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Abstract: Privacy risks of collaborative filtering (CF)
have been widely studied. The current state-of-the-
art inference attack on user behaviors (e.g., rat-
ings/purchases on sensitive items) for CF is by Calan-
drino et al. (S&P, 2011). They showed that if an adver-
sary obtained a moderate amount of user’s public be-
havior before some time T , she can infer user’s private
behavior after time T . However, the existence of an at-
tack that infers user’s private behavior before T remains
open. In this paper, we propose the first inference attack
that reveals past private user behaviors. Our attack de-
parts from previous techniques and is based on model
inversion (MI). In particular, we propose the first MI
attack on factorization-based CF systems by leverag-
ing data poisoning by Li et al. (NIPS, 2016) in a novel
way. We inject malicious users into the CF system so
that adversarialy chosen “decoy” items are linked with
user’s private behaviors. We also show how to weaken
the assumption made by Li et al. on the information
available to the adversary from the whole rating ma-
trix to only the item profile and how to create malicious
ratings effectively. We validate the effectiveness of our
inference algorithm using two real-world datasets.
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1 Introduction
Recommender systems have become an imperative com-
ponent of electronic commerce systems [52, 53, 58] as
used by Amazon, YouTube, IMDB, Google, and so on.
Given a user’s historical behavior such as ratings or pur-
chases, a recommender system suggests a product that
meets the user’s preference. Typically, recommender
systems rely on collaborative filtering (CF), which is a
method to analyze the patterns of the historical behav-
ior of the users. As recommender systems play an in-
creasing role on the Web, it has become a compelling re-
search topic to understand the exploitation and privacy
aspects of recommendation systems [16, 26]. In partic-
ular, the dynamic nature of recommender systems (i.e.,
recommender systems periodically update the internal
parameters according to user’s new behaviors) leads to
a broad attack surface, and we have seen numerous la-
tent risks exposed in the past few decades exploiting this
nature [8, 13, 22, 25, 30–32, 38, 49–51, 61, 63, 66, 68].

When discussing privacy risks for recommender sys-
tems, we often consider two types of private informa-
tion: behavior of users [8, 51] and attributes of users
[1, 48, 63, 70]. Here, behavior is the purchase or rating
histories of users in a recommender system, and can be
further divided into public and private behavior. Pub-
lic behavior is shared through social networks such as
blogs and Facebook [35, 56, 60, 61], or through item
similarity lists, e.g., Amazon’s “Customers who bought
this item also bought...” feature [8]. Private behavior is
those wished to be kept private such as purchase history
of sensitive items; e.g., medical items, sexual movies. On
the other hand, attributes are private information tied
to the users independently of the system; e.g., gender,
political views, and sexual orientations.

In the past decade, we have seen significant devel-
opment regarding inference attacks on user attributes
[1, 17, 27, 30, 48, 63, 70]. However, inference attacks on
user (private) behaviors have been limited. As far as our
knowledge goes, there have only been two works [8, 51]
whose focus is on such attacks on recommender systems.
For example, Calandrino et al. [8] proposed an algorithm
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that takes a moderate amount of user’s public behavior
before some time T and infers the user’s private behav-
ior after time T via observing the temporal changes in
the public outputs of a recommender system (more de-
tails are provided in Section 2 and Appendix C). This
provides evidence that we can infer user’s private be-
havior after some time T . However, the existence of an
attack that infers user’s private behavior before time
T remains open. Considering that we have a good un-
derstanding of the privacy risks of user attributes, this
lack in understanding of privacy risks of user behaviors
is quite unsatisfactory; the privacy of user behaviors is
as important as that of user attributes. Therefore, the
main question we investigate in this paper is: to what
extent can we infer user’s past private behavior
from recommender systems?
Our Contributions. In this work, we show that there
exists an attack that infers user’s past private behavior
(i.e., past purchase or rating histories) in a CF-based
recommender system.

Technically, we propose the first model inversion
(MI) attack for CF-based recommender systems. The
MI attack [14, 15, 21, 64] — recently introduced by [15]
in a context different to recommender systems — al-
lows an adversary to predict private information used
as input to the model, when given access to the pre-
diction model along with some auxiliary information
(See Section 2.3 and Appendix D for details). Thus, at
a high level, an MI attack against recommender sys-
tems allows an adversary to predict private user behav-
iors. Our MI attack is based on the recent poisoning
attack on CF-based recommender systems by Li et al.
[32] in combination with the general framework for MI
attacks proposed by Hidano et al. [21] (see “Techni-
cal Overview” for details). We investigate the setting
of an active adversary where she can inject fake (mali-
cious) users using the dynamic nature of recommender
systems. We further assume the adversary knows non-
sensitive items included in the top-l items recommended
to the users by the recommender system, i.e., she gets to
see the public output of the recommender system. This
has been a widely accepted assumption in MI attacks
[14, 15, 21, 64], and is also backed up by the spread of
sharing (non-sensitive) personal information/behavior
via social networks to improve the effectiveness of rec-
ommender systems [35, 56, 60, 61], e.g., sharing personal
ratings of items on blogs, Facebook, and IMDB.

We demonstrate a successful user behavior infer-
ence attack on two real-world datasets: Foursquare lo-
cation dataset [67] and MovieLens dataset [19]. For the

Foursquare (resp. MovieLens) dataset, our inference at-
tack achieved at most 100% precision and 50% recall
(resp. 74.6% precision and 23.5% recall). For example,
for the Foursquare dataset, we viewed visits to any lo-
cations in the hospital category as private behavior, and
show that the adversary can infer whether or not a user
has visited any hospital. Our MI attack also has the
option of adding the functionality of avoiding attack
detection. Assuming a detector with the one-class SVM
(OCSVM) [9, 54], we show that our MI attack avoids
detection, while keeping high precision of the attack.

In summary, our contributions are as follows:
– We propose the first inference attack that infers

user’s past private behavior in a CF-based recom-
mender system.

– We propose the first MI attack for CF-based recom-
mender systems. The technique we develop may be
of independent interest since it can weaken the as-
sumption and boost the efficiency of the poisoning
attack on factorization-based recommender systems
in [32] (see “Technical Overview” for details).

– We conduct experiments using two real-world
datasets and provide evidence that our theoretical
attack works as intended. We also show that our in-
ference attack can still be effective under standard
detectors of malicious/fake users.

Technical Overview. Our MI attack takes full advan-
tage of the dynamic nature of recommender systems and
deviates from standard MI attacks for static prediction
systems [14, 15, 64]. In particular, our methodology is
inspired by the recent MI attack on (dynamic) linear
regression models by Hidano et al. [21]. In [21], they in-
troduced a general methodology for conducting MI at-
tacks using poisoning attacks [4, 31, 32] — a technique
widely studied to maximally degrade the effectiveness
or credibility of the system by injecting malicious user
data into the model. At a high level, their MI attack
works in two flows: The adversary first injects carefully
crafted malicious data into the dynamic model so that
the current model will be updated to a target model.
Then, the adversary infers private information used as
input by only observing the output of the target model.

Two key challenges in proposing an MI attack for
CF are: (i) defining an appropriate target model which
allows the adversary to infer the user’s past private be-
havior and (ii) formulating an efficient and hard to de-
tect poisoning attack which modifies the model to the
target model. To address the first challenge, we define a
target model in such a way that a user who buys or rates
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a particular sensitive item X in the past at any time
will be recommended some non-sensitive decoy items
{Yi} chosen by the adversary. Here, a decoy item should
be considered as non-sensitive to the users (e.g., family
movies, daily commodities), and should be an item not
recommended to most users. Notably, when any decoy
item Yi (which is typically not recommended to users)
is recommended to a user by the recommender system
and the adversary obtains knowledge of that fact, then
she will be able to infer that the user had bought or
rated the sensitive item X with high probability.

To address the second challenge, we formulate our
MI attack based on the recent poisoning attack on
factorization-based CF by Li et al. [32]. They cast poi-
soning attacks as an optimization problem of finding the
optimal choice of malicious users to inject that would
maximize the adversary’s utility (objective), where they
considered two well-studied utilities for poisoning at-
tacks: maximizing the error of the recommender system
and boosting/reducing the popularity of certain prod-
ucts. However, these utilities do not aim at MI attacks
nor can they be directly used for MI attacks. In this
paper, we propose a new type of data poisoning attack
that links sensitive items with decoy items while avoid-
ing the detection of data poisoning.

In addition, one of the shortcomings of the poisoning
attack in [32] is that they assume that the adversary has
complete knowledge of the rating matrix. That is, full
access to the training data (i.e., information on which
user bought/rated which item) of the recommender sys-
tem. Although this may be an acceptable assumption in
the poisoning attack setting of [32], this is unacceptable
for our setting. The adversary having full knowledge of
the training data is equivalent to the adversary having
full knowledge of all the user’s past behaviors.

Thus we propose a data poisoning attack that only
takes as input an item profile. Since the item profile
does not contain the user’s sensitive information, the
system may share it with the users (or release it pub-
licly) [40, 46]. The adversary may also estimate the item
profile from public web datasets [55], or approximate the
item-by-item matrix by using item similarity or “related
items” lists publicly available on the web services [8].
Thus, the assumption that the adversary has the item
profile is much weaker and practical. Moreover, our algo-
rithm that only uses the item profile can be made more
efficient than the algorithm in [32] by exploiting the fact
that we do not rely on user information. In Section 4.4,
we also conducted experiments where the adversary es-
timates an item profile using some partial information
on the rating matrix to reflect real-world scenarios.

Last but not least, we propose a method to optimize
which items to rate. In [32], they randomly generated
items to rate for each malicious user account. Instead,
we propose a method to optimize which items to rate,
under the constraint that each malicious users can rate
at most bmax items. This is done by solving an opti-
mization problem with the constraint on the l1 norm of
the ratings for each malicious user account.

2 Background and Related Works

2.1 Factorization-based CF

Preliminaries. A recommender system based on
factorization-based CF predicts unobserved entries in
the rating matrix M ∈ Rm×n by using matrix factor-
ization [29, 57, 59], and recommends items for a user
based on the estimated entries. Here, m,n ∈ N denote
the numbers of users and items in the recommender sys-
tem, respectively, and the (i, j)-th element Mi,j of M
represents the rating of the j-th item by the i-th user.

Since a user generally rates only a small number of
items, there are many unobserved elements in the rating
matrix M. We denote the set of observed elements in
M by Ω = {(i, j) : Mi,j is observed}. Let RΩ : Rm×n →
Rm×n be a masking function that takes as input an
m × n matrix A and outputs an m × n matrix RΩ(A)
by masking A with Ω. Specifically, given A, RΩ outputs
a matrix RΩ(A) whose (i, j)-th element [RΩ(A)]i,j is
defined as follows:

[RΩ(A)]i,j =

{
Ai,j if (i, j) ∈ Ω
0 otherwise.

(1)

We provide a table summarizing the notations used
throughout this paper in Appendix A for reference.
Prediction Algorithm. We provide details on how
factorization-based CF is implemented. In the initial
training phase, we first predict the unobserved ele-
ments of the rating matrix M using matrix factoriza-
tion as M̂ = UV, where M̂ ∈ Rm×n is a predic-
tion of M, U ∈ Rm×k and V ∈ Rk×n are called user
profiles and item profiles, respectively, and we assume
k � min(m,n) in general. We denote the set of U and
V by Θ; i.e., Θ = {U,V}, and call Θ a model.

There are multiple ways to compute Θ from M; e.g.,
alternating least squares (ALS) [29], nuclear-norm mini-
mization [7]. In this paper, we focus on the ALS which is
widely used in practice. ALS computes an approximate
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solution to the following optimization problem:

min
Θ
||RΩ(M−UV)||2F + λ||Θ||2F , (2)

where || · ||2F represents the Frobenius norm (i.e., square
sum of all elements), and λ (> 0) is called a regulariza-
tion parameter. The first term in (2) is the summation
of square errors over the observed elements in M. The
second term in (2) is introduced to avoid overfitting the
observed elements, and is called a regularization term.
λ controls the extent of regularization, and is generally
determined by cross-validation [29].

Since the optimization problem (2) is not convex, it
is typically infeasible to find an exact solution. However,
if we fix either U or V, the optimization problem (2)
becomes convex in the remaining unfixed variable, and
can be solved optimally. Thus, given an initial value for
Θ, ALS updates U by solving (2) for U while fixing
V. Then it updates V by solving (2) for V while fixing
U. It iterates this process until convergence, and uses
the converged model Θ as an approximate sub-optimal
solution to (2). After computing Θ, we can compute a
prediction M̂ of M by using M̂ = UV.

In the predication phase, the factorization-based CF
system recommends new items that each users are po-
tentially interested in based on M̂. This is often referred
to as a user-to-item based (or factorization-based) CF.
The user-to-item based CF won the Netflix prize [29]
and also have been the focus of many studies including
Li et al. [32]. In the user-to-item based CF, the system
recommends items for which the corresponding elements
in M are unobserved and the predicted ratings in M̂ are
high. One of the most natural methods for recommend-
ing such items for each user i ∈ [m] is to recommend
the top-l items (e.g., l = 1, 5, 10) with high (predicted)
ratings in M̂i among unobserved items. Here M̂i rep-
resents the i-th row of M̂. In practice, the system may
recommend these top-l items by showing them on the
web page after the user logs in, or by sending users an
e-mail or message containing the item information.
Dynamic Updates. It is common for practical rec-
ommender systems (regardless of it being factorization-
based CF) to update their internal systems when new
users and/or items are added or when users make new
ratings on items. Notably, recommender systems are dy-
namic where they update the model Θ on a regular basis
(e.g., every night, once a week depending on the appli-
cation). This extra feature of recommender systems has
been shown to be exploitable in several ways. In the
next subsection, we review some of the attacks.

2.2 Exploitation and Privacy Risks for
Recommender Systems

Owing to its broad attack surface, recommender sys-
tems have been an attractive subject to understand its
exploits and privacy risks. Below we review previous
works. Due to page limitation, we briefly describe the
outline of the previous works in this section, and de-
scribe a more extensive review in Appendix C.
Exploitation. There are many attacks aiming to ma-
liciously modify the recommender system in a way so
that an adversary can control how items will be rec-
ommended to users. Looking ahead, our work is in the
line of poisoning attacks (also known as shilling attacks)
[13, 31, 32, 41, 47, 68] which injects malicious users into
the recommender system to control the output behav-
ior of the system. Recently, sophisticated poisoning at-
tacks for specific types of recommender systems aiming
to maximize the error of the system or boost/reduce
the popularity of particular items using (non-convex)
optimization techniques have emerged [13, 32, 68].
Privacy Risks. Inference attacks aim to illegitimately
infer sensitive information of the users in recommender
systems and are considered to be one of the major
privacy risks. There are two types: inference attacks
against user attributes and user behaviors. As already
mentioned in Section 1, the latter type is the main target
of this paper. So far, there have been two works [8, 51]
studying such attacks on recommender systems. Calan-
drino et al. [8] proposed an attack that tracks the change
in the item profile after time T (the time on which the
adversary decides to attack the system), hence cannot
be used to infer user’s private behavior before time T .

2.3 Model Inversion Attacks

Model inversion (MI) attacks are a type of attack aiming
to expose sensitive information that was used as input
to a prediction model [14, 15, 21, 64]. In MI attacks,
an adversary is provided the following inputs: some in-
formation on the prediction model f , the output of the
prediction model f(x) or the true label y corresponding
to the features x of a target user, and some auxiliary in-
formation depending on the attack scenario. Then, the
goal of the adversary is to predict the sensitive portion
(or all) of the features x of the target user. In this work,
we consider the so-called grey-box setting where the ad-
versary gets oracle access to f along with the structure
of f and some auxiliary information is further known,
e.g., the fact that f is a linear regression model and
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some (not all) regression coefficients. We describe fur-
ther details on MI attacks including the explanation of
the black/grey/white-box in Appendix D.

Hidano et al. [21] proposed a new type of MI at-
tacks which targets dynamic prediction systems. They
modified the system’s model Θ by injecting malicious
data. Our work will follow this approach.

2.4 Formalizing Poisoning Attacks for
Factorization-based CF

We finally review the poisoning attack for factorization-
based CF by Li et al. [32].

Let m′ ∈ N be the number of malicious users that
will be injected to the recommender system by the ad-
versary, and let M′ ∈ Rm′×n be a rating matrix of all
m′ malicious users. We denote the set of observed ele-
ments in M′ by Ω′ = {(i, j) : M′i,j is observed}. In other
words, the adversary performs data poisoning by creat-
ing m′ malicious user accounts, whose rating matrix is
given by M′ (as we describe later in detail, the adversary
computes M′ in advance for her intended purpose).

As explained above, due to the dynamic feature of
recommender systems, after the new (malicious) user
information M′ is added to M, the factorization-based
CF updates the model Θ. Specifically, it predicts the
concatenated rating matrix (including unobserved ele-
ments) using matrix factorization as follows:[

M̂∗

M̂′

]
=
[

U∗

U′

]
V∗, (3)

where M̂∗ ∈ Rm×n (resp. M̂′ ∈ Rm′×n) is a prediction
of M (resp. M′), U∗ ∈ Rm×k (resp. U′ ∈ Rm′×k) is a
user profile for m users (resp. m′ malicious users), and
V∗ ∈ Rk×n is an item profile. Note that M̂∗, U∗, and
V∗ are now different from M̂, U, and V, respectively,
due to data poisoning (we use a symbol with “∗” to
represent the poisoned data). Let Θ∗ = {U∗,U′,V∗}
be the poisoned model. Θ∗ is computed from M and
M′ in the same way as in Section 2.1. For example, if
we use ALS, we will find an approximate solution to the
following optimization problem:

min
Θ∗
||RΩ(M−U∗V∗)||2F

+ ||RΩ′(M′ −U′V∗)||2F + λ||Θ∗||2F . (4)

Here, [RΩ′(A)]i,j equals to Ai,j if (i, j) ∈ Ω′ and 0 oth-
erwise. Fig. 1 depicts the rating matrix, its prediction,
user profile, and item profile before/after data poison-
ing. Due to data poisoning, the prediction of M changes
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After Data Poisoning
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Fig. 1. Rating matrix, its prediction, user profile, and item profile
before/after the poisoning attacks.

from M̂ = UV to M̂∗ = U∗V∗. Since the system rec-
ommends items based on the prediction of M, the rec-
ommended items also change owing to data poisoning.

Li et al. [32] proposed a method to optimize the
malicious rating matrix M′ for the adversary’s purpose,
given that the adversary has full access to the origi-
nal rating matrix M. As for the adversary’s purpose,
they considered an availability attack and an integrity
attack (and their combination). They then defined, for
each attack, a utility function R : Rm×n × Rm×n → R,
which takes as input M̂∗ and M̂, and outputs a utility
score that measures the goodness of M̂∗ for the adver-
sary respective to the adversary’s purpose. Informally,
in an availability attack an adversary tries to maximize
the recommendation error of the recommendation sys-
tem and in an integrity attack the adversary tries to
boost/reduce the popularity of specific items.

For both utility functions, Li et al. [32] proposed an
algorithm to find M′ that maximizes the utility score
R(M̂∗, M̂) under the assumption that the adversary has
full access to M. They use projected gradient descent
where the gradient computation is based on first-order
KKT conditions to solve the optimization problem. For
both utility functions, the time complexity of their algo-
rithm can be expressed as O((m+m′)nk+(|Ω|+ |Ω′|)k),
where the former term is dominant in typical systems
since |Ω| + |Ω′| � (m + m′)n. Here, we note that to
estimate the time complexity, we exploit the fact that
derivation of specific parameters contain many zero val-
ues. Some details on the mechanics of the algorithm will
become more clear in Section 3 and for the exact details
on the algorithm of Li et al., see [32].



Exposing Private User Behaviors of Collaborative Filtering via Model Inversion Techniques 269

3 Model Inversion Attacks for
Collaborative Filtering Systems

In this section, we propose an inference attack for
factorization-based CF that can infer past private be-
havior of users. To this end, we propose the first model
inversion (MI) attack for the factorization-based CF.

3.1 Threat Model

Environment of recommender system. We first ex-
plain our threat model. We consider a recommender sys-
tems based on factorization-based CF. As is the case
for standard deployed recommender systems, we assume
the system is dynamic, i.e., updates the model parame-
ter periodically, and that an adversary can maliciously
inject fake users into the system by generating new user
accounts. Moreover, an adversary can rate arbitrary
items using the fake user accounts. We note that our
MI is grey-box. Namely, the adversary knows that the
recommender system is a factorization-based CF and
further knows the value of the internal parameters such
as number of users m and items n. Finally, we consider
user-to-item based recommendation (See Section 2.1).
Attack goal. The goal of the adversary is to infer past
sensitive behaviors (i.e., rating histories) of users. Since
we consider dynamic recommender systems, a user may
rate items at any point during the lifetime of the sys-
tem. In other words, the goal of the adversary is to infer
any past sensitive behavior of the users. Moreover, since
in practice, an adversary may not be able to inject arbi-
trary malicious users due to detection of the system, we
consider adversaries that try to subvert such detections.
Adversary’s input. Firstly, we assume the adversary
is given the item profile (denoted as V in Section 2.1)
of the recommender system as auxiliary information.In
practice, there are multiple of ways to collect such in-
formation. In the simplest case, since the item profile
does not apparently contain user’s sensitive informa-
tion, the system may share it with the users or release
it publicly [40, 46]. It has also become standard prac-
tice for recommender systems to publish item similarity
lists (e.g., Amazon’s “Customers who bought this item
also bought...” feature) [8], so the adversary can approx-
imate the item-by-item matrix, hence, the item profile
from such information.

The adversary can also estimate the item profile
from public web datasets [55] or some partial informa-

tion on the rating matrix. For example, in some real-
world services such as Amazon and Google Maps, we
can observe all of the public ratings for some users by
accessing the users’ profile pages1. In Section 4.4, we
also conducted experiments where the adversary esti-
mates an item profile using such information.

Next, the adversary is given the non-sensitive part
of the top-l items recommended to the target user as
input. Recall that in an MI attack, the adversary is
given the output of the prediction model or the true
label corresponding to the features of a target user as
input (See Section 2.3). This is arguably a harder to
acquire information compared to the item profile, how-
ever, we do not consider this as a significant impediment
to our attack. Namely, due to the wide spread of social
networks and its increasing role in recommendation sys-
tems [35, 56, 60, 61], it has become common for users
to share their personal (non-sensitive) recommendations
through social networks: for example most websites run-
ning recommender systems provide the users the option
to embed the information to blogs or to share it via
Twitter and Facebooks. We can also consider alterna-
tive indirect approaches. For instance, on many web-
sites, users publicly rate or comment on (non-sensitive)
items, revealing a high likelihood of being recommended
that item by the system. Other sites which are not di-
rectly tied to the user’s rating histories, but leak partial
information of the user may be taken advantage as well
[24, 37, 44, 45]. For examples, “liked” movies and books
listed in a Facebook user profile may reveal partial in-
formation of recommended items on Amazon.

3.2 Overview

In our attack, the adversary creates m′ malicious user
accounts whose rating matrix is given by M′. The goal
of the attack is to link the sensitive items with some
adversarialy chosen “decoy” items which are seemingly
innocuous to users. Fig. 2 shows an overview of the pro-
posed attack. We provide an in-depth overview below.
Preparation. Let X ⊆ [n] be the set of sensitive items
(e.g., adult movies, medical items) and Y ⊆ [n] \X be a
set of “decoy” items. The decoy items are seemingly in-

1 Note that unlike social networks, the user names on the profile
pages are nicknames in most cases, and hence the adversary does
not know their real names. However, if the users disclose decoy
items via social networks (as described in Section 3.2), their past
sensitive behaviors are revealed along with their real names.
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Fig. 2. Overview of our MI attack. Using them, the adversary
creates a sensitive user list, which is a list of users who provided a
high rating for a sensitive item in X .

y

sensitive item
decoy item
other item

y
x

Fig. 3. Visualization of items after data poisoning. The dashed
lines represent that there is a high similarity between sensitive
items X and decoy items Y.

nocuous for users (e.g., non-erotic novels, commodities)
and are chosen by the adversary in advance. One way
to do so is to randomly choose Y from the set of non-
sensitive items [n] \ X . This is simple but effective, as
shown in our experiments. Let M be the rating matrix
which represents the ratings provided by the m users
for some items before data poisoning. We assume that
the rating matrix M includes high ratings for sensitive
items in X provided by some users. Our goal is to learn
M or put differently to model invert the recommender
system.
Malicious user injection. The adversary performs
data poisoning by creating m′ malicious user accounts
and providing ratings for items, which are represented as
M′. The rating matrix M′ is designed so that sensitive
items X will be linked with decoy items Y by adding M′

to M (we describe desirable properties for M′ in more
detail in Section 3.3, and explain how to compute M′

in Section 3.4). Fig. 3 shows a visualization of the items
after data poisoning.

Algorithm 1: Model Inversion
1 Create m′ malicious user accounts and add M′

to M (How to compute M′ is provided in
Section 3.5).

2 Obtain the recommended items for the m users.
3 Output a sensitive user list by adding a user to

the list if her recommended items include l′

decoy items.

Inference of sensitive user behavior. After data
poisoning, the system updates the model from Θ to Θ∗,
and recommends m users a new list of items (e.g., top-l
items as described in Section 2.1), e.g., by showing them
on the web page after log-in or by sending personalized
e-mail/message. Since after poisoning, there is a high
similarity between X and Y, the recommended items
should include one or more decoy items with high prob-
ability for those who provided a high rating for a sen-
sitive item in X . In our threat model (See Section 3.1),
the adversary observes the non-sensitive part of the rec-
ommended items. Using them, the adversary creates a
list of users who provided a high rating for an item in
X , which we call a sensitive user list. Specifically, the
adversary adds a user to the sensitive user list if her rec-
ommended items include l′ ∈ N decoy items, where l′ is
a pre-determined threshold (e.g., l′ = 1, 2, · · · , 5). Since
there is a high similarity between X and Y, the adver-
sary would be confident that a user rated an item in X
if her recommended items include l′ decoy items. Algo-
rithm 1 summarizes our model inversion algorithm.
Remarks on our MI attack. Our MI attack has no
special requirements on the sizes |X | and |Y|. When
there are multiple items in X , the adversary cannot
specify, for each user in the list, which item among X
she rated. However, if X is a set of items of the same
type (e.g., adult movies, books having the same political
orientation, or medical items), the adversary can infer
her sexual inclination, political views, or health condi-
tion that she wants to keep as secret. Therefore, the
adversary can violate a user’s privacy just by disclosing
the fact that she provided a high rating for some (un-
specified) item in X . It is also possible to extend our
attack so that different items in Y correlate differently
with items in X . In this case, the adversary can specify
which item in X users evaluated/purchased.

In addition, note that the sensitive user list contains
two types of errors: precision and recall, and that the
trade-off between them can be controlled by changing
the value of l′. When l′ is large, the adversary can de-
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cide with very high confidence that users in the sensitive
user list provided a high rating for a sensitive item in X .
However, she fails to include users who rated a sensitive
item in X if the recommended items include less than l′

decoy items. Thus, the adversary can increase precision
at the cost of recall by increasing l′. In general, if the ad-
versary is targeting to attack some unspecified group of
users, then precision is considered to be more desirable
than recall. This is because even if recall is low, those
users recommended the decoy items will be known by
the adversary with high confidence that they have rated
sensitive items in the past. Therefore, in real-life scenar-
ios, an adversary being able to mount such attacks even
with, say 10% recall, may be quite damaging.

3.3 Utility Function for MI Attacks

To formally cast our MI attack as an optimization prob-
lem, we first propose a utility function Rmi which cap-
tures the motive of the adversary. As described in the
overview (Section 3.2), we would like to design the mali-
ciously injected rating matrix M′ so that sensitive items
X will be linked with decoy items Y. Namely, the sim-
ilarity between X and Y should increase after injecting
M′ to the system. On the other hand, although not
mandatory, we would also like to avoid detection of ma-
licious user accounts as much as possible.

A natural way to define a utility function Rmi which
captures the above intent would be to define Rmi so that
it takes the rating matrices M and M∗ as input: this is
the approach taken by Li et al. [32] for their poison-
ing attack (See Section 2.4). However, unfortunately, as
mentioned in Section 3.1, in an MI attack the adversary
does not have knowledge of the rating matrix M and is
only given the item profile V as input. Therefore, we ap-
proximate the utility function that we really want with
the following utility function Rmi : Rn×k × Rn×k → R
which takes as input item profiles V∗ and V:

Rmi(V∗,V) =
∑k

i=1
∑

x∈X
∑

y∈Y(Vi,x −V∗i,y)2

+
∑k

i=1
∑

x∈X (Vi,x −V∗i,x)2 + µ||V∗ −V||2F . (5)

Below, we explain the terms in (5) in detail and justify
that this approximates the utility function we want.

First, we observe that the item profile V can be
used as an approximation of the rating matrix M. In
factorization-based CF, the item profile V is a low-
dimensional representation of the property or concept
that the items have. In other words, each row of V can
be regarded as a cluster (also known as latent factor)

[36]. In the poisoning phase, since we want to boost the
similarity between the sensitive items X and decoy items
Y, we can instead use the item profile V which is a suc-
cinct representation of the relation between all items.
In more detail, since each row of the predicted rating
matrix M̂ is a linear combination of the item profile V
(See Fig. 1), in order for a decoy item in Y to have a
high prediction in case the rating for a sensitive item in
X was high, it suffices to consider the item profile.

Now that we saw we can approximate M by V, we
proceed to explain each term in (5). We begin with the
first and second terms. At a high level, the accuracy of
our MI attack increases with decrease in the two terms.
The first (resp. second) term in (5) is the summation of
the square errors between the entries of sensitive items
X in V and decoy items Y (resp. sensitive items X ) in
V∗. The first term captures intent of “increase the sim-
ilarity between X and Y” and the second term captures
intent of “maintain high ratings for sensitive items X
unchanged”. The former is self-explanatory. The latter
term is required since even if we increase the similarity
between sensitive items X and decoy items Y, our attack
would be void unless the decoy items are recommended
to the users.

More specifically, if we decrease the square er-
rors between sensitive items X after poisoning and
decoy items Y after poisoning (i.e., if we decrease∑k

i=1
∑

x∈X
∑

y∈Y(V∗i,x − V∗i,y)2) instead of the first
and second terms, then all of the entries in X and Y
might be very small after poisoning (i.e., we might find
a trivial solution such as: V∗i,x = V∗i,y = 0 for any i ∈ [k],
any x ∈ X , and any y ∈ Y). In this case, decoy items
would not be recommended to the users who had rated
sensitive items. We introduce the first and second terms
to avoid this issue. By the second term, if a user had
rated a sensitive item high, then the updated model will
predict that the user has high affinity with the sensitive
item. Then by the first term, it will also predict (i.e.,
recommend) a decoy item to the user.

Finally, we explain the meaning of the third term in
(5). At a high level, this is included to make the attack
less detectable. The term is the summation of square
errors between elements in V∗ and V. When this term
is small, the item profile V is not changed much by data
poisoning. Therefore, since V∗ and V approximate the
behaviors of M̂∗ and M̂, respectively, the two predicted
rating matrices M̂∗ and M̂ do not change much by data
poisoning. Furthermore, taking into consideration that
M̂ is a prediction of the actual rating matrix M, we
can expect that the injected malicious users M′ which
is used to generate the item profile V∗ do not deviate
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much from the actual user behavior M. Specifically, as
the third term decreases, the injected malicious users by
our attack will become less detectable. Since this has the
opposite effect from the first two terms, we include a hy-
per parameter µ (≥ 0) to control the trade-off between
the precision of our MI attack and the difficulty of de-
tection. The accuracy of our MI attack will increase by
moving µ close to 0. Conversely, the detection of our
attack becomes more difficult by increasing µ.

3.4 Casting Our MI Attack as an
Optimization Problem

In this section, we formalize our MI attack as an opti-
mization problem using the utility function Rmi defined
in (5). As a recap, the variable we want to optimize is
the rating matrix M′ that we inject into the system and
we assume that the item profile V is available to the ad-
versary. We also assume that each rating is bounded in
the range [−Λ,Λ] or [0,Λ], where Λ is a positive number
known to the adversary. Since the description of our al-
gorithm is essentially the same for both ranges, in the
following we only explain our algorithm for the former
range [−Λ,Λ]. We also let M1 be the set of all rating
matrices M′ such that each rating in M′ is bounded in
the range [−Λ,Λ]. Finally, we assume that each mali-
cious user account only rates at most bmax ∈ N items.
We make this assumption to reduce the computational
resource required for the adversary to rate items of ma-
licious users. Moreover, this is useful for avoiding detec-
tion of our attack; intuitively, if the malicious user rates
too many items, since it is an uncommon behavior for
standard users, the adversary may easily detect.

In our MI attack, we optimize the b (≤ bmax) items
each injected malicious users rate. We note that in the
poisoning attack of Li et al. [32], the items are randomly
chosen. To summarize so far, the optimization problem
of our MI attack can be expressed as solving the follow-
ing optimal malicious rating matrix M′opt,l0

:=

arg min
M′∈M1

Rmi(V∗,V) s.t. ∀i ∈ [m′], ||M′i||0 ≤ bmax, (6)

where M′i is the i-th row of M′, and || · ||0 is the l0
norm; i.e., ||M′i||0 is the number of non-zero elements
in M′i. Thus, M′opt,l0

in (6) minimizes the utility func-
tion Rmi(V∗,V) among M1 under the constraint that
each malicious user rates at most bmax items. However,
unfortunately, the optimization problem in (6) is non-
convex and cannot be solved efficiently.

To circumvent the problem, we relax the l0 norm
constraint with the l1 norm constraint, and solve an ap-
proximated version of (6). Approximating the l0 norm
with the l1 norm is a well-known technique in sparse
modeling [36]. The actual optimization problem we con-
sider is expressed as solving the following optimal mali-
cious rating matrix M′opt,l1

:=

arg min
M′∈M1

Rmi(V∗,V) s.t. ∀i ∈ [m′], ||M′i||1 ≤ bmaxΛ, (7)

where || · ||1 is the l1 norm; i.e., ||M′i||1 =
∑n

j=1 |M
′
i,j |.

||M′i||1 equals to bmaxΛ when the malicious user pro-
vides the highest rating (= Λ) to bmax items and does
not rate any other items. Since the l1 norm constraint
promotes sparsity [20], the optimization problem in (7)
provides a sparse solution M′opt,l1

, in which each mali-
cious user rates only a small number of items, and hence,
can be used as an approximation to M′opt,l0

.

3.5 Solving the Optimization Problem

3.5.1 Projected Gradient Descent

In this section, we explain how to solve the optimization
problem in (7). Since the l1 norm is convex, we can find
an approximate solution to (7) by using the projected
gradient descent (PGD) method. Given some initial ma-
trix M′(0), we solve for M′opt,l1

by sequentially updating
M′ as follows:

M′(t) = ProjM2

(
M′(t−1) − st · ∇M′R

mi(V∗,V)
)
, (8)

where M′(t) is M′ computed at the t-th iteration, st

is the step size at the t-th iteration, ∇M′R
mi(V∗,V) ∈

Rm′×n is the direction to descend, and ProjM2 is the
projection operator onto M2, where M2 is defined as
the set of all feasible matrices M′ defined as

M2 = {M′|∀i ∈ [m′], ∀j ∈ [n],
M′i,j ∈ [−Λ,Λ], ||M′i||1 ≤ bmaxΛ}. (9)

We postpone the discussion on how to compute
∇M′R

mi(V∗,V) in (8) to Section 3.5.2 and proceed with
how to compute ProjM2 .

Specifically, after computing ∇M′R
mi(V∗,V) in (8),

we subtract st · ∇M′R
mi(V∗,V) from M′(t−1), and

project the result value onto M2. Since M2 is convex,
the projection onto M2 can be written as a projection
onto a point in M2 that minimizes the Frobenius norm:

ProjM2(A) = arg min
B∈M2

||A−B||2F . (10)
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Fig. 4. Projected gradient update (m′ = 1, n = 2, bmax = 1). A
gradient update (= M′(t−1) + st · ∇M′R

mi(V∗,V))) is projected
onto M2 = {M′ | |M′1,1|+ |M′1,2| ≤ Λ}.

Fig. 4 shows two examples of the projected gradient
updates computed via (8) and (10) in the case where
m′ = 1, n = 2, and bmax = 1. In this figure, the gradient
update in the shaded area is projected onto a corner
of M2 = {M′ | |M′1,1| + |M′1,2| ≤ Λ}, which permits a
sparse solution.

We update M′ by computing a projected gradient
update via (8) and (10) until convergence, and use the
converged value as an approximation of M′opt,l1

. If the
number of non-zero elements in M′i of the converged
matrices exceeds bmax, we choose bmax items with the
highest absolute ratings |M′i,j | and set ratings of the
remaining items to zero. In this way, we satisfy the con-
straint that each malicious user account rates at most
bmax items.

3.5.2 Computing the Gradient ∇M′Rmi(V∗, V)

It remains to show how to compute ∇M′R
mi(V∗,V) ∈

Rm′×n in (8). Firstly, by using the chain rule,
∇M′R

mi(V∗,V) can be written as follows:

∇M′R
mi(V∗,V) = (∇M′V∗)(∇V∗R

mi(V∗,V)), (11)

where ∇M′V∗ ∈ R(m′×n)×(n×k) and ∇V∗R
mi(V∗,V) ∈

Rn×k. Below we describe how to compute the individual
terms ∇M′V∗ and ∇V∗R

mi(V∗,V) in detail.
Computation of ∇M′V∗. We compute ∇M′V∗

through the KKT (Karush-Kuhn-Tucker) condition [6]
similarly to the approach took in [32]. Specifically, a
model Θ∗ that minimizes (4) satisfies the following KKT
condition for j ∈ [n]:

λv∗j =
∑

i∈Ωj
(Mi,j − u∗>i v∗j )u∗i

+
∑

i∈Ω′
j
(M′i,j − u′i

>v∗j )u′i, (12)

where u∗i ∈ Rk (resp. u′i ∈ Rk) is the i-th row of
U∗ (resp. U′), v∗j ∈ Rk is the j-th row of V∗, and
Ωj ⊆ [m] (resp. Ω′j ⊆ [m′]) is the set of observed rows
in the j-th column of M (resp. M′); i.e., Ωj = {i :
Mi,j is observed}, Ω′j = {i : M′i,j is observed}.

Since (a>b)a = (aa>)b for any vectors a,b ∈ Rk,
the equation (12) can be expressed as follows:(

λIk +
∑

i∈Ωj
u∗i u∗>i +

∑
i∈Ω′

j
u′iu′i

>
)

vj

=
∑

i∈Ωj
Mi,ju∗i +

∑
i∈Ω′

j
M′i,ju′i (for j ∈ [n]), (13)

where Ik is the k× k identity matrix. By differentiating
both sides of (13) with respect to M′i,j , we can compute
each entry of ∇M′V∗ as follows:

∂vj

∂M′i,j
=

λIk +
∑
i∈Ωj

u∗i u∗>i +
∑
i∈Ω′

j

u′iu′i
>

−1

u′i, (14)

It should be noted, however, that we cannot actually
compute (14). The adversary who runs this algorithm
only has knowledge of the item profile V and therefore
does not have knowledge of the user profile U∗ or U′. In
the setting of Li et al. [32], this was not a big issue since
they assumed knowledge of the rating matrix M. Specif-
ically, after they injected M′ to the system, they were
able to compute U∗ and U′ using matrix factorization.

To address this issue, we aim to simulate the real
rating matrix M only using the item profile V. If we
can do this, then we can use the method of [32] to pro-
ceed with computing (14). To this end, we randomly
generate U and construct a predicted rating matrix M̂
(see Fig. 1). Here we assume that the adversary knows
the domain of elements in U (e.g., [0, 1] as commonly
assumed in non-negative matrix factorization [12, 23]),
and randomly generates U from a uniform distribution
within this range. The adversary can also estimate the
domain of U from V and the domain of M. Since M̂ is
a prediction of the actual rating matrix M, M̂ is an ap-
proximation of M. Therefore, we can compute U∗ and
U′ via matrix factorization from the approximated M
and M′(t−1). Finally, we compute ∇M′V∗ by computing
∂vj/∂M′i,j for all i ∈ [m′] and j ∈ [n] via (14).
Computation of ∇V∗R

mi(V∗,V). By differentiating
both sides of (5) with respect to V∗i,j , we obtain

∂Rmi(V∗,V)
∂V∗>i,j

=


2(µ+ 1)(V∗i,j −Vi,j) if j ∈ X∑

x∈X 2(V∗i,j −Vi,x) + 2µ(V∗i,j −Vi,j) if j ∈ Y
2µ(V∗>i,j −V>i,j) otherwise.

(15)
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Algorithm 2: Computing M′

1 Input: V, k, m′, µ, bmax, Λ, λ
2 Output: M′

3 Initialize M′(0). t← 1.
4 repeat
5 Compute ∇M′R

mi(V∗,V) by (11), (14),
(15).

6 Compute M′(t) by (8)–(10).
7 t← t+ 1.
8 until M′(t) converges.
9 Choose bmax items with the highest absolute

ratings |M′i,j | and set ratings of the remaining
items to zero for each row of M′(t).

10 return M′ := M′(t).

Thus, we can compute ∇V∗R
mi(V∗,V) by computing

∂Rmi(V∗,V)/∂V∗i,j for all i ∈ [k] and j ∈ [n] via (15).
Recall that we can compute this because the adversary
is given V as input.
Summary of Algorithm. The proposed algorithm to
compute M′ can be summarized in Algorithm 2. Note
that in Section 4, we initialize M′(0) by a zero matrix.

3.6 Discussions on Our Algorithm and
Further Optimization

We finally provide some discussions on our proposed
algorithm and provide simple techniques to boost the
efficiency of our algorithm. The time complexity of our
algorithm is dominated by the time complexity of com-
puting the gradient in (11) in each iteration of the PGD
method. The time complexity of computing (11) can
be further broken down into time it takes to compute
the two gradients ∇M′V∗ and ∇V∗R

mi(V∗,V), and the
time to multiply them together.

First, we analyze the simplest term∇V∗R
mi(V∗,V).

Since we compute (15) for all i ∈ [k] and j ∈ [n], the time
complexity to compute this gradient is O(nk). On the
other hand, the computation of ∇M′V∗ is more heavy.
Since we simulate the rating matrix M by M̂ ∈ Rm×n

and perform matrix factorization on the concatenated
matrix of M̂ and M′ (See Fig. 1), the time complexity to
compute this gradient is dominated by O((mn + Ω′)k).
Here, note that M̂ is a dense matrix which is a pre-
diction of the (sparse) rating matrix M, and M′ is a
sparse matrix which is injected to the recommender sys-
tem with Ω′ � m′k observed entries. Finally, at first
glance computing (11) may require O(m′n2k) time com-

plexity, however, by exploiting the fact that each row
of ∇M′V∗ ∈ R(m′×n)×(n×k) (where we view this as a
Rm′n×nk matrix) contains only k non-zero values, the
actual time complexity can be expressed as O(m′nk).
To summarize, the time complexity of our algorithm is
O((m + m′)nk). Note that this is the same time com-
plexity as the poisoning algorithm of Li et al. [32].

Finally, we provide a simple way to boost efficiency
of our proposed algorithm. We use this alternative algo-
rithm in the experiment in Section 4. As we explained
in Section 3.5.2, to compute ∇M′V∗ we randomly sam-
pled a user profile U ∈ Rm×k to simulate the rating
matrix M ∈ Rm×n. This was because the item profile
V looses all information on the users, and to reconstruct
M, we had to simulate the user profile U. However, put
differently, since V does not include any information
on the users, there is in fact no reason for the algo-
rithm to choose a user profile of size m× k. Specifically,
since we assume that the latent factors of the users and
items have a low-dimensional representation, our algo-
rithm works equivalently well with a random user pro-
file Ũ ∈ Rk×k which is a more succinct representation of
the user property. Recall here that k was a small number
representing the dimension of the latent factors. Put dif-
ferently, since we only had knowledge of the item profile
to begin with, our algorithm is agnostic to the number
of users in the recommender system. Therefore, substi-
tuting this simple modification into our proposed algo-
rithm, we can lower the computational time of ∇M′V∗

down to O((nk+ Ω′)k). In total, the time complexity of
the algorithm is now O((k +m′)nk). Since k � m, this
is much more efficient than the original algorithm.

4 Experimental Evaluation
In this section, we provide experimental results to vali-
date the effectiveness of our proposed inference attack.
We then discuss possible defenses against our attack.

4.1 Datasets and System Settings

In our experiments, we considered two types of recom-
mender systems using factorization-based collaborative
filtering: a point-of-interest (POI) recommender system
[33], and a movie recommender system [29]. The POI
recommender system presents unvisited locations that
a user would be concerned with from the locations the
user visited in the past. The movie recommender system
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proposes unseen movies that a target user would prefer
based on the past ratings on her watched movies. Below
we explain the datasets and system settings in detail.
Datasets. We used the Foursquare global-scale check-
ins dataset [67] for the POI recommender system, and
the MovieLens 20M dataset [19] for the movie recom-
mender system. Below we explain these datasets.
- Foursquare global-scale check-ins [67]: The Foursquare
dataset contains user’s check-in data at various venues
throughout the world. In our experiments, we used
check-in data at venues located in Manhattan (latitude:
[40.7, 40.8], longitude: [−74.04,−73.92]). We extracted
users with at least 10 check-ins, and venues with at least
10 check-ins in the target region. The check-in data for
each user was converted to binary rating data; i.e., 1
means that the user has visited the venue one or more
times, and 0 means that the user has not visited the
venue. We randomly selected 80% of ratings per each
user for training, and used the remaining 20% ratings
for testing (we did not use the rating time in selecting
training data, since the factorization-based CF does use
the time information). We created the rating matrix M
from the training data. The numbers of users and items
in M were m = 1722 and n = 1983, respectively.
- MovieLens 20M [19]: The MovieLens dataset includes
user’s ratings on movies. Each rating is made on a value
between 0.5 and 5.0 with 0.5 increments. We extracted
the most recent 100K ratings based on time stamps, and
then selected users with at least 20 ratings and movies
with at least 20 ratings. We randomly selected 80% of
ratings per each user for training (i.e. for creating the
rating matrix M), and used the remaining 20% ratings
for testing. The number of users and items in M were
m = 814 and n = 1124, respectively.
Parameter settings of the recommender system.
To set the parameters of the target recommender sys-
tems, we used three performance metrics: the root mean
square error (RMSE), and precision and recall in the
top-l recommendation (RSPre@l and RSRecl@l). Their
definitions are given in Appendix B.

We evaluated the RMSE to determine the number k
of columns (or rows) in U (or V) and the regularization
parameter λ. For each dataset, we determined the values
of k and λ that achieve the lowest RMSE. We evaluated
RSPre@l and RSRecl@l to determine the number l of
recommended items. We determined l so that RSPre@l
and RSRecl@l took almost the same value.

For each dataset, we performed matrix factorization
20 times with different initial values of U and V. As a
result, for the Foursquare dataset, the parameters k, λ,

and l were set to k = 30 and λ = 0.01, and l = 5.
The average values of RMSE, RSPre@l, and RSRec@l
were 0.0306, 0.0215, and 0.0340, respectively. For the
MovieLens dataset, the parameters k, λ, and l were set
to k = 30 and λ = 0.02, and l = 10. The average values
of RMSE, RSPre@l, and RSRec@l were 0.8525, 0.0421,
and 0.0466, respectively.

4.2 Attack Performance

Experimental Set-up. We first evaluated the perfor-
mance of our MI attack when an attack detector is not
used in the recommender system. To this end, we per-
formed our attack without consideration for attack de-
tection; i.e., we set µ = 0 in (5). Below we describe how
we performed our attack for each of the two systems.
- Attack for the POI recommender system: For the POI
recommender system, we assumed a scenario where an
adversary attempts to disclose a hospital the user has
visited in the past. The Foursquare dataset has a cat-
egory label such as “Restaurant”, “Office”, and “Hos-
pital” for each venue. We used this information to de-
termine sensitive and decoy items. Specifically, we re-
garded a “Hospital” venue visited by the most users as
a sensitive item (18 users out of 1722 users visited this
venue). We then randomly selected three decoy items
from venues not included in the “Hospital” category.
The categories of the decoy items were “Restaurant”,
“Music Venue”, and “Bus Line”.

We optimized each rating in the malicious rating
matrix M′ in the range [0, 1] using Algorithm 2 in
Section 3.5. Here, since the average number of items
rated by each (normal) user was 15, we set the max-
imum number of items a malicious user could rate to
bmax = 15. We set the number of malicious users m′

so that the ratio α between m′ and m (= 1722) was
α = 0.01, 0.02, 0.03, 0.04, or 0.05; i.e., m′ = αm =
17, 34, 52, 69, or 86. After computing M′ using Algo-
rithm 2, we rounded each rating in M′ to 0/1.

Then we performed our MI attack using Algorithm
1 in Section 3.2. We set a threshold l′ to determine
whether a user rated a sensitive item to l′ = 1, 2, or 3.
- Attack for the movie recommender system. For the
movie recommender system, we assumed a scenario
where an adversary attempts to disclose an immoral
movie the user has given the highest rating (5-star rat-
ing). The MovieLens dataset includes a category label
such as “sci-fi”, “teen”, and “adultery” for each movie.
These category labels were tagged by users. We selected



Exposing Private User Behaviors of Collaborative Filtering via Model Inversion Techniques 276

sensitive and non-sensitive items based on this infor-
mation. Specifically, we regarded an “adultery” movie
highly rated by the most users as a sensitive item (20
users out of 814 users gave 5-star ratings to this movie).
We then randomly selected five decoy items from movies
not in the “adultery” category. The categories of the
decoy items were “thriller”, “action”, “mockumentary”,
“teen”, and “satire”.

We optimized each rating in the malicious rating
matrix M′ in the range [0, 5] using Algorithm 2. Since
the average number of items rated by each user (normal)
was 62, we set the maximum number of items that a ma-
licious user could rate to bmax = 62. We set the number
of malicious users m′ so that α = 0.01, 0.02, 0.03, 0.04,
or 0.05; i.e., m′ = αm = 8, 16, 24, 33, or 41. After com-
puting M′ using Algorithm 2, we rounded each rating
to a value between 0.5 and 5.0 with 0.5 increments.

Then we performed our MI attack using Algorithm
1. We set a threshold l′ to l′ = 1, 2, 3, 4, or 5.

As the performance metrics for MI attacks, we used
the following precision (MIPre) and recall (MIRec):

MIPre =
|UX

⋂
UY,l′ |

|UY,l′ |
, MIRec =

|UX
⋂
UY,l′ |

|UX |
, (16)

where UX is the set of users who have highly rated a
sensitive item, and UY,l′ is the set of users to whom l′

or more decoy items are recommended.
We performed our MI attack 20 times for each

dataset with different initial values of U. As described
in Section 3.5.2, we generated U from a uniform dis-
tribution over the interval [0, 1]. We then evaluated the
averages of MIPre and MIRec to stabilize performance.

We also considered a random guess as a baseline at-
tack for comparison. In this attack, the adversary ran-
domly selects a user and predicts that the user highly
rated a target sensitive item in the past. The success
probability of this attack (i.e., the probability that the
adversary’s prediction is correct) is given by |UX |/m,
where |UX | is the number of users who have highly rated
a sensitive item. We call this success probability the
baseline precision. For the Foursquare and MovieLens
datasets, the baseline precision was 1.05% (= 18/1722)
and 2.46% (= 20/814), respectively.
Evaluation Results. Fig. 5 shows the experimental
results. The horizontal axis shows the poisoning rate
(α = m′/m), whereas the vertical axis shows precision
(MIPre) or recall (MIRec) of our MI attack. Note that
when no decoy items are recommended (i.e., when the
denominator of (16) is zero), we cannot compute the
precision. We do not plot the precision for such cases.
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(b) MovieLens dataset.

Fig. 5. Precision (MIPrec) and recall (MIRec) of our MI attack
with µ = 0.

It can be seen from Fig. 5 that our inference at-
tack is a realistic and possible threat for actual recom-
mender systems. For the Foursquare dataset, our attack
achieved 100% precision and 50% recall when α = 0.05
and l′ = 3. This means that the adversary successfully
revealed a half of the users who had visited a hospi-
tal with 100% accuracy. For the MovieLens dataset, the
precision and recall were 74.6% and 23.5%, respectively,
when α = 0.05 and l′ = 5. As explained above, the
baseline precision for the Forsquare dataset (resp. the
MovieLens dataset) was 1.05% (resp. 2.46%). Thus, our
attack has much higher precision than a baseline attack.

On the other hand, at first glance, one may feel
that recall is much lower compared to precision. How-
ever, as described in Section 3.2, precision is considered
to be more desirable than recall for the adversary in
practical scenarios. For our experiment of MovieLens
dataset, around one-fourth of the users who rated highly
an immoral movie is exposed by a fairly high confidence
(74.6% precision). For some users this may be higher
exposure rate than they are comfortable with.

It can also be seen from Fig. 5 that both precision
and recall of our attack are increased with an increase in
the number of malicious users. In addition, a trade-off
between the precision and recall can be controlled by
changing the threshold l′, as described in Section 3.2.
The adversary can increase her precision at the cost of
recall by increasing l′.

Furthermore, it is important to note that the poi-
soning rate of our attack is much lower than that of the
data poisoning attack by Li et al. [32]. The attack of
Li et al. requires 10% or more poisoning rate to achieve
high performance. On the other hand, our attack re-
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Fig. 6. Precision (MIPrec) and recall (MIRec), and detection rate
of malicious users.

quires at most 5% poisoning rate. We consider this is
because our attack only changes the columns for sen-
sitive items and decoy items in V (see the first and
second terms in (5)). More specifically, the attack of Li
et al. aims at degrading the accuracy of a recommender
system. In this case, the adversary needs to drastically
change many elements in user profile U and item pro-
file V. Therefore, the adversary needs to inject quite a
lot of malicious user accounts. On the other hand, our
attack only changes a small portion of V, and therefore
requires much smaller malicious data.

4.3 Resistance to Attack Detection

Experimental Set-up. If the behavior of malicious
users is totally different from that of normal users, it
would be easy to detect them using anomaly detection
techniques [10]. However, our MI attack can avoid such
detection by increasing the value of a hyper parameter
µ in (5). In this subsection, we evaluate the resilience of
our attack to anomaly detection by changing µ.

We considered an anomaly detector using the one-
class SVM (OCSVM) [9, 54]. It is well-known that
the OCSVM has strong detection power for various
use cases of outlier detection. In our experiments, the

OCSVM was leveraged in supervised learning settings.
We trained a model for detection from the training data
in the rating matrix M (described in Section 4.1). Here,
we regarded each user’s ratings as a n-dimensional fea-
ture vector. Since the dimension n of the feature vec-
tor was very high, we introduced the principal compo-
nents analysis (PCA) for dimensionality reduction, and
reduced the dimension from n to the number k (= 30)
of columns in the item profile V. Given the ratings of a
malicious user, the detector checks whether or not the
ratings are malicious using the learned detection model.

There are two parameters γ and ν in the OCSVM; γ
is the complexity of the model, and ν is an upper bound
on the fraction of outliers in training data. We optimized
γ so that the variance of the gram matrix was maxi-
mized (see [28] for more detail). We determined ν by
assuming the Gaussian distribution for feature vectors
and applying the 3σ principle. For the Foursquare (resp.
MovieLens) dataset, we set the parameters to γ = 0.1
and ν = 0.003 (resp. γ = 0.02 and ν = 0.003).

We performed our MI attack with five different val-
ues of µ for each dataset. For the Foursquare (resp.
MovieLens) dataset, we set µ to µ = 1, 5, 10, 50, or 100
(resp. µ = 0.01, 0.05, 0.1, 0.5, or 1). We fixed the poison-
ing rate to α = 0.05. As a metric for the resistance to
attack detection, we used the detection rate, which is the
ratio of the number of detected malicious user accounts
divided by the number of all malicious user accounts.
As metrics for the attack performance, we used the pre-
cision (MIPre) and the recall (MIRec). As with Section
4.2, we performed our MI attack 20 times with different
initial values of U, and then averaged the result values
for each of the three metrics.
Evaluation Results. Fig. 6 shows the experimental
results. For each dataset, the top two graphs show the
attack performance (precision and recall), whereas the
bottom graph shows the detection rate.

It can be seen that the resistance to attack detection
is improved by increasing the value of µ. When µ = 0, all
of the malicious user accounts were detected. However,
the detection rate was significantly decreased with an
increase in µ. For instance, the detection rate decreased
by 57.5% at µ = 10.0 in the Foursquare dataset. The
detection rate decreased by 28.4% at µ = 0.1 in the
MovieLens dataset. It can also be seen that the attack
performance (i.e., MIPre and MIRec) decreased with
an increase in µ. This means that there is a trade-off
between the attack performance and the resistance to
attack detection, as described in Section 3.3.
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Fig. 7. Precision (MIPrec) and recall (MIRec) of our MI attack
using approximate V.

Nevertheless, our MI attack was still effective for
the above values of µ; i.e., our MI attack achieved 70.8%
precision and 23.3% recall at µ = 10.0 in the Foursquare
dataset, and 42.5% precision and 15% recall at µ = 0.1
in the MovieLens dataset. Our attack keeps much higher
precision than the baseline attack, even with an increase
in µ. Thus we conclude that the adversary can disclose
the user’s past private behavior, such as the fact that
she visited a hospital and the fact that she highly rated
an immoral movie, while avoiding attack detection.

4.4 MI Attack Using Approximate V

Experimental Set-up. Here we consider an attack sce-
nario in which the adversary does not have full knowl-
edge of V. As described in Section 3.1, in some real-
world services (e.g., Amazon, Google Maps), we can ob-
serve all of the public ratings for some users by access-
ing the users’ profile pages. In this case, the adversary
can access some rows of M, and approximate V by fac-
torizing the partial M. We show that our MI attack is
effective even when we use such an approximate V.

In our experiments, we assumed that the adver-
sary can observe all the ratings from a part of users.
We denote by β a ratio of users whose ratings are
available to the adversary. For both datasets, we set
β = 0, 0.2, 0.4, 0.6, or 0.8, and approximated V using the
partial M. We set µ = 0, the poisoning rate to α = 0.02
or 0.05, and a threshold l′ to l′ = 1 or 2 (resp. l′ = 3
or 4) for the Foursquare (resp. MovieLens) dataset. As
with Sections 4.2 and 4.3, we performed our MI attack
20 times, and averaged MIPre and MIRec.

Evaluation Results. Fig. 7 shows the experimental
results. It can be seen that both MIPre and MIRec in-
crease with an increase in β. In Algorithm 2, we initialize
M′ by setting the ratings of sensitive and decoy items to
the highest rating. MIPre and MIRec thereby have some
moderate values even if any information on V does not
leak (i.e., β = 0). However, when a part of ratings leaks,
the attack performance is further improved by optimiza-
tion of M′ with an approximate V. Moreover, our MI
attack can also avoid anomaly detection by increasing
µ, as shown in Section 4.3. Thus we conclude that our
MI attack is effective even when the adversary cannot
obtain the complete V.

4.5 Discussions on Defenses

In Section 4.3, we showed that our MI attack can avoid
the anomaly detector using OCSVM [9, 54] while keep-
ing high precision. We finally discuss possible defenses
against our MI attack other than anomaly detection.

For example, differentially private matrix factoriza-
tion (DPMF) [34] might be a promising defense against
our MI attack. Specifically, Wang et al. [62] showed that
posterior sampling-based Bayesian learning algorithms,
which train parameters by sampling from a posterior
distribution, provide differential privacy (DP) [11] for
free (without additional noise). Subsequently, Liu et al.
[34] proposed DPMF that trains U and V via posterior
sampling, and proved that DPMF provides ε-DP. ε-DP
guarantees that the adversary who obtains U and V
cannot infer ratings of a particular user (or even whether
the user is included in M) with a certain degree of con-
fidence. In particular, when a privacy budget ε (≥ 0)
is small, the inference of the ratings (i.e., past private
behavior) can be strongly protected.

Unfortunately, ε can be very large in DPMF, as ε in-
creases with increase in the number of ratings per user.
For example, [34] reported that ε needs to be larger than
250 (which provides almost no privacy guarantee in DP)
to achieve high utility. However, DP protects privacy of
any user, including a malicious spammer that provides
ratings completely opposite from what the model would
predict, as discussed in [34]. For normal users whose
ratings are not far away from the average ratings, the
privacy guarantee might be much more stronger. Thus
as future work, we would like to consider a more suit-
able privacy notion (e.g., plausible deniability [5, 43])
for DPMF, and evaluate the relationship between the
privacy notion and the accuracy of our MI attack.
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We finally note that another well-known privacy-
preserving matrix factorization [46], which is based
on garbled circuits, cannot defend against our attack.
Specifically, the method in [46] assumes that the rec-
ommender system sends V to a user (or release it pub-
licly). This is a typical scenario where our MI attack
works well, as shown in our experiments. Similarly, the
privacy-preserving matrix factorization in [40] shares V
to a user, and hence cannot defend against our attack.

5 Conclusion
In this paper, we proposed the first inference attack on
factorization-based collaborative filtering systems that
can reveal past private user behaviors. Our inference at-
tack is based on model inversion techniques, and lever-
ages data poisoning in a novel way. Our experimental
results using real-world datasets showed that it is in-
deed possible to reveal user’s past private behaviors in
CF-based recommender systems using our attack.
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A Notations
Table 1 shows the notations used throughout this pa-
per. The notations are separated into three groups by
horizontal lines. The notations in the second and third
groups are related to factorization-based CF and data
poisoning attacks, respectively, which we introduce in
the following Sections 2.1 and 2.4.

B Performance Metrics for
Recommender Systems

In our experiments, we considered three performance
metrics: the root mean square error (RMSE), precision
and recall in the top-l recommendation (RSPre@l and
RSRecl@l).

The RMSE is defined as follows:

RMSE = 1
|Ωc|

√ ∑
(i,j)∈Ωc

(M̂i,j −Mc
i,j)2, (17)

where Mc
i,j is (i, j)-th element in the rating matrix Mc

created from the testing data, and Ωc is the index set
of observed elements in Mc.

RSPre@l and RSRecl@l are defined as follows:

RSPre@l = 1
m

∑
i

|Si

⋂
Ti|

l
(18)

RSRec@l = 1
m

∑
i

|Si

⋂
Ti|

|Ti|
, (19)

where Si is the set of items recommended to the i-th
user, and Ti is the set of items the i-th user has rated
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Table 1. Notations used throughout this paper. The notations
in the first, second, and third groups are introduced in “Pre-
liminaries” and “Prediction Algorithm” in Section 2.1 and 2.4,
respectively.

Symbol Description
N Set of natural numbers.
R Set of real numbers.
m Number of users.
n Number of items.
M Rating matrix.
Ω = {(i, j) : Mi,j is observed}.
RΩ Masking function using Ω (see (1)).
U User profile.
V Item profile.
k Number of columns/rows in the user/item profile.
Θ Model (= {U, V}).
M̂ Prediction of M including unobserved elements.
m′ Number of malicious users.
M′ Rating matrix for m′ malicious users.
Ω′ = {(i, j) : M′i,j is observed}.
U∗ Poisoned user profile for m users.
U′ Poisoned user profile for m′ malicious users.
V∗ Poisoned item profile.
Θ∗ Poisoned model (= {U∗, U′, V∗}).
M̂∗ Prediction of M after data poisoning.
M̂′ Prediction of M′ after data poisoning.

in the testing data (in the Foursquare dataset, Ti is the
set of venues the user has visited one or more times in
the testing data).

C More Details on Exploitation
and Privacy Risks for
Recommender Systems

In this section, we provide more details on related works
that were omitted from Section 2.2 regarding exploita-
tion and privacy risks for recommender systems.

C.1 Exploitation

We review attacks which maliciously modify the recom-
mender system in a way so that an adversary can control
how items will be recommended to users.

The most well-studied exploitation is poisoning at-
tacks (also known as shilling attacks) [13, 31, 32, 41,
47, 68]. The aim of poisoning attacks is to inject mali-
cious users into the recommender system in such a way
that an adversary can control the output behavior of

the system. Concretely, an adversary creates new ac-
counts for malicious users and strategically rates items
so that when the recommender system once updates its
model Θ (See Section 2.1) the recommended item out-
put by the system would behave according to the ad-
versary’s intent. Here, an adversary’s intent may be to
maximize the error of the collaborative filtering system
or to boost/reduce the popularity of particular items.
In the early days of poisoning attacks, the attacks were
heuristic and were not optimized to a particular type
of recommender system [31, 41, 47]. For example, the
original poisoning attack of Lam et al. [31] is agnostic
to the type of recommender system and the two pro-
posed attacks (RandomBot and AverageBot) are hand-
crafted based on intuition. However, recently, more so-
phisticated poisoning attacks for specific types of rec-
ommender systems have emerged [13, 32, 68]. In these
attacks, the behavior of maliciously injected users are
decided via solving a (non-convex) optimization prob-
lem. Thus far, poisoning attacks on factorization-based
[32], association-rule-based [68], and graph-based [13]
recommender systems have been proposed.

Another type of exploitation known is the profile
pollution attack proposed by Xing et al. [66]. Their idea
is to inject fake information to the user’s profiles such
as web search history via cross-site request forgery at-
tacks (CSRF) [69]. Informally, if an adversary was able
to pollute the user profile, she can make the system rec-
ommend arbitrary item to the user. However, one of the
limitations of profile pollution attacks is that they rely
on CSRF, which is typically a difficult attack to conduct
over a large scaled-system.

C.2 Privacy Risks

We review the two types of inference attacks: attacks
against user attributes and user behaviors.

The former inference attack on user attributes tries
to infer a user’s sensitive attributes such as gender, po-
litical view, and sexual orientation, based on its rating
behavior. Since rating behaviors are often times sta-
tistically correlated with user’s attributes, such infer-
ence attack has shown to be feasible in numerous prior
works, e.g., [1, 17, 18, 27, 30, 48, 63, 70]. A prominent
example of a real-world attribute inference attack is
the recent Facebook-Cambridge Analytica data scandal;
Cambridge Analytica harvested Facebook user’s rating
behavior such as page likes to infer their attributes and
used it for political purposes.
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The latter inference attack on user behaviors, which
is the main target of this paper, tries to infer a user’s
past private behavior over the recommender system
such as purchase or rating histories of sensitive items,
e.g., medicinal items, sexual movies, and books express-
ing political views. So far, there have been two works
[8, 51] studying such attacks on recommender systems.
The key observation of the initial work of Ramakrishnan
et al. [51] was that the model Θ used in a recommender
system is generated by all the user’s information in the
system. For example, if a user who rated item A got rec-
ommended an item B, then the user would know that
there exists another user who have rated both items
A and B. Building on this observation, they provided
a theoretical attack and provided experimental results
on a small scaled recommender system. Calandrino et
al. [8] showed a much stronger and practical attack on
item-to-item recommender systems based on collabora-
tive filtering by further exploiting the knowledge of the
item profile and user’s public behavior. Here, public be-
havior points to the non-sensitive items that were rated
by the users or recommended to the users, which the
users do not intend to keep private. Specifically, in their
proposed attack, an adversary keeps track of the covari-
ance of items known to be associated with the target
user and infers that the target item was rated by the
user once all the tracked covariance increased, which
can be done by keeping track of the item profile. In
other words, an adversary collects a moderate amount
of a user’s public behavior before some time T and in-
fers the user’s private behavior after time T . Since their
attack works by tracking the change in the item profile
after time T (the time on which the adversary decides
to attack the system), it cannot be used to infer user’s
private behavior before time T .

D More Details on MI Attacks
In this section, we provide more details on MI attacks.
As we have mentioned in the main body, MI attacks
were proposed by Fredrikson et al. [15]. By now, there
are several models for MI attacks. We say it is black-box
if the adversary only gets oracle access to the model
f , grey-box if the structure of the model f and some
auxiliary information is further known, e.g., the adver-
sary knows the fact that f is a linear regression model
and some (not all) regression coefficients, and white-box
if it gets the full description of f , e.g., the adversary

knows all of the regression coefficients. Then, the goal
of the adversary is to predict the sensitive portion (or
all) of the features x of the target user. As one can see,
this is closely related to inference attack on user behav-
iors on recommender systems by viewing the feature x
as the user’s rating history. For example, the nominal
work of Fredrikson et al. [15] proposed an MI attack
for a linear regression model that predicted the amount
of dosage for the drug Warfarin, where the feature vec-
tor consisted of the patient’s demographic information,
medical history, and genetic markers. In their work, ge-
netic markers were considered to be the sensitive infor-
mation. Soon after, Fredrikson et al. [14] extended the
MI attack to other prediction models such as decision
trees and specific types of neural networks. They ex-
ploited the fact that MLaaS systems such BigML and
Microsoft Azure Learning provides confidence values of
their predictions. In their attack, the extra information
of confidence values are modeled as part of the auxiliary
information stated above. Wu et al. [64] gave a game-
based definition of MI attacks to formally treat privacy,
analogous to the methodologies used in cryptography.
All of the above works mainly focus on non-dynamic
prediction models and the attack algorithms are based
on statistical tools (i.e., maximum a posterior estima-
tors).

Recently, Hidano et al. [21] proposed a new type
of MI attacks which targets dynamic prediction sys-
tems. They observed that in a dynamic system, simi-
larly to poisoning attacks [2–4, 32, 39, 42, 65], an ad-
versary can modify the system’s model Θ by injecting
malicious data. By leveraging this extra dynamic fea-
ture, [21] improved the MI attack on linear regression
models proposed by [15]. Namely, in [15], the adversary
was assumed to have knowledge of all the non-sensitive
portion of the target user’s features x as part of the aux-
iliary information, however, [21] circumvent this knowl-
edge assumption by providing the adversary capability
of modifying the model Θ.
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