Distances. Our protocol can work with
any implementation of a distance function. In this paper
we analyze our protocol and present experiments with
the `1 distance. We implement a polynomial dist`1(a, b)
that evaluates to ‖a− b‖`1

where a = (a1, . . . , ad) and
b = (b1, . . . , bd):

dist`1(a, b) =
d∑
1

(
1− 2isSmaller(ai, bi)

)
(ai − bi).

We observe that(
1− 2 · isSmaller(ai, bi)

)
=

{
1 if ai < bi

−1 otherwise.

and therefore
∑
i

(
1 − 2 · isSmaller(ai, bi)

)
(ai − bi) =∑

i |ai − bi| = dist`1(a, b).

3.1.1 Arithmetic Circuit vs. Polynomials.

An arithmetic circuit (AC) is a directed graph G =
(V,E) where for each node v ∈ V we have indegree(v) ∈

Secure k-ish Nearest Neighbors Classifier 45

{0, 2}, where indegree(v) is the number of incoming
edges of v. We also associate with each v ∈ V a value,
val(v) in the following manner:

If indegree(v) = 0 then we call v an input node and
we associate it with a constant or with an input variable
and val(v) is set to that constant or variable.

If indegree(v) = 2 then we call v a gate and asso-
ciate v with an Add operation (an add-gate) or Mult

operation (a mult-gate).
Denote by v1 and v2 the nodes connected to v

through the incoming edges and set val(v) := val(v1) +
val(v2) if v is an add-gate or val(v) := val(v1) · val(v2) if
v is a mult-gate.

Arithmetic circuits and polynomials are closely re-
lated but do not have a one-to-one correspondence. A
polynomial can be realized by different circuits. For ex-
ample P(x) = (x+1)2 can be realized as (x+1)·(x+1) or
by x ·x+2 ·x+1. The first version has one mult-gate and
one add-gate (here we take advantage that x + 1 needs
to be calculated once), while the latter has 2 mult-gates
and 2 add-gates.

Looking ahead, we are going to evaluate arithmetic
circuits whose gates are associated with HE operations
(see below). We are therefore interested in bounding two
parameters of an arithmetic circuits, C:
– size(C) is the number of mult gates in C. This re-

lates to the number of gates needed to be evaluated
hence directly affecting the running time.

– depth(C) is the maximal number of mult gates in a
path in C.

(We discuss below why we consider only mult gates).
Paterson et al. [17] showed that a polynomial Pp(x) :

Zp 7→ Zp can be realized by an arithmetic circuit C
where depth(C) = O(log p) and size(C) = O(√p). Their
construction can be extended to realize multivariate
polynomials, however, size of the resulting circuit grows
exponentially with the number of variables. For a n-
variate polynomial, such as a polynomial that evaluates
to the k nearest neighbors, their construction has poor
performance.

3.2 Homomorphic Encryption

Homomorphic encryption (HE) (see e.g. Brakerski et
al. [3], see also a survey by Halevi et al. [10]) is an asym-
metric encryption scheme that also supports + and ×
operations on ciphertexts. More specifically, HE scheme
is the tuple E = (Gen,Enc,Dec,Add,Mult), where:
– Gen(1λ, p) gets a security parameter λ and an inte-

ger p and generates the keys pk and sk.

– Encpk(m) gets a message m and outputs a cipher-
text JmK.

– Decsk(JmK) gets a ciphertext JmK and outputs a mes-
sage m′.

– Addpk(JaK, JbK) gets two ciphertexts JaK, JbK and out-
puts a ciphertext JcK.

– Multpk(JaK, JbK) gets two ciphertexts JaK, JbK and
outputs a ciphertext d.

Correctness is the requirement that m = m′, c = a + b

mod p and d = a · b mod p.
Abbreviated syntax. To make our algorithms and
protocols more intuitive we use J·Kpk to denote a cipher-
text. When pk is clear from the context we use an ab-
breviated syntax:
– JaK + JbK is short for Addpk(JaK, JbK).
– JaK · JbK is short for Multpk(JaK, JbK).
– JaK + b is short for Addpk(JaK, Encpk(b)).
– JaK · b is short for Multpk(JaK, Encpk(b)).

Given these operations any polynomial P(x1, . . .) can be
realized as an arithmetic circuit and computed on the
ciphertexts Jx1K, For example, in a client-server com-
putation the client encrypts its data and sends it to the
server to be processed. The polynomial the server evalu-
ates depends on its input and the result is a ciphertext
that is returned to the client. The client then decrypts
the output. The semantic security of homomorphic en-
cryption guarantees the server does not learn anything
on the client’s data. Similarly, the client does not learn
anything from the server except for the output.

The cost of evaluating an arithmetic circuit, C, with
HE is Time = overhead · size(C), where overhead is the
time to evaluate one mult-gate and it varies with the un-
derlying implementation of the HE scheme. For example,
for BGV scheme [3] we have overhead = overhead(C) =
O
((

depth(C)
)3)

.

3.3 Threat Model

The input of the server in our protocol is n points,
s1, . . . , sn with their respective classes. The input of
the client is a query point q. The server outputs (sends
to the client) the encryption of the class of q as calcu-
lated based on the nearest neighbors of q. The output
of the client is the class of q. We consider an adver-
sarial server that is computationally-bounded and semi-
honest, i.e. the adversary follows the protocol but may
try to learn additional information. An active malicious
server wanting to reply a wrong answer, can avoid the

Secure k-ish Nearest Neighbors Classifier 46

protocol altogether and reply a random class. We show
that the server does not learn anything on the query,
which stems from the semantic security of HE (see Sec-
tion 8 for more details). This does not change for an
active malicious server. The client learns only the clas-
sification of its query. We note that given the class of q,
the client might infer something on s1, . . . , sn and their
classes (see e.g. Shokri et al. [19]), however, learning
the class of q in the minimum required output of the
protocol.

4 Our Contributions
New “HE-friendly” classifier. In this paper we in-
troduce a new classifier that we call the k-ish nearest
neighbor classifier and is a variation of the k nearest
neighbors classifier (see Definition 6.1).

Informally, this classifier considers κ ≈ k neighbors
of a given query. This relaxation allows us to implement
this classifier with an arithmetic circuit with low depth
independent of the database size and has significantly
better running times than the naive HE implementation
of kNN.

In this paper we implement a non-deterministic ver-
sion where κ is the result of a probabilistic process. The
probability that κ ≈ k depends on SD

(
DS,q,N (µ, σ)

)
,

where µ = E(DS,q) and σ2 = V ar(DS,q). In future pa-
pers we intend to propose implementations that do not
have this dependency.

System and experiments for secure k-ish NN
classifier. We implemented our algorithms into a sys-
tem that uses secure k-ish nearest neighbors classifier.
Our code based on HElib [9] is provided for the commu-
nity to reproduce our experiments, to extend our results
for real-world applications, and for practitioners at in-
dustry or academy that wish to use these results for
their future papers or products.

A new approximation technique. Our low-
depth implementation of the k-ish NN, is due to a new
approximation technique we introduce. We consider the
sum 1/m

∑n
1 f(JxiK), when m and n are integers, f is an

increasing invertible function and Jx1K, . . . , JxnK are ci-
phertexts. We show how this sum can be approximated
in a polynomial of degree independent of n. Specifically,
our implementation does not require a large ring size to
evaluate correctly. In contrast, previous techniques for
computing similar sums (e.g. for computing average by
Naehrig et al. [15]), either generate large intermediate
values or are realized with a deep arithmetic circuit.

A novel technique for double-blinded coin
tossing. Our non-deterministic approximation relies on
a new algorithm we call double-blinded coin toss. In a
double-blinded coin toss the bias of the toss is JxK/m,
where JxK is a ciphertext and m is a parameter. The
output of the toss is also ciphertext. To the best of our
knowledge, this is the first efficient implementation of a
coin toss where the probability depends on a ciphertext.
Since coin tossing is a basic primitive for many random
algorithms, we expect our implementation of coin toss-
ing to have a large impact on future research in HE.

5 Techniques Overview
We give an overview of our techniques that we used. We
first describe the intuition behind the k-ish NN and then
we give a set of reductions from the k-ish NN classifier
to a double-blinded coin toss.

Replacing kNN with k-ish NN. Given a
database S and a query q, small changes in k have small
impact on the output of the kNN classifier. We there-
fore define the k-ish NN, where for a specified k the
classifier may consider k/2 < κ < 3k/2. With this re-
laxation, our implementation applies non-deterministic
algorithms (see below) to find k-ish nearest neighbors.

Reducing k-ish NN to computing moments.
For the distance (discrete) distribution DS,q, denote µ =
E(DS,q) and σ2 = V ar(DS,q) and consider the set T =
{si | dist(si, q) < T}, where T = µ + Φ−1(k/n)σ and Φ
is the CDF of N (0, 1). For the case DS,q = N (µ, σ) we
have |T | = k, otherwise the difference

∣∣∣|T | − k∣∣∣ can be
expressed as a function of SD

(
DS,q,N (µ, σ)

)
.

For distance distribution that are statistically close
to Gaussian it remains to show how µ and σ can be effi-
ciently computed. We remark that µ = 1

n

∑
dist(si, q)

and σ =
√
µ2 − 1

n

∑(
dist(si, q)

)2, so it remains to
show how the first two moments 1

n

∑
dist(si, q) and

1
n

∑(
dist(si, q)

)2 can be efficiently computed.
Reducing computing moments to double-

blinded coin-toss. We show how to compute
1
n

∑
f(xi) for an increasing invertible function f . For

an average take f(xi) = xi and for the second moment
take f(xi) = x2

i . Observe that 1
n

∑
f(xi) =

∑ f(xi)
n is

approximated by
∑
ai, where

ai =

{
1 With probability f(xi)/n
0 otherwise.

Secure k-ish Nearest Neighbors Classifier 47

Thus we reduced the problem to coin-toss with bias
f(xi)
n (recall that x1, . . . , xn are given as a ciphertexts).
Reducing double-blind coin-toss to isSmaller

polynomial. We show how to implement a double-
blind coin-toss with the isSmaller polynomial. Given
a ciphertext JxiK and a parameter n, we wish to toss
a coin with bias f(xi)

n . To do that, uniformly draw a
random value r ← {0, . . . , n} and observe that Pr[r <
f(xi)] = Pr[f−1(r) < xi] = f(xi)/n, when f is strictly
increasing. We therefore implement the coin-toss as
isSmaller(f−1(r), xi).

Since coin tossing is a basic primitive for many ran-
dom algorithms, we expect our implementation of coin
tossing to have a large impact on future research in HE.

6 Protocol and Algorithms
In this section we describe the k-ish nearest neighbors
protocol. We describe it from top to down, starting with
the k-ish nearest neighbors protocol.

6.1 k-ish Nearest Neighbors

The intuition behind our new classifier is that the clas-
sification of kNN does not change “significantly” when
k changes “a little”. Figure 2 (left) shows how the accu-
racy changes with k. We therefore relax kNN into k-ish
NN, where given a parameter k the classifier considers
κ ≈ k.

Definition 6.1 (k-ish Nearest Neighbors Classification).
Given a database S = (s1, . . . , sn), a parameter
0 ≤ k ≤ n and a query q, the k-ish Nearest Neighbors
classifier sets the class of q to be the majority of classes
of κ of its nearest neighbors, where f1(k) < κ < f2(k).

The protocol in this paper will have k/2 < κ < 3k/2 with
probability that depends on the distance distribution.

6.2 k-ish NN Classifier Protocol

We give here a high-level description of our protocol.
The protocol has two parties a client and a server.

They share common parameters: a HE scheme E , the
security parameter λ and integers p, d and c. The input
of the server is a database S = (s1, . . . , sn) with their
respective classes class(1), . . . , class(n), where si ∈ Zdp,

and class(i) ∈ [c] is the class of si. The input of the
client is a query q ∈ Zdp.

The output of the client is classq ∈ [c], which is the
majority class of κ neighbors of q, where k/2 < κ < 3k/2
with high probability. The server sends JclassqK to the
client and has no further output.

Our solution starts by computing the set of dis-
tances xi = dist(si, q). Then it computes a threshold
T := µ∗+Φ−1(k/n)σ∗, where µ∗ ≈ E(DS,q) and (σ∗)2 ≈
V ar(DS,q) (see below how µ∗ and σ∗ are computed).
With high probability we have k/2 < | {si | xi < T} | <
3k/2. Comparing x1, . . . , xn to T is done in parallel,
which keeps the depth of the circuit low. The result of
the comparison is used to count the number of neighbors
of different classes.

To compute µ∗ and σ∗ we use the identities µ =
1/n

∑
xi and σ =

√
µ2 − 1/n

∑
x2
i , and approximate

1/n
∑
xi and 1/n

∑
x2
i with an algorithm we describe

in Section 6.3.
Reducing ring size. In the naive implementation,

we have a lower bound of Ω(p2) for the ring size. That is
because x1, . . . , xn = O(p) and we have the intermediate
values (µ∗)2, µ2 = O(p2). Since the size and depth of
polynomial interpolations we use depend on the ring size
we are motivated to keep the ring size small. To do that
we use a representation we call base-p representation.

Definition 6.2 (base-p representation). For p ∈ N
and v ∈

{
0, . . . , p2 − 1

}
base-p representation of v is

low(v) = v mod p and high(v) = bv/pc.

We then assign

low(µ∗2) := 1/n
∑

x2
i mod p

high(µ∗2) := 1
np

∑
x2
i

where the modulo is done implicitly by the circuit. Sim-
ilarly, we assign

low
(
(µ∗)2) := µ∗ · µ∗ mod p,

high
(
(µ∗)2) := µ∗ · µ∗/p,

where the modulo is done implicitly by arithmetic cir-
cuit. We then assign

σ∗ =

√
low
(
(µ∗)2

)
− low

(
(µ∗2)

)
if high

(
(µ∗)2)− high(µ∗2) = 0,√

low
(
(µ∗)2

)
− low

(
(µ∗2)

)
+ p

if high
(
(µ∗)2)− high(µ∗2) = 1,√(

high
(
(µ∗)2

)
− high(µ∗2)

)
p

otherwise.

Secure k-ish Nearest Neighbors Classifier 48

In Lemma B.1 we prove that σ∗ ≈
√

(µ∗)2 − µ∗2.
We next give a detailed description of our protocol.

Protocol 1: k-ish Nearest Neighbor Classifier
Shared Input: integers p, d, c > 1.
Client Input: a point q ∈ Zdp and a security

parameter λ.
Server Input: integers k < n,

points s1, . . . , sn ∈ Zdp.
A matrix M ∈ {0, 1}n×c, s.t.
M(i, j) = 1 iff the class(si) = j.

Client Output: classq ∈ [c], the majority class
of κ nearest neighbors of q where
k/2 < κ < 3k/2 with high prob.

1 Client performs:
2 Generate keys (sk, pk) := Gen(1λ, p)
3 JqK := Encpk(q)
4 Send (pk, JqK) to the server

5 Server performs:
6 for each i ∈ 1, . . . , n do
7 JxiK := computeDist(JqK, si)

8 Jµ∗K := approximate 1
n

∑
JxiK

9
(
Jlow

(
(µ∗)2)K, Jhigh

(
(µ∗)2)K) :=

base-p rep. of (µ∗)2

10
(
Jlow(µ∗2)K, Jhigh(µ∗2)K

)
:=

base-p rep. of 1
n

∑
JxiK2

11 Jσ∗K := approximate
√

(µ∗)2 − µ∗2
12 JT ∗K := Jµ∗K + dΦ−1(kn)cJσ∗K

13 JCK := (0, . . . , 0)
14 for each c ∈ 1, . . . , j do
15 JC(j)K :=∑n

i=1 isSmaller(JxiK, J(T ∗)K) ·M(i, j)

16 JclassqK := ArgMaxc(JCK)
17 Send JclassqK to the client

18 Client performs:
19 classq := Decsk(JclassqK)

Protocol Code Explained. Protocol 1 follows the
high level description given above. As a first step the
client generates a key pair (sk, pk), encrypts q and sends
(pk, JqK) to the Server (Line 2-4).

The server computes the distances, x1, . . . , xn
(Line 7), where computeDist(si, q) computes the dis-
tance between si and q.

The server then computes an approximation of
the average, µ∗ ≈ 1/n

∑
xi, (Line 8) by calling

ProbabilisticAverage (Algorithm 2).
In Line 10 the sever computes the base-p repre-

sentation of the approximation of the second moment,
µ∗2 = 1/n

∑
x2
i .

Jlow(µ∗2)K := approximate 1
n

∑
JxiK2 mod p

Jhigh(µ∗2)K := approximate 1
np

∑
JxiK2 mod p.

The approximations are done by calling
ProbabilisticAverage and setting f(x) = x2 and m = n

and m = np respectively (see Section 6.3 for details on
ProbabilisticAverage parameters). We remind that the
modulo operation is performed implicitly by the HE
operations.

Then in Line 9 the server computes the base-p rep-
resentation of (µ∗)2. It sets:

Jlow
(
(µ∗)2)K := Jµ∗K · Jµ∗K mod p

Jhigh
(
(µ∗)2)K := P(·)2/p(µ∗)

Next the server computes σ∗ in Line 11 where the square
root is done with P√· and P√(·)+/p. In Line 12 a thresh-
old T ∗ is computed. Since k and n are known Φ−1(k/n)
can be computed without homomorphic operations.

In Line 15 the server counts for each class j the
number of nearest neighbors of that class. This is done
by summing isSmaller(JxiK, J(T ∗)K) · M(i, j) for i =
1, . . . , n. Since isSmaller(JxiK, J(T ∗)K) = 1 iff xi < T ∗

and M(i, j) = 1 iff class(i) = j the sum in Line 15 adds
up to the number of neighbors having class j, for each
class j ∈ [c].

The server applies the ArgMaxc polynomial in
Line 16 to find the index of the maximum of JC(1)K,. . . ,
JC(c)K. The index of the maximum is the majority class
of the κ nearest neighbors of q which is assigned to classq.
Then it sends classq to the client who can decrypt it and
get the classification of q.

Theorem 6.3. Let k, p, d, c ∈ N and S = (s1, . . . , sn) ∈
Zdp, where class(i) ∈ [c] is a class associated with si, also
let q ∈ Zdp such that SD

(
DS,q,N (µ, σ)

)
= s, where (µ, σ)

are the average and standard deviation of DS,q. Then:
(i) The client’s output in KNearestNeighbors is classq
which is the majority class of κ nearest neighbors of q

Secure k-ish Nearest Neighbors Classifier 49

in S, where

Pr[|k − κ| > δk] < 2 exp

(
−O

(
δk(σ2 + µ2)

µ+ Φ−1(k/n)σ

))

+2 exp

(
−O

(
µδ2k2σ

µs+ σ2s

))
.

Let KNearestNeighbors denote the arithmetic cir-
cuit evaluated by the server in Protocol 1 and isSmaller
and computeDist denote the arithmetic circuits compar-
ing ciphertexts and computing the distance between two
points, respectively.
(ii) depth(KNearestNeighbors) = O(depth(computeDist)+
log p+ log c · depth(isSmaller)), and
(iii) size(KNearestNeighbors) = O

(
n·size(computeDist)+

√
p+ n · size(isSmaller)

)
,

where isSmaller is an arithmetic circuit comparing two
ciphertexts, and computeDist is an arithmetic circuit
computing the distance between two vectors.

The proof of this theorem is given in Section 7.3.
In the next subsection we describe how µ and µ2 are
computed efficiently in arithmetic circuit model.

Increasing Probability that κ ≈ k. Since our
protocol includes non-deterministic elements it may
choose κ that is too different than k with some prob-
ability. The protocol can be repeated several times such
that with sufficiently high probability in the majority of
times we have κ ≈ k.

Extension to multiple database owners. Proto-
col 1 describes a protocol between a client and a server,
however, it can be extended to a protocol where the
database is distributed among multiple data owners.
The evaluation of the arithmetic circuit can then be
carried collaboratively or by a designated party.

Extension to other distributions. Protocol 1 as-
sumes the distribution of the distance distribution, DS,q,
is statistically close to Gaussian. To extend Protocol 1
to another distribution X, the protocol needs to com-
pute the inverse of the cumulative distribution function,
CDF−1

X (k/n), for any 0 < k/n < 1. The probability of
failure will then depend on maxCDF ′X(T), which intu-
itively bounds the change in number of nearest neigh-
bors as T changes.

6.3 Algorithm for Computing
1/m∑n

i=1 f(JdiK)

In this section we show how to efficiently approximate
sums of the form 1

m

∑n
1 f(JxiK), where n and m are inte-

gers, f is an increasing invertible function and x1, . . . , xn
are ciphertexts.

Algorithm 2: ProbabilisticAverage(Jx1K, . . . , JxnK)
Parameters: Integers, p, n,m > 0, an increasing

invertible function f : [0, p− 1] 7→ [0,m].
Input: x1, . . . , xn ∈ Zp.
Output: A number x∗ ∈ Zp such that

Pr[|χ− x∗| > δ] < 2e−2nδ2 ,
where χ = d1/m

∑
f(xi)c mod p.

1 for i ∈ 1, . . . , n do
2 JaiK := toss a double-blinded coin with bias

f(xi)
m

3 Jx∗K :=
∑n
i=1JaiK

4 return Jx∗K

Algorithm Overview. In Line 2 the algorithm
tosses n coins with probabilities f(x1)

m , . . . , f(xn)
m . The

coins are tossed double-blinded, which means the bias
of each coin is a ciphertext, and the output of the toss is
also a ciphertext. See Algorithm 3 to see an implemen-
tation of double-blinded coin-toss. The algorithm then
returns the sum of the coin tosses,

∑
ai, as an estima-

tion to 1
m

∑
f(xi).

Theorem 6.4. For any p,m, n ∈ N and f : [0, p− 1] 7→
[0,m] an increasing invertible function Algorithm 2 de-
scribes an arithmetic circuit whose input is n integers
d1, . . . , dn ∈ Zp and output is χ∗ such that,
(i) Pr (|χ∗ − χ| > δχ) < 2 exp(−χδ

2

3), where χ =
1
m

∑
f(x),

(ii) depth(ProbabilisticAverage) = O(depth(isSmaller)),
(iii) size(ProbabilisticAverage) = O(n · size(isSmaller)),
where isSmaller is an arithmetic circuit comparing two
ciphertexts.

The full proof is given in Section 7.3. The intuition
is to observe that χ∗ is a sum of Bernoulli random
variables and the bound follows from Chernoff inequal-
ity. Since each random variable is obtained by indepen-
dently applying isSmaller we get that the depth and size
of ProbabilisticAverage is as specified.

6.4 Double Blinded Coin Toss

Algorithm Overview. The CoinToss algorithm uni-
formly draws a random value r (in plaintext) from [0,m]

Secure k-ish Nearest Neighbors Classifier 50

Algorithm 3: CoinToss(JxK)
Parameters: Two integers p ∈ N, m ∈ R and an

increasing invertible function
f : [0, p− 1] 7→ [0,m]

Input: A number JxK, s.t. x ∈ Zp.
Output: A bit JbK, such that Pr[b = 1] = f(x)/m.

1 Draw r ← [0,m]
2 r′ := df−1(r)e
3 return isSmaller(JxK, r′)

(Line 1). Since r is not encrypted, and f is increasing and
invertible, it is easy to compute df−1(r)e (Line 2). The
algorithm then returns isSmaller(x, r′) which returns 1
with probability f(x)/m.

CoinToss as an Arithmetic Circuit. Algorithm 3
draws a number r from the range [0,m] and computes
f−1(r), which are operations that are not defined in an
arithmetic circuit. To realize CoinToss as an arithmetic
circuit we think of a family of circuits: CoinTossr for
r ∈ [0,m]. An instantiation of CoinToss is then made by
drawing r ← [0,m] and taking CoinTossr.

The proofs of correctness and the size and depth
bounds of the arithmetic circuit implementing Algo-
rithm 3 are given in Section 7.1.

7 Analysis
In this section we prove the correctness and efficiency
of our algorithms. Unlike the algorithms that were pre-
sented top-down, reducing one problem to another sim-
pler problem, we give the proofs bottom up as analyzing
the efficiency of one algorithm builds upon the efficiency
of the simpler algorithm.

7.1 Analyzing Double Blinded Coin Toss

In this section we prove the correctness and the bounds
of the CoinToss algorithm given in Section 6.4.

Theorem 7.1. For p ∈ N, m ∈ R and an increasing in-
vertible function f : [0, p − 1] 7→ [0,m] Algorithm 3 gets
an encrypted input JxK and outputs an encrypted bit JbK
such that
(i) Pr[b = 1] = f(x)/m.
(ii) depth(CoinToss) = O(isSmaller), and
(iii) size(CoinToss) = O(isSmaller), where isSmaller is

a circuit that compares a ciphertext to a plaintext:
isSmaller(JxK, y) = 1 if x < y and 0 otherwise.

Proof. Correctness. Since f is increasing and invertible

Pr[f(x) < r] = Pr[x < f−1(r)] = Pr[x < df−1(r)e].

The last equation is true since since x is integer.
Since we pick r uniformly from [0,m] we get

Pr[f(x) < r] = f(x)/m.
Depth and Size. After choosing CoinTossr by ran-

domly picking r, that circuit embeds isSmaller and the
bound on the size and depth are immediate.

The isSmaller function may be implemented differ-
ently, depending on the data representation. In this
paper, we use a polynomial interpolation to compute
isSmaller and therefore, depth(isSmaller) = O(log p) and
size(isSmaller) = O(√p). We summarize it in the follow-
ing corollary:

Corollary 7.2. Let 0 ≤ x < p be an integer, r ← [0,m]
randomly drawn, f : [0, p − 1] 7→ [0,m] an increas-
ing invertible function and isSmallerp : Zp × Zp 7→
{0, 1} a polynomial as defined in Section 3.1 then the
isSmallerp(df−1(r)e, x) circuit realizes the CoinTossr(x)
functionality with bias f(x)

m and has depth O(log p) and
size O(√p).

7.2 Analysis of ProbabilisticAverage

We now prove the correctness and depth and size bounds
of Algorithm 2.

Theorem 7.3. Let p,m ∈ N, x1, . . . , xn ∈
{0, . . . , p− 1} and f : [0, p − 1] 7→ [0,m] be an increas-
ing and invertible function. Denote χ = 1/m

∑n
1 f(xi)

mod p then:
(i) ProbabilisticAverage returns x∗ such that
Pr[|x∗ − χ| > δχ] < 2 exp(−χδ

2

3).
(ii) depth(ProbabilisticAverage) = O(depth(isSmaller)).
(iii) size(ProbabilisticAverage) = O(n · size(isSmaller)).

Proof. Correctness. We start by proving that
ProbabilisticAverage return x∗ such that Pr[|x∗ − χ| >
δχ] < 2 exp(−χδ

2

3). From Theorem 7.1 we have

ai =

{
1 with probability f(xi)

m

0 otherwise.

Since ai are independent Bernoulli random variables,
it follows that E(

∑
ai) = 1

m

∑
f(xi) = χ and by

Secure k-ish Nearest Neighbors Classifier 51

Chernof we have: Pr (
∑
ai > (1 + δ)χ) < exp(−χδ

2

3)
and Pr (

∑
ai < (1− δ)χ) < exp(−χδ

2

2), from which
it immediately follows that Pr (|

∑
ai − χ| > δχ) <

2 exp(−χδ
2

3).
Depth and Size. We analyze the depth

and size of the arithmetic circuit that imple-
ments ProbabilisticAverage. Since all coin tosses
are done in parallel the multiplicative depth is
depth(ProbabilisticAverage) = depth(CoinToss) and
the size is size(ProbabilisticAverage) = O(n ·
depth(CoinToss)).

7.3 Analysis of KNearestNeighbors

In this subsection we prove the correctness and bounds
of the KNearestNeighbors protocol.

Theorem 6.3. Let k, p, d, c ∈ N and S = (s1, . . . , sn) ∈
Zdp, where class(i) ∈ [c] is a class associated with si, also
let q ∈ Zdp such that SD

(
DS,q,N (µ, σ)

)
= s, where (µ, σ)

are the average and standard deviation of DS,q. Then:
(i) The client’s output in KNearestNeighbors is classq
which is the majority class of κ nearest neighbors of q
in S, where

Pr[|k − κ| > δk] < 2 exp

(
−O

(
δk(σ2 + µ2)

µ+ Φ−1(k/n)σ

))

+2 exp

(
−O

(
µδ2k2σ

µs+ σ2s

))
.

Let KNearestNeighbors denote the arithmetic cir-
cuit evaluated by the server in Protocol 1 and isSmaller
and computeDist denote the arithmetic circuits compar-
ing ciphertexts and computing the distance between two
points, respectively.
(ii) depth(KNearestNeighbors) = O(depth(computeDist)+
log p+ log c · depth(isSmaller)), and
(iii) size(KNearestNeighbors) = O

(
n·size(computeDist)+

√
p+ n · size(isSmaller)

)
,

where isSmaller is an arithmetic circuit comparing two
ciphertexts, and computeDist is an arithmetic circuit
computing the distance between two vectors.

Proof. Correctness. For lack of space we give the proof
of correctness in Appendix B. In a nutshell, the proof
follows these steps:
– Use Theorem 7.3 to prove µ∗ ≈ µ and µ∗2 ≈ µ2 (with

high probability), where µ and µ2 are the first two
moments of DS,q and µ∗ and µ∗2 are the approxima-
tions calculated using ProbabilisticAverage.

– Prove σ∗ ≈ σ (with high probability), where σ =√
µ2 − µ2 and σ∗ is the approximation calculated

by KNearestNeighbors.
– Prove T ∗ ≈ T (with high probability), where T = µ+

Φ−1(k/n)σ and T ∗ = µ∗+Φ−1(k/n)σ∗ as calculated
by KNearestNeighbors.

– Prove |{xi |xi < T ∗}| ≈ |{xi |xi < T}| (with high
probability), where DS,q is statistically close to
N (µ, σ).

Depth and Size. The protocol consists of 7 steps:
1. Compute distances x1, . . . , xn.
2. Compute µ∗ and µ∗2.
3. Compute (µ∗)2

4. Compute σ∗.
5. Compute T ∗.
6. Compute C(0),. . . , C(c).
7. Compute classq.

Step 1 is done by instantiating n computeDist sub-
circuits in parallel; Step 2 is done by instantiating O(1)
ProbabilisticAverage sub-circuits in parallel; Steps 3-5
are done by instantiating O(1) polynomials in paral-
lel; Step 6 is done by instantiating O(n) isSmaller sub-
circuits in parallel, and Step 7 is done by instantiating
the ArgMaxc polynomial. Summing it all up we get that

depth(KNearestNeighbors) = O
(
depth(computeDist)

+ log p+ log c · depth(isSmaller)
)
,

and

size(KNearestNeighbors) = O
(
n · size(computeDist)

+√p+ n · size(isSmaller)
)
.

Plugging in our implementations of isSmaller and
computeDist we get this corollary.

Corollary 7.4. Protocol 1 can be implemented with

depth(KNearestNeighbors) = O(log p log c),

and
size(KNearestNeighbors) = O(n · √p).

8 Security Analysis
In this section we discuss the correctness of the output
and the privacy of the inputs in the presence of dishonest
adversaries.

Secure k-ish Nearest Neighbors Classifier 52

Informally, the security guarantee is that the client
and the server do not learn anything beyond what is ex-
plicitly revealed by the protocol (the “leakage profile”),
i.e. the shared parameters and in the client’s case its out-
put. In addition the leakage profile includes meta-data
such as the time the query was made, the time it took
the server to compute and respond, and the addresses
of the client and the server.

We consider two types of adversaries, a semi-honest
(a.k.a. curious but honest) adversary that follows the
protocol but tries to infer additional information to
what is stated above and a malicious adversary that
does not follow the protocol. In both cases we assume
the adversaries are computationally bounded.

Semi-honest Server.We prove that a semi-honest
server does not learn anything from the query (except
for the leakage profile). That stems from the semantic
security of HE.

Theorem 8.1. Assuming the underlying encryption E
is semantically secure, the secure k-ish NN classifier pro-
tocol (Protocol 1) securely realizes the k-ish NN func-
tionality (as defined above) against an semi-honest ad-
versary controlling the server.

The proof shows that the view of a server with a
real query is computationally indistinguishable from a
view of a server in a simulator on a "dummy" query,
therefore concluding the server cannot learn anything
on the content of the query q.

Proof. To prove the protocol is secure against a semi-
honest adversarial server we construct a simulator S
whose output, when given only the server’s input and
output (1λ, E , p, d, c, k, n, S, class), is computationally in-
distinguishable from an adversarial server’s view in the
protocol.

The simulator operates as follows: (i) Generates a
dummy query q′; (ii) Executes the k-ish NN classifier
protocol on simulated client’s input q′ (the simulator
plays the roles of both parties); (iii) Outputs the se-
quence of messages received by the simulated server in
the k-ish NN classifier protocol. The simulator’s output
S(. . .) = S(1λ, E , p, d, c, k, n, S, class) is therefore:

S(. . .) = (pk′, Jq′Kpk′ , Jclass′qKpk′),

where pk′ was generated by Gen(1λ, p), Jq′Kpk′ was gen-
erated by Enc(. . .) and Jclass′qKpk′ was generated by
Eval(. . .).

We show that the simulator’s output is computa-
tionally indistinguishable from the view of the server

(assuming E is semantically secure). The view of the
server consists of its received messages:

view(A) = (pk, JqKpk, JclassqKpk),

where pk was generated by Gen(1λ, p) and JqKpk was
generated by Enc(. . .) and JclassqKpk was generated by
Eval(. . .).

Observe that the simulator’s output and the server’s
view are identically distributed, as they are sampled
from the same distribution. Furthermore, the server’s
view is computationally indistinguishable from the real
view by the multi-messages IND-CPA security for the
HE scheme E . Put together, we conclude that the simu-
lator’s output is computationally indistinguishable from
the server’s view S(. . .) ≡c view(A).

Malicious Server. Since the protocol involves a sin-
gle round (the client sends a query and receives a re-
ply) Theorem 8.1 holds even if the server is malicious.
That is, the server cannot distinguish between JqKpk and
Jq′Kpk′ (the simulated query) even if it does not follow
the protocol. With a malicious server, however, there is
no guarantee on the correctness of the output. In the ex-
treme case, the server can avoid the protocol and reply
a random class.
Semi-honest and Malicious Client. The view of the
client includes only the class of its query since that is
the only message it receives, view(client) = classq. From
classq the client may infer something on S (e.g. the ma-
jority class of the neighbors of q) however, we note that
learning classq is the minimum necessary since it is the
output required by the problem definition.

9 Experimental Results
We implemented Protocol 1 and built two systems. The
first system, motivated in Section 1, securely classifies
breast tumors. The second system, motivated by Elme-
hdwi et al. [8], securely evaluates cars by classifying
them into one of 4 classes. In this section we describe
the details of these systems, our experimental results
and a comparison to the results of Elmehdwi et al. [8].

Each of our system has two parties: the server (hold-
ing the database S) and a client wishing to classify a
query q, where the server classified q without learning
anything on its content. We measured the time to com-
pute the classification and the accuracy of our classifier.
The accuracy is expressed in terms of F1 score which
quantifies the overlap between the predicted classes of
points and their real classes.

Secure k-ish Nearest Neighbors Classifier 53

We implemented our system using HElib [9] for HE
operations and ran the server part on a standard server.
Since HElib works over an integer ring we scaled and
rounded the data and the query to an integer grid.

9.1 The Data

We tested our classifier with a database of 569 tumor
samples and with a database of 1728 car samples. We
next describe the two databases.

Tumor Data. The breast tumor database [6] con-
tains 569 tumor points, of which 357 are benign and 212
malignant. Each tumor is characterized by 30 features
given as real numbers in floating point, such as the tu-
mor diameter, the length of the circumference, etc. An
insecure kNN classifier was already suggested for this
database (e.g. [13]).

Since we expect the protocol to perform worse in
higher dimensions we reduced the dimensionality by ap-
plying linear discriminant analysis (LDA) and project-
ing the database onto subspaces of 2,3 and 5 dimensions.
This is a preprocessing step the server can apply on the
database in clear-text before answering client queries.
Also, (even when using HE) a 30-dimensional encrypted
query can easily be projected onto a lower dimensional
space. We used the projections onto those subspaces in
our experiments to compare how the performance varies
with the dimension. The distribution of the points on
the 2D plane can be seen in Figure 2 (right).

Fig. 2. Right: The 569 points in the database, representing breast
tumors samples classified as benign (green) and malignant (red)
after applying LDA and projecting them onto the plane. Left: The
F1 score of a kNN classifier as it changes as a function of k. The
F1 score was calculated on a database of 569 tumors in plaintext
in floating point arithmetics.

Since HElib encodes integer numbers from the range
{0, . . . , p− 1} for some p that is determined during key
generation we scaled the data points and rounded them
to the d dimensional grid [g]d, for some g and for d =
2, 3, 5. The choice of g affects the accuracy as well as the
running time of our protocol. We tested our protocol

with 20 < g < 300. The relation between g, d and p is
given by p > 2gd > 2dist(s, q), for any s ∈ S and q ∈ [g]d.

Car Evaluation Data. To compare with the solu-
tion by Elmehdwi et al. [8] we used the car evaluation
database from the UCI KDD archive [7]. The database
contains 1728 points with 6 attributes: buying price,
maintenance price, door number, passenger number, size
of luggage boot and safety score. The buying price and
the maintenance price are given as the categories: “low”,
“medium”, “high” and “very high”. The door number is
given as “2”,“3”,“4” or “5+”. The passenger number is
given as “2”,“3” or “more”. The safety score and the
luggage boot were given as a category with 3 options:
“low”, “medium” and “high” for the first and “small”,
“medium” and “big” for the latter. The cars are classi-
fied into 4 classes: “unacceptable”, “acceptable”, “good”
and “very good” with 1210, 384, 69 and 65 cars respec-
tively.

9.2 The System

We implemented the protocols and algorithms in this
paper in C++. We used HElib library [9] for an im-
plementation for HE based on BGV [3], including its
usage of SIMD (Single Instruction Multiple Data) tech-
nique. The source of our system is open under the MIT
license and can be found in [18]. The hardware in our
tests was a single off-the-shelf server with 16 2.2 GHz
Intel Xeon E5-2630 cores. These cores are common in
standard laptops and servers. The server also had 62GB
RAM, although our code used much less than that. All
the experiments we made use a security key of 80 bits.
This settings is standard and can be easily changed by
the client.

9.3 The Experiment

Accuracy. To test the accuracy of Protocol 1 we used
leave-one-out cross validation: for each point in the
database, we removed it from the database and then
used the smaller database for classification. Iterating
over all points we computed the F1 score. We also tried
leave-f -out cross validation, i.e. removing f additional
random points (for various values of f). This did not
change the results by much.

To classify we used k = 13 which for the tumor
database of 568 points sets Φ−1(13/568) ≈ 2 and
for the car evaluation database of 1728 points sets
Φ−1(13/1728) ≈ 2.5. We calculated the F1 score by

Secure k-ish Nearest Neighbors Classifier 54

repeating this for each of the points in the database.
To test the effect of different grid sizes we scaled each
database to grids between [20]d to [300]d, where d =
2, 3, 5 for the tumor database and d = 6 for the car evalu-
ation database. The results are summarized in Figure 3
for the tumor databases and in Figure 4 for the cars
database.

Fig. 3. The F1 score for the tumor database as a function of the
grid size. The x axis is the size of an edge in the grid, e.g. x =
100 means a [100]d grid. The red dashed line is the baseline F1
score of the kNN classifier ran on the same database in plaintext
in floating point arithmetics. The lines in blue, yellow an green
are for the graphs for the database projected on 2d, 3d and 5d,
respectively.

Fig. 4. The F1 score for the 6d cars database (the solid line) as a
function of the grid size. The x axis is the size of an edge in the
grid, e.g. x = 100 means a [100]d grid. The red dashed line is the
baseline F1 score of the kNN classifier ran on the same database
in plaintext in floating point arithmetics.

Time and RAM. The time to complete the
KNearestNeighbors protocol comprises of 3 parts:
– Client Time is the time to execute the client steps

of the protocol: (i) generating a key, (ii) encrypting
a query and (iii) decrypting the reply.

– Communication Time is the total time to trans-
mit messages between the client and the server.

– Server Time is the time it takes the server to eval-
uate the arithmetic circuit of the protocol.

In our experiments, we measured the server time, i.e.
the time it took the server to evaluate the gates of
the arithmetic circuit. The time we measured was the
time passed between receiving the encrypted query and
sending the encrypted class of the query. In some HE
schemes the time to evaluate a single gate in a circuit
depends on the depth of the entire circuit. Specifically,
in the scheme we used (see below) the overhead to com-
pute a single gate is Õ

(
depth(AC)3), where depth(AC)

is the depth of the circuit.
We measured how the size of the grid affects the

running time. We measured the server time to classify a
query on the tumor databases on dimensions d = 2, 3, 5,
as explained above. The results are summarized in Fig-
ure 5 for the tumor database and in Figure 6 for the car
evaluation database. The RAM requirements are sum-
marized in Figure 7 for the tumor database and in Fig-
ure 8 for the car evaluation database.

Fig. 5. The time (in minutes) to compute the k-ish NN on a
16-CPU server as a function of the grid-size to which data was
scaled and rounded to. The x axis is the size of an edge in the
grid, e.g. x = 100 means a [100]d grid. The lines in blue, yellow
and red are for the database projected on 2d, 3d and 5d, respec-
tively.

9.4 Results and Discussion.

k-ish NN vs. kNN. In Figure 2 (left) we show how
the choice of k changes the accuracy of kNN. The graph
shows the F1 score (y axis) of running kNN on the data
with different values of k (x axis). The graph shows that
for 5 ≤ k ≤ 20 the decrease in F1 score is small, from
0.979 to 0.968. For 20 ≤ k ≤ 375 the F1 score decreases
almost linearly from 0.968 to 0.874. For larger values,
375 < k the F1 score drops rapidly because the kNN

Secure k-ish Nearest Neighbors Classifier 55

Fig. 6. The time (in minutes) to compute the k-ish NN on the 6d

car evaluation database on a 16-CPU server as a function of the
grid-size to which data was scaled and rounded to. The x axis is
the size of an edge in the grid, e.g. x = 100 means a [100]6 grid.

Fig. 7. The RAM (in GB) to compute the k-ish NN on the 6d

car evaluation database on a 16-CPU server as a function of the
grid-size to which data was scaled and rounded to. The x axis is
the size of an edge in the grid, e.g. x = 100 means a [100]d grid.
The lines in blue, yellow and red are for the database projected on
2d, 3d and 5d, respectively.

Fig. 8. The RAM (in GB) to compute the k-ish NN on a 16-CPU
server as a function of the grid-size to which data was scaled
and rounded to. The x axis is the size of an edge in the grid, e.g.
x = 100 means a [100]6 grid. The lines in blue, yellow and red
are for the database projected on 2d, 3d and 5d, respectively.

classifier considers too many neighbors. In the extreme
case, for k = 569 the classifier considers all data points
as neighbors thus classifying all queries as benign.

Different Distributions. To test our classifier
on various data distributions we ran experiments on
the tumor database and on the car database. These
two databases have different distributions. The tumor
database has 569 points in two clusters: the dense be-
nign cluster and a less dense malignant cluster. See
Figure 2 (right). The car evaluation database has 1728
points for each of the 43 · 33 possible options of a car’s
features. The points in this case are evenly distributed
in that hypercube. Figure 9 (above) shows 2 histograms
of distances from random query points to the points in
the tumor database and Figure 9 (below) shows 2 his-
tograms of distances from random query points to the
points in the cars database. We show the F1 scores for
the k-NN classifier as a function of the grid size. We also
include the F1 score of the kNN classifier as a baseline to
compare to. The scores for tumor database are given in
Figure 3 and the scores for the car evaluation databases
are given in Figure 4. In both cases the F1 score of the
secure k-ish NN increased with the grid size (see more
about this below) and it converged to a value a little
lower than the score of the kNN: 0.91 vs. 0.97 in the
tumor database and 0.86 vs. 0.91 in the car database.

Fig. 9. Above: two histograms of distances from two random
points on the plane to the 2D points in the tumor database
scaled and rounded to a 100 × 100 grid. Below: two histograms of
distances from two random points to the points in the database
scaled and rounded to the [140]6 hypercube.

Grid Size and Dimensionality. The effects of
the grid size are shown in Figure 5, 6, 3 and 4. In Fig-
ure 3 we show how the accuracy, measured by F1 score,
changes with the grid size on the tumor database. For
d-dimensional data (where d = 2, 3, 5) the x-value of g
means each point was scaled (and rounded) to a point
in the d-dimensional grid [g]d. As a baseline (shown in
dashed red line) we used the F1 score of a kNN classifier.

Secure k-ish Nearest Neighbors Classifier 56

The F1 scores of k-ish NN for d = 2, 3, 5 are given
in blue, yellow and green lines, respectively. The accu-
racy increases with the grid size and also with the di-
mensionality. For example, in 2d scaled to a 100 × 100
grid, the F1 score was 0.943, and in 5d scaled to a
[40]5 grid, the F1 score was 0.938. This follows from our
analysis. The success probability of ProbabilisticAverage
is Pr (|µ∗ − µ| > δµ) < 2exp(−µδ

2

3), which improves as
the average distance µ grows. For fixed database and
query we have µ = O(gd). The success probability of
ProbabilisticAverage affects the success probability of
KNearestNeighbors. In the example above, 40 ·5 = 100 ·2.

In Figure 5 we show the server times on the tumor
database for different grid sizes and for d = 2, 3, 5 given
in blue, yellow and green, respectively. For example, for
a 2d database scaled to a 160 × 160 grid, the running
time was 50 minutes, and for a 5d database scaled to a
[60]5 grid, the running time was 60 minutes. This follows
from our analysis: we need p > 2gd > 2dist(s, q), where
s ∈ S ⊆ [g]d and q ∈ [g]d. Since depth(AC) = O(log(p))
and size(AC) = O(√p) we get, Time = Õ(log3(dg)

√
dg).

Database Size. The server time of our protocol is
linear in, n = |S|. See Figure 10. This is easily explained
since the depth of the arithmetic circuit does not depend
on n and the number of gates is linear in n.

Scaling. Our protocol scales linearly with the num-
ber of cores since computing µ, µ2, C(1), . . . , C(c) and
the distances, x1, . . . , xn are embarrassingly paralleliz-
able.

Fig. 10. The server time on a 16-CPU server as a function of the
database size, n, as computed on the tumor database on a grid of
size [100]d, for d = 2.

9.5 Comparison to Previous Work

We compared our protocol with the naive HE implemen-
tation (see Appendix A) and with the solution by Elme-
hdwi et al. solution [8]. Table 1 compares the bounds

on number of rounds, number of ciphertexts transferred,
number of HE operations, the depth of the circuit (not
applicable for Elmehdwi et al.) and whether the proto-
col requires non-colluding servers. Table 2 summarizes
a comparison of the protocols running on the same data
(cars dataset [7]), with size n = |S| = 1728, dimension-
ality d = 6 and number of classes c = 4, on the same
server with 6 CPUs and on the same LAN. The protocol
by Elmehdwi et al. was implemented with Pallier cryp-
tosystem [16] with log p = 1024, where p is the plain-
text ring size. The naive and our HE protocols were
implemented with BGV [3] with log p = 9. The table
shows the F1 score, the time (in seconds) to run a query
and the size (in KB) of the communication. Since BGV
packs multiple messages in one ciphertext we could run
890 queries when transmitting 98,790KB, so we report
here the amortized size for a single query.

Our protocol is significantly faster than the naive
HE solution with a little worse accuracy. With the given
database and setting our solution is a little less accurate
and slower than the solution of Elmehdwi et al., however
our solution has better networking performance (rounds
and transfer). The current experiments were made over
a LAN with low latency, where the number of rounds
and the communication have a small effect on the proto-
col time. In real-world scenarios communication is made
over links they have non-negligible latency which affects
throughput (see e.g. John et al. [12]) and therefore has
more effect on the protocol time. In those scenarios the
networking advantage of our protocol is bigger. Another
advantage of our solution is it does not assume the ex-
istence of two non-colluding servers, unlike the solution
by Elmehdwi et al.

We also note that since all protocols are embarrass-
ingly parallelizable, the running time can be decreased
by adding CPUs to the system and therefore the costs
of each protocol is an interesting measure. For example,
for the experiment described in Table 2 the solution by
Elmehdwi et al. needs 2 servers each with 6 CPUs for
1/3 hours with communication of 160MB, while our so-
lution needs 1 server with 6 CPUs for 3.5 hours with
communication of 0.1MB. For example, in the Amazon
cloud in north Virgina a t3.2xlarge server costs $0.3328
per hour and transmitting 1 GB costs $0.09 [1]. In that
case the solution by Elmehdwi et al. would cost $0.236
while our solution would cost $1.164. Nevertheless, real-
world applications may have different needs and con-
straints (e.g., be bandwidth-limited), which would re-
flect on these cost estimates. Furthermore, we remark
that the approach by Elmehdwi et al. assumes two non-
colluding servers, which is not always possible.

Secure k-ish Nearest Neighbors Classifier 57

Rounds Comm. (Ctxt) HE ops HE depth Needs non-colluding servers
Elmehdwi et al. [8] O(log p(c + k log n)) O(log p(nk + c) + cd) O((k log p + d)n log p) NA∗ Yes
Naive 1 d O((n2 + c2)√

p) O(log p log(nc)) No
This Work 1 d O(n

√
p) O(log p log c) No

∗ Not applicable to Elmehdwi et al.

Table 1. Comparing our protocol with the protocol by Elmehdwi et al.[8] and the naive solutions, where n is the database size, c is the number of
classes, k is the number of neighbors to consider and p is the plaintext modulo. The columns: (1) Number of rounds the protocol makes, (2) number
of ciphertexts transmitted, (3) number of HE operations, (4) depth of HE circuit and (5) whether the protocol requires two non-colluding servers.

F1 Time (sec.) Comm. (KB)
Elmehdwi et al. [8] 0.92 1,248 157,696
Naive 0.92 months† 111‡

This Work 0.87 13,282 111‡
† An estimation. Running with n = 10 and k = 5 took 18 hours.
‡ Amortized.

Table 2. Comparing our protocol with the protocol by Elmehdwi et al.[8]
and the naive solutions on a database of car evaluations, with n = 1728
and k = 13, c = 4 classes on a standard server with 6 cores. For Elme-
hdwi et al. we had dlog2 pe = 6, and in our protocol we had dlog2 pe = 9.
The columns: (1) F1 score, (2) execution time and (3) data transferred.

10 Conclusions
We presented a variation to kNN classifier which we call
k-ish NN. In our new classifier we relax the number of
neighbors used to be approximately k. We show that
when the distribution of distances from a query, q, to
the points in the database, S, is statistically close to
Gaussian the k-ish NN can be implemented as an arith-
metic circuit with low depth. Specifically the depth is
independent of the database size. The depth of a cir-
cuit has a large impact when it is evaluated with HE
operations. In that case, the low depth of our circuit
significantly improves the time performance. This sug-
gests that our solution is a good candidate to implement
a secure classifier with HE.

We give a protocol that, classifies a query, q, given
by a client with a database, S, given by a server, us-
ing k-ish NN. It involves a single round, in which the
encryption of q is sent to the server who computes the
(encrypted) classification. The classification is then sent
to the client, who can decrypt it.

The communication complexity of our protocol is
proportional to the size of the input and output of the
client and is independent of the size of S. This improves
previous work that are not based on HE and whose com-
munication complexity is a function of |S|. This is also
unlike the naive implementations with HE which makes
our protocol the best of both worlds - having low com-
munication complexity and low running time.

Our protocol’s efficiency comes from the relaxation
on the number of neighbors, which allows us to use a
non-deterministic approach. We have shown how to con-
struct a double-blinded coin toss with bias f(JxK)

m where
JxK is a ciphertext, f is an increasing invertible function
and m > f(JxK). We used double-blinded coin tosses
to efficiently approximate sums of the form 1

m

∑n
1 f(xi)

without generating large intermediate values, which al-
lowed us to use a small plaintext modulo, which made
our polynomial interpolations more efficient.

We implemented a system to classify real breast tu-
mor data with our classifier. The system uses HElib as a
HE implementation and runs on a standard server. Our
classifier has similar F1 score as plaintext kNN, while
significantly faster than naive HE implementations.

In future work we will use double-blinded coin toss
to solve more machine learning problems such as train-
ing logistic regression model where the Sigmoid function
is approximated by a sum of coin tosses. We plan to use
a non-deterministic approach to solve other problems
such as implementing a gradient descent. We believe
these techniques may be of independent interest to the
community. We will also improve our k-ish NN to cor-
rectly find k-ish nearest neighbors when the distribution
of distances is not statistically close to Gaussian.

11 Acknowledgements
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1526815 and
1723943. The work of the first author was supported in
part by Haifa Center for Cyber Law & Policy, BIU Cy-
ber Center, Tel-Aviv Cyber Center, all in conjunction
with the Israel National Cyber Directorate; and The
Israel Science Foundation (grant No. 3380/19). The sec-
ond author would like to thank the Simons Institute for
the Theory of Computing and the The center for cyber,
law and policy in the University of Haifa for partial fund-
ing this research. The first author would like to thank
Adi Akavia for helpful discussions.

Secure k-ish Nearest Neighbors Classifier 58

References
[1] Amazon. Ec2 instance pricing - amazon web services (aws).

https://aws.amazon.com/ec2/pricing/on-demand/.
[2] D. Beaver. Efficient multiparty protocols using circuit ran-

domization. In J. Feigenbaum, editor, Advances in Cryptology
— CRYPTO ’91, pages 420–432, Berlin, Heidelberg, 1992.
Springer Berlin Heidelberg.

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. In
Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, ITCS ’12, page 309–325, New York,
NY, USA, 2012. Association for Computing Machinery.

[4] Centers for Medicare & Medicaid Services. The Health In-
surance Portability and Accountability Act of 1996 (HIPAA).
Online at http://www.cms.hhs.gov/hipaa/, 1996.

[5] T. Cover and P. Hart. Nearest neighbor pattern classification.
Information Theory, IEEE Transactions on, 13:21– 27, 1967.

[6] D. Dua and C. Graff. UCI machine learning repository, breast
cancer wisconsin (diagnostic) dataset, 2017.

[7] D. Dua and C. Graff. UCI machine learning repository, car
evaluation dataset, 2017.

[8] Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Secure
k-nearest neighbor query over encrypted data in outsourced
environments. In 2014 IEEE 30th International Conference on
Data Engineering, pages 664–675, March 2014.

[9] S. Halevi. Helib - an implementation of homomorphic
encryption. https://github.com/shaih/HElib/, 2013.

[10] S. Halevi and V. Shoup. Algorithms in helib. In 34rd
Annual International Cryptology Conference, CRYPTO
2014. Springer Verlag, 2014.

[11] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private
queries over untrusted data cloud through privacy homomor-
phism. In 2011 IEEE 27th International Conference on Data
Engineering, pages 601–612, April 2011.

[12] S. N. John, R. Okonigene, and A. Adelakun. Impacts of
latency on throughput of a corporate computer network. In
MSV, 2010.

[13] kaggle.com. https://www.kaggle.com/uciml/breast-cancer-
wisconsin-data.

[14] G. S. C̨etin, Y. Doröz, B. Sunar, and E. Savas. Depth
optimized efficient homomorphic sorting. In Proceedings of
the 4th International Conference on Progress in Cryptology
– LATINCRYPT 2015 - Volume 9230, page 61–80, Berlin,
Heidelberg, 2015. Springer-Verlag.

[15] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can ho-
momorphic encryption be practical? In Proceedings of the
3rd ACM Workshop on Cloud Computing Security Work-
shop, CCSW ’11, page 113–124, New York, NY, USA, 2011.
Association for Computing Machinery.

[16] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In J. Stern, editor, Advances in
Cryptology — EUROCRYPT ’99, pages 223–238, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

[17] M. S. Paterson and L. J. Stockmeyer. On the number of
nonscalar multiplications necessary to evaluate polynomials.
SIAM Journal on Computing, 1973.

[18] H. Shaul, D. Feldman, and D. Rus. Pp kish nn - an
implementation of privacy preserving k-ish nn classifier.

https://github.com/HayimShaul/ppknn/, 2020.
[19] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Member-

ship inference attacks against machine learning models. In
2017 IEEE Symposium on Security and Privacy (SP), pages
3–18, May 2017.

[20] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis.
Secure knn computation on encrypted databases. In Proceed-
ings of the 2009 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’09, page 139–152, New
York, NY, USA, 2009. Association for Computing Machin-
ery.

[21] B. Yao, F. Li, and X. Xiao. Secure nearest neighbor revis-
ited. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 733–744, April 2013.

A The Naive Implementation
In this section we describe the naive kNN implementa-
tion and its running time. For a query q and a database
S = (s1, . . . , sn) with their classes class(1), . . . , class(n)
the naive implementation follows these 3 steps:
– Compute distances xi = computeDist(si, q) for i =

1, 2 . . . , n.
– Sort x1, . . . , xn in increasing order xi1 , . . . , xin .
– Take the majority of class(i1), . . . , class(ik).

For the second step (sorting), we considered the work
of C̨etin et al. [14] who compared several sorting
algorithms running with HE. The fastest algorithm
found by their papers was to compute n polynomi-
als Pi(x1, . . . , xn), such that Pi(. . .) evaluates to the
i-th smallest value. In their papers they gave an ex-
plicit description of Pi(. . .). In our case we consider
only the k nearest neighbors and therefore compute only
P1, . . . ,Pk.

The time to evaluate Pi(x1, . . . , xn) was too
high for our parameters, n = 569. With smaller
parameters, for example, n = 10 evaluating
P1(x1, . . . , x10), . . . ,P5(x1, . . . , x10) took 18 hours. Ex-
trapolating to n = 569 gives a running times of several
months, which we were not able to run.

B Proof of Correctness of
KNearestNeighbors

In this section we prove the correctness of Protocol 1.
We first prove that σ∗ ≈ σ with high probability, where
σ2 = V ar(DS,q) and σ∗ is the approximation as com-

Secure k-ish Nearest Neighbors Classifier 59

puted by Protocol 1. Then we prove that T ∗ ≈ T ,
where T = µ + Φ−1(k/n)σ and T ∗ is the approxima-
tion as computed by Protocol 1. Finally, we prove that
|{si |dist(si, q) < T ∗}| = κ ≈ k with probability that
depends on SD(DS,q,N (µ, σ)).

B.1 Proving σ∗ ≈ σ

Let µ = 1
n

∑
xi and µ2 = 1

n

∑
x2
i be the first two mo-

ments of DS,q, and denote σ2 = V ar(DS,q) = µ2 − µ2.
Also denote by µ∗ < p and µ∗2 < p2 the approxima-
tions of µ and µ2 as computed by Protocol 1 using
ProbabilisticAverage, Denote σ† =

√
(µ∗)2 − µ∗2 and σ∗

be as computed by Protocol 1 from the base-p represen-
tation of (µ∗)2 and µ2,

σ∗ =

if high((µ∗)2)− high(µ∗2) ≥ 2,√(
high((µ∗)2)− high(µ∗2)

)
p

if high((µ∗)2)− high(µ∗2) = 1,√
p+

(
low((µ∗)2)− low(µ∗2)

)√
low((µ∗)2)− low(µ∗2) otherwise.

Then,

Lemma B.1.

σ†
1√
2
≤ σ∗ ≤ σ† 3√

2

Proof. When high((µ∗)2)−high(µ∗2) = 0 or high((µ∗)2)−
high(µ∗2) = 1 we have σ∗ = σ†. When high((µ∗)2) −
high(µ∗2) > 2 we get σ† > 2p

1
2 ≤

(σ†)2 − p
(σ†)2 ≤ (σ∗)2

(σ†)2 ≤
(σ†)2 + p

(σ†)2 ≤ 3
2

Therefore,

1√
2
σ† ≤ σ∗ ≤ 3√

2
σ†.

We thus proved that σ∗ as computed by Protocol 1 is a
good approximation for σ†. We now prove that σ† is a
good approximation for σ with good probability.

Lemma B.2. Let µ, µ2, σ and σ† be as above, then for
any δ > 0

Pr[
∣∣σ† − σ∣∣ < δσ] < 2e−δO(σ2+ µ4

σ2+µ2 +µ)

.

Proof. Set δ′ = 2δ + (4δ2 − 6δ)µ
2

µ2
, then Pr[µ2 > (1 +

δ′)µ2] < exp(−µ2δ
′2

3). Since, (1 + δ′)µ2 − (1 − δ)2µ2 =
(1 + 2δ)µ2 − (1 + 2δ)µ2, we have:

Pr
(
(σ†)2 > (1 + 2δ)σ2) < exp

(
−µ2δ

′2 + 6µδ2

3

)

= exp
(
−δO

(
σ2 + µ4

µ2
+ µ

))
.

Similarly, set δ′′ = δ − (δ2 + 3δ)µ
2

µ2
, then Pr[µ2 <

(1−δ′′)µ2] < exp(−µ2δ
′′2

2). Since, (1−δ′′)µ2−(1+δ)2µ2 =
(1− δ)µ2 − (1− δ)µ2, we have:

Pr
[
(σ†)2 < (1− δ)σ2] < exp

(
−2µ2δ

′′2 + 3µδ2

6

)

= exp
(
−δO

(
σ2 + µ4

µ2
+ µ

))
.

Since
√

1 + 2δ < 1 + δ and
√

1− δ < 1 − δ we get
that

Pr[
∣∣σ† − σ∣∣ < δσ] < exp(−µ2δ

′2 + 6µδ2

3)

+ exp(−2µ2δ
′′2 + 3µδ2

6).

Putting it together with Lemma B.1 we get,

Pr[|σ∗ − σ| < δσ] < 2e−δO(σ2+ µ4

σ2+µ2 +µ)

.

B.2 Proving T ∗ ≈ T

Denote by T = µ+ Φ−1(kn)σ, where Φ is the CDF func-
tion of the standard Gaussian distribution, and Φ−1 is
its inverse. By definition, k = |{si |xi < T}|. Also de-
note by T ∗ = µ∗+Φ−1(kn)σ∗, as computed by Protocol 1.
We next show that T ∗ ≈ T with high probability.

Lemma B.3.

Pr[|T ∗ − T | > δT] < 2 exp(−δO(σ2+µ2))+2 exp(−µδ
2

3).

Proof. Recall that x1, . . . , xn ∈ {0, . . . , p} are the dis-
tances xi = dist(si, q) with µ and σ as above. To sim-
plify our proof we assume without loss of generality that
Φ−1(k/n) > 0. This happens when k > µ. In cases where
k < µ we replace x1, . . . , xn with (p − x1), . . . , (p − xn)
and we replace k with n − k. By the properties of Φ−1

we have Φ−1(n−kn) = −Φ−1(kn).

Secure k-ish Nearest Neighbors Classifier 60

We therefore continue assuming Φ(k/n) > 0.
By definition

T ∗

T
= µ∗ + Φ−1(k/n)σ∗

µ+ Φ−1(k/n)σ .

Since µ, σ,Φ−1(k/n) ≥ 0

1− δ =
(1− δ)µ+ (1− δ)Φ−1(kn)σ

µ+ Φ−1(kn)σ

<
µ∗ + Φ−1(kn)σ∗

µ+ Φ−1(kn)σ
<

(1 + δ)µ+ (1 + δ)Φ−1(kn)σ
µ+ Φ−1(kn)σ

= 1 + δ

and therefore,

Pr[|T ∗ − T | > δT]
< Pr[|µ∗ − µ| > δµ] + Pr[|σ∗ − σ| > δσ]

= 2 exp(−δO(σ2µ2)) + 2 exp(−µδ
2

3).

We are now ready to prove the correctness of our proto-
col.

B.3 Proving κ ≈ k

Theorem 6.3. Let k, p, d, c ∈ N and S = (s1, . . . , sn) ∈
Zdp, where class(i) ∈ [c] is a class associated with si, also
let q ∈ Zdp such that SD

(
DS,q,N (µ, σ)

)
= s, where (µ, σ)

are the average and standard deviation of DS,q. Then:
(i) The client’s output in KNearestNeighbors is classq
which is the majority class of κ nearest neighbors of q
in S, where

Pr[|k − κ| > δk] < 2 exp

(
−O

(
δk(σ2 + µ2)

µ+ Φ−1(k/n)σ

))

+2 exp

(
−O

(
µδ2k2σ

µs+ σ2s

))
.

Let KNearestNeighbors denote the arithmetic cir-
cuit evaluated by the server in Protocol 1 and isSmaller
and computeDist denote the arithmetic circuits compar-
ing ciphertexts and computing the distance between two
points, respectively.
(ii) depth(KNearestNeighbors) = O(depth(computeDist)+
log p+ log c · depth(isSmaller)), and
(iii) size(KNearestNeighbors) = O

(
n·size(computeDist)+

√
p+ n · size(isSmaller)

)
,

where isSmaller is an arithmetic circuit comparing two
ciphertexts, and computeDist is an arithmetic circuit
computing the distance between two vectors.

Proof of (i). From the definition of the cumulative dis-
tribution function (CDF) we have,

κ− k
n

= CDF (T ∗)− CDF (T).

Since DS,q is a discrete distribution it follows that

CDF (T ∗)− CDF (T) =
T∗∑
a=0

Pr[x = a]−
T∑
a=0

Pr[x = a]

Since Pr[|T ∗ − T | > δT] < 2 exp
(
− δO(σ2 + µ2)

)
+

2 exp(−µδ
2

3) it follows with the same probability

T∑
a=T (1−δ)

Pr[x = a] <

∣∣∣∣∣
T∗∑
a=0

Pr[x = a]−
T∑
a=0

Pr[x = a]

∣∣∣∣∣
<

T (1+δ)∑
a=T

Pr[x = a]

From the definition of the statistical distance d =
SD
(
DS,q,N (µ, σ)

)
it follows that for n ∼ N (µ, σ):

T (1+δ)∑
a=T

Pr[x = a] <
T (1+δ)∑
a=T

(Pr[n = a] + d)

=
T (1+δ)∑
a=0

Pr[n = a]−
T∑
a=0

Pr[n = a] + dδT

= Φ−1(T (1 + δ)− µ
σ

)− Φ−1(T − µ
σ

) + dδT

<

√
2πδT
σ

+ dδT

where the last inequality is true since (Φ−1)′(x) < 1√
2π

and therefore Φ−1(a+ b) < Φ−1(a) + b√
2π . Similarly,

T∑
a=T (1−δ)

Pr[x = a] <
T∑

a=T (1−δ)

(Pr[n = a] + d)

=
T∑
a=0

Pr[n = a]−
T (1−δ)∑
a=0

Pr[n = a] + dδT

= Φ−1(T − µ
σ

)− Φ−1(T (1− δ)− µ
σ

) + dδT

<

√
2πδT
σ

+ dδT

Secure k-ish Nearest Neighbors Classifier 61

where the last inequality is true since (Φ−1)′(x) < 1√
2π

and therefore Φ−1(a+ b) < Φ−1(a) + b√
2π . Putting it all

together we get that for any δ′ > 0

Pr[|κ− k| > δ′T (d+2
√
π

σ
)] < 2 exp(−δ′O(σ2+µ2))+2 exp(−µ(δ′)2

3)

Substituting δ′ = δk

T (d+
√

2π
σ)

we get

Pr[|κ− k| > δk] < 2 exp
(
−O

(δk

µ+ Φ−1(k/n)σ (σ2 + µ4

σ2 + µ2 + µ)
))

+ 2 exp
(
−O

(µδ2k2σ

µs+ σ2s

))

We have therefore shown that κ ≈ k with high probabil-
ity.

	Secure k-ish Nearest Neighbors Classifier
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Polynomial Interpolation
	3.1.1 Arithmetic Circuit vs. Polynomials.

	3.2 Homomorphic Encryption
	3.3 Threat Model

	4 Our Contributions
	5 Techniques Overview
	6 Protocol and Algorithms
	6.1 k-ish Nearest Neighbors
	6.2 k-ish NN Classifier Protocol
	6.3 Algorithm for Computing 1/m i=1n f("464A671 di"564B679)
	6.4 Double Blinded Coin Toss

	7 Analysis
	7.1 Analyzing Double Blinded Coin Toss
	7.2 Analysis of ProbabilisticAverage
	7.3 Analysis of KNearestNeighbors

	8 Security Analysis
	9 Experimental Results
	9.1 The Data
	9.2 The System
	9.3 The Experiment
	9.4 Results and Discussion.
	9.5 Comparison to Previous Work

	10 Conclusions
	11 Acknowledgements
	A The Naive Implementation
	B Proof of Correctness of KNearestNeighbors
	B.1 Proving *
	B.2 Proving T*T
	B.3 Proving k

