
Proceedings on Privacy Enhancing Technologies ; 2020 (3):243–263

Piyush Kumar Sharma*, Devashish Gosain, Himanshu Sagar, Chaitanya Kumar, Aneesh Dogra,
Vinayak Naik, H.B. Acharya, and Sambuddho Chakravarty

SiegeBreaker: An SDN Based Practical Decoy
Routing System
Abstract: Decoy Routing (DR), a promising approach
to censorship circumvention, uses routers (rather than
end hosts) as proxy servers. Users of censored networks,
who wish to use DR, send specially crafted packets,
nominally addressed to an uncensored website. Once
safely out of the censored network, the packets en-
counter a special router (the Decoy Router) which iden-
tifies them using a secret handshake, and proxies them
to their true destination (a censored site).
However, DR has implementation problems: it is infea-
sible to reprogram routers for the complex operations
required. Existing DR solutions fall back on using com-
modity servers as a Decoy Router. But as servers are not
efficient at routing, most web applications show poor
performance when accessed over DR. A further concern
is that the Decoy Router has to inspect all flows in order
to identify the ones that need DR. This may itself be
a breach of privacy for other users (who neither require
DR nor want to be monitored).
In this paper, we present a novel DR system, Siege-
Breaker (SB), which solves the aforementioned prob-
lems using an SDN-based architecture. Previous pro-
posals involve a single unit which performs all major
operations (inspecting all flows, identifying the DR re-
quests and proxying them). In contrast, SB distributes
the tasks for DR among three independent modules. (1)
The SDN controller identifies DR requests via a covert,
privacy preserving scheme, and does not need to inspect
all flows. (2) The reconfigurable SDN switch intercepts
packets, and forwards them to a secret proxy efficiently.
(3) The secret proxy server proxies the client’s traffic
to the censored site. Our modular, lightweight design
achieves performance comparable to direct TCP down-
loads, for both in-lab setups, and Internet based tests
involving commercial SDN switches.

Keywords: Decoy Routing, Anti-Censorship, SDN

DOI 10.2478/popets-2020-0051
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

*Corresponding Author: Piyush Kumar Sharma: In-
draprastha Institute of Information Technology (IIIT) Delhi,
India E-mail: piyushs@iiitd.ac.in

1 Introduction
Free speech on the Internet is a political battleground.
On one hand, several governments claim that their
sovereignty extends to cyberspace, and that they should
control the content seen (or written) by their citizens.
On the other hand, as censorship is frequently used to
silence the opposition [13], access to free speech online
is considered a human right by the United Nations [54].
This tension between censors and free speech advocates
has led to an “arms race”: users use proxy based ser-
vices (e.g. VPNs and Tor [19]) to access content on
the Internet, and in response, censors design stronger
counter measures [22]. Even the best anti-censorship so-
lutions, such as relay addresses [11] and protocol obfus-
cation [44, 57], are temporary measures [33].

Decoy Routing [34, 39, 61] is an attempt to break out
of this “arms race”, through the use of “smart routers”
that double as proxies. DR clients – residents of cen-
sor countries, who need to access a blocked site – start
by sending packets addressed to allowed sites (the overt
destination (OD)). These packets appear innocuous, but
actually carry a covert cryptographic message, carefully
chosen to make it hard for the censor to distinguish the
packets from regular TLS messages. Once safely past
the network boundaries of the censor, these packets are
identified by DRs that hijack the client’s connection and
redirect that flow to the covert destination (CD), the
actual censored site the client wishes to contact. Even

Devashish Gosain: IIIT Delhi, India E-mail:
devashishg@iiitd.ac.in
Himanshu Sagar: IIIT Delhi, India E-mail: himan-
shu14046@iiitd.ac.in
Chaitanya Kumar: IBM Research, Singapore, E-mail: chai-
tanya@sg.ibm.com
Aneesh Dogra: IIIT Delhi, India E-mail:
aneesh13014@iiitd.ac.in
Vinayak Naik: BITS Pilani, Goa, India E-mail:
vinayak@goa.bits-pilani.ac.in
H.B. Acharya: RIT, USA, E-mail: acharya@mail.rit.edu
Sambuddho Chakravarty: IIIT Delhi, India E-mail: sam-
buddho@iiitd.ac.in



SiegeBreaker: An SDN Based Practical Decoy Routing System 244

if a DR is discovered, it is hard for the adversary to
“Route Around Decoys” [29, 35] without losing connec-
tivity from a major part of the Internet.

Interest in Decoy Routing has led to a rich body of
prior proposals [14, 21, 34, 46, 60, 61], but not led to
the development of practical and efficient DR systems.
There are several challenges that must be addressed be-
fore DR becomes widely adopted in practice.

Firstly, Internet applications perform poorly when
using existing DR systems. As reported in previous re-
search, DR clients experienced overall low throughput
[26] and high latency [21]. This is because existing so-
lutions are implemented on commodity servers (rather
than real routers); they cannot serve traffic at line rates
while at the same time matching network flows using
cryptographic operations. On the other hand, it is vir-
tually impossible to simply port existing solutions to
conventional routers (which are not designed to be re-
programmed).

Secondly, existing proposals assume (unfounded)
mutual trust between third-party DR operators (analo-
gous to Tor maintainers), and the “friendly” ISPs (who
simply host the DR). These proposals involve DR oper-
ators inspecting all flows traversing the ISP. Thus, DR
operators may compromise the privacy of non-DR flows
passing through “friendly” ISPs, (e.g. by recording their
packet headers, metadata, or even content), breaching
the trust extended to them.

A third issue is identifying the networks where DRs
may be positioned (to intercept requests from several
users), and providing incentives for these network oper-
ators to deploy DR. Finally, a fourth issue is defending
against various attacks (traffic analysis etc.) from dif-
ferent adversaries.

The DR community has begun research efforts to
address the third [29, 35] and the fourth issue [14]. How-
ever, the first two problems – assuring performance for
regular DR flows, without compromising privacy of non-
DR flows – remain open challenges to practical DR.

In this paper, we propose the first practical system
to answer such concerns: SiegeBreaker (SB), a Software-
Defined Network (SDN) [42] based, efficient, and privacy
preserving DR system. It works as follows:
– The users of SB signal the Decoy Router through an

email, addressed to an email ID associated with the
SDN controller (that manages the SDN switches).
The email bears encrypted information, that can
only be decrypted by the SDN controller; at a later
step, this information authenticates a legitimate DR
client to the controller.

– After deciphering a DR request, the controller re-
configures the switch (i.e. the Decoy Router), to
redirect all subsequent TCP packets, of only the SB
client – OD connection, to itself.

– These TCP packets carry covert information (indi-
cated in the previous email message) that authenti-
cate a legitimate DR request, without requiring the
inspection of all other flows traversing the DR (as
required in all previous proposals). This drastically
reduces the inspection load on the controller.

– After authenticating the client, the controller re-
configures the switch to divert subsequent SB client
– OD packets (i.e. only the DR flows) to a third-
party secret proxy (SP).

– These subsequent packets help covertly establish a
fresh session key with the SP, and expose to it the
URL of the CD. The SP then communicates with
the CD and sends the responses back to the client,
ensuring reliable and efficient delivery of packets.
Overall, the protocol ensures that the third-party

DR operator managing SP, observes only the DR re-
quests, without having any knowledge of the non-DR
flows, thereby preserving their privacy.

SB proves to be a practical and privacy-preserving
DR system. It builds upon the idea that DR is not a
monolithic task. Thus, it distributes the tasks of DR
over three loosely-coupled, synergistic modules: (1) The
SDN controller, that orchestrates the switch(es), inde-
pendently identifies DR requests and re-configures SDN
switches on-the-fly. (2) The switch, which primarily for-
wards packets between the client and the SP, seldom
engaging the controller. (3) The SP, which focuses on
communicating with CD, along with other tasks to en-
sure secrecy and reliability. Such a design not only leads
to a massive improvement in performance, but also en-
sures that the DR system (and its operator) only sees
those few flows which are associated with DR requests.
Our major contributions can be summarized as follows:
1. The prototype of SB, a practical and efficient DR

solution, which achieves multiple goals:
– Modularity. DR requests are handled by three

loosely coupled entities – the SDN controller, the
switch and the SP – reducing computational load
on each.

– Privacy preserving signalling. Using the above
modular design, SB inspects a small fraction of
all traffic and serves only the DR requests.

– Dedicated hardware. SB uses SDN switches (in-
stead of commodity servers proposed in previous
designs) to divert flows efficiently at line rates.



SiegeBreaker: An SDN Based Practical Decoy Routing System 245

Fig. 1. Decoy Routing: The user access blocked.com, through
DR. To the censor it appears that the client is communicating to
an unfiltered site, allowed.com.

– Reliable communication. SP provides reliable
and efficient client–CD communication, by pre-
serving the characteristics of TCP like behaviour
(when there is no actual TCP connection be-
tween them).

2. Comprehensive performance analysis of SB, on real
testbeds (involving a commercial SDN switch), shows
near-native (TCP) performance for both web surf-
ing and bulk downloads, even in the presence of 50K
parallel flows or 15Gbps network-traffic on the SDN
switch. In ideal conditions, SB is capable of serving
individual client requests at line rates of ≈ 1 Gbps.

3. Thorough security analysis of the protocol, showing
how SB is resilient to a variety of advanced attacks
(such as forced asymmetry [51]).
Finally, we note that existing efforts to deploy

DRs [34, 35] could be very costly — even modest pro-
posals [29] involve replacing about 11,000 routers across
30 ASes with DRs. However, in an SDN-based AS, any
switch could double as a DR on-demand, without dis-
rupting regular routing. This solves the problem of DR
placement within an AS. We further demonstrate how
the client could use inconspicuous protocol messages to
covertly signal the controller, and help identify the best
switch for installing flow rules, in Subsec. 4.4.

2 Background
2.1 Decoy Routing
DR is an anti-censorship mechanism that that uses
“friendly” routers in the Internet as proxy servers. Be-
ing routers, they are very difficult to block (ref. Fig. 1).
The steps for DR are as follows: (1) A user hosted in a
censor regime sets up a TLS connection with an unfil-
tered website (the OD), hosted outside the boundary of
the regime. (2) The client-OD traffic carries a special
cryptographic signature which can be identified by DRs
en-route. On identifying this signature, the DR hijacks
the connection, and engages a proxy (the DR proxy),
that finally fetches the content from the CD. (3) The

traffic from CD is returned to the client by the SP, set-
ting TCP/IP header fields to appear as if they were part
of the initial client–OD TLS connection.

2.2 Software Defined Networking (SDN)
Software Defined Networking [23] is an emergent net-
work design paradigm that decouples the control and
data plane of the network. An SDN architecture has a
centralized controller, which controls the operation of
the switches in the network (usually, by sending com-
mands over a standard protocol named OpenFlow [6]).

In SDNs, complex operations (such as computing
network-wide control policies) are the responsibility of
the controller. The policies, in the form of flow tables,
may be installed dynamically on the network switches
which are simple dedicated devices, merely forwarding
traffic based on these tables. The advantage of such an
architecture is that control plane functionality is consol-
idated in a single, programmable entity – the controller.

Also, the SDN controller is capable of adding (or up-
dating) any flow table rule or to redirect traffic to itself
for analysis. By default OpenFlow compliant switches
redirect any previously unseen packet, for which it has
no matching rule, to the controller for inspection.

Since SB is also an SDN based anti-censorship sys-
tem, it naturally inherits the salient features of SDN. In
our design the controller and the SDN switches main-
tained by a friendly ISP are trusted; whereas the Secret
Proxy managed by the DR operators/volunteers is not.
Thus, any traffic analysed by the controller, will not
compromise the ISP’s regular customers’ privacy, as it
is maintained by the ISP itself.

2.3 Related Work
Existing DR systems follow the general pattern de-
scribed in the previous section, but vary in their choice
of secret handshake, side channel, and whether they
take additional measures to suppress unwanted mes-
sages from the OD to the client (which might make the
censor suspicious). We now provide a brief survey of
existing DR systems.

Karlin et al. [39] proposed an initial DR architec-
ture, called Curveball. However, the first-generation DR
implementations include Cirripede [34] and Telex [61].
Cirripede uses the TCP Initial Sequence Number (ISN)
field as a covert channel for registering the client to the
Registration Server. This server provides a fixed set of
sequence numbers that the client may use in subsequent
connections. In Telex, the client embeds a cryptographic
tag (created using the Telex station’s public key) in the



SiegeBreaker: An SDN Based Practical Decoy Routing System 246

TLS nonce field of the Client Hello message to OD.
Seeing a tag, the Telex station establishes a shared se-
cret with the client (using Diffie-Hellman key exchange),
which is subsequently used to covertly proxy traffic to
the filtered sites. Telex requires both sides of the client–
OD communication be intercepted; it is, thus, fragile
where protocol messages (and acknowledgements) be-
tween the client and OD traverse asymmetric network
paths. The recent systems by Bocovich [14, 15] and by
Nasr [46] build upon the signaling architecture of Telex
and Cirrepede respectively.

Tapdance [60], an improvement over Telex [61], uses
chosen-ciphertext steganography to signal the DR in an
incomplete HTTPS request destined to the OD. Fur-
ther, this request eliminates the need for inline blocking
of the OD [61] and the requirement to intercept both
request and response, as the OD never responds to such
requests. Recently, Frolov et al. [26] partnered with a
small ISP (and a university) to deploy Tapdance for
practical usage. Their experiments reveal that incom-
plete HTTPS requests, often terminate in roughly 30
seconds, requiring frequent re-negotiation. This issue,
coupled with the average Tapdance client throughput
of ≈ 5KBps, makes it unsuitable for accessing much of
the web content. This reveals how existing DR solutions
struggle with real-life deployment. Even on a very small
ISP, with three uplink routers (compared to thousands,
for a backbone ISP like Level-3 or Cogent [29]), there are
serious performance problems. Deploying at scale would
require a much larger infrastructure, capable of moni-
toring millions of flows, identifying the DR requests, and
providing them proxy service.

Bocovich et al. [14] took a different approach where
they address latency-based and website-fingerprinting
attacks. They achieved resistance to such attacks by
sending the covert content in the leaf elements (im-
ages etc.) of the webpage served by OD. The client
maintained an active connection with OD, and only the
leaf content in the response of the OD was replaced
with covert content. Further, as Slitheen still required
analysing content in both the reverse and forward path,
the same authors in their subsequent paper [15] pro-
posed Gossip, a new protocol which allows all existing
routing symmetry-dependent DR systems to work de-
spite path asymmetry. Another approach was proposed
by Nasr et al. [46], in which the downstream content,
i.e. replies from OD, are used to detect DR, rather than
the (upstream) requests. This helps in the mitigation of
strong RAD [51] attacks. However, both Slitheen and
Waterfall were developed and deployed on commodity
servers, which are not practical to scale in an ISP.

In brief, existing DR solutions have not succeeded in
utilizing commodity routers to match/decrypt messages
and serve as proxies on-demand at an ISP scale.

3 SiegeBreaker vs Prior Research
We now describe how SB significantly differs from prior
attempts at DR (summarized in Tab. 1).

– Implementation On Real Routers: Existing DR
proposals use commodity servers as Decoy Routers
– either by using the server as a router [34], or by
attaching the server to one (through a wiretap) [60].
A server running a non-realtime OS, that has to in-
spect all the network connections to identify DR re-
quests, and also proxy such requests to the intended
CDs, is a clear bottleneck. SB uses hardware (SDN)
switches instead of commodity servers, allowing it to
process ISP-scale traffic at line rates. Although, Tap-
dance was deployed in an ISP in 2017 [26], it did all
the processing on a server attached to a router. It is
important to note that, unlike SB, their implementa-
tion was not on the router itself.

– Real Internet Workload Performance: Among
existing DR prototypes, Frolov [26] demonstrates
the practical use of Tapdance, inside a university
and within an ISP. However, they reported overall
low client throughput (5KB/s), and precludes test-
ing with large files. Other approaches have restricted
themselves to downloads of a few (less than ten) small
(< 1 MB [34]) webpages, in a controlled laboratory
environment [60, 61], and even so, report over half a
minute to download the home pages of popular sites
(< 1.5 MB in size) [21].
SB’s prototype is extensively tested for large files
(up to 1GB) and high client link bandwidths (up
to 1Gbps). Even under heavy cross-traffic conditions,
and with CD and OD over the Internet, SB’s client
requests can be served at line rates of 1 Gbps. SB’s
performance was comparable to direct TCP down-
loads (near-native) in every scenario we tested.

– Privacy Preservation of non-DR clients: All
prior approaches require the DR to inspect both the
DR and non-DR flows, either by analysing TLS or
TCP SYN packets1. This allows the DR volunteer

1 In Cirripede and Waterfall, if we assume that the registration
server is maintained by the ISP’s operator, then they could in-
herit this property. Additionally, how SDN implementation can
be used to complement existing DR schemes (with this feature)
is elaborated in A.2.



SiegeBreaker: An SDN Based Practical Decoy Routing System 247

Properties Sie
ge
-B
rea
ker

Cu
rve
-ba
ll

Te
lex

Cir
rip
ed
e

Ta
p-D

an
ce

Re
bo
un
d

Sli
the
en

Wa
ter
fal
l o
f L
ibe
rty

Se
cu
re
As
ym
me
try

Implementation on real routers
Real Internet Workload Performance
Privacy preservation of non-DR clients † †

Handling asymmetric routing
Resistant to replay attacks
Resistant to latency analysis
Resistant to website fingerprinting

Table 1. A comparison of different features of existing DR schemes. ○ - feature supported; A - feature unsupported; ○† - feature
supported with some assumptions.

hosts (e.g. Telex/Tapdance/Slitheen station) to also
see what sites other non-DR clients are visiting. This
may be considered an unwelcome intrusion on their
privacy. We introduce a novel signaling scheme that
allows the controller to easily isolate DR requests (i.e.
re-configure the SDN switch to selectively forward DR
packets to the SP). Not only is this efficient (reduces
load on the system) but also privacy-preserving, i.e.
removes the need to inspect non-DR flows.

– Handling Asymmetric Routing: Routing of traffic
in the Internet is not always symmetric, and most DR
systems need to intercept client–OD traffic in both
directions [14, 39, 61]. Some systems survive route
asymmetry through special schemes (such as a gossip
protocol) [15]. However, a few DR systems [21, 60]
have no trouble with asymmetric routes; SB is one of
these robust systems.

– Reliability and Efficiency: In all DR systems, the
DR hijacks client–OD TCP connections. DR traffic
between the client and the CD lacks the reliability and
flow-control guarantees of regular TCP connections,
and is thus easily impacted by background Internet
cross-traffic. SB emulates TCP’s message transmis-
sion mechanism, to ensure reliable, in-order and effi-
cient delivery of packets to the client. This has signif-
icant positive impact on clients’ performance.

– Limitations of SiegeBreaker: SB is not resilient
to latency based [51] and website fingerprinting at-
tacks [31]. Moreover, we have not tested SB in an ISP.
(Such testing has only been demonstrated for Tap-
dance.) One may ask that in an SDN-based ISP, on
which switch should the redirection rules be installed?
As a solution, we have proposed a novel scheme (in
Subsec. 4.4) using which a client can covertly signal
the controller about the appropriate switch. Our pro-
posed scheme, however, may be susceptible to finger-
print attacks by a determined adversary. In such sce-

narios, the controller would install rules on all the
switches. But, due to the associated timeout, these
rules would be eventually purged out from all the
switches, except the one that would actually inter-
cept the DR flows. This is explained in detail in Sub-
sec. 4.4. However, we acknowledge, it still increases
overhead on the system in terms of installing the un-
wanted rules whenever a user requests DR service.

4 System Design
4.1 Threat Model
We consider two types of adversaries for our system. Our
primary adversary is a powerful nation-state that cen-
sors its citizens’ Internet access. Not only can adversary
censor regular Internet traffic using any known tech-
nique (DNS injection, IP address/URL filtering, DPI,
etc.), it may also covertly monitor network packets. Fur-
ther, in an attempt to detect/disrupt circumvention sys-
tems alone, it may also subtly manipulate network pack-
ets that cross its boundaries, without disturbing regular
Internet users. Also, for the functioning of SB, we as-
sume that users have access to some form of regular
email service (either webmail or SMTPS).

We also consider a secondary (Byzantine) adver-
sary — a motivated individual or group, who intends to
disrupt normal network routing. This adversary sends
forged messages, aiming to install unwanted rules in
SDN switches, or in any other way disrupt network rout-
ing through attacking the SB infrastructure.

4.2 SiegeBreaker Protocol

Pre-requisites
The SB architecture assumes a network of centrally con-
trolled SDN switches, configured to function as regular
routers (i.e. they forward packets based on their desti-



SiegeBreaker: An SDN Based Practical Decoy Routing System 248

SDN	Switch Controller Secret	Proxy
(SP)

Overt
Destination	(OD)

Covert
Destination	(CD)Client

1. Email [Enc("SIEGE",ISN,OD IP, gx)PUBco]

3. Flow rule

4. TLS Connection with OD
 (Client-ODSessionKey negotiated)

4. TLS Connection

5. 1st TLS Data Pkt [Enc(GET
Host:OD)Client-ODSessionKey]

4. TLS Connection

5. 1st TLS Data Pkt

5. DR Rule Installed

7. TLS Data [Nc, Enc(CD Url)Kc,HMACHc ]

8.  Content Req. (on behalf of client)
9.  Content Served

6.  TLS Data Pkt [Ns || HMAC(Ns)gxy](src.ip = OD)

5. TLS Data Pkt (gx)

4. TCP handshake 

If (X==ISN)

DR confirmed

Wait for 1st TLS data Pkt

Wait for correct
SYN

Yes

No

Confirming Client
DR Rule installed

7. TLS Data [Nc,Enc(CD Url)Sc,HMACHc ]

10.  TLS Data Pkt [Enc(CD Content)Ksp, HMACHsp ](src.ip = OD)

4. TCP handshake [SYN(Seq.=X)]
4. TCP handshake 

6. TCP RST(src.ip = client)

2. Successful
           DR request       

     Identification.

PRF(Ns+Nc,gxy,"Break")

IVC, KC, HC
IVSP, KSP, HSP

PRF(Ns+Nc,gxy,"Break")

IVC, KC, HC
IVSP, KSP, HSP

BO
OTS

TR
AP

PIN
G

HI
JA

CK
IN

G

PR
OXY

IN
G

Fig. 2. SB Protocol: The numbered arrows correspond to the various protocol messages, exchanged between the client, the SDN
switch (acting as DR), the OD, the SP, and CD, as described in Subsec. 4.2.

nation IP address). It is assumed that the client a priori
has access to the following entities:

1. Public key (PUBCO)of the controller’s 2048-bit RSA
public-private key-pair.

2. The 256-bit DH public exponent gy of SP.
3. The controller’s email ID.

Protocol Description
SB’s DR protocol comprises roughly of three phases—
viz. bootstrapping, hijacking and proxying. We now
present a step-by-step walk-through of a DR session,
with reference to Fig. 2.

Bootstrapping (Phase I):

1. The client initiates DR by sending an email to the
controller’s email address. The payload of this email
contains the DR request. It is encrypted with the
public key of the controller, and thus not under-
standable to the client’s email provider or the ad-
versary.

2. The controller, on receiving an email, attempts
to decrypt the content using its private key, and
searches for four fields embedded in it: (1) The

magic word “SIEGE”, signifying DR request. (2) A
TCP Initial Sequence Number (ISN) that the client
will eventually use while handshaking with the OD.
(3) IP addresses of client and OD (4) A DH ex-
ponent public value (gx), the client derived using
privately chosen number x.

3. On successfully identifying a DR request, the con-
troller installs a rule on the SDN switch, so that
all client–OD packets are redirected to it (the con-
troller). This inspection rule will expire after a hard
timeout.

4. Subsequently, the client initiates a fresh TCP hand-
shake with the OD. The SYN packet of the hand-
shake bears the same ISN, as the one sent in the
initial email.
This packet is redirected to the controller (as per the
rule installed in step 3), who checks that its ISN
matches the ISN specified in the initial email and
forwards it to OD. Thereafter the client completes
the TCP connection, and initiates a TLS handshake
with the OD, negotiating the session key (Client-
ODSessionKey).



SiegeBreaker: An SDN Based Practical Decoy Routing System 249

This initial ISN match is the vital step that au-
thenticates the client and identifies the DR requests,
without the need to inspect any other flow.
In case the client’s SYN packet does not have the
expected ISN, the controller continues to poll the
packets of the client–OD flow until the timeout pe-
riod of inspection rule lapses, causing it to expire.

Hijacking (Phase II):

5. After completing the TLS handshake, the client
sends a TLS data packet, carrying the GET request
(with OD as the host field), encrypted with the ses-
sion key that was negotiated with the OD.
The inspection rule is still in place, so this packet
goes to the controller which replaces the payload of
the TLS data packet with the client’s DH exponent
gx (which it received in step 2) and the OD IP. It
then forwards this packet to the SP.
Further, the controller also updates the redirection
rule on the switch, to divert all subsequent packets
of the flow to the SP. This rule matches the client-
OD flow based on the client’s source port, client IP
and OD IP as seen in the TCP SYN packet. We de-
note this rule the SP redirection rule, and associate
an idle timeout with it. Once a rule is installed for a
specific client-OD pair, no other rule, for the same
pair, would be installed until the said rule times
out. Thus, clients behind a NAT firewall who try to
use the DR service, would require selecting different
ODs. This ensures that all such clients can simulta-
neously access the DR services. This is explained in
detail in Subsec. 6.1.

6. The SP, on receiving the first TLS data packet, as-
sumes that the client intends to use DR.
SP terminates the existing client–OD connection
by sending a RST packet (spoofed as client, with
correct sequence and acknowledgement numbers) to
the OD IP2 (obtained in step 5).
Further, the SP derives a pre-master key (PMK)
(gxy) using client’s gx (received via the first TLS
data packet) and its own DH private number, y.
The SP (spoofing as OD) then crafts a TLS data
packet carrying a random nonce NS , along with its
HMAC computed using PMK.
To the censor, this appears to be a regular TLS data
packet, carrying random bits. The client, however,

2 The RST causes the client–OD connection to be forcefully
terminated, without any responses being sent to the client that
may raise the censor’s suspicion.

treats these bits as a nonce NS and calculates its
HMAC. It derives the PMK (gxy) using the private
DH number x, and the publicly known gy. Success-
ful verification of the HMAC allows the client to
confirm that the DR request was successful.

Master-key derivation: Following a successful valida-
tion of the nonce NS , the client selects its own nonce
NC . Using these nonces and the PMK, the client de-
rives a 6-tuple key (IVC ,KC , HC , IVSP , KSP , HSP ).
IVC ,KC and HC are the IV, cipher and HMAC keys
for the client, while IVSP ,KSP and HSP are those of
the SP. These keys are generated using a Psuedo Ran-
dom Function (PRF) involving SHA-256 hash function
(Referring to TLS v1.2 [12]).

Proxying (Phase III):

7. Thereafter the client crafts a TLS data packet car-
rying NC , the CD URL (encrypted with key KC

using 256-bit AES in CBC mode), and a HMAC of
the URL and NC (using HMAC key HC).
The client sends this packet, addressed to the OD.
En-route the packet encounters the switch that redi-
rects it to the SP.

8. SP, on successful reception of the aforementioned
TLS data packet, extracts the nonce NC . Using NC ,
NS and the PMK, SP also computes the same 6-
tuple as the client. Upon successful HMAC valida-
tion, the SP decrypts the URL (using KC). Finally,
SP connects to the CD and requests data. The SP
focuses entirely on serving DR requests, without the
burden of identifying them from among all flows via
costly cryptography operations.

9. CD serves the requested content to SP.
10. The SP encrypts these responses with key KSP and

signs them with HMAC key HSP . It then sends
them back to the client, spoofing the source IP ad-
dress of the OD (maintaining the state of Client–
OD connection). This keeps up the pretense, to the
client’s censor ISP, that the client is communicating
with the OD. The same session, can also be used for
requesting content from various other CDs (before
the idle timeout expires).

This walk-through raises several questions, such as
why email was used as a covert channel? Among multi-
ple switches, exactly on which switch(es) the controller
would install the inspection/redirection rules? What
rule timeout values should be selected in our system?
Given that there is no true TCP session between client
and CD, how do they compensate for dropped packets
etc. We now explain the design decision of using email



SiegeBreaker: An SDN Based Practical Decoy Routing System 250

along with how SB would select switch(es) to install the
rules and discuss the remaining concerns in Sec. 6.

4.3 Improved Covert Signalling
Existing DR implementations use TCP initial sequence
numbers (ISNs) [34], the ClientRandom field inside TLS
client hello [61], and the encrypted body of an HTTPS
request [60] as covert signaling fields. These schemes re-
quire analyzing either all SYN packets [34, 46] or TLS
flows [60, 61], as the covert patterns are embedded in
the packets sent from the DR client to the OD. Inspect-
ing large volume of traffic for identifying the embedded
covert patterns, in innocuous looking packets, make it
difficult for the censor to detect DR requests. However,
these well thought signalling schemes pose new perfor-
mance challenges for the DR users.

All existing DR systems rely on commodity servers
to analyze the large volume of traffic [24]. This may pose
as a performance bottleneck as NICs of these servers
are not built to handle such high speed traffic. Further,
these systems analyze all flows, including the non-DR
ones, to detect DR requests. This may inadvertently
compromise the privacy of non-DR users. In princi-
ple, SB can easily adopt any of the existing signalling
schemes. However, SB aims to reduce the burden of an-
alyzing all flows, while still retaining the same standard
of unobservability (from the censor), compared to exist-
ing architectures. Additionally it also aims to preserve
the privacy of non-DR users.

Thus, our covert signaling indicates the controller
about the upcoming DR flows, such that it inspects
only the potential DR traffic, reducing the amount of
traffic to be analyzed. For this, a client can rely on any
out-of-band channel (e.g. IMs, SMS and email etc.). In
our present implementation, SB clients use an email
to covertly signal the controller. This email contains
client’s source IP, OD’s IP and the TCP ISN that would
be used by the client in the subsequent DR request.
Thereafter, the controller installs inspection rule for
only flows with indicated client IP and OD IP address,
i.e. a potential DR flow, disregarding the rest of flows.
For potential DR flows, the controller matches the ISN
in the SYN packet, with the one indicated in the email.
A successful match, confirms a DR flow, and the SP
redirection rule is installed on the switch.

Thereafter, only the DR flows are diverted to the
SP, which has no knowledge of non-DR flows. This final
step helps preserves the privacy of non-DR users from
the DR volunteers maintaining the SP.

It must be noted that, as an alternative to ISN, the
TLS ClientRandom may be sent in the email. The con-
troller would thus confirm DR flows by matching the
content of TLS ClientRandom in ClientHello (of poten-
tial DR flows), to the one received in the email.
On the use of email: In the past, email has been suc-
cessfully used as a covert channel for transporting cen-
sored content [32, 36, 37, 41]. Similar to such efforts, we
also assume that users have access to some form of TLS
supported email (either webmail or regular SMTPS).
However, in our design email is not directly used as the
data channel; it is a control channel, used for signalling
the SDN controller.

A determined adversary may attempt to snoop and
block all emails destined to controller’s mail ID. Since
the communication is TLS encrypted, our approach is
not vulnerable to wire sniffing adversaries. They are
only vulnerable to a very powerful adversary who can
assume control over the clients’ email services. However,
even when the email provider is controlled by the ad-
versary, one can issue unique email IDs to each individ-
ual client, as proposed by Houmansadr et al. [37]. This
makes it impractical for the censor to learn and block
all such email IDs.

Moreover, an adversary may cripple the system by
randomly delaying suspicious emails, thereby delaying
the installation of the inspection rule. Oblivious DR
clients’ packets would thus reach the switch before this
rule is installed. Hence, they would go undetected by the
controller, failing to avail DR service. Further, our email
body contains four fields and thus may have a fixed
length, thereby raising suspicion. However, we make it
difficult for the adversary to identify such emails. E.g.
we pad the email body with random nonces.

However, a determined adversary may find some
other identifiable patterns in the encrypted (registra-
tion) email. In such cases, we can resort to using other
carriers, such as images, PDFs etc., to stegonographi-
cally encode the covert signal. as already used in existing
anti-censorship systems [16, 43]. However, our current
implementation does not incorporate this feature.

In the extremity, an adversary may attempt to de-
lay every email (both DR and non-DR). In such cases,
SB may be tailored such that the controller sends an
acknowledgment email back to the client. Reception of
this email, confirms the availability of DR services to
the client. As a drawback, this may incur a delay in the
bootstrapping phase. However, in the presence of such
disruptive adversaries, the email confirmation assures
availability, albeit at cost of such delays.



SiegeBreaker: An SDN Based Practical Decoy Routing System 251

4.4 Auxiliary Signalling Scheme

In SB, the controller needs to install OpenFlow rules
to redirect the packets of a client–OD flow to itself or
the SP. However, as a network will have multiple SDN
switches, SB poses a new problem: how can the con-
troller know which switch to install these rules on?

Fig. 3. Ping packet assisting the controller in selecting the appro-
priate switch to install redirection rule.

The simplest solution would be to flood all switches
in the SDN with the redirection rules. But intuitively,
this approach maybe expensive considering rule instal-
lation time and the finite memory of the switch. (Note
that a rule is added for every client–OD flow. They can-
not be aggregated.) We therefore propose a secondary
signal to achieve the same. The client sends a crafted
ping packet as a covert signal, to help the controller
identify the switch it should install the DR rule on (ref.
Fig. 3). The overall approach is explained as following:

1. Switches are bootstrapped with a rule that forwards
all ping packets to the controller.

2. While crafting the email to the controller, the client
adds three more fields: (i) IP-Identifier (from IP
header), (ii) ping sequence number and (iii) ping
identifier (from ICMP header).

3. Next, the client sends a crafted yet innocuous looking
ping packet to the OD (with three fields described
in previous step). En route to OD, decoy AS’s SDN
controller receives the ping packet and compares the
aforementioned three fields to the one sent in the
initial email. A successful match confirms that the
ping packet is indeed from the authenticated client.

4. At this step, the controller selects the switch from
which it received (and validated) the ping packet.

Thus the redirection rules are installed on this
switch, assuming the subsequent client-OD packets
shall also arrive at the same switch.

Selection of three fields: The goal of the controller is
to correctly associate the ping packet to the legitimate
DR client that initially sent the email. An adversary
may try to brute force this association by sending fake
ping packets (spoofed as DR client), guessing the three
header fields. In case the adversary succeeds, and the
route taken by packets of the adversary differ from that
of the client, the controller would end up installing a rule
on a switch which might not appear on the client–OD
route. This renders DR service unusable for intended
DR clients. With our architecture, adversary needs to
correctly identify 48 bits (IP-ID, ping seq. no. and ping
ID, each being 16-bit field) making the brute force at-
tack highly impractical (requiring ≈ 281 trillion ping
packets per client–OD pair.)
Indistinguishable Pings: We only rely on the IP-ID, se-
quence number and identifier fields of the ping packet
for covert signalling (which are by default random num-
bers). We keep rest of the fields (and payload) identi-
cal to pings generated by standard OSes. Thus our ping
packet appear indistinguishable from regular ping pack-
ets generated by popular OSes.

However, we acknowledge that sending pings for
covert signalling, before accessing DR, may be classified
as a pattern (i.e. a fingerprint attack). We try to make
it difficult for the adversary to detect such patterns by
making these ping packets innocuous. Thereafter, we
introduce random delays between ping packets and the
corresponding DR requests.

Our auxiliary signalling mechanism is prone to fin-
gerprint attacks. However, SB can also function with-
out this scheme. In the absence of this scheme, the rule
would be installed on all the switches. But, these would
be automatically purged, after a short duration (due to
timeouts) from all the switches, except the one which
later identifies the actual SB clients packets. However,
the installation of rules on all the switches may incur
an additional memory overhead. This may eventually
impact the total number of clients that can be sup-
ported by the switches. We thus analyzed the num-
ber of clients that can be supported simultaneously
by the SDN switch. The HP3500yl SDN switch, that
we used for evaluating our system (described ahead
in Sec. 5), supports 74K table entries [3]. More ad-
vanced SDN switches [5] e.g. HP10500 series can sup-
port 1, 152, 000 table entries (i.e. 1, 152, 000 openflow
clients). Such switches can transport a total of about



SiegeBreaker: An SDN Based Practical Decoy Routing System 252

3.8 Tbps [2] traffic. Moreover, the SDN switches that
we used, do not impede performance when the number
of clients (or entries in the table) increases. These are
built for commercial deployment within large ISPs, and
can easily handle a large volume of traffic without any
slowdown. Thus, we believe that our proposed system
will be suitable for deployment.

5 Experimental Evaluation
In this section, we describe the experiments conducted
to evaluate the performance of SB. First, to test the
efficacy of the protocol, we tested SB on DETER [1]
testbed. We describe this in detail in Appendix A.1.
Next, to comprehensively evaluate the performance, we
tested SB on a physical testbed (using a commercial
SDN switch, viz. HP3500YL). Our performance tests are
broadly divided into two categories:

1. Controlled experiments, which were designed to test
the robustness of the complete system including the
client, proxy, and the SDN switch in a lab setup.

2. Internet experiments, which were designed to show
that our system works well for realistic scenarios —
i.e. downloading content from Internet websites that
were otherwise blocked.

We begin by describing the setup used in the experi-
ments, followed by the tests performed, and their re-
spective results.
Experimental Topology:

Fig. 4. The topology used for evaluating SB; 1 hardware SDN
switch (S1), 2 routers (R1,R2), an SDN controller and 6 host
nodes. R1 blocks traffic to CD.

SiegeBeaker was tested using the setup in Fig. 4, for con-
trolled experiments (where all the entities were hosted
inside our lab), and the setup in Fig. 8 for Internet ex-
periments (when OD and CD were websites hosted over
the Internet).

5.1 Controlled Experiments
Our first experiment involved the SB client downloading
files of various sizes from the CD, and comparing the
download times to that achieved when downloading via
wget. The results of this test (ref. Fig. 5) depicts that
SB performs considerably well in comparison to wget.

0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

6

7

8

9

10

11

12

T
im

e
 (

s
)

File Size (MB)

 Wget

 SiegeBreaker

Fig. 5. Comparison of SB and wget on a controlled setup, in
terms of download time for file sizes up to 1GB.

Our next experiment was to evaluate the perfor-
mance of SB’s SP–client congestion and flow control (ex-
plained in Sec. 6) against native web (TCP) traffic. Both
SB and wget clients simultaneously downloaded large
files (varying between 100 MB and 1GB) from differ-
ent CDs, over 1 Gbps shared network link (between R1
and S1, see Fig. 4). The throughput achieved over this
shared link, for both SB and wget is shown in Fig. 6. As
evident from the results, SB and the wget client achieve
roughly the same throughput (sharing the link capac-
ity almost uniformly). The result demonstrates that our
system effectively emulates TCP’s congestion and flow
control mechanisms, evenly sharing the link capacity
with background TCP traffic.

100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

F
ra

c
ti

o
n

 o
f 

to
ta

l 
B

a
n

d
w

id
th

 (
M

b
p

s
)

File Size (MB)

 SiegeBreaker

 Wget

Fig. 6. TCP performance: SB and wget simultaneously download-
ing a file on a common link. They share the available bandwidth
almost equally.



SiegeBreaker: An SDN Based Practical Decoy Routing System 253

To determine the impact of cross-traffic on SB’s per-
formance (by increasing the load on SDN switch), we
connected several hosts to the switch and exchanged
increasing volume of traffic between them, via P2P con-
nections. At the same time, we used a SB client to down-
load a 1GB file from the CD. The results of this test are
shown in Fig. 7. As evident, increasing the cross-traffic
load had no impact on the client’s throughput. This is
because, once configured, the switch merely forwards se-
lective DR flows to the SP. This effectively isolates them
from the rest of the traffic, avoiding contention.

0 2 4 6 8 10 12 14 16

0

200

400

600

800

1000

1200

1400  SiegeBreaker

T
h

ro
u

g
h

p
u

t 
O

b
s

e
rv

e
d

 (
M

b
p

s
)

Load at Switch (Gbps)

Fig. 7. SB client’s performance with increasing load on the SDN
switch.

Further, we also included provisions at the proxy to
handle multiple clients. For a sample run of 9 clients si-
multaneously downloading a 100 MB file, we observed a
nearly even distribution of bandwidth i.e. ≈ 11%. Sim-
ilar results were observed when this experiment was re-
peated for larger files (such as 200 MB).

5.2 Internet Experiments
To further evaluate our prototype, we conducted experi-
ments where the OD and CD were chosen to be websites
hosted on the Internet. We tested our system’s perfor-
mance against two kinds of network workloads — regu-
lar web browsing and large file downloads respectively.
Assessing the performance for regular web brows-
ing: This experiment involved recording the download
times for the the home pages of several blocked websites.
To simulate web censorship, we configured our univer-
sity firewall to filter access to Alexa top-500 sites, for
a particular client under our control. The SDN switch
and the SP were installed outside the firewall, and had
unhindered access to the Internet.

In our test we spawned 500 concurrent SB client
instances, using blocked Alexa top-500 sites as CDs, and
several random unfiltered sites as ODs. In all cases, we
were successful in downloading the home pages of the

Fig. 8. The topology used for evaluating SB over Internet with
clients inside a university campus.

blocked sites, which varied in size from a few kB to
1.5 MB; we measured their respective download times.
Next, we reconfigured the firewall to disable filtering,
and again accessed the same web pages using wget. As
Fig. 9 shows, the average download time for SB (1.8 s)
was very close to that for wget (1.7 s).

0 100 200 300 400 500

0

1

2

3

4

5

6

7  Wget

T
im

e
 (

s
)

Individual Website ID

0 100 200 300 400 500

0

1

2

3

4

5

6

7
 SiegeBreaker

T
im

e
 (

s
)

Individual Website ID

Fig. 9. Download times for Alexa top-500 websites — accessed by
500 parallel clients of SB and wget.

Assessing the performance for bulk downloads: To
test SB with bulk file downloads, we set up web servers
on six geographically distributed machines, each serving
files of various sizes. The firewall was set to block direct
access to these machines from our clients, but we could
download the files using SB, using a random unfiltered
website as OD. Regardless of the background network
conditions, the download times for SB do not signifi-
cantly differ from our baseline, i.e. download times using
wget. Fig. 10 represents one such case, corresponding to
a cloud server, comparing the download times w.r.t var-
ious file sizes (varying from 100 MB to 1 GB).

To gauge the performance of SB under heavy cross-
traffic loads, we initially planned to divert the entire
university’s traffic through the switch. However, we
chose against doing so, for two reasons. Firstly, it would
force users uninvolved in the study to send their traffic



SiegeBreaker: An SDN Based Practical Decoy Routing System 254

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

T
im

e
 (

s
)

File Size (MB)

 Wget

 SiegeBreaker

Fig. 10. Comparing time taken by SB and wget for downloading
files, with OD and CD hosted on Internet.

through our switch, raising ethical concerns. Secondly,
the cumulative volume of our university’s traffic rarely
exceeded 500 Mbps, and would not saturate the switch.

We therefore continued with our original setup, but
connected 15 hosts to the switch so as to generate
varying background loads. These hosts generated cross-
traffic by establishing P2P connections with one another
and exchanging large volumes of data (≈ 15 Gbps). At
the same time, we downloaded large files (100 MB and
1 GB) from the cloud servers, using both SB and wget.
As Fig. 11 shows, SB’s download times are comparable
to those of wget, regardless of variations in cross-traffic.

0 2 4 6 8 10 12 14 16

0

5

10

15

20

25

30

T
im

e
 (

s
)

Load at Switch (Gbps)

 SiegeBreaker (100MB)

 Wget (100MB)

 SiegeBreaker (1GB)

 Wget (1GB)

Fig. 11. SB vs wget when increasing the cross-traffic on SDN
switch, with OD and CD hosted on Internet.

Similar tests were repeated by varying the number
of parallel flows traversing the switch. The hosts, in-
stead of exchanging P2P data, ran Apache Benchmark
Version 2.4 and connected to a web server (also con-
nected to the switch), spawning as many as 50k concur-
rent web connections3. Fig. 12 presents the outcomes
of these tests. Increasing the number of flows, had no
impact on the download times achieved using SB. This
was comparable to what is achieved using wget. Thus,

3 According to the NOC, this is much larger than the total num-
ber of flows at the university’s edge router, that rarely exceeds
20k flows.

0k 10k 20k 30k 40k 50k

0

5

10

15

20

25

30

T
im

e
 (

s
)

Load at Switch (No. of parallel flows)

 SiegeBreaker (100MB)

 Wget (100MB)

 SiegeBreaker (1GB)

 Wget (1GB)

Fig. 12. SB vs wget when increasing the number of flows on SDN
switch with OD and CD hosted on Internet.

even in the presence of high cross-traffic, SB proves to
be practical for downloading files of all sizes.

Additionally, SB has no measurable impact on non-
DR traffic due to increasing DR traffic. Non-DR traffic
is forwarded directly by the SDN switch without any
intervention from the controller. Since SDN switch is a
specialized hardware designed to transmit traffic at line
rates, the non-DR traffic is thus not impacted.

Overall, the promising performance of SB can be
attributed to our modular design (which makes use of
hardware SDN switches), and avoids the unnecessary
cryptographic inspection of non-DR flows.
Measuring the setup time: A SB client is required to
covertly signal the controller to install a DR redirection
rule, before it begins the actual download from the CD.
The time elapsed between initial email and the instal-
lation of final DR redirection rule (i.e. between step 1
and step 5 of protocol) is called setup time.

In 100 experimental trials, we observed an average
setup time of 3-4 seconds. Similar to Sweet [37], we ob-
served that most of this delay comes from email han-
dling modules (selenium scripts composing mail, SMTP
connection time at controller etc.) rather than network
latency (which is of the order of milliseconds). [Note:
The download time figures in previous subsections do
not include setup time.]
Browsing experience: We used wget for bench-
marking purposes. However, SB is also integrated in a
browser. It can easily load static as well as dynamic
websites without any significant performance degrada-
tion. Similar to Telex [61], we also used SB in our lab to
access normal day to day websites for months without
any problems.

5.3 Implementation Details
We now describe the implementation details of each in-
dividual component of SB. All in-lab machines, had In-



SiegeBreaker: An SDN Based Practical Decoy Routing System 255

tel(R) Core(TM)i5-7400 CPUs @ 3.00GHz, provisioned
with 8GB RAM, fitted with Gigabit Ethernet adapters.
Client: The client code is written in C (≈ 1100 LoC). It
uses the OpenSSL library v1.1.0f for handling TLS con-
nections. We use raw sockets API for crafting packets
and libpcap for receiving and processing packets.

The email component is implemented for both
SMTP and webmail using Python. The webmail ver-
sion uses Selenium 3.14 [8] and SMTP version uses smt-
plib [10] in Python. The client program listens on a local
port on the client machine for new websites requests and
serves the content as and when requested.
Secret Proxy: The code for SP is also written in C (≈
1500 LoC). The client – SP TLS connections are handled
using the OpenSSL library. We modify the header fields
via raw sockets and use libpcap for packet processing.
SDN switch: Our implementation uses the HP3500yl,
a 24-port Gigabit SDN switch. This switch works in
hybrid mode, i.e. both Openflow and non-Openflow en-
vironments simultaneously. It has three different types
of immutable tables: Default (0), Hardware (100) and
Software (200). Our redirection and inspection rules all
make use of the Hardware table, as this allows for the
best performance.
Controller: We designed and implemented our con-
troller application using Ryu v4.15, which is written
in Python (≈ 2068 LoC), and communicates with the
switch using Openflow 1.3. Email reception and pro-
cessing is implemented for both IMAP and webmail in
Python. The webmail version uses Selenium and the
IMAP version uses Python imaplib [4]. In our exper-
iments we used IMAP for fetching Emails, as it was
easier to integrate with Ryu controller.
OD and CD: We use Linux nodes running Apache
v2.4.18 configured as HTTPS server, to serve as the OD
and CD.
The source code of SB can be found at at [9].

6 Discussion
In this section, we discuss the various design aspects
along with the security analysis of the SB protocol.

6.1 System Design
1) Selection of timeouts: In our design, the controller
needs to install redirection rules at steps 3 and 5. As
the switch has limited memory, these rules need to be
purged eventually.

The inspection rule (step 3 of protocol) match pack-
ets based on client–OD IP pair and has a hard timeout
associated with it. We cannot use an idle-timeout for

it because if the DR and non-DR clients are behind a
common NAT device (i.e. share same source IP), then
the aforementioned rule would also capture packets for
the non-DR clients accessing the same OD. The rule
may remain active even when there are no DR flows
that match the rule. Enough of these (NAT based) in-
spection rules may unnecessarily remain in the switch
exhausting its limited memory. Since, in all our experi-
ments, we always observed that the inspection rule (in
step 3) was installed in less than 3s, so we set the value
of hard time out to be 4s.

For SP redirection rule (step 5 of protocol), con-
troller installs the rule based on client IP, source port
and OD IP. Here again, non-DR flows (sharing the same
source IP, accessing the same OD as of DR client), shall
not match the rule, because different flows have differ-
ent ports associated with them. Thus, we use an idle
timeout with this rule which expires once the flow is in-
active for the said duration. Following [62], we set the
value of idle timeout to 5s.
2) Proxy–Client traffic reliability, efficiency, and
congestion control: The connection between SP and
CD is a standard TCP connection, but the “connection”
between client and SP merely appears to be so. Client–
SP packets carry spoofed headers, so they can appear
as client–OD traffic to the censor. However, they cannot
rely on the kernel’s TCP stack (due to spoofing). Hence,
in order to ensure packets between client and SP are re-
liably and efficiently delivered (despite the absence of a
true connection), we emulate TCP’s congestion and flow
control mechanisms at the application layer. The SP–
client traffic, not only bear sequence and acknowledge-
ment numbers corresponding to the initial client–OD
traffic, but also mimic TCP sending patterns (varying
the sender window sizes, based on acknowledgements
and timeouts, as in TCP).
3) Handling clients behind NAT: It must be noted
that attempts by multiple clients behind a NAT to use
the same OD for DR may lead to service unavailabil-
ity. This can be explained with an example. Let us as-
sume that for a client C1, that is behind a NAT, an SP
redirection rule (bearing NAT IPIP 1, OD IPIP O1, and
client’s source port) is already installed. At the same
time, another client C2 attempts using the DR service
with same OD (IP address: IPO1). This would lead to
installation of a new inspection rule for the client C2, for
the same IP1 and IPO1 pair. Due to this new rule, the
DR packets of C1 would also be redirected to the con-
troller, rather than to the SP. Thus, disrupting the C1’s
DR session. As a preventive measure, we do not install
any inspection rule for a client IP–OD IP pair, if there



SiegeBreaker: An SDN Based Practical Decoy Routing System 256

is already a SP redirection rule in place for the same.
Thus, the clients behind a NAT device would require
trying out different ODs to access DR service.
4) Location of Decoy Station (SP): Previous pro-
posals (except Cirripede and Waterfall) require Decoy
Stations to be located close to the Decoy Router. In
our design, the Decoy Router is simply an SDN switch,
which forwards packets based on flow rules; it can trans-
port DR flows to the SP regardless of its network loca-
tion. This helps defend against the Forced Asymmetry
attack discussed ahead in Subsec. 6.2.

6.2 Possible Attacks and Countermeasures
We now consider attack scenarios that may be launched
by attackers within our threat model, and describe how
SB addresses these threats.
1) Fingerprinting Attacks
a) TLS handshake fingerprinting: To prevent an at-
tacker from characterizing the TLS handshake signature
(e.g. the list of ciphers supported), we use the cipher
suite of a popular browser Mozilla Firefox4.
b) TCP/IP protocol fingerprinting: An adversary
that records TCP/IP header values for traffic to ODs,
may use it to distinguish the DR flows from non-DR
flows. The DR flows may have different TTL values,
window sizes etc. (due to packets originating from SP)
compared to non-DR flows, making them easily distin-
guishable. In such a scenario the SP can generate identi-
cal TCP/IP characteristics as that of OD, making them
relatively indistinguishable from the regular flows.
2) SB Confirmation Attacks: The aim of the adver-
sary is to distinguish DR flows from the non-DR flows.
To achieve this, an adversary may modify, drop or re-
play some packets of a TLS connection. However, tam-
pering (or replaying) of regular TLS packets in a nor-
mal connection results in the receiver replying with TLS
error messages. Since SB hijacks an existing TLS con-
nection, it does not natively respond with such error
messages. The adversary might use this distinctive fea-
ture to confirm a DR connection. We now describe the
kind of attacks such an adversary may launch, along
with the preventive measures employed in SB.
a.) Record and Replay (without disrupting regu-
lar Internet clients): To confirm usage of DR, censor
can record all traffic of a suspected DR user and can try
to replay a part of (or complete) connection, at a later
time. The first interaction of DR client with SP occurs

4 We can also use a recent library uTLS [27] to achieve the same.

at step 7. All prior steps corresponding to the original
client–OD TLS connection. Thus replaying packets of
all the prior steps would not result in confirmation of
DR. Hence, the censor may initiate a new DR connec-
tion and try to replay only the second TLS data packet,
carrying the CD URL (step 7 of Fig. 2). Any response
from SP, other than an TLS alert, would confirm the
use of DR. However, our design is resilient to such an
attack as the said packet contains a HMAC derived from
the session’s HMAC key. Hence, replaying it will lead to
failure in HMAC verification. Additionally, none of the
subsequent packets can be replayed because of the usage
of AES in CBC mode.
b.) Modification and/or Replay (disrupting reg-
ular Internet clients): An adversary can attempt to
confirm if an arbitrary TLS flow is intended for us-
ing DR service. Such an adversary can actively mod-
ify and/or drop packets of an ongoing flow. We believe
that modifying the packets of such arbitrary TLS flow
may prove costly to the adversary. It will disrupt reg-
ular Internet communication, eventually degrading the
user experience. Such attackers are outside the scope
of our threat model (ref. Subsec. 4.1). However, even if
the adversary carries out such attacks, we enumerate the
possible solutions to mitigate them in Appendix A.3.
3) Forced Asymmetry: This attack [51] assumes that
traffic from anywhere in the Internet, destined to IP pre-
fixes of censored regime can be (1) classified into traffic
originated (or transited), from Decoy ASes (ASes which
host DR infrastructure) and non-decoy ASes and (2)
will enter the censorious regime at different locations
(e.g. BGP routers) in the network using a load balanc-
ing technique called as hole punching [25]. E.g. if a client
accesses OD without DR, its responses will enter at one
particular network location. Whereas, if it pretends to
use OD while using DR, traffic will enter at different
location, confirming the use of DR to the censor.

In the existing DR systems (e.g. TapDance [60],
Slitheen [14] etc.) the decoy router and the decoy proxy
are placed together within a same decoy AS. The decoy
router intercepts the DR requests of the client and for-
wards it to decoy proxy, which on behalf of client fetches
content from the CD and sends it to the client (spoofing
as OD). Thus, response packets will always come from
decoy AS to the client. This makes the Forced Asym-
metry attack successful against such systems.

However, due to SB’s modularity, the DR infras-
tructure is not confined to an AS, because the SP (decoy
proxy) can be hosted anywhere on the Internet, even in
non-DR ASes. As a consequence, response packets orig-
inate from non-DR ASes rather than DR ASes. This



SiegeBreaker: An SDN Based Practical Decoy Routing System 257

would result in DR and non-DR traffic entering the cen-
sor’s network through the same location, making the
attack ineffective.
4) Routing Capable Attacks: A powerful adversary
may disrupt any DR system (including SB), by pre-
venting traffic originated from its networks to reach the
decoy AS. Schuchard et al. [51], demonstrated few such
attacks, which rely on the censor’s ability to control the
route taken by packets, either through a tainted path
(which has DR between client and OD) or a clean path
(devoid of DR):
a) Crazy Ivan attack: For ongoing client–OD con-
nections (either through a tainted or a clean path), the
censor can enforce changes in routing policies such that
these connections (DR and non-DR) follow only the
clean path. The non-DR flows would not be affected
by this change whereas, DR flows would be disrupted.
b) Packet Injection: For a suspected ongoing connec-
tion, an adversary can send packets (spoofing as client)
along a clean path in order to reveal the actual con-
nection state between client and OD. E.g. an adversary
could send a crafted TCP packet, with sequence num-
ber corresponding to the initial client–OD connection,
to the OD. Responses like TCP ACK or Duplicate ACK
would indicate absence of DR session, whereas a TCP
RST response from the OD would reveal the presence
of an ongoing DR connection.
c) Routing around decoys: An adversary might
change its routing policies permanently, in order to
avoid the DR ASes altogether (by always selecting a
clean path), thereby denying DR service.

All the aforementioned attacks rely on the assump-
tion that clean paths can be easily obtained by the ad-
versary. However, recent DR placement strategies (local
[35], as well as global [29]) suggest that, obtaining clean
paths would be difficult for the adversary, considering
the massive topological changes (with the associated
costs) required to obtain the same [35]. On the contrary,
Schuchard in [50] argued that, if the censor manages to
obtain a small (yet significant) fraction of clean paths
— rerouting its traffic via clean paths would incur heavy
economic losses to decoy ASes (which are likely transit
ASes that earn revenue by transiting the Internet traffic
of their customer ASes). This might build pressure on
decoy ASes to remove DRs by inflicting economic losses.

However, to successfully launch former [51] and lat-
ter RAD attacks [50], there are some practical chal-
lenges. Firstly, a censor needs to find all possible tainted
paths from ISPs under its jurisdiction to different Inter-
net destinations, by active probing [51] — a non-trivial
exercise for the censor. Secondly, after obtaining tainted

and clean paths, censor would have to introduce nation-
wide BGP policy changes, including changes to routing
business relationships, and may lead to network down-
times etc.
5) Delayed SYN: The client is expected to initiate
a TCP connection before the redirection rule expires
on the SDN switch (step 3 of the protocol). If client’s
connection request is delayed and misses this window,
intentionally by an adversary (or due to congestion),
it would arrive at the OD (without being observed by
the controller). The regular TCP and TLS handshakes
would ensue. Packets sent by the client would reach OD,
not the controller or SP. This does not pose a problem:
after the handshakes (TCP and TLS), the subsequent
GET request by the client fetches a regular response
from the OD. The client immediately realizes that it
missed the window, and initiates a new connection re-
quest. The censor sees nothing suspicious.
6) DoS Attacks:We discuss different ways in which an
adversary may abuse the system to deny service to DR
and/or non-DR clients. Like others, SB is also vulnera-
ble to such attacks. We also discuss the strategies that
are in place, or can be adopted to mitigate them.
a) Forced Decoy Routing: We consider the Byzantine
attacker that tries to disrupt normal routing for a non-
DR user. To do so, the attacker simulates the client side
of the SB protocol, while spoofing the source address
of the victim (i.e. the non-DR user). Eventually, the
controller installs redirection rules for the victim’s IP
address (assuming it to be a DR client). Thus when the
victim tries to access OD, its traffic is redirected to the
SP which fails to decrypt these packets, and drops them.
Thus, by abusing the DR, non-DR traffic is prevented
from reaching its intended destination.

However, in our design, the SP redirection rule
matches packets based on source IP, destination IP and
source port number. Thus, to successfully launch the at-
tack, the adversary must anticipate the port number
the victim will use while connecting to a particular OD;
the probability of success of this anticipation is 0.00006
(assuming ephemeral port range = 16383).
b) Memory Exhaustion Attacks: As already men-
tioned in previous attacks (like Forced Decoy Rout-
ing), a powerful adversary can force installation of
enough flow rules to exhaust the TCAM memory of
SDN switch by pretending to be many legitimate DR
clients. To minimize this threat, we incorporate time-
outs for different flow rules (step 3 and 5 of proto-
col). Methods to minimize TCAM memory usage in



SiegeBreaker: An SDN Based Practical Decoy Routing System 258

SDN [18, 38, 45, 47, 49, 58] can be further used to mit-
igate this attack.
c) Spamming the Controller: A simple attack would
be to flood the controller’s email with spam. The adver-
sary could send random emails, or more subtly, emails
requesting DR service, from thousands of email ad-
dresses. This noise might prevent the controller from
detecting legitimate requests. In such scenarios, we re-
sort to issuing a unique email ID for the controller to
individual (or groups of) clients. Thus, even if one email
ID is spammed, clients can use other email IDs to ac-
cess DR service. Additionally, similar to Mailet [41], we
can also enforce usage limitations on clients or can use
Captcha [55] and/or puzzles.
d) Fake Sessions Attack: As a more sophisti-
cated attack, the adversary could send the controller
“legitimate-looking” emails, which set up decoy routing
sessions with random source IP addresses and ISNs. The
controller, receiving an email, would install an inspec-
tion rule and begin to analyze the corresponding (irrel-
evant) flows. To minimize the impact of this attack, we
include a hard timeout with the inspection rule. A fake
email can make the controller inspect unwanted traffic
only for the timeout duration, i.e. 3s (ref. Subsec. 6.1).
e) Fake DR Request Registration: With an intent
to deny some specific users of DR services, an adversary
can send an email containing their source IP, some OD-
IP and some random ISN. When the actual DR user
sends an email, with the same source and OD IP, but
a different ISN, the controller stores both the ISNs for
matching. Hence, when the DR user sends a TCP SYN
to the aforementioned OD IP, it’s ISN would match the
one indicated in the latter email, and the SP redirection
rule would be installed.

An adversary could send multiple such emails with
different ISNs. Now the controller would require main-
taining a set of ISNs for every client and OD IP pair.
Searching through such sets to match ISNs of the incom-
ing SYN packets could marginally increase the overhead
at the controller. However, DR services would not be
hindered.

Moreover, the presence of the hard timeout of the
inspection rule, would force the adversary to keep send-
ing such emails regularly. This could be very expensive
for the adversary if the attack has to be carried out for
all possible clients. Thus, SB is more resilient to such
attacks, unlike other registration based systems (such
as Cirrepede and Waterfall of Liberty) where the adver-
sary just needs to register once for a client.

6.3 SDNs and SiegeBreaker
It can be argued that SDNs are primarily deployed in
small networks (like data centers), and are not suitable
for use on the Internet. However, SDNs have been shown
to scale to an entire AS [17, 28, 40], and practical ISP-
scale SDN has been demonstrated by Rexford et al. [30].
Moreover, there is a recent research that suggests how
ISPs can (and should) migrate to SDNs [48]. Further,
SB can work even for a non-SDN AS. Friendly non-SDN
ISPs could position openflow switches such that they
intercept traffic to critical network entities (e.g. routers
which transport a large fraction of traffic [29]), without
replacing the existing infrastructure.
Scalability of Controller: Would the SB controller
become a bottleneck at ISP scale? Recent work [20, 52,
53, 56, 59] suggests that SDN controllers can scale to
very large use cases – for instance, Cuttlefish [52] pro-
poses a hierarchy of local and global controllers, which
can offload tasks to each other, providing higher con-
trol plane throughput and better scalability. We suggest
that, if needed, such approaches can be used when SB
is deployed at scale.

7 Conclusion
In this paper, we present SiegeBreaker, a practical and
efficient Decoy Routing system. Using an SDN archi-
tecture, SiegeBeaker divides the tasks of Decoy Routing
among three loosely-coupled modules. The SDN con-
troller focuses on detecting packets of interest, using
an efficient privacy-preserving signaling scheme, by re-
configuring SDN switches on-the-fly. The switch then
redirects all packets of the Decoy Routing flow to a
secret proxy server. Finally, the proxy server commu-
nicates with the covert website on behalf of the client,
and transmits back the responses reliably and efficiently.

In extensive tests involving commercial SDN
switches, our prototype shows promising performance
— nearly equal to that of direct TCP connections. Addi-
tionally, SiegeBreaker’s flows uniformly share the avail-
able link bandwidth with other non-DR connections.
Along with privacy preserving signaling, such perfor-
mance results show promise for future implementation
and deployment by SDN-based networks.

Acknowledgements
We thank our reviewers and our shepherd Amir
Houmansadr, for their valuable inputs, which fortified
our paper. Further, this research was in part supported
by Persistent Systems Ltd., Pune, India.



SiegeBreaker: An SDN Based Practical Decoy Routing System 259

References
[1] Deterlab: Cyber-Defense Technology Experimental Research

laboratory. https://www.isi.deterlab.net/index.php.
[2] Hp10500 series openflow enabled switches data sheet.

http://www.hp.com/hpinfo/newsroom/press_kits/2011/
InteropNY2011/HP_10500_Data-Sheet.pdf.

[3] Hp3500yl openflow enabled switch data sheet. http://www.
curvesales.com/datasheets/switches/Campus-Access/HP-
3500-3500-YL-Switch-Series-Datasheet.pdf.

[4] Imap library for python. https://docs.python.org/2/library/
imaplib.html.

[5] List of hp sdn switches. https://techlibrary.hpe.com/ie/
en/networking/solutions/technology/sdn/portfolio.aspx#
.XjhyRtlS_CI.

[6] Openflow Switch Specification. https://www.
opennetworking.org/wp-content/uploads/2014/10/
openflow-switch-v1.5.1.pdf.

[7] Ryu- Component Based Software Defined Networking
Framework. https://osrg.github.io/ryu/.

[8] Selenium webdriver and ide. https://www.seleniumhq.org/.
[9] Sigebreaker’s source code. https://github.com/Piyush825/

SiegeBreaker.
[10] Smtp library for python. https://docs.python.org/2/library/

smtplib.html.
[11] Tor: Bridges. https://www.torproject.org/docs/bridges.html.

en.
[12] The transport layer security (tls) protocol version 1.2. https:

//tools.ietf.org/html/rfc5246.
[13] Apostol, K. Internet censorship in the arab spring.
[14] Bocovich, C., and Goldberg, I. Slitheen: Perfectly

Imitated Decoy Routing Through Traffic Replacement. In
Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security (New York, NY, USA,
2016), CCS ’16, ACM, pp. 1702–1714.

[15] Bocovich, C., and Goldberg, I. Secure asymmetry and
deployability for decoy routing systems. Proceedings on
Privacy Enhancing Technologies 2018, 3 (2018), 43–62.

[16] Burnett, S., Feamster, N., and Vempala, S. Chipping
away at censorship firewalls with user-generated content.
In USENIX Security Symposium (2010), Washington, DC,
pp. 463–468.

[17] Caesar, M., Caldwell, D., Feamster, N., Rexford,
J., Shaikh, A., and van der Merwe, J. Design and im-
plementation of a routing control platform. In Proceedings
of the 2Nd Conference on Symposium on Networked Sys-
tems Design & Implementation - Volume 2 (Berkeley, CA,
USA, 2005), NSDI’05, USENIX Association, pp. 15–28.

[18] Chuang, C.-C., Yu, Y.-J., Pang, A.-C., and Chen,
G.-Y. Minimization of tcam usage for sdn scalability in
wireless data centers. In Global Communications Conference
(GLOBECOM), 2016 IEEE (2016), IEEE, pp. 1–7.

[19] Dingledine, R., Mathewson, N., and Syverson, P.
Tor: The second-generation onion router. In Proceedings of
the 13th USENIX Security Symposium (August 2004).

[20] Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., and
Kompella, R. Towards an elastic distributed sdn controller.
ACM SIGCOMM computer communication review 43, 4
(2013), 7–12.

[21] Ellard, D., Jones, C., Manfredi, V., Strayer, W. T.,
Thapa, B., Van Welie, M., and Jackson, A. Rebound:
Decoy routing on asymmetric routes via error messages. In
Local Computer Networks (LCN), 2015 IEEE 40th Confer-
ence on (2015), IEEE, pp. 91–99.

[22] Ensafi, R., Winter, P., Mueen, A., and Crandall,
J. R. Analyzing the great firewall of china over space and
time. PoPETs 2015 (2015), 61–76.

[23] Feamster, N., Rexford, J., and Zegura, E. The road
to sdn: an intellectual history of programmable networks.
ACM SIGCOMM Computer Communication Review 44, 2
(2014), 87–98.

[24] Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan,
M., Moll, D., Rockell, R., Seely, T., and Diot, S. C.
Packet-level traffic measurements from the sprint ip back-
bone. IEEE network 17, 6 (2003), 6–16.

[25] Freedman, M. J., Vutukuru, M., Feamster, N., and
Balakrishnan, H. Geographic locality of ip prefixes. In
Proceedings of the 5th ACM SIGCOMM conference on In-
ternet Measurement (2005), USENIX Association, pp. 13–
13.

[26] Frolov, S., Douglas, F., Scott, W., McDonald, A.,
VanderSloot, B., Hynes, R., Kruger, A., Kallitsis,
M., Robinson, D. G., Schultze, S., et al. An isp-scale
deployment of tapdance. In 7th USENIX Workshop on Free
and Open Communications on the Internet (FOCI) (2017),
USENIX Association.

[27] Frolov, S., and Wustrow, E. The use of tls in censor-
ship circumvention. In NDSS (2019).

[28] Fu, J., Sjödin, P., and Karlsson, G. Intra-domain
routing convergence with centralized control. Computer
Networks 53, 18 (2009), 2985–2996.

[29] Gosain, D., Agarwal, A., Chakravarty, S., and
Acharya, H. The devil’s in the details: Placing decoy
routers in the internet. In Proceedings of the 33rd Annual
Computer Security Applications Conference (2017), ACM,
pp. 577–589.

[30] Gupta, A., MacDavid, R., Birkner, R., Canini, M.,
Feamster, N., Rexford, J., and Vanbever, L. An
industrial-scale software defined internet exchange point. In
NSDI (2016), vol. 16, pp. 1–14.

[31] Herrmann, D., Wendolsky, R., and Federrath, H.
Website fingerprinting: attacking popular privacy enhancing
technologies with the multinomial naïve-bayes classifier. In
Proceedings of the 2009 ACM workshop on Cloud comput-
ing security (2009), pp. 31–42.

[32] Holowczak, J., and Houmansadr, A. Cachebrowser:
Bypassing chinese censorship without proxies using cached
content. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security (2015),
ACM, pp. 70–83.

[33] Houmansadr, A., Brubaker, C., and Shmatikov, V.
The parrot is dead: Observing unobservable network commu-
nications. In Security and Privacy (SP), 2013 IEEE Sympo-
sium on (2013), IEEE, pp. 65–79.

[34] Houmansadr, A., Nguyen, G. T. K., Caesar, M., and
Borisov, N. Cirripede: Circumvention infrastructure using
router redirection with plausible deniability. In Proceedings
of the 18th ACM conference on Computer and Communica-
tions Security (CCS 2011) (October 2011).

https://www.isi.deterlab.net/index.php
http://www.hp.com/hpinfo/newsroom/press_kits/2011/InteropNY2011/HP_10500_Data-Sheet.pdf
http://www.hp.com/hpinfo/newsroom/press_kits/2011/InteropNY2011/HP_10500_Data-Sheet.pdf
http://www.curvesales.com/datasheets/switches/Campus-Access/HP-3500-3500-YL-Switch-Series-Datasheet.pdf
http://www.curvesales.com/datasheets/switches/Campus-Access/HP-3500-3500-YL-Switch-Series-Datasheet.pdf
http://www.curvesales.com/datasheets/switches/Campus-Access/HP-3500-3500-YL-Switch-Series-Datasheet.pdf
https://docs.python.org/2/library/imaplib.html
https://docs.python.org/2/library/imaplib.html
https://techlibrary.hpe.com/ie/en/networking/solutions/technology/sdn/portfolio.aspx#.XjhyRtlS_CI
https://techlibrary.hpe.com/ie/en/networking/solutions/technology/sdn/portfolio.aspx#.XjhyRtlS_CI
https://techlibrary.hpe.com/ie/en/networking/solutions/technology/sdn/portfolio.aspx#.XjhyRtlS_CI
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://osrg.github.io/ryu/
https://www.seleniumhq.org/
https://github.com/Piyush825/SiegeBreaker
https://github.com/Piyush825/SiegeBreaker
https://docs.python.org/2/library/smtplib.html
https://docs.python.org/2/library/smtplib.html
https://www.torproject.org/docs/bridges.html.en
https://www.torproject.org/docs/bridges.html.en
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246


SiegeBreaker: An SDN Based Practical Decoy Routing System 260

[35] Houmansadr, A., Wong, E. L., and Shmatikov, V. No
direction home: The true cost of routing around decoys. In
NDSS (2014).

[36] Houmansadr, A., Zhou, W., Caesar, M., and Borisov,
N. Sweet: Serving the web by exploiting email tunnels. arXiv
preprint arXiv:1211.3191 (2012).

[37] Houmansadr, A., Zhou, W., Caesar, M., and Borisov,
N. Sweet: Serving the web by exploiting email tunnels.
IEEE/ACM Transactions on Networking (TON) 25, 3
(2017), 1517–1527.

[38] Kannan, K., and Banerjee, S. Compact tcam: Flow
entry compaction in tcam for power aware sdn. In Interna-
tional conference on distributed computing and networking
(2013), Springer, pp. 439–444.

[39] Karlin, J., Ellard, D., Jackson, A. W., Jones, C. E.,
Lauer, G., Mankins, D. P., and Strayer, W. T. Decoy
routing: Toward unblockable internet communication. In
USENIX workshop on free and open communications on the
Internet (2011).

[40] Kotronis, V., Dimitropoulos, X., and Ager, B. Out-
sourcing the routing control logic: Better internet routing
based on sdn principles. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks (New York, NY, USA,
2012), HotNets-XI, ACM, pp. 55–60.

[41] Li, S., and Hopper, N. Mailet: Instant social network-
ing under censorship. Proceedings on Privacy Enhancing
Technologies 2016, 2 (2016), 175–192.

[42] McKeown, N., Anderson, T., Balakrishnan, H.,
Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., and Turner, J. Openflow: Enabling innovation in cam-
pus networks. SIGCOMM Comput. Commun. Rev. 38, 2
(Mar. 2008), 69–74.

[43] McPherson, R., Houmansadr, A., and Shmatikov, V.
Covertcast: Using live streaming to evade internet censor-
ship. Proceedings on Privacy Enhancing Technologies 2016,
3 (2016), 212–225.

[44] Mohajeri Moghaddam, H., Li, B., Derakhshani, M.,
and Goldberg, I. Skypemorph: Protocol obfuscation for
tor bridges. In Proceedings of the 2012 ACM conference
on Computer and communications security (2012), ACM,
pp. 97–108.

[45] Mohan, P. M., Truong-Huu, T., and Gurusamy, M.
Tcam-aware local rerouting for fast and efficient failure re-
covery in software defined networks. In Global Communica-
tions Conference (GLOBECOM), 2015 IEEE (2015), IEEE,
pp. 1–6.

[46] Nasr, M., Zolfaghari, H., and Houmansadr, A. The
waterfall of liberty: Decoy routing circumvention that resists
routing attacks. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(2017), pp. 2037–2052.

[47] Obadia, M., Bouet, M., Rougier, J.-L., and Iannone,
L. A greedy approach for minimizing sdn control overhead.
In Network Softwarization (NetSoft), 2015 1st IEEE Confer-
ence on (2015), IEEE, pp. 1–5.

[48] Poularakis, K., Iosifidis, G., Smaragdakis, G., and
Tassiulas, L. One step at a time: Optimizing sdn upgrades
in isp networks. In IEEE INFOCOM 2017-IEEE Conference
on Computer Communications (2017), IEEE, pp. 1–9.

[49] Rifai, M., Huin, N., Caillouet, C., Giroire, F.,
Moulierac, J., Pacheco, D. L., and Urvoy-Keller,
G. Minnie: An sdn world with few compressed forwarding
rules. Computer Networks 121 (2017), 185–207.

[50] Schuchard, M. Adversarial degradation of the availability
of routing infrastructures and other internet-scale distributed
systems. http://hdl.handle.net/11299/182196.

[51] Schuchard, M., Geddes, J., Thompson, C., and Hop-
per, N. Routing around decoys. In Proceedings of the 2012
ACM conference on Computer and communications security
(2012), ACM, pp. 85–96.

[52] Shah, R., Vutukuru, M., and Kulkarni, P. Cuttlefish:
Hierarchical sdn controllers with adaptive offload. In 2018
IEEE 26th International Conference on Network Protocols
(ICNP) (2018), IEEE, pp. 198–208.

[53] Song, P., Liu, Y., Liu, T., and Qian, D. Controller-
proxy: Scaling network management for large-scale sdn net-
works. Computer Communications 108 (2017), 52–63.

[54] United nations general assembly, human rights council
thirty-second session, third item. https://www.article19.
org/data/files/Internet_Statement_Adopted.pdf.

[55] von Ahn, L., Blum, M., Hopper, N. J., and Langford,
J. Captcha: Using hard ai problems for security. In Advances
in Cryptology — EUROCRYPT 2003 (Berlin, Heidelberg,
2003), E. Biham, Ed., Springer Berlin Heidelberg, pp. 294–
311.

[56] Wang, C., and Yan, S. Scaling sdn network with self-
adjusting architecture. In 2016 IEEE International Confer-
ence on Electronic Information and Communication Technol-
ogy (ICEICT) (2016), IEEE, pp. 116–120.

[57] Weinberg, Z., Wang, J., Yegneswaran, V., Briese-
meister, L., Cheung, S., Wang, F., and Boneh, D.
Stegotorus: a camouflage proxy for the tor anonymity sys-
tem. In Proceedings of the 2012 ACM conference on Com-
puter and communications security (2012), ACM, pp. 109–
120.

[58] Wen, X., Yang, B., Chen, Y., Li, L. E., Bu, K.,
Zheng, P., Yang, Y., and Hu, C. Ruletris: Minimiz-
ing rule update latency for tcam-based sdn switches. In
Distributed Computing Systems (ICDCS), 2016 IEEE 36th
International Conference on (2016), IEEE, pp. 179–188.

[59] Woo, S., Sherry, J., Han, S., Moon, S., Ratnasamy,
S., and Shenker, S. Elastic scaling of stateful network
functions. In 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI) (2018), pp. 299–
312.

[60] Wustrow, E., Swanson, C. M., and Halderman, J. A.
Tapdance: End-to-middle anticensorship without flow block-
ing. In Proceedings of 23rd USENIX Security Symposium
(USENIX Security 14) (San Diego, CA, August 2014),
USENIX Association.

[61] Wustrow, E., Wolchok, S., Goldberg, I., and Hal-
derman, J. A. Telex: Anticensorship in the network in-
frastructure. In Proceedings of the 20th USENIX Security
Symposium (August 2011).

[62] Zarek, A., Ganjali, Y., and Lie, D. Openflow timeouts
demystified. Univ. of Toronto, Toronto, Ontario, Canada
(2012).

http://hdl.handle.net/11299/182196
https://www.article19.org/data/files/Internet_Statement_Adopted.pdf
https://www.article19.org/data/files/Internet_Statement_Adopted.pdf


SiegeBreaker: An SDN Based Practical Decoy Routing System 261

A Appendix

A.1 Tests Over Emulation Environment

Experimental setup: Our experimental topology on
DETER consists of ten Linux machines – one of which
acted as a SDN switch (running OpenvSwitch v2.5.0),
two nodes acted as normal routers (forwarding based
on routing table lookups) and six host nodes (running
Ubuntu 14.04 LTS) functioning as clients and servers.
One node functions as the controller, running the Ryu [7]
SDN controller (v4.15), a popular open-source SDN
controller, fully compliant with OpenvSwitch. Fig. 13
schematically represents the topology.

Fig. 13. The topology used for evaluating SiegeBreaker — one
SDN switch (S1), two routers (R1,R2), an SDN controller and 6
host nodes all configured on real machines.

Experiments and results: In order to gauge the cor-
rectness of our prototype implementation, we tested
SiegeBreaker under a variety of working conditions.

We tested SiegeBreaker by downloading relatively
small-sized files (< 10MB). This emulates a user’s ev-
eryday browsing activity. Next, we also tested it against
large file sizes, of the order of 1GB, emulating bulk
data transfer. Fig. 14 shows the consolidated result of
downloading files (varying from 1MB–1GB) using Siege-
Breaker and wget. Evident from the figure, the down-
load times of both SiegeBreaker and wget are compara-
ble. These results indicate that SiegeBreaker works well
for both web browsing and bulk downloads.

To compare SiegeBreaker’s and wget’s behavior in
the presence of varying cross traffic, we used one client
(Client1 in the topology) to download a file of size 100
MB using SiegeBreaker. Simultaneously, on a shared 100
Mbps link (between R1 and S1), another client (Client2)
downloaded a file directly from CD. The second client
provided a variable cross-traffic load. This is achieved by

0 200 400 600 800 1000 1200

0.01

0.1

1

10

100

T
im

e
 (

s
)

File Size (MB)

 Wget

 SiegeBreaker

Fig. 14. Comparison of SiegeBreaker and wget in terms of down-
load time for file sizes up to 1GB (in log scale).

varying the download request rate of this client (Using
the –rate-limit option of wget) from roughly 8 Mbps
to 80 Mbps.

We then repeated the experiment, replacing the
SiegeBreaker client with a wget client. Fig. 15 shows
that the performance of SiegeBreaker is consistently
comparable to wget, and depicts similar degradation
as we increase the background cross-traffic in our tests
(which go up to 80 Mbps, i.e. 80% of link capacity).

0 2 4 6 8 10

5

10

15

20

25

30

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Cross-Traffic (MB/s)

 Wget

 Siegebreaker

Fig. 15. Comparison of SiegeBreaker and wget in presence of
varying cross-traffic (on a shared link).

A.2 Incorporating Salient Features of
SiegeBreaker in Existing DR Systems

SiegeBreaker is a DR system which utilizes the pro-
grammability and reconfigurability of SDNs to redirect
and inspect traffic on the fly. This helps in achieving
two major goals :
(1) Reducing the overall load on the system by mini-
mizing the amount of traffic to be analysed in order to
detect DR flows.
(2) Protecting the privacy of non-DR flows from DR
proxy (SP) maintainers.

We now enumerate the feasibility of incorporating
these features in existing DR systems. Augmenting ex-



SiegeBreaker: An SDN Based Practical Decoy Routing System 262

isting signalling schemes with the above goals would re-
quire SDN controlled switches acting as DRs. Addition-
ally, they would also require some OOB channel (e.g.
email) to request DR service. This step ensures that
only the potential DR flows are analysed. E.g. Cirrepede
and Waterfall would require to employ SDN controlled
switches as DRs, the controller would require to act as
the registration server, and would also have to manage
the OOB signalling from the client. Thereafter, Cirri-
pede may inspect only the SYN packets of potential DR
flows. Moreover, in Waterfall, the controller may need
to configure SDN switches to inspect the downstream
path instead of the upstream ones.

Telex, Slitheen and Tapdance can also adopt these
features. Here, the controller may inspect the respective
ClientHello packets, or the incomplete HTTPS requests,
to identify DR requests. Once identified, the controller
can selectively divert DR flows to their Decoy Stations,
which may continue on with its normal functioning by
deriving the session key and decrypting the TLS Fin-
ished messages etc. Slitheen would require the Decoy
Station to be co-located with the controller in order
to achieve its goal of minimizing the threats of latency
based analysis. In Tapdance, after detection, the con-
troller would need to forward all the client-OD traffic
to the Decoy Station, and that would need to forward
the packets to the OD, to preserve the connection be-
tween client and OD, as required in Tapdance.

A.3 SiegeBreaker Confirmation Attacks

In SiegeBreaker, step 5, 6 and 7 can be manipulated to
confirm usage of DR. Packets exchanged before step 5
and after step 7 follow standard replay protection mech-
anism.
Step 5: The adversary can manipulate some bits of the
payload sent in this step5. In this scenario, the recipient
would generate a TLS bad_record_mac alert (in accor-
dance with RFC 5246 [12]). However, the controller on
receiving this packet has no way to verify if this packet
was modified. It will anyways install DR rule and for-
ward this packet to the SP. Unfortunately, the SP also
would not be able to verify the message and would never
respond with the expected TLS error. This would con-
firm the adversary of an attempted DR connection. To

5 Adversary when tampers the content of the TLS packet, also
creates an appropriate TCP checksum, such that the modified
packet is still accepted by the receiver’s kernel.

prevent this attack, we can adopt a scheme as proposed
by Tapdance [60]. Here the DR client will covertly leak
the client-OD session key to the controller6. This will
allow the controller to verify if there is any change in
the packet and generate appropriate responses.
Step 6: Similar to previous step, some bits of the pay-
load of the TLS data packet (in step 6) can be modified
by the adversary. As mentioned, the regular recipient
would generate a TLS alert, while a SigeBreaker client
would not. Here again the adversary may use this be-
havior to identify a DR client. To avoid such a situation,
the SP includes a HMAC in this packet, generated us-
ing the DH key gxy, which can only be derived by the
client7. The client can thus verify if any modification
took place and generate responses accordingly.
Step 7: The adversary can intercept this second TLS
data packet (step 7 in Fig. 2), and replace it with its own
crafted packet. Reception of legitimate content from CD
(via SP), confirms a DR connection. However, since the
session keys used to encrypt this packet was derived
using the DH parameter (gx) shared via email. Thus,
the adversary cannot derive the same session key, and
hence will not be able to craft a legitimate packet.

A.4 SDN Setup

We now describe in detail the setup used in our exper-
iments. The topological diagram of the setups used is
shown in Fig. 4 and Fig. 8.

Controlled setup: It involved standard Linux ma-
chines as clients (shown as Client 1, 2,...,N). These ma-
chines were connected to another Linux machine (with
multiple network interfaces) configured to work as a
router (shown as R1). This machine was in turn con-
nected to a HP3500yl hardware SDN switch. The con-
troller (running Ryu controller application) and OD
(two separate Linux machines) were attached directly to
the switch. However, the VLANs of the controller and
the OD were different as the controller needs to be con-
nected to the switch via a dedicated and isolated chan-
nel. SP and CD were also Linux machines connected to
HP3500yl via another Linux machine acting as a router
(shown as R2). The websites were blocked for the client
by adding an IPTABLES rule to drop packets destined
to CD (on R1).

6 Client sends an incomplete HTTP GET request in this step,
embedding the Client-OD session key.
7 SP has obtained DR client’s gx in step 5.



SiegeBreaker: An SDN Based Practical Decoy Routing System 263

Internet setup: In this setup, the clients were
hosted inside the university campus. The SDN switch
was placed outside the purview of the university fire-
wall. The controller and SP machines were directly at-
tached to it. OD and CD were websites hosted on Inter-
net. To capture the performance of large file downloads,
we hosted servers on cloud machines, blocked them (via
the firewall), and then downloaded the content using
SeigeBreaker client.


	SiegeBreaker: An SDN Based Practical Decoy Routing System
	1 Introduction
	2 Background
	2.1 Decoy Routing
	2.2 Software Defined Networking (SDN)
	2.3 Related Work

	3 SiegeBreaker vs Prior Research
	4 System Design
	4.1 Threat Model
	4.2 SiegeBreaker Protocol
	4.3 Improved Covert Signalling
	4.4 Auxiliary Signalling Scheme

	5 Experimental Evaluation
	5.1 Controlled Experiments
	5.2 Internet Experiments
	5.3 Implementation Details

	6 Discussion
	6.1 System Design
	6.2 Possible Attacks and Countermeasures
	6.3 SDNs and SiegeBreaker

	7 Conclusion
	A Appendix
	A.1 Tests Over Emulation Environment
	A.2 Incorporating Salient Features of SiegeBreaker in Existing DR Systems
	A.3 SiegeBreaker Confirmation Attacks
	A.4 SDN Setup



