
Proceedings on Privacy Enhancing Technologies ; 2020 (3):284–303

Patrick Ah-Fat and Michael Huth*

Protecting Private Inputs: Bounded Distortion
Guarantees With Randomised Approximations
Abstract: Computing a function of some private inputs
while maintaining the confidentiality of those inputs is
an important problem, to which Differential Privacy and
Secure Multi-party Computation can offer solutions un-
der specific assumptions. Research in randomised algo-
rithms aims at improving the privacy of such inputs by
randomising the output of a computation while ensuring
that large distortions of outputs occur with low prob-
ability. But use cases such as e-voting or auctions will
not tolerate large distortions at all. Thus, we develop
a framework for randomising the output of a privacy-
preserving computation, while guaranteeing that output
distortions stay within a specified bound. We analyse
the privacy gains of our approach and characterise them
more precisely for our notion of sparse functions. We
build randomisation algorithms, running in linearith-
mic time in the number of possible input values, for this
class of functions and we prove that the computed ran-
domisations maximise the inputs’ privacy. Experimental
work demonstrates significant privacy gains when com-
pared with existing approaches that guarantee distor-
tion bounds, also for non-sparse functions.

Keywords: Quantitative information flow, utility metric

DOI 10.2478/popets-2020-0053
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

1 Introduction
Computing a function on private inputs while maintain-
ing the confidentiality of those inputs is desired in a
variety of different scenarios. In e-voting, auctions, fi-
nancial audits or statistical benchmarking, parties that
hold private data are willing to enter the computation of
a function that may involve other participants, to the
extent that their personal data is kept “confidential”
throughout the process. More precisely, as the outcome

Patrick Ah-Fat: Imperial College London, E-mail:
patrick.ah-fat14@imperial.ac.uk
*Corresponding Author: Michael Huth: Imperial College
London, E-mail: m.huth@imperial.ac.uk

of those computations is generally intended to be made
available to others, the participants would like to be able
to estimate and control the information that such public
information might leak on their own private input.

Secure Multi-party Computation (SMC) [1, 2] pro-
vides cryptographic protocols that enable several par-
ticipants to collaboratively compute a public function
of their own private inputs without resorting to any
trusted third party. Moreover, the security of those pro-
tocols ensures that no information will leak on the pri-
vate inputs during the protocol, apart from information
flowing from the intended public output. In Quantita-
tive Information Flow (QIF) [3, 4], one acknowledges
that computing a function of some private inputs in-
evitably — and sometimes, intentionally — reveals some
information about the secret inputs. For example, this is
the case in the inevitable information flow produced by
the output of SMC. The aim is then to design and apply
measures of uncertainty that allow one to quantify such
leakage to inform decision making.

In the randomisation of the output in Differential
Privacy (DP), the precision of the outputs is a statisti-
cal concept [5]. A randomised mechanism is evaluated
by how likely its randomised output will be close to the
original output, closeness being defined via some dis-
tance or utility function. Two prominent techniques for
this are the Laplace mechanism [6] and the Exponential
mechanism [7]. In the Laplace mechanism, the probabil-
ity to return a given distorted output decreases expo-
nentially with its distance to the original output. In the
Exponential mechanism, the same exponential decrease
occurs but for a utility function. While these approaches
provide strong statistical guarantees, they may be un-
suitable when large deviations from the original output
are unacceptable even under low probability.

For example, an e-voting protocol that guarantees
that the elected president could be any of the candidates
who receive very few votes with a very low probability
could be exploited by an attacker. Similarly, in auctions,
users may not accept that one’s revenue could be dras-
tically lower than the actual one, even with low proba-
bility, or this may conflict with regulatory constraints.

In this paper, we therefore focus on randomising
mechanisms that ensure that the output of the ran-

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 285

domised computation will always be contained within
a specifiable distance to the actual output, making such
guarantees non-probabilistic. We will use concepts from
QIF and DP, to formalise our notion of a randomised ap-
proximation of a function and to formulate theoretical
bounds for the entropy gain that this class of functions
can provide. We measure privacy gains through min-
entropy, widely used in cryptography to measure the
vulnerability of a secret. Our approach can be extended
to other measures of entropy.
Contributions.We summarise our main contributions:
1. We first introduce the notion of randomised ∆-

approximation of a function that adheres to a speci-
fiable output distortion bound ∆.

2. We formally investigate the privacy gains that those
randomised ∆-approximations can provide.

3. We define sparse functions and characterise the pri-
vacy gains for those functions.

4. We design deterministic ∆-approximations under
uniform and non-uniform prior beliefs and prove
that they maximise the inputs’ privacy.

5. We experimentally demonstrate significant privacy
gains of ∆-approximations for polynomial and non-
polynomial functions under more general entropies.

Outline of Paper. Related work is discussed in Section
2. Section 3 justifies the assumptions made in our work.
We recall some concepts of QIF and DP in Section 4.
Section 5 formalises our setting and assumptions. Our
randomised approximation and their privacy gains is the
subject of Section 6. In Section 7, we characterise pri-
vacy gains for the class of sparse functions and design
a deterministic approximation that maximises inputs’
privacy. In Section 8, we build a deterministic approxi-
mation that maximises privacy gains under non-uniform
prior beliefs. The effectiveness of our approximations
is experimentally demonstrated in Section 9. Potential
generalisations of our work are discussed in Section 10
and Section 11 concludes.
Notations. For a set D, its cardinality is |D|. Let Ω(D)
be the set of random variables with rangeD, represented
by probability distributions whose support is contained
in D. For any integers a and b, we will write Ja; bK for
{z ∈ Z | a ≤ z ≤ b}, and a mod b denotes the residue of a
modulo b. The floor of a real number x is denoted by bxc.
Throughout, we present distributions as Python dictio-
naries, e.g., {4: 1

2 , 8: 1
2} represents the uniform distri-

bution over {4, 8}. For n in N, a linear distribution over
J1;nK refers to the triangular distribution with mode n,
i.e. to the distribution {k : 2(n−k+1)

n(n+1) | 1 ≤ k ≤ n}. Given

random variable X and value x, the event “X = x” will
be abbreviated by “x” when there is no ambiguity, and
its probability will be denoted by p(x). Similarly, we
write

∑
x∈D for

∑
x when D is determined from con-

text. We write log for the logarithm in base 2.

2 Related Works
We discuss related work that constitutes the founda-
tions and the motivations of our present work.
Secure Multi-party Computation. Secure Multi-
party Computation [1, 2, 8–11] is a domain of cryptogra-
phy that provides advanced protocols which enable sev-
eral participants to compute a public function of their
own private inputs without having to rely on any other
trusted third party or any external authority. Those pro-
tocols enable the participants to compute a function in
a decentralised manner, while ensuring that no infor-
mation leaks about the private inputs, other than what
can be inferred from the public output. The commonly
called “acceptable leakage” which is further studied in
this paper, is the information that can be inferred by an
attacker about the private inputs given the knowledge
of the public output alone.
Quantitative Information Flow. The purpose of
Quantitative Information Flow (QIF) [3, 12] is to pro-
vide frameworks and techniques based on information
theory and probability theory for measuring the amount
of information that leaks from a secret. Shannon en-
tropy [13] reflects the minimum number of binary ques-
tions required to recover a secret on average, while the
min-entropy is an indicator of the probability to guess
a secret in one try [3, 4, 14]. Richer measures such as
Rényi entropy [15] and the g-entropy [16] have been in-
troduced in order to quantify some specific properties
of a secret. Generalised entropies have been proposed in
order to unify those different concepts [17, 18].
Differential Privacy. Differential Privacy (DP) [5, 19]
formalises privacy concerns and introduces techniques
that provide users of a database with the assurance
that their personal details will not have a significant
impact on the output of the queries performed on the
database. More precisely, it proposes mechanisms which
ensure that the outcome of the queries performed on
two databases differing in at most one element will be
statistically indistinguishable. Moreover, minimising the
distortion of the outcome of the queries while ensuring
privacy is an important trade-off that governs DP. Al-

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 286

though DP is particularly suited for guaranteeing pri-
vacy in statistical computations involving a large num-
ber of parties, its effectiveness diminishes when a small
number of parties are involved in the computation. For
example, in a two-party computation, a DP mechanism
would ensure that the output would not be sensibly af-
fected when half of the data is changed. In this case, the
utility of the computed function can thus be drastically
impaired by the low number of parties. Precision guar-
antees in DP generally ensure that the probability of
a DP mechanism to return a given distorted output di-
minishes exponentially with its distance — or more gen-
erally, its negative utility — to the non-distorted output.
In contrast, our work is meant to make such distortion
guarantees hard, yielding non-probabilistic bounds.
Information Flow in Secure Multi-party Com-
putation. Recent works [17, 20, 21] have adapted tech-
niques stemming from QIF to the setting of SMC in
order to propose a model that allows us to reason about
the acceptable leakage. In this model, the set of parties
willing to compute a public function f is partitioned
into three sets: a set of attackers, a set of targets and
a set of spectators, holding the respective input vectors
xA, xT and xS. The attackers are those parties willing
to share the value of their inputs and to take advantage
of the public output of the computation f(xA,xT,xS)
in order to learn as much information as possible on
their targets’ inputs, while the remaining parties are
called spectators. From the point of view of the attack-
ers, the inputs xT and xS are unknown values and are
thus modelled as random variables XT and XS, further
deemed to be independent since targets and spectators
are supposed to be honest parties who provide their in-
puts without being influenced by any other information.
The attackers’ prior belief on those inputs will represent
the prior distributions πT and πS of those random vari-
ables. The output of the function f is then also consid-
ered as a random variable defined as O = f(xA, XT, XS).
The privacy of the targeted parties is then expressed as
the conditional entropy H(XT | xA, O) of the targeted
inputs given knowledge of the attackers’ inputs and the
conditional knowledge of the output. The choice of the
entropy measure H depends on the users’ privacy con-
cerns and is left general in [17].

Those works have also introduced some randomis-
ing mechanisms for enhancing the targeted parties’ en-
tropy. The main idea of their techniques is to randomise
the output O with a random noise Φ contained in a
restricted range so that the noise introduced by com-
puting O+ Φ does not exceed a given distortion bound.

Those methods take inspiration from the Laplace mech-
anism [6], in that a critical assumption of their work is
that this random noise Φ is independent of the function
output O. They then formally investigate the relation-
ships between H(XT | xA, O) and H(XT | xA, O + Φ).
They further design some methods for determining op-
timal probability distributions for this noise Φ in order
to maximise H(XT | xA, O + Φ).

In contrast, in this paper we will randomise the out-
put O of a secure computation with some noise which
does depend on the output O. We will show that a noise
that depends on O offers more flexibility that Algo-
rithms 1 and 2 use to produce privacy that cannot be
reached with a noise that is independent from O.

3 Objectives and Methodology
To motivate our objectives and convey our methodol-
ogy, let us consider the informal setting where a set of
parties wishes to collaboratively compute a public func-
tion f of their private inputs and we wish to protect
the privacy of a set of inputs Y . Let Z be the set of
all the other inputs of the computation. The aim is to
control and reduce the information leaked by the pub-
lic output f(Y,Z) on private inputs Y . We do this by
substituting the computation of f with that of a ran-
domised function g that approximates the output of f
while protecting the privacy of Y .

The rest of this section answers the following ques-
tions and, in doing so, explains our objectives and ap-
proach taken:
Q1 How should privacy be measured, i.e. how do we

quantify information leakage on private inputs Y ?
Q2 What utility metric should we use in order to assess

the output difference between functions f and g ?
Q3 What type of functions f and inputs Y and Z does

our developed approach support ?

A1: Privacy measure. We think that there is no
technical concept of privacy that is appropriate in all
contexts. Rather, mapping such concepts to use cases
through the latter’s requirements is more appropriate
— also when considering compliance with the EU Gen-
eral Data Protection Regulation (GDPR) [22], say.
Differential privacy and quantitative information flow
are examples of such measures of privacy. Although we
believe that pursuing research in both directions is cru-
cial, this work focuses on the quantitative approach and
information leakage will be measured by means of min-

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 287

entropy, which is widely used in QIF and cryptogra-
phy [4, 14, 23]. Our approach is not wedded to the lat-
ter: in Section 9 we experimentally demonstrate that
our mechanisms offer significant privacy gains when the
more general notion of g-entropy is used.
A2: Utility metric. How to measure the utility of a
randomisation mechanism will similarly depend on re-
quirements of the use case, and perhaps on user expec-
tations. Most research on DP and QIF uses a statis-
tical notion of some distance in order to characterise
utility, where high utility means that the distortion is
small with a high probability, and large distortions hap-
pen only with small probability [7, 24, 25]. We believe
that other utility metrics can be better suited to the re-
quirements and expectations of some use cases. Here, we
therefore focus on a particular utility metric which in-
tentionally differs from those used extensively in DP and
QIF. This will allow us to build mechanisms that ensure
that the distortion they introduce will never exceed a
given threshold. Our work should thus raise awareness
of the fact that the commonly accepted statistical no-
tion of utility used in DP and QIF is not universally the
best choice, and that the preference between different
utility measures is highly dependent on the nature of a
use case and its users.

Example 1 conveys that choosing a utility measure
is not straightforward and argues that the ability to
choose between a statistical utility measure and ours
based on guaranteed bounds of distortions is a benefit.

Example 1. Claire holds some private medical record
y and wishes to know whether she is infected by a seri-
ous disease. To do so, she must enter the computation
of a function f that involves private information z of
others. The result o = f(y, z) returned by that function
is an integer between 1 and 100. If the result is lower
or equal to 50, then Claire is not infected, otherwise she
is infected. The result of this function must be public,
as this serious disease is highly contagious. An analysis
reveals that result o leaks sensitive, private information
and that its publication would thus deeply invade her
privacy. Therefore, the proposal is to not publish o but
an integer approximation thereof. For this, the doctors
let Claire choose between two different solutions:

S1. Approximation o1 adds random noise to o such
that the probability of o1 is exponentially decreasing with
its distance to o: approximation o1 is equal to o with
probability 98%, but could be arbitrarily far from o with
a low, but non zero probability. For example, in the worst
case where o = 51, then o1 would be > 50 with a prob-

ability 99% and would thus lead to the correct diagnos-
tic. Probabilities are selected for illustrative purposes. In
contrast, if o = 100, then o1 would be > 50 with proba-
bility 99.99%. To summarise, this approximation yields
a correct diagnostic with a high probability of 99% in the
worst case, but would always be prone to misdiagnosis
with a probability of at least 0.01%.

S2. Approximation o2 adds random noise of −1, 0 or
+1 to the output o. In the worst case where o is equal to
50 or 51, this would thus introduce a high misclassifica-
tion rate of 33% and would not be reliable information.
However, in all the other cases, i.e. in 98% of the cases,
this randomisation method would yield a 100% accurate
diagnosis.

Which solution S1 or S2 should Claire choose? In
the first case, Claire has very high probability for a cor-
rect diagnosis overall, but she would always run a small
risk of misdiagnosis. In the second case, there is a small
risk that Claire would not have enough information to
have a reliable diagnosis, but she could have a 100% ac-
curate diagnosis in the majority of the cases.

We believe that answering this question might not be
straightforward for Claire and that her choice could de-
pend on the her own personality, background or personal
judgement. Offering Claire such a choice, by explaining
benefits and risks of each choice, is bound to lead to more
informed use of privacy-preserving technology.

The choice of utility metric can also depend on the usage
of the function to randomise. Statistical utilities, such
as the expected gain recalled in Definition 6 or those
used in DP for database access, have advantages when
repeated privacy-preserving computations are required,
so that closeness is achieved on average. A privacy bud-
get may be used to accommodate such compositions of
computation.

When computation is meant to be performed only
once on some inputs, e.g. in e-voting, the notion of
maximal distortion introduced in Definition 6 might be
preferable to a statistical one — e.g. Claire might ac-
tually prefer this. In Example 1, a better expected gain
would be achieved by o1 from solution S1 (98% against
33% for o2) while o2 from S2 would yield a better utility
in terms of maximal distortion (1 against 99 for o1).

Naturally, it would be of interest to derive solutions
that combine the benefits of statistical utilities with the
non-probabilistic guarantee of hard distortion bounds.
We mean to investigate this in future work and offer
some first insights on this in Section 9.

Extant works study the trade-off between utility
and privacy in a variety of scenarios [25, 26]. One can fix

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 288

a utility bound and then optimise for privacy. But giving
users the choice of a utility that is more tailored to their
needs might remove unnecessary utility constraints and
offer them even higher privacy. There should therefore
be value in offering such choice.

The second solution above might be prone to com-
position attack, e.g. invoking twice the same randomis-
ing technique to the same set of inputs would reveal
more information on secret inputs y. DP can offer such
robustness against composition attacks. We here work
in the setting of SMC and are interested in randomising
functions that are meant to be used in a unique compu-
tation that will not be repeated with the same inputs.
A3: Function and input types. Since our work
means to enhance the privacy in secure multi-party com-
putations, we follow the same assumptions that SMC
protocols are based on and so work with polynomial
functions on integer inputs and outputs.

While some of our results apply to the combinato-
rial concept of sparse functions, defined below, we aim
to generalise these results to wider classes of integer
functions. That doing this is feasible is corroborated by
experiments on non-sparse functions in Section 9, where
our approach also achieves high privacy gains.

4 Background
Quantitative Information Flow has provided a variety of
entropy measures. We will focus on min-entropy [4, 16]:

Definition 1. Let Y and O be discrete random vari-
ables with respective domains DY and DO. The condi-
tional Bayes vulnerability V(Y | O) of Y given O and
the conditional min-entropy H(Y | O) of Y given O are:

V(Y | O) =
∑
o∈DO

p(o) max
y∈DY

p(y | o)

H(Y | O) = − log V(Y | O)

The relationship between inputs and outputs of a ran-
domised process is formalised in QIF via the notion of
statistical channel [23], which we recall next.

Definition 2. Let DY and DO be finite sets. Let C be
a |DY | × |DO| matrix.
1. Then C is a channel matrix with input domain DY

and output domain DO if all its elements are ranged
between 0 and 1 and if the sum of each row equals 1.
For all y in DY and o in DO, element C[y, o] of the

channel matrix C represents p(o | y), and the triple
(DY ,DO, C) is called a channel.

2. Channel matrix C is deterministic if each row con-
tains exactly one 1, i.e. that each input y ∈ DY is
mapped to one output o ∈ DO with probability 1.

We now recall the notion of randomised mechanism [5].

Definition 3. Let DY and DO be finite sets. A ran-
domised function F with domain DY and output range
DO is a function F : DY −→ Ω(DO) whose inputs y
are elements of DY and which outputs a random vari-
able F (y) ranged in DO. For all y in DY and o in DO,
p(F (y) = o) denotes the probability that F (y) equals o.

We represent randomised functions as channel matrices,
to unify approaches and draw from results on channels.
A randomised function F : DY −→ Ω(DO) with domain
DY and range DO represents and can be represented as
a channel matrix between DY and DO: We can build
one from the other by setting C[y, o] = p(F (y) = o) for
all y ∈ DY and o ∈ DO. Based on this representational
equivalence, we define deterministic functions:

Definition 4. A deterministic function is a randomised
function whose channel matrix is deterministic.

We note that a set-theoretic function f : DY −→ DO
with domain DY and range DO represents and can be
represented as a deterministic function F : DY −→ DO.
This follows from the fact that we can build the one from
the other by noting the equivalence p(F (y) = o) = 1 iff
f(y) = o for all y ∈ DY and o in DO.

We next introduce the notions of image and inverse
image of a randomised function, used subsequently:

Definition 5. Let DY and DO be finite sets, y in DY ,
o in DO, and F : DY −→ Ω(DO) a randomised func-
tion. The image F∗(y) of y by F and the inverse image
F ∗(o) of o by F are:

F∗(y) = {o ∈ DY | p(F (y) = o) > 0}
F ∗(o) = {y ∈ DX | p(F (y) = o) > 0}

5 Information Flow of SMC
We now present our framework. Let n be a positive in-
teger and f : Zn −→ Z be an n-ary function where n
parties P1, · · · , Pn hold the respective private integer
inputs x1, · · · , xn. These parties wish to compute the

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 289

output value of the function evaluated on their private
inputs: o = f(x1, · · · , xn). Function f is public and the
output o can be opened publicly. But the values of the
secret inputs should remain private, apart from infor-
mation leaked by the public output o.

Such a functionality can be achieved by delegation
of this computation to a trusted third party, e.g. a secure
cloud environment; use of SMC; use of secure hardware
such as Intel’s SGX, and so forth. The work we present
here is agnostic to such choices as it focuses on the in-
formation leakage of the output o on the private inputs.

Assumption 1. Attacker Ann is an external observer
of this computation of o and aims to infer as much in-
formation as possible on some targeted private inputs.

Let S ⊆ J1;nK and let y = (xk)k∈S be a vector of the
inputs indexed by S. Let z = (xk)k∈J1;nK\S capture the
remaining inputs. Vector y represents those inputs that
Ann wishes to attack, i.e. Ann wants to learn as much
information as possible on y. We write z to denote the
remaining inputs. The pair x = (y, z) denotes any ele-
ment of the domain D = DY × DZ ⊂ Zn.

Below, we will write o = f(x) and o = f(y, z) inter-
changeably. For all y in DY , the partially evaluated func-
tion fy : DZ −→ DO satisfies ∀z ∈ DZ : fy(z) = f(y, z).

To Ann, the input vectors y and z are unknown.
This uncertainty is modelled by random variables Y ∈
Ω(DY) and Z ∈ Ω(DZ) and we set X = (Y,Z). We fur-
ther assume that Y and Z are independent, i.e. parties
holding y and z cannot choose their inputs depending
on the other parties’ inputs. This is a desirable prop-
erty in our use cases such as auctions and e-voting. The
random variable O = f(Y, Z) corresponds to the output
of f and has domain DO = {f(y, z) | y ∈ DY , z ∈ DZ}.

With this in place, we define a measure of privacy
for input Y : the information that attacker Ann learns on
her targeted input Y by learning the value of the output
O will be measured by H(Y) − H(Y | O). As H(Y) is a
constant, we will focus on computing the conditional
min-entropy of Y given O, expressed as H(Y | O).

6 Randomised Approximations
We now introduce randomised approximations, which
add noise to the output of a given function f in order
to improve the privacy of its inputs. We also introduce
the utility measure Λmax studied in this work.

Definition 6. Let DO′ be a subset of Z and G : D −→
Ω(DO′) a randomised function. Then:
1. G is a randomised approximation of f , denoted G ∝

f , if there is a randomised function H : DO −→
Ω(DO′), called output randomisation function, such
that: ∀x ∈ D : G (x) = H (f(x)). Moreover, G is a
deterministic approximation of f , denoted G ∝d f ,
if H is deterministic.

2. We define the maximal loss Λmax(G) as:

Λmax(G) = max
x∈D

o′∈G∗(x)

|f(x)− o′|

3. The expected gain Γexp(G) is defined in [27, 28] as:

Γexp(G) =
∑
o∈DO

p(o) · p(H (o) = o)

Note that for a guess domain W, the expected gain can
be further refined with a generic gain function g : W ×
DY −→ [0, 1], which we set to the identity gain function
gid in this work, where gid(w, y) = 1 if w = y and 0
otherwise. Function Γexp will be used in the evaluations
in Section 9. Our work focuses on designing algorithms
that are optimal when the utility is fixed in terms of
Λmax, i.e. we want to randomise the output of f while
imposing a maximal distortion threshold:

Definition 7. For ∆ in N, a randomised approximation
G of f is a randomised ∆-approximation of f , denoted
G ∝∆ f , if Λmax(G) ≤ ∆, i.e. if:

∀x ∈ D,∀o′ ∈ G∗(x) : |f(x)− o′| ≤ ∆

Moreover, G is a deterministic ∆-approximation of
f if G is deterministic, denoted G ∝d∆ f .

We provide theoretical bounds for the entropy gain that
randomised ∆-approximations offer:

Theorem 1. Given ∆ in N and a randomised ∆-
approximation G of f : H(Y | G (X)) ≥ H(Y | f(X)).

Proof. Since G is a randomised approximation of f ,
there is a randomised function H : DO −→ Ω(DO′)
such that: ∀x ∈ D : G (x) = H (f(x)). The function
f : DX −→ DO can be represented as a determinis-
tic function F : DX −→ Ω(DO), which in turn can be
represented as a channel matrix Cf with domain DX
and range DO. Let us also consider the channel matrix
CH of H . Then, by Definition 11 from [23], the ran-
domised function G represents a cascade of the channels
(DX ,DO,F) and (DO,DO′ ,H). The inequality then fol-
lows from the data-processing inequality for the min-
entropy in Theorem 5 of [23].

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 290

Theorem 2. Given ∆ in N and a randomised ∆-
approximation G of f we have:

H(Y | G (X)) ≤ H(Y | f(X)) + log(2∆ + 1)

Proof. Since G is a randomised approximation of f ,
there is a randomised function H : DO −→ Ω(DO′)
such that: ∀x ∈ D : G (x) = H (f(x)). Recall the ran-
dom variable O = f(X). Let us define the random
variable O′ = G (X) = H (O). By definition, we have
V(Y | O′) =

∑
o′ maxy p(y) p(o′ | y). The law of total

probabilities with conditional probabilities gives us

V(Y | O′) =
∑
o′

max
y

p(y)
∑
o

p(o′ | y, o) p(o | y)

Moreover, by defining G as the composition of f and
H , and as discussed in Theorem 4 from [23], we know
that for all y ∈ DY , o ∈ DO and o′ ∈ DO′ , if p(o | y) > 0
then p(o′ | y, o) = p(o′ | o). We thus have p(o′ | y, o) p(o |
y) = p(o′ | o) p(o | y) which ensures that

V(Y | O′) =
∑
o′

max
y

p(y)
∑
o

p(o′ | o) p(o | y) (1)

As the sum of positive numbers is not lower than
their maximum, we have

V(Y | O′) ≥
∑
o′

max
o

max
y

p(y) p(o′ | o) p(o | y)

≥
∑
o′

max
o∈H ∗(o′)

max
y

p(y) p(o′ | o) p(o | y)

since p(o′ | o) is non-zero only when o ∈H ∗(o′).
As the maximum of some elements is not lower than

their average, we have

V(Y | O′) ≥
∑
o′

1
|H ∗(o′)|∑

o∈H ∗(o′)

max
y

p(y) p(o′ | o) p(o | y)

As G is a randomised ∆-approximation of f , for all
o′ ∈ DO′ , we have H ∗(o′) ⊆ Jo′ −∆; o′ + ∆K and thus
|H ∗(o′)| ≤ 2∆ + 1. Thus:

V(Y | O′) ≥ 1
2∆ + 1

∑
o′∑

o∈H ∗(o′)

max
y

p(y) p(o′ | o) p(o | y)

The summation
∑
o′
∑
o∈H ∗(o′) ranges over all pairs

(o, o′) with o ∈H ∗(o′), i.e. o′ ∈H∗(o). So we have:

V(Y | O′) ≥ 1
2∆ + 1

∑
o ∑

o′∈H∗(o)

p(o′ | o)

max
y

p(y) p(o | y)

≥ 1
2∆ + 1

∑
o

max
y

p(y) p(o | y)

Taking − log on both sides proves the claim.

The following notions are useful for subsequent exam-
ples and for comparing our work to existing ones.

Definition 8. 1. We define the uniformly randomised
∆-approximation G uni

∆ of f by its output randomi-
sation function H uni

∆ for all o in DO and o′ in Z
as:

p(H uni
∆ (o) = o′) =

{
1

2∆+1 if |o− o′| ≤ ∆
0 otherwise

2. A randomised approximation G of f , characterised
by output randomisation H , is independent if H (o)
is independent of o for all o in DO.

3. An independently randomised approximation G opt
∆ of

f is optimal if for all independently randomised ∆-
approximations G of f , we have:

H(Y | G (X)) ≤ H(Y | G opt
∆ (X))

4. We define the ∆-truncation G trunc
∆ of f by its de-

terministic output randomisation htrunc∆ as:

∀o ∈ DO : htrunc∆ (o) = o− (o mod (2∆ + 1)) + ∆

Approximation G uni
∆ maps each output to all the val-

ues that are within a distance ∆ with equal probabil-
ity while G trunc

∆ gathers all the values of intervals of
length 2∆ + 1 around their central value with probabil-
ity 1. Extant work has focused on independently ran-
domised approximations of f . In particular, the work
in [17] proposes some methods for building indepen-
dently randomised approximations that are optimal.
However, making the output of a randomised approx-
imation H (o) independent of the concerned output o
is restrictive. We relax this assumption and build be-
spoke randomised approximations of f that randomise
the output depending on its value, which can lead to op-
timal schemes that indeed further enhance the inputs’
privacy.

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 291

7 Sparse Function Randomisation
We give more precise estimations of the entropy gain
that randomised approximations provide and design al-
gorithms that maximise the privacy of targeted inputs
Y . We do this for sparse functions, introduced next.

Definition 9. For ∆ in N, function f is ∆-sparse if:

∀y ∈ DY ,∀(z, z′) ∈ DZ × DZ :(
z 6= z′

)
=⇒

(
|f(y, z)− f(y, z′)| > ∆

)
Sparsity generalises the notion of injectivity: f is 0-
sparse iff for all y in DY , fy is injective. Also, for all
∆ in N, any (∆ + 1)-sparse function is ∆-sparse. We
give examples of sparse functions when y and z are 1
dimensional. Function f defined as f(y, z) = 2y + 4z
is 3-sparse. For all a 6= 0 in Z, function f defined as
f(y, z) = 2y + az is (|a| − 1)-sparse. Term 2y can be re-
placed by any function of y without affecting the spar-
sity of f . Sparsity of f may depend on the input do-
mains. Function f with f(y, z) = 2y+z2, e.g., is 4-sparse
for DZ = {z ∈ Z | z ≥ 2} but when DZ = Z we have
f(y, z) = f(y,−z) which violates sparsity. We can evalu-
ate the privacy of Y for sparse functions more precisely.

Assumption 2. Let G : D −→ Ω(DO′) be a randomised
∆-approximation of f and H : DO −→ Ω(DO′) its ran-
domised function. The random variable O′ is G (X) =
H (O) and f is assumed to be (2∆)-sparse.

We can characterise the information that G (X) leaks on
private input Y more precisely, which allows us to build
optimal approximations for maximising this entropy.

Theorem 3. We have:

V(Y | G (X)) =
∑
o′

max
o

p(o′ | o) max
y

p(y) p(o | y)

Proof. From Equation (1), we have:

V(Y | O′) =
∑
o′

max
y

p(y)
∑
o

p(o′ | o) p(o | y)

Now, p(o′ | o) 6= 0 only when o ∈H ∗(o′), and so:

V(Y | O′) =
∑
o′

max
y

p(y)
∑

o∈H ∗(o′)

p(o′ | o) p(o | y)

However, as G is a randomised ∆-approximation of
f , for all o′ in DO′ and o in H ∗(o′), we have |o− o′| ≤
∆. Thus, for all o1 and o2 in H ∗(o′), the triangular
inequality ensures that |o1−o2| ≤ |o1−o′|+|o2−o′| ≤ 2∆.

As f is (2∆)-sparse, we then get that for all y in DY ,
there is at most one z in DZ such that f(y, z) ∈H ∗(o′).
By definition of DO′ , for all o′ in DO′ and y in DY , there
exists a unique o in H ∗(o′) such that p(o | y) is non-
zero. Thus, the sum

∑
o∈H ∗(o′) can be substituted for

maxo∈H ∗(o′), which implies:

V(Y | G (X)) =
∑
o′

max
o∈H ∗(o′)

p(o′ | o) max
y

p(y) p(o | y)

Since p(o′ | o) is non-zero only when o is in H ∗(o′), this
concludes the proof.

We can simplify the expression of V(Y | G (X)) when Y
and Z are uniformly distributed.

Corollary 1. Let Y and Z be uniformly distributed.
Then we have:

V(Y | G (X)) = 1
|DY | · |DZ |

·
∑
o′

max
o

p(o′ | o)

Proof. From Theorem 3, we know that V(Y | G (X)) =∑
o′ maxo p(o′ | o) maxy p(y) p(o | y). By definition of

DO, for all o in DO this is a pair (y, z) in DY ×DZ with
f(y, z) = o such that p(o | y) = p(z). Since Y and Z are
uniform, this concludes the proof.

Deterministic G have a compact form of V(Y | G (X)):

Corollary 2. Let Y and Z be uniformly distributed and
G a deterministic approximation of f . Then we have:

V(Y | G (X)) = |DO′ |
|DY | · |DZ |

Proof. As G is deterministic, so is H by definition. For
all o′ in DO′ and o in H ∗(o′), we have p(o′ | o) =
p(H (o) = o′) and thus p(o′ | o) = 1 as H is deter-
ministic. By Corollary 1, the claim follows.

Based on Corollary 2, when inputs are uniformly dis-
tributed and G is deterministic, then H(Y | G (X)) is
maximised when the number of possible distorted out-
puts |DO′ | is minimised. This guides us in building a
randomised ∆-approximation G of f that maximises the
inputs’ privacy. Algorithm 1 builds GDET

∆ , a determin-
istic ∆-approximation of f that minimises the number
of possible distorted outputs |DO′ | under those assump-
tions. It explores possible outputs in DO in increasing
order, and lets the deterministic output randomisation
function hmerge as many of these outputs into the same
distorted output o′ as possible, given distortion bound
∆. Green lines use variables that are only used in the
proof of Theorem 4, not in the actual computation.

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 292

Algorithm 1 Deterministic output merging GDET
∆

Inputs: f : D −→ Z,DY ⊆ Z,DZ ⊆ Z,∆ ∈ N
Output: GDET

∆ : D −→ Ω(Z)

1: DO ← f(D) = {f(y, z) | y ∈ DY , z ∈ DZ}
2: o′ ← min(DO)−∆− 1
3: /∗ j ← 0 ∗/
4: for o ∈ DO in increasing order do
5: if o− o′ > ∆ then
6: o′ ← o+ ∆
7: /∗ cj ← o ∗/
8: /∗ j ← j + 1 ∗/
9: h(o)← o′

10: GDET
∆ ← h ◦ f

11: return GDET
∆

The complexity of this algorithm is dominated by
computing and sorting the output space DO, which is in
O(n logn) where n = |DY | · |DZ |. This computes deter-
ministic ∆-approximations of f that maximise the tar-
geted input’s privacy for uniformly distributed inputs:

Corollary 3 (of Theorem 4). Let Y and Z be uni-
formly distributed. Then:

G ∝d∆ f =⇒ H(Y | G (X)) ≤ H(Y | GDET
∆ (X))

Proof. This is based on the fact that Algorithm 1 min-
imises the number of possible distorted outputs. This
will be a direct implication of the next Theorem 4.

For any randomised approximation of f with uniformly
distributed inputs, GDET

∆ has the highest entropy for Y
over all possible randomised ∆-approximations of f :

Theorem 4. Let Y and Z be uniformly distributed over
their respective domains DY and DZ . Then we have:

H(Y | G (X)) ≤ H(Y | GDET
∆ (X))

Proof. Let C be the set of variables cj created in Line
7 of Algorithm 1. Each time this line is executed, a new
distorted output o′ is created in Line 6. By Corollary
2, V(Y | GDET

∆ (X)) equals |C|/(|DY | · |DZ |). We show
that the vulnerability V(Y | G (X)) of an arbitrary ran-
domised ∆-approximation of f is greater or equal to
that. For all j in J1; |C|K, set Cj = Jcj −∆; cj + ∆K.
We first show that for all j in J1; |C| − 1K, we have
maxCj < minCj+1. Line 6 ensures that h(cj) = cj + ∆,
where h is the deterministic output randomisation func-
tion used in Algorithm 1. And cj+1 is created when the
test in Line 5 succeeds. Thus, cj+1 − h(cj) > ∆ which

implies cj+1 − (cj + ∆) > ∆ and so cj+1 − cj > 2∆,
which ensures that maxCj < minCj+1. So (Cj)1≤j≤|C|
is a collection of disjoint subsets of Z. By Corollary 1:

V(Y | G (X)) = 1
|DY | · |DZ |

·
∑
o′

max
o

p(o′ | o)

≥ 1
|DY | · |DZ |

·
|C|∑
j=1

∑
o′∈Cj

max
o

p(o′ | o)

Fixing a value of o in DO does not decrease this
vulnerability, thus we may set o = cj so that:

V(Y | G (X)) ≥ 1
|DY | · |DZ |

·
|C|∑
j=1

∑
o′∈Cj

p(o′ | O = cj)

≥ 1
|DY | · |DZ |

·
|C|∑
j=1

p(O′ ∈ Cj | O = cj)

As G is a ∆-approximation of f , for all j in J1; |C|K we
have H∗(cj) ⊆ Cj , and so p(O′ ∈ Cj | O = cj) = 1.

We illustrate the privacy gains that this optimal ran-
domisation GDET

∆ offers, and compare it to the inde-
pendently randomised approximations in [17].

Example 2. Let Y and Z be 1-dimensional and uni-
formly distributed over J1; 30K and a in J0; 9K. Function
f : Z × Z −→ Z with f(y, z) = 3y2 − ayz + 2y − 4z
is 3-sparse and thus 2∆-sparse for ∆ = 1. We com-
pare the efficiency of our randomised function GDET

∆
to methods G uni

∆ ,G opt
∆ and G trunc

∆ where G opt
∆ refers to

an optimal independently randomised ∆-approximation
of f as introduced in [17]. Figure 1 shows the entropies
H(Y | f(X)) and H(Y | G (X)) for the aforementioned
functions G , which are all greater than H(Y | f(X)),
consistent with Theorem 1. Also, the privacy gains that
those methods offer do not exceed log(2∆ + 1), consis-
tent with Theorem 2. Methods G uni

∆ , G opt
∆ , and G trunc

∆
produce comparable entropies. But GDET

∆ offers an addi-
tional and significant privacy gain compared to the pre-
vious methods. By Theorem 4, GDET

∆ has the greatest
entropy of all randomised ∆-approximations.

8 Non-Uniform Priors
We now design a deterministic approximation for sparse
functions with non-uniform inputs that maximises the
targeted input’s privacy.

Assumption 3. In this section, inputs Y and Z are
non-uniform, πY ∈ Ω(DY) and πZ ∈ Ω(DZ) denote their

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 293

0 2 4 6 8
0

0.5

1

1.5

a

en
tr

op
y

H(Y | f(X))
H(Y | G uni

∆ (X))
H(Y | G opt

∆ (X))
H(Y | G trunc

∆ (X))
H(Y | G DET

∆ (X))

Fig. 1. Privacy gains of G DET
∆ compared to those of other ran-

domised ∆-approximations.

respective probability distributions, the prior knowledge
that an external observer has on the inputs Y and Z.

Our aim can be phrased as this optimisation problem:

maximise
G∝d

∆f
H(Y | G (X)) (OPT)

In words, given a function f : D −→ DO and a distortion
bound ∆ in N, we want to find a deterministic approx-
imation G of f which maximises H(Y | G (X)). This
involves building a (deterministic) function h such that
G = h ◦ f will be a deterministic ∆-approximation of f
that best protects the inputs’ privacy. To this end, let
(ZDO)∆ denote the set of functions h : DO −→ Z which
introduce a distortion bounded by ∆ and [ZDO]∆ as set
of increasing functions in (ZDO)∆:

(ZDO)∆ = {h ∈ ZDO | ∀o ∈ DO : |h(o)− o| ≤ ∆}

and [ZDO]∆ is the set of those h in (ZDO)∆ such that
o1 ≤ o2 implies h(o1) ≤ h(o2) for all (o1, o2) in (DO)2.

By Theorem 3 and as G ought to be deterministic,
our optimisation problem OPT can be rephrased as:

minimise
h∈(ZDO)∆

∑
o′

max
o∈h−1(o′)

max
y

p(y) p(o | y)

To reduce the search space, we prove that any func-
tion in (ZDO)∆ can be made increasing without increas-
ing the resulting vulnerability:

Theorem 5. For all h in (ZDO)∆, there is a k in
[ZDO]∆ such that V(Y | k(O)) ≤ V(Y | h(O)).

This theorem, proved in Appendix A, reduces the search
space of OPT via an equivalent optimisation problem:

minimise
h∈[ZDO]∆

∑
o′

max
o∈h−1(o′)

max
y

p(y) p(o | y) (2)

We can use this to design a dynamic algorithm for
building GDYN

∆ as a deterministic ∆-approximation of f
that maximises the inputs’ privacy over all deterministic
approximations. The intuition of that algorithm is to
build a hash map d such that for all o in DO, entry d[o]
equals maxy p(y) p(o | y). We will then build an array
A indexed from 1 which contains the sorted elements of
DO. We will build an array S indexed from 1 such that
for all j in J1; |DO|K, we have:

S[j] = min
h∈[ZDO]∆

∑
o′

max
o∈h−1(o′)
o≤A[j]

d[o]

Note that S[0] is initialised to 0. We build array S by
visiting all the outputs in increasing order, such that at
the end of the algorithm, s[|DO|] will contain the min-
imal vulnerability that can be achieved by a determin-
istic ∆-approximation of f . The idea is here that each
value o1 in DO can be mapped with other values o2 into
the same output o′. As h is assumed to be increasing, all
values of o that are merged into the same output o′ need
to be consecutive with respect to the ordered set DO.
Let j be in J1; |DO|K. We will thus allow value A[j] to
be merged with a number of its predecessors. We record
in the cell array N [j] the index of the smallest neigh-
bour of A[j], i.e. the smallest value of i such that A[i]
has to be merged with A[j] in order to achieve S[j]. We
note that A[j]−A[N [j]] cannot exceed 2∆ as we need to
build a ∆-approximation of f . This design is shown in
Algorithm 2 and illustrated in Figure 2. The number of
iterations of the inner loop in Line 16 for dynamically
building the elements of arrays S and N is bounded by
constant 2∆. Thus the complexity of this algorithm is
also dominated by computing and sorting the output
space DO, which is in O(n logn) where n = |DY | · |DZ |.

The randomisation that this algorithm produces is
the best deterministic ∆-approximation of f , i.e. GDYN

∆
is a solution of the optimisation problem OPT:

Theorem 6. For all randomised ∆-approximation G of
f with G ∝d∆ f : H(Y | G (X)) ≤ H(Y | GDYN

∆ (X)).

Proof. Let d be a hash map with d[o] = maxy p(y) p(o |
y) for all o in DO. As f is assumed to be ∆-sparse for
some ∆ in N, for all y in DY , fY is injective and for all z
in DZ we have that p(O = f(y, z) | y) = p(z). Moreover,
for a given j in J1; |DO|K, Lines 13 to 23 of Algorithm 2

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 294

Algorithm 2 Construction of the optimal deterministic
∆-approximation GDYN

∆
Inputs: f : D −→ DO,∆ ∈ N, πY ∈ Ω(DY), πZ ∈

Ω(DZ)
Output: GDYN

∆ : D −→ Ω(Z)

1: DO ← f(D) = {f(y, z) | y ∈ DY , z ∈ DZ}
2: d← {o : 0 | o ∈ DO}
3: for (y, z) ∈ DY × DZ do
4: o← f(y, z)
5: d[o]← max(d[o], p(y) ∗ p(z))
6: A← DO as a sorted array, indexed from 1
7: /∗ dynamically build S and N ∗/
8: S[0] = 0
9: jmin = 1

10: for j in J1; |DO|K do
11: while A[j]−A[jmin] > 2∆ do
12: jmin ← jmin + 1
13: m← d[A[j]]
14: smin ← m+ S[j − 1]
15: nmin ← j

16: for i in {j − 1, · · · , jmin} in (−1) steps do
17: m← max(m, d[A[i]])
18: s← m+ S[i− 1]
19: if s < smin then
20: smin ← s

21: nmin ← i

22: S[j]← smin
23: N [j]← nmin

24: /∗ reconstruct output randomisation function h ∗/
25: j ← |DO|
26: while j > 0 do
27: n← N [j]
28: o′ ← b(A[n] +A[j])/2c
29: for i in Jn; jK do
30: h[i]← o′

31: j = n− 1
32: return GDYN

∆ where GDYN
∆ = h ◦ f

explicitly solve an optimisation problem whose optimal
value is assigned to S[j], specified by:

minimise
jmin≤i≤j

(S[i− 1] + max
i≤l≤j

d[A[l]]) (3)

where jmin is the minimal index with A[j]− A[jmin] ≤
2∆, i.e. A[jmin] is the smallest element that an output
randomisation function h can merge with j.

G DET
∆︷︸︸︷ 0.8︷ ︸︸ ︷ 0.9︷ ︸︸ ︷ ∑

=1.7︷︸︸︷
d : 0.1 0.2 0.8 0.9 0.3 0.4︸︷︷︸

G DY N
∆

︸ ︷︷ ︸
0.2

︸ ︷︷ ︸
0.9

︸ ︷︷ ︸
0.4

︸︷︷︸∑
=1.5

Fig. 2. Run of G DET
∆ and G DY N

∆ on example array d for ∆ =
1. In red, G DET

∆ minimises the number of distorted outputs o′

while G DY N
∆ in green minimises

∑
o′

maxo∈h−1(o′) d[o]. Braces
represent functions h and we display each maxo∈h−1(o′) d[o].

Let k be in J1; |DO|K and define the property Pk as:

Pk ≡

S[k] = min
h∈[ZDO]∆

∑
o′

max
o∈h−1(o′)
o≤A[k]

d[o]

 (4)

We will prove Pk by induction on k. We know that P1
holds. Indeed, as we have set S[0] = 0, Equation (3) en-
sures that the algorithm will set S[1] = A[1]. Moreover,
the right hand side of Equation (4) also equals A[0] as
its innermost max contains only this element. For the
inductive step, let j be in J2; |DO|K and assume that Pk
holds for all k in J1; j − 1K. To prove Pj , we need to con-
sider the choice of the value of h(A[j]). Let us take h
in [ZDO]∆. As h is increasing, the value of h(A[j]) can
either be greater than that of h(A[j − 1]), or equal to
h(A[l]) for all l in Ji; j − 1K such that A[j] − A[i] ≤ 2∆.
Let i be minimal in J1; jK with h(A[j]) = h(A[i]). Then,
by distinguishing the case where o′ = h(A[j]), we have∑
o∈h−1(o′)
o≤A[j]

d[o] = max
o∈h−1(o′)

d[o] +
∑
o′

max
o∈h−1(o′)
o≤A[i−1]

d[o]

= max
A[i]≤o≤A[j]

d[o] +
∑
o′

max
o∈h−1(o′)
o≤A[i−1]

d[o]

In this case, choosing an h in [ZDO]∆ is equivalent to
choosing the aforementioned value of i, and to then se-
lect h1 in [ZD(i)]∆ where D(i) = {o ∈ DO | o ≤ A[i− 1]}.
The right hand side of Equation (4) thus becomes:

min
1≤i≤j

A[j]−A[i]≤∆

min
h∈[ZD(i)]∆

 max
A[i]≤o
o≤A[j]

d[o] +
∑
o′

max
o∈h−1(o′)
o≤A[i−1]

d[o]


which can be rewritten as:

min
1≤i≤j

A[j]−A[i]≤∆

 max
A[i]≤o
o≤A[j]

d[o] + min
h∈[ZD(i)]∆

∑
o′

max
o∈h−1(o′)
o≤A[i−1]

d[o]


By definition of jmin and assumption on S[i − 1], this
expression solves the optimisation problem in (3).

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 295

0 2 4 6 80

0.2

0.4

0.6

0.8

1

1.2

1.4

a

en
tr
op

y

H(Y | f(X))
H(Y | G trunc

∆ (X))
H(Y | GDET

∆ (X))
H(Y | GDYN

∆ (X))

Fig. 3. Privacy gains for G DY N
∆ compared to those of other de-

terministic ∆-approximations.

We illustrate the privacy gains that GDYN
∆ provides as

compared to other deterministic approximations of f .

Example 3. Reconsider Example 2 with the same val-
ues for a, ∆ = 1, and f , but inputs Y and Z now follow a
linear distribution over J1; 30K. So f is 2∆-sparse for all
a in J0; 9K. As G uni

∆ and G opt
∆ are not deterministic, we

compare the efficiency of our approximation GDYN
∆ to

the deterministic randomisations G trunc
∆ introduced in

Definition 8 and GDET
∆ . Figure 3 shows the entropies

H(Y | f(X)) and H(Y | G (X)) for the different ran-
domised functions G previously mentioned.

We note that GDYN
∆ offers a significant privacy gain

compared to G trunc
∆ , and that it also provides a slight

privacy gain compared to GDET
∆ . By Theorem 6, GDYN

∆
produces the highest possible entropy of all deterministic
∆-approximations of f .

9 Evaluation
Since we also want to build randomisations that are ef-
fective in more general and practical situations, beyond
the theoretical scope of our results, we now compare the
effectiveness of our approximations to other determinis-
tic and randomised approximations under non-uniform
prior beliefs. We test our approach against sparse and
non-sparse functions and report experimental results on
the privacy gains for the more general g-entropy.

We conduct a series of four experiments. A summary
of the parameters chosen in those experiments is seen in
Table 1. Each experiment selects a polynomial f in 2 or
3 variables. We denote targeted variables by y, y1 and
y2 and spectators variables by z, z1 and z2. Experiments
E1 and E2 have functions of 1 or 2 targeted inputs and
1 spectator input, experiments E3 and E4 have func-
tions of 1 targeted input with 2 spectators inputs. The
selected polynomials are of the following forms:
E1 f(y, z) = ay2 + bz2 + cyz + dy + ez

E2 f(y1, y2, z) = ay2
1 + by2

2 + cz2 +dy1y2 +ey1z+fy2z+
gy1 + hy2 + iz

E3 f(y, z1, z2) = ayz1 + byz2 + cz1z2 + dy + ez1 + fz2
E4 f(y, z1, z2) = ay2 + bz2

1 + cz2
2 +dyz1 + eyz2 +fz1z2 +

gy + hz1 + iz2

where a, b, c, d, e, f, g, h and i represent generic coeffi-
cients. Each experiment performs 1000 iterations. Each
such iteration randomly samples a set of coefficients
from a range specified in Table 1, determining the poly-
nomial on which we performed our privacy analyses.
Constant terms in polynomials are ignored since they
do not affect the targeted entropy. The generic forms
of the functions introduced earlier are summarised by
their arguments and the degree of the polynomial in
Table 1, which also specifies the input ranges used, the
distortion bound, the entropy for which the privacy of
the targeted inputs is evaluated, and whether the poly-
nomial is sparse – and if so, for which value of ∆.

Experiment E4 measures privacy via the general no-
tion of g-entropy introduced in [16] and uses gain func-
tion g2 that measures the information gained on the
parity of a targeted input. For input Y ranged in DY ,
function g2 : {even, odd} × DY −→ {0, 1} is defined as
g2(w, y) = 1 if y has parity w, and 0 otherwise. Inputs
are assigned a non-uniform prior probability: for each
iteration and input, we drew a probability distribution
from a symmetric Dirichlet distribution of concentra-
tion parameter 1 on its range. Each analysis compares
the privacy gains of our new methods GDET

∆ and GDYN
∆

to other approximations: G uni
∆ that adds uniformly dis-

tributed noise, G trunc
∆ that truncates the output, and

the optimal independent randomisation G opt
∆ in [17].

We also evaluate how randomising mechanisms
widely used in DP would perform under our utility and
privacy metrics. The intent is not to make an exhaus-
tive comparison between methods that are intrinsically
aimed at solving different problems, but to demonstrate
that there might not exist a method of privacy preser-
vation that is always best in all use cases, as suggested
in Example 1. To that end, we introduce the discrete

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 296

Table 1. Experiment parameters.

Experiment E1 E2 E3 E4
Arguments (y, z) (y1, y2, z) (y, z1, z2) (y, z1, z2)
deg(f) 2 2 1+mixed 2

Coefficients J1; 50K J1; 20K J1; 20K J1; 20K
Inputs J2; 50K J1; 40K J1; 20K J1; 20K
Sparsity 7 5 no no
Bound ∆ 3 1 1 1
Entropy min min min g2

Table 2. Comparison between average resulting entropy H(Y |
G (O)) of different randomising methods G .

Experiment E1 E2 E3 E4
f 0.0095 0.2155 0.4001 0.0547

G uni
∆ 0.0320 0.4356 0.7815 0.1265

G trunc
∆ 0.0321 0.4361 0.7819 0.1261
G opt

∆ 0.0322 0.4374 0.7889 0.1276
G lap

∆ 0.0207 0.3879 0.6897 0.1136
G DET

∆ 0.0546 0.4799 0.8069 0.1473
G DY N

∆ 0.0561 0.5452 0.8823 0.1638

equivalent of the truncated Laplace mechanism G lap
∆ .

It generates an additive noise that follows the discrete
analogue of the Laplace distribution [29] which is then
truncated to respect the maximal distortion bound ∆.
Parameter p will be set to 0.3 in our experiments.

Definition 10. The Laplace ∆-approximation G lap
∆ of

f with parameter p is defined by its output randomisa-
tion function H lap

∆ for all o in DO and o′ in Z as:

p(H lap
∆ (o) = o′) =


1
s ·

1−p
1+p if δ = 0

1
2s ·

1−p
1+p · p

δ if 0 < δ ≤ ∆
0 otherwise

where s =
∑∆
k=0

1−p
1+p · p

k and δ = |o− o′|.

As for our experimental results, we compute the av-
erage entropy produced by each of the randomisations
over the 1000 iterations for each of the four experiments,
and display the results in Table 2. Figure 4 plots a set of
20 data points randomly sampled from the 1000 itera-
tions of experiment 1, sorted by their value of H(Y | O),
illustrating the performance of those approximations.
Similar figures are drawn for experiments E2, E3 and
E4 in Appendix B in the respective Figures 8, 9 and 10.

0 5 10 150

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

iteration

en
tr
op

y

H(Y | f(X))
H(Y | G uni

∆ (X))

H(Y | G lap
∆ (X))

H(Y | G trunc
∆ (X))

H(Y | G opt
∆ (X))

H(Y | G DET
∆ (X))

H(Y | G DY N
∆ (X))

Fig. 4. Experiment E1: Privacy gains offered by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

Experiments E1 and E2 empirically demonstrate
that GDYN

∆ and GDET
∆ produce a significantly higher

min-entropy than all the other deterministic and ran-
domised ∆-randomisations that we have collected in the
literature, empirically extending the scope of Theorem
6.

Experiment E3 and E4 show that GDYN
∆ and GDET

∆
do offer some privacy gains compared to all the other
∆-randomisations even in the case where the function
to randomise is not sparse. This corroborates that the
randomisations we developed in this paper also seem
to offer effective privacy gains beyond the scope of our
theoretical results for sparse functions. Experiment E4
also shows that the privacy gains of our randomisations
are effective not only for the min-entropy but also for
the g-entropy as a utility measure of privacy.

We note that the naive randomisation G uni
∆ already

provides decent privacy gains compared to the original
entropy H(Y | O). The optimal randomisation for inde-
pendent noise G opt

∆ naturally always produces higher en-
tropy than G uni

∆ and G lap
∆ . As G trunc

∆ adds noise that is
dependent on the output, it occasionally provides more
privacy than G opt

∆ . The truncated ∆ Laplace mecha-
nism G lap

∆ is the method which yields the smallest pri-
vacy gain. This is natural as this mechanism provides a
stronger utility guarantee which combines a statistically
small distortion with a maximal distortion bound.

In this section, we studied a variety of different
mechanisms G in order to evaluate the algorithms GDET

∆
and GDYN

∆ that we introduced in this work. Privacy
was measured in terms of min-entropy and g-entropy,

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 297

Table 3. Comparison between average expected gain Γexp(G) of
different randomising methods G .

Experiment E1 E2 E3 E4
G uni

∆ 0.143 0.333 0.333 0.333
G trunc

∆ 0.140 0.326 0.324 0.315
G opt

∆ 0.118 0.310 0.301 0.333
G lap

∆ 0.545 0.625 0.625 0.625
G DET

∆ 0.015 0.238 0.270 0.194
G DY N

∆ 0.815 0.319 0.290 0.399

while utility was measured in terms of maximal loss
Λmax introduced in Definition 6. More precisely, all of
the mechanisms evaluated here were tailored to provide
the utility guarantee Λmax(G) ≤ ∆ for a certain bound
∆. We are also interested in empirically evaluating the
utility of our randomising algorithms with respect to
other popular utility notions, such as the expected gain
Γexp defined in Definition 6, where we would expect our
algorithms to perform worse than e.g. G lap

∆ which is de-
signed to provide strong guarantees in terms of Γexp.
We thus ran another set of 1000 iterations of our four
experiments and we report in Table 3 the expected gain
Γexp(G) averaged over all iterations for the same set of
mechanisms G . We plot the values of Γexp(G) for the
first 20 iterations of experiment E1 and E2 in Figures 5
and 6 respectively. The results of E3 and E4 are similar
to that of E2 and are displayed in Appendix C.

0 5 10 150

0.2

0.4

0.6

0.8

1

iteration

en
tr
op

y

Γexp(G uni
∆)

Γexp(G lap
∆)

Γexp(G trunc
∆)

Γexp(G opt
∆)

Γexp(GDET
∆)

Γexp(GDYN
∆)

Fig. 5. Experiment E1: Expected gain provided by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

0 5 10 150

0.2

0.4

0.6

0.8

1

iteration

en
tr
op

y

Γexp(G uni
∆)

Γexp(G lap
∆)

Γexp(G trunc
∆)

Γexp(G opt
∆)

Γexp(G DET
∆)

Γexp(G DY N
∆)

Fig. 6. Experiment E2: Expected gain provided by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

As expected, we can see that G lap
∆ performs better

than our algorithms in terms of expected gain in ex-
periments E2, E3 and E4. However, we can notice that
GDYN

∆ produces a significantly higher Γexp than G lap
∆ in

experiment E1. This is an interesting result, since the
design of G lap

∆ itself guarantees a certain utility value
of Γexp. On the other hand, GDYN

∆ is only designed
to maximise the resulting entropy and still provides a
higher expected gain than G lap

∆ . Naturally, raising the
value of the parameter p of the ∆-Laplace approxima-
tion would increase its expected gain, but would also
further decrease the resulting privacy gain. It would be
of interest to study the influence of the value of ∆, the
type of function, and the type of inputs on the effective-
ness of our algorithms GDYN

∆ in terms of expected gain,
a topic that we mean to study in the future.
Non-polynomial functions. Although our functions
for the experiments E1 to E4 encompass a large variety
of low degree polynomial functions, real world applica-
tions of SMC might involve polynomials of very high
degree, or more generally interactive functions, such as
the max function in auctions. Therefore we now perform
two experiments on non-polynomial functions. Experi-
ments E5 and E6 are described as follows. We place
ourselves in the setting of Experiment E1 and we sam-
ple n = 5 functions f0, · · · , f4 of the form of E1. We
then build the following functions:
E5 f(y, z) = max{fj(y, z) | 0 ≤ j < n}
E6 f(y, z) = fj(y, z) where j = ((y + z) mod n)

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 298

where E5 computes the maximal output of the n func-
tions fj while E6 interactively selects the output of one
of the fj depending on the values of y and z. We ran
20 iterations of experiment E5 and we experimentally
demonstrate in Figure 7 that our algorithms also pro-
vide significant privacy gains on those non-polynomial
functions compared to other existing randomising mech-
anisms. A similar graph is drawn for experiment E6 in
Figure 13 in Appendix D.

0 5 10 150

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

iteration

en
tr
op

y

H(Y | f(X))
H(Y | G uni

∆ (X))

H(Y | G lap
∆ (X))

H(Y | G trunc
∆ (X))

H(Y | G opt
∆ (X))

H(Y | G DET
∆ (X))

H(Y | G DY N
∆ (X))

Fig. 7. Experiment E5: Privacy gains offered by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

10 Discussion and Future Works
Deceitful adversaries. Recall the observer Ann, ex-
ternal to the computation of f , who wants to learn
a private input y given the knowledge of the output
o = f(y, z). Let us now assume that Ann is a party in
this computation who holds a private input a and enters
the computation of o = f(a, y, z). Ann can then actively
choose her value of a to maximise what she can learn
about the value of y.

In the setting of Example 2, let Ann be a party.
Ann knows her own input value x = a and can control
this value. The randomised approximations G of f are
then implicitly parametrised by a. In such settings, a
randomised approximation G of f is no longer repre-
sented by its output randomisation function H only,
as the information that Ann learns on y from output
G (a, y, z) would not only depend on the value of f(y, z),
but also on the value of a. Instead, we ought to repre-

sent G as G (a, y, z) = J (f(a, y, z), a) where J would
play the role of an output randomisation function, with
an additional dependency on the attacker’s input a.
Independence of inputs. In this work, we assumed
that targeted and spectators’ inputs Y and Z were in-
dependent. However, although targets and spectators
would not share information before entering a computa-
tion, their inputs might be correlated or bound to some
constraint that would make them dependent on each
other. Consider, for example, two competing companies
that are willing to enter their revenues into some bench-
marking analysis but do not want to share information
between each other. Their revenues might not be com-
pletely independent as they would both be influenced
by common factors such as current supply and demand.
In such cases, it would be more appropriate to replace
prior probabilities p(y) and p(z) by joint probabilities
p(y, z) represented as an |DY | × |DZ | matrix.

We could adapt our results to the assumption that
Y and Z are not independent by replacing p(y) ∗ p(z) in
Line 5 of Algorithm 2 with the joint probability p(y, z).
As the independence assumption is only used in the con-
struction of the hash map d, this substitution would ex-
tend the validity of our theoretical results of Section 7
and 8 to non-independent inputs.

Using other privacy measures could also help us
to integrate this assumption. For example, the min-
capacity [14, 23], defined as the maximal multiplicative
Bayes leakage over all priors on the secret, would be ex-
pressed as

∑
o maxy p(o | y) and would be independent

of the prior distribution for Y . Thus, Algorithm 1 would
apply for any joint distribution for Y and Z given that
the marginal distribution of Z is uniform.
Limitations and applicability. Secure multi-party
computation is an active field of research, but real world
and industrial deployments of SMC are still limited
[30, 31]. However, we believe that our approach could
be useful in future applications of SMC, even when re-
stricted to low degree polynomial functions.

Federated learning [32] enables parties to compute
machine learning algorithms on their private data in
a decentralised manner. A server iteratively computes
some linear combination of some data that has been lo-
cally aggregated by the parties and returns the output
to the parties, as described in Algorithm 1 in [32]. Some
works have studied the possibility to replace the server
by an SMC protocol in order to compute the secure ag-
gregation [33]. One could thus ask how much informa-
tion about their private inputs is leaked by the output
of those linear combinations. Our experiments E1 to E4

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 299

suggest that our approach could improve the privacy of
inputs for such low degree polynomials.

Experiments E5 and E6 show the effectiveness of
our approach on interactive functions that are non-
polynomial, suggesting that our algorithms could be ap-
plied to more general functions in the future.

For example, some works have focused on privacy
preserving logistic regressions [34]. It would be of inter-
est to apply our randomising mechanisms in this sce-
nario. Each party would hold an input (xi, yi), all to-
gether forming vectors x and y. The output of the sim-
plest linear regression with ordinary least squares would
be β = cov(x,y)

var(x) and α = ȳ − βx̄. The natural problem
that arises here is that of handling floating point values
in our model.

Another example where randomised mechanisms
have been studied is that of auctions [7]. In the setting
of digital goods auction, each party Pj bids the highest
price pj at which she is ready to pay a given item. The
output of the auction is the price that maximises the
sellers’ benefits, i.e. vk where k = argmaxj(pj ∗ j) and
we assume that the bids p1, · · · , pn are ordered in de-
scending order. Randomising mechanisms from DP exist
that protect the bidders’ inputs privacy [7] and it would
be interesting to compare the results with our approach.

Due to the combinatorial essence of our approach,
our experiments currently rely on a small number of in-
puts, typically lower than 5. It would be interesting to
explore some methods to scale our algorithms in the fu-
ture. However, we believe that focusing on a small num-
ber of inputs is of particular interest in many practical
situations. Indeed, some of the few secure computations
that have been deployed in real life to date involved
a large number of parties but relied on a very limited
number of servers, on which the secure computation was
executed [30]. Our approach could thus be effective in
computations involving a larger number of parties by
being applied to the servers’ inputs and output.

Moreover, Differential Privacy is not suited for com-
putations with a limited number of inputs. For example,
a differentially private mechanism used on a computa-
tion involving two inputs would ensure that the output
distribution is unaffected if half of the inputs is changed,
which would naturally yield an extremely poor utility.
In such cases where DP is not applicable, our approach
could be a viable privacy-enhancing alternative.

Also due to efficiency reasons, our current experi-
ments involved small input spaces. Research in this di-
rection has produced closed-form formulas for comput-
ing the privacy of inputs in affine computations, which
scale to arbitrarily large input spaces [21], and we would

like to take advantage of such findings to make our anal-
yses scalable in the future.

11 Conclusion
Controlling the confidentiality of secret inputs when
performing some computations on such private data is
a well studied paradigm. Differential Privacy provides
techniques that enhance the participants’ privacy by
randomising the output of a computation, while guaran-
teeing that distorted outputs will be statistically close to
the intended output. However, certain use cases may not
tolerate distortions that exceed a given threshold at all,
even with low probability. Therefore recent works have
investigated the privacy gains that can be obtained by
randomising a function with an additive noise, indepen-
dent of the output of the function, and bounded by a
maximal distortion threshold.

In this paper, we developed randomising mecha-
nisms that can distort the output of a function de-
pendent on its value, while guaranteeing that the dis-
tortion these mechanisms introduce does not exceed a
given threshold. We have formalised this concept by
introducing the notion of randomised approximation.
We formally investigated the privacy gains that ran-
domised approximations can offer, under a given distor-
tion bound. Then we presented algorithms for building
specific deterministic approximations and proved that
these approximations maximise the targeted inputs’ en-
tropy for so called sparse functions. Our experiments,
for both min-entropy and g-entropy, showed that these
optimal mechanisms offer additional privacy gains for
non-sparse functions and non-uniform input distribu-
tions as well, when compared to mechanisms that add
noise independently of the output.
Acknowledgements. This research project was sup-
ported by the UK EPSRC grants EP/N020030/1 and
EP/N023242/1.
Source code. The source code of our evaluative ex-
periments described in Section 9 is publicly available at
https://github.com/pahfat/PoPETs2020.

https://github.com/pahfat/PoPETs2020

Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations 300

References
[1] Andrew Chi-Chih Yao. How to generate and exchange se-

crets. In Foundations of Computer Science, 1986., 27th
Annual Symposium on, pages 162–167. IEEE, 1986.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson.
Completeness theorems for non-cryptographic fault-tolerant
distributed computation. In Proc. of the twentieth annual
ACM symposium on Theory of computing, pages 1–10.
ACM, 1988.

[3] Geoffrey Smith. On the foundations of quantitative infor-
mation flow. In International Conference on Foundations
of Software Science and Computational Structures, pages
288–302. Springer, 2009.

[4] Christian Cachin. Entropy measures and unconditional secu-
rity in cryptography. PhD thesis, Swiss Federal Institute of
Technology Zurich, 1997.

[5] Cynthia Dwork. Differential privacy: A survey of results. In
International Conf. on Theory and Applications of Models of
Computation, pages 1–19. Springer, 2008.

[6] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data anal-
ysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

[7] Frank McSherry and Kunal Talwar. Mechanism design via
differential privacy. In Foundations of Computer Science,
2007. FOCS’07. 48th Annual IEEE Symposium on, pages
94–103. IEEE, 2007.

[8] Andrew C Yao. Protocols for secure computations. In
Foundations of Computer Science, 1982. SFCS’08. 23rd
Annual Symposium on, pages 160–164. IEEE, 1982.

[9] Adi Shamir. How to share a secret. CACM, 22(11):612–613,
1979.

[10] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and
multiparty protocols with honest majority. In Proceedings
of the twenty-first annual ACM symposium on Theory of
computing, pages 73–85. ACM, 1989.

[11] David Chaum, Claude Crépeau, and Ivan Damgard. Multi-
party unconditionally secure protocols. In Proceedings of the
twentieth annual ACM symposium on Theory of computing,
pages 11–19. ACM, 1988.

[12] Pasquale Malacaria. Algebraic foundations for quantitative
information flow. Mathematical Structures in Computer
Science, 25(02):404–428, 2015.

[13] C. E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27(3):379–423, 1948.

[14] Geoffrey Smith. Quantifying information flow using min-
entropy. In Quantitative evaluation of systems (QEST),
2011 eighth international conference on, pages 159–167.
IEEE, 2011.

[15] Alfréd Rényi et al. On measures of entropy and information.
In Proceedings of the Fourth Berkeley Symposium on Math-
ematical Statistics and Probability, Volume 1: Contributions
to the Theory of Statistics. The Regents of the University of
California, 1961.

[16] Mário S. Alvim, Kostas Chatzikokolakis, Catuscia
Palamidessi, and Geoffrey Smith. Measuring information
leakage using generalized gain functions. In Computer Secu-
rity Foundations Symposium (CSF), 2012 IEEE 25th, pages

265–279. IEEE, 2012.
[17] Patrick Ah-Fat and Michael Huth. Optimal accuracy-privacy

trade-off for secure computations. IEEE Transactions on
Information Theory, 2018.

[18] MHR Khouzani and Pasquale Malacaria. Relative perfect
secrecy: Universally optimal strategies and channel design.
In Computer Security Foundations Symposium (CSF), 2016
IEEE 29th, pages 61–76. IEEE, 2016.

[19] Cynthia Dwork, Aaron Roth, et al. The algorithmic foun-
dations of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3–4):211–407, 2014.

[20] Patrick Ah-Fat and Michael Huth. Secure multi-party com-
putation: Information flow of outputs and game theory. In
International Conference on Principles of Security and Trust,
pages 71–92. Springer, 2017.

[21] Patrick Ah-Fat and Michael Huth. Scalable information
flow analysis of secure three-party affine computations. In
2019 IEEE International Symposium on Information Theory
(ISIT), pages 2967–2971. IEEE, 2019.

[22] Paul Voigt and Axel Von dem Bussche. The eu general data
protection regulation (gdpr). A Practical Guide, 1st Ed.,
Cham: Springer International Publishing, 2017.

[23] Barbara Espinoza and Geoffrey Smith. Min-entropy as a
resource. Information and Computation, 226:57–75, 2013.

[24] Lalitha Sankar, S Raj Rajagopalan, and H Vincent Poor.
Utility-privacy tradeoffs in databases: An information-
theoretic approach. IEEE Transactions on Information
Forensics and Security, 8(6):838–852, 2013.

[25] Mário S Alvim, Miguel E Andrés, Konstantinos Chatzikoko-
lakis, Pierpaolo Degano, and Catuscia Palamidessi. Differen-
tial privacy: on the trade-off between utility and information
leakage. In International Workshop on Formal Aspects in
Security and Trust, pages 39–54. Springer, 2011.

[26] Reza Shokri. Privacy games: Optimal user-centric data ob-
fuscation. Proceedings on Privacy Enhancing Technologies,
2015(2):299–315, 2015.

[27] Arpita Ghosh, Tim Roughgarden, and Mukund Sundarara-
jan. Universally utility-maximizing privacy mechanisms.
SIAM Journal on Computing, 41(6):1673–1693, 2012.

[28] Ehab Elsalamouny, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. A differentially private mechanism
of optimal utility for a region of priors. In International Con-
ference on Principles of Security and Trust, pages 41–62.
Springer, 2013.

[29] Seidu Inusah and Tomasz J Kozubowski. A discrete ana-
logue of the laplace distribution. Journal of statistical plan-
ning and inference, 136(3):1090–1102, 2006.

[30] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Mar-
tin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam
Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
et al. Secure multiparty computation goes live. In Inter-
national Conference on Financial Cryptography and Data
Security, pages 325–343. Springer, 2009.

[31] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebas-
tian Nordholt, and Tomas Toft. Confidential benchmarking
based on multiparty computation. In International Confer-
ence on Financial Cryptography and Data Security, pages
169–187. Springer, 2016.

[32] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, et al. Communication-efficient learning of

301

deep networks from decentralized data. arXiv preprint
arXiv:1602.05629, 2016.

[33] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ra-
mage, Aaron Segal, and Karn Seth. Practical secure ag-
gregation for federated learning on user-held data. arXiv
preprint arXiv:1611.04482, 2016.

[34] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving logistic regression. In Advances in neural infor-
mation processing systems, pages 289–296, 2009.

Appendices
A Proof of Theorem 5
For a function h in (ZDO)∆ we build an increasing func-
tion k in [ZDO]∆ with V(Y | k(O)) ≤ V(Y | h(O)). We
first present a base case, how to disentangle two un-
sorted outputs, and then build on that an algorithm for
constructing the increasing function k.

Base case: Let o1 and o2 be in DO and assume
that o1 < o2 and that h(o1) > h(o2). If such outputs
exist, then h is not increasing and we build a function
k with k(o1) ≤ k(o2) and V(Y | k(O)) ≤ V(Y | h(O)).
Function k is a copy of function h, except that we impose
k(o1) = k(o2), which equals h(o1) or h(o2).

First, let us show that |o1 − h(o2)| ≤ ∆. As
h ∈ (ZDO)∆, we have o2 − h(o2) ≤ ∆. By assump-
tion, o1 − o2 < 0. By adding those inequalities we get
o1−h(o2) ≤ ∆. Conversely, we have h(o1)− o1 ≤ ∆ and
h(o2)−h(o1) < 0. By summation, we get h(o2)−o1 ≤ ∆.
We thus have |o1 − h(o2)| ≤ ∆, and a symmetric argu-
ment yields |o2 − h(o1)| ≤ ∆. Thus, with k a copy of h,
we can set k(o1) ← h(o2) or k(o2) ← h(o1) while still
guaranteeing that k belongs to (ZDO)∆.

Let us now see which assignment ensures that V(Y |
k(O)) ≤ V(Y | h(O)). For all o in DO, we set d[o] =
maxy p(y) p(o | y). Let us for now assume that:

max
o∈h−1(h(o1))

d[o] ≥ max
o∈h−1(h(o2))

d[o] (5)

Then we decide to set k(o2) ← h(o1). Let us show
that this does not increase vulnerability. We have
k−1(h(o2)) = h−1(h(o2)) \ {o2}, so:

max
o∈k−1(h(o2))

d[o] ≥ max
o∈h−1(h(o2))

d[o]

Conversely, we have k−1(h(o1)) = h−1(h(o1))∪{o2}, but
we know that d[o2] ≤ max{d[o] | o ∈ h−1(h(o2))} ≤
max{d[o] | o ∈ h−1(h(o1))} by assumption. Thus

max k−1(h(o1))} ≥ max{d[o] | o ∈ h−1(h(o1))}. We note
that for all o′ in DO′ which are different from h(o1) and
h(o2), as k is a copy of h, we still have k−1(o′) = h−1(o′)
and thus

∑
o′ max{d[o] | o ∈ k−1(o′)} ≤

∑
o′ max{d[o] |

o ∈ h−1(o′)}. Whenever Equation (5) is not satisfied, we
set k(o1) ← h(o2) and a similar argument ensures that
the vulnerability does not increase.

Notation: This process of building a copy k of a
function h that merges the image of two unsorted out-
puts o1 and o2 will be denoted as k ← merge(h, (o1, o2)).

General case: Algorithm 3 outputs an increasing
function k that does not increase vulnerability.

Algorithm 3 Building an increasing function given h

in (ZDO)∆

Inputs: DO ⊆ Z, h ∈ (ZDO)∆
Output: k ∈ [ZDO]∆
Post-Condition: V(Y | k(O)) ≤ V(Y | h(O))

1: k ← h

2: E← ∅
3: for o in DO in increasing order do
4: E← E ∪ {o}
5: /∗ Invariant 1: k is increasing on E \ {o} ∗/
6: if k is not increasing on E then
7: F← {q ∈ E | k(o) < k(q)}
8: for q in F in increasing order do
9: k ← merge(k, (q, o))

10: /∗ Invariant 2: k is increasing on E ∗/
11: return k

We show that function k, returned by this algo-
rithm, is in [ZDO]∆. We enumerate elements of DO as
DO = (o1, o2, · · · , o|DO|). We prove that the algorithm
satisfies the invariants stated in green: when entering
the for-loop in Line 5, k is increasing on E \ {o} and
when exiting in Line 10, k is increasing on E. We can
see that during the first iteration, E \ {o} is the empty
set and thus Invariant 1 holds. It is obvious to see that
Invariant 2 at a given iteration implies Invariant 1 at the
next iteration. Let us now assume that k is increasing
on E\{o} and show that Invariant 2 holds at the end of
the iteration. Consider an iteration of the loop in Line
3 such that the condition on Line 6 succeeds. We study
the variables of the program in their current state. Let
i be such that oi+1 denotes the first element of F. For j
with 0 ≤ j ≤ |F|, define property Pj as:

Pj = (k is increasing on E \ {o})
∧(k(oi+j) ≤ k(o) ≤ k(oi+j+1))

302

We prove by induction on the size of F that each
merge operation in Line 9 complies with this property.
We note that Pi+|F| means that k is increasing on E.

For the base case, we know by Invariant 1 that k
is increasing on E \ {o}, and by definition of F that
k(o) ≥ k(oi) and k(o) ≤ k(oi+1). For the inductive step
and j with 1 ≤ j ≤ |F|, let us assume that Pj−1 holds.
We know that the merge operation in Line 9 will either
set k(o) ← k(oi+j) or k(oi+j) ← k(o). However, by as-
sumption, we know that (k(oi+j−1) ≤ k(o) ≤ k(oi+j))
and that k is increasing on E \ {o}. And thus the merge
operation will maintain those properties.

B Empirical Privacy Evaluation
This section contains Figures 8, 9 and 10 that are graph-
ical illustrations of the empirical evaluation of our algo-
rithms in terms of privacy for experiments E2, E3 and
E4 respectively.

0 5 10 15

0.2

0.4

0.6

0.8

1

iteration

en
tr
op

y

H(Y | f(X))
H(Y | G uni

∆ (X))

H(Y | G lap
∆ (X))

H(Y | G trunc
∆ (X))

H(Y | G opt
∆ (X))

H(Y | G DET
∆ (X))

H(Y | G DY N
∆ (X))

Fig. 8. Experiment E2: Privacy gains offered by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

0 5 10 15
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iteration

en
tr
op

y

H(Y | f(X))
H(Y | G uni

∆ (X))

H(Y | G lap
∆ (X))

H(Y | G trunc
∆ (X))

H(Y | G opt
∆ (X))

H(Y | G DET
∆ (X))

H(Y | G DY N
∆ (X))

Fig. 9. Experiment E3: Privacy gains offered by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

0 5 10 150

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

iteration

en
tr
op

y

H(Y | f(X))
H(Y | G uni

∆ (X))

H(Y | G lap
∆ (X))

H(Y | G trunc
∆ (X))

H(Y | G opt
∆ (X))

H(Y | G DET
∆ (X))

H(Y | G DY N
∆ (X))

Fig. 10. Experiment E4: Privacy gains offered by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

C Empirical Utility Evaluation
This section contains Figures 11 and 12 that are graph-
ical illustrations of the empirical evaluation of our algo-
rithms in terms of privacy for experiments E3 and E4
respectively.

303

0 5 10 150

0.2

0.4

0.6

0.8

1

iteration

en
tr
op

y

Γexp(G uni
∆)

Γexp(G lap
∆)

Γexp(G trunc
∆)

Γexp(G opt
∆)

Γexp(GDET
∆)

Γexp(GDYN
∆)

Fig. 11. Experiment E3: Expected gain provided by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

0 5 10 150

0.2

0.4

0.6

0.8

1

iteration

en
tr
op

y

Γexp(G uni
∆)

Γexp(G lap
∆)

Γexp(G trunc
∆)

Γexp(G opt
∆)

Γexp(G DET
∆)

Γexp(G DY N
∆)

Fig. 12. Experiment E4: Expected gain provided by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

D Privacy Evaluation on
Non-Polynomial Functions

This section contains Figure 13 that is a graphical illus-
tration of the empirical evaluation of our algorithms in

terms of privacy on non-polynomial functions for exper-
iment E6.

0 5 10 150

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

iteration
en
tr
op

y

H(Y | f(X))
H(Y | G uni

∆ (X))

H(Y | G lap
∆ (X))

H(Y | G trunc
∆ (X))

H(Y | G opt
∆ (X))

H(Y | G DET
∆ (X))

H(Y | G DY N
∆ (X))

Fig. 13. Experiment E6: Privacy gains offered by G DET
∆ and

G DY N
∆ in comparison to those of other ∆-approximations.

	Protecting Private Inputs: Bounded Distortion Guarantees With Randomised Approximations
	1 Introduction
	2 Related Works
	3 Objectives and Methodology
	4 Background
	5 Information Flow of SMC
	6 Randomised Approximations
	7 Sparse Function Randomisation
	8 Non-Uniform Priors
	9 Evaluation
	10 Discussion and Future Works
	11 Conclusion
	References
	Appendices
	A Proof of Theorem 5
	B Empirical Privacy Evaluation
	C Empirical Utility Evaluation
	D Privacy Evaluation on Non-Polynomial Functions

