
Proceedings on Privacy Enhancing Technologies ; 2020 (3):153–174

Seung Geol Choi*, Dana Dachman-soled, Mukul Kulkarni, and Arkady Yerukhimovich
Differentially-Private Multi-Party Sketching for Large-Scale
Statistics
Abstract: We consider a scenario where multiple orga-
nizations holding large amounts of sensitive data from
their users wish to compute aggregate statistics on this
data while protecting the privacy of individual users.
To support large-scale analytics we investigate how this
privacy can be provided for the case of sketching algo-
rithms running in time sub-linear of the input size.

We begin with the well-known LogLog sketch for com-
puting the number of unique elements in a data stream.
We show that this algorithm already achieves differen-
tial privacy (even without adding any noise) when com-
puted using a private hash function by a trusted cura-
tor. Next, we show how to eliminate this requirement
of a private hash function by injecting a small amount
of noise, allowing us to instantiate an efficient LogLog
protocol for the multi-party setting. To demonstrate the
practicality of this approach, we run extensive experi-
mentation on multiple data sets, including the publicly
available IP address data set from University of Michi-
gan’s scans of internet IPv4 space, to determine the
trade-offs among efficiency, privacy and accuracy of our
implementation for varying numbers of parties and in-
put sizes.

Finally, we generalize our approach for the LogLog
sketch and obtain a general framework for constructing
multi-party differentially private protocols for several
other sketching algorithms.

Keywords: differential privacy, sketching algorithms, se-
cure computation

DOI 10.2478/popets-2020-0047
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

*Corresponding Author: Seung Geol Choi: United
States Naval Academy. Email: choi@usna.edu
Dana Dachman-soled: University of Maryland, Colleage
Park. Email: danadach@ece.umd.edu
Mukul Kulkarni: University of Massachusetts Amherst.
Email: mukul@cs.umass.edu
Arkady Yerukhimovich: George Washington University.
Email: arkady@gwu.edu

1 Introduction
Collecting and performing analytics on large amounts
of personal data has become widespread and is intrinsic
to the functionality of a rapidly growing number of apps
and services. While desirable from a functionality per-
spective, this now popular computing paradigm raises
unprecedented security and privacy concerns, and there
is a growing and urgent need for technology solutions
that balance these interests.

In this paper, we aim at achieving a privacy-
preserving mechanism that handles the following sce-
nario:

Multiple organizations (e.g., hospitals, banks, government
agencies, or nodes in a network) each hold sensitive data
from their users, and they wish to compute aggregate statis-
tics while protecting the privacy of individual users.

While our approach is quite general, for a concrete ap-
plication we consider the problem of Tor measurement;
specifically, counting the number of unique users across
the Tor network [19]. In this scenario, the parties are
the Tor relays that are tasked with routing Internet
traffic for as many as (approximately) 2 million daily
users. Tor guard relays, in particular, serve as users’ en-
try points into the Tor network, and thus learn the IP
addresses of users that route their traffic through them.
In a day, each such guard relay may observe thousands
if not millions of connections, and, moreover, since users
are encouraged to regularly form new circuits, the same
users are likely to route traffic through multiple guard
relays in a given day. Thus, while the relays have a large
number of unique users across them, there is also a good
amount of overlap among the IP address lists at each
relay.

Computing the number of unique users across a set
of guard relays can measure the popularity of Tor in a
particular part of the world, or detect fluctuations in the
number of users indicating that traffic is being blocked.
However, the identities (i.e., IP addresses) of Tor users
are highly sensitive—after all, protecting their privacy is
the raison d’être of Tor. Moreover, since some relays may
be controlled by an adversary, it is necessary to protect
the privacy of the input IP addresses both during the
computation and after the output is released. A similar

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 154

application enables exit relays to privately estimate the
number of Tor hidden services visited.

Our proposed protocol enables the relays to collab-
oratively approximate these counts while maintaining
both the privacy of the relays’ inputs and internal state
as well as the privacy of any individual user, even given
the output of the computation.
Insufficiency of MPC. To address this scenario,
one can apply the notion of secure multiparty com-
putation (MPC). MPC allows parties to perform a
distributed computing task—i.e. compute some joint
functionality—while revealing nothing but the final out-
put of the computation. The organizations would like
to execute MPC protocols to allow individual users to
keep their personal data private, while still benefiting
from analytics performed across a large number of users’
data.

While MPC will indeed be one aspect of the solution
proposed in this work, MPC in and of itself does not
solve the problem of ensuring privacy of personal data
in large-scale, distributed computing settings.
1. Privacy issue. First, MPC does not actually pro-

vide privacy guarantees for an individual user’s per-
sonal data! We note that MPC provides only a “rel-
ative” security guarantee, ensuring that parties do
not learn more from running the MPC protocol,
than what they could have learned given only the
output of the functionality. It may be the case, how-
ever, that the output of the functionality itself re-
veals private information about an individual user,
rendering the security guarantee provided by the
MPC meaningless. In particular, in the Tor exam-
ple, revealing the exact count on a daily basis may
reveal when a new (targeted) IP uses Tor.

2. Efficiency issue. Moreover, computing statistics by
having all user data as input to an MPC proto-
col will not be feasible in terms of efficiency. While
MPC protocols are becoming more and more effi-
cient, they still lose at least an order of magnitude in
efficiency, compared to performing the computation
in the clear. For big data tasks, where even linear-
time functions stretch the limit of feasible compu-
tation, this approach will not work.

Our approach. In this work, we will use a combined
approach to solve the above problems.

To address (1), we require that the functional-
ity computed by the MPC satisfy certain privacy re-
quirements. Specifically, we require that the function-
ality itself is differentially private (DP) [24, 26], which

(roughly) guarantees that the output of the functional-
ity does not change much if a single individual changes
the data she contributes. In particular, this implies that
it is impossible to recover an individual’s data, given
only the output of the functionality. The differential pri-
vacy notion has become the de facto standard for guar-
anteeing an individual’s privacy and has been broadly
adopted within the security community.

There are several well-known mechanisms for releas-
ing the approximate output of a functionality, while sat-
isfying differential privacy guarantee [26, 51, 57]. All DP
mechanisms inherently suffer from a trade-off between
accuracy and privacy. In the most commonly used mech-
anisms [26, 57], this trade-off is explicit since noise is de-
liberately added to the output of a functionality before
releasing it, so as to ensure privacy.

This now leads us to addressing (2): Since the func-
tionality is required to be DP, the output will necessar-
ily only be approximate. Therefore, we may now con-
sider functionalities that are only approximate even be-
fore the differentially private noise is added. This re-
laxation allows us to achieve far better efficiency and
thus obtain practical solutions even when the approx-
imate functionality is computed via an MPC proto-
col. The approximate functionalities that we utilize are
based on well-known sketching algorithms from the lit-
erature [5, 22, 34, 40, 59]. Such algorithms employ a
special data structure, known as a “sketch,” which is
compact, structure-preserving and efficiently updatable
in the streaming setting.

1.1 Our Contribution

In this paper, we propose a framework that combines
MPC, Sketching and Differentially Privacy. We begin
by focusing on a specific type of big data task and a
corresponding well-known sketch for this task. The task
we consider is computing approximate disjoint count in
the single party setting, or approximate set union car-
dinality in the multiparty setting. Both of these tasks
can be accomplished via a well-known sketch known as
the “LogLog” sketch [22]. This statistic has attracted
significant attention and been used in many applica-
tions, e.g., in Tor measurement [69], traffic monitoring
in networks [50], in-network query aggregation in wire-
less sensor network [55], and file significance evaluation
in P2P systems [58].

We then extend our results by presenting a general
framework for multiparty, differentially-private compu-

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 155

tation of various popular sketches. Our work consists of
three main contributions.
DP of the LogLog sketch. First, we show that the
popular “LogLog” algorithm is itself DP in the single
party setting. Given a stream of sensitive data items
each obtained from an individual user, the LogLog al-
gorithm allows the organization to maintain a small-size
sketch based on the hash value of each item. At the end,
the organization outputs the approximate count of dis-
tinct elements from the sketch.

We show that the approximate count as computed
by the LogLog sketch, even without adding noise is guar-
anteed to be DP, when the organization choose a hash
function privately at random.
Extending to the multiparty setting. We achieve
DP disjoint counting in the multiparty setting in the
semi-honest model assuming an honest majority.

The LogLog sketch has the important property that
it can be merged, which implies that multiple organiza-
tions can locally compute a sketch and these can be
merged to obtain the (approximate) set union cardinal-
ity across all parties. However, the problem is that this
merging can only be performed when the same hash is
used by all parties; as described above, differential pri-
vacy of a local sketch from a single party holds only
when the hash function is privately chosen at random.
Therefore, when multiple local sketches are merged us-
ing the same public hash, the merged sketch does not
guarantee differential privacy anymore. Indeed, it is easy
to see that given the merged sketch, or the resulting
count, an adversary can check (with noticeable probabil-
ity) whether a particular IP is included in the sketch by
observing whether adding it causes the count to change.

We overcome this challenge by securely adding a
small amount of noise according to the Laplace mech-
anism. Since sampling noise inside an MPC protocol
can be prohibitively expensive (requiring high precision
computation of continuous, real-valued functions cor-
responding to the noise distribution), we introduce a
novel way to sample the noise in a distributed fashion.
We implement our MPC protocol that securely merges
the sketches and securely adds a noise; we provide a
concrete analysis of the resulting privacy and accuracy
parameters.
A general framework. Finally, we generalize our pro-
tocol above for the LogLog sketch to obtain a general
framework for efficiently combining a sketching algo-
rithm that is mergeable, a DP mechanism and an MPC
protocol. This framework can be applied to the LogLog

sketch and other sketches such as AMS sketch [5] and
the Johnson-Lindenstrauss Transform [42, 46].

1.2 Organization

We first give the background and related work in Sec-
tion 2. Definitions and preliminaries are found in Sec-
tion 3. In Section 4, we show that the LogLog algorithm
itself is differentially private in the single party setting
when the hash function is kept private. The protocol for
the case of the public hash function is described in Sec-
tion 5. In Section 6, we extend the single-party protocol
to the multi-party setting and report the experiment
results. Finally, we describe the general framework for
distributed private sketching in Section 7 and conclude
in Section 8.

2 Background and Related Work

2.1 DP and MPC

Differential privacy (DP) [24, 26] protects privacy of
an individual by limiting the possible inferences that an
adversary could draw about the individual from the out-
put of the computation. That is, what can be learned
about an individual from a differentially private com-
putation is essentially limited to what could be learned
about him from everyone else’s data without his own
data being included in the computation. Since its incep-
tion, a large body of research has been devoted to the
design of differentially private algorithms (see [27] and
references therein). Most works mainly considered the
standard setting with a trusted curator who has access
to all users’ data and aims to respond in a differentially
private manner.

Another active line of work has considered local dif-
ferential privacy [30, 47] where parties locally add noise
to their data to guarantee privacy before submitting it
to an untrusted curator. Our model differs from this in
that we use secure multi-party computation to, instead,
have parties jointly simulate a trusted curator resulting
in less noise being added.

Secure multi-party computation (MPC) [37, 70] is
concerned with privacy of the users’ input from a dif-
ferent perspective. Secure MPC protocols allow a set of
parties P1, . . . Pn to compute some function of their in-
puts in a distributed fashion, while revealing nothing to
a coalition of corrupted parties about any honest party’s

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 156

input beyond what is implied by the output. Recently, a
large amount of active research has been conducted to-
ward achieving efficient protocols for secure MPC (see
[31] and the references therein).
DP in the multiparty setting. Note that secure
MPC protocols do not protect against the leakage stem-
ming from the actual output of the function. Therefore,
it is desirable that the function should ensure that its
output guarantees privacy of the private inputs even if
secure MPC protocols are to be used.

Toward this goal, Dwork et al. [25] presented a
multiparty protocol for sampling from a Laplace dis-
tribution. However, although their sampling protocol
is secure in the malicious model, security of the en-
tire protocol still requires the parties to choose their
actual data inputs honestly. Rather than following their
non-standard model, we adopt the standard semi-honest
model for both noise sampling and the rest of the proto-
col. We show how semi-honest sampling of Laplace noise
can be done at a fraction of the cost of their maliciously
secure protocol. (They need a secure computation of
Ω(n logn) gates over O(logn) rounds to generate n ran-
dom coins, while we just use non-interactive addition of
locally generated noise.)

The formal security definition for differentially pri-
vate multi-party protocols was first given by Beimel et
al. [11] in the information theoretic setting. Their defi-
nition has been extended to the computational setting
in [53, 63].

An alternative line of work [32, 39] instead stud-
ied secure approximation. However, their notion of se-
curity is fundamentally different from the DP security
we aim for. In particular, they aim for a more semantic-
security style flavor requiring that the approximate out-
put should reveal no more than what the exact output
reveals about the parties’ private input.

2.2 Secure Statistics

Cardinality estimation. Although the cardinality of
a multi-set (i.e., the number of unique elements) can
be easily computed using space linear in said cardinal-
ity, the linear space complexity is often burdensome for
many applications dealing with a very large amount of
data. Therefore, approximation algorithms have been
developed that need only sub-linear space, maintain-
ing a small sketch—a data structure that allows ag-
gregation of items—of size typically less than thou-
sands of bytes. To name a few, these sketch-based algo-

rithms include probablistic counting [35], MinCount [8],
LogLog [22] and its variants HyperLogLog [34], and Hy-
perLogLog++ [40].

The first work on privacy-preserving cardinality es-
timators is of Tschorsch and Scheuermann [67]; they
proposed a cardinality estimation mechanism in a dis-
tributed setting. The mechanism adds noise to sketches
and then merges noisy sketches in public. This approach
incurs a larger amount of error compared to our ap-
proach, and they used their own privacy metric instead
of the standard DP framework. Protocols based on MPC
and Bloom filters have also been suggested [7, 28], but
they did not consider differential privacy of individual
users.

Dong and Loukides [20] gave secure two party proto-
col (which can be extended for multiple parties) for ap-
proximate set union and set intersection counting based
on probabilistic counting sketches [35]. Their protocol
for set union approximate counting outputs individual
shares of the final output to each party, and runs in time
log(N), where N is size of largest input set. In compar-
ison, the runtime of our protocol only depends on the
desired level of accuracy. Additionally, we also provide
differential privacy of individual inputs.

Alaggan et al. [4] used Bloom-filter based techniques
to achieve disjoint count estimates (and other statistics)
over Wi-Fi data. They considered the centralized cura-
tor model only (i.e., a single-party setting) while we con-
sider not only the single-party but also the multi-party
setting. However, their security guarantees are stronger;
they achieve pan-privacy against a malicious adversary.
Due to the stronger security guarantees, their construc-
tion has significantly larger error than in our construc-
tion, i.e., 10% vs 2% for ε = 1 (See Figure 4 in [4] and
Figure 4 in this paper).

Recently, Desfontaines et al. [18] considered privacy
of cardinality estimators from a different angle. In par-
ticular, they assumed an insider risk scenario where the
adversary has access to the actual sketch (rather than
the output statistic) and showed that no noiseless sketch
can be differentially private. They also suggested hiding
the hash key as a way of protecting such an attack; in
this work, we affirm their suggestion by providing a rig-
orous proof (see Section 4).
Differentially private aggregation of statistics. A
number of works have also considered aggregation of
other statistics.

Erlingsson et al. [30] proposed Randomized Ag-
gregatable Privacy-Preserving Ordinal Response (RAP-
POR) for aggregating statistics (such as categories,

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 157

frequencies, and histograms) generated via crowd-
sourcing. The system collects randomized responses via
input perturbation, aiming to guarantee local differen-
tial privacy for individual reports. However, due to the
larger noise necessary for local differential-privacy, it re-
quires at least millions of users in order to obtain rea-
sonably accurate approximate answers.

Other examples of private aggregation include [29,
33, 44, 52]. These works aggregate statistics computed
by linear sketches with aggregation done using secret
sharing [29, 44], accumulators based on public-key cryp-
tography [33], and homomorphic encryption [52]. All
these works are limited to computing linear sketches
only and thus cannot support computations such as dis-
joint count.

Finally, the work of Wails et al. [69] also considers
aggregate statistics for Tor measurement using MPC.
However, their work focuses on optimizing MPC for a
large number of parties and does not consider differen-
tial privacy.
Other related work. Recently, Bater et al. [9] consid-
ered performing SQL queries in a differentially private
manner. Perhaps the most relevant aspect of their work
to our work, is computing “Aspirin count" (counting
distinct items matching some criteria from multiple ta-
bles). They report computing 2 join (similar to 2 party
MPC) for data size at least 500K for each party.

Additionally, recent work, e.g. [49] has pointed out
that differential privacy guarantees may be insufficient
when data in the database is correlated as in the case
when the same or closely related users may appear in
multiple organizations’ data sets. We note that for the
case of disjoint counting our protocol provides security
for correlated data since all instances of the same user
are combined into a single record in the sketch, while
related but unequal records are made independent by
hashing. Understanding the impact of correlated inputs
for other sketches is an interesting open problem.

2.3 Background on Sketching

Our framework requires sketches that are mergeable.
Given such a sketch, our approach allows releas-
ing statistics calculated from the merged sketch. The
amount of noise to be added in the released statistics
depends on the sensitivity of the statistic itself as well
as the accuracy of the sketch. Note that our approach
does not allow releasing the entire sketch itself.

A large body of work within the sketching litera-
ture is dedicated to linear sketches. These are sketches

that are computed by applying a linear function (rep-
resented by a matrix A) to the data X, i.e. a sketch
S is computed as S = AX. While non-linear sketches
can still be mergeable—the LogLog sketch from above
is non-linear and mergeable—linear sketches are inher-
ently mergeable: If the merged data of N parties, each
holding data Xi, is computed as X = X1 + · · · + XN ,
then A(X) = A(X1 + · · · + XN) = AX1 + · · · + AXN .
We describe several linear sketches from the literature
and the types of low-sensitivity statistics that can be
computed from these sketches. All of these sketches fall
under our framework. We then provide some examples
of sketches that do not fall under our framework.
Count-Sketch and Count-Min Sketch. Count-
Sketch [15] and Count-Min Sketch [16] are sketches that
are used to approximate the frequencies of elements in
a data stream. Assume X is the exact frequency vector
of dimension n. These sketching algorithms proceed by
storing multiple independent copies of AX, where A is
an m × n dimension matrix (with m � n) drawn from
a certain distribution. The stored sketches can be used
to approximate statistics such as median, quantiles, or
histograms.
AMS sketch, JL-transform and Lp-norm. By sam-
pling A from a more complex distribution than above, it
is possible to achieve the property that ||AX||p ≈ ||X||p,
where || · ||p denotes the Lp-norm of a vector. The
AMS sketch [5] and the Johnson-Lindenstrauss trans-
form [42, 46] provide distributions for A such that
||AX||2 ≈ ||X||2. This was subsequently generalized to
arbitrary Lp-norms [41, 43]. Note that the sensitivity of
the Lp norm can be bounded, when the magnitude of
each element of X is bounded.
Lp sampling. Lp sampling is the task of sampling from
the distribution that places weight Xp

i /||X||
p
p on the i-th

element of the n-dimensional vector X = X1, . . . , Xn. A
sequence of works showed that it is possible to compute
a linear sketch of X that allows one to perform approx-
imate Lp sampling [17]. Such sketches can be used to
perform moment estimation [45, 54] and entropy esti-
mation [13]. L0 sampling is used for graph sketching, as
discussed below.
Graph sketches. An L0 sampling sketch for each node
of the graph allows the sampling of a neighbor of each
node uniformly at random. The above forms the basis
of several graph sketches, including a sketch for min-
imum spanning tree (MST) cost. Since the L0 sam-
pling sketches are linear and can be merged, the re-
sulting sketch is mergeable. Furthermore, approximate
MST cost can be computed on top of the sketch [2]. We

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 158

may consider the sensitivity of the MST cost when per-
turbing a single edge weight of the graph, but keeping
the topology of the graph fixed. This is similar to the
privacy model considered by Sealfon [61].
Sketches that do not fall under our frame-
work. There are several such examples, including cer-
tain sketches for graph sparsification, where the goal is
to construct a sparse graph that is similar in some way
to the original graph. The sparsifiers of [10, 12, 64, 65]
are not linear and do not appear to be mergeable. Im-
portantly, we note that even if sketches are mergeable,
if they compute statistics that have high sensitivity
(e.g. connectivity of a graph), they would not be good
candidates for our framework, since the amount of noise
added would be prohibitively large.

3 Definitions and Preliminaries

Differential privacy in the single party setting.
We first define differential privacy in the setting of a
single trusted curator. Following the work of Dwork
and Roth [27], we think of databases as being collec-
tions of records from a universe X , and view databases
using their histograms X ∈ N|X |, where N is the set of
all non-negative integers. In this definitional framework,
each entry xi represents the number of elements in the
database X of type i ∈ X . The `1 norm of database X
is defined as ‖X‖1 :=

∑|X |
i=1 |xi|, which is a measure of

the size of the database. The `1 distance between two
databases X and X ′ is ‖X −X ′‖1, which is a measure
of how many records differ between X and X ′.

Definition 3.1. A randomized algorithm M with do-
main N|X | is (ε, δ)-differentially private if for all S ⊆
Range(M) and for all X,X ′ ∈ N|X | such that ‖X −
X ′‖1 = 1:

Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S] + δ.

Below, we give more formal treatment following the
work of Dwork and Roth [27].

Definition 3.2. The global sensitivity of a function f :
N|X | → Rk is:

∆f = max
X,Y ∈N|X|,‖X−Y ‖1=1

‖f(X)− f(Y)‖1

Definition 3.3. The Laplace Distribution (centered at
0) with scale b is the distribution with probability density

function:
Lap(x|b) = 1

2be
−x/b.

We will write Lap(b) to denote the Laplace distribution
with scale b.

Given any function f : N|X | → Rk, the Laplace
mechanism that adds noise drawn from Laplace distri-
bution; that is, given an input database X, the mecha-
nism outputs

f(X) + (Y1, . . . , Yk),

where Yi are i.i.d. random variables drawn from
Lap(∆f/ε). It is known that the Laplace mechanism
achieves (ε, 0)-differential privacy [27, Theorem 3.6].

3.1 Distributed Differential Privacy

Our presentation here follows the similar definitions
given in prior work [11, 63]. We assume that readers are
familiar with security notions of standard cryptographic
primitives [48] and formal definitions of a protocol se-
curely realizing an ideal functionality (cf. [31]).
Notations and semi-honest adversary. Let λ de-
note the security parameter. A function g is said to be
negligible if for every positive integer c, there is an in-
teger nc such that for all n ≥ nc we have g(n) ≤ 1/nc.
Throughout the paper, we will usually use negl(·) to de-
note a negligble function. We assume that the adversary
is semi-honest.
C-neighboring inputs. Let P = {P1, . . . , PN} be the
set of computing parties, with party Pi holding inputs
Xi. Viewing Xi as a histogram (i.e., Xi ∈ N|X |) as in
the single-party definition above, we say that two input
sets (X1, . . . , XN) and (X ′1, . . . , X ′N) are neighboring if
there is a single index i such that ‖Xi −X ′i‖1 = 1 and
for all j 6= i, ‖|Xj − X ′j‖1 = 0. For a coalition of par-
ties C ⊆ P, we say that two input sets (X1, . . . , XN)
and (X ′1, . . . , X ′N) are C-neighboring if the input sets
are neighboring and for the index i at which they differ
Pi /∈ C.
Distributed differential privacy. We can now define
computational distributed differential privacy against a
coalition C. Roughly, this definition says that if a party
outside C changes their input by a single value, the view
of the coalition will not change too much.

More formally, for an N -party protocol Π and an
input (X1, . . . , XN), we let Π(X1, . . . , XN) denote the
execution of Π on this input. For a coalition C, we define
the view of C in protocol Π, denoted Π(X1, . . . , XN)|C ,

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 159

as the inputs xi for Pi ∈ C, the random tapes of all
parties in C, and all messages received by parties in C.

Definition 3.4 (cf. Def 2.1 in [63]). Let ε > 0 and 0 ≤
δ < 1. A (randomized) protocol Π preserves compu-
tational distributed (ε, δ)-Differential Privacy against
a coalition C, if for any polynomial-time adversary
A, for all C-neighboring inputs (X1, . . . , XN) and
(X ′1, . . . , X ′N), there exists a negligible function negl(·)
such that,

Pr[A(Π(X1, . . . , XN)|C , 1λ) = 1] ≤
eε · Pr[A(Π(X ′1, . . . , X ′N)|C , 1λ) = 1] + δ + negl(λ)

One natural way to achieve differential distributed pri-
vacy is executing secure MPC protocol for a differential
private functionality, as shown below:

Theorem 3.5 (Lemma 4.3 [63]). Let f be (ε, δ)-
differentially private, and let Π be protocol securely re-
alizing f against a coalition C. Then, Π preserves com-
putational distributed (ε, δ)-differential privacy against
a coalition C.

4 A Single-party Protocol
In this section, we first show that assuming the hash key
is kept secret from the adversary, the LogLog algorithm
(and its variants) actually achieves differential privacy
without adding any noise.

Recently, a seemingly contradictory result has been
published. In particular, Desfontaines et al. [18] showed
that the LogLog sketch does not protect privacy from
the inside attacker who has access to the sketch. Their
result is not in conflict with our result in this section,
since they assumed that the inside attacker also knows
the hash key whereas our result assumes the private
hash function. Indeed, Desfontaines et al. [18] suggested
to hide the hash key as a way of protecting their attack;
we affirm their suggestion by providing a rigorous proof.
We prove differential privacy of the algorithm in the
random oracle model.

We note that prior work [14, 62, 68] proved a similar
result for the JL transform showing that some forms of
the JL transform are differentially private when the JLT
matrix is kept private.

Accuracy parameter: K.
Input: A sequence D of elements, i.e., D = (x1, x2, . . .).
Output: An approximate count of distinct elements in D.

1. Initialize counters c1, . . . , cK each with 0.
2. Choose a random hash function h. Let h output

logK +m bits.
3. For each xi in D:

(a) Compute (j, y) := h(xi), where j is the first
logK bits of h(xi) and y is the rest. Abusing
the notation, we will treat the k-bit string j as
a number 0 ≤ j < K.

(b) Update cj := max(cj , ρ(y)).
4. Compute the sum of the counter values, i.e., u :=∑K

j=1 cj

5. Output α ·K · 2u/K .
Here, α is a constant depending on K only.a

a In particular, it holds α =
(

Γ(−1/K) · 1−21/K

log 2

)−K
with Γ(s) = 1

s

∫∞
0 e−ttsdt.

Fig. 1. The LogLog algorithm.

4.1 DP Without Noise

Here, we describe the LogLog algorithm [22], which is
the simplest and thereby best to explain how differential
privacy is achieved without noise. Our analysis is easily
carried over to other variants.
LogLog algorithm. Before describing the actual al-
gorithm, we introduce a useful notation. For a binary
string s, we define ρ(s) := 1 + z(s) where z(s) is the
number of consecutive 0s in s counting from the left
most position. For example, it holds ρ(000011) = 5,
ρ(010100) = 2, ρ(110000) = 1, and ρ(000000) = 7. The
LogLog algorithm is described in Figure 1.
Accuracy. The algorithm has the following accuracy.

Theorem 4.1 ([22]). Consider the LogLog algorithm
applied to D with n distinct elements, and let ñ be the
output of the algorithm. With σ = 1.30/

√
K, we have

Pr
[∣∣∣ ñ− n

n

∣∣∣ ≥ 2σ
]
≤ 0.05.

and
Pr
[∣∣∣ ñ− n

n

∣∣∣ ≥ 3σ
]
≤ 0.01.

Differential privacy. Interestingly, this algorithm
achieves differential privacy without adding noise when
D is large.

Theorem 4.2. Suppose D contains n distinct elements
with n ≥ 8Kλ · max(1

ε , 1), where λ is the security

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 160

parameter. Then, the LogLog algorithm applied to D

achieves (ε, negl(λ))-differential privacy in the random
oracle model.

The proof is given in Appendix A. Here, we give intu-
ition for why the theorem holds. In particular, we con-
sider the following simple experiment Cm(n). In rela-
tion to the LogLog algorithm, the output Cm(n) cor-
responds to the counter value for a single bucket when
n distinct items are considered in that bucket, assum-
ing the random oracle model. Note differential privacy
for this single-bucket scenario can be extended to the
multi-bucket scenario as considered in the above theo-
rem, since in the LogLog algorithm, difference of one
item in neighboring databases will affect only a single
bucket.
Experiment Cm(n):
1. Choose x1, . . . , xn independently uniformly at ran-

dom from {0, 1}m.
2. Output max{ρ(x1), . . . , ρ(xn)}.

First, for any n, any m = ω(logn), and any s ≤ m, we
have

Pr[Cm(n) < s] = (1− 2−(s−1))n.

To see why, given a binary string s, let leftk(s)
be the leftmost k bits of s. For example, we have
left3(000101) = 000. Now, for each i, with independent
probability, we have that

Pr[ρ(Xi) < s] = 1− Pr[ρ(Xi) ≥ s]
= 1− Pr[lefts−1(Xi) = 0s−1] = 1− 2−(s−1).

Thus,

Pr[max{ρ(X1), . . . , ρ(Xn)} < s]

= Pr

[
n∧
i=1

ρ(Xi) < s

]
= (1− 2−(s−1))n.

This implies that

Pr[Cm(n) = s] = Pr[Cm(n) < s+ 1]− Pr[Cm(n) < s]

=
(

1− 1
2s

)n
−
(

1− 1
2s−1

)n
.

The following two Lemmas show that the distributions
Cm(n) and Cm(n+1) are close, which implies differential
privacy in the single-bucket scenario.

Lemma 4.3. For any n, any m = ω(logn), and any
s ≤ m, it holds

Pr[Cm(n+ 1) = s] ≤ (1 + 1/n) · Pr[Cm(n) = s].

Proof. Let a = 1− 2−s, b = 1− 2−s+1. Note b < a < 1.

(1 + 1
n

) Pr[Cm(n) = s] = (1 + 1
n

)(an − bn)

= (a− b)(1 + 1
n

) ·
n−1∑
i=0

ai · bn−1−i

> (a− b)(
n−1∑
i=0

ai · bn−1−i + 1
n

n−1∑
i=0

bn−1)

> (a− b)(
n∑
i=0

ai · bn−i) = Pr[C(n+ 1,m) = s].

Lemma 4.4. For any n, any m = ω(logn), and any
2 ≤ s ≤ m, it holds

Pr[Cm(n) = s] ≤ (1 + 2−(s−2)) · Pr[Cm(n+ 1) = s].

The proof is similar and it’s given in Appendix A.

5 Achieving DP with Public Hash
Possible attacks and adding noise. When the hash
key is revealed to the public, the LogLog algorithm
described in Figure 1 fails to achieve differential pri-
vacy. Recall our analysis above started with choosing
x1, . . . , xn uniformly at random where xi corresponds to
a hash output of an input. However, given that the hash
key is revealed, xi is not randomly distributed anymore;
it’s just some determined value. So, the entire analysis
breaks down.

In fact, the adversary can distinguish two neighbor-
ing databases D and D′ by hashing all the items in
D and D′ on its own and matching the result against
the output of the LogLog algorithm. This attack works,
since it’s highly unlikely for the outputs from D and D′

to be exactly the same. In order to guarantee differen-
tial privacy in this situation, we have to rely on added
noise.

We note that more sophisticated attack was shown
by Desfontaines et al. in [18] in the insider attack threat
model, i.e., when the attacker has the sketch (i.e., the
counter value for each bucket) in addition to hash func-
tion and the algorithm output. Interestingly, their [18]
attack applies only to noiseless cardinality estimators as
well.
Sensitivity of the LogLog algorithm and the
Laplace mechanism. It is well known that a mech-
anism can be augmented to achieve differential privacy

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 161

Accuracy parameter: K.
Parameter for differential privacy : ε
Parameter of the maximum possible number of items:

Nmax, i.e., Nmax ≥ |D|.
Public hash: h : {0, 1}∗ → {0, 1}logK × {0, 1}m, where

m = 3 + log Nmax
K

.
Input: A sequence D of elements, i.e., D = (x1, x2, . . .).
Output: An approximate count of distinct elements in D.

1. Initialize counters c1, . . . , cK each with 0.
2. For each xi in D:

(a) Compute (j, y) := h(xi), where j is logK bits
long and y is m bits long. Abusing the notation,
we will treat the k-bit string j as a number 0 ≤
j < K.

(b) Update cj := max(cj , ρ(y)).
3. Compute the sum of the counter values, i.e., u :=∑K

j=1 cj
4. Choose a random number r drawn from Lap((1 +

m)/ε).
5. Output α ·K · 2(u+r)/K .

Fig. 2. Differentially private LogLog with public hash.

by adding a reasonable amount of noise, if the mecha-
nism has low sensitivity, i.e., when small change in the
input leads to small change in the output.

To evaluate the sensitivity of the LogLog algorithm
described in Figure 1, consider any two neighboring in-
puts D and D′ and let u and u′ be the sum of coun-
ters that the algorithm, on input D and D′ respectively,
computes at step 4. As before, we consider the differen-
tial privacy for this sum.

Note that only one item is different in D and D′.
Each item will either positively contribute to the final
sum by its ρ value (if the value is the maximum in the
bucket) or be ignored. Let ρmax denote the maximum
possible ρ value. Then, it holds that u = usame +α and
u′ = usame + β where α, β ∈ [0, ρmax], and usame is the
sum of counters for the items that belong to both D and
D′. This implies that we have |u−u′| = |α−β| ≤ ρmax.
Therefore, the global sensitivity of the algorithm is
∆f = ρmax and we can achieve (ε, 0)-differential pri-
vacy by adding noise drawn from Lap(ρmax/ε) (see in
Figure 2).
Engineering the parameter for better accuracy.
Since the amount of noise is ρmax, we should set the
length of the hash digests as short as possible to reduce
the noise and optimize accuracy of the overall mecha-
nism. That is, letting h : {0, 1}∗ → {0, 1}logK+m, we
would like to determine the minimum value for m that
still guarantees the accuracy of the cardinality estima-
tion algorithm. Note ∆f = ρmax = m+ 1. The original

LogLog algorithm [22] suggests m = 3+log Nmax
K , where

Nmax is the maximum possible number of items.
Since the Laplace mechanism achieves (ε, 0)-

differential privacy [27, Theorem 3.6], we achieve the
following:

Theorem 5.1. The mechanism described in Figure 2
is (ε, 0)-differentially private.

Accuracy of the mechanism. Note that the modified
algorithm has an additional 2r/K multiplicative factor
in the output, where r ∼ Lap((m + 1)/ε). To assess
accuracy concretely, set for example Nmax = 240 and
K = 212, and aim for (1, 0)-differential privacy. In this
setting, we have m = 31 and r ∼ Lap(32).

Recall if Y ∼ Lap(b), it holds Pr[|Y | ≥ tb] ≤ e−t.
Therefore, with probability 1 − e−3 ≈ 95%, the value
|r| is at most 3 · 32 = 96. This implies that most of
the time, the multiplicative factor 2r/K = 296/4096 is at
most 1.016, i.e., incurring about 1.6% accuracy degra-
dation. One can improve accuracy by taking K = 213

at the expense of the run time to be doubled. Then, the
accuracy degradation becomes 0.8%.

6 Multi-party Protocol
Now that we can achieve differentially private cardinal-
ity estimation in the single party setting, in this section,
we explore how to extend this to the multi-party setting.
Let N be the number of parties. We assume the semi-
honest model and honest majority.

To achieve a differentially private multi-party pro-
tocol, we first need to answer the following question:

How do we correctly merge the distinct counts produced by
the MPC parties? Simple addition would not be the total
distinct count.

Sketching and merging paradigm. Fortunately, the
LogLog algorithm is already a sketch-based algorithm
that allows merging of small sketches efficiently. That is,
each participant will maintain the counters (c1, . . . , cK)
as a sketch. Then, we can merge the sketches as follows:
Merge:
1. Denote party Pi’s input sketch by (ci1, . . . , ciK).
2. Compute c1 = max{ci1 : i ∈ [N]}, c2 = max{ci2 : i ∈

[N]}, . . . , cK = max{ciK : i ∈ [N]}.
3. Output u =

∑K
j=1 cj .

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 162

Public parameters: K, ε,Nmax, α (refer to Figure 2).
Public hash: h : {0, 1}∗ → {0, 1}logK × {0, 1}m, where

m = 3 + log Nmax
K

.
Participants: There are N parties P1, . . . , PN .
Private input of Pi: A sequence Di of elements, i.e., Di =

(xi1, xi2, . . .).
Output: An approximate count of distinct elements inD =⋃

i
Di.

1. Each Pi locally computes the following:
(a) Initialize counters ci1, . . . , ciK each with 0.
(b) For each item x in Di,

Compute (j, y) := h(x) and update cij :=
max(cij , ρ(y)).

(c) Sample ai, bi ∼ Γ(2/N, 1) and set ei = m+1
ε
·

(ai − bi).
2. Parties execute a secure MPC protocol to compute

the following:
– Input: {(ci1, . . . , ciK), ei}Ni=1
– Output u :=

∑K

j=1(max{cij : i ∈ [N]}) +∑N

i=1 ei
3. Each Pi locally outputs the following:

Given u from MPC, output α ·K · 2u/K .

Fig. 3. Differentially private multi-party LogLog algorithm.

Merge can be easily implemented as a circuit using com-
parison and addition gates and therefore using MPC one
can securely compute u, the final sum.
Protocol using private hash. Recall that a LogLog
sketch produced using a private hash function (e.g.,
run by a trusted curator) in Figure 1 is (ε, negl(λ))-
differentially private. To achieve a differentially private
multi-party protocol, we could have each party run an
oblivious pseudorandom function (OPRF) [36] on each
item to evaluate the private hash value and then con-
struct the local sketch. Then, execute an MPC protocol
computing Merge on the local sketches. However, this
requires huge communication costs that is at least lin-
ear in the input size for the OPRF evaluations. This
approach doesn’t provide an efficient solution.
Protocol using public hash and generating pri-
vate noise. We choose to employ the (ε, 0)-DP LogLog
algorithm with public hash described in Figure 2. An
MPC protocol can be used to compute Merge on the
local sketches. Therefore, we only need to generate the
noise securely and add to the output of the Merge cir-
cuit.

Recall that we assume honest majority in the semi-
honest model. The problem is that simply adding ran-
dom variables from the Laplace distribution doesn’t fol-
low the Laplace distribution that we want. Still, we can

sample a Laplace random variable in a distributed man-
ner.

Fact 6.1. ∀k ∈ R, if X ∼ Lap(1), then kX ∼ Lap(k).

Therefore, we only need to sample from Lap(1) in order
to sample Lap(m+ 1).

Fact 6.2. If X,Y ∼ Exponential(λ) (i.e., exponential
distribution with pdf f(x) = λe−λx), then X − Y ∼
Lap(1/λ).

Therefore, we only need to sample from Exponential(1)
twice. Note that Dwork et al. [25] showed how to sample
from an exponential distribution in the malicious model.
Since we are in the semi-honest model, we can achieve
our goal much more efficiently, as described below.

Fact 6.3. The distribution Exponential(1) is equivalent
to Γ(1, 1), where Γ(α, β) is the gamma distribution with
pdf f(x) = βα

Γ(α)x
α−1e−βx.

Therefore, we reduce our task to sampling from Γ(1, 1)
in the multi-party setting, which can be done by using
the following fact:

Fact 6.4. If Xi ∼ Γ(αi, β), then
∑
iXi ∼ Γ(

∑
i αi, β).

Based on the above facts, we generate the Laplace noise
as follows:
Noise: Distributed sampling from Lap(`).
1. Each party Pi prepares its input ei as follows:

– Choose ai and bi from gamma distribution
Γ(2/N, 1).

– Set ei = `(ai − bi).
2. Execute an MPC protocol that computes

∑
i ei.

Note that for any set S of size N/2, we have
∑
i∈S ai ∼

Exponential(1) and
∑
i∈S bi ∼ Exponential(1), thereby∑

i∈S ei ∼ Lap(1). This suffices to show that the added
noise achieves the differential privacy of the overall
mechanism described in Figure 3.
Scalability of our protocol. Assuming that we are
using an arithmetic circuit, the circuit used in the MPC
protocol shown in Figure 3 has the following features:
– The size of input: Each Pi hasK+1 numbers. There-

fore, the total input size is (K + 1) ·N .
– The number of operations: We need N +K + 1 ad-

ditions and K operations of max over N numbers.

Based on the above, we conclude that the size of circuit
is O(N · K) Therefore, the MPC computation will be

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 163

independent of the actual input size |D|. This means
that our protocol would scale very well; only the amount
of local computation will increase as the size of the input
increases.
Security of the protocol. It is easy to see the proto-
col is differentially private. The proof of the following
Theorem is found in the Appendix B.

Theorem 6.5. The protocol described in Figure 3 pre-
serves (ε, 0) computational differential privacy against a
semi-honest adversary that can corrupt at most t parties
where t < N/2.

6.1 Implementation

To demonstrate the efficiency of our protocol, we imple-
mented the protocol described in Figure 3, using Python
3.7.4 and open-source secure multi-party computation
framework MPyC [60]. In this section, we overview our
implementation and in Section 6.2, we provide a sum-
mary of the performance measurements.
Choosing a hash function. We stress that distribu-
tional differential privacy of our mechanism does not
depend on the security of the hash function. We achieve
differential privacy based only on security of the MPC
protocol and the Laplace mechanism for the ideal func-
tionality. In particular, differential privacy holds even
when the hash functions are public with seeds revealed
to everyone. It is the accuracy guarantee, however, that
requires a good hash function; our accuracy analysis as-
sumes that each input is mapped to a random bit string.

A natural candidate would be a cryptographic hash
function such as SHA-2. However, we choose AES to
improve efficiency of computing the local sketch. AES
is a pseudorandom function that maps an item into a
pseudorandom string given a random key, which is just
what we want. Of course, AES is not a hash function
and its domain has a fixed length; if we need to have
the hash function take arbitrarily long strings as input,
AES would not work. Fortunately, our experiments deal
with only small-length data such as IP addresses, so this
is not a problem. The practice of using AES as a hash
function has become increasingly popular, e.g., in the
area of secure computation [38].

We have not performed further optimizations such
as parallelizing the sketch computation.
Circuit optimizations. We use a 128-bit prime field
for secret sharing the intermediate values (sketches)
while implementing the MPC protocol given in step 2

of Figure 3. A huge portion of the circuit is dedicated to
computing maximums, which is reduced to comparing
two numbers. The common technique for comparison,
also used in MPyC, involves converting numbers into bi-
nary strings [66]. In order to optimize the performance
of this conversion procedure, we observed that each ρ

value needs at most 5 bits.
Moreover, in order to avoid costly fixed-point oper-

ations the parties first compute the scaled noise value
êi = b260 · eic and execute a circuit that takes only in-
tegers as input, i.e.,

{(ci1, . . . , ciK), êi}Ni=1

The MPC circuit computes

û = 260 ·
K∑
j=1

(max{cij : i ∈ [N]}) +
N∑
i=1

êi (1)

and each party locally computes u = û/260.
Size of a local sketch and input to the circuit.
Note that the local sketch that Pi holds is (ci1, . . . , ciK),
which is just K numbers independent of the data items
that Pi collects. Moreover, as shown above, each party
Pi feeds (ci1, . . . , ciK , êi) to the circuit, which simply
amounts to K + 1 numbers, where K is the number
of buckets, which we usually set to 4096 in our experi-
ment. In other words, the asymptotic complexity of our
MPC protocol (circuit) is Θ(NK) where N is the num-
ber of parties. Note that this is independent of the size
of individual parties’ input data. Therefore, whether the
actual number of items is 10K or 100M, the input to the
MPC circuit always consists of K+1 numbers per party.
This property allows optimal scalability for our mech-
anism. On the other hand, the circuit size increases as
the number N of participating organizations grows. Our
experiments show below that the MPyC framework pro-
vides good efficiency for our protocol up to about ten
organizations.

6.2 Performance Results

In this section we present the results of several experi-
ments to capture the accuracy and performance trade-
offs of our protocol. For all the results reported below,
we run the experiment with the specified settings 10
times and report the average statistics of these 10 runs.
Data sets. We use two different data sets in our exper-
iments. Our first data consists of the publicly available
University of Michigan internet scan data [23]. This data

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 164

Input size 10K 100K 1M 10M 100M
#unique 29989 299036 2000000 21640641 42261769

Table 1. IPv4 addresses when running experiments with 3 par-
ties. Each party has the same input data size. For example, for
data size 10K, each party holds 10K IP addresses, and together
they contain 29989 unique IP addresses.

104 105 106 107 108

Data size

0

5

10

15

20

25

30

%
 E

rr
o

r

Accuracy vs. DP noise (K = 4096)

e=0.1

e=1

e=10

no noise

Fig. 4. Accuracy vs. DP noise. The protocol improves as we in-
crease the differential privacy budget. This is expected since we
add lower amount of noise as ε grows. We run this experiment for
different input data sizes from 10K to 100M with K = 4096.

set contains the IPv4 addresses scanned by University
of Michigan project during December 2013 and January
2014. The input files contain specified numbers of IPv4
addresses. Raw text data files containing 10K, 100K,
1 million, 10M, and 100M IPv4 addresses were created
from randomly sampling downloaded IP addresses. See
Table 1.

The second data set we use is the 1998 FIFA world
cup (soccer) web site daily access logs data set [4, 6].
This data set consists of all the requests made to the
1998 World Cup Web site between April 30, 1998 and
July 26, 1998. We use the tool provided by the data
owner to extract the client ID for arbitrarily chosen ac-
cess logs. We further split the extracted data in different
files of sizes 10K, 100K and 1M which are used as inputs
of the parties running the MPC protocol.
Privacy loss parameter ε vs. accuracy. Our first
experiment aimed to analyze the trade-off between the
differential privacy budget ε and the accuracy achieved
by our protocol. We used the data set of IPv4 addresses.
For this experiment, we held the number of MPC parties
fixed at three. Figure 4 shows the relationship between
the input data size, the differential privacy parameter ε
and the accuracy of approximate count. It can be seen
that for all input sizes the accuracy improves (error re-
duces) as the privacy loss parameter ε increases. We
measure the % error with respect to the actual count of
distinct elements in parties input. For example, if the

Fig. 5. Accuracy vs. number of buckets. The accuracy of the
protocol improves with increase in the number of buckets. For
input data size 1M and ε = 0.1 when K increases from 4096 to
8192, the average error drops from 17% to 5%.

estimate is 105 and the actual count is 100, we would
report the error as 5%. We fix the number of buckets
K = 4096 for this experiment.

We note that, Figure 4 shows that the algorithm
does not guarantee monotonically better accuracy ac-
cording to the number of items. One can verify this for
every privacy loss parameter (even for the case without
noise, i.e., the black line with triangles). The case with
a larger amount of noise (i.e., the red line with circles)
shows this trend more clearly. This is due to the fact
that Theorem 4.1 only claims that the accuracy error
converges to about 2/

√
K ≈ 3% with high probability

and may vary before it does so. Our experiment shows
that the algorithm has slightly better accuracy in prac-
tice (2% or less) for larger ε.
Accuracy vs. number of buckets. Our next experi-
ment studies the trade-off between the number of buck-
ets (i.e. the parameter K) and the achieved accuracy.
Figure 5 shows the trade-off between accuracy of the
protocol and the number of buckets for various values of
ε and for different input data sizes. It is easy to see that
the error accuracy improves significantly as the number
of buckets grows. Since the MPC circuit grows linearly
in the bucket size, the run time increases as the bucket
size grows.
Run time vs. input data size. We conducted addi-
tional experiments with the data set of IPv4 addresses
where parties have different input sizes and measured
the run time. We ran the protocol between 3 parties
where the input data size for each party is chosen from
{10K, 100K, 1M}, we kept the parameter ε = 1 and
K = 4096 fixed. We ran these experiments on a Mac-
book Pro with 2.6 GHz Intel i5 processor with 4 cores
and 16GB DDR RAM.

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 165

Fig. 6. Run time vs. input data size. The run time of the MPC
protocol is independent of the input data size of each party. The
local pre-processing time for individual party scales linearly with
input data size. Here, on x-axis, 10K-100K-1M represents the
experiment with N = 3 parties where parties P1, P2, and P3
holds input data of sizes 10K, 100K, and 1M respectively.

As shown in Figure 6, the run time of the MPC part
is independent of the individual parties’ input sizes. This
is due to the fact that the low space complexity of the
LogLog sketch allows us to use the same sketch size, and
thus MPC input size, for all input sizes we consider. On
the other hand, the local pre-processing time, although
much shorter than the MPC time, scales linearly with
individual input data size since each party needs to hash
its own data to compute the local sketches.

We note that while we do not experimentally eval-
uate the cost of a straightforward MPC calculation of
unique count without sketching, it is clear to see that it
will be many times slower than the sketch-based ap-
proach. A direct implementation of unique count re-
quires sorting or at least Ω(n logn) secure comparisons
for n inputs, so for 1M inputs per party (3M total) this
will require 60 million secure comparisons as compared
to KN ≈ 12, 000 comparisons for our protocol.
Run time overhead for noise sampling. Recall that
the noise sampling in our protocol is performed by sim-
ply computing

∑N
i=1 ei in the MPC circuit. To measure

the overhead of this part, we compared the run time of
the protocol with noise sampling and the one without,
using the configurations in the above experiment (i.e.,
run time vs. input data size). In all configurations, the
cost of noise sampling was very small taking at most
1.36 seconds.
Number of buckets vs. MPC run time. In order
to experimentally verify that the MPC run time grows
linearly with number of buckets K as shown in Equa-
tion (1), we conducted experiments for ε = 1, and input
data sizes in {10K, 100K, 1M} for 3 parties with dif-

K •-•-• •-•-� •-?-� �-�-? �-�-�
4096 33.91 34.57 34.50 33.39 33.68
8192 72.10 70.99 71.27 70.57 70.96
16384 147.79 144.73 144.59 145.52 147.70

Table 2. Comparison of runtime (in seconds) of MPC protocol
with DP parameter ε = 1. We vary the input data size and bucket
size K. All the reported values are average run time of MPC
protocol in seconds for N = 3 parties. Columns 2-6 show different
input data sizes, • = 10K, ? = 100K, and � = 1M .

No. of parties 3 5 7 9
Runtime (in sec) 17 48 92 183

Table 3. Comparison of runtime of MPC protocol. Input data
size = 1 Million, DP parameter ε = 1.

ferent values of K ∈ {4096, 8192, 16384} and measured
the run time of the MPC protocol. Table 2 shows the
resulting MPC runtimes for these experiments. As ex-
pected, the average MPC runtime scales linearly with
the bucket size. We used the world cup data set for con-
ducting these experiments and the same Macbook Pro
machine used above.
Number of parties vs. MPC run time. Finally, we
analyze the run time of our protocol as a function of
the number of MPC parties. Table 3 shows the runtime
of MPC protocols for different numbers of parties each
holding input of size 1 million and ε = 1. We ran the pro-
tocol on cluster of 64 Intel® Xeon® E5-2697A v4 CPUS
each with 16 cores operating at 2.6 GHz and 380GB
memory.

Increasing the number of parties causes a slow down
for two reasons: First, the runtime of executing the MPC
for the Merge circuit depends on the number of local
sketches (and hence the number of MPC parties each of
which supplies a sketch), which increases linearly with
the number of parties. Second, as the number of parties
grows, the overhead of the underlying MPC protocol
also grows (even when circuit size is fixed).

7 Framework for Distributed
Private Sketching

We now show how we can generalize our results to give
a construction for private distributed sketching for a
large class of sketch-based approximations. Specifically,
we show (roughly) that for any sketch with a good accu-
racy guarantee there is a private distributed mechanism
that requires the addition of only a small amount of
noise that depends on the accuracy of the sketch and the
global sensitivity of the function being approximated.

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 166

We first describe key technical insights. We first
note that accuracy and sensitivity of a sketch go to-
gether. That is, if a sketching algorithm approximates
a functionality f that has low sensitivity (the output of
the functionality differs by a bounded amount on any
two neighboring inputs), then we can use the accuracy
of the sketching algorithm to bound the sensitivity of
the output of the sketch. Once we bound the sensitiv-
ity, we can then apply known DP mechanisms to obtain
differential privacy.

For most sketches in the literature, however, the ac-
curacy achieved by the sketch is multiplicative, meaning
that, on any input, the output of the sketch is guaran-
teed to be within a (1 ± ε̃) multiplicative factor of the
correct answer with high probability (over randomness
of the sketch). On the other hand, the Laplace mecha-
nism [26] is easier to analyze and achieve better concrete
parameters when the sensitivity is an additive constant.
We resolve this discrepancy by having our MPC proto-
col add noise in the exponent. That is, instead of adding
some noise e to the output of the sketch, the MPC pro-
tocol will multiply the output of the sketch by 2e′—
where the distribution of e′ depends on the accuracy
of the sketch and the sensitivity of the functionality—
effectively adding e′ noise to the logarithm of the output
of the sketch.

Now, we begin with some terminology.

Definition 7.1. A sketch is a pair of algorithms
(Sketch,Evaluate).
– Sketch takes an input sequence X and outputs a data

structure S(X).
– Evaluate takes S(X) and outputs a value y ∈ R+

We will often abuse notation, using S to refer to both
the sketch, and the data structure output by Sketch.

Definition 7.2. We say that a sketch S(X) is an (ε̃, δ̃)-
accurate approximation of a function f if, letting y =
Evaluate(S(X)), for all sequences of inputs X, we have
that Pr[(1− ε̃)f(X) < y < (1 + ε̃)f(X)] > 1− δ̃.

Definition 7.3. We say that a sketch S is mergeable
if there exists a merge procedure Merge that takes N
sketches and outputs a single sketch. Formally, for any
input sequence X partitioned into N subsequences X :=
X1, . . . , XN , S(X) = Merge(S(X1), . . . , S(XN)).

We now bound the global sensitivity of the logarithm of
a sketch evaluation. Looking forward, the reason that
we bound the logarithm of the sketch evaluation, rather
than the evaluation itself is that our algorithm will add

Participants: There are N parties P1, . . . , PN .
Each party Pi for i ∈ [N] inputs a sequenceXi of elements,

i.e.,Xi = (x1
i , x

2
i , . . .). Also, a budget ε for differential

privacy is specified.
Output: An approximation for some function f(X).

1. Each party chooses a uniform random seed seedi ←
{0, 1}λ. The parties then compute seed = ⊕Ni=1seedi.

2. Each Pi locally computes the following:
(a) Computes Si = Sketch(Xi) algorithm using

H(seed||·) as a random oracle and H(seed||0||·)
for computing any additional randomness neces-
sary for constructing the sketch.

(b) Generate noise e′i := (∆S/ε) · (ai − bi), where ai
and bi are i.i.d. random variables drawn from the
Gamma distribution Γ(2/N, 1), using random-
ness ri (from Pi’s random tape) for sampling.
Let ei = 2e

′
i .

3. Parties execute a secure MPC protocol to compute
the following
– Input: (S1, . . . , SN), (e1, . . . , eN)
– Compute y′ = Evaluate(Merge(S1, . . . , SN))
– Output: y = y′ ·

(
Πni=1ei

)
.

Fig. 7. ΠPrivateSketch: Distributed sketch framework.

noise in the exponent. This is done to account for the
multiplicative error of the sketch; the traditional dif-
ferential privacy setting usually considers only additive
error.

Lemma 7.4. Assume that a sketch S is an (ε̃, δ̃)-
accurate approximation of a function f(X) outputting
a positive number. Define Y (X) = Evaluate(S(X)) and
let g(X) = log2 (Y (X)) be the random variable corre-
sponding to the logarithm of the evaluation of sketch S
on X. Then, for any two neighboring inputs X1, X2,

Pr
[
|g(X1)− g(X2)| < log(1 + 2ε̃

1− ε̃) · (1 + ∆f
min(f))

]
≥ 1− 2δ̃

where ∆f is the global sensitivity of f , and min(f) is
the minimum value attained by f on any input X.

Proof. By the accuracy of the sketch, we have that for
any neighboring inputs X1 and X2 with probability 1−
2δ̃, we have:

Y (X1)
Y (X2) ≤

(1 + ε̃)f(X1)
(1− ε̃)f(X2) ≤

(1 + ε̃)(∆f + f(X2))
(1− ε̃)f(X2)

≤ (1 + 2ε̃
1− ε̃) · (1 + ∆f

f(X2))

Taking the logarithm of this equation, we conclude that
the lemma holds.

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 167

Definition 7.5. For a sketch S as in Lemma 7.4, we
define its global sensitivity,

∆S = log(1 + 2ε̃/(1− ε̃)) + log(1 + ∆f
min(f)).

We now use this lemma to construct a distributed DP
sketch described in Figure 7. But, before doing so, we
need an (ε̃, δ̃)-approximation algorithm with δ̃ = negl(λ).
This can be achieved through the median technique [8].

Lemma 7.6. Suppose there is a sketching algorithm S

that is a (ε̃, δ̃)-accurate approximation of a function f

with δ̃ ≤ 1/4. Then, there is a sketching algorithm S′

approximating f with (ε̃, negl(λ))-accuracy.

The proof of the lemma is provided in Appendix C.
We can now state our main result in this section.

But, before doing so, we define some parameters:
– (ε̃, δ̃): The accuracy parameters of the underlying

mergeable sketch. We require δ̃ to be negligible in λ.
– (ε, δ): The DP parameters for the protocol. We re-

quire δ to be negligible in λ.
– (ε, δ): The accuracy of the output of the protocol,

relative to the output of the sketch (i.e., the addi-
tional accuracy error on top of the original error of
the sketch).

We further require the following relationship among the
parameters:

ε̃/(1− ε̃) ≤ (ε− ε2/2) · ε
4 ln(2/δ)

− ∆f
2 min(f) ,

We next present the main theorem of this section, which
states the accuracy, privacy, and efficiency parameters
of our protocol, in terms of the above parameters.

Theorem 7.7. For parameters (ε̃, δ̃), (ε, δ), (ε, δ) satis-
fying the above requirements, the protocol ΠPrivateSketch
in Figure 7 is a distributed private sketch secure against
a semi-honest adversary controlling any coalition C,
with |C| < N/2, with the following properties:
1. Accuracy: ΠPrivateSketch is a (ε + ε̃ + ε · ε̃, δ + δ̃)-

approximation of f .
2. Privacy: ΠPrivateSketch achieves (ε, δ)-DP.
3. Run time: The run time depends only on the size of

CMerge and CEvaluateMech and is independent of the
size of the input.

The proof is given in Appendix D.
Example of a concrete instantiation. We briefly
describe the resulting parameter settings when instanti-
ating our framework with the LogLog sketch. Note that

the concrete parameters in the previous section beat
the parameters described here and we present these
parameters settings for illustrative purposes only. As-
suming that our underlying LogLog sketch implemen-
tation achieves ε̃ := 0.01 and negligible δ̃ by applying
Lemma 7.6 (i.e., the size of sketch will blow up by O(λ)
times). We set ε := 0.09 and δ = 0.1, which means that
our final accuracy of the MPC output is within about
10% accuracy with 90% probability. We also assume that
min(f) ≥ 1000, since we assume that at least one of the
parties inputs a set of size at least 1000 (otherwise we
are not in the big-data setting). Moreover, ∆f = 1. For
these settings, we can achieve (ε, δ)-DP, where δ is neg-
ligible as long as ε satisfies:

0.01/(1− 0.01) ≤ (0.09− 0.092/2) · ε
4 ln(2/0.1) − 1

2000 .

Thus, we may set ε ≈ 1.5.

7.1 Example Instantiations

To justify the usefulness of our general framework we
show that several well-known sketching algorithms sat-
isfy its requirements.
LogLog sketch. The first sketching algorithm we con-
sider is the LogLog sketch studied in the previous sec-
tions (See Figure 1). We observe that the Sketch algo-
rithm can be computed locally after the seed for H is
chosen, so each party Pi can build a sketch Si of his own
data. Next, the Merge algorithm (given in Section 6)
computes the max value (among N values) for each
of its K counters. This can be done in linear time in
the number of counters, K, and the number of parties
N . Importantly, this is far less than the total number
of input values. Finally, the Evaluate method computes
α ·K · 2u/K , which has a cost independent of the input
size. Thus, the LogLog sketch can be plugged into our
framework to achieve a distributed private variant. We
also note that the global sensitivity of the unique count
function is 1. So, if we require that all possible inputs
have above a certain number of minimum elements, the
noise added (∆S/min(f)) is quite small.

We note however, that the protocol resulting from
this general framework has worse parameters than the
optimized protocol presented earlier (See Section 6).
Furthermore, the optimized variant allows a hash func-
tion to be chosen once and for all, allowing for repeated
input phases, whereas the general framework requires
that inputs be fixed before the hash function is fixed to
prevent the adversary finding a “bad” hash input.

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 168

AMS sketch. We next consider the well-known Alon-
Matias-Szegedy (AMS) sketch [5] for approximating the
L2-norm of the frequency vector of a stream of data
items. Briefly, for a universe of size m, the AMS sketch
chooses k vectors (rj1, . . . , r

j
m), j ∈ [k] independently

with Pr[rji = 1] = Pr[rji = −1] = .5 (these can be chosen
using the hash functionH and do not need to be stored).
Next upon observing streaming values xi, Sketch com-
putes Zj =

∑
rji xi, j ∈ [k]. Note that this sketch is

linear and thus mergeable. Finally, the Evaluate proce-
dure simply computes

∑
j∈[k](Z

j)2.
JL Transform. The Johnson-Lindenstrauss Transform
(JLT) is an important tool in the sketching litera-
ture [46]. It is a linear sketching algorithm that can be
used to embed a high dimensional space into a low di-
mensional space, while preserving pairwise distances. It
has many applications (cf. [3, 21, 59]), including provid-
ing another method for approximating the L2 norm of
a frequency vector of a stream of data items. Since the
sketch is linear, it is trivially mergeable.

Let X be a high dimensional (dimension n) vector
corresponding to the frequency vector of a stream of
data items. To compute the transform on a vector X,
one samples a matrix Π ∈ Rm×n, where m � n and
outputs ΠX. The product ΠX can be computed in a
streaming fashion, since the columns of Π can be sam-
pled on-the-fly. The dimension m of the resulting sketch
depends on the desired (ε̃, δ̃)-accuracy, but does not de-
pend on the dimension n of the original data. There are
various ways to sample Π, we present one such method:

Definition 7.8 (JL Transform ((ε̃, δ̃, N)-JLT)). Let
X ∈ Rn be a finite set with |X| = N . A random matrix
Π ∈ Rm×n is called Johnson-Lindenstrauss Transform
((ε̃, δ̃, N)-JLT), if for all unit norm vectors x,x′ ∈ X

following holds with probability at least 1− δ̃:

‖Πx‖2 = (1±ε) and, ‖Π(x+x′)‖2 = (1± ε̃)‖(x + x′)‖2.

Theorem 7.9 (Originally in [42]). Let Π be the scaled
matrix (multiply by 1√

m
) with i.i.d. standard Gaus-

sian random variables and ε̃, δ̃ ∈ (0, 1). If m =
Ω
((

1
ε̃2

)(
logN

δ̃

))
, then Π is (ε̃, δ̃, N)-JLT.

There have been results showing that various forms of
the JL transform are differentially private, without addi-
tion of noise to the output [14, 62, 68]. It may therefore
seem that the techniques provided by our framework
are redundant for the above application. However, we
emphasize that those results hold only when the JLT
matrix Π is private. Differential privacy does not hold

if the matrix Π is publicly released. In our distributed
setting, all parties must use the same JLT matrix Π in
order for the sketches to be mergeable. Therefore, we
must assume that the JLT matrix Π is public and those
prior results do not hold. This is why addition of noise
via an MPC protocol is necessary in our setting.

8 Conclusion and Future Work
In summary, the contributions of this work consist of:
(1) We show that the LogLog algorithm is itself differ-
entially private (DP) in the single party setting, even
without adding noise, when the hash function is private
and random. (2) We achieve DP disjoint counting in
the multiparty setting in the semi-honest model assum-
ing an honest majority, by leveraging the mergeability
of the the LogLog sketch. We implement our MPC pro-
tocol and analyze the resulting privacy and accuracy
parameters. (3) We propose a general framework for ef-
ficiently combining a sketching algorithm that is merge-
able, a DP mechanism and an MPC protocol.

In future work, we plan to optimize our MPC pro-
tocol for settings in which there are a large number of
parties. We will also explore new application domains
for our framework, that go beyond computing statistics.
For example, an interesting question is whether by us-
ing suitable mergeable sketches and efficient noise sam-
pling techniques in conjunction with machine learning
algorithms, we can obtain efficient distributed and dif-
ferentially private machine learning algorithms.

9 Acknowledgments
Seung Geol Choi was supported in part by NSF
#CNS-1618269, ONR #N0001419WX00568, and ONR
#N0001419WX01032. Dana Dachman-soled was sup-
ported in part by NSF grants #CNS-1933033, #CNS-
1840893, #CNS-1453045 (CAREER), by a research
partnership award from Cisco and by Financial assis-
tance award 70NANB15H328 from the U.S. Depart-
ment of Commerce, National Institute of Standards and
Technology. Work of Mukul Kulkarni was done in part
while he was a student at the University of Maryland.
Arkady Yerukhimovich was supported in part by NSA
#H98230-19-1-0320.

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 169

References
[1] Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors. ACM

CCS 14. ACM Press, November 2014.
[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. An-

alyzing graph structure via linear measurements. In Yuval
Rabani, editor, 23rd SODA, pages 459–467. ACM-SIAM,
January 2012.

[3] Nir Ailon and Bernard Chazelle. The fast johnson–
lindenstrauss transform and approximate nearest neighbors.
SIAM Journal on computing, 39(1):302–322, 2009.

[4] Mohammad Alaggan, Mathieu Cunche, and Sébastien
Gambs. Privacy-preserving wi-fi analytics. Proceedings
on Privacy Enhancing Technologies, 2018(2):4–26, 2018.

[5] Noga Alon, Yossi Matias, and Mario Szegedy. The space
complexity of approximating the frequency moments. J.
Comput. Syst. Sci., 58(1):137–147, 1999.

[6] M. Arlitt and T. Jin. 1998 world cup web
site access logs, August 1998. Available at
http://www.acm.org/sigcomm/ITA/.

[7] Vikas G. Ashok and Ravi Mukkamala. A scalable and effi-
cient privacy preserving global itemset support approxima-
tion using bloom filters. In Data and Applications Security
and Privacy XXVIII - 28th Annual IFIP WG 11.3 Working
Conference, DBSec 2014, Vienna, Austria, July 14-16, 2014.
Proceedings, pages 382–389, 2014.

[8] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar,
and Luca Trevisan. Counting distinct elements in a data
stream. In Randomization and Approximation Techniques,
6th International Workshop, RANDOM 2002, Cambridge,
MA, USA, September 13-15, 2002, Proceedings, pages 1–
10, 2002.

[9] Johes Bater, Xi He, William Ehrich, Ashwin Machanava-
jjhala, and Jennie Rogers. Shrinkwrap: efficient sql query
processing in differentially private data federations. Proceed-
ings of the VLDB Endowment, 12(3):307–320, 2018.

[10] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivas-
tava. Twice-ramanujan sparsifiers. SIAM Review, 56(2):315–
334, 2014.

[11] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed
private data analysis: Simultaneously solving how and what.
In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 451–468. Springer, Heidelberg, August 2008.

[12] András A. Benczúr and David R. Karger. Approximating s-t
minimum cuts in Õ(n2) time. In 28th ACM STOC, pages
47–55. ACM Press, May 1996.

[13] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating
entropy over data streams. In Algorithms - ESA 2006, 14th
Annual European Symposium, Zurich, Switzerland, Septem-
ber 11-13, 2006, Proceedings, pages 148–159, 2006.

[14] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Shef-
fet. The johnson-lindenstrauss transform itself preserves
differential privacy. In 53rd FOCS, pages 410–419. IEEE
Computer Society Press, October 2012.

[15] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton.
Finding frequent items in data streams. Theor. Comput.
Sci., 312(1):3–15, 2004.

[16] Graham Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.

J. Algorithms, 55(1):58–75, 2005.
[17] Michael S. Crouch and Andrew McGregor. Periodicity and

cyclic shifts via linear sketches. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and
Techniques - 14th International Workshop, APPROX 2011,
and 15th International Workshop, RANDOM 2011, Prince-
ton, NJ, USA, August 17-19, 2011. Proceedings, pages 158–
170, 2011.

[18] Damien Desfontaines, Andreas Lochbihler, and David A.
Basin. Cardinality estimators do not preserve privacy.
PoPETs, 2019(2):26–46, 2019.

[19] Roger Dingledine, Nick Mathewson, and Paul F. Syverson.
Tor: The second-generation onion router. In Proceedings of
the 13th USENIX Security Symposium, August 9-13, 2004,
San Diego, CA, USA, pages 303–320, 2004.

[20] C. Dong and G. Loukides. Approximating private set
union/intersection cardinality with logarithmic complexity.
IEEE Transactions on Information Forensics and Security,
12(11):2792–2806, Nov 2017.

[21] Petros Drineas, Michael W Mahoney, S Muthukrishnan, and
Tamás Sarlós. Faster least squares approximation. Nu-
merische mathematik, 117(2):219–249, 2011.

[22] Marianne Durand and Philippe Flajolet. Loglog counting
of large cardinalities (extended abstract). In Algorithms -
ESA 2003, 11th Annual European Symposium, Budapest,
Hungary, September 16-19, 2003, Proceedings, pages 605–
617, 2003.

[23] Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex
Halderman. Analysis of the HTTPS certificate ecosystem. In
Proceedings of the 13th Internet Measurement Conference,
October 2013.

[24] Cynthia Dwork. Differential privacy (invited paper). In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and
Ingo Wegener, editors, ICALP 2006, Part II, volume 4052
of LNCS, pages 1–12. Springer, Heidelberg, July 2006.

[25] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry,
Ilya Mironov, and Moni Naor. Our data, ourselves: Privacy
via distributed noise generation. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 486–503.
Springer, Heidelberg, May / June 2006.

[26] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data anal-
ysis. In Shai Halevi and Tal Rabin, editors, TCC 2006, vol-
ume 3876 of LNCS, pages 265–284. Springer, Heidelberg,
March 2006.

[27] Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

[28] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias
Senker, and Jörn Tillmanns. Privately computing set-union
and set-intersection cardinality via bloom filters. In Infor-
mation Security and Privacy - 20th Australasian Conference,
ACISP 2015, Brisbane, QLD, Australia, June 29 - July 1,
2015, Proceedings, pages 413–430, 2015.

[29] Tariq Elahi, George Danezis, and Ian Goldberg. PrivEx:
Private collection of traffic statistics for anonymous commu-
nication networks. In Ahn et al. [1], pages 1068–1079.

[30] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
RAPPOR: Randomized aggregatable privacy-preserving ordi-
nal response. In Ahn et al. [1], pages 1054–1067.

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 170

[31] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A
pragmatic introduction to secure multi-party computation.
Foundations and Trends in Privacy and Security, 2(2-3):70–
246, 2018.

[32] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim,
Martin J. Strauss, and Rebecca N. Wright. Secure multi-
party computation of approximations. ACM Trans. Algo-
rithms, 2(3):435–472, 2006.

[33] Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah
Sherr. Distributed measurement with private set-union
cardinality. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages
2295–2312. ACM Press, October / November 2017.

[34] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic
Meunier. Hyperloglog: The analysis of a near-optimal cardi-
nality estimation algorithm. In IN AOFA 2007: PROCEED-
INGS OF THE 2007 INTERNATIONAL CONFERENCE ON
ANALYSIS OF ALGORITHMS, 2007.

[35] Philippe Flajolet and G. Nigel Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst. Sci.,
31(2):182–209, 1985.

[36] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer
Reingold. Keyword search and oblivious pseudorandom
functions. In Joe Kilian, editor, TCC 2005, volume 3378 of
LNCS, pages 303–324. Springer, Heidelberg, February 2005.

[37] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game or A completeness theorem for
protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[38] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient
and secure multiparty computation from fixed-key block
ciphers. To appear in IEEE S&P, 2020.

[39] Shai Halevi, Robert Krauthgamer, Eyal Kushilevitz, and
Kobbi Nissim. Private approximation of NP-hard functions.
In 33rd ACM STOC, pages 550–559. ACM Press, July 2001.

[40] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hy-
perloglog in practice: algorithmic engineering of a state
of the art cardinality estimation algorithm. In Joint 2013
EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa,
Italy, March 18-22, 2013, pages 683–692, 2013.

[41] Piotr Indyk. Stable distributions, pseudorandom genera-
tors, embeddings, and data stream computation. J. ACM,
53(3):307–323, 2006.

[42] Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: Towards removing the curse of dimensionality.
In 30th ACM STOC, pages 604–613. ACM Press, May 1998.

[43] Piotr Indyk and David P. Woodruff. Optimal approximations
of the frequency moments of data streams. In Harold N.
Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
202–208. ACM Press, May 2005.

[44] Rob Jansen and Aaron Johnson. Safely measuring tor. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16,
pages 1553–1567. ACM Press, October 2016.

[45] Rajesh Jayaram and David P. Woodruff. Perfect lp sampling
in a data stream. In 59th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 544–555, 2018.

[46] William B Johnson and Joram Lindenstrauss. Extensions of
lipschitz mappings into a hilbert space, 1984.

[47] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim,
Sofya Raskhodnikova, and Adam Smith. What can we learn
privately? In 49th FOCS, pages 531–540. IEEE Computer
Society Press, October 2008.

[48] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography. Chapman and Hall/CRC Press, 2007.

[49] Changchang Liu, Prateek Mittal, and Supriyo Chakraborty.
Dependence makes you vulnberable: Differential privacy
under dependent tuples. In NDSS 2016 [56].

[50] Yang Liu, Wenji Chen, and Yong Guan. Identifying high-
cardinality hosts from network-wide traffic measurements.
IEEE Trans. Dependable Sec. Comput., 13(5):547–558,
2016.

[51] Frank McSherry and Kunal Talwar. Mechanism design via
differential privacy. In 48th FOCS, pages 94–103. IEEE
Computer Society Press, October 2007.

[52] Luca Melis, George Danezis, and Emiliano De Cristofaro.
Efficient private statistics with succinct sketches. In NDSS
2016 [56].

[53] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil P.
Vadhan. Computational differential privacy. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 126–
142. Springer, Heidelberg, August 2009.

[54] Morteza Monemizadeh and David P. Woodruff. 1-pass
relative-error lp-sampling with applications. In Moses
Charika, editor, 21st SODA, pages 1143–1160. ACM-SIAM,
January 2010.

[55] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and
Zachary R. Anderson. Synopsis diffusion for robust aggrega-
tion in sensor networks. TOSN, 4(2):7:1–7:40, 2008.

[56] NDSS 2016. The Internet Society, February 2016.
[57] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The ge-

ometry of differential privacy: the sparse and approximate
cases. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, 45th ACM STOC, pages 351–360. ACM
Press, June 2013.

[58] Nikos Ntarmos, Peter Triantafillou, and Gerhard Weikum.
Counting at large: Efficient cardinality estimation in
internet-scale data networks. In Proceedings of the 22nd
International Conference on Data Engineering, ICDE 2006,
3-8 April 2006, Atlanta, GA, USA, page 40, 2006.

[59] Tamás Sarlós. Improved approximation algorithms for large
matrices via random projections. In 47th FOCS, pages 143–
152. IEEE Computer Society Press, October 2006.

[60] Berry Schoenmakers. Mpyc - secure multiparty computation
in python. GitHub, 2018. https://github.com/lschoe/mpyc.

[61] Adam Sealfon. Shortest paths and distances with differ-
ential privacy. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Sys-
tems, PODS 2016, San Francisco, CA, USA, June 26 - July
01, 2016, pages 29–41, 2016.

[62] Or Sheffet. Differentially private ordinary least squares. In
Proceedings of the 34th International Conference on Ma-
chine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, pages 3105–3114, 2017.

[63] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, and
Dawn Song. Distributed private data analysis: Lower
bounds and practical constructions. ACM Trans. Algorithms,
13(4):50:1–50:38, 2017.

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 171

[64] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification, and
solving linear systems. In László Babai, editor, 36th ACM
STOC, pages 81–90. ACM Press, June 2004.

[65] Daniel A. Spielman and Shang-Hua Teng. Spectral spar-
sification of graphs. SIAM J. Comput., 40(4):981–1025,
2011.

[66] Thomas Toft. Primitives and applications for multi-party
computation. PhD thesis, Aarhus Universitet, Denmark,
2007.

[67] Florian Tschorsch and Björn Scheuermann. An algorithm
for privacy-preserving distributed user statistics. Computer
Networks, 57(14):2775–2787, 2013.

[68] Jalaj Upadhyay. Differentially private linear algebra in the
streaming model. CoRR, abs/1409.5414, 2014.

[69] Ryan Wails, Aaron Johnson, Daniel Starin, Arkady Yerukhi-
movich, and S. Dov Gordon. Stormy: Statistics in tor by
measuring securely. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019,
pages 615–632, 2019.

[70] Andrew Chi-Chih Yao. How to generate and exchange se-
crets (extended abstract). In 27th FOCS, pages 162–167.
IEEE Computer Society Press, October 1986.

A Proof of Theorem 4.2
The proof uses the following lemma.

Lemma A.1. Let M : {0, 1}∗ → {0, 1}` be a mech-
anism. Let BdM,x be a (bad) event that occurs when
mechanism M is run on input x. Suppose that for all
neighboring data sets D and D′, and for all possible out-
puts s from M , it holds

Pr[M(D) = s∧BdM,D] ≤ (1+ε) Pr[M(D′) = s∧BdM,D′].

Then, for all neighboring data sets D and D′, and for
all S ⊆ {0, 1}`, it holds that

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + Pr[BdM,D].

Proof. First note that if for all neighboring D,D′ and
all s ∈ {0, 1}`

Pr[M(D) = s∧BdM,D] ≤ (1+ε) Pr[M(D′) = s∧BdM,D′]

then for all neighboring D,D′ and all S ⊆ {0, 1}`

Pr[M(D) ∈ S∧BdM,D] ≤ (1+ε) Pr[M(D′) ∈ S∧BdM,D′].

Therefore, the lemma follows from the following:

Pr[M(D) ∈ S]
= Pr[M(D) ∈ S ∧ BdM,D] + Pr[M(D) ∈ S ∧ BdM,D]
≤ (1 + ε) Pr[M(D′) ∈ S ∧ BdM,D′] + Pr[BdM,D]
≤ (1 + ε) Pr[M(D′) ∈ S] + Pr[BdM,D]
≤ eε Pr[M(D′) ∈ S] + Pr[BdM,D].

The first inequality holds from the assumption. For the
second inequality, we used the fact that all x ∈ R we
have (1 + x) ≤ ex.

A.1 Proof of Lemma 4.4

(
1− 1

2s−1

)−1
· Pr[C(n+ 1,m) = s]

=
(

1− 1
2s−1

)−1
·

((
1− 1

2s

)n+1
−
(

1− 1
2s−1

)n+1
)

>

(
1− 1

2s

)−1
·
(

1− 1
2s

)n+1
−
(

1− 1
2s−1

)n
= Pr[Cm(n) = s].

Therefore, we have Pr[Cm(n) = s] ≤
(
1− 1

2s−1

)−1 ·
Pr[C(n + 1,m) = s]. The lemma holds from the fol-
lowing:

1
1− 1

2s−1

= 2s−1

2s−1 − 1 = 1 + 1
2s−1 − 1 ≤ 1 + 2

2s−1 .

A.2 Proof of Theorem 4.2

The distribution of the output of the LogLog al-
gorithm. Assuming the random oracle, if we strip out
the post-processing, the output of the LogLog algorithm
applied to D with n distinct elements is identically dis-
tributed to the following experiment:
Experiment ZK,m(n):
1. Consider n balls and K bins. For each ball, choose

a random bin in which to put the ball. Let Bj is the
number of balls in the jth bin.

2. Output Cm(B0), . . . , Cm(BK−1).

Since differential privacy of ZK,m implies differential
privacy of the LogLog algorithm, it suffices to show

Pr[ZK,m(n) ∈ S] ≤ eε Pr[ZK,m(n+ 1) ∈ S] + negl(λ),
Pr[ZK,m(n+ 1) ∈ S] ≤ eε Pr[ZK,m(n) ∈ S] + negl(λ).

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 172

We first show the first inequality. We will follow the
strategy described in Lemma A.1. That is, we define an
event Bd and show for any s, it holds Pr[Bd] = negl(λ)
and

Pr[ZK,m(n) = s∧Bd] ≤ (1 + ε) Pr[ZK,m(n+ 1) = s∧Bd]
(2)

Event Bd. Recall n ≥ max{8Kλ
ε , 8Kλ}. Let Bd be an

event in which the output s has some sj less than s∗ =
log(4

ε). We show Pr[Bd] is negligible in λ. Let Enough be
an event such that B0 ≥ 2λ/ε. Then, we have

Pr[Bd] ≤
∑
j∈[K]

Pr[sj < s∗]

=
∑
j∈[K]

Pr[Cm(Bj) < s∗]

= K · Pr[Cm(B0) < s∗]
≤ K · (Pr[Cm(B0) < s∗|Enough] + Pr[¬Enough])

Now, we have

Pr[Cm(B0) < s∗|Enough]

≤
(

1− 1
2s∗−1

)B0

≤
(
e
− 1

2s∗−1
)B0

≤ e−λ

To bound Pr[¬Enough], we use the Chernoff bound.
Since µ = Exp[B0] = n/K, we have

Pr[¬Enough] ≤ Pr[B0 < µ/2] ≤ e−µ/8 ≤ e−λ.

This concludes that Pr[Bd] = negl(λ).
Showing (2). In order to show (2), we consider the
following:
– In ZK,m(n) and ZK,m(n + 1), let R denote ran-

dom coins that choose which bins the (first) n balls
should be placed in.

– Note that R doesn’t include the choice of the (n +
1)st ball in ZK,m(n+ 1). Also, R doesn’t determine
Cm(Bj) either.

In order to prove Equation (2), it suffices to prove for
every R:

Pr[ZK,m(n) = s | R ∧ Bd]
≤ (1 + ε) Pr[ZK,m(n+ 1) = s | R ∧ Bd]

For j = 0, . . . ,K − 1, let Ij be an indicator variable
for the event in which the last ball would be placed in
in the jth bin in experiment ZK,m(n+ 1). Fix R and let
βj be the number of balls in bin j by throwing n balls

according to the random coin R. Then, we have

Pr[ZK,m+1(n) = s | R ∧ Bd]

=
K−1∑
j=0

Pr[Ij] · Pr[ZK,m+1(n) = s | Ij ∧R ∧ Bd]

=
K−1∑
j=0

 1
K

Pr[Cm(βj + 1) = sj] ·
∏
i∈[K]
i6=j

Pr[Cm(βi) = si]

≥
K−1∑
j=0

(
1
K
· 1

1 + 2−(sj−2) · Pr[Cm(βj) = sj]·

∏
i∈[K],i6=j

Pr[Cm(βi) = si]
)

≥
K−1∑
j=0

(
1
K
· 1
eε
·
∏
i

Pr[Cm(βi) = si]
)

= 1
eε
· Pr[ZK,m(n) = s | R ∧ Bd].

The first inequality holds from Lemma 4.4. The second
equality holds since we conditioned on Bd (i.e., sj ≥
log(4/ε)); we have

1 + 2−sj+2 ≤ 1 + ε ≤ eε.

The other direction. We are left to show:

Pr[ZK,m(n+ 1) ∈ S] ≤ eε Pr[ZK,m(n) ∈ S] + negl(λ),

which can be similarly shown by using Lemma 4.3.

B Proof of Theorem 6.5
Assuming semi-honest security model, for any set S of
size N/2 consisting of only honest parties, the value∑
i∈S ei would be distributed according to Lap((m +

1)/ε) to the adversary. (Note that to achieve this we
had to add roughly twice this amount of noise to ac-
count for the fact that the adversary sees his own con-
tribution to the noise.) This implies that the MPC pro-
tocol inside of Figure 3 realizes a functionality that is
(ε, 0)-differentially private, which is essentially the same
as a single-party protocol with public hash described in
Figure 2. Therefore, applying Theorem 3.5, we conclude
that our protocol is distributed differentially private.

C Proof of Lemma 7.6
The median technique augments S into a mechanism S′:

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 173

S′(X) :
1. Execute k instances of S on input X with indepen-

dent randomness.
2. Output the median of the outputs from the in-

stances.

Note that for the median technique to fail to achieve
good accuracy, at least k/2 instances should have bad
estimates. Let Ti be an indicator variable such that Ti
is 1 if the i instance gives a bad estimate or 0 otherwise.
Let T =

∑k
i=1 Ti. Note E[Ti] < δ̃ and µ = E[T] < kδ̃.

Therefore, letting z = 1
2δ̃
− 1, we have

Pr[S′ outputs bad estimates] = Pr[T > k/2]
≤ Pr[T > µ(1 + z)]

≤ e−
z2
z+2µ

≤ e−k/3.

The second inequality is from the Chernoff bound,
and the last inequality holds since we have z2

z+2µ ≥ k/3
for any δ̃ < 1/4. Setting k = Θ(λ) will satisfy the lemma.

D Proof of Theorem 7.7
We prove Theorem 7.7 following the proof outline given
in Theorem 3.5. First, we define an ideal functionality
in Figure 8 and show that this functionality achieves
ε-differential privacy. Then, we show that our protocol
securely realizes this functionality against any coalition
C of size at most t < N/2.

We consider an intermediate hybrid model,
where the MPC protocol in Figure 7, that takes
as input (S1, . . . , SN), (e1, . . . , eN), computes y′ =
Evaluate(Merge(S1, . . . , SN)) and outputs y = y′ ·
(Πni=1ei)

∆S/ε to each party is replaced with an ideal
functionality FMerge.
Differential privacy of the ideal world. We first
show that the ideal functionality described in Figure 8.
The differential privacy of the ideal follows from the
global sensitivity and differential privacy of Laplace
mechanism.

We assume that the adversary corrupts a coalition
C s.t. |C| = N/2 to simplify our notation. Differential
privacy in the case that there are fewer corruptions fol-
lows immediately. Recall that the view of the adversary
in the Ideal world consists of the output y, as well as
the randomness [ri]Pi∈C and the seed seed. We there-
fore analyze differential privacy, conditioned on a fixed

Input: Each party Pi for i ∈ [N] inputs a sequence Xi of
elements, i.e., Xi = (x1

i , x
2
i , . . .). Also, a budget ε for

differential privacy is specified.
Output: An approximation for some N -input function

f(X1, . . . , XN).

1. Choose seed← {0, 1}λ
2. Computes Si = Sketch(Xi) algorithm using

H(seed||·) as a random oracle (the random oracle is
also used to generate any additional randomness nec-
essary for constructing the sketch).

3. Generate noise e′i := (∆S/ε) · (ai − bi), where ai and
bi are i.i.d. random variables drawn from the Gamma
distribution Γ(2/N, 1), using randomness ri for sam-
pling. Let ei = 2e

′
i .

4. Compute y′ = Evaluate(Merge(S1, . . . , SN)).
5. To each party i ∈ [N], output y = y′ ·

(
Πni=1ei

)
as

well as their randomness ri.

Fig. 8. Ideal Functionality F for Distributed Sketch Framework.

seed and fixed values of [ri]Pi∈C , from which the val-
ues of [ei]Pi∈C and [e′i]Pi∈C (where e′i = log(ei)) can be
derived.

Consider two C-neighboring inputs X =
(X1, . . . , XN), X ′ = (X ′1, . . . , X ′N) leading to two sets of
sketches (S1, . . . , SN), (S′1, . . . , S′N). Let

g(X) := Evaluate(Merge(S1, . . . , SN))
g(X ′) := Evaluate(Merge(S′1, . . . , S′N)).

Since S(X1, . . . , XN) = Merge(S1, . . . , SN) and
S(X ′1, . . . , X ′N) = Merge(S′1, . . . , S′N), by definition of
∆S, we have that with all but negligible probability
(over the randomness of the sketch)

| log g(X)− log g(X ′)| ≤ ∆S. (3)

Let y be some outcome of the functionality F . Note
that log(y) is fully determined given y and vice versa. We
therefore consider the probability of obtaining a given
value of log(y), conditioned on fixed seed and [ei]i∈S ,
when the input is X versus X ′. Let log′(y) = log(y) −∑
i/∈S e

′
i.

If the input is X, then the probability of obtain-
ing outcome log′(y) is the probability that

∑
i∈S e

′
i =

log′(y) − log g(X). Since
∑
i∈S e

′
i is distributed as

Laplace(0,∆S/ε), this is equivalent to the probability of
log′(y)− log g(X) under the corresponding PDF:

pX := Lap

(
log′(y)− log g(X)

∣∣∣∣∆Sε
)

= ε

2∆S · e
−ε· log′(y)−log g(X)

∆S .

Differentially-Private Multi-Party Sketching for Large-Scale Statistics 174

Similarly, if the input is X ′, then the probability of
obtaining outcome log′(y) is

pX′ := Lap

(
log′(y)− log g(X ′)

∣∣∣∣∆Sε
)

= ε

2∆S · e
−ε· log′(y)−log g(X′)

∆S .

Using (3) we can upperbound the ratio pX
pX′

by

exp

(
−ε · log′(y)− log g(X)

∆S + ε · log′(y) + log g(X ′)
∆S

)
= exp

(
ε · log g(X)− log g(X ′)

∆S

)
≤ exp(ε).

Thus, we obtain the desired result that the ideal func-
tionality achieves (ε, δ = negl(λ))-differential privacy.
Protocol realizes F in the FMerge-hybrid model.
We now show that, once the MPC subprotocol in Fig-
ure 7 is replaced with the Ideal functionality FMerge, we
securely realize functionality F , given in Figure 8.

We present a simulator Sim for the semi-honest case
with less than N/2 corruptions. Let S ⊆ [N] be the
set of uncorrupted parties and S ⊆ [N] be the set of
corrupted parties. For each of the corrupted parties, Sim
receives their input stream Xi, i ∈ S. Sim invokes F
with inputs [Xi]i∈S , receiving back (y, seed, ri). Sim sets
the random tape of each corrupted party Pi to contain
the randomness ri returned by the ideal functionality,
and chooses the rest of the tape uniformly at random.
Sim uses the internal states of the corrupted parties to
compute seedi, i ∈ S. Sim chooses random seedi, i ∈ S
(i.e. the values for the uncorrupted parties) such that
seed = ⊕ni=1seedi. Sim instantiates the corrupted parties
and plays the part of the uncorrupted parties in the
protocol by sending seedi, i ∈ S to the corrupted parties.
If Sim receives a random oracle query from a corrupted
party, Sim forwards the query to the random oracle, and
returns the response to the corrupted party.1 When Sim
receives [(Si, ei)]i∈S from the corrupted parties as input
to FMerge, Sim returns y to the corrupted parties. Finally,
Sim outputs the view of the corrupted parties.

It is straightforward to verify that the joint distribu-
tion over the output of Sim and the output of the honest
parties in the ideal F-model is identical to the joint dis-
tribution over the view of the corrupted parties and the
output of the honest parties in the FMerge-hybrid model.

1 Note that Sim does not program the random oracle in our
security proof.

Accuracy of the Protocol. To achieve (ε̃+ε+ε̃ε, δ̃+δ)-
accuracy, we need to ensure (ε, δ)-accuracy of the out-
come of the added noise. Therefore, letting α := GS(S)

ε ,
we must ensure that

Pr

∣∣∣∣∣∣α ·
∑
i∈[N]

ei

∣∣∣∣∣∣ > log(1 + ε)

 ≤ δ.
Note the above is upperbounded by the following prob-
ability:

Pr

∣∣∣∣∣α∑
i∈S

ei

∣∣∣∣∣ > log(1 + ε)
2 or

∣∣∣∣∣∣α
∑
i∈S

ei

∣∣∣∣∣∣ > log(1 + ε)
2

 .
Therefore, it is sufficient to ensure that the probabil-
ity that a Laplacian random variable Laplace(0, ∆S

ε) has
magnitude greater than log(1 + ε)/2 is bounded by δ/2.
Using the CDF for the Laplacian, we thus require that

e−
log(1+ε)·ε

2∆S ≤ δ/2 (4)

Equivalently,

log(1 + ε) · ε
2∆S ≥ ln(2/δ). (5)

We next bound the left side of (5):

log(1 + ε) · ε
2 log(1 + 2ε̃/(1− ε̃)) + 2 log(1 + ∆S/min(f))

= ln(1 + ε) · ε
2 ln(1 + 2ε̃/(1− ε̃)) + 2 ln(1 + ∆S/min(f))

≥ (ε− ε2/2) · ε
4ε̃/(1− ε̃) + 2∆S/min(f) .

We used two inequalities, i.e., ln(1 + x) ≥ x − x2/2
and (1 + x) ≤ ex in the above. Thus, setting

ε̃/(1− ε̃) ≤ (ε− ε2/2) · ε
4 ln(2/δ)

− ∆S
2 min(f) , (6)

we obtain the desired accuracy.

	Differentially-Private Multi-Party Sketching for Large-Scale Statistics
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Background and Related Work
	2.1 DP and MPC
	2.2 Secure Statistics
	2.3 Background on Sketching

	3 Definitions and Preliminaries
	3.1 Distributed Differential Privacy

	4 A Single-party Protocol
	4.1 DP Without Noise

	5 Achieving DP with Public Hash
	6 Multi-party Protocol
	6.1 Implementation
	6.2 Performance Results

	7 Framework for Distributed Private Sketching
	7.1 Example Instantiations

	8 Conclusion and Future Work
	9 Acknowledgments
	A Proof of Theorem 4.2
	A.1 Proof of Lemma 4.4
	A.2 Proof of Theorem 4.2

	B Proof of Theorem 6.5
	C Proof of Lemma 7.6
	D Proof of Theorem 7.7

