
Proceedings on Privacy Enhancing Technologies ; 2020 (3):304–326

Alexander Bajic and Georg T. Becker*

dPHI: An improved high-speed network-layer
anonymity protocol
Abstract: The Internet infrastructure has not been built
with security or privacy in mind. As a result, an ad-
versary who has control over a single Autonomous Sys-
tem can set-up mass surveillance systems to gather meta
data by passively collecting the headers of the messages
they route. To solve this problem, lightweight anony-
mous routing protocols such as LAP, DOVETAIL and
most recently PHI have been proposed which are effi-
cient enough to be deployed in a large scale infrastruc-
ture such as the Internet. In this paper we take a closer
look at PHI and introduce several de-anonymization at-
tacks malicious nodes can perform to reduce the sender
and receiver anonymity. As a direct consequence of this
analysis we propose a new protocol called dependable
PHI (dPHI). The security analysis of dPHI includes a
detailed quantitative anonymity analysis that compares
dPHI with PHI, LAP and HORNET. Together with the
performance analysis, this allows for a good comparison
of trade-offs for these anonymity protocols.

Keywords: Anonymous routing, network security, mass-
surveillance, Internet infrastructure

DOI 10.2478/popets-2020-0054
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

1 Introduction
Most communication networks, and in particular the In-
ternet, do not hide who is communicating with whom
at what time. However, from a privacy perspective, such
meta data are very critical as a lot information can be
inferred from them. This is corroborated by the fact that
most mass-surveillance programs aim for such data. An
entity controlling an AS can store meta data — who
communicated with whom and at what time and which
service — of all communication going through that AS.
Furthermore, a malicious AS can manipulate the Bor-

Alexander Bajic: Digital Society Institute, ESMT Berlin,
E-mail: alexander.bajic@esmt.org
*Corresponding Author: Georg T. Becker: Digital Soci-
ety Institute, ESMT Berlin, E-mail: georg.becker@rub.de

der Gateway Protocol (BGP) to increase the traffic it
can eavesdrop [2, 30] on. Technical changes to the In-
ternet infrastructure and the used protocols are there-
fore advocated by privacy-conscious actors [28]. The
most famous initiative to counter surveillance is the Tor
project [27] in which traffic is encrypted and relayed
through hops to obfuscate the actual communication
partners using onion routing. While Tor is still subject
to traffic analysis and other attacks (e.g. [7, 16, 23]),
it offers a good degree of privacy for the average user.
However, the introduced overhead does not make it a vi-
able solution to be used by every client and application.
Tor’s speed is often insufficient [11] and its scalability
is limited [1, 21]. Anonymous communication protocols
with provable anonymity guarantees such as Mixnet-
based systems exhibit an even worse performance than
Tor [10]. For comprehensive surveys of such protocols
see the work of Shirazi et al. [26] or Ren and Wu [24].

To tackle this problem, lightweight anonymity pro-
tocols have been proposed which focus on optimiz-
ing performance and deployment costs with the goal
to allow large-scale utilization at the network layer.
The Lightweight Anonymity and Privacy (LAP) pro-
tocol [14] is the first proposed protocol in this cat-
egory. It is deployed at the network layer on top
of the Internet Protocol and offers sender anonymity.
Dovetail [25] builds upon LAP and adds some re-
ceiver anonymity but requires user-controlled path-
let routing. HORNET [8] offers the highest degree of
anonymity, yet requires client-based routing. The Path-
hidden lightweight anonymity protocol (PHI) [9] builds
upon the LAP and Dovetail protocol. Like LAP, PHI
works with any inter-domain routing protocol such as
BGP. A more detailed description of these protocols can
be found in Section 2.

From a privacy and security perspective one would
hope that a future Internet infrastructure has solid pri-
vacy protection built in. Performance requirements and
costs are limiting factors for the wide deployment of
anonymity preserving protocols. It is, therefore, impor-
tant to investigate how anonymity can be added with
as little cost as possible. Ultimately, whether or not
anonymity protocols will be deployed in a future Inter-
net is a political question. However, anonymity proto-

dPHI 305

cols are not only interesting from a privacy perspective
but also for network security. In large corporate net-
works they constitute a promising approach to decrease
information leakage in case of compromised infrastruc-
ture. This, in turn, can hamper lateral movement, thus
impeding attacks such as Advanced Persistent Threats
(APT). With the rise of software-defined networking
(SDN), implementing these protocols in IP networks has
become very realistic and cost-efficient.

1.1 Contribution

The contribution of this paper is twofold. First,
we present novel de-anonymization attacks against
PHI that significantly decrease receiver and sender
anonymity. Second, we propose an improved lightweight
anonymity protocol named dependable PHI (dPHI) that
withstands these attacks. In summary, we provide the
following contributions:

– Several de-anonymization attacks against PHI are
presented that reduce the sender and receiver
anonymity set size by observing and manipulating
headers during session establishment.

– A new protocol named dependable PHI (dPHI) is
proposed that withstands these attacks even in an
extended threat model that is more realistic.

– Besides a careful security analysis of dPHI, we per-
form a quantitative anonymity analysis comparing
PHI, dPHI, LAP and HORNET. The Matlab code
of the analysis will be publicly available to make our
research reproducible and extendable.

– A performance analysis based on an implementation
in C shows that dPHI has similar throughput, good-
put and latency as PHI while requiring less overall
public key operations in the network.

2 Related work
In the following, we will introduce the most important
lightweight anonymous routing protocols relevant for
PHI and dPHI. LAP and HORNET will also be con-
sidered in the quantitative analysis in Section 8, and in
the performance analysis in Section 10.

LAP is the first network layer lightweight anonymity
protocol and was presented in 2012 [14]. The goal of
LAP is to provide sender anonymity while not imped-
ing the routing of the network it is deployed in. The ses-

sion establishment works as follows: A session request is
sent from source to destination. In the session request
message, a header field is used by each routing node to
store information on how it routed the message. That is,
each node stores the ingress port (from where the mes-
sage has been received) and the egress port (to where
the message is forwarded), encrypted with its individ-
ual secret key. This way, routing information can only
be retrieved by the routing node that wrote the infor-
mation to prevent other nodes from learning from where
the message originated. After the session request mes-
sages reaches the destination, all further messages are
exchanged based on the encrypted routing information
in the header. Each routing node receiving a message de-
crypts the routing information and sends the message
to the corresponding ingres or egres port.

This way an attacker eavesdropping a message does
not learn the source address. However, an attacker can
determine the distance to the source by counting the
routing elements in the header. To obfuscate this infor-
mation, LAP has the option to employ a variable sized
routing segment (VSS) with a parameter we denote as
V SS (in LAP [14] denoted as M). In this case, for each
routing element a random number (that does not exceed
the VSS threshold) of dummy entries is added. This way
the path length is obfuscated to a certain degree.

Dovetail was proposed two years after LAP by
Sankey andWright [25] and builds upon the basic idea of
storing the routing information encrypted in the header.
However, it adds some form of receiver anonymity by in-
troducing a helper node to which session establishment
requests are sent. The real destination of a message is
encrypted with the helper nodes public key and, upon
arrival at the helper node, decrypted and inserted into
the message’s header. The message is then forwarded
to the destination via a tail node that lies on both the
path from the source to the helper node and from the
helper node to the destination. One main difference to
LAP (and PHI) is that Dovetail assumes pathlet rout-
ing, which is a client-controlled scheme. Hence, it inter-
feres with any routing policy employed by the under-
lying infrastructure. Furthermore, the number of nodes
on a path is not hidden in Dovetail so that an attacker
can learn the distance to source or destination. Dovetail
notes that one should therefore not use a shortest path
routing, thus obfuscating the real distance by sometimes
using longer paths than necessary.

HORNET [8] employs a client-based routing scheme
in which the client chooses a path to the destination. For
each routing node on the path, the client encrypts infor-
mation on how to forward messages, using the respective

dPHI 306

routing node’s public key, and stores it in the session es-
tablishment message. Each routing node receiving the
session establishment message decrypts its correspond-
ing routing information and re-encrypts it with a secret
symmetric key and stores it in the header. After session
establishment, messages are exchanged as done in LAP
and Dovetail using these encrypted routing information
fields. Each routing node only learns its predecessor and
successor on the path, offering the highest anonymity
of the discussed protocols. However, in the Internet,
client-based routing can undermine routing policies em-
ployed by intermediate nodes to e.g. balance load. This
makes adopting such routing policies unlikely. Besides
anonymity, HORNET also introduces default payload
encryption from hop to hop.

For completeness’ sake, we would like to note that
there have been several proposals to increase security
in BGP inter-domain routing [6, 18, 19, 29, 32], includ-
ing protocols that increase privacy [3, 12, 13]. However,
privacy in these protocols does not refer to sender or re-
ceiver anonymity but rather focus on the privacy of the
ASes and their business models. See Mitseva et al. [22]
for a comprehensive survey of such proposals.

3 System and threat model
The PHI and dPHI network models are similar to the
Internet architecture. We assume two clients want to
communicate over a network of routing nodes. In the
Internet analogy these routing nodes represent the in-
terconnected Autonomous Systems (AS) that form the
Internet. Each node is connected with one or more other
nodes over dedicated interfaces. Furthermore, each node
can be connected to a multitude of clients. In our
nomenclature, clients are denoted with lower case let-
ters, while the routing nodes are denoted with capital
letters, typically an A followed by an index.

Each communication is initiated by a client s, called
source, that wants to communicate with a client d, called
destination. The routing nodes that source and desti-
nation are attached to are referred to as As and Ad

respectively. According to the used protocol, a path is
established between s and d via routing nodes. The path
between two nodes Ai and Aj is denoted with PAi−Aj

and comprises all nodes in the route path. An asterisk
* indicates that the corresponding node is included in
the path, i.e. PAi−Aj∗ includes Aj but not Ai. In the
following we denote |PAi−Aj

| as the number of nodes
on the path PAi−Aj

, i.e the distance between Ai and

Aj , not counting Ai or Aj . Using the Taxonomy of
Kelly et al. [17], this translates to a wired network, with
a free path topology and a unicast routing scheme.

3.1 Original threat model

In this work, we consider two different threat models.
The first is the same as defined in PHI. We assume a
single attacker controls exactly one routing node Ai and
can i) read and store all packets passing through this
node ii) modify or stop all packets passing this node
and iii) send new packets originating from this node.
Furthermore, it is assumed that the attacker knows the
network topology and the routing policies of each in-
dividual node. Hence, for each packet the attacker can
predict how a node would forward it. In principle, there
are two attack goals:

– Sender anonymity: The attacker tries to de-
anonymize the source of a communication re-
quest by minimizing the set of clients (the sender
anonymity set size) that could have sent a message.

– Receiver anonymity: The attacker tries to de-
anonymize the destination of a communication re-
quest. That is, it tries to minimize the set of clients
(the receiver anonymity set size) that could be the
recipient of a specific message.

According to the nomenclature of Kelly et al. [17]
this translates to an adversary with local reachability,
dynamic adaptability, and active+passive/internal at-
tackability. The information the attacker can learn and
the degree to which the attacker can de-anonymize the
receiver or sender is defined in Section 7.7. The destina-
tion d does not need to be trusted by s when it comes
to sender anonymity. That is, if the adversary is located
at the exit node (and hence knows the destination), the
security properties of dPHI and PHI hold even if d is
malicious. Recently, Wails et al. [31] presented attacks
against various anonymity protocols in case the source
or destination moves within the network and the at-
tacker located within the path between s and d is able
to link sessions. While this is an interesting type of at-
tack, it is not part of the threat model of dPHI.

3.2 Extended threat model

The original threat model from PHI can be seen as a
realistic scenario in which a nation state actor has con-

dPHI 307

trol over ASes which reside in its country. Due to their
geographical proximity, these adjacent ASes could be
modeled as a single large AS to be in-line with the
threat model. Yet, getting control over an AS located
geographically far away would be more difficult for such
an actor. The assumption that an attacker controls a
single AS is therefore realistic in many cases. However,
we argue that in the Internet it is very easy to gain
access to clients located at various different locations
by setting up servers in different countries, using proxy
servers, or renting botnets. Hence, it is reasonable to
assume that an attacker does not only control a routing
node but also a number of clients connected to different
routing nodes. Therefore, the extended threat model as-
sumes the same capabilities as before but add a fourth
ability: iv) the attacker has full access to clients con-
nected to different routing nodes. These clients can be
used to receive and transmit messages.

4 The PHI protocol
PHI is a stateless routing protocol in which no informa-
tion about sessions is stored within the routing nodes.
Instead all necessary routing information for each AS is
stored in the message header with the goal to anonymi-
tize the communication partners to malicious ASes or
outsiders. In the following a short introduction to the
PHI protocol is given.For a detailed protocol description
we refer the reader to the original PHI publication [9].

Fig. 1. An example routing procedure between source s = c1,
destination d = c14 and helper node M = A12 resulting in mid-
way node W = A8. The final path between s and d is depicted in
green while yellow nodes are only used during setup.

Figure 1 gives an example of the routing process
in PHI, where a source s = c1 connected to AS A1
wants to anonymously communicate with a destination
d = c14 connected to A15. First, s chooses a helper node

M and uses its public key to encrypt the destination
address d. In this example M = A12 was chosen. Af-
terwards, s sends a midway request to M that includes
the encrypted destination d. Each node on path Ps−M

stores its routing information, consisting of ingress and
egress port to forward a given message, encrypted in
the header’s routing segment before forwarding it to the
next node on the way to M . For this purpose, every
node Ai has its own set of secret keys (kpos

i ,kenc
i ,kmac

i),
so that the encrypted routing information can only be
decrypted and authenticated by the node that inserted
it. The routing information is stored in the routing seg-
ment V at pseudo-random positions pos based on the
node-specific secret key kpos

i , session ID sid (which is
derived from the session’s fresh public key pubs), and a
Pseudo-Random-Function PRF ():

pos = PRF(kpos
i , sid) (1)

V is initialized by the sender s with random values
that are indistinguishable from real routing information.
This way, a node receiving a message does not learn any-
thing about a message’s previous path. Since a node
does not know if a routing element already contains
routing information, it might happen that two nodes
write to the same routing element. In this case impor-
tant information is lost so that the session establish-
ment fails. Hence, session establishment in PHI is not
dependable and may require several attempts to initiate
a session. The authors of PHI proposed to send out four
session requests in parallel to achieve a success rate of
90% with the default parameters in the Internet envi-
ronment. The routing information Ri for node Ai con-
sists of egress and ingress ports and is encrypted with:

ci = ENCkenc
i

(Ri||posprev||flags) (2)

where posprev is the position of the routing segment
which was inserted by the preceding routing node and
transmitted in a specific header field. flags contain ad-
ditional protocol-specific information. A MAC is used to
verify the integrity of the current and previous routing
element with:

mi = MACkmac
i

(ci||mi−1) (3)

where mi−1 is the MAC in the routing segment at po-
sition posprev. If M would directly forward incoming
midway requests to d, the resulting path would be un-
necessary long or violate routing policies such as valley-
freeness [9]. For this reason, a backtracking phase was
introduced in PHI. Instead of forwarding the message
to d, it is sent back by helper node M to the previous

dPHI 308

node with d in the destination field. Each AS that re-
ceives such a midway request message decides based on
the routing policy and the stored ingress information
if it should become the “midway node” W . In our ex-
ample, we used a simple routing policy that checks if
there exists a shortest path from the previous node to
the destination that does not include the current node.
If such a path exists, the message is sent back. Else, the
current node becomes the midway node W . In Figure 1
this leads to selecting A8 as the midway node W . We
would like to stress that other routing policies such as
valley-freeness can be used as well.

After midway node W has been found, the hand-
shake message is forwarded to destination d. Each node
on the path between W and d stores its routing informa-
tion encrypted in the routing segment for later retrieval
by the same node. Once d receives a handshake message
it computes a session key ks−d between s and d using
ECDH key agreement with the session dependent public
key pubs enclosed in the payload of the handshake mes-
sage. The session ID is generated via a cryptographic
hash with sid = Hash(pubs) to securely link it to the
session depended public key pubs and prevent man-in-
the-middle attacks. Each AS on the path back to s uses
its (encrypted) routing information stored in the rout-
ing segment to determine how to forward the message.
When the message reaches s, the handshake is complete
and s and d have established a shared session key and
a PHI header to securely communicate with each other.
Note that a session establishment will not succeed if an
aforementioned collision occurs, which is why several
session establishment requests are sent in parallel.

5 Attacks on PHI
In the following, several novel sender and receiver de-
anonymization attacks against PHI are introduced. The
quantitative impact on sender and receiver anonymity
will be discussed in Section 8.

5.1 Passive distance leakage attack

An attacker controlling a node Ai ∈ Ps−W between the
source and the midway node can store the routing seg-
ment V during the path request message. The attacker
then observes which elements have changed when the
handshake reply message comes back. Changed elements
belong to nodes in PAi−M ∪ PW−d. Let the number of

changed elements be a then a = |PAi−M | + |PW−d|.
Knowing M , the attacker can predict |PAi−M | and
therefore also learn |PW−d|. Note that the attacker does
not know which node of the (known) path PAi−M is
the midway node W . Consequently, he does not know
|PAi−W | and cannot directly compute the distance to d.
Still, learning |PW−d| in conjunction with PAi−M can
greatly reduce the anonymity set size.

5.2 Active attack on PHI to determine W
and the distance to d

The attacker on a node Ai ∈ Ps−W between source and
midway node can perform an active attack during the
transmission phase to determine which elements belong
to PW−M∗ and which to path PAi−d. For this attack, we
assume that the attacker can determine whether or not
a data transmission reaches the destination d. Depend-
ing on the used application layer protocol, this could
be inferred from re-transmissions from s or responses
from d, for example. The attack is fairly simple: The
attacker modifies single routing elements and observes
if the message still reaches d. If not, the corresponding
routing element belongs to PAi−d since only these ele-
ments impact successful routing from Ai to d. This way
the attacker can learn |PAi−d|.

The attack’s efficiency can be increased by com-
bining it with the passive attack from before that re-
veals which elements in the routing segment belong to
PAi−M ∪ PW−d. This way, the attacker only needs to
test these. Furthermore, the routing elements belonging
to PW−M are the only ones that changed during the
passive attack but whose manipulation did not result in
a transmission failure. Hence, the attacker also learns
the distance |PW−M | between midway and helper node.
Since the path between the attacker node and the helper
node is known, the attacker can use this information to
precisely determine the identity of W . This, in turn, re-
veals information about the distance to destination d in
a topology-based attack.

5.3 Distance leakage to the source

The same active attack as in 5.2 can also be applied in
a reverse order to determine the distance to s. The idea
is that the attacker modifies routing elements of mes-
sages going from the attacker controlled node Ai to s

and observes if the messages still arrive. The challeng-
ing part is that the source only expects a single valid

dPHI 309

path reply. Modifications of V during the transmission
phase can easily be detected by s. Hence, once a path
reply reaches the source, it will not accept any further
path replies. This problem can be circumvented with an
attack strategy as follows.

Starting with i = 1, the attacker modifies all but i

routing elements in V . The attacker does this in all
(

l
i

)
possible ways to send

(
l
i

)
modified path reply messages.

If the distance to the source is i, one of these path reply
messages is valid and s sends back an answer. If not,
the attacker knows that the distance is greater than i

and increases i by one and repeats the process. This
way source s receives only a single valid setup message
and will not get suspicious. Note that the position prev

of the previous routing element is known so that the
attacker does not consider this position in his attack.
Figure 2 illustrates this attack.

While the attack is efficient for small distances, the
number of messages the attacker has to send increases
exponentially with the distance to s and routing seg-
ment size m. However, in PHI the default segment size
is m = 12, in which only 2048 messages need to be sent
to test all distances from 1 to 12. Yet, for large sizes of
m = 48, the attack quickly becomes impossible.

Fig. 2. Illustration of the attack to reveal the distance from Ai to
s. In this example the routing segment V consists of six routing
elements with V [4] known to belong to the previous node. The
routing segments the attacker modifies are indicated in red.

5.4 Attacks on implementations without
freshness

In PHI, the used encryption is not specified and in par-
ticular it is not explicitly stated that freshness is needed

for encryption. This omission could lead to implemen-
tations without freshness. Indeed, the implementation
section in PHI[9] does not include any freshness and the
performance was measured without additional seeds in
the header. In the following we discuss what happens if
freshness is omitted during the implementation of PHI.
Routing elements in PHI are encrypted without authen-
tication using:

ci = enckenc
i

(Ri||posprev||flags) (4)

with kenc
i being the encryption key of the respective

node, Ri the routing information, posprev the posi-
tion of the routing element in V corresponding to the
preceding node i − 1, and flags containing protocol-
specific information. Hence, the entropy of the plain-
text is actually very small. If two messages of different
sessions are routed in the same way, the correspond-
ing ciphertexts will be identical if posprev is the same.
Since posprev ∈ {1, .., 12} with PHI’s default parameters,
chances for this to occur are very high. By comparing
the ciphertexts ci from different sessions, an attacker
can detect routing elements that are equal with a high
probability.

If an attacker starts many different sessions with
publicly known destinations and different source ad-
dresses (e.g. by using proxies), he can craft a lookup
table with the ciphertext and corresponding routing in-
formation for all ASes with moderate effort. Using such
a lookup table, an attacker would in effect be able to
decrypt the routing information without actually know-
ing kenc

i . The only “freshness” stems from the fact that
posprev is based on sid which is linked to a session’s pub-
lic key. Since the number of possible values for posprev is
very small, so is the entropy. Furthermore, a malicious
node can use the same sid and public key to send mes-
sages mimicking the “forward to Ad phase” of the pro-
tocol. The attacker cannot finish the handshake due to
the missing private key but can still observe the returned
message header, thus detecting overlapping paths with
only a few messages. In particular, if the attacker wants
to find out if a session belongs to a specific destination,
it can use a single message to d with the old session
ID sid. If the suspicion is correct, the routing segment
returned by the message from d will be identical.

5.5 Correlation of failure probability and
distance to destination

In PHI the session establishment is unreliable and the
failure probability depends on the distance between

dPHI 310

source s and helper node M as well as the distance
between midway node W and destination d (see Sec-
tion 10.2 for details regarding the collision probability).
If the attacker is able to link different session establish-
ments for the same destination d but different helper
nodes M , he can use these probabilities to make predic-
tions about d. The more data the attacker collects, the
more accurate this prediction becomes.

How difficult it is to link session request depends
on the used application layer protocol and application.
Note that payload encryptions makes it hard to link
session when the attacker is not the entry node and
therefore does not know s. However, for the entry node
it is not unlikely that one can link multiple session re-
quests to the same (unknown) destination by observing
the traffic flow and timing at a higher protocol level.
Note that the attacker can drop some successful ses-
sion establishment messages to force s to send out even
more session establishment requests to get more data in
shorter time.

5.6 Attacks using extended threat model
to de-anonymize s

The previously described attacks are in line with PHI’s
threat model (Section 3.1). In Section 3.2 we introduced
an extended threat model in which the adversary does
not only control an AS Ai along the routing path but
also n clients c1, .., cn that are connected to different
ASes. This is a realistic assumption in an open network
such as the Internet, where an attacker could utilize
proxies or resort to botnets. The attack discussed here
assumes that the attacker has control over such clients.

The idea of the attack is to send modified back-
tracking messages from the attacker controlled AS Ai

with different attacker controlled clients c1, .., cn as the
destination and the original routing segment V 1. Each
client cj receiving such a message records the routing
segment V 1

j and sends it to the attacker. The attacker
then compares the routing segment V 1

j with V 1 and
counts the number of changed routing elements. The
attacker knows that for a client cj 6= s, one node in
Ps−Ai

is chosen as the midway node Wj . The number
of changed routing elements observed in V 1

j is equiva-
lent to the distance |PWj−cj

| between this midway node
Wj and the attacker controlled client cj . In a second
step, the attacker can also determine |PAi−Wj

| by send-
ing a modified backtracking message to client cj , again,
but this time with modifying some routing elements in
V 1 to determine which modifications lead to message

drops during backtracking. This is the same approach
as done for the attacks described in Section 5.2 and 5.3.
The degree of de-anonymization in this attack is very
high as the attacker can use many different clients, re-
sulting in many different midway nodes Wj , to narrow
down the possible positions of s. Note that the attack
becomes easier if the attacker also exploits the missing
freshness in PHI’s encryption as identical ciphertexts
show common paths between different nodes.

6 The dPHI protocol
Several modifications to the PHI protocol are proposed
to prevent the discovered attacks. The modifications are
based on five main ideas: i) splitting the routing segment
into two parts to prevent passive distance leakage, ii)
circular insertion of routing elements instead of picking
pseudo-random positions to avoid collision and enable
integrity checks, iii) extending the backtracking phase
back to source s and adding integrity checks of the rout-
ing segment, iv) addition of a midway nonce to prevent
attackers from modifying the destination, and finally
v) the consistent use of authenticated encryption with
fresh IVs to ensure freshness and high entropy cipher-
texts. In this Section we discuss these changes in more
detail while a formal protocol description with pseudo
code can be found in the Appendix A.

6.1 Key management

In dPHI every node Ai has a secret symmetric key ki

that is only known to this one node and used to encrypt
and decrypt its own information in the routing header.
Furthermore, every node Ai that can serve as a helper
node has a ECDH key pair (pubi, privi). The public key
pubi of the chosen helper node needs to be known to
source s in advance. In addition to these static keys,
the source s generates a session key ks−M with helper
node M and a session key ks−d with destination d us-
ing ECDH during the dPHI session establishment. The
established session key ks−d can be used by both source
and destination to exchange encrypted messages that
are protected against man-in-the-middle attacks. Note
that no payload encryption is done by nodes in dPHI
and hence needs to be taken care of by the clients.

dPHI 311

Fig. 3. Illustration of routing segments V 1 and V 2 for the ex-
ample from Figure 1 with As = A1, M = A9, W = A8 and
Ad = A15. Randomly initialized values are depicted in gray.

6.2 Authenticated encryption

All symmetric encryption in dPHI is performed using
an authenticated encryption algorithm such as AES-
GCM [20]. An authenticated encryption algorithms gets
three inputs, the key k, the plaintext p and additional
authentication data a which is authenticated but not en-
crypted. The output is a triplet consisting of a freshly
generated IV IV , authentication tag t and the corre-
sponding cyphertext c with (c, t, IV) = enck(p, a). In
dPHI, the session ID sid is always part of the additional
authentication data a to ensure that the ciphertext is
securely linked to the current session.

6.3 Modification to the routing segment

Two major changes are applied to the routing segment
V . The first is to split it in two, with V 1 storing routing
information for nodes on path Ps−M and V 2 storing the
routing information for nodes on PW−d. Furthermore,
routing elements are inserted into V 1 and V 2 in a circu-
lar manner, starting at random positions that are cho-
sen during their initialization. Both V 1 and V 2 default
to length l = 12 but can be adapted individually to fit
other use cases. Figure 3 depicts the shape of V 1 and V 2

for the example from Figure 1. Figure 4 shows the com-
plete dPHI header. V 1 is initialized by source s and V 2

by midway node W using keyed cryptographic pseudo
random number generators (CPRNGs) based on fresh
and secret seeds. While s initializes V 1 immediately, V 2

is initialized by W after the backtracking phase, before
forwarding the handshake to d. The seed used to initial-
ize V 2 is stored by W encrypted in the midway field in
the dPHI header. As shown in Figure 3, midway node W

stores its routing element in both V 1 and V 2 (encrypted
with different IVs).

Another modification in dPHI is the routing infor-
mation R that is encrypted and stored in a routing el-

Fig. 4. Illustration of the dPHI header showing V 1 and V 2 that
form the routing segment. Note that field sizes in this representa-
tion do not relate to real sizes of header elements.

ement. In PHI, it only consisted of ingress and egress
ports. In dPHI, it also contains two pointers posV 1 and
posV 2 indicating the positions where the current rout-
ing element is stored in V 1 and V 2. If it is only stored
in one of the segments, the other pointer is null. These
pointers are used to detect if the position of the routing
elements have been altered and enable the midway node
to find its field in the other routing segment. A type flag
indicating that the node is the midway node is stored
in R as well. Equation 5 shows how a routing element
consisting of (ci, ti, IVi) is computed:

(ci, ti, IVi) = encki
(R; sid||cpos−1)

R = (ingress||egress||type||posV 1||posV 2)
(5)

See Algorithms 1 and 2 in the Appendix for details.

6.4 Backtracking to s and verification of
V 1 and V 2

In PHI, backtracking is done from helper node M to
midway node W from where the message is forwarded
to destination d. To enable the source to verify the in-
tegrity of V 1, backtracking in dPHI is changed as to
reach all the way back to s. The node that becomes the
new midway node W , encrypts the destination address
d with its secret key and stores it in the destination ad-
dress field in the header. Then, the message is sent back
to s. Consequently, nodes between W and s do not learn
about d, while midway node W can retrieve the destina-
tion using its secret key in the next phase of the protocol
when s sends the handshake to d. This modified back-
tracking phase allows source s to check if V 1 has been
tampered with by comparing it to the initial version of
V 1 that s stored while preparing the request. In dPHI it
is assumed that s knows the maximum distance to the
chosen helper node M . The idea of this integrity check is

dPHI 312

that with knowledge about the distance, s can estimate
which routing elements in V 1 should have changed and
which not. If modifications outside the expected range
occur, s drops the message and may initiate a new at-
tempt. See Algorithms 3-5 in the Appendix for details.

Midway node W performs the same integrity veri-
fication of V 2 as s does of V 1. W initializes V 2 when
it forwards the message to d for the first time, based
on a fresh seed and a keyed CPRNG (See Algorithm 6
in A.4). To be able to retrieve the seed when the mes-
sage gets back, W encrypts the seed together with a
close upper bound distd of the distance to d with its
own secret key and stores it in a dedicated midway field
in the header. In addition to the session id sid, the ci-
phertext cV 1 of W ’s routing element in V 1 is used as
additional authentication data for this encryption.

midway(to_d) ← encki
(seed||distd, sid||cV 1) (6)

When the midway node receives the handshake reply
from d, it decrypts the seed and distance value and ver-
ifies that only the expected routing elements in V 2 have
changed. The additional authentication data securely
links V 1 and V 2 so that an attacker cannot simply re-
place V 1 or V 2 as a whole without the midway node
noticing. After verifying V 2, the midway node W re-
places the midway field with a MAC of the entire rout-
ing segment comprising V 1 and V 2 to ensure this secure
linkage for the remainder of the protocol.

6.5 Addition of the midway nonce

The last major change in dPHI is the addition of a mid-
way nonce to prevent attacks in the extended threat
model. During initialization, s generates a nonce nmid

(see Appendix A.2-A.5 for details). This nonce is en-
crypted with the shared session key ks−M that s derived
with help of M ’s publicly available key pubM . To enable
M to derive that exact same key, s includes pubs of its
freshly generated key pair in the payload when sending
its request to M . The helper node M decrypts this nonce
and puts it, unencrypted, in the midway field of the
backtracking message that is sent back. Midway node
W , in turn, computes a hash value of the midway nonce
together with the destination dest and routing segment
V 1 and overwrites the midway field midway(to_s):

midway(to_s) ← Hash(dest||nmid||V 1) (7)

When source s receives the message at the end of the
backtracking phase, it verifies this hash value and that

the correct destination dest has been used. If this is not
the case, the message is dropped.

7 Security analysis
In Section 5 several novel attacks on PHI have been in-
troduced. In this section we elaborate on how the mod-
ifications introduced with dPHI prevent these attacks.

7.1 Passive distance leakage attack

The passive distance leakage in PHI is the main rea-
son for splitting the routing segment into two parts, V 1

and V 2. The number of changed elements in V 1 that
a node in Ps−M can observe is equivalent to the dis-
tance to the known helper node M . Hence, the attacker
does not learn anything new by counting the changed
elements in V 1. When a node in Ps−W receives V 2 for
the first time, all values are new as they are initiated by
midway node W . Consequently, a node in Ps−W can-
not make any observation about d. The routing element
corresponding to W changes twice in V 1. However, no
single node receives both versions so that W cannot be
identified based on any such observation. All nodes in
PW∗−M and PW∗−d know d so that distance leakage at-
tacks to the destination are only interesting for Ps−W .

7.2 Active attack to determine W and
the distance to d

In dPHI, an attacker controlling Ai ∈ Ps−W would need
to (repeatedly) modify routing elements in V 1 to iden-
tify which of them belong to PW−M or W . To prevent
this, backtracking is extended beyond W so that source
s receives V 1 after backtracking. Destination d receives
V 1 with the handshake message. Hence, any modifica-
tion of V 1 after the handshake message is detected by s

or d as they always check the integrity of received head-
ers. To detect manipulations during the phases of back-
tracking to W and backtracking to s, the source uses
the new midway reply message in the dPHI protocol:

H.midway(to_s) = nrep = Hash(d||nmid||V 1) (8)

The midway reply message is generated by midway node
W , the last node to modify V 1. Destination d and nmid

are known to all nodes on PW∗−M∗ but not to nodes
on Ps−W . Hence, an attacker on Ai ∈ Ps−W cannot

dPHI 313

compute a valid midway reply for a modified V 1. This
way source s can detect any modifications to V 1 after
processing by midway node W .

To prevent attacks during the handshake message
to d, source s sends a MAC of V 1 with the shared ses-
sion key to destination d. The destination can therefore
authenticate V 1 based on the shared session key and
discard any message with a modified V 1.

7.3 Distance leakage to the source

To prevent this attack, the source s stores the ran-
dom values that were used to initialize V 1, the start-
ing position pos pointing to the first routing element,
and the maximum distance distM to M . On receiving
the midway reply, s uses this information to verify that
only routing elements belonging to the path Ps−M have
been modified, i.e., elements in V 1 between pos and
pos + distM . If other elements have been modified, the
message is dropped by s. This results in the same effect
(session establishment failure) as if an element belong-
ing to Ps−Ai

had been modified by the attacker. After
the midway request, s stores V 1 and drops any message
in which the routing segment V 1 is not identical. This
ensures that the attack on V 1 can also not be executed
in a later stage of the protocol.

However, an attacker on Ai ∈ PW−d could try to
manipulate V 2 to learn at least the distance between Ai

and (the unknown) midway node W . To prevent such
attacks, the midway node W verifies V 2 the same way
as s has verified V 1. Midway node W has stored the
seed for initializing V 2 and the distance distd between
W and d encrypted in the midway field of the header.
With this information the midway node verifies that at
most distd routing elements have been inserted in V 2,
starting from position pos2 that W retrieves from its
own routing element. At the end of the session estab-
lishment, source s stores V 2 so that any modifications
of V 2 during the data transmission phase are detected.
Hence, in dPHI the attacker cannot learn the distance
to s nor the distance to W .

7.4 Exploiting missing freshness

In dPHI we propose to use authenticated encryption
with fresh IVs whenever information is (re-)encrypted.
Hence, the attacker cannot learn anything by observing
ciphertexts. The position pos within a routing segment
in dPHI is independent from a secret key or node ad-

dress since routing elements are inserted in a circular
manner. Therefore, which routing elements in V 1 or V 2

are modified cannot be used to link sessions or nodes.

7.5 Correlation of failure probability and
distance to destination

In dPHI the circular insertion of routing elements en-
sures that no collisions occur as long as the maximal
sizes of V 1 and V 2 are not exceeded by the chosen path
to M and d. The session establishment is therefore de-
pendable and this type of attack is not possible.

7.6 Active attacks in the extended threat
model

In dPHI the backtracking phase has been altered so
that the midway node sends a midway reply back to
the source s. The source s then verifies that the cor-
rect destination has been used to determine the midway
node W . To this end, the midway node W computes a
midway reply H.midway by hashing the midway nonce
nmid with the destination d and routing segment V 1, i.e.
nrep ← Hash(d||nmid||H.V 1). This midway reply nrep

is sent back in the midway field H.midway of header
H. The source recomputes this midway reply and can
thereby verify that the midway node W has received the
correct destination d.

It is important to ensure that an attacker cannot
misuse the midway reply H.midway to learn the desti-
nation d. The high entropy midway nonce nmid has been
sent encrypted to the helper node M . Only M and nodes
on PW∗−M , the same that also know destination d,
learn the midway nonce which is necessary to compute
H.midway. Nodes in Ps−W do not know the midway
nonce and can therefore not compute Hash(d||nmid||V 1).
In consequence, it is not possible for an attacker on these
nodes to misuse H.midway as an oracle to determine d.

7.7 Information leakage in dPHI

dPHI does not offer perfect anonymity as the attacker
can learn some information about communicating peers.
In this section we define which information the attacker
is able to learn about sender and receiver depending on
the node that the attacker has compromised.

dPHI 314

Sender anonymity:
Attacker on entry node As:
1. The entry node knows the source address s, i.e.,

there is no sender anonymity.
Attacker on Ai with Ai ∈ PAs−W or Ai ∈ PW−M∗:
1. For (known) destination M the path PAs−M goes

through Ai−1∪Ai, thus reducing the anonymity set
of s to sources reachable through Ai−1.

2. The distance to s cannot be higher than the maxi-
mum segment length m minus the distance |PAi−M |.

Attacker on midway node W :
1. Learns the same as attacker on PAs−W or PW−M∗.
2. W can perform an active attack by violating the

routing policy and deciding not to become the mid-
way node for the known destination d. The attacker
can then observe whether or not the node W will be
selected for the path PW ′−d (where W ′ is the new
midway node with W ′ ∈ PAs−W). In how far this
de-anonymizes s depends on the deployed routing
policy and layout of the network.

Attacker on Ai with Ai ∈ PW−d∗ learns:
1. For the (known) destination d the path PW−d goes

through Ai−1∪Ai, thus reducing the anonymity set
of unknown W .

2. It furthermore knows that the distance to W cannot
be greater than the maximum segment length m

minus the distance from Ai to d.
Receiver anonymity:
Attacker on Ai with Ai ∈ PAs∗−W learns:
1. Destination d can be reduced to such destinations

that one of the nodes on the predictable path to M

(i.e., PAi−M∗) can serve as midway node W without
violating the employed routing policy.

Attacker on Ai with Ai ∈ PW∗−d∗ or Ai ∈ PW−M∗:
1. These nodes learn destination d and hence there is

no receiver anonymity.
The entry node learns the identity of source s and the
midway node the destination d which results in zero
anonymity if the entry node also becomes the midway
node. This is a major drawback of PHI/dPHI since
topology information is required to choose M such that
this does not happen.

8 Quantitative anonymity analysis
In this section we compare the achieved sender and re-
ceiver anonymity for the lightweight anonymity proto-
cols LAP, HORNET, PHI and dPHI.

8.1 Assumptions and experimental setup

Computing the anonymity depends on several factors
such as the network topology, the routing policies and
the attacker’s capabilities. In PHI [9] and HORNET [8],
anonymity set size was computed based on a valley-
free routing policy and the 2014 CAIDA dataset [15]
representing the Internet infrastructure on the level of
Autonomous Systems. In the valley-free routing model,
the network is a directed graph in which each edge is
either of the type provider-to-customer or peer-to-peer.
A valley-free path is a path that starts with any num-
ber of customer-to-provider edges followed by zero or
one peer-to-peer edge and any number of provider-to-
customer edges. The PHI and HORNET papers [8, 9]
assume all valley-free routes as equally likely, regardless
of the length of the route. However, for a given source
and destination pair it is reasonable to assume that only
a predictable subset of paths will be chosen in practice
based on the network topology, e.g. the shortest paths.

We, therefore, believe that a network model in
which only a selected number of paths between two
nodes is valid is more realistic. In our analysis, we use
a shortest path valley-free routing policy in which all
valid paths need to have the minimum number of hops.
We computed the sender and receiver anonymity set size
for PHI, dPHI, LAP with one element per hop (i.e., no
VSS), LAP with thee elements per hop (VSS=3), and
HORNET. For this, we chose 1000 random source and
destination pairs and computed a PHI path for each by
randomly choosing a helper node. Should no valley-free
path exist or the midway node be identical with the
entry node, we chose new random nodes. The computa-
tion was performed using Matlab and the 2014 CAIDA
dataset [15]. The software as well as used data is pub-
licly available on Github [4]. Our quantitative analysis
uses the following assumptions and metrics:
Attacker capabilities: For PHI we assume the pas-
sive and active attacks from Sections 5.1-3 but not the
attacks exploiting low entropy or those based on mali-
cious clients (Section 5.4-6).
Routing assumption: If not specified otherwise, a
valley-free shortest path routing is used in which each
shortest path is equally likely to be chosen. Only in Fig-
ure 5d other routing schemes (non valley-free shortest
path and valley-free without shortest path) are used.
Anonymity set size: We compute the anonymity set
size based on two metrics: 1) The number of ASes that
could be the entry node (sender anonymity) or the exit
node (receiver anonymity). And 2) the size of the IPv4
address space associated with the ASes that could be

dPHI 315

(a) Sender anonymity with entry ASes met-
ric for attacker on path s to M

(b) Sender anonymity with IPv4 address
metric for attacker on path s to M

(c) Sender anonymity with IPv4 address
metric for attacker on different paths

(d) Sender anonymity with IPv4 address
metric for attacker on path s to M with
different routing policies

(e) Receiver anonymity with IPv4 address
metric for attacker on path s to W

(f) Receiver anonymity with IPv4 address
metric for attacker located anywhere on the
path (including exit node)

Fig. 5. Quantitative sender and receiver anonymity set size analysis. Results are shown as cumulative distribution functions (CDF) in
which the y-axis shows the probability that the anonymity set size is equal or smaller than the value depicted in the x-axis.

the entry node or exit node, respectively.
Location of attacker node: The location of the at-
tacker on a PHI or dPHI path greatly influences the
anonymity set size (See Section 7.7). The attacker lo-
cation for dPHI is therefore specified in each Figure.
For LAP and HORNET all nodes between the source
and destination are used as attacker locations for the
anonymity set size comparison as there is no midway
node or helper node in these schemes.

8.2 Sender anonymity

Figure 5a shows the CDF of the sender anonymity set
size for nodes on the path from source s to midway node
M . The sender anonymity set sizes for LAP and HOR-
NET for the path s to d are also depicted for compari-
son. In this Figure, anonymity set sizes based on entry
ASes are shown while Figure 5b presents the same infor-
mation on the basis of possible IPv4 source addresses.

Please note that the anonymity set size on the x-axis
has a logarithmic scale with base 2 so that a shift to the
right by one is already an increase by a factor of two. As
one can see, PHI only achieves the anonymity level of
LAP without VSS while dPHI performs slightly better
than LAP with V SS = 3.

The sender anonymity for paths W to d and W to
M is shown in Figure 5c. These paths are especially in-
teresting for PHI and dPHI as enclosed nodes learn the
destination. The anonymity set size for W to d is con-
siderably larger than W to M since the backtracking
algorithm in PHI does not guarantee a shortest path
routing. The anonymity set size in Figure 5c for dPHI,
therefore, consists of all nodes that are reachable via the
previous hop without compromising valley-freeness. In
PHI, the attacker can learn the path length, hence, we
excluded all nodes that cannot be reached with a num-
ber of hops that is less or equal to the path length. Note,
however, that in 97.5% of the sessions a shortest path
was chosen and in 2.5% of the cases, the resulting path

dPHI 316

was only one hop longer. Only in one out of one thou-
sand sessions, the resulting path was two hops longer.
If an attacker would ignore the 2.5% chance of a longer
route, the anonymity set size for W to d would look like
that from W to M . The anonymity set size decreases
the closer the node is to the source, which is why the
anonymity set size for nodes on Ps−W is the lowest as
compared to nodes on PW−M .

We also tested the impact of different routing poli-
cies in Figure 5d. If no shortest path routing is as-
sumed, i.e., all valley-free paths are assumed to be valid,
the anonymity set size increases significantly. Using a
shortest path routing policy without requiring valley-
freeness also results in a larger anonymity set size than
the valley-free shortest path routing policy. But this dif-
ference is considerably smaller than compared to not
using a shortest path routing policy.

8.3 Receiver anonymity

The receiver anonymity set size is depicted in Figures 5e
and 5f. LAP does not provide receiver anonymity and
hence the anonymity set size is 1. PHI and dPHI only
provide receiver anonymity for nodes on the path Ps−W

from the source to the midway node. In our experiment
this corresponds to 60% of the nodes being able to eaves-
drop d during session establishment. While the receiver
anonymity set size for both PHI and dPHI is already
very high, dPHI outperforms PHI considerably. Note
that a high receiver anonymity is especially important
for the entry node As which knows the source so that
the combined sender-receiver anonymity solely depends
on the receiver anonymity.

8.4 Upper bound of sender-receiver
anonymity

Computing the sender-receiver anonymity for PHI and
dPHI is computationally extremely expensive as one
has to compute all possible paths from all sources
to all destinations for all helper nodes. Therefore, we
only computed an upper bound of the sender-receiver
anonymity set size. This was done by multiplying the
sender anonymity set size for an attacker on node Ai

(i.e., all possible sources for this session establishment)
with the receiver anonymity set size for the same node
(all possible destinations). The correct source and des-
tination pair lies within this upper bound. However,
the actual sender-receiver anonymity set size might

Fig. 6. Upper bound of sender-receiver anonymity set size with
IPv4 address metric for an attacker located anywhere on a path.

be smaller as for some sender-receiver pairs in this
anonymity set size there may exist no helper node such
that a path traverses through the attacker node. Yet,
this upper bound provides a rough estimation of the
sender-receiver anonymity set size. Figure 6 shows the
upper bound of the sender-receiver anonymity. dPHI
considerably outperforms LAP in this metric. Nodes
that have a receiver anonymity set size of 1 in dPHI
(nodes on path PW−d and PW−M) exhibit a relatively
high sender anonymity (see Figure 5c) while nodes with
low sender anonymity (close to source s) have a rela-
tively high receiver anonymity. This ensures that the
minimum sender-receiver anonymity set size remains
fairly high in dPHI. HORNET clearly performs the best
in terms of sender-receiver anonymity as only the entry
and exit nodes have a sender or receiver anonymity set
size of one.

9 Limitations of dPHI
In this subsection we would like to explicitly point out
some limitations of dPHI. One limitation of dPHI is that
the threat model assumes the attacker to control only a
single AS. If the attacker controls two ASes the attacker
can learn considerably more by combining the individu-
ally learned information. If the nodes the attacker con-
trols are close to each other, this is not as problematic
as the case that the attacker controls two nodes that
are further away. This is due to the fact that attacker
nodes close to the source have a low source anonymity
but large destination anonymity while attacker nodes
close to the destination have no destination anonymity
but large source anonymity. Hence, the anonymity can
be greatly reduced if the attacker manages to gain con-
trol over two nodes on the path that are further apart.
Active attacks on the routing layer could make this issue
even worse in practice. For example, in BGP route poi-
soning is a known problem that was used in the past to

dPHI 317

direct traffic over specific ASes for eavesdropping [2, 30].
Similarly, an attacker might drop session requests until
a favorable dPHI path is established [5].

The biggest limitation and open problem of the
dPHI protocol is the selection of the midway node. To
be more precise, how to make sure that the entry node
does not also become the midway node. If the entry node
becomes the midway node there is no source or destina-
tion anonymity since the entry node (necessarily) knows
the source and the midway node knows the destination.
In a network scenario in which the source knows the em-
ployed routing policy of all nodes, it can verify that this
does not happen. However, in adaptive routing policies
such as BGP, one cannot accurately predict the route
that will be chosen. Indeed, the fact that dPHI does not
require client-based routing is the main benefit of dPHI
compared to HORNET. Efficiently solving this problem
without requiring client-based or client-controlled rout-
ing is important and very interesting future work. Note
that if the entry node performs active attacks to shape
the traffic as described above, the problem of prevent-
ing the entry node to become the midway node becomes
even more severe.

10 Performance analysis
In the following, the performance of dPHI in terms of
computation complexity, latency, header size and good-
put is compared to PHI.

10.1 Latency

To compare the latency of processing PHI and dPHI
messages during session establishment and transmis-
sion, the dPHI and PHI packet processing was imple-
mented in C and is available on Github [4]. To make
use of Intel’s AES-NI instruction set, we utilized their
Intelligent Storage Acceleration Library Crypto Version
(ISA-L_crypto) to implement AES-GCM-256 and AES-
CBC-256 for required AES operations. Any ECDH op-
erations have been realized with the curve25519-donna
library. For measuring the required clock cycles we used
the intrinsic function rdtsc() and conducted one million
independent measurements. After sorting these mea-
surements, we discarded the top and bottom 37.5% and
calculated the average of the remaining quarter, as is
common practice when using rdtsc() and was also done
by Chen et al. [8, 9]. Though, please note that in the

dPHI PHI
Session establishment
Midway Request (A 6= M) 430*/1151 110
Midway Request (A = M) 146000 144915
Backtracking (A 6= W) 117 105
Backtracking (A = W) 1600*/3169 222
Handshake to d (A 6= W) 430*/1151 110
Handshake to d (A = W) 1255*/3619 n/a
Handshake reply to s (A 6= W) 117 105
Handshake reply to s (A = W) 951*/2124 105
Transmission phase
Transmission phase (A 6= W) 117 105
Transmission phase (A = W) 250 105

Table 1. Measured clock cycles of header processing for different
nodes A in the protocol during the different phases of session
establishment and the transmission phase. Entries marked with
an asterisk are clock cycle measurements for an implementation
based on precomputed random numbers (a node can precompute
random numbers when the processor is idle).

presence of compiler and processor optimizations rdtsc()
measurements on current processors for low numbers of
clock cycles are quite inaccurate despite being the best
available option. We performed our measurements on an
Intel Core i7-7500U with 2.7GHz using a single thread.
Table 1 shows the processing latency results for PHI
and dPHI. Some dPHI operations require fresh random
numbers that can either be precomputed or generated
on the fly. We implemented both and supplied two val-
ues in the Table 1 for these operations.

For session establishment, the computation time of
nodes besides the helper node is negligible, especially
when considering that in both PHI and dPHI the helper
node, source, and destination have to perform public key
operations. As can be seen in Table 1, the public key op-
eration of the helper node is up to two orders slower than
all other cryptographic operations. In dPHI the back-
tracking phase is extended to s so that more nodes need
to be traversed. While the additional cryptographic op-
erations will not significantly impact the setup latency,
propagation latency might be higher. However, a PHI
session establishment only succeeds with 90% proba-
bility. When a session establishment fails, the process
needs to be repeated, including the computationally ex-
pensive public key operations, thus nearly doubling the
setup latency. In consequence, while the minimum setup
latency in dPHI is slightly worse than PHI due to the
additional hops, the average and especially worst case
setup latency are better.

dPHI 318

In HORNET, pubic key operations have to be per-
formed by all nodes on the path so that the session es-
tablishment latency is considerably higher than in dPHI
or PHI. Furthermore, the public key operations result in
a considerable burden for the ASes if many sessions are
created in parallel. An average path in the 2014 CAIDA
dataset is about 4.2 hops, hence in average 4.2 sequential
public key operations need to be performed per session
in HORNET. In PHI, four parallel public key opera-
tions, resulting from four independent requests, suffice
with a 90% probability, in 10% of the cases, eight or
more are needed. In dPHI on the other hand, only one
public key operation needs to be performed within the
network. Therefore, dPHI reduces the overall computa-
tion load induced by the protocol considerably.

10.2 Header size and PHI collision
probability

The header size is greatly influenced by the routing seg-
ment size. The default parameters proposed in PHI [9]
for the number of routing elements in V is m = 12 for
path length smaller than 8 and m = 48 for larger paths.
Furthermore, N = 4 session establishment request are
sent out in parallel for small headers and N = 5 for
large ones. The parameters were chosen so that a ses-
sion establishment succeeds with 90% probability for
the 2014 CAIDA dataset. However, the used formula
to compute the success probability [9] is not accurate.
It only computes the probability of a collision on the
path between the source and destination but ignores the
collision that can occur between the midway node and
the helper node. In Figure 7a we compute the session
establishment probability for 1000 random PHI paths
with the inaccurate formula and an updated formula
that includes the collision probability between midway
and helper node. The success probability with the ac-
curate formula is considerably smaller. In fact, m = 16
instead of m = 12 is needed to achieve the 90% prob-
ability. For a maximum path length rmax, the number
of routing elements in a dPHI header is (rmax + 1) · 2.
We compared the size of the routing segment of PHI
and dPHI for different values of rmax in Figure 7b un-
der the assumption that for PHI a routing segment size
m is chosen such that a session establishment success
rate of 90% is achieved. For this computation, an es-
timation of the expected path length from W to M is
needed. In our experiments of 1000 random PHI paths,
the ratio of the path length r between s and d and the
path between W to M was roughly 50%. This value is

(a) CDF of the probability
that a PHI session establish-
ment is successful

(b) Comparison of routing
segment sizes of dPHI and
PHI

Fig. 7. a) CDF of the probability that a PHI session establish-
ment is successful with N = 4 parallel session requests with the
inaccurate formula from [9] and the accurate formula for differ-
ent segment sizes m. b) Comparison of the routing segment size
between PHI and dPHI depending on the maximum path length
rmax. For PHI the routing segment size was computed such that
the probability of a successful session establishment is at least
90% when sending out N = 4 request. For dPHI the routing
segment size is m = 2 · l = 2 · (rmax + 1).

used in Figure 7b, as well. As one can see, the routing
segment size in PHI grows exponentially while it only
grows linearly in dPHI.

It is also possible in dPHI to use different sizes for
V 1 and V 2 than the default value of l = 12 for each
vector. This is due to the fact that the source chooses
the helper node and can simply pick one with a dis-
tance equal or smaller to 7 without reducing too much
anonymity. Most nodes will be within this distance and
a larger size is reserved for V 2 to reach far away des-
tinations. Furthermore, since the path is split into two
routing segments it is possible to create routes longer
than r by choosing a helper node such that the midway
node is roughly half-way between s and d.

LAP uses a variably sized header that does not de-
pend on the maximum path length but the current path
length. To make comparisons between PHI, dPHI, LAP
and HORNET we used different values for maximum
path length rmax and average path length ravg for LAP.
We chose rmax = 7 with ravg = 5 and rmax = 11 with
ravg = 8 for our analysis and assumed a value of m = 16
and m = 66 for PHI segment sizes for normal and large
headers. The PHI values were chosen based on the more
accurate collision formula. In dPHI the header size is
made up of a fixed part of 50 bytes for sid, midway
field, pointers and flags, as well as the routing segments
V 1 and V 2 whose size depends on rmax. One routing el-
ement consists of 39 bytes so that the header size for
dPHI is 674 bytes and 986 bytes for rmax = 7 and
rmax = 11 respectively.

dPHI 319

(a) rmax=7, ravg = 5 (b) rmax=11, ravg = 8

Fig. 8. Approximated goodput of the different protocols based on
the ratio of header size and payload (assuming processing is not
the bottleneck). LAP uses variable sized headers and we used the
average number of hops in the computation.

10.3 Goodput and throughput

In [9] goodput measurements were performed using an
SDN testbed. It was observed that PHI-related packet
processing had no considerable impact on transmission
rates of the used 10 Gbps link. Only in HORNET pro-
cessing speed impacted the goodput since HORNET
also performs payload encryption. The processing speed
of packets during transmission is roughly the same for
dPHI and PHI with a measured clock cycle count of 117
vs 105 (See Table 1). This means, from a computational
perspective, that the number of dPHI headers to be pro-
cessed, even with the small size of 674 bytes, could be
one magnitude higher than the number that is actually
needed to saturate the 10 Gbps link. Hence, only the
header size impacts the goodput in dPHI, just as has
been the case in PHI. We therefore approximated the
goodput for different payload sizes by computing the
ratio of header size divided by packet size. The result of
this analysis can be seen in Figure 8. In the computation
we assumed that the size of a PHI routing element is 24
bytes with 8 bytes resulting from encrypting the rout-
ing information with AES in counter mode and 16 bytes
from the 128-Bit MAC that is also used in HORNET
and dPHI. Note that we propose in dPHI to only use
r = 11 or larger but included r = 7 for comparability.

The result of our analysis shows that the average
goodput of LAP is the best, even with V SS = 3 (un-
like what was stated in [9], which assumed the worst
case header size, it seems). HORNET’s goodput is also
higher than that of both PHI and dPHI due to its
smaller header size. Note that Figure 8 does not consider
processing load as a potential bottleneck. But measure-
ment data from [9] which include processing overhead
yield similar results for large payloads (slightly above
7 Gbps for a 1024 byte payload). Comparing PHI with

dPHI, we can see that, for a small r = 7, PHI has a
higher goodput than dPHI. However, dPHI outperforms
PHI for large paths of r = 11. Note that this difference
will increase rapidly for larger path due to the exponen-
tial vs linear growths in header size.

11 Conclusion
In this paper, we showed that the PHI protocol has sev-
eral limitations that can be exploited by attackers to
significantly reduce the achieved anonymity. Based on
PHI, a new protocol named dependable PHI (dPHI) was
introduced that withstands these attacks. This holds
true even if the threat model is extended to consider
attackers who control clients in various ASes. dPHI also
solves PHI’s problem of collisions in the routing segment
so that dPHI needs fewer session establishment requests
and smaller header sizes. A quantitative anonymity
and performance analysis shows that dPHI offers a
good trade-off between performance and anonymity
compared to LAP and HORNET. The sender-receiver
anonymity set size of dPHI is considerably larger than
that of LAP. This is mainly due to the fact that dPHI of-
fers receiver anonymity for nodes on path s to W , while
LAP does not offer receiver anonymity. HORNET pro-
vides the best anonymity of the discussed protocols.

In terms of setup latency and goodput, dPHI
achieves similar or better results than PHI but lower
goodput than LAP or HORNET. HORNET requires
expensive public key operations on all routing nodes
during session establishment. Furthermore, HORNET
uses client-based routing that is not in line with today’s
Internet design. dPHI does not have such restrictions
on the routing algorithm and can be used in conjunc-
tion with BGP. The only major issue in dPHI is that
the client should choose a helper node so that the entry
node does not become the midway node. How to ensure
this without requiring the client to know the network
topology is an open research problem.

12 Acknowledgements
This work was supported by Rheinmetall. We would also
like to thank the anonymous reviewers and our shepherd
Marios Isaakidis for their very helpful feedback.

dPHI 320

References
[1] M. AlSabah and I. Goldberg, “Performance and security

improvements for tor: A survey,” ACM Computing Surveys
(CSUR), vol. 49, no. 2, p. 32, 2016.

[2] N. Anderson, “How china swallowed 15% of net traffic
for 18 minutes,” 11 2010, Arstechnica. [Online]. Available:
https://arstechnica.com/information-technology/2010/11/
how-china-swallowed-15-of-net-traffic-for-18-minutes/

[3] G. Asharov, D. Demmler, M. Schapira, T. Schneider, G. Segev,
S. Shenker, and M. Zohner, “Privacy-preserving interdomain
routing at internet scale,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, no. 3, pp. 147–167, 2017.

[4] A. Bajic and G. T. Becker, “Github repository of used
software and data,” https://github.com/AlexB030/dPHI,
[Online; uploaded 10-March-2020].

[5] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial
of service or denial of security?” in Proceedings of the 14th
ACM conference on Computer and communications security,
2007, pp. 92–102.

[6] K. Butler, P. McDaniel, and W. Aiello, “Optimizing bgp
security by exploiting path stability,” in Proceedings of the
13th ACM conference on Computer and communications
security. ACM, 2006, pp. 298–310.

[7] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from
a distance: Website fingerprinting attacks and defenses,” in
Proceedings of the 2012 ACM conference on Computer and
communications security. ACM, 2012, pp. 605–616.

[8] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig,
“Hornet: High-speed onion routing at the network layer,”
in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015, pp.
1441–1454.

[9] C. Chen and A. Perrig, “Phi: Path-hidden lightweight
anonymity protocol at network layer,” Proceedings on Privacy
Enhancing Technologies, vol. 2017, no. 1, pp. 100–117, 2017.

[10] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity
trilemma: Strong anonymity, low bandwidth overhead, low
latency - choose two,” in 2018 IEEE Symposium on Security
and Privacy (SP), vol. 00, May 2018, pp. 108–126.

[11] P. Dhungel, M. Steiner, I. Rimac, V. Hilt, and K. W. Ross,
“Waiting for anonymity: Understanding delays in the tor
overlay,” in 2010 IEEE Tenth International Conference on
Peer-to-Peer Computing (P2P). IEEE, 2010, pp. 1–4.

[12] D. Gupta, A. Segal, A. Panda, G. Segev, M. Schapira,
J. Feigenbaum, J. Rexford, and S. Shenker, “A new approach
to interdomain routing based on secure multi-party compu-
tation,” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks. ACM, 2012, pp. 37–42.

[13] W. Henecka and M. Roughan, “Strip: Privacy-preserving
vector-based routing,” in 2013 21st IEEE International
Conference on Network Protocols (ICNP). IEEE, 2013, pp.
1–10.

[14] H.-C. Hsiao, T. H.-J. Kim, A. Perrig, A. Yamada, S. C.
Nelson, M. Gruteser, and W. Meng, “Lap: Lightweight
anonymity and privacy,” in Security and Privacy (SP), 2012
IEEE Symposium on. IEEE, 2012, pp. 506–520.

[15] http://www.caida.org/data/as-relationships, “The caida ucsd
[as relationships] -[2014-09-01],” caida, Tech. Rep., 2014.

[16] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson,
“Users get routed: Traffic correlation on tor by realistic
adversaries,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM,
2013, pp. 337–348.

[17] D. Kelly, R. Raines, R. Baldwin, M. Grimaila, and B. Mullins,
“Exploring extant and emerging issues in anonymous net-
works: A taxonomy and survey of protocols and metrics,”
IEEE Communications Surveys & Tutorials, vol. 14, no. 2,
pp. 579–606, 2012.

[18] S. Kent, C. Lynn, and K. Seo, “Secure border gateway
protocol (s-bgp),” IEEE Journal on Selected areas in Com-
munications, vol. 18, no. 4, pp. 582–592, 2000.

[19] M. Lepinski and K. Sriram, “Bgpsec protocol specification,”
RFC 8205, Tech. Rep., 2017.

[20] D. McGrew and J. Viega, “The galois/counter mode of
operation (gcm),” Submission to NIST Modes of Operation
Process, vol. 20, 2004.

[21] J. McLachlan, A. Tran, N. Hopper, and Y. Kim, “Scal-
able onion routing with torsk,” in Proceedings of the 16th
ACM conference on Computer and communications security.
ACM, 2009, pp. 590–599.

[22] A. Mitseva, A. Panchenko, and T. Engel, “The state of affairs
in bgp security: A survey of attacks and defenses,” Computer
Communications, vol. 124, pp. 45–60, 2018.

[23] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis
of tor,” in Security and Privacy, 2005 IEEE Symposium on.
IEEE, 2005, pp. 183–195.

[24] J. Ren and J. Wu, “Survey on anonymous communications
in computer networks,” Computer Communications, vol. 33,
no. 4, pp. 420–431, 2010.

[25] J. Sankey and M. Wright, “Dovetail: Stronger anonymity in
next-generation internet routing,” in International Symposium
on Privacy Enhancing Technologies Symposium. Springer,
2014, pp. 283–303.

[26] F. Shirazi, M. Simeonovski, M. R. Asghar, M. Backes, and
C. Diaz, “A survey on routing in anonymous communication
protocols,” ACM Computing Surveys (CSUR), vol. 51, no. 3,
p. 51, 2018.

[27] P. Syverson, R. Dingledine, and N. Mathewson, “Tor: The
secondgeneration onion router,” in Usenix Security, 2004.

[28] M. van den Berg, P. de Graaf, P. Kwant, and T. Slewe,
“Mass surveillance - part 2: Technology foresight, options for
longer term security and privacy improvements,” in Study
- Panel for the Future of Science and Technology (STOA).
European Parliament, 2015.

[29] P. C. Van Oorschot, T. Wan, and E. Kranakis, “On interdo-
main routing security and pretty secure bgp (psbgp),” ACM
Transactions on Information and System Security (TISSEC),
vol. 10, no. 3, p. 11, 2007.

[30] L. Vanbever, O. Li, J. Rexford, and P. Mittal, “Anonymity on
quicksand: Using bgp to compromise tor,” in Proceedings of
the 13th ACM Workshop on Hot Topics in Networks. ACM,
2014, p. 14.

[31] R. Wails, Y. Sun, A. Johnson, M. Chiang, and P. Mittal,
“Tempest: Temporal dynamics in anonymity systems,”
Proceedings on Privacy Enhancing Technologies, vol. 2018,
no. 3, pp. 22–42, 2018.

[32] R. White, “Securing bgp through secure origin bgp (sobgp),”
Business Communications Review, vol. 33, no. 5, pp. 47–47,

https://arstechnica.com/information-technology/2010/11/how-china-swallowed-15-of-net-traffic-for-18-minutes/
https://arstechnica.com/information-technology/2010/11/how-china-swallowed-15-of-net-traffic-for-18-minutes/
https://github.com/AlexB030/dPHI

dPHI 321

2003.

A Detailed dPHI protocol
description

In the pseudo-code used to describe the protocol, capital
letters denote structs with several fields, while minus-
cule letters denote single entries. The message header
is denoted with H and the payload with P . A dot is
used to address a specific field within a struct. The en-
cryption function (c, t, iv) = enck(p, a) denotes an au-
thenticated encryption function (e.g. AES-GCM [20])
with plaintext p, key k and additional authentica-
tion data a. The output is ciphertext c, authentica-
tion tag t and a fresh initialization vector iv. Simi-
larly, p = deck(c, t, iv, a) is the authenticated decryp-
tion funcion which ensures the integrity of plaintext p

and authentication data a. For public key operations
(priv, pub) = ECDHgen() denotes the generation of a
public-key private-key pair of an Elliptic-Curve Diffie
Hellman algorithm. Generating a session key between
two entities A and B is done using the ECDH func-
tion kA−B = ECDH(pubA, privB) = ECDH(pubB , privA) =
kB−A, where pubA and pubB are the public keys of A and
B respectively and privA and privB the private keys.
The Assert(S) function verifies that the Boolean ex-
pression S is true. If it is false, the protocol is aborted,
i.e., the node drops the processing of the current mes-
sage. The function sendMessage(port, H, P) denotes the
sending of the message of a node to the next node at
port port with header H and payload P .

A.1 Message header and routing segments

The bulk of the header is made up of two routing seg-
ments V 1 and V 2 (see Figure 4), each consisting of l

routing elements that contain routing information for
every node on the path. Each node Ai has a unique se-
cret symmetric key ki that is not shared with any other
entity. It is used to encrypt the routing information R

and store it in the routing segment so that it can be re-
trieved and authenticated later on. More formally, the
encrypted information consists of a triplet (ivi, ci, ti),
where ivi is a freshly generated initialization vector, ci

is the ciphertext and ti the authentication tag of an
authenticated encryption algorithm with:

(ci, ti, IVi) = encki
(R; sid||cpos−1) (9)

where R is the plaintext routing information that gets
encrypted and sid||cpos−1 is the additional authentica-
tion data. The routing information R consists of five
fields in total.

R = (port1||port2||type||posV 1||posV 2) (10)

The two fields port1 and port2 correspond to ingress and
egress interfaces, and the type field defines the role of the
node in the session (e.g. midway node or entry node).
The fields posV 1 and posV 2 point to the routing element
in V 1 and V 2 where R is stored. Only the midway node
W stores R in both routing segments so that for other
nodes one of the pointers is null.

Algorithm 1 Phase 0: Setup
procedure setup(d)

(privs, pubs)← ECDHgen()
nmid ← random()
M ← chooseHelperNode()
distM ← maxDistanceTo(s, M)
pubM ← lookupPublicKey(M)
ks−M ← ECDH(pubM , privs)
H.sid← Hash(pubs)
(c, t, IV)← encks−M

(d||nmid, H.sid)
P ← (c, t, IV, pubs)
H.V 1 ← random()
H.V 2 ← zeros()
H.midway ← zeros()
H.pos← random(0, l − 1)
H.dest←M

H.status← “toHelperNode”
Hs ← H

store(Hs, privs, pubs, ks−M , distM , nmid)
sendMessage(As, H, P)

end procedure

A.2 Phase 0: Initialization

Algorithm 1 details the initialization performed by
source s. For each path request, source s generates a
fresh ECDH key pair, consisting of pubs and privs. The
source computes a session id sid by hashing the pub-
lic key with a cryptographically secure hash function
sid = Hash(pubs). This way a session is intrinsically
linked to the freshly generated ECDH key pair. This
idea was introduced in PHI to securely link the path
setup and the transmission phase and is kept in dPHI.

dPHI 322

The source then chooses a helper node M from a
list of trusted ASes. It is assumed that the list also con-
tains the maximum distance distM (number of hops)
between the source and the helper node M as well as
the public key pubM of M . The source uses its own pri-
vate key privs and M ’s public key pubM to compute a
session key ks−M with ks−M = ECDH(privs, pubM). The
source uses this session key ks−M to encrypt the destina-
tion address d as well as freshly generate a high-entropy
random midway nonce nmid. The routing elements in
the routing segment V 1 are initiated by s with random
values that are indistinguishable from real routing el-
ements. This can, for example, be done using a cryp-
tographically secure pseudo-random number generator
with a fresh high-entropy seed value. Furthermore, s

chooses a random start position pos ∈ {0, .., l − 1} and
stores pos and V 1 locally for later reference. After ini-
tialization, the source s starts the midway request phase
by sending a request message to its corresponding AS
As. The payload of the midway request consists of the
encrypted destination and the session’s public key pubs.
The destination field dest of the message header is set to
dest := M , the status field to status := “toHelperNode”
to indicate that the protocol is in the initial phase.

A.3 Phase 1: midway request

The processing of a midway request message is described
in Algorithm 2. Each node on the path to M encrypts its
routing information R and stores it in the routing seg-
ment V 1 using authenticated encryption. The session
id sid as well as the ciphertext of the previous rout-
ing element are used as additional authentication data
for the authenticated encryption algorithm. When the
midway request reaches M , M decrypts the destination
d and midway nonce nmid. It sets the destination field
dest and the midway field of the header to d and nmid

respectively. Then the message’s status is set to “find-
Midway” and sent back to the previous node.

A.4 Phase 2: Find midwaynode W

Algorithms 3 and 4 explain Phase 2 of the dPHI pro-
tocol. The goal is to find a midway node W that is
on the path Ps−M between s and M such that a path
Ps−d = Ps−W∗ ∩ PW−d meets the routing policy of the
network (e.g. valley-freeness, shortest path etc.). Each
node receiving a "findMidway” request decrypts its rout-
ing information in V 1 and uses the ingres information

Algorithm 2 Phase1: Midway Request
Require: H.status == “toHelperNode”
1: procedure midwayRequest(ingres,H,P)
2: if self == H.dest then
3: Assert(H.sid == Hash(P.pubs))
4: ks−M ← ECDH(privM , P.pubs)
5: d||nmid = decks−M

(P.c, P.t, P.IV, sid)
6: H.dest← d

7: H.status← “findMidway”
8: H.midway ← nmid

9: H.pos← H.pos− 1 mod l

10: sendMessage(ingres, H, P)
11: else . M not yet reached
12: R.port2← FindRouteTo(H.dest)
13: R.port1← ingres

14: R.posV 1← H.pos

15: R.posV 2← null
16: cprev ← H.V 1[H.pos− 1 mod l][0]
17: if isClient(ingres) then
18: R.type← “entryNode”
19: else
20: R.type← “V 1”
21: end if
22: H.V 1[H.pos]← encki

(R, H.sid||cprev)
23: H.pos← H.pos + 1 mod l

24: sendMessage(R.port2, H, P)
25: end if
26: end procedure

and the destination d to decide whether or not to be-
come the midway node. If not, the message is simply for-
warded to the previous node, reachable through R.port1.

Once a node becomes the midway node, it pre-
pares a midway reply nrep using the midway nonce nmid

from the midway field. The idea behind the midway re-
ply is to allow the source s to verify the integrity of
destination d as well as V 1. To do this, it computes
nrep = Hash(H.dest||nmid||H.V 1) and sets the midway
field in the header to nrep. Furthermore, the midway
node updates its routing information R with the up-
dated R.port2 information to route messages to d. It also
chooses a random start position in V 2 and stores it in
R.posV 2, sets R.type = “midway”, re-encrypts R, and
updates its routing segment in V 1 accordingly. Note,
that this updated V 1 is used by the hash function to
determine nrep. Then the midway node encrypts the
destination field H.dest in the header with its secret key
so that nodes between s and W do not learn d. Lastly,
the message is sent back to s via the nodes on path

dPHI 323

Algorithm 3 Phase2: Find Midwaynode
Require: H.status == “findMidway”
1: procedure findMidway(ingres,H,P)
2: cprev ← H.V 1[(H.pos− 1) mod l][0]
3: R← decki

(H.V 1[H.pos], H.sid||cprev)
4: Assert(R.type == “V 1”&&R.posV 1 == H.pos)
5: if checkIfNewMidway(self, R.port1, H.dest)

then
6: R.type← “midway”
7: nmid ← H.midway

8: R.posV 2← random(0, l − 1)
9: R.port2← FindRouteTo(H.dest)

10: H.V 1[H.pos]← encki
(R, H.sid||cprev)

11: H.midway ← Hash(H.dest||nmid||H.V 1)
12: H.dest← encki

(H.dest, H.sid)
13: H.status← “midwayReply”
14: end if
15: H.pos← H.pos− 1 mod l

16: sendMessage(R.port1, H, P)
17: end procedure

Algorithm 4 Phase2: Midway Reply
Require: H.status == “midwayReply”
1: procedure midwayReply(ingres,H,P)
2: cprev ← H.V 1[(H.pos− 1) mod l][0]
3: R← decki

(H.V 1[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 1)
5: H.pos← H.pos− 1 mod l

6: sendMessage(R.port1, H, P)
7: . If H.type == “entryNode” then R.port1 is a

client address
8: end procedure

Ps−W . These nodes only relay the message but do not
alter the routing segment.

A.5 Phase 3: handshake to d

When receiving a midway reply, source s first verifies
the integrity of the received routing segment H.V 1. Only
distM routing elements should have been modified com-
pared to the randomly initialized V 1

s starting from po-
sition poss in consecutive order. If this is not the case
the message is dropped. It then verifies that the midway
field H.midway is equal to Hash(d||nmid||H.V 1) to verify
that the correct destination was used by midway node
W and that V 1 has not been altered after processing by
W . If these checks succeed, the source computes a ses-
sion key ks−d based on the private key of the ECDH key

Algorithm 5 Phase 3: Initiate handshake
Require: Client s receives message with H.status ==

“midwayReply”
1: procedure initHandshake(ingress, H, P)
2: Hs, privs, pubs, distM , ks−M ,← restore()
3: Assert(H.sid == Hs.sid & &H.pos == Hs.pos)
4: /* Verify that only routing segments in V 1

have been modified between positions Hs.pos and
(Hs.pos + distM mod l) */

5: pointer = Hs.pos + distM + 1 mod l

6: while pointer 6= Hs.pos do
7: if H.V 1[pointer] 6= Hs.V 1[pointer] then
8: Abort()
9: end if

10: pointer = pointer + 1 mod l

11: end while
12: nrep ← Hash(d||nmid||H.V 1)
13: Assert(nrep == H.midway)
14: . All checks valid, send message to d

15: ks−d = ECDH(pubd, privs)
16: (c, t, IV)← encks−d

(H.V 1, sid)
17: P ← c, t, IV, pubs

18: H.status← “handshakeToW”
19: store(V 1)
20: sendMessage(ingress, H, P)
21: end procedure

pair it generated for this session, as well as d’s publicly
available longterm key pubd. It uses this session key to
encrypt V 1 and sends it together with the public key
pubs to d in a handshake message. The process of this
handshake initiation is covered in Algorithm 5.

Algorithm 6 covers communication of nodes on the
path Ps−W that forward the message to the midway
node W according to the routing information stored
in H.V 1. The midway node uses its secret key to de-
crypt the destination field d = decki

(H.dest) and sets
H.dest = d. It then chooses a random seed seed and
uses a cryptographically secure pseudo-random num-
ber generator to initiate the second routing segment
V 2 with V 2 = CPRNG(seed). Furthermore, it deter-
mines the maximum expected number of hops distd for
the message to reach d. It uses authenticated encryption
to encrypt seed and distd with W ’s routing element in
V 1 as additional authentication data and stores it in
the header’s midway field. The midway node serves as
the bridge between nodes writing their routing infor-
mation in V 1 and V 2. It therefore re-encrypts its rout-
ing segment and stores it in V 2 at position posV 2 (so
that V 1[posV 1] and V 2[posV 2] contain the same plain-

dPHI 324

Algorithm 6 Phase3: Handshake to W

Require: H.status == “handshakeToW”
1: procedure handshakeToW(ingress,H,P)
2: cprev ← H.V 1[(H.pos− 1 mod l][0]
3: R← decki

(H.V 1[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 1)
5: if R.type == “midway” then
6: H.dest← decki

(H.dest, H.sid)
7: seed← random()
8: H.V 2 ← CPRNG(seed)
9: distd ← maxDistanceTo(H.dest)

10: cprevV 2 ← H.V 2[(R.posV 2− 1 mod l][0]
11: H.V 2[R.posV 2]← encki

(R, H.sid||cprevV 2)
12: cv1 ← H.V 1[R.posV 1][0]
13: H.midway ← encki

(seed||distd, sid||cv1)
14: H.status← “handshakeToD”
15: H.pos← R.posV 2 + 1 mod l

16: else
17: H.pos← H.pos + 1 mod l

18: end if
19: sendMessage(R.port2, H, P)
20: end procedure

text but different ciphertexts). It then initiates the next
phase of the protocol by setting pos = posV 2 + 1 mod l

and sending the message via port2.
Should the midway node also be the exit node (port2

is a client address) the message is sent directly to the
client. Otherwise the handshake message is forwarded
to the next node specified in port2. Nodes between W

and d retrieving the handshake message look up the
destination and where to forward the package. Then,
they store their routing information encrypted in V 2 the
same way, as nodes between s and M have done with
V 1 during the first phase of the protocol and forward
the message. This process is described in Algorithm 7.

A.6 Phase 4: Handshake reply

Algorithm 8 describes the handshake reply preparation
by destination d. At first, destination d verifies that sid

is the hash of the received public key pubs and com-
putes the session key ks−d using this public key and its
own private key. The session key is then used to de-
crypt the routing segment stored in the payload and
compare it with the received routing segment H.V 1. If
they are identical, the destination d encrypts both rout-
ing segment V 1 and V 2 and uses this as the payload of

Algorithm 7 Phase3: Handshake to d

Require: H.status == “handshakeToD”
1: procedure handshakeToD(ingress,H,P)
2: if isClient(H.dest) then . Message arrived,

forward to client
3: R.type← “destNode”
4: R.port2← H.dest

5: else
6: R.type← “V 2”
7: R.port2← findRouteTo(H.dest)
8: end if
9: R.port1← ingress

10: R.posV 1← null
11: R.posV 2← H.pos

12: cprev ← H.V 2[(H.pos− 1 mod l)[0]
13: H.V 2[H.pos]← encki

(R, H.sid||cprev)
14: H.pos← H.pos + 1 mod l

15: sendMessage(R.port2, H, P)
16: end procedure

Algorithm 8 Phase 4: Prepare handshake reply
Require: Client d receives message with H.status ==

“handshakeToD”
1: procedure initHandshakeReply(ingress, H, P)
2: Assert(H.sid == Hash(P.pubs))
3: ks−d ← ECDH(P.pubs, privd)
4: V 1

s ← decks−d
(P.c, P.t, P.IV, H.sid)

5: Assert(H.V 1 == V 1
s)

6: P ← encks−d
(H.V 1||H.V 2, sid)

7: H.dest← zeros()
8: H.status← “replyToW”
9: store(H)

10: sendMessage(ingress, H, P)
11: end procedure

the handshake reply message. It deletes the destination
field from the header and sends back the message to s.

Algorithms 9 and 10 describe the processing of the
handshake reply message by the routing nodes between
d and s. The nodes between d and W look up the routing
information in their routing segments and forward the
message to W without modifying any routing segments.
The midway node receiving a handshake reply message
verifies that there were no unauthorized modifications
in V 2. For this, the midway field is decrypted to retrieve
the seed for V 2 and the distance distd between W and
d. It uses the seed to re-compute the initial value of V 2

and verifies that at most distd routing elements have
changed in V 2, starting at position pos. If this check

dPHI 325

Algorithm 9 Phase4: Handshake Reply
Require: H.status == “replyToW”
1: procedure handReplyToW(ingress,H,P)
2: cprev ← H.V 2[(H.pos− 1 mod l][0]
3: R← decki

(H.V 2[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 2)
5: if R.type == “midway” then
6: . Verify V 2 and then switch to V 1

7: cv1 ← H.V 1[R.posV 1][0]
8: seed||distd ← decki

(H.midway, sid||cv1)
9: V 2

s ← CPRNG(seed)
10: . Only distd elements in V 2 should have changed

starting at H.pos

11: pointer = H.pos + distd + 1 mod l

12: while pointer 6= H.pos do
13: if H.V 2[pointer] 6= V 2

s [pointer] then
14: Abort()
15: end if
16: pointer = pointer + 1 mod l

17: end while
18: cv2 ← H.V 2[R.posV 2][0]
19: H.midway ← MACki

(cv1||cv2||sid)
20: H.pos← R.posV 1− 1 mod l

21: H.status← “replyToS”
22: else . Not the midway node
23: H.pos← H.pos− 1 mod l

24: end if
25: sendMessage(R.port1, H, P)
26: end procedure

Algorithm 10 Phase4: handshake Reply to s

Require: H.status == “replyToS”
1: procedure handReplyToS(ingress,H,P)
2: cprev ← H.V 1[H.pos− 1 mod l][0]
3: R← decki

(H.V 1[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 1)
5: sendMessage(R.port1, H, P)
6: end procedure

Algorithm 11 Phase 4: handshake finish
Require: Client c receives message with H.status ==

“replyToS”
1: procedure handshakeFinish(ingress, H, P)
2: Hs, privs, pubs, ks−d, nmid ← restore()
3: V 1

d ||V 2
d ← decks−d

(P, H.sid)
4: Assert(Hs.V 1 == H.V 1 & &H.V 1 == V 1

d)
5: Assert(H.V 2 == V 2

d)
6: H.status← “transmissionPhaseToD1”
7: store(H)
8: end procedure

succeeds, the pointer is switched to V 1 and the message
forwarded to s.

The source s receiving the handshake reply veri-
fies that the received routing segment V 1 matches the
stored routing segment. It then decrypts the payload
to verify that the routing segment received by d is the
same as the one received by the source. If this is true,
the handshake is complete and a secure path has been
established that is linked to the session key ks−d. This
process is described in Algorithm 11.

Algorithm 12 Phase 5: Transmission phase
Require: H.status == “transToD1”
1: procedure transmissionPhaseD1(ingres,H,P)
2: cprev ← H.V 1[(H.pos− 1 mod l][0]
3: R← decki

(H.V 1[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 1)
5: Assert(R.type == (“midway” OR “V 1”))
6: if type == “midway” then
7: cv1 ← H.V 1[R.posV 1][0]
8: cv2 ← H.V 2[R.posV 2][0]
9: m← MACki

(cv1||cv2||H.sid)
10: Assert(m == H.midway)
11: H.status← “transToD2”
12: H.pos← R.posV 2 + 1 mod l

13: else
14: H.pos← H.pos + 1 mod l
15: end if
16: sendMessage(R.port2, H, P)
17: end procedure

Algorithm 13 Phase 5: Transmission phase
Require: H.status == “transToD2”
1: procedure transmissionPhaseD2(ingres,H,P)
2: cprev ← H.V 2[(h.pos− 1 mod l][0]
3: R← decki

(H.V 2[H.pos], H.sid||cprev)
4: Assert(R.posV 2 == H.pos&&R.type == “V 2”)
5: H.pos← H.pos + 1 mod l
6: sendMessage(R.port2, H, P)
7: end procedure

A.7 Phase 5: Transmission phase

Messages between s and d can now be exchanged with-
out requiring a destination field dest. Each node on the

dPHI 326

path Ps,d simply forwards messages according to the
stored routing information in its respective routing ele-
ment in V 1 or V 2 and direction. The midway node W

is responsible to switch between V 1 and V 2. Before this
is done, the midway node verifies that the midway field
contains the valid MAC of W ’s two routing elements
(one in V 1, one in V 2) to securely link the two seg-
ments together. Source s and destination d have both
stored routing segments V 1 and V 2. For every message
they receive they first verify that the received routing
segments match the stored routing segments before ac-
cepting it. The Algorithms describing the transmission
phase for messages from s to d can be found in Algo-
rithm 12 and 13. The reverse direction from d to s is
analogous.

	dPHI: An improved high-speed network-layer anonymity protocol
	1 Introduction
	1.1 Contribution

	2 Related work
	3 System and threat model
	3.1 Original threat model
	3.2 Extended threat model

	4 The PHI protocol
	5 Attacks on PHI
	5.1 Passive distance leakage attack
	5.2 Active attack on PHI to determine W and the distance to d
	5.3 Distance leakage to the source
	5.4 Attacks on implementations without freshness
	5.5 Correlation of failure probability and distance to destination
	5.6 Attacks using extended threat model to de-anonymize s

	6 The dPHI protocol
	6.1 Key management
	6.2 Authenticated encryption
	6.3 Modification to the routing segment
	6.4 Backtracking to s and verification of V1 and V2
	6.5 Addition of the midway nonce

	7 Security analysis
	7.1 Passive distance leakage attack
	7.2 Active attack to determine W and the distance to d
	7.3 Distance leakage to the source
	7.4 Exploiting missing freshness
	7.5 Correlation of failure probability and distance to destination
	7.6 Active attacks in the extended threat model
	7.7 Information leakage in dPHI

	8 Quantitative anonymity analysis
	8.1 Assumptions and experimental setup
	8.2 Sender anonymity
	8.3 Receiver anonymity
	8.4 Upper bound of sender-receiver anonymity

	9 Limitations of dPHI
	10 Performance analysis
	10.1 Latency
	10.2 Header size and PHI collision probability
	10.3 Goodput and throughput

	11 Conclusion
	12 Acknowledgements
	A Detailed dPHI protocol description
	A.1 Message header and routing segments
	A.2 Phase 0: Initialization
	A.3 Phase 1: midway request
	A.4 Phase 2: Find midwaynode W
	A.5 Phase 3: handshake to d
	A.6 Phase 4: Handshake reply
	A.7 Phase 5: Transmission phase

