
Proceedings on Privacy Enhancing Technologies ; 2020 (3):404–424

Mohsen Minaei*, Pedro Moreno-Sanchez*, and Aniket Kate
MoneyMorph: Censorship Resistant Rendezvous using
Permissionless Cryptocurrencies
Abstract: Cryptocurrencies play a major role in the
global financial ecosystem. Their presence across dif-
ferent geopolitical corridors, including in repressive
regimes, has been one of their striking features. In
this work, we leverage this feature for bootstrapping
Censorship Resistant communication. We conceptualize
the notion of stego-bootstrapping scheme and its secu-
rity in terms of rareness and security against chosen-
covertext attacks. We present MoneyMorph, a provably
secure stego-bootstrapping scheme using cryptocurren-
cies. MoneyMorph allows a censored user to inter-
act with a decoder entity outside the censored region,
through blockchain transactions as rendezvous, to ob-
tain bootstrapping information such as a censorship-
resistant proxy and its public key. Unlike the usual
bootstrapping approaches (e.g., emailing) with heuris-
tic security, if any, MoneyMorph employs public-key
steganography over blockchain transactions to ensure
provable cryptographic security. We design rendezvous
over Bitcoin, Zcash, Monero, and Ethereum, and ana-
lyze their effectiveness in terms of available bandwidth
and transaction cost. With its highly cryptographic
structure, we show that Zcash provides 1148 byte band-
width per transaction costing less than 0.01 USD as fee.

DOI 10.2478/popets-2020-0058
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

1 Introduction
One of the most ubiquitous and challenging problems
faced by the Internet today is the restrictions imposed
on its free use. Repressive and totalitarian governments
continue to censor Internet content to their citizens.
Censors employ several techniques ranging from IP ad-
dress filtering to deep-packet inspection in order to
block disfavored Internet content [62]. Censored users

*Corresponding Author: Mohsen Minaei: Purdue Uni-
versity, E-mail: mohsen@purdue.edu
*Corresponding Author: Pedro Moreno-Sanchez: TU
Wien, E-mail: pedro.sanchez@tuwien.ac.at, First and second
authors contributed equally and are considered co-first authors
Aniket Kate: Purdue University, E-mail: aniket@purdue.edu

are thereby prevented from not only accessing informa-
tion on the Internet but also from expressing their views
freely. Given that, several circumvention systems have
been proposed over the last decade [47]. Nevertheless,
censorship still remains a challenge to be fully resolved.

Nowadays, Bitcoin is observing a worldwide pres-
ence. Interestingly, this presence is prevalent in coun-
tries with large-scale censorship [3, 4], and although pos-
sible in theory, completely censoring Bitcoin may not
be in the best interest of most countries [56]. The same
holds true for other cryptocurrencies focused on smart
contracts as in Ethereum [29] or privacy-preserving coin
transfers as in Zcash [60] and Monero [63].

The availability of cryptocurrencies across different
geopolitical corridors makes them a suitable distributed
rendezvous to post steganographic messages. In fact,
censored users can leverage their highly cryptographic
structure to encode censored data while maintaining un-
detectability. In this work, we thoroughly study the fea-
sibility of using the different available cryptocurrencies
as a censorship circumvention rendezvous.

In preparation, inspired from the key encapsula-
tion mechanism (KEM), we conceptualize the notion
of stego-bootstrapping (SB) scheme that uses a two-
way handshake between a censored user and an uncen-
sored entity (i.e., decoder) where a decoder can trans-
mit bootstrapping credentials of an entry point for a
censorship-circumvention protocol (e.g., Tor Bridge) to
the censored user in the presence of the censor. We
then formally describe the security properties for an SB
scheme in terms of rareness and security against chosen-
covertext attacks. Intuitively, the SB scheme achieves
rareness if it does not decode a valid message from a
regular transaction (i.e., not carrying steganographic
data). Moreover, an SB scheme is secure against chosen-
covertext attacks if the adversary, given a covertext,
cannot tell whether it encodes a message of his choice.
Our contributions. Firstly, we contribute Money-
Morph, our instantiation of the SB scheme. The cor-
nerstone of MoneyMorph consists in reusing functional-
ity from cryptocurrencies to make it seamlessly and in-
terchangeably deployable with the major cryptocurren-
cies available today. In fact, MoneyMorph works using
Zcash, Bitcoin, Monero, and Ethereum as rendezvous.
Although we focus on widely deployed cryptocurren-

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 405

cies, our techniques can be leveraged in many other
cryptocurrencies that share design principles with them.
Supporting a wide range of cryptocurrencies increases
the rendezvous available for the censored users and thus
their chances of getting bootstrapping credentials.

Secondly, we carry out a comparative study of the
different rendezvous by evaluating their effectiveness in
terms of available bandwidth per transaction, mone-
tary costs, and percentage of sibling transactions. In
our study, Zcash is the preferable option with 1148 byte
bandwidth per transaction costing less than 0.01 USD.

Finally, we have implemented MoneyMorph using
Bitcoin, Ethereum, and Zcash as rendezvous, demon-
strating its practicality and backward compatibility.
Our evaluation shows that encoding/decoding opera-
tions can be completed in less than 50 milliseconds.
Moreover, at given block creation rates, the decoder
and censored user can simultaneously monitor several
cryptocurrency blockchains looking for encoded data in
real-time, even with their commodity equipment.

2 Problem Statement
We refer to the problem of bootstrapping communica-
tion into an uncensored area as stego-bootstrapping. As
shown in Fig. 1, a censored user wants to receive the cre-
dentials of a censorship-resistance protocol entry point
(e.g., Tor bridge). For that, the user encodes a challenge
message into a short covertext cc (e.g., a blockchain
transaction) and sends cc to the rendezvous.

A decoder in the uncensored area provides the cen-
sored users with an entry point credentials. For that, the
decoder continuously inspects the chosen rendezvous for
covertexts, eventually getting the covertext cc, decoding
it, and obtaining the challenge message from the user.
Then, the decoder encodes the credentials in a new re-
sponse covertext rc and adds it to the rendezvous. The
censored user can then obtain rc, decode it, and get the
bootstrapping details. What happens after this point is
out of the scope of this work. We rely on complementary
solutions for the censorship-resistant communication.

The communication between censored user and de-
coder is hindered by the censor, an entity that decides
what messages enter or exit the censored area. The cen-
sor can also run the protocol impersonating a censored
user, learn the identity of the decoder, and easily stop
the messages that are directly addressed to it. There-
fore, we require a solution that communicates with the
decoder without directly addressing messages to it.

Fig. 1. Censorship circumvention bootstrapping problem. Cen-
sored user sends a covertext to the decoder, who replies with
another covertext including proxy’s details. Then, the censored
user can access censored information through the proxy. We focus
on the bootstrapping process (solid arrows).

2.1 Stego-Bootstrapping Scheme

The stego-bootstrapping (SB) problem can be seen as
a two-way handshake, a challenge from the censored
user to the decoder (forward direction), and the corre-
sponding response from the decoder to the censored user
(backward direction). The two-way handshake can be
considered as two independent “one-way handshakes”,
each defined in terms of a public-key stegosystem [27],
with a single setup, encoding and decoding algorithms.
This approach, however, requires the decoder and cen-
sored user to know each other’s public keys in advance.
In practice, instead, the censored user knows the public
key of the decoder, but the decoder does not know the
public key of the censored user. Therefore, inspired by
the key encapsulation mechanism, we consider the two-
way handshake as a whole and only require that the cen-
sored user knows in advance the decoder’s public key.
Our SB scheme definition contains two pairs of encod-
ing and decoding algorithms, the first for the challenge
operations and the second for the response operations.

Here, λ is the security parameter; ε1(λ), ε2(λ) are
negligible functions; Mc, Mr are sets of challenge and
response messages; Cc , Cr are sets of challenge and re-
sponse authenticated covertexts; and T is a set of tags.
The f and b subscripts stand for forward (challenge op-
eration) and backward (response operations) directions.

Definition 1 (Stego-Bootstrapping (SB) Scheme).
The SB scheme is a tuple of algorithms (SBSet,
SBEncf , SBDecf , SBEncb, SBDecb) defined as below:
– vkd, skd, τ ← SBSet(λ). On input the security param-
eter λ, output a key pair vkd, skd and a tag τ ∈ T .

– {((cc, σ), k),⊥} ← SBEncf (vkd, cm, τ). On input a
public key vkd, a challenge message cm ∈ Mc and
a tag τ ∈ T , output either a tuple with an authenti-
cated challenge covertext (cc, σ) ∈ Cc and a symmetric
key k; or the symbol ⊥ to indicate an error.

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 406

– {(cm, k′),⊥} ← SBDecf (skd, (cc, σ), τ). On input a
private key skd, an authenticated challenge covertext
(cc, σ) ∈ Cc and a tag τ ∈ T , output either a tuple
with a challenge message cm ∈ Mc and a symmetric
key k′; or ⊥.

– {(rc, σ′),⊥} ← SBEncb(skd, k′, rm). On input the pri-
vate key skd, a symmetric key k′ and a response mes-
sage rm ∈ Mr, output either an authenticated re-
sponse covertext (rc, σ′) ∈ Cr; or ⊥

– {rm,⊥} ← SBDecb(vkd, k, (rc, σ′)). On input the pub-
lic key vkd, a symmetric key k and an authenticated
response covertext (rc, σ′) ∈ Cr, output a response
message rm ∈Mr; or ⊥.

Definition 2 (Correctness). Let vkd, skd, τ be the out-
put of SBSet(λ). Let cm ∈Mc and rm ∈ Cr be a pair of
challenge and response messages. A SB scheme is con-
sidered correct if the following conditions hold: (i) Let
((cc, σ), k) be the output of SBEncf (vkd, cm, τ). Then,
SBDecf (skd, (cc, σ), τ) returns a tuple (cm′, k′) such that
cm′ = cm and k′ = k. (ii) Let (rc, σ′) be the output
of SBEncb(skd, k′, rm). Then, SBDecb(vkd, k, (rc, σ′)) re-
turns a response message rm′ so that rm′ = rm.

2.2 Threat Model

We consider the censor as a malicious adversary with
network capabilities within the censored area and addi-
tionally knows the public key of the decoder. The censor
does not control the decoder or its communications.

The censor is able to selectively inspect, fingerprint,
block, or inject traffic within the censored area. We as-
sume, however, that the censor is restricted in two ways.
First, we assume that there are negative (economic) con-
sequences for the censor to block all communications be-
tween censored users and the rendezvous system where
both censored user and decoder post their messages.
While the censor can always prevent the access to a
rendezvous as it has happened before with Telegram or
SSL connections [20, 62], we believe that this assump-
tion is realistic in practice using cryptocurrencies as ren-
dezvous system. As the user base for different cryptocur-
rencies grows, even in countries with heavy censorship,
banning them all may have economic consequences for
the censor and the censored area [56]. In fact, this as-
sumption is already followed by other works in the com-
munity [71]. Second, we assume that the censor cannot
alter the information included in the rendezvous (e.g.,
the censor does control the majority of the Bitcoin net-
work hash rate). We find this assumption realistic as it
is required for the security of the rendezvous itself.

2.3 Security Goals

We characterize two security properties for an SB
scheme, rareness and security against chosen-covertext
attacks. First, we define the rareness property, a notion
closely related to the concept of γ-uniformity [39].

Definition 3 (Rareness). For negligible functions ε1(λ)
and ε2(λ), a SB scheme achieves rareness if for all tu-
ples (vkd, skd, τ) output by SBSet(λ), the following con-
ditions hold:
(i) Pr[SBDecf (skd, (cc, σ), τ) 6= ⊥ | (cc, σ) ←$ Cc] ≤
ε1(λ);
(ii) Let ((cc, σ), k) be the output of SBEncf (vkd, cm, τ)
for an arbitrary cm ∈ Mc. Then, Pr[SBDecb(vkd, k,
(rc, σ′)) 6= ⊥ | (rc, σ′)←$ Cr] ≤ ε2(λ).

Next, we characterize security against chosen-covertext
attacks (SBS-CCA). We inspire it from SS-CCA by
Backes et al. [27] and adapt it to consider the two encod-
ing and decoding algorithms as defined in Definition 1.

We define SBS-CCA as a cryptographic game
(ExpSBS-CCA

A (λ)) between a challenger and an attacker
with five rounds as described below.

R1: Key generation stage. The challenger runs
vkd, skd, τ ← SBSet(λ) and gives the public key vkd and
the tag τ to the attacker.

R2: First decoding stage. The attacker has ac-
cess to an encoding Oenc and decoding Odec

1 ora-
cles. Oenc has access to the public key vkd, the
private key skd and the tag τ . On input a tuple
(cm, rm) ∈ Mc × Mr, Oenc returns the special sym-
bol ⊥ or a tuple ((cc, σ), k, rc) constructed as follows:
(i) Run {((cc, σ), k),⊥} ← SBEncf (vkd, cm, τ). (ii) Run
{(cm, k′),⊥} ← SBDecf (skd, (cc, σ), τ). (iii) Run
{(rc, σ′),⊥} ← SBEncb(skd, k′, rm). (iv) If the output
in any of the previous steps is ⊥, return ⊥, else return
((cc, σ), k, (rc, σ′)).

Odec
1 has access to the public key vkd, the private key

skd and the tag τ . On input a tuple ((cc, σ), k, (rc, σ′))
where (cc, σ) ∈ Cc, (rc, σ′) ∈ Cr and k is a symmetric
key, the decoding oracle Odec

1 outputs either the special
symbol ⊥ or a tuple (cm, rm) constructed as follows:
(i) Run {(cm, k′),⊥} ← SBDecf (skd, (cc, σ), τ). (ii) Run
{rm,⊥} ← SBDecb(vkd, k, (rc, σ′)). (iii) If the output in
step (i) or (ii) is ⊥, return ⊥, else return (cm, rm).

R3: Challenge phase. The attacker sends a pair
of messages (cm∗, rm∗) ∈ Mc × Mr to the chal-
lenger. Then, challenger chooses a bit b and does
the following steps depending on it. For b = 0,
the challenger sets ((cc∗, σ∗), (rc∗, σ′∗) ←$ Cc × Cr

and returns ((cc∗, σ∗), (rc∗, σ′∗)). For b = 1, the

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 407

challenger carries out the following steps: (i) Run
{((cc∗, σ∗), k∗),⊥} ← SBEncf (vkd, cm∗, τ). (ii) Run
{(cm∗, k′∗),⊥} ← SBDecf (skd, (cc∗, σ∗, τ). (iii) Run
{(rc∗, σ′∗,⊥} ← SBEncb(skd, k′∗, rm∗). (iv) If any of
the previous steps outputs ⊥, return ⊥, else return
((cc∗, σ∗), (rc∗, σ′∗)).

The challenge phase finishes by sending the tu-
ple ((cc∗, σ∗), (rc∗, σ′∗)) to the attacker. The idea is
that the attacker should guess the value of b, i.e.,
the attacker should determine whether the messages
cm∗, rm∗ have been encoded in the authenticated cover-
texts ((cc∗, σ∗), (rc∗, σ′∗)) or they have been chosen at
random from Cc × Cr instead. Note that, here the chal-
lenger does not reveal the symmetric key k∗ to the ad-
versary when b = 1, as otherwise, the adversary can
trivially guess the bit b by locally running the algo-
rithm {rm,⊥} ← SBDecb(vkd, k∗, (rc∗, σ′∗) and checking
whether the output is a message rm = rm∗. In practice,
this models the fact that the intermediate key materials
(i.e., symmetric keys k, k′) are known only to the honest
participants and not the adversary (e.g., the censor).

R4: Second decoding stage. The attacker has ac-
cess to Oenc as described above. Moreover, the at-
tacker has access to a decoding oracle Odec

2 , which is
similar to Odec

1 except that upon receiving the pair
((cc∗, σ∗), k′′, (rc∗, σ′∗)), where k′′ denotes any symmet-
ric key, returns ⊥.

R5: Guessing stage. The attacker outputs a bit b∗.

Definition 4 (Security against chosen-covertext attacks).
A SB scheme is secure against chosen-covertext attacks
if every probabilistic polynomial-time adversary A has
negligible advantage in ExpSBS-CCA

A (λ). We define the
adversary’s advantage as |Pr[ExpSBS-CCA

A (λ) = b]−1/2|

2.4 System Goals

Sibling Transactions. The SB system must maxi-
mize the number of messages that follow the structure
of steganographic messages. Otherwise, the censor can
deny service (e.g., drop and not route) to the uncommon
messages and yet maintain a functional system.
Cost-Efficiency. The SB system must provide a boot-
strapping solution at a reduced cost for the honest cen-
sored users and the decoder. We measure the cost in the
USD currency.
Bandwidth. The SB system must provide a bootstrap-
ping solution that maximizes the bandwidth (number of
Bytes available) between the censored users and the de-
coder for transferring the bootstrapping information.

3 Key Ideas

Blockchain as Rendezvous. We leverage the
blockchain as rendezvous for censored messages encoded
as blockchain transactions. The many blockchain sys-
tems existing today such as cryptocurrencies (e.g., Bit-
coin), privacy-preserving cryptocurrencies (e.g., Zcash
or Monero), or smart contracts (e.g., Ethereum) are
managed by distributed users worldwide. We observe
that the cryptographic structure of blockchain transac-
tions can be used to encode censored data.

Using a blockchain system as rendezvous implies
that covertexts remain visible even after the bootstrap-
ping has finished. However, this cannot be leveraged
by the censor because MoneyMorph is secure against
chosen-covertext attacks. Therefore, the adversary can-
not tell better than guessing whether a covertext con-
tains bootstrapping data. The censor is thereby left with
the choice of banning the complete blockchain system
or allowing it completely.
Steganographic Tagging Scheme. We design a
cryptographic construction to convert censored mes-
sages into ciphertexts that can then be encoded into a
covertext transaction. The several public-key stegano-
graphic tagging schemes in the literature [26, 27, 35,
42, 66] assume, in general, high bandwidth not available
in blockchain transactions. We adapt the construction
in [69] aiming to ciphertext succinctness: A ciphertext
has a group element (e.g., an elliptic curve point) rep-
resenting a public key and a random-looking bitstring
of the size similar to the plaintext message. Moreover,
the group element can be easily included in a blockchain
transaction as it already handles public keys.
Fees. MoneyMorph introduces a fee overhead, which
is inevitable due to the use of cryptocurrencies: A fee is
paid to the miners to process and confirm transactions.
Increased use of a cryptocurrency implies a fee raise.
Fortunately, virtually all cryptocurrencies have built-in
mechanisms to handle it.
Paid Services. Currently, many censorship circum-
vention systems are paid services, including even a pre-
mium account, to provide better performance [13, 16,
18, 36]. MoneyMorph can be used to bootstrap free of
charge services (e.g., Tor) as well as the mentioned paid
services. The fee ofMoneyMorph compared to the actual
cost of the mentioned services is negligible. Ultimately,
MoneyMorph is a bootstrapping mechanism that is em-
ployed infrequently by the censored user, resulting in a
low amortized cost over a long period of time.

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 408

4 Our Protocol

4.1 Building Blocks

Encoding Scheme. The encoding scheme allows to
encode challenge and response data as a transaction
compatible with the rendezvous. We defer our instan-
tiations with different cryptocurrencies to Section 5.

Let Dc and Dr be a set of challenge and response
data respectively. Let Ac and Ar be a set of challenge
and response auxiliary information. Let Tc and Tr be a
set of challenge and response transactions, respectively.

Definition 5 (Encoding Scheme). An encoding
scheme is a tuple of algorithms (TxEncf , TxDecf ,
TxEncb, TxDecb) defined as below:
– {ctx,⊥} ← TxEncf (cd, ca). On input challenge data
cd ∈ Dc and the challenge auxiliary information ca ∈
Ac, output a challenge transaction ctx ∈ Tc or the
special symbol ⊥ to indicate an error.

– {cd,⊥} ← TxDecf (ctx). On input a challenge trans-
action ctx ∈ Tc, output challenge data cd ∈ Dc or the
special symbol ⊥ to indicate an error.

– {rtx,⊥} ← TxEncb(rd, ra). On input response data
rd ∈ Dr and the response auxiliary information ra ∈
Ar, output a response transaction rtx ∈ Tr or the spe-
cial symbol ⊥ to indicate an error.

– {rd,⊥} ← TxDecb(rtx). On input a response transac-
tion rtx ∈ Tr, output response data rd ∈ Dr or the
special symbol ⊥ to indicate an error.

Definition 6 (Encoding Scheme Correctness). An en-
coding scheme is correct if for every challenge data
cd ∈ Dc, challenge auxiliary information ca ∈ Ac, re-
sponse data rd ∈ Dr and response auxiliary information
ra ∈ Ar, it holds that: (i) Let ctx ← TxEncf (cd, ca).
Then, cd∗ ← TxDecf (ctx) and cd∗ = cd. (ii) Let rtx ←
TxEncb(rd, ra). Then, rd∗ ← TxDecb(rtx) and rd∗ = rd.

Non-interactive Key Exchange. A non-
interactive key exchange (NIKE) is a tuple of algo-
rithms (NIKE.KGen,NIKE.ShKey), where (vk, sk) ←
NIKE.KGen(id) outputs a public-private key pair vk,
sk for a given party identifier id. The algorithm k ←
NIKE.ShKey(id1, id2, sk1, vk2) outputs a shared key k
for the two parties id1 and id2. We require a NIKE
secure in the CKS model. Static Diffie-Hellman key
exchange satisfies these requirements [30, 37]. Addi-
tionally, we require a function ID(vku) that on input a
public key vku returns the corresponding identifier idu.
We implement this function as the identity function.

– vkd, skd, τ ← SBSet(λ).
Generate vkd, skd ← NIKE.KGen(idd)
Set τ ← {0, 1}64. Return vkd, skd, τ .

– {((cc, σ), k),⊥} ← SBEncf (vkd, cm, τ).
1. Compute vku, sku ← NIKE.KGen(idu)
2. Compute kd ← NIKE.ShKey(ID(vku), ID(vkd), sku, vkd)
3. Compute sks||kc||kr ← HKDF(kd, λ+ lc + lr)
4. Compute vkp ← vksks

d and set ctc := (τ ||cm)⊕ kc

5. Compute ctx← TxEncf ((vku,H(vkp), ctc), sku)
6. If ctx = ⊥, return ⊥. Else, parse ctx as (cc, σ) and
return (cc, σ), kd

– {(cm, k′),⊥} ← SBDecf (skd, (cc, σ), τ).
1. Compute cd← TxDecf ((cc, σ)). If cd = ⊥, return ⊥
2. Parse vk′

u,H(vk′
p), ct′

c ← cd
3. Compute k′

d ← NIKE.ShKey(ID(vkd), ID(vk′
u), skd, vk′

u)
4. Compute sk′

s||k′
c||k′

r ← HKDF(k′
d, λ+ lc + lr)

5. Compute vkd ← gskd ; vk′′
p ← vksk′s

d and set m′ := ct′
c⊕k′

c

6. Parse τ ′||cm′ ← m′. Set b := (τ ′ = τ) ∧ (H(vk′
p) =

H(vk′′
p))

7. If b = 0, return ⊥. Else, return the tuple cm′, k′
d

– {(rc, σ′),⊥} ← SBEncb(skd, k′, rm).
1. Compute sk′

s||k′
c||k′

r ← HKDF(k′, λ+ lc + lr)
2. Compute sk′′

p ← skd · sk′
s; vk′′

p := gsk′′p and set ctr :=
rm⊕ k′

r

3. Compute rtx← TxEncb((ctr, vk′′
p), sk′′

p)
4. Parse rtx as (rc, σ′) and return (rc, σ′)

– {rm,⊥} ← SBDecb(vkd, k, (rc, σ′)).
1. Compute rd← TxDecb((rc, σ′)). If rd = ⊥, return ⊥.
2. parse ct′

r, vkp ← rd
3. Compute sks||kc||kr ← HKDF(k, λ+ lc + lr)
4. Set rm := ct′

r ⊕ kr

5. If vkp 6= vksks
d , return ⊥. Otherwise, return rm

MoneyMorph

Fig. 2. The MoneyMorph construction. We denote by lc and
lr the number of bits for the challenge and response message
respectively. We denote string concatenation by ||. Here, H is a
cryptographic hash as implemented in the encoding scheme and
⊥ represents an error generated by the encoding schemes.

Key Derivation Function. A key derivation function
KDF(k, l) takes as input a key k and a length value l
and outputs a string of l bits. We use the hash-based
key derivation function (HKDF) in [48] as the secure
key derivation function.
Our Construction. In MoneyMorph (see Fig. 2),
we aim at optimizing the succinctness of the ciphertext.
For that, we first use the Diffie-Hellman key exchange
to generate a symmetric key (kd) between the censored
user (SBEncf , steps 1-2) and the decoder (SBDecf , step
3). This symmetric key (kd) shared between censored
user and decoder becomes a master key for a key deriva-
tion function to derive three other keys (sks, kc, kr).
Note that this key derivation function does not require
interaction between the censored user (SBEncf , step 3)
and decoder (SBDecf , step 4).

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 409

The key kc is used by the censored user to encrypt
the challenge message (cm) along with a message tag
τ (SBEncf , step 4). Correspondingly, the decoder uses
kc to decrypt the ciphertext created by the censored
user (SBDecf , step 5) and checks whether the decryp-
tion contains the tag τ (SBDecf , step 6). The decoder
thereby checks whether the ciphertext was the one cre-
ated by the censored user or it does not contain any
censored information otherwise. The key kr is used sim-
ilarly by the censored user and the decoder to encrypt
(SBEncb, step 2) and decrypt (SBDecb, step 4) the re-
sponse message rm. Note that SBEncb and SBDecb must
be invoked with the same symmetric key kd computed
in SBEncf and SBDecf to ensure correctness.

The last key (sks) becomes a fresh private key
shared between the censored user and the decoder.
From sks, the censored user can create a public key vkp
(SBEncf , step 4) such that only the intended decoder
knows the corresponding private key skp (as computed
in SBEncb, step 2). We call the key pair vkp, skp as the
paying key pair. This key pair is used by the censored
user to pay for the service provided by the decoder. The
censored user can associate coins to vkp so that when
vkp becomes a funded address in the blockchain, the de-
coder, knowing skp, can use those coins to cover the cost
of sending the response covertext to the censored user.

Note that the decoder can use the coins at vkp be-
cause our construction reconstructs the corresponding
skp only at the decoder side. This allows the decoder to
claim economic rewards without providing the response
covertext. However, a rational decoder would arguably
respond faithfully to keep the business with the censored
users. Further, the decoder is trusted not to be running
by the censor, as otherwise, it can trivially link the cen-
sored user to the chosen covertext that it can success-
fully decode. In practice, similar to the Tor directory,
trusted decoders can be publicly identified by their pub-
lic keys. We formalize our construction for MoneyMorph
in Fig. 2 and defer all security proofs to Appendix B.

Theorem 1 (MoneyMorph is correct). Let NIKE be
a correct non-interactive key exchange protocol. Let
HKDF be a correct key derivation function. Let H be
a collision-resistant hash function. Let Π be a correct
encoding scheme. Then, MoneyMorph is a correct stego-
bootstrapping scheme as defined in Definition 2.

4.2 Security Analysis

Theorem 2 (MoneyMorph achieves rareness). Let
NIKE be a secure non-interactive key exchange pro-
tocol in the CKS model. Let HKDF be a secure key
derivation function. Let Π be a correct encoding scheme.
Then MoneyMorph achieves rareness as defined in Def-
inition 3.

Theorem 3 (MoneyMorph is secure). Let NIKE be a
correct and secure non-interactive key exchange protocol
in the CKS model. Let HKDF be a correct and secure key
derivation function. Let Π be a correct encoding scheme.
Then, MoneyMorph is secure against covertext-chosen
attacks as defined in Definition 4.

Eventual Forward Secrecy. The challenge cover-
text encodes information encrypted using a key derived
from vkd and vku. While the corresponding sku can be
destroyed right after the creation of the corresponding
challenge covertext (i.e., the associated coins have been
already spent), the decoder might reuse vkd for several
users and therefore, should keep the corresponding skd
in this case. However, the decoder can change vkd during
the MoneyMorph lifetime by spending the coins associ-
ated to vkd in a fresh public key vk′d and destroying
skd afterwards. Such a transaction notifies every user
(including the censor) the change of the decoder’s pub-
lic key. However, as skd has been destroyed, covertext
challenges created with such a key are secure (achieving
eventual forward secrecy).
Immediate Forward Secrecy. In MoneyMorph, the
decoder uses its pair of keys vkd, skd also for the re-
sponse covertext. However, it is possible to modifyMon-
eyMorph so that the decoder generates a fresh pair of
keys vkr, skr instead, and uses the newly generated keys
to create the response covertext. The decoder can imme-
diately delete skr, so that forward secrecy is preserved.
Additionally, the decoder can include vkr in the response
covertext so that the censored user has enough crypto-
graphic information to decode it.
Hindering Censor Detection. In MoneyMorph the
public key of decoder vkd, is used for deriving a shared
key for encryption. We, however, note that users do not
use vkd explicitly as the receiver of coins in their trans-
actions. Instead, they use the vkd to derive a shared
key and a non-detectable address. Then, they encrypt
their messages with the shared key and use a fresh non-
detectable address as the recipient in the transactions,
as explained in Section 4.1. Given that, censor cannot

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 410

distinguish between a transaction encoding a challenge
message and any other transaction. Only the decoder,
with access to skd can do it. Hence, MoneyMorph raises
the bar to limit the detection capabilities of the cen-
sor. This property also allows current widely deployed
gateways to offer the decoder service. They might have
a well-known cryptocurrency address, and yet the cen-
sor cannot easily censor transactions created by Mon-
eyMorph and directed to them.

5 Cryptocurrency Encodings

5.1 Encoding Scheme in Bitcoin

Address and Transaction Format. A Bitcoin ad-
dress is composed of a pair of signing and verification
ECDSA keys. A Bitcoin address is then represented by
the Base58 encoding for the hash of the verification key.
Bitcoins are exchanged between addresses by means of
a transaction. In its simplest form, a transaction trans-
fers a certain amount of coins from one (or many) input
address to one (or many) output address.

The Bitcoin protocol uses a scripting system called
Script [17] that governs how bitcoins can be transferred
between addresses within a transaction. In particular,
coins are locked in an address according to SPKey, a
Script excerpt that encodes the conditions to unlock the
coins. The fulfillment of such conditions are encoded
in another Script excerpt called SSig. A transaction is
valid if coins unlocked (or spent) in the transaction have
not been spent previously; the sum of input coins is
greater or equal to the sum of output coins; and for
each input SPKeyi there exists a SSigi such that a
function Eval(SPKeyi,SSigi) returns true, where Eval
evaluates whether SSigi contains the correct fulfillment
for the conditions encoded in SPKeyi.
Possibilities for Encoding Data. Our approach con-
sists on encoding the tagged message originated by the
censored user as (some of) the conditions defined in the
outputs SPKeyi. We describe the different possible for-
mats of the Bitcoin standard locking mechanism in Ta-
ble 2 (Appendix). In the following, we describe how to
re-use each of them to encode data within a transaction.

Pay2PKey: Instead of including an actual verifica-
tion key within the 〈<pubKey>〉 field, it is possible to
encode 33 bytes of data simulating thereby an ECDSA
verification key. This encoding, however, implies the loss
of locked coins as it is not feasible to guess a signing key
corresponding to the data encoded as verification key.

Pay2PKeyHash: Instead of including the 20 bytes
corresponding to the hash of a verification key within
the 〈<pubKeyHash>〉 field, it is possible to encode 20
bytes of data. This encoding does not restrict the en-
coded data to an ECDSA verification key. Nevertheless,
this encoding also implies the loss (or burnt in Bitcoin
terms) of the locked coins since it is not feasible to come
up with the pre-image of a random hash value.

Pay2ScriptHash: Similar to the Pay2PKeyHash, it
is possible to encode 20 bytes of data replacing the field
H(script). This approach allows the inclusion of arbi-
trary random data at the cost of losing the locked coins.

Pay2Null: It allows the encoding of up to 80 bytes of
data within the field 〈[data]〉. Although, this lock mech-
anism provides the maximum bandwidth so far, it also
implies the loss of the locked coins.

Pay2Multisig: As only M verification keys are actu-
ally used in this lock mechanism, it is possible to encode
33 bytes of data in each of the remaining N −M keys,
simulating thereby an N −M ECDSA verification keys.
Advantage of this encoding is that the locked coins can
be unlocked as the necessary M verifications are not
modified. It is possible, however, to encode 33 bytes of
data in each of the N verification keys at the cost of
losing the locked coins.

Implementation Details.
We encode the censored data within lock-

ing mechanisms of the type Pay2PKeyHash
(pkh) or Pay2ScriptHash (psh). Hereby, we
use SPKeypkh(H(vk)) to denote the sequence
〈OP_DUP OP_HASH160 H(vk) OP_EQUALV ERIFY
OP_CHECKSIG〉 and SPKeypsh(H(vk)) to denote
the sequence 〈OP_HASH160 H(vk) OP_EQUAL〉.
Similarly, we denote by SSig(tx, sk, vk) the con-
dition defined as 〈ECDSA.Sign(tx, sk) vk〉. Fi-
nally, we denote by Extract an extraction func-
tion such that Extract{pkh,psh}(SPKey(x)) = x and
Extract(SSig(tx, sk, vk)) = vk.
{ctx,⊥} ← TxEncf (cd, ca). Parse vku,H(vkp), ct← cd
and sku ← ca. If |ct| > 20 bytes, return ⊥. Otherwise,
create a Bitcoin transaction tx1 as described below.
We assume that ct has been padded with pseudorandom
bytes so that |ct| = 20 bytes and vku has been funded
earlier with x BTC. This amount of coins encode the
coins to be burnt at the output SPKeypsh as well as
the amount of coins required by the decoder to pay for
the transaction fee of the response covertext.

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 411

tx1

Inputs SPKey′
pkh(H(vku)), x BTC

Outputs SPKeypsh(ct), γ1BTC
SPKeypkh(H(vkp)), (x− γ1)BTC

Signature SSig(tx1, sku, vku)

{cd,⊥} ← TxDecf (ctx). If ctx does not have one in-
put and two outputs or the lock mechanisms are not of
the type Pay2PKeyHash and Pay2ScriptHash, return ⊥.
Otherwise, compute ct as ct← Extract(SPKeypsh(ct)).
Compute vku ← Extract(SSig(tx, sku, vku)). Compute
H(vkp) ← Extract(SPKeypkh(H(vkp))). Return the tu-
ple cd := (vku,H(vkp), ct).
{rtx,⊥} ← TxEncb(rd, ra). Parse ct, vkp ← rd and
skp ← ra. If |ct| > 40 bytes, return ⊥. Otherwise, create
a Bitcoin transaction tx2 as described below. Return tx2.
As before, here we assume that ct has been padded with
pseudorandom bytes so that |ct| = 40 bytes.

tx2

Inputs SPKey′
pkh(H(vkp)), (x− γ1) BTC

Outputs SPKeypsh(ct[0 : 19]), γ2BTC
SPKeypkh(ct[20 : 39]), (x− γ1 − γ2)BTC

Signatures SSig(tx2, skp, vkp)

{rd,⊥} ← TxDecb(rtx). If rtx does not have
one input and two outputs, return ⊥. If the lock
mechanisms are not of the type Pay2PKeyHash and
Pay2ScriptHash, return ⊥. Otherwise, compute ct[0 :
19] ← Extract(SPKeypsh(ct[0 : 19)) and ct[20 :
39] ← Extract(SPKeypkh(ct[20 : 39])). Compute vkp ←
Extract(SSig(tx, skp, vkp)). Return rd := (ct, vkp).

System Discussion.
Sibling Transactions. We have downloaded a snapshot
of the Bitcoin blockchain containing blocks 580, 000 to
600, 000 (June-Oct 2019), containing around 45 million
Bitcoin transactions. In this dataset, we observe that the
majority of the transactions contain one input and two
outputs. Furthermore, we examined the outputs’ lock-
ing mechanisms and observed that the combination of
one Pay2PKeyHash and one Pay2ScriptHash construct
32% of all transactions followed by two Pay2PKeyHash
with 23%. To maximize the sibling transactions, we
have selected the combination of Pay2PKeyHash and
Pay2ScriptHash as the lock mechanism to be used by
MoneyMorph to raise the bar for the censor targeting a
single transaction type. Nevertheless, if the aforemen-
tioned transaction trend changes, any of the locking
mechanisms mentioned earlier can be used to lock the
coins while encoding censored data [61], which provide

the same bandwidth as Pay2PKeyHash or more. There-
fore, MoneyMorph users could dynamically adjust the
encoding scheme based on the transaction output dis-
tribution in Bitcoin at different times.
Cost. MoneyMorph (BTC) requires to pay two transac-
tion fees (tx1 and tx2) as well as burn coins three times
because the SPKey outputs used to encode the cipher-
texts are no longer spendable. At the time of writing,
the fastest and cheapest fee for a transaction is about
4, 500 Satoshi (0.34 USD) [5]. If the censored user is will-
ing to wait two hours for its transaction to get into the
blockchain, the cost is reduced to 2, 700 Satoshi (0.2 USD)
Furthermore, to find the minimum value for burning
coins (γ1 and γ2) without trivially being censored, we in-
vestigated all previous transactions with one input and
two outputs. We observed that in order to blend with at
least 25% of the outputs, the burned amount should be
at least 2, 500 Satoshi (0.25 USD). We further analyzed
the UTXO set and observed that about 50% of the out-
puts remain unspent for more than 9 months; therefore,
the MoneyMorph transactions could go unnoticed for a
long period of time. We note that Bitcoin has a supply
of 21 million Bitcoins. With the current amount of burnt
coins per transaction, we would require ∼ 8∗1011 trans-
actions to terminate the supply, and thus burnt coins
have a negligible effect on the economics of Bitcoin.
Bandwidth. MoneyMorph (BTC) uses SPKey fields
to encode the data. Each SPKey field is leveraged
to encode exactly 20 bytes (using Pay2PKeyHash or
Pay2ScriptHash). This provides a 20 byte bandwidth
for the challenge covertext, as one of the two SPKey
fields is used. On the other hand, the response cover-
text has a 40 byte bandwidth as it uses both of SPKey
fields to encode encrypted data.
Limitations. MoneyMorph (BTC) suffers from two limi-
tations: (i) it requires to burn coins; and (ii) forces the
censored user to prepare a spendable input with the
precise value amount to generate transactions tx1 and
tx2. These two limitations can be mitigated by using
the Pay2Multisig script in the encoding (as explained
earlier in this section and similarly used in the com-
munity [59]), or adding an extra output as a change
address. Both mitigations come at the cost of reducing
the number of sibling transactions. Alternatively, Mon-
eyMorph can mitigate these limitations by leveraging
other cryptocurrencies discussed in this section.

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 412

5.2 Encoding Scheme in Zcash

Addresses and Transactions. Ben-Sasson et al. [60]
proposed Zerocash, a privacy-preserving cryptocurrency
scheme. The core idea behind Zerocash has been imple-
mented in Zcash [43]. As the implementation slightly
differs, we focus our description on the cryptocurrency
as detailed in the paper [60] and extend the implemen-
tation details when it applies.

Zerocash [43, 60] supports two types of addresses:
transparent and shielded. A transparent address is de-
fined by an amount x of coins that are locked according
to a script excerpt SPKey that encodes the conditions
to unlock the coins. The fulfillment of such conditions
are encoded in another Script excerpt called SSig. More
details are included in Section 5.1.

A shielded address (or coin) is a tuple of the form
(pk,x, ρ, r, s, com), where pk is a public key generated
as PRFsk(0) with PRF being a pseudo-random function
and sk being a private key; x is the value associated
to this coin, ρ, r and s are random seeds and com is a
commitment that represents the coin. We describe the
format of com later.

Zcash transactions transfer coins from input(s)
to output(s) which can be both transparent and
shielded addresses. Fig. 3 shows an example of such
transaction. Omit for a moment the transparent ad-
dress in the input. Then, the rest of the transac-
tion is an example of a user that wants to split
the coin (i.e., cold, snold) into two new coins cnew

1
and cnew

2 . For that, she creates a single shielded out-
put (rt, snold, comnew

1 , ct1, comnew
2 , ct2, h, vk∗, σ∗,Πpour)

as follows: rt denotes the root of a Merkle tree whose
leafs contains all the commitments {comi} included so
far in the blockchain; snold := PRFskold(ρ) is the se-
rial number associated to the coin being spent; comnew

1
and comnew

2 are the commitments formed as described
for com but for new values xnew

1 and xnew
2 . The values

ctnew
1 and ctnew

2 are two ciphertext that contain the cor-
responding (xnew

i , ρnew
i , rnew

1 , snew
1). These ciphertexts

are encrypted for the corresponding payee. The payee
can then locally reconstruct the complete coin informa-
tion as cnew

i := (pknew
i ,xnew

i , ρnew
i , rnew

1 , snew
1 , comnew

i).
Finally, vk∗ is a fresh ECDSA verification key, h :=
PRFskold(H(vk∗)), σ∗ is a signature of the complete out-

Input SPKey0, x0 ZEC
Output (rt, snold, comnew

1 , ct1, comnew
2 , ct2, h, vk∗, σ∗,Πpour)

Sign. SSig1

Fig. 3. Example of transaction in Zcash.

put under sk∗, and Πpour is a zero-knowledge proof of
the correctness of the output (e.g., snold corresponds to
one of the shielded coins ever created or σ∗ can be cor-
rectly verified using vk∗). We refer readers to [60] for a
detailed explanation.

A transaction can have several transparent inputs
and any combination of shielded and transparent out-
puts. A transaction is valid if, for every shielded output,
σ∗ is a valid signature under verification key vk∗ and
Πpour correctly verifies. Furthermore, for every trans-
parent output, the coins unlocked (or spent) have not
been spent previously; the sum of input coins is greater
or equal to the sum of output coins; and for each in-
put SPKeyi there exists a SSigi such that a function
Eval(SPKeyi,SSigi) returns true, where Eval evalu-
ates whether SSigi contains the correct fulfillment for
the conditions encoded in SPKeyi.

Possibilities for Encoding Data. In a shielded out-
put, there are several fields rt, snold or comnew

i that can-
not be used to encode our data without making the
zero-knowledge proof Πpour fail. However, assume that
a user creates a transaction to send a coin to herself,
then the data encrypted in cti is not required as the
intended payee is the user itself. Our insight then con-
sists in encoding our data as the different ciphertexts
available in the shielded outputs for coins sent to the
user herself. We note that this ciphertext field contains
an ephemeral public key for a Diffie-Hellman key ex-
change, followed by a bitstring of encrypted data with
the corresponding symmetric key. The portion of en-
crypted data constitutes 584 bytes that can be reused
to encode steganographic data in our system.

Furthermore, some data can be encoded in the con-
ditions SPKey of the transaction. In this work we con-
sider the Pay2PKeyHash condition format that includes
the 20 bytes corresponding to the hash of a verification
key. The SPKey (H (vk)) along with the SSig of the
transaction allows us to encode a verification key. For
more details we refer to Section 5.1.

Implementation Details. Here, Extract is an extrac-
tion function working as follows: Extract(SPKey(x)) =
x as well as Extract(SSig(tx, sk, vk)) = vk. Additionally,
on input a field f and a transaction tx, it returns the
value of f if present in the shielded output of tx.
{ctx,⊥} ← TxEncf (cd, ca). Parse vku,H(vkp), ct← cd
and sku ← ca. If |ct| > 1148 bytes, return ⊥. Otherwise,
create a Zcash transaction tx1 as shown below and re-
turn tx1. Here, we assume that vku has been funded
earlier with x ZEC and that there exists an old coin with

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 413

a value xold, previously funded in a shielded output,
whose serial number is snold.

tx1

Input SPKey1(H(vku)), x ZEC
Output (rt, snold, comnew

1 ,H(vkp)||ct[0, 563], comnew
2 ,

ct[564, 1147], h, vk′, σ,Πpour)
Sign. SSig(tx, sku, vku)

The pair (comnew
1 , ctnew

1) is set to an honest shielded
coin for the censored user to get the remaining coins
back. Therefore, comnew

1 is well formed committing to
a coin with value x + xold − xy. However, as the cen-
sored user is sending coins to herself, ct1 is not re-
quired and can be used to encode the public key vkp
and ct[0, 563] (i.e., first 564 bytes). The value xy must
be enough to pay for the transaction fee. Finally, the
pair (comnew

2 , ct2) is used to encode the rest of the ci-
phertext ct. For that, comnew

2 is set to a commitment for
a coin with value x = 0 and set ctnew

2 := ct[564, 1147].
If |ct| < 1148 bytes, ct is padded with pseudorandom
bytes. Finally, a fresh key pair vk′, sk′ is used for the
signature σ and the hash h of the shielded output.
{cd,⊥} ← TxDecf (ctx). If ctx does not have
a transparent input and a shielded output, re-
turn ⊥. Otherwise, Compute H(vkp)||ct[0 : 563] ←
Extract(ctx, ct1), ct[564 : 1147] ← Extract(ctx, ct2),
and vku ← Extract(SSig(tx, sku, vku)). Return cd :=
(vku,H(vkp), ct).
{rtx,⊥} ← TxEncb(rd, ra). Parse ct, vkp ← rd and
skp ← ra. If |ct| > 1168 bytes, return ⊥. Otherwise,
create tx2 as shown below and return tx2.

tx2

Input SPKey(H(vkp)), x∗ ZEC
Output (rt, snold

1 , comnew
3 , ct[0, 583], comnew

4 , ct[584, 1167],
h′, vk′′, σ′,Π′pour)

Sign. SSig(tx2, skp, vkp)

This transaction spends the coins on vkp previously
funded by the censored user in tx1. The rest is con-
structed as in tx1, with the difference that we don’t in-
clude the paying public key and thus gaining an extra 20
bytes that we can use for the encoding of the response.
{rd,⊥} ← TxDecb(rtx). If rtx does not have a trans-
parent input and a shielded output, return ⊥. Oth-
erwise, compute ct[0 : 583] ← Extract(rtx, ct3) and
ct[584 : 1167] ← Extract(rtx, ct4). Extract vkp ←
Extract(SSig(rtx, skp, vkp)). Return rd := (ct, vkp).

System Discussion.
Sibling Transactions. We have obtained blocks 0 to
480, 000 from the Zcash blockchain, containing about

4.2 million transactions. First, we observe that around
11% of the outputs are shielded. Although small, we
note that shielded addresses have started to be used,
and in Oct 2019, 19% of the transactions contained
shielded outputs [25]. Second, we observe that there ex-
ist two new coins (and thus two pairs of (com, ct)) for the
shielded outputs. Third, we observe, that around 60%
of shielded Zcash transactions included one transparent
input. Therefore, to maximize the blending with other
transactions, we use transactions that are structurally
identical to the most widely used shielded transactions
in Zcash blockchain. We further looked into the trans-
actions from Aug 2019, and they showed the same trend
of observations from earlier months.
Cost & Bandwidth. MoneyMorph (ZEC) requires to pay
only two transaction fees. The rest of the coins are sent
back to the censored user using the shielded coins. The
price of the transaction fee is 0.0001 ZEC (0.003 USD).
MoneyMorph (ZEC) uses the ciphertext cti of a Zcash
transaction, encoding 1148 bytes for the challenge and
1168 bytes for the response covertexts.

5.3 Encoding Scheme in Monero

Addresses and Transactions. A Monero address is
of the form (A,B), where A and B are two points of
the curve ed25519, as defined in Monero. In order to
avoid the linkability of different transactions that use
the same public key, a payer does not send the coins
to the Monero address of the payee. Instead, the payer
derives a one-time key verification key vk and an ex-
tra random point R, from the payee’s address using the
Monero Stealth Address mechanism [65]. Given an arbi-
trary pair (vk′, R′) set as an output in the blockchain, a
payee can use her Monero address to figure out whether
the pair (vk′, R′) was intended for her and, if so, com-
pute the signing key sk′ associated to vk′. We note that
while Stealth Addresses hide the intended receiver, they
do not define a mechanism to encode censorable data.
We refer the readers to [65] for further details.

A Monero transaction is divided into in-
puts and outputs. An input consists of a tuple
({vki}, {Com(xi, ri)}, {Πi}), where {vki} is a ring of
one-time keys that have previously appeared in the
blockchain, each Com(xi, ri) is a cryptographic com-
mitment of the amount of coins xi locked in the corre-
sponding public key vki, and each Πi is a zero-knowledge
range proof proving that xi is in the range [0 : 2k], where
k is a constant defined in the Monero protocol.

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 414

An output consists of a tuple ((vk′,R′), Com(x′, r′),
Π′), where each element is defined as aforementioned.
Finally, a transaction contains a signature σring, cre-
ated following the linkable ring signature scheme [64].
A Monero transaction is valid if the following condi-
tions hold. First, σring shows that the sender knows the
signing key sk∗ associated to a verification key within
the set {vki} and such key has not been spent before.
Second, let x∗ be the amount of coins encoded in the
input commitment corresponding to the one-time key
being spent. Then it must hold that x∗ equals the sum
of the output values. Finally, all zero-knowledge range
proofs correctly verify that all amounts are within the
expected range.
Possibilities for Encoding Data. As the informa-
tion in an input tuple must previously exist in the
blockchain, we cannot modify them. Our approach con-
sists then in crafting an output tuple that encodes cer-
tain amount of data while maintaining the invariants
for the validity of the transaction. In particular, our in-
sight is that if a user transfer coins to herself, she does
not need to create the pair (vk,R) from her own address
(A,B), using the stealth addresses mechanism. However,
the commitment and the range proof must be computed
honestly, as otherwise transaction verification fails and
the transaction does not get added to the blockchain.

Further, we can encode extra data within the sig-
nature (see Appendix C). In particular, we observe that
the LRS.Sign algorithm samples n − 1 random values
from Zp. Our insight is that instead of sampling ran-
dom numbers, we use the corresponding bytes from a
ciphertexts as random numbers. As values s1, . . . , sn−1
are included in the signature of the transaction, they
allow to increase the bandwidth. Currently, Monero es-
tablishes that the rings must contain 11 public keys and
thus 10 random numbers can encode data.
Implementation Details. Here we detail the encod-
ing of covertexts into Monero transactions.
{ctx,⊥} ← TxEncf (cd, ca). Parse vku,H(vkp), ct← cd
and parse sku ← ca. Create a transaction tx1 as shown
below. The ciphertext ct is split in chunks of 32 bytes
and each chunk is included as a value si in the signature.

tx1

Inputs ({vki
1}, {Com(xi

1, r
i
1)}, {Πi

1}),
({vki

2}, {Com(xi
2, r

i
2)}, {Πi

2})
Outputs ((vku,R′1),Com(x′1, r′1),Π′1),

((vkp,R′2),Com(x′2, r′2),Π′2)
Sign. σring := (s0, s1, . . . , sn−1, h0,I),

σ′ring := (s′0, s
′
1, . . . , s

′
n−1, h

′
0,I′)

{rtx,⊥} ← TxEncb(rd, ra). Parse ct, vkp ← rd and
parse skp ← ra. Create a Monero transaction tx2 as
described below.

tx2

Inputs ({vki
1} ∪ vkp, {Com(xi

1, r
i
1)}, {Πi

1}),
({vki

2}, {Com(xi
2, r

i
2)}, {Πi

2})
Outputs ((vk′1,R

′
1),Com(x′1, r′1),Π′1),

((vk′2,R
′
2),Com(x′2, r′2),Π′2)

Sign. σring := (s0, s1, . . . , sn−1, h0,I),
σ′ring := (s′0, s

′
1, . . . , s

′
n−1, h

′
0,I′)

{cd,⊥} ← TxDecf (ctx). Extract the ciphertext ct by
concatenating the values in the signature, and the pair
vku, vkp from each of the outputs. Return the tuple cd :=
(vku,H(vkp), ct).
{rd,⊥} ← TxDecb(rtx). Extract the ciphertext ct from
the values included in the signature and extract vkp from
the input ring. Return rd := (vkp, ct).

System Discussion.
Sibling Transactions. We downloaded a snapshot of
the Monero blockchain that contains blocks 1, 890, 000
to 1, 940, 000 (July-Oct 2019), with more than 200 thou-
sand transactions. From this dataset, we have extracted
the distribution of the number of inputs and outputs
used by the transactions. We observe that transactions
with one and two inputs, each consist of around 48%
and 42% of the transactions. Furthermore, around 89%
of them have two outputs. Therefore, to maximize our
sibling transactions and bandwidth goals, we opt for
transactions with two inputs and two outputs.
Cost & Bandwidth. MoneyMorph (XMR) requires to pay
only two transaction fees. The price of the transaction
fee is 0.0005 XMR (0.03 USD). Each of the outputs provides
us with ten fields of 32 bytes, totaling the bandwidth of
640 bytes.
Traditional Privacy-Preserving Currencies vs.
MoneyMorph. Privacy-preserving currencies already
support encrypted messaging; however, the straightfor-
ward use of private payments is disadvantageous with
respect to MoneyMorph. Our approach for Zcash en-
ables more than twice the bandwidth compared to the
traditional use case. (i.e., the user pays to herself and
memo must not include payment information for the re-
ceiver). The 32 bytes of the payment-id in Monero are
not enough to send a key (i.e., already 32 bytes) and
some extra query data (e.g., proxy type). Instead, Mon-
eyMorph provides ten times the bandwidth provided by
the straightforward use of Monero.

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 415

5.4 Encoding Scheme in Ethereum

In Ethereum, there exist two types of addresses: external
addresses and contracts. An external address is format-
ted as in Bitcoin and holds a certain amount of ETH,
the Ethereum native coin. They, however, differ in that
unlike Bitcoin and Zcash, addresses in Ethereum can be
used multiple times. A contract has associated a piece
of software that implements a certain business logic. A
contract invocation requires data as input for the con-
tract execution. In this work, we focus on the use of
contracts to encode steganographic data.

We have downloaded a snapshot of the Ethereum
blockchain and extracted the transactions invoking con-
tracts. We observed that among them, the contract
Etherdelta_2 (an exchange contract) [12] is the most
invoked (8% of all transactions) and thus we use it in
our encoding mechanism. Nevertheless, the approach
described here can be easily extended if any other con-
tract is invoked. The testTrade is a method in this con-
tract that checks whether a trade between two differ-
ent addresses can take place. We will use this sample
method to encode our data.
The signature of this method is as follow:

testTrade (address tokenGet ,
u int amountGet , address tokenGive ,
u int amountGive , u int exp i r e s ,
i n t nonce , address user ,
u int8 v , bytes32 r , bytes32 s ,
u int amount , address sender)

Each address is 160 bits and the uint values are
256 bits. To minimize the suspiciousness of the censor
we only encode data in the amountGet, amountGive,
expires, amount fields and use the lower 32 bits (to sim-
ulate realistic amounts). We get a total bandwidth of 20
bytes which is enough to bootstrap the censored user.

We denote H(vk) by address(vk). We denote by
Extract(tx, tag) a function that returns the value of the
field tag, e.g. Extract(tx, Receiver) = H(vk2).
{ctx,⊥} ← TxEncf (cd, ca). Parse vku,H(vkp), ct← cd
and sku ← ca. If |ct| > 20 bytes, return ⊥. Otherwise,
first create an Ethereum transaction tx0 to fund the
one-time key vkp with x ETH as described below. The
minimum value of x is 0.001 ETH (0.15 USD), which is
equivalent to one transaction fee (γ′) for calling the con-
tract. The transaction fee (γ) for transferring Ether to
external accounts is about 0.0002 ETH (0.03 USD).

tx0 (Fund one-time key)

Field Receiver Amount Fee Signature Data
Value H(vkp) x ETH γ ETH σ(sku), vku —

Next, create an Ethereum transaction tx1. Split the
ciphertext ct in chunks of 5 bytes. Each chunk is in-
cluded as a value vi in the low bit order of the amount-
Get, amountGive, expires, amount fields of the data field
of a contract call. Rest of the fields are not changed and
will contain proper addresses and values as aforemen-
tioned. Moreover, we assume that ct has been padded
with pseudorandom bytes so that |ct| = 20 bytes. H(vke)
denotes the address of the Etherdelta_2 contract. The
value is set to zero and the only cost will be the trans-
action fee. Return tx0||tx1.

tx1

Field Receiver Amount Fee Signature Data
Value H(vke) 0 γ′ ETH σ(sku), vku v1, v2, v3, v4

{cd,⊥} ← TxDecf (ctx). Parse tx0||tx1 ← ctx. If
tx1 does not have H(vke) as the receiver, return ⊥.
Otherwise, extract the ciphertext ct by concatenat-
ing the values in data ← Extract(tx1, data). Com-
pute σ(sku), vku ← Extract(tx1, signature). Compute
H(vkp)← Extract(tx0, receiver). If H(vkp) does not have
at least 0.0003 ETH associated coins, return ⊥. Other-
wise, return the tuple cd := (vku, H(vkp), ct).
{rtx,⊥} ← TxEncb(rd, ra). Parse ct, vkp ← rd and
skp ← ra. If |ct| > 20 bytes, return ⊥. Otherwise, create
an Ethereum transaction tx2 as described below. Return
tx2. As before, here we assume that ct has been padded
with pseudorandom bytes so that |ct| = 20 bytes.

tx2

Field Receiver Amount Fee Signature Data
Value H(vke) 0 γ′ ETH σ(skp), vkp v1, v2, v3, v4

{rd,⊥} ← TxDecb(rtx). If rtx does not have H(vke)
as the receiver and vkp as the verification key, return
⊥. Otherwise, extract the ciphertext ct by concatenat-
ing the values of the amountGet, amountGive, expires,
amount fields as contained in data← Extract(tx2, data).
Compute σ(skp), vkp ← Extract(tx2, signature). Return
the tuple rd := (vkp, ct).

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 416

5.5 Summary of Our Findings

We compare the feasibility of different cryptocurren-
cies as rendezvous in Table 1. We observe that shielded
Zcash transactions provide the most bandwidth with
1168 bytes at a low cost of less than 0.01 USD. The down-
side is that only 11% of the transactions within Zcash
are shielded, however, in the past month (Oct 2019) this
number has increased to 19% [25]. Moreover, Zcash cur-
rently has the lowest market capitalization and exerts
the lowest economic impact for a censor if it decides to
ban it when compared to the other cryptocurrencies in
this work.

Bitcoin (presented in Section 5.1) provides 20 and
40 bytes for the challenge and response messages corre-
spondingly. Our Bitcoin-based solution relies on a trans-
action type used by more than 32% of the Bitcoin trans-
actions, therefore hindering the censor’s task. However,
the fees in Bitcoin are the largest among all, and our
encoding method entails the loss of coins as they are
sent to unrecoverable addresses. Fortunately, it is pos-
sible to lower the cost by deploying the same encoding
techniques over Zcash transparent transactions as they
are conceptually identical to Bitcoin transactions. These
transparent transactions have the lowest fees among all
of the cryptocurrencies, with only 0.003 USD.

After shielded Zcash, Monero (Section 5.3) provides
the most bandwidth with 640 bytes. Interestingly, the
fee associated with the Monero transactions are the sec-
ond lowest among the four cryptocurrencies. The type
of transactions we consider in Monero blends in with
42% of all Monero transactions, making it difficult for
the censor to block all such transactions. Ethereum pro-
vides the least amount of bandwidth (only 20 bytes in
each direction according to the encoding scheme in Sec-
tion 5.4) and a moderate cost of 0.18 USD compared to
the other cryptocurrencies.

Bitcoin Z(Tr) Z(Sh) Monero Ethereum

C
ha
l Bandwidth 20 20 1148 640 20

Tx fee $0.34 $0.003 $0.003 $0.03 $0.18
Lost coins $0.18 $0.01 — — —

R
es
p Bandwidth 40 40 1168 640 20

Tx fee $0.34 $0.003 $0.003 $0.03 $0.15
Lost coins $0.36 $0.02 — — —
Sibling txs 32% 81% 19% 42% > 8%

Market cap $ 136B 230M 230M 950M 16B

Table 1. Comparison of the different rendezvous. Here, we con-
sider the coins market value [7] at the time of writing (Nov. 27th
2019). We denote Zcash transparent by Z(Tr) and shielded by
Z(Sh). Similar to Zcash(Tr), results for Bitcoin can be applied to
Altcoins following the Bitcoin transaction patterns.

6 Implementation and Evaluation
We have developed a prototypical python implemen-
tation [15] to show the feasibility and practicality of
MoneyMorph. We divide the implementation into two
separate tasks: i) cryptographic operations and ii) cryp-
tocurrency specific transaction encoding. In the remain-
ing of this section, we detail each of the tasks.

6.1 Cryptographic Operations

As shown in Fig. 2, the SB scheme requires two main
cryptographic operations. First is the symmetric key
derivation required by SBEncf and SBDecf , where
each party (a user or the decoder) uses its private key
along with the public key of the other party to per-
form the Diffie-Hellman key exchange. Next, using this
shared key, it obtains symmetric keys for the encryption
and decryption of the challenge and response messages.
For the implementation, we leveraged the “ecdsa” [11]
and “cryptography” [8] libraries to perform the Diffie-
Hellman key exchange and derive the mentioned keys.
The process of creating a fresh pair of keys takes the
censored user about 120 milliseconds and deriving the
shared key and symmetric keys for the encryption about
41 milliseconds on average.

Second, we have the encryption and decryption of
the challenge and response messages. The timing of the
encryption and decryption is dependent on the length of
the messages. In our experiment, both encryption and
decryption take less than 1 milliseconds. The challenge
message sent by the user was chosen as tor—obfs3 with
the tag 00000000. The hexadecimal representation of
the message, key, and cipher is presented below.

Message : 3030303030303030746 f722d2d2d2d6f62667333
Enc Key : 399 b8178571ea29a8094562e2200f6ad1b024f8f
Cipher : 09 abb148672e92aaf4fb24030f2ddbc279643cbc

For the operations mentioned above, we used a per-
sonal commodity machine with an Intel Core i7, 2.2 GHz
processor, and 16 GB RAM. Note that the blocks in
all cryptocurrencies are generated with some specified
creation rate, resulting in a time gap between the se-
quential blocks. We observe that a commodity machine,
such as the one that we have used, will have more than
enough capabilities to serve the users in multiple cryp-
tocurrencies. Using higher performance machines will
only improve the timings of the mentioned operations;
However, the end result remains the same as the results
will not be immediate for the users due to the time gap

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 417

Fig. 4. Snapshot of the challenge transaction on Bitcoin testnet.
The highlighted hexadecimals are showing the Cipher mentioned
above inside the scriptpubkey (SPKey).

between the blocks. We further investigated the pos-
sibility of hosting the decoder on cloud platforms and
observed that the price of a simple machine with 1TB
of storage for multiple blockchains would be less than
100 USD per month [2, 9].

6.2 Transaction Encoding

After encrypting the challenge and response messages,
the parties need to encode them into one of the cryp-
tocurrencies’ transactions. To show the feasibility and
practicality of the instantiations mentioned in Section 5,
we implemented the encoding scheme for three of the
cryptocurrencies and deployed the challenge and re-
sponse transactions to the corresponding test network.
Bitcoin. The implementation details of the en-
coding scheme in Bitcoin are provided in Sec-
tion 5.1. In summary, using the “bitcoin-utils” li-
brary [6], we constructed and deployed two trans-
actions on to the Bitcoin’s blockchain. The first
transaction, tx1 (https://tinyurl.com/wvmlyyz) sent
by the user, includes two outputs of the type
Pay2PKeyHash and Pay2ScriptHash. The first out-
put is the paying address that the decoder uses to
send the response to the user. The second output
is the 20 byte ciphertext mentioned in Section 6.1
(09abb148672e92aaf4fb24030f2ddbc279643cbc) and
shown in Fig. 4. Similarly, the decoder encodes the
response message into tx2 using the first output of tx1
(https://tinyurl.com/qsh5a7y). We further analyzed
the time it takes the decoder to process the transac-
tions in a block. We observed that it takes less than 100
milliseconds to retrieve a block that only contains the
hashes of its transaction. It takes an additional 2-5 mil-
lisecond for each of the transactions to be fetched and
decoded. Overall, a block of Bitcoin containing about
2, 000 transactions can be examined by the decoder to
find challenge messages in less than 15 seconds.

Ethereum. The implementation details of the encod-
ing scheme in Ethereum are provided in Section 5.4.
In summary, using the “web3” library, we encoded
the challenge and response messages into transactions
that were sent to the etherdelta2 contract. However,
since we were working on the testnet (the Rinkeby
network), first we needed to deploy the contract (pre-
sented in https://tinyurl.com/s7w9sxe). Next, the cen-
sored user funds the paying address (vkp) using tx0
(https://tinyurl.com/rqy4ns9) and sends the challenge
covertext via tx1 (https://tinyurl.com/vq6b3qn). Simi-
lar to tx1, the decoder used the funds in vkp (obtained
from tx0) and sends the response covertext through tx2
(https://tinyurl.com/uol385r). Keep in mind that the
challenge and response ciphertexts are fragmented into
4 pieces and placed as input values to the testTrade func-
tion. Similar to Bitcoin, we analyzed the time it takes
the decoder to process the transactions in an Ethereum
block. Overall, a block of Ethereum containing on av-
erage 100 transactions can be examined by the decoder
to find challenge messages in less than 1 second.
Zcash. The implementation details of the encoding
scheme in Zcash are provided in Section 5.2. We ob-
served that, the most common transaction has one
transparent input and two shielded outputs. This allows
parties to send funds to themselves without loosing any
coins (as the values and addresses of the shielded out-
puts are hidden) other than the transaction fee1. For
the implementation we used the “zcash-cli” (command
line client) to construct, send and receive transactions.
The challenge and response data were included in the
memo field of tx1 (https://tinyurl.com/wtku9ge) and
tx2 (https://tinyurl.com/vnleyhb). We note that our
tx1 includes an extra transparent output for retriev-
ing the remainder of the coins for testing purposes and
similar to tx2 (that has no transparent outputs) it can
easily be omitted. Zcash, compared to the other two
cryptocurrencies, has a small number of transactions per
block. With an average of 5 transactions per block, it
takes a decoder less than a second to process a block
and look for challenge messages.
Transaction Finality. Previously, we saw that the
time it takes to process a block to decode the challenge
and response covertexts in all the three cryptocurren-
cies is insignificant. However, the procedure for sending
the challenge and response covertexts is bounded by the

1 This feature allows the users to send the shielded output di-
rectly to the shielded address of the decoder known by all.

https://tinyurl.com/wvmlyyz
https://tinyurl.com/qsh5a7y
https://tinyurl.com/s7w9sxe
https://tinyurl.com/rqy4ns9
https://tinyurl.com/vq6b3qn
https://tinyurl.com/uol385r
https://tinyurl.com/wtku9ge
https://tinyurl.com/vnleyhb

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 418

transaction finality. We observe that transaction final-
ity introduces a latency proportional to the rate of cryp-
tocurrency blocks creation. Among the three cryptocur-
rencies, Bitcoin has the slowest block creation time at 10
minutes on average. Next is Zcash with an average block
creation rate of 2.5 minutes and lastly Ethereum with a
fast creation rate of 15 seconds. These results show that
the throughput for any instantiation of MoneyMorph is
only limited by the blocks generation rate. Fortunately,
bootstrapping of censorship-resistance credentials does
not have to be real-time; instead, it is carried out infre-
quently by each user (e.g., emails are currently used to
find Tor bridges).
Simple Payment Verification. Although we rec-
ommend the censored users to run a full node for
the cryptocurrency used as rendezvous if storage and
computation overhead is prohibitive, they can run the
Simple Payment Verification (SPV) client software to
query expected blocks from available full nodes (mul-
tiple nodes for redundancy and security). As explained
in Section 5, MoneyMorph ensures that clients know
what stealth address should to query to retrieve the re-
sponse, thereby reducing the number of required blocks.
While improving the usability, this approach comes,
however, with a tradeoff in security guarantees. First,
SPV clients are more susceptible to eclipse attacks sim-
ilar to those in [28, 40]. Second, the selective query of
transactions (e.g., using Bloom filters) could facilitate
the detectability task of the censor, similar to [44]. Re-
cent advances aim to mitigate those detectability issues
in Bitcoin [49, 53] and Zcash [68], and similar techniques
could be applied for Ethereum and Monero.

7 Related Work
The traditional censorship circumvention systems such
as VPNs [55, 57], Dynaweb [10], Ultrasurf [24],
Lantern [13], Tor [32], and others [33] benefit from estab-
lishing proxy servers outside of the censored area. How-
ever, these systems are vulnerable to blockage. Censors
actively scan and block the IP addresses of the proxies.
Circumvention systems respond with introducing new
IP addresses. A prominent example of such a cat-and-
mouse game is between Tor [32] and the Great Firewall
of China, which has resulted in introducing mirrors [23],
bridges [21], and secret entry servers [22] in the Tor sys-
tem. At the same time, multiple attacks (e.g., active
probing and insider attacks) have been proposed to dis-
cover the Tor bridges [34, 51, 67]. In recent years domain

fronting [14, 36] has been introduced as a way to resist
IP address filtering. However, due to the high bandwidth
and CPU usage, it can be costly for the hosts [18]. To
reduce the cost, we can benefit from the use of con-
tent delivery networks (CDNs) namely CDNBrowsing
[41, 72]. CDN’s disadvantage is the unblocking of limited
censored contents [72]. Moreover, as a central authority
controls these services, their support for censorship cir-
cumvention is not reliable [1].

The most recent line of work in censor circumven-
tion is the decoy routing approach [38, 45, 46, 54, 69, 70].
Decoy routing, unlike the typical end-to-end approach,
it is an end-to-middle proxy with no IP address. The
proxy is located within the network infrastructure.
Clients invoke the proxy by using public-key steganog-
raphy to “tag” otherwise ordinary sessions destined for
uncensored websites. Other anti-censorship mechanisms
available in the literature leverage blog pings as commu-
nication medium [52] or hinder the harvesting attack by
the censor relying on proof-of-work [50].

All of these approaches are orthogonal to what we
present in this paper. MoneyMorph exploits the new
form of a communication channel, blockchain, that has
been widely developed only recently. Hence, we believe
it can coexist with current approaches and help augment
the plethora of possibilities for anti-censorship.

Stealth Addresses (SA) is a cryptographic technique
that allows detaching public keys from the intended re-
ceiver’s identity, thus providing anonymity. However,
SA does not define any data encoding mechanism. In
this work, we not only ensure the anonymity of the re-
ceiver but also investigate how we can use different parts
of the most used types of transactions in each of the
cryptocurrencies to encode bootstrapping information.

Concurrently to this work, Tithonus [59] con-
tributed a censorship-resistant communication tool that
leverages the Bitcoin blockchain and the Bitcoin P2P
network to enable communication between the censored
and uncensored areas. While Tithonus only considers
Bitcoin as the communication channel, we instead define
how to leverage other cryptocurrencies for rendezvous.
We include a more detailed comparison in Appendix A.

8 Conclusions and Future Work
Despite the many academic and practical alternatives
for censorship resistance, censorship remains an impor-
tant problem that hinders numerous people from freely
accessing and communicating information. We explore

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 419

the use of the widely deployed blockchain technologies
as a communication channel in the presence of a cen-
sor and we observe that the blockchain transactions en-
able communication channels offering interesting trade-
offs between bandwidth, costs and censorship resistance.
In particular, we describe for the first time communica-
tion channels fully compatible not only with Bitcoin but
also with Zcash, Monero, and Ethereum that allow cen-
sored users to get bootstrapping credentials.

Nevertheless, this work only scratches the tip of
the iceberg. The different permissionless blockchains are
in continuous development, and new features are be-
ing added continuously that may come with yet unex-
plored possibilities to build a communication channel.
For instance, the deployment of off-chain payment chan-
nels [31, 58] adds a new locking mechanism to Bitcoin
and the alike cryptocurrencies with extra fields that can
potentially be used to encode extra covertext bytes of
the communication between censored user and decoder.
This work sets the grounds for future research works
exploring the use of blockchain for censorship resistance
communications.

Acknowledgments
We thank Tim Ruffing and Siddharth Gupta for their
efforts with a preliminary manuscript associated with
the work. We thank Amir Houmansadr for encouraging
suggestions on an early draft, and the anonymous re-
viewers for their helpful comments. This work has been
partially supported by the National Science Foundation
under grant CNS-1846316, and by the FWF Austrian
funding agency through the Lise Meitner program.

References
[1] Amazon Web Services starts blocking domain-fronting, fol-

lowing Google’s lead. https://www.theverge.com/2018/4/
30/17304782/amazon-domain-fronting-google-discontinued.

[2] Amazon workspaces pricing. https://aws.amazon.com/
workspaces/pricing/.

[3] Bitcoin in Iran. https://localbitcoins.com/country/IR.
[4] Bitcoin Purchase in China. https://paxful.com/china/buy-

bitcoin.
[5] Bitcoin transaction fee estimator. https://www.

buybitcoinworldwide.com/fee-calculator/.
[6] bitcoin-utils Python Package. https://pypi.org/project/

bitcoin-utils/.

[7] Cryptocurrency market capitalizations. https://
coinmarketcap.com/.

[8] Cryptography Python Package. https://pypi.org/project/
cryptography/.

[9] Digital Ocean Pricing. https://www.digitalocean.com/
pricing.

[10] Dynaweb. http://us.dongtaiwang.com/loc/download.en.php.
[11] ECDSA Python Package. https://github.com/warner/

python-ecdsa.
[12] Etherdelta source code. https://etherscan.io/address/

0x8d12a197cb00d4747a1fe03395095ce2a5cc6819#code.
[13] Lantern. https://getlantern.org.
[14] Meek transport. https://trac.torproject.org/projects/tor/

wiki/doc/meek.
[15] MoneyMorph Python Prototype. https://github.com/

moneymorph.
[16] Psiphon. https://www.psiphon3.com/en/index.html.
[17] Script - Bitcoin Wiki. https://en.bitcoin.it/wiki/Script.
[18] Summary of meek’s costs, july 2016. https://lists.torproject.

org/pipermail/tor-project/2016-August/000690.html.
[19] Talk crypto blog OP_RETURN 40 to 80 bytes. http://

www.talkcrypto.org/blog/2016/12/30/op_return-40-to-80-
bytes/.

[20] The Unexpected Fallout of Iran’s Telegram Ban. https:
//www.wired.com/story/iran-telegram-ban/.

[21] Tor:bridges. https://www.torproject.org/docs/bridges.
[22] Tor:Hidden Service. https://www.torproject.org/docs/

hidden-services.
[23] Tor:mirrors. https://www.torproject.org/getinvolved/mirrors.

html.en.
[24] Ultrasurf. https://ultrasurf.us/.
[25] Zcash Usage. https://explorer.zcha.in/statistics/usage.
[26] Anderson, R. J. Stretching the Limits of Steganography.

In Information Hiding (1996), pp. 39–48.
[27] Backes, M., and Cachin, C. Public-Key Steganography

with Active Attacks. In TCC (2005), pp. 210–226.
[28] Biryukov, A., Khovratovich, D., and Pustogarov, I.

Deanonymisation of clients in bitcoin P2P network. In ACM
Conference on Computer and Communications Security
(2014), pp. 15–29.

[29] Buterin, V., and Foundation, E. A next-generation
smart contract and decentralized application platform. https:
//github.com/ethereum/wiki/wiki/White-Paper.

[30] Cash, D., Kiltz, E., and Shoup, V. The twin diffie-
hellman problem and applications. J. Cryptology 22, 4
(2009), 470–504.

[31] Decker, C., and Wattenhofer, R. A fast and scalable
payment network with bitcoin duplex micropayment chan-
nels. In (SSS) (2015), pp. 3–18.

[32] Dingledine, R., Mathewson, N., and Syverson, P.
Tor: The second-generation onion router. Tech. rep., Naval
Research Lab, DC, 2004.

[33] Dyer, K., Coull, S., Ristenpart, T., and Shrimp-
ton, T. Protocol misidentification made easy with format-
transforming encryption. In CCS (2013), pp. 61–72.

[34] Ensafi, R., Winter, P., Mueen, A., and Crandall,
J. R. Analyzing the great firewall of china over space and
time. PoPETs, 1 (2015), 61–76.

[35] Fazio, N., Nicolosi, A., and Perera, I. M. Broadcast
Steganography. In Topics in Cryptology - CT-RSA (2014).

https://www.theverge.com/2018/4/30/17304782/amazon-domain-fronting-google-discontinued
https://www.theverge.com/2018/4/30/17304782/amazon-domain-fronting-google-discontinued
https://aws.amazon.com/workspaces/pricing/
https://aws.amazon.com/workspaces/pricing/
https://localbitcoins.com/country/IR
https://paxful.com/china/buy-bitcoin
https://paxful.com/china/buy-bitcoin
https://www.buybitcoinworldwide.com/fee-calculator/
https://www.buybitcoinworldwide.com/fee-calculator/
https://pypi.org/project/bitcoin-utils/
https://pypi.org/project/bitcoin-utils/
https://coinmarketcap.com/
https://coinmarketcap.com/
https://pypi.org/project/cryptography/
https://pypi.org/project/cryptography/
https://www.digitalocean.com/pricing
https://www.digitalocean.com/pricing
http://us.dongtaiwang.com/loc/download.en.php
https://github.com/warner/python-ecdsa
https://github.com/warner/python-ecdsa
https://etherscan.io/address/0x8d12a197cb00d4747a1fe03395095ce2a5cc6819#code
https://etherscan.io/address/0x8d12a197cb00d4747a1fe03395095ce2a5cc6819#code
https://getlantern.org
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://github.com/moneymorph
https://github.com/moneymorph
https://www.psiphon3.com/en/index.html
https://en.bitcoin.it/wiki/Script
https://lists.torproject.org/pipermail/tor-project/2016-August/000690.html
https://lists.torproject.org/pipermail/tor-project/2016-August/000690.html
http://www.talkcrypto.org/blog/2016/12/30/op_return-40-to-80-bytes/
http://www.talkcrypto.org/blog/2016/12/30/op_return-40-to-80-bytes/
http://www.talkcrypto.org/blog/2016/12/30/op_return-40-to-80-bytes/
https://www.wired.com/story/iran-telegram-ban/
https://www.wired.com/story/iran-telegram-ban/
https://www.torproject.org/docs/bridges
https://www.torproject.org/docs/hidden-services
https://www.torproject.org/docs/hidden-services
https://www.torproject.org/getinvolved/mirrors.html.en
https://www.torproject.org/getinvolved/mirrors.html.en
https://ultrasurf.us/
https://explorer.zcha.in/statistics/usage
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 420

[36] Fifield, D., Lan, C., Hynes, R., Wegmann, P., and
Paxson, V. Blocking-resistant communication through
domain fronting. PoPETs, 2 (2015), 46–64.

[37] Freire, E. S. V., Hofheinz, D., Kiltz, E., and Pater-
son, K. G. Non-interactive key exchange. In PKC (2013).

[38] Frolov, S., Douglas, F., Scott, W., McDonald, A.,
VanderSloot, B., Hynes, R., Kruger, A., Kallitsis,
M., Robinson, D. G., Schultze, S., et al. An isp-scale
deployment of tapdance. In FOCI (2017).

[39] Fujisaki, E., and Okamoto, T. Secure integration of
asymmetric and symmetric encryption schemes. Journal of
Cryptology 26, 1 (Jan 2013).

[40] Heilman, E., Kendler, A., Zohar, A., and Goldberg,
S. Eclipse attacks on bitcoin’s peer-to-peer network. In
USENIX Security Symposium (2015), pp. 129–144.

[41] Holowczak, J., and Houmansadr, A. Cachebrowser:
Bypassing chinese censorship without proxies using cached
content. In CCS (2015), pp. 70–83.

[42] Hopper, N. On Steganographic Chosen Covertext Security.
In ICALP (2005).

[43] Hopwood, D., Bowe, S., Hornby, T., and Wilcox, N.
Zcash Protocol Specification, 2018.

[44] Houmansadr, A., Brubaker, C., and Shmatikov, V.
The Parrot Is Dead: Observing Unobservable Network Com-
munications. In S&P (2013), pp. 65–79.

[45] Houmansadr, A., Nguyen, G. T. K., Caesar, M., and
Borisov, N. Cirripede: Circumvention infrastructure using
router redirection with plausible deniability. In CCS (2011).

[46] Karlin, J., Ellard, D., Jackson, A. W., Jones, C. E.,
Lauer, G., Mankins, D., and Strayer, W. T. Decoy
routing: Toward unblockable internet communication. In
FOCI (2011).

[47] Khattak, S., Elahi, T., Simon, L., Swanson, C. M.,
Murdoch, S. J., and Goldberg, I. Sok: Making sense of
censorship resistance systems. PoPETs 2016, 4 (2016).

[48] Krawczyk, H. Cryptographic extraction and key deriva-
tion: The HKDF scheme. In CRYPTO (2010), pp. 631–648.

[49] Le, D. V., Hurtado, L. T., Ahmad, A., Minaei, M.,
Lee, B., and Kate, A. A tale of two trees: One writes,
and other reads. optimized oblivious accesses to bitcoin
and other utxo-based blockchains. Proceedings on Privacy
Enhancing Technologies (2020), 519–536.

[50] Lincoln, P., Mason, I., Porras, P. A., Yegneswaran,
V., Weinberg, Z., Massar, J., Simpson, W. A., Vixie,
P., and Boneh, D. Bootstrapping communications into an
anti-censorship system. In FOCI (2012).

[51] Ling, Z., Luo, J., Yu, W., Yang, M., and Fu, X. Ex-
tensive analysis and large-scale empirical evaluation of tor
bridge discovery. In INFOCOM (2012), pp. 2381–2389.

[52] Luca Invernizzi, C. K., and Vigna, G. Message in a
bottle: Sailing past censorship. Computer Security Applica-
tions (2013), 39–48.

[53] Matetic, S., Wüst, K., Schneider, M., Kostiainen,
K., Karame, G., and Capkun, S. BITE: bitcoin
lightweight client privacy using trusted execution. IACR
Cryptology ePrint Archive 2018 (2018), 803.

[54] Nasr, M., Zolfaghari, H., and Houmansadr, A. The
waterfall of liberty: Decoy routing circumvention that resists
routing attacks. In CCS (2017), pp. 2037–2052.

[55] Nobori, D., and Shinjo, Y. Vpn gate: A volunteer-
organized public vpn relay system with blocking resistance
for bypassing government censorship firewalls. In NSDI
(2014).

[56] Parker, E. Can china contain bitcoin? MIT Technology
Review Blog Post. https://www.technologyreview.com/s/
609320/can-china-contain-bitcoin, 2017.

[57] Perta, V., Barbera, M., Tyson, G., Haddadi, H., and
Mei, A. A glance through the vpn looking glass: Ipv6 leak-
age and dns hijacking in commercial vpn clients. PoPETs, 1
(2015), 77–91.

[58] Poon, J., and Dryja, T. The bitcoin lightning network:
Scalable off-chain instant payments.

[59] Recabarren, R., and Carbunar, B. Tithonus: A bitcoin
based censorship resilient system. Proceedings on Privacy
Enhancing Technologies 2019, 1 (2019), 68–86.

[60] Sasson, E. B., Chiesa, A., Garman, C., Green, M.,
Miers, I., Tromer, E., and Virza, M. Zerocash: Decen-
tralized Anonymous Payments from Bitcoin. In S&P (2014).

[61] Sward, A., Vecna, I., and Stonedahl, F. Data insertion
in Bitcoin’s Blockchain. Ledger 3 (2018).

[62] Tschantz, M. C., Afroz, S., Anonymous, and Paxson,
V. SoK: Towards Grounding Censorship Circumvention in
Empiricism. In (S&P) (2016), pp. 914–933.

[63] van Saberhagen, N. Cryptonote v 2.0. https://
cryptonote.org/whitepaper.pdf, 2013.

[64] van Saberhagen, N., Meier, J., and Juarez, A. M.
CryptoNote Signatures. https://cryptonote.org/cns/cns001.
txt, 2011.

[65] van Saberhagen, N., null, S., Meier, J., and Lem, R.
CryptoNote One-Time Keys. https://cryptonote.org/cns/
cns006.txt, 2012.

[66] von Ahn, L., and Hopper, N. J. Public-Key Steganogra-
phy. In EUROCRYPT (2004).

[67] Winter, P., and Lindskog, S. How the Great Firewall of
China is Blocking Tor. In Free and Open Communications
on the Internet, FOCI (2012).

[68] Wust, K., Matetic, S., Schneider, M., Miers, I., Kos-
tiainen, K., and Capkun, S. Zlite: Lightweight clients for
shielded zcash transactions using trusted execution. Cryptol-
ogy ePrint Archive, Report 2018/1024, 2018.

[69] Wustrow, E., Swanson, C., and Halderman, A. Tap-
dance: End-to-middle anticensorship without flow blocking.
In USENIX (2014), pp. 159–174.

[70] Wustrow, E., Wolchok, S., Goldberg, I., and Hal-
derman, J. Telex: Anticensorship in network infratructure.
In USENIX Security (2011).

[71] Zhang, F., Daian, P., Bentov, I., and Juels, A. Paral-
ysis proofs: Safe access-structure updates for cryptocurren-
cies and more. In Financial Crypto (2018).

[72] Zolfaghari, H., and Houmansadr, A. Practical censor-
ship evasion leveraging content delivery networks. In CCS
(2016), pp. 1715–1726.

https://www.technologyreview.com/s/609320/can-china-contain-bitcoin
https://www.technologyreview.com/s/609320/can-china-contain-bitcoin
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/cns/cns001.txt
https://cryptonote.org/cns/cns001.txt
https://cryptonote.org/cns/cns006.txt
https://cryptonote.org/cns/cns006.txt

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 421

A Comparison with Tithonus
While pursuing the same goal, Tithonus and Money-
Morph offer a tradeoff in several aspects. We review
them in this section. We remark that MoneyMorph can
work over different encoding schemes, each of them
leveraging a different cryptocurrency. We thus refer here
only to the Bitcoin-based encoding unless otherwise
specified.
Number of transactions. Tithonus leverages staged
transactions, an encoding technique that exploits the
input part of the Script language for the encoding. In
a nutshell, this technique requires two transactions for
a single transmission (e.g., single communication from
the censored user to the decoder): the preparing trans-
action and the redeeming transaction [59, Fig. 1]. The
preparing transaction creates a Pay2ScriptHash output.
The redeeming transaction spends the Pay2ScriptHash
output by providing a 〈redeem_script〉 that encodes the
censored data. Instead, MoneyMorph encodes the cen-
sored data directly in an output script, requiring thus a
single transaction for a single transmission.
Bandwidth. Although Tithonus and MoneyMorph
define different encoding schemes, the bandwidth per
transaction is determined by the same factor: the ac-
tual Bitcoin script used in 〈redeem_script〉 for Tithonus
or in the encoded output for MoneyMorph. While
arbitrary scripts can potentially be encoded in the
〈redeem_script〉, only standard and widely used scripts
can be leveraged in Tithonus to avoid trivial attacks
against undetectability, as also mentioned by the au-
thors. Thus, both Tithonus and MoneyMorph provide
the same bandwidth per transaction: the one allowed
by the widely used Bitcoin scripts. In this work, we
show that higher bandwidth is possible in a single trans-
action by leveraging other cryptocurrencies today such
as Zcash and Monero. Tithonus also supports a mode
for arbitrary length communication that provides higher
bandwidth at the cost of using several transactions.
Undetectability. The encoding scheme in Tithonus
opens the door to two potential sources of leakage to
the censor. First, the period of time between the trans-
mission of the pair spending-redeeming transactions
could be different from time elapsed between a tradi-
tional payment based on Pay2ScriptHash and the time
where the receiver decides to redeem such payment. This
potential source of leakage does not exist in Money-
Morph as it requires a single transaction. Second, the
actual Bitcoin script included in the 〈redeem_script〉

by Tithonus should be widely used by non-censored
users. This is also the case in MoneyMorph. A possi-
ble mitigation studied in this work (and also pointed
out in Tithonus) consists on constantly monitoring the
usage of different Bitcoin script types and dynamically
leverage the most widespread script type. Alternatively,
in the case of MoneyMorph, it is possible to leverage
the encoding scheme in other cryptocurrencies. For in-
stance, Monero defines only one type of transactions
aiming to achieve fungibility and thus avoids the afore-
mentioned leakage to the censor by definition.
Economic cost. Encoding the censored data directly
in an output of the type other than Pay2Multisig as in
MoneyMorph presents two disadvantages. First, the out-
put becomes unspendable as it is cryptographically hard
to find the preimage of a random hash value. Second,
the sender of such transaction (e.g., the censored user
in the case of MoneyMorph) incurs an economic cost as
such output must be funded with an amount that does
not make the output easy to detect for the censor. These
issues do not appear in Tithonus because the preparing
transaction is spendable by the same user that funds it
and the encoded data is encrypted in a Pay2Multisig
script, allowing to encode a valid public key to recover
the coins and yet use the other keys to encode the cen-
sored data. This issue can be seamlessly be mitigated in
MoneyMorph. First, MoneyMorph can encode the cen-
sored data in a Pay2Multisig output as specified in Sec-
tion 5.1 (and also described in Tithonus). Second, Mon-
eyMorph can leverage the encoding schemes in Zcash
and Monero that allows the censored user to retrieve
the invested coins while still allowing the steganographic
transmission of data to the decoder.
Payment obfuscation. One challenge inherent to
blockchains as rendezvous for censorship resistance com-
munication is that the censored user needs to trans-
fer funds to an address, allowing thereby the decoder
to redeem those funds. However, the naive approach
of transferring those funds to an address that is pub-
licly associated to the decoder would pave the way for
the censor task. In Tithonus, authors suggest to trans-
fer the funds to an exchange instead of the receiver.
Those funds should then be traded to several differ-
ent cryptocurrencies before being transferred to the ac-
tual receiver. Arguably, this puts a non-trivial burden
in the usability of the system and adds an economic
cost as each of these transactions has an associated fee.
In MoneyMorph, we solve this issue cryptographically:
The censored user transfer funds to a public key whose
private key is known only to the decoder. Moreover,

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 422

the censored user can non-interactively create many of
such public keys and yet the censor cannot link any
of these public keys to the decoder. The censored user
can thereby transfer the funds directly to the decoder,
in a single transaction, totally avoiding to rely on non-
colluding third-party exchanges.

B Security Proofs

B.1 Security Proof of Theorem 1

We start by showing that condition 1 holds. In partic-
ular, given a pair ((cc, σ), k) ← SBEncf (vkd, cm, τ), we
need to show that SBDecf (skd, (cc, σ), τ) returns a pair
(cm′, k′) such that cm′ = cm and k′ = k.

By correctness of Π, vk′u = vku, H(vk′p) = H(vkp)
and ct′c = ctc. Moreover, as H is collision-resistant,
vk′p = vkp. As NIKE is a correct non-interactive key
exchange protocol, k′d = kd. If SBDecf does not return
⊥, this proves that both functionalities output the same
symmetric key. Now, we show that SBDecf does not re-
turn ⊥.

Given the correctness of HKDF, the symmetric key
k′c = kc. Then, it is easy to see that ct′c ⊕ k′c = τ ′||cm′ ⊕
k′c ⊕ k′c = τ ′||cm′. The fact that ct′c = ctc implies that
τ ′ = τ and cm′ = cm. Finally, it is easy to see that vk′′p
and vk′p are constructed equally, and therefore SBDecf

returns a tuple (cm′, k′d).
The condition 2 holds following similar arguments.

B.2 Security Proof of Theorem 2

We start by showing that condition 1 holds.
For that, we need to show that the probability
Pr[SBDecf (skd, (cc, σ), τ) 6= ⊥ | (cc, σ)←$ Cc] < ε1(λ).

Let vk′u,H(vk′p), ct′c be the tuple extracted by
TxDecf ((cc, σ)). W.l.o.g., let ct′c := τ ′||cm′⊕k′c. Now, let
k′′c be the symmetric key generated after running NIKE
and HKDF functions as defined in SBDecf . It is easy
to see that the probability that k′c = k′′c is negligible.
Therefore, ct′c ⊕ k′′c = cm′||τ ′ ⊕ k′ ⊕ k′′c = τ∗||cm∗. Given
that, τ∗ is pseudorandom string, the probability that
τ∗ = τ is 1

2|τ| , and therefore negligible.
Now, we show that the condition 2 holds.

For that, we need to show that the probability
Pr[SBDecb(vkd, k, (rc, σ′)) 6= ⊥ | (rc, σ′) ←$ Cr] ≤ ε2(λ)
where k is part of the pair (cc, k)← SBEncf (vkd, cm, τ).

Let vkp := gsks the public key encoded in (cc, σ) af-
ter executing SBEncf . Note that, the same vkp is gener-
ated in SBDecb given that HKDF is a correct key deriva-
tion function invoked on the same input. Let vk′p := gsk′s

be the public key encoded in (rc, σ′).
Looking at the code, it is clear that each covertext

encodes fresh (and therefore different) keys. Therefore,
as (cc, σ) 6= (rc, σ′), it implies that vkp 6= vk′p.

B.3 Security Proof of Theorem 3

Assume by contradiction that MoneyMorph is not
secure against covertext-chosen attacks. There-
fore, there must exist an adversary A such that
|Pr[ExpSBS-CCA

A (λ) = b] − 1/2| > ε1(λ). Then, we con-
struct an adversary B such that |Pr[ExpNIKE

B (λ) =
b]− 1/2| > ε2(λ) [37]. We define B as follow:

◦ On input (λ, params):
– Query challenger with register(ID(vkd)) and get vkd.
– Query challenger with extract(ID(vkd)) and get skd.
– Compute vk′d, sk′d, τ ← SBSet(λ). Note that τ is in-

dependent of vk′d and sk′d. Therefore, we can discard
vk′d and sk′d and use the pair vkd, skd provided by
the challenger.

– Input (vkd, τ, λ) to A.
◦ B simulates the oracle Oenc as follows. On input

(cm, rm):
– Query challenger with register(ID(vku)) and get vku.
– Query challenger with extract(ID(vku)) and get sku.
– Query challenger with reveal(ID(vku), ID(vkd)). Get
kd.

– Compute sks||kc||kr ← HKDF(kd, λ+ lc + lr)
– Compute vkp ← vksks

d and set ctc := (τ ||cm)⊕ kc

– Compute (cc, σ)← TxEncf ((vku,H(vkp), ctc), sku)
– Compute skp ← skd · sks and set ctr := rm⊕ kr

– Compute (rc, σ)← TxEncb((ctr, vkp), skp)
– If cc = ⊥ or rc = ⊥, return ⊥. Else, return

((cc, σ), kd, (rc, σ′))
Due to the correctness of NIKE and HKDF there is no
need to run SBDecf as the symmetric key generated
in this function is equal to the one in SBEncf . Simi-
larly, the HKDF function in SBEncb is not necessary
to be computed.

◦ B simulates the oracle Odec
1 as follows. On input

((cc, σ), kd, (rc, σ′)):
– Compute cd← TxDecf ((cc, σ))
– If cd = ⊥, return ⊥. Otherwise:

∗ Parse vku,H(vkp), ctc ← cd
∗ Compute sks||kc||kr ← HKDF(kd, λ+ lc + lr)

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 423

Lock’s name Script Description of unlocking conditions

Pay2PKey 〈<pubKey> OP_CHECKSIG〉
〈<sig>〉

Including a signature 〈<sig>〉 of the Bitcoin transaction verifiable
using the verification key 〈<pubKey>〉.

Pay2PKeyHash
〈OP_DUPOP_HASH160 < pubKeyHash >

OP_EQUALV ERIFY OP_CHECKSIG〉
〈<sig> <pubKey>〉

Including a verification key 〈<pubKey>〉 such that 〈<pubKeyHash>〉
= H(〈<pubKey>〉) and a signature 〈<sig>〉 of the Bitcoin transaction
verifiable using the verification key 〈<pubKey>〉

Pay2ScriptHash 〈OP_HASH160 H(script) OP_EQUAL〉
〈<sig> <redeem_script>〉

Include a 〈redeem_script〉 such that
H(redeem_script) = H(script) and Eval (redeem_script,
〈<sig>〉) returns true.

Pay2Null
〈OP_RETURN [data]〉
〈<empty>〉 Coins can never be unlocked. Data can contain up to 80 bytes [19].

Pay2Multisig
〈OP_M < pubkey1 >. . .< pubkeyn >

OP_NOP_CHECKMULTISIG〉
〈<sig1> . . . <sigm>〉

Including M signatures 〈<sig1> . . . <sigm>〉 of the Bitcoin
transaction, verifiable using the corresponding verification keys
〈<pubkey1> . . . <pubkeyn>〉

Table 2. Description of the Script excerpts used in the Bitcoin transactions. Text in blue denotes SPKey and orange denotes the cor-
responding SSig.

∗ Compute vkd ← gskd and vk′p ← vksks
d

∗ Set m := ctc ⊕ kc and parse (τ ′||cm)← m
∗ Set b := (τ ′ = τ) ∧ (H(vk′p) = H(vkp))
∗ If b = 0, return ⊥.

– Compute rd← TxDecb((rc, σ′))
– If rd = ⊥, return ⊥. Otherwise: parse ctr, vkp ← rd

and set rm := ctr ⊕ kr

– If b = 0 or vkp 6= vksks
d , return ⊥. Else, return

(cm, rm)
Due to the correctness of HKDF there is no need to
run SBEncb as the key generated in this function is
equal to the one in SBEncf .

◦ At some point A outputs the challenge messages
(cm∗, rm∗). Then B proceeds as follows and passes
the returned message to A:

– Query challenger with register(ID(vk∗u)) and get vk∗u.
– Query challenger with extract(ID(sk∗u)) and get sk∗u.
– Query the challenger with test(ID(sk∗u), ID(vkd)) and

retrieve k∗d.
– Compute sk∗s ||k∗c ||k∗r ← HKDF(k∗d, λ+ lc + lr)
– Compute vk∗p ← vksk∗s

d and set ctc := (τ ||cm∗)⊕ k∗c
– Compute (cc∗, σ∗)← TxEncf ((vk∗u,H(vk∗p), ct∗c), sk∗u)
– Compute sk∗p ← skd · sk∗s and set ct∗r := rm∗ ⊕ k∗r
– Compute (rc∗, σ′∗)← TxEncb((ct∗r , vk∗p), sk∗p)
– If cc∗ = ⊥ or rc∗ = ⊥, return ⊥. Else, return

((cc∗, σ∗), k∗d, (rc∗, σ′∗))
◦ A outputs as b as its response to the challenge. Then,
B sends response 1− b to the challenger. The b value
indicates if A has discovered a random tuple (b =
0) or a valid one executed by the protocol (b = 1).
In the case of challenger the value of b indicates the
opposite. If b = 0 then a key generate by the protocol
is returned, otherwise (b = 1) a randomly generated
is returned. Therefore, the value 1− b is passed to the
challenger.

◦ B simulates the decoding oracle Odec
2 as de-

fined for Odec
1 with the exception of the input

((cc∗, σ∗), k′′, (rc∗, σ′∗)), for any symmetric key k′′.

Analysis B is efficient, i.e. number of queries made to
Oenc, Odec

1 , Odec
2 , by A is polynomial and the overall

protocol is completed in polynomial time. B faithfully
simulates A, i.e. for each of the queries made to the
oracles, B executes the steps of the protocol as it is
expected by A.

Now, every time A wins the ExpSBS-CCA
A (λ), B wins

the ExpNIKE
B (λ) except for negligible probability. A can

distinguish between well formed challenges and random
challenges. In other words, she differentiates if B was
using the proper NIKE key or a random key.

Therefore, we have that |Pr[ExpNIKE
B (λ) = b] −

1/2| = Pr[ExpSBS-CCA
A (λ) = b] − 1/2| − ε3(λ). By as-

sumption, Pr[ExpSBS-CCA
A (λ) = b]− 1/2| > ε2(λ). Then,

it holds that |Pr[ExpNIKE
B (λ) = b]−1/2| ≥ ε2(λ)−ε3(λ).

This, however contradicts the fact that NIKE is se-
cure. Therefore, such B must not exist andMoneyMorph
must be secure against chosen-covertext attacks.

B.4 Security Proof of Theorem 4

Theorem 4 (Bitcoin Encoding Scheme Correctness).
Bitcoin encoding scheme is correct according to Def. 6.

Proof. We start by showing that condition 1 holds. In
particular, given ctx ← TxEncf (cd, ca) we show that
TxDecf (ctx) return cd∗ such that cd = cd∗.

By the correctness of Extract function ct∗ = ct,
vk∗u = vku and H(vk∗p) = H(vkp). Moreover, as H is
collision-resistant, vk∗p = vkp. If TxDecf does not return
⊥, this proves that both functionalities are correct. Now

MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies 424

we show that TxDecf does not return ⊥. Since TxEncf

has not returned ⊥ it means that |ct| is exactly 20 bytes
(after padding) and sufficient fund has been associated
to the accounts. Upon receiving a transaction, TxDecf

checks the number of inputs and outputs. tx1 has ex-
actly one input and two outputs, along with sufficient
funds, therefore TxDecf will not return ⊥. The condi-
tion 2 holds following similar arguments.

Theorem 5 (Zerocash Encoding Scheme Correctness).
Zerocash encoding scheme is correct according to Def. 6.

Proof. We start by showing that condition 1 holds. In
particular, given ctx ← TxEncf (cd, ca) we show that
TxDecf (ctx) return cd∗ such that cd = cd∗.

By the correctness of Extract function ct[0 : 563]∗ =
ct[0 : 563], ct[563 : 1147]∗ = ct[564 : 1147], vk∗u = vku and
H(vk∗p) = H(vkp). Moreover, as H is collision-resistant,
vk∗p = vkp. If TxDecf does not return ⊥, this proves
that both functionalities are correct. Now we show that
TxDecf does not return ⊥.

Since TxEncf has not returned ⊥ it means that |ct|
is exactly 1148 bytes (after padding) and sufficient fund
has been associated to the accounts. Upon receiving a
transaction, TxDecf checks to have a transparent in-
put and shielded output, along the fee associated to the
transparent output. tx1 has exactly one transparent in-
put and a shielded output, along with sufficient funds
in the transparent output, therefore TxDecf will not re-
turn ⊥.

The condition 2 holds following similar arguments.

Theorem 6 (Monero Encoding Scheme Correctness).
The Monero encoding scheme is correct according
to Definition 6.

Proof. We start by showing that condition 1 holds. In
particular, given ctx← TxEncf (cd, ca) we need to show
that TxDecf (ctx) return cd∗ such that cd = cd∗.

By the correctness of Extract function s∗i = si,vk∗u =
vku and vk∗p = vkp. If TxDecf does not return ⊥, this
proves that both functionalities are correct. Now we
show that TxDecf does not return ⊥.

Since TxEncf has not returned ⊥ it means that |ct|
is exactly 640 bytes (after padding) and sufficient fund
has been associated to the accounts. Upon receiving a
transaction, TxDecf checks the number of inputs and
outputs. tx1 has exactly one input and two outputs,
therefore TxDecf will not return ⊥.

The condition 2 holds following similar arguments.
This concludes the proof.

Theorem 7 (Ethereum Encoding Scheme Correctness).
Ethereum encoding scheme is correct based on Defini-
tion 6.

Proof. We start by showing that condition 1 holds. In
particular, given ctx ← TxEncf (cd, ca) we show that
TxDecf (ctx) return cd∗ such that cd = cd∗.

By the correctness of Extract function ct∗ = ct,
vk∗u = vku and H(vk∗p) = H(vkp). Moreover, as H is
collision-resistant, vk∗p = vkp. If TxDecf does not return
⊥, this proves that both functionalities are correct. Now
we show that TxDecf does not return ⊥.

Since TxEncf has not returned ⊥ it means that
|ct| is exactly 16 bytes (after padding) and sufficient
fund has been associated to the accounts. Upon receiv-
ing tx0||tx1, TxDecf checks the recipient of the trans-
action tx1 to be H(vke). tx1, along with sufficient funds
in address H(vkp), therefore TxDecf will not return ⊥.

The condition 2 holds following similar arguments.

C Monero LRS Scheme
In this section, we present the Linkable Ring Signature
(LRS) Scheme used in Monero.

Let λ be the security parameter, and let Zp be a
group of prime order p. Moreover, let G be a cyclic
group generated by the generator g as defined in the
Monero protocol. Then, a linkable ring signature scheme
(LRS.KeyGen,LRS.Sign, LRS.Verify) is defined as:

– vk, sk← LRS.KeyGen(λ): Sample sk←$ Zp and com-
pute vk := gsk.

– σ ← LRS.Sign((vk1, . . . , vkn−1, vkn), skn,m): Sample
r ←$ Zp. Compute I := skn · H(vkn) and h0 ←
H(m||gr||H(vkn)r). Then, sample s1, . . . sn−1 ←$
Zn−1

p and compute the following series:
hi := H(m||gsi · vkhi−1

i ||H(vki)si · Ihi−1)

Now, solve s0 such that H(m||gs0 · vkhn−1
n ||H(vkn)s0 ·

Ihn−1 = h0. For that, solve gsn−1 · vkhn−2
n−1 = gr,

getting that s0 = r − hn−1 · skn. Finally, output
σ := (s0, s1, . . . , sn−1, h0, I).

– {>,⊥} ← LRS.Verify((vk1, . . . , vkn),m, σ): Parse
(s0, s1, . . . , sn−1, h0, I)← σ and compute the series:

hi := H(m||gsi · vkhi−1
i ||H(vki)si · Ihi−1)

Return > if h0 = hn. Otherwise, return ⊥.

	MoneyMorph: Censorship Resistant Rendezvous using Permissionless Cryptocurrencies
	1 Introduction
	2 Problem Statement
	2.1 99993em.5Stego-Bootstrapping Scheme
	2.2 Threat Model
	2.3 Security Goals
	2.4 System Goals

	3 Key Ideas
	4 Our Protocol
	4.1 Building Blocks
	4.2 Security Analysis

	5 Cryptocurrency Encodings
	5.1 Encoding Scheme in Bitcoin
	5.2 Encoding Scheme in Zcash
	5.3 Encoding Scheme in Monero
	5.4 Encoding Scheme in Ethereum
	5.5 Summary of Our Findings

	6 Implementation and Evaluation
	6.1 Cryptographic Operations
	6.2 Transaction Encoding

	7 Related Work
	8 Conclusions and Future Work
	A Comparison with Tithonus
	B Security Proofs
	B.1 Security Proof of thm:system-correctness
	B.2 Security Proof of thm:system-rareness
	B.3 Security Proof of thm:system-security
	B.4 Security Proof of thm:bitcoincorrectness

	C Monero LRS Scheme

