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Abstract: Token-curated registries (TCRs) are a mech-
anism by which a set of users are able to jointly curate
a reputable list about real-world information. Entries in
the registry may have any form, so this primitive has
been proposed for use—and deployed— in a variety of
decentralized applications, ranging from the simple joint
creation of lists to helping to prevent the spread of mis-
information online. Despite this interest, the security of
this primitive is not well understood, and indeed ex-
isting constructions do not achieve strong or provable
notions of security or privacy. In this paper, we provide
a formal cryptographic treatment of TCRs as well as a
construction that provably hides the votes cast by in-
dividual curators. Along the way, we provide a model
and proof of security for an underlying voting scheme,
which may be of independent interest. We also demon-
strate, via an implementation and evaluation, that our
construction is practical enough to be deployed even on
a constrained decentralized platform like Ethereum.
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1 Introduction
In recent years, decentralization has been viewed as an
increasingly attractive alternative to the existing power
structures in place in much of society, in which one party
or a small set of parties are trusted— in a largely opaque
manner— to make decisions that have far-reaching im-
pact. This movement is exemplified by the rise of cryp-
tocurrency and decentralized computing platforms like
Bitcoin and Ethereum, in which everyone acts collec-
tively to agree on the state of a ledger of transactions.
While decentralization does lower the trust that must be
placed in a small set of authorities, operating entirely
without authorities is also problematic. For example,

Elizabeth C. Crites: University College London, email:
e.crites@ucl.ac.uk
Mary Maller: Ethereum Foundation, email: mary.maller@
ethereum.org
Sarah Meiklejohn: University College London and IC3,
email: s.meiklejohn@ucl.ac.uk
Rebekah Mercer: O(1) Labs, email: rebekahmercer0@gmail.
com

one could broadly attribute the rise of misinformation
campaigns online to the lack of authoritative sources of
information, or at least a disagreement about who these
authoritative sources should be [13].

For many of the envisaged applications of decentral-
ized platforms, it is important to have access to infor-
mation about real-world events. For example, a flight in-
surance program, or smart contract, needs to know real
departure times. This can be achieved via oracles, which
are themselves smart contracts responsible for bringing
external information into the system. Using an authen-
ticated data feed [22–24], websites that provide real-time
information can feed it into the platform in a way that
ensures authenticity. Other solutions include those em-
ployed in the Augur1 and Gnosis2 prediction markets,
which maintain that if enough users say the same thing,
then what they say becomes the truth. Users are incen-
tivized to act by a reward that is provided if their in-
formation is later accepted as truthful. These solutions
have the disadvantage that they rely on the wisdom of
the crowd, which can be gamed if there is incentive to
misrepresent the truth and is subject to Sybil attacks
if access to tokens is not controlled. The advantage is
that they do not rely on authoritative external websites
being willing to create custom data feeds.

One natural relative of an oracle is the idea of a
token-curated registry [12], or TCR. In a TCR, a set of
curators, each in possession of some tokens, are tasked
with maintaining a list (or registry) of entries. Services
apply to have entries included in this list, and curators
decide whether or not they belong there. If all curators
agree that an entry belongs, then they take no action
and eventually it is included. If, on the other hand, even
a single curator thinks an entry doesn’t belong, it can
challenge its inclusion, in which case all other curators
vote to decide its fate. The curators thus act as a semi-
authoritative set of entities for this particular list and,
as with oracles, can be incentivized to vote truthfully
via a built-in reward structure. A full description of how
TCRs operate can be found in Section 3.2.

The proposed applications of TCRs are broad and
range from simple uses of lists to more complex ones,
such as having a consortium of news organizations iden-

1 https://www.augur.net/
2 https://gnosis.io/
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tify real images and articles in order to prevent the
spread of misinformation online. In fact, this example
is a reality: the New York Times is leading the News
Provenance project,3 which worked with IBM’s Hyper-
ledger Fabric to create a decentralized prototype de-
signed to provide verifiable and user-friendly signals
about the authenticity of news media online. The Civil
project,4 which allows curators to decide which content
creators should be allowed in its newsroom, is backed
by a TCR that is currently running on Ethereum.5 One
could also imagine using TCRs to have browser ven-
dors jointly curate lists of valid Certificate Transparency
logs, rather than the current situation in which they
maintain these lists separately.67 In all of these deploy-
ment scenarios, the business interests, social relation-
ships, and potential conflicts of the participants make it
essential that curation decisions are kept secret, so that
parties can vote honestly without worrying about retal-
iation or bribery. This is especially crucial in contexts
where smaller and less established companies, which are
more vulnerable to this type of pressure, are taking on
this coordination role. On the other hand, the fact that
the set of potential curators is known means we do not
have to worry about Sybil attacks.

Despite the growing interest in and deployment of
TCRs, there are few existing solutions today. The solu-
tions that do exist either reveal votes in the clear [8],
which again puts curators at risk of being pressured to
vote in a given direction, or rely on specialized hard-
ware [10]. Prior to this paper, it was not known which
security properties are important for TCRs, or the ex-
tent to which existing constructions satisfy these prop-
erties.

In this paper, we provide a formal cryptographic
treatment of token-curated registries, including a model
capturing their requirements (Section 4), a provably se-
cure construction (Section 5), and a prototype imple-
mentation (Section 7). As the above description sug-
gests, the core of our TCR is a voting protocol. While
it might seem like a matter of just choosing an existing
protocol from the voting literature, there are challenges
to this approach. First, the voting protocol must have
the appropriate formal cryptographic model and proof
of security, or else we must provide them ourselves. Re-

3 https://www.newsprovenanceproject.com/
4 https://civil.co/
5 https://registry.civil.co/
6 https://valid.apple.com/ct/log_list/current_log_list.json
7 https://www.gstatic.com/ct/log_list/v2/log_list.json

cent progress has been made in formalizing voting prim-
itives and, in particular, modeling ballot privacy [6].
Nevertheless, almost all voting protocols operate in the
presence of semi-trusted voting authorities. These par-
ties are relied upon to take actions such as tallying the
individual votes, and may need some additional capa-
bility (e.g., randomization or private state) in order to
compute the tally in a privacy-preserving way. Even
when authorities do not need to be trusted to achieve
integrity, they often still need to be trusted to achieve
privacy, as in the case of Helios [1]. In order to deploy a
TCR as a smart contract operating on a decentralized
platform, the contract must function as an (untrusted)
authority. Given the constraints of the platform, this
means it cannot maintain any private state and must
operate deterministically; for voting, this means we re-
quire a protocol that allows anyone to compute the tally
once everyone has voted. This property is known as self-
tallying [19]. Moreover, all computations performed by
the contract come at a high cost (in terms of the gas paid
to execute them; see Section 3.1 for background on how
Ethereum operates). We must thus use only lightweight
cryptographic primitives, but still achieve provable se-
curity. (Of course, we could also operate a TCR using a
platform other than a blockchain, or even on a private
blockchain in which computation would not be priced
as high. If our solution works on a constrained plat-
form like Ethereum, however, it would also work here,
so we design for the worst-case scenario.) We resolve
these issues by borrowing several ideas from the voting
literature, most notably a self-tallying protocol due to
Hao et al. [16], but substantially adapt them to fit this
setting. Specifically, our contributions are as follows:

– We provide a formal cryptographic model for TCRs,
in terms of the two security properties that they re-
quire: vote secrecy and dispute freeness. These cap-
ture the notions that the scheme should not reveal
the individual votes, and that it should be verifi-
able whether or not users have followed the pro-
tocol. Our definitions include a formal game-based
treatment of interactions with smart contracts and
of the voting mechanism inherent in TCRs, both of
which may be of independent interest.

– We provide the first TCR construction that is prov-
ably secure. In particular, the security and privacy
of our TCR can be proved under Decisional Diffie-
Hellman (DDH) in the random oracle model, and
we can run it using a transparent (i.e., public-coin)
setup. Our proofs of security cover a gap in terms
of the voting literature, as they imply the security
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of the original Hao et al. [16] protocol. We are not
able to prove concurrent vote secrecy for our proto-
col here, but are able to prove it for a subsequent
version [9].

– We provide an implementation of our protocol and
evaluate its performance on the Ethereum platform.
We find that even on a restrictive platform like
Ethereum, the voting protocol costs only 12 cents
per participating curator.

2 Related Work
We are aware of two proposed TCR constructions based
in industry. Consensys’ PLCR (“Partial Lock Commit
Reveal”) protocol [8] is very efficient, as it uses a two-
round commit-and-reveal approach (i.e., a first-round
vote consists of a hash of a vote and a random nonce,
and a second-round vote reveals this vote and nonce),
but this particular solution cannot satisfy any notion of
vote secrecy given that votes are revealed in the clear.
The secret voting protocol due to Enigma [10] focuses
on secrecy, but relies on trusted hardware (e.g., Intel
SGX) to securely tally the votes, rather than allowing
this to be done in the clear in an untrusted manner. It
is also not clear what implications this has for a notion
like dispute freeness.

Beyond constructions, Falk and Tsoukalas [17] con-
sidered the incentive mechanisms inherent in TCRs
from a game-theoretic perspective, to understand
whether or not the reward structure provides partic-
ipants with an incentive to act truthfully. Asgaonkar
and Krishnamachari [2] also consider the payoffs inher-
ent in a TCR and the behavior of a rational potential
challenger. Finally, Ito and Tanaka [18] propose incor-
porating curator reputation into the TCR to determine
the reward that individual curators receive.

We also look more broadly at the voting literature,
as the core of our token-curated registry is a voting pro-
tocol. Kiayias and Yung [19] were the first to demon-
strate that the three properties we need (vote secrecy,
dispute freeness, and self-tallying) could be achieved.
Their protocol requires only three rounds of communi-
cation, but the computational cost per voter depends
on the total number of voters. Groth [14] proposed a
scheme with the same properties and a constant and low
computational cost per voter, but the number of rounds
is n + 1, where n is the number of voters. Hao, Ryan,
and Zielinski [16] introduced a protocol that resolved
this by requiring only two rounds and lower computa-

tional costs than those in Groth’s scheme. One caveat
of all of these protocols is that they are not appropriate
in large-scale elections, but only in a boardroom setting,
in which the number of voters is limited. This also fits
the needs of a token-curated registry, however, in which
the set of possible voters is limited to users who (1)
possess a specific token and (2) have chosen to use that
token to act as curators. Of these protocols, the one by
Hao et al. is the best candidate for usage as a smart
contract, as demonstrated by a follow-up work featur-
ing an Ethereum-based implementation [20]. Their pro-
tocol, however, lacks a formal proof of security. Along
with our enhancements that are needed to use this pro-
tocol within a TCR, this is a gap that we fill in this
paper.

3 Background

3.1 Smart contracts

The first deployed cryptocurrency, Bitcoin, was intro-
duced in January 2009. In Bitcoin, a blockchain struc-
ture maintains a ledger of all transactions that have
ever taken place. The Bitcoin scripting language is de-
signed to enable the atomic transfer of funds from one
set of parties to another; as such, it is relatively simple
and restrictive. In contrast to Bitcoin, Ethereum uses
a scripting language that is (almost) Turing-complete;
currently, the most common choice is Solidity. This
is designed to enable smart contracts, which are pro-
grams that are deployed and executed on top of the
Ethereum blockchain. Smart contracts accept inputs,
perform computations, and maintain state in a globally
visible way; they must also operate deterministically so
that every node can agree on a contract’s state. The only
limitation in terms of the programs Solidity produces is
their complexity, as every operation consumes a certain
amount of gas. This is a subcurrency priced in ether, the
native currency of the Ethereum blockchain, and acts to
limit the computation or storage that an individual con-
tract can use, as this computation and storage must be
replicated by every node in the network. As of this writ-
ing, each block produced in Ethereum has a gas limit of
10 million.

In their most simplified form, Ethereum transac-
tions contain a destination address, a signature σ au-
thorizing the transaction with respect to the public key
pk of the sender, a gas limit, a gas price, an amount amt
in ether, and an optional data field data. The destina-
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Fig. 1. The participants in a token-curated registry (TCR)
and the algorithms they run. Users become curators by de-
positing coins in a smart contract, and can later withdraw
those coins when they no longer wish to act in this role. Ser-
vices can apply to have entries added to the registry, and cu-
rators can challenge these additions as desired. This creates
a poll, in which other curators can cast their votes to decide
whether or not the entry should be included. Once the poll is
closed, the contract can tally the results and reward the cura-
tors who voted with the majority decision.

tion address can be either externally owned, meaning it
is controlled by another user, or it can be a contract ad-
dress, which points to the code of some smart contract
and its associated storage. If the destination address
is externally owned, the effect of the transaction is to
transfer amt in ether to the user in control of this ad-
dress. If the destination address is a contract, the effect
is that the contract code is executed on any inputs spec-
ified in the data field data. This may result in updates
to the contract state and/or the creation of additional
transactions, subject to the specified gas limit (meaning
if the user has not paid enough gas for these operations
the transaction may fail and have no effect). Miners may
also choose to reject the transaction if it does not offer
a high enough gas price. In what follows, we assume
the participant has always paid enough gas, so omit the
limit and price, but revisit their role in Section 7.

3.2 Token-curated registries

A token-curated registry, or TCR for short, is a mech-
anism designed to allow people in possession of some
relevant tokens, also known as curators, to collectively
make decisions about which types of entries belong on
a given list or registry. A TCR has two main types of
participants: services, who apply to have entries added
to the registry, and curators, who decide on the content
that can be added. The interplay between these par-
ticipants can be seen in Figure 1. We provide a formal
treatment of the algorithms they run in Section 4, but
cover them at a high level here.

When a service applies to have its entry added, it
puts down some deposit, and its application is registered
in the system. Curators then have some amount of time

to decide if they are happy with the entry being added
to the registry. If they are, they do nothing, and af-
ter the elapsed time the entry is added and the deposit
is returned to the service. If, on the other hand, one
curator is unhappy with this entry, they can challenge
its addition. This means they also place some deposit
and open a poll, which is essentially a referendum on
whether or not this entry should be added. (Some TCR
models consider broader voting options, but for simplic-
ity we stick with with a simple binary approach.) Other
curators have some time available to vote, and once this
time has passed the results of the vote are tallied and
the winner is determined according to the rules of the
poll (e.g., a simple majority). If the vote is on the side
of the service, they get back their deposit and some por-
tion of the challenger’s deposit as well. The remainder
of the challenger’s deposit is split between the curators
who voted with the majority; i.e., voted in favor of the
service. If instead the vote is against the service, the
situation is reversed: the challenger gets back their de-
posit and some portion of the service’s deposit, and the
remainder of the service’s deposit is split between the
curators who voted on the side of the challenger.

4 Definitions

4.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S
is a finite set then |S| denotes its size and x $←− S denotes
sampling a member uniformly from S and assigning it
to x. We use λ ∈ N to denote the security parameter
and 1λ to denote its unary representation.

Algorithms are randomized unless explicitly noted
otherwise. “PT” stands for “probabilistic polynomial
time.” We use ~y ← A(~x; r) to denote running algorithm
A on inputs ~x and randomness r and assigning its out-
put to ~y. We use ~y

$←− A(~x) to denote y ← A(x; r)
for uniformly random r. The set of values that have
non-zero probability of being output by A on input
~x is denoted by [A(~x)]. For two functions f, g : N →
[0, 1], f(λ) ≈ g(λ) denotes |f(λ) − g(λ)| = λ−ω(1).
We use code-based games in security definitions and
proofs [4]. A game SecA(λ), played with respect to a
security notion Sec and adversary A, has a main pro-
cedure whose output is the output of the game. The
notation Pr[SecA(λ)] denotes the probability that this
output is 1. We denote relations using the notation
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R = {(φ,w) : 〈properties that (φ,w) satisfy〉} where φ
is the public instance and w is the private witness.

The security of our TCR relies on the Decisional
Diffie-Hellman (DDH) assumption, which states that
(g, gx, gy, gxy) is indistinguishable from (g, gx, gy, gz) for
x, y, z

$←− F, where F is a finite field. It also relies on the
security of a sigma protocol (Prove,Verify); i.e., a three-
round interactive protocol. We then make this non-
interactive using the Fiat-Shamir heuristic [11], which
introduces a reliance on the random oracle model. We
require the sigma protocol to satisfy two properties:
special honest verifier zero-knowledge (SHVZK) and
2-special soundness [15]. This means the correspond-
ing non-interactive proof satisfies zero knowledge and
knowledge soundness. All of these properties are stan-
dard, but we include their definitions for completeness
in Appendix A.

4.2 Smart contracts

To model interactions with smart contracts formally, we
consider that every algorithm Alg run by a participant
in the network outputs a transaction tx. This means
that at some point the participant runs an algorithm
tx $←− FormTx(sk, rcpt, amt, data) that outputs a transac-
tion signed using sk and destined for the recipient rcpt,
and carrying amt in ether and some data data to be
provided to the contract. If the sender and recipient are
implicit from the context, then we use the shorthand
tx $←− FormTx(amt, data). There is then a corresponding
function Process_Alg in the smart contract that takes
this transaction as input, verifies that it has the correct
form and is properly signed, and (if so) uses it to up-
date the state of the contract, in terms of its functions
and associated storage. We must also consider how an
adversary A can interact with smart contracts inside
of a security game, given that the adversary can inter-
act with the contract itself, see all of the interactions
that honest participants have with it, and see all of its
internal state and function calls. We model this by pro-
viding A with access to three classes of oracles, which
abstractly behave as follows:

– AP.Alg allows the adversary to interact with the
contract via its own participants, according to some
specified algorithm. This oracle uses Process_Alg to
process the adversary’s input, which is meant to be
the output of running Alg, on behalf of the contract.

– HP.Alg allows the adversary to instruct some honest
participant i to interact with the contract, according

to some specified algorithm. This means the adver-
sary provides any necessary inputs, and the oracle
then runs Alg for participant i according to these
inputs and uses Process_Alg to process the corre-
sponding output on behalf of the contract.

– CP allows the adversary to view the entire state of
the contract. We do not use this oracle explicitly
in our games below, since the adversary can see all
information about the contract whenever it wants,
but leave it there as a reminder of this ability.

In our definitions below, we allow the adversary
to interact with many sessions of the contract concur-
rently; i.e., many different configurations. We denote the
number of honest participants by n, the contract session
index by j, and the participant index by i; when query-
ing the oracles defined above, the adversary must always
specify the session j. While both game specifications al-
low for multiple sessions, our current proof of vote se-
crecy requires j = 1. In a subsequent version of our
protocol, however, we are able to prove concurrent vote
secrecy [9]. We assume all participants, including the
contract, are stateful, and denote their state by state.
For the sake of readability and succinctness, we ignore
the potential for the adversary to corrupt honest partic-
ipants; instead, we allow it to control arbitrarily many
adversarial participants but to only observe honest par-
ticipants. We leave the ability to handle corruptions, for
both our model and our construction, as an interesting
open question.

4.3 Token-curated registries

Formally, we consider a token-curated registry (TCR)
to be defined by several algorithms, which correspond
to the ones in Figure 1. First, we define three algorithms
associated with voting.

– txvote1
$←− Vote1(contract, poll,wgt, vote) is run by a

curator wishing to contribute some weight wgt and
vote vote to some poll poll contained in the contract
contract.

– txvote2
$←− Vote2(contract, poll) is run by a curator in

the second round of voting for poll in contract.
– Tally(poll, tally) is run by the contract in order to

tally the results of the vote in the poll poll. To be
more efficient, it optionally takes in a proposed tally
tally (computed, for example, by one of the cura-
tors), which it can then verify is the correct one.
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The main reason that our voting protocol proceeds
in rounds is that we need a fixed set of voters in order to
achieve the self-tallying property that says that the tally
can be computed by any third party (in our case, by the
contract) once everyone has voted. In our construction,
voters commit to their vote and “register” their inter-
est in voting in the first round. In the second round,
once the set of registered voters is fixed, voters can vote
again, this time using the relevant information from the
first round to form a self-tallying vote. The tally can
then be computed using these votes cast in the second
round, while the votes cast in the first round (which the
voters prove are the same) can be used to pay voters on
the winning side. More general constructions could be
modelled by having an interactive Vote protocol (with
possibly more than two rounds). We also define algo-
rithms associated with the TCR more broadly.

– txdep
$←− Deposit(contract, amt) is run by a user wish-

ing to become a curator in the TCR by creating
some initial deposit of tokens amt.

– txapp
$←− Apply(contract, entry) is run by a service

wishing to add an entry entry to the registry.
– txchal

$←− Challenge(contract, entry) is run by a curator
wishing to challenge the addition of the entry entry
to the registry.

– txwith
$←− Withdraw(contract, amt) is run by a cura-

tor wishing to withdraw some amount amt of their
deposited tokens.

– Payout(poll) is run by the contract to pay the cura-
tors who voted according to the poll outcome.

4.3.1 Vote secrecy

Vote secrecy says that an adversary cannot learn the
contents of a user’s vote, beyond what it can infer from
their weighting. A formal vote secrecy game is in Fig-
ure 2, assuming for notational simplicity that there is
only one poll poll so it does not need to be specified. In-
tuitively, it proceeds as follows. The adversary is given a
set of contract configurations contracts, which it is free
to interact with concurrently, and a set of the public
keys {pki}i belonging to honest participants (line 4). All
contracts start in an initial state, meaning their storage
fields are empty, with only the parameters initialized.

The adversary is then free to have both its own and
honest participants deposit tokens to become curators;
it is also free to create arbitrary applications and chal-
lenges, and have its own and honest participants vote.

The real contract has timers indicating when it should
move from the first to the second round of voting, but
here we do this manually: the first time the adversary
calls either AP.Vote2 or HP.Vote2 the voting flag is set
to be 1, to signal that the set of voters is fixed and the
second round has started (lines 6 and 13).

The main question is how honest voters should vote.
If they all vote for the secret bit b (line 2), then the
adversary is clearly able to guess b and win the game
(line 5), since it can see in the final tally if everyone has
voted for 0 or 1. To prevent this trivial type of victory,
we thus ensure that the final tally is the same regard-
less of the bit b, following Benaloh [5]. To do this, we
have the adversary provide its own bit bA as input to
HP.Vote1, which signals whether it wants the voter to
vote “for” (bA = 1) or “against” (bA = 0) the secret bit
b. This is the same as voting for the bit bA EQ b, which
is what the voters do (line 10). We then keep track of
how many times the adversary has used bA = 0 and
bA = 1, using a variable vote_count (lines 8 and 9). If
it has used them an equal number of times, meaning
vote_count = 0, then we have the same number of votes
for b and ¬b, so the outcome is the same regardless of
b. If they are not equal at the start of the voting round,
then A automatically loses the game (line 12).

Finally, to prevent another trivial way for the ad-
versary to learn how people voted, we prevent it from
instructing honest participants to withdraw (line 16),
as this reveals their balance. This prevents the adver-
sary from instructing a participant to deposit a certain
amount of coins, having them vote once, and then in-
structing them to withdraw their coins and seeing if
the amount is the same (indicating they voted on the
losing side) or is more than what they deposited (indi-
cating that they voted on the winning side). In practice,
this means that participants would perhaps need to vote
some minimum number of times before withdrawing, in
order to prevent these types of inference attacks.

Definition 4.1. Define Advsecrecy
A (λ) =

2 Pr[Gsecrecy
A (λ)] − 1, where this game is defined as in

Figure 2 (with the descriptions of all calls in which
the oracle honestly follows the protocol omitted). Then
the TCR satisfies vote secrecy if for all PT adver-
saries A there exists a negligible function ν(·) such that
Advsecrecy

A (λ) < ν(λ).
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main Gsecrecy
A (λ)

1 vote_count← ~0

2 b
$←− {0, 1}

3 (pki, ski)
$←− KeyGen(1λ) ∀i ∈ [n]

4 b′
$←− AAP,HP,CP(1λ, contracts, {pki}i)

5 return (b′ = b)

AP.Vote2(j, txvote2)
6 if (contracts[j].vote_flag = 0)

contracts[j].vote_flag← 1
7 contracts[j].Process_Vote2(txvote2)

HP.Vote1(j, i, bA)
8 if (bA = 0) vote_count[j] −= 1
9 else vote_count[j] += 1

10 txvote1
$←− Vote1(contracts[j], bA EQ b)

11 contracts[j].Process_Vote1(txvote1)

HP.Vote2(j, i)
12 if (vote_count[j] 6= 0) return 0
13 if (contracts[j].vote_flag = 0)

contracts[j].vote_flag← 1

14 txvote2
$←− Vote2(contracts[j])

15 contracts[j].Process_Vote2(txvote2)

HP.Withdraw(·, ·)
16 return ⊥

Fig. 2. The TCR vote secrecy game.

4.3.2 Dispute freeness

Dispute freeness says that an adversary cannot misbe-
have within the protocol without public detection; i.e.,
it is publicly verifiable whether or not everyone followed
the protocol. Unlike in a traditional voting scenario, it
is already publicly verifiable whether or not the contract
(which acts as the election official) follows the protocol,
since its code and state transitions are globally visible.
We thus need to consider only whether or not the in-
dividual curators behave. This means considering two
types of misbehavior: one in which the adversary tries
to change its vote halfway through the voting protocol
(so between Vote1 and Vote2), and one in which it tries
to bias the outcome of the vote by voting for something
other than 0 or 1. A formal dispute freeness game is in
Figure 3 (again, assuming for notational simplicity that
poll does not need to be given as input). Intuitively, it
proceeds as follows. As in the vote secrecy game, the ad-
versary is given a set of initial contract configurations
contracts and the public keys {pki}i belonging to honest
participants. It is then free to interact with the contract

main Gdispute
A (λ)

1 tally1, tally2 ← ~0

2 (pki, ski)
$←− KeyGen(1λ) ∀i ∈ [n]

3 done $←− AAP,HP,CP(1λ, contracts, {pki}i)
4 btally[j]← (tally1[j] 6= tally2[j]
∨ tally1[j], tally2[j] 6= contracts[j].tally) ∀j

5 bdone[j]← (contracts[j].outcome 6= ⊥) ∀j
6 return (∃j : bdone[j] ∧ btally[j])

AP.Vote1(j, txvote1)
7 contracts[j].Process_Vote1(txvote1)
8 V ← Ext(txvote1)
9 tally1[j]← tally1[j]⊕ V

AP.Vote2(j, txvote2)
10 if (contracts[j].vote_flag = 0)

contracts[j].vote_flag← 1
11 contracts[j].Process_Vote2(txvote2)
12 V ← Ext(txvote2)
13 tally2[j]← tally2[j]⊕ V

HP.Vote1(j, i, bA)
14 vote← bA EQ b

15 txvote1
$←− Vote1(contracts[j], vote)

16 contracts[j].Process_Vote1(txvote1)
17 tally1[j]← tally1[j]⊕ f(vote)
18 tally2[j]← tally2[j]⊕ f(vote)

Fig. 3. The TCR dispute freeness game.

via AP and HP, and the game keeps track of the voting
round in the same way as the vote secrecy game.

In order to detect misbehavior, the game keeps track
of two tallies: tally1 based on the votes indicated in the
first round of voting, and tally2 based on the votes in
the second round. The adversary then wins the game if
for a vote that completes successfully, meaning it has
a defined outcome (line 5), either of these tallies is dif-
ferent from the official tally (contracts[j].tally) kept by
the contract, or if they are different from each other
(line 4). Keeping track of the votes in both the first and
second round is easy for honest participants, since these
are known so can just be added to the tallies (lines 17
and 18), although we allow the tally to incorporate a
function of the vote f(vote) rather than just the vote
itself. (In our construction, for example, this function is
f(x) = gx.) For adversarial participants, we must rely
on the ability to extract the intended vote in each round.
This means we assume the existence of an extractor Ext
that, given the transaction provided by the adversary,
can output V = f(vote), where vote is the vote intended
by the adversary in that round (lines 8-9 and 12-13).
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Definition 4.2. Define Advdispute
A,Ext,f (λ) =

Pr[Gdispute
A,Ext,f (λ)], where this game is defined as in Figure 3

with respect to a function f(·) (with the descriptions of
all calls in which the oracle honestly follows the protocol
omitted, and HP.Vote2 behaving as it does in the game
in Definition 4.1). Then the TCR satisfies dispute free-
ness if there exists an extractor Ext such that for all PT
adversaries A there exists a negligible function ν(·) such
that Advdispute

A,Ext,f (λ) < ν(λ).

While vote secrecy and dispute freeness are the only
properties we define and prove formally for our TCR,
there are several other properties (e.g., coercion resis-
tance) that may be desirable or even necessary for such
a system. We discuss these properties in Section 5.3,
along with how we can provide financial disincentives
for these additional types of misbehavior.

5 Construction

5.1 Design overview

At a high level, our token-curated registry operates as
a single smart contract; one can imagine the structure
being identical to that of a PLCR (Partial Lock Commit
Reveal) contract [8], but with our Vote1 and Vote2 re-
placing their respective commit and reveal rounds. Users
become curators by depositing some number of tokens
into the contract, which creates a commitment C and
makes them available for challenging and voting. As cu-
rators earn tokens, they can update the balance in this
commitment.

The voting protocol is the core of our token-curated
registry, and proceeds in two rounds. In the first round,
users “register” their interest in participating in the vote
by providing a registration key c0 = gx0 and placing a
deposit. They also commit to their intended vote by
forming a commitment c1 that uses x as randomness. In
addition to making sure that voters can’t change their
minds, this commitment c1 is also useful in allowing the
contract to later pay the curator for their vote.

In the second round, the set of voters is now fixed
as the set of registered curators from the first round.
We follow Hao et al. [16] in having each voter i com-
pute a base Yi that is a combination of the registration
keys of other voters. They then commit to their vote
again, this time using Yi as a base, to form a value c2.
(The original Hao et al. protocol involves sending c0
in the first round and c2 in the second round, along

with proofs that these are correctly formed.) These val-
ues are formulated so that

∏
i Y

xi
i = 1, which means∏

i ci,2 = g

∑
i

votei

1 (in the unweighted case), where ci,2
denotes the c2 component of the i-th voter’s vote. This
makes the voting protocol self-tallying, since with this
value the contract can compute the discrete logarithm
by brute force to get the tally (which is efficient for a
relatively small number of voters). Voters also provide
an extra pair (c3, c4), which enables us to prove dispute
freeness without rewinding, and a proof that all of these
values have been formed correctly. If this proof is valid,
the contract returns the deposit sent in the first round.
If the proof is invalid or a voter doesn’t send a second-
round vote, the contract keeps the deposit as a form of
punishment, since it cannot complete the vote.

Once the contract computes the tally, it deter-
mines the outcome of the vote according to the built-in
rules. It can easily send the service and challenger de-
posits to the right places, as these are public, so the
only question left is how it pays the voters who were
in the majority. In particular, say the goal is to pay
one token if vote = outcome, and 0 otherwise. To do
this without knowing vote, we arithmetize this expres-
sion: for two boolean values b1 and b2, the boolean ex-
pression (b1 = b2) can be represented numerically as
1 − b1 − b2 + 2b1b2. For vote and outcome, this means
we need to form 1− vote− outcome + 2 · vote · outcome.
Since outcome is known, we can homomorphically form
a commitment to this expression using a commitment
to vote given by the curator, and then fold the result
into C; this adds 1 to the balance in C if the expression
evaluates to 1 (meaning vote = outcome) and 0 other-
wise, as desired. While this would work with either c1
or c2, it is important to use c1 for this purpose, as the
base Y has a discrete logarithm that is unknown to the
curator (and indeed unknown to anyone unless all vot-
ers collude) so they would no longer be able to update
the commitment.

5.2 System design

We describe the algorithms that comprise our TCR be-
low, in terms of the different operations that are re-
quired. As they do not involve any significant crypto-
graphic operations, we omit the formal descriptions of
Apply and Challenge. We can think of Apply as placing a
deposit and (if the deposit is high enough) adding entry
to a list of potential registry entries and starting a timer
indicating how long the curators have to challenge its
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inclusion. We can think of Challenge as placing a deposit,
opening a new poll to allow other curators to vote, and
starting a timer indicating how long they have to do so.

We use one extra algorithm in addition to the ones
given in our model, txup

$←− Update(), which is used to
update a lower bound stored by the contract on the
number of tokens a curator has. The only effect this has
on our model is that we would want to replace Withdraw
with Update in the vote secrecy game (Figure 2) as the
one algorithm that the adversary can’t query honest
participants on, as it might reveal a curator’s success in
voting (whereas running Withdraw now reveals no infor-
mation). A formal specification of all of the user-facing
algorithms can be seen in Figure 4 and of the contract-
only algorithms in Figure 5.

TCR contract setup. A contract designed to support
a TCR must maintain several fields. In this section, we
limit ourselves to the ones that are necessary for the
cryptographic operations of the contract, meaning we
ignore elements like timers. The contract is initialized
with randomly generated fixed generators g0, g1, h0,
and h1, and it is assumed that no adversary knows a
discrete logarithm relation between them and that they
are in a group in which DDH holds. This means that
our TCR operates with a transparent (i.e., public-coin)
setup. It is also initialized with empty maps curators
and voters, which respectively keep track of all curators
and all voters within a given poll. For ease of exposition,
we consider a contract with only a single poll; one with
multiple polls would still have only one curators map
but one voters map per poll.

Joining the TCR. In order to become a curator, a
user must first deposit tokens into the TCR contract.
This means running the Deposit algorithm seen in Fig-
ure 4. The amount amt that they deposit determines
their weight, which they commit to (and prove that
they’ve committed to, using πwgt) in C. They prove this
using the relation Rwgt:

Rwgt =
(

((C,wgt), r) : C = gwgt
1 hr0

)
We describe a zero-knowledge argument of knowl-

edge for Rwgt in Section 6.
To process this, the contract first uses πwgt to check

that C really is a commitment to the weight. If it is satis-
fied, it registers the user (using txdep[pk], the public key
used in the transaction) in curators, with associated
commitment C and weight wgt. The initial value in the
commitment is the initial amount sent, which is public,
but as the curator votes the balance may change, so it

must be stored in committed form to avoid revealing
information about their votes. Later, the stored value
wgt thus serves as a lower bound on the actual balance
stored in C.

Updating weights. Initially, since the amount is sent
on-chain and thus publicly known, the weight of each
participant is also known. Curators may lose tokens only
by unsuccessfully challenging an entry, but this is done
in a public way so this lower bound can be updated by
the contract itself. The contract is unaware, however, of
how many tokens curators gain, since as we see below
this is determined based on whether or not their hidden
votes are the same as the majority. This means the con-
tract may need to be told a new lower bound from time
to time, as specified in Figure 4. A curator does this
in the same way as when they run Deposit: they simply
tell the contract their current number of tokens amt, and
prove that this is the value contained in C. The contract
can then check that the proof verifies. If so, it increases
the stored wgt value to amt. This approach may reveal
information about the curator’s success in voting, but it
has the advantage that it uses a simple proof of knowl-
edge, rather than general range proofs (which are much
more expensive to verify). We thus would want to en-
sure that curators cannot update this lower bound too
frequently (e.g., if they update after every single vote
then they reveal how they voted every time), by mak-
ing sure that they update only after they have voted
some fixed number of times.

Withdrawing tokens. At some point, a participant
may wish to stop acting as a curator, or to withdraw
some portion of their tokens. To do this, they simply
send the amount they want to withdraw to the con-
tract, as specified in Figure 4. If the contract can see
this is greater than or equal to the lower bound wgt, it
sends them this amount and decreases their token store
(both in terms of their committed tokens and their lower
bound). If this token store goes to zero, the contract
could additionally remove this curator from the list.

Voting. At some point, a service runs Apply for some
entry. If every curator is happy to see entry in the reg-
istry, nothing happens and after some amount of time
the entry is added. If instead a curator runs Challenge,
this opens up the chance for other curators to vote on
whether or not they think entry belongs in the registry.

To vote, curators first use Vote1, as specified in Fig-
ure 4. This means picking a random x, and forming gx0
and a commitment to their vote vote using x as ran-
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Deposit(amt) Process_Deposit(txdep)

r
$←− F; C ← gamt

1 hr0 (C, πwgt)← txdep[data]; pk← txdep[pk]
πwgt ← Prove(Rwgt, (C, amt), r) bwgt ← Verify(Rwgt, (C, txdep[amt]), πwgt)
return FormTx(amt, (C, πwgt)) if (bwgt)

add pk 7→ (C, txdep[amt]) to curators

Update() Process_Update(txup)
πwgt ← Prove(Rwgt, (C, amt), r) (amt, πwgt)← txup[data]; pk← txup[pk]
return FormTx(0, (amt, πwgt)) (C,wgt)← curators[pk]

bwgt ← Verify(Rwgt, (C, amt), πwgt)
if (bwgt) wgt← amt

Withdraw(amt) Process_Withdraw(txwith)
return FormTx(0, amt) amt← txwith[data]; pk← txwith[pk]

(C,wgt)← curators[pk]
if (amt ≤ wgt)
C ← C · g−amt

1 ; wgt← wgt− amt
update curators[pk]← (C,wgt)
send amt to pk

Vote1(vote,wgt) Process_Vote1(txvote1)

x
$←− F; (c0, c1)← (gx0 , g

vote
1 hx0) (c0, c1, π1,wgt)← txvote1[data]; pk← txvote1[pk]

π1 ← Prove(RVote1, c0, x) b1 ← Verify(RVote1, c0, π1)
add (vote, x, c0, c1) to state b← (wgt ≤ curators[pk][wgt])
return FormTx(amtdep, (c0, c1, π1,wgt)) if (b ∧ b1)

add (c0, c1,wgt) to voters[pk][data]

Vote2(j) Process_Vote2(j, txvote2)
(ci,0, ci,1,wgti)← voters[pki][data] ∀i (c2, c3, c4, π2)← txvote2[data]; pk← txvote2[pk]

s
$←− F; Y ←

∏
0≤i<j,j<k≤m ci,0c

−1
k,0 (ci,0, ci,1,wgti)← voters[pki][data] ∀i

(vote, x, c0, c1)← state Y ←
∏

0≤i<j,j<k≤m ci,0c
−1
k,0

c2 ← gvote
1 Y x (c0, c1,wgt)← voters[pk][data]

(c3, c4)← (gs0, (h
−1
0 Y )xhs1) b2 ← Verify(RVote2, (Y, {ci}4

i=0), π2)

π2
$←− Prove(RVote2, (Y, {ci}4

i=0), (vote, x, s)) if (b2)
return FormTx(0, (c2, c3, c4, π2)) tallyG← tallyG · cwgt

2
send amtdep to pk

Fig. 4. The core user-facing cryptographic algorithms that comprise the TCR, in terms of the algorithm run by the user (on the
left-hand side) and the processing of the output of this algorithm run by the contract (on the right-hand side).

domness. (The pair (c0, c1) has the form of an ElGamal
ciphertext, but no one knows the discrete logarithm of
h0 with respect to g0 so no one can decrypt it.) The
curator also demonstrates knowledge of the logarithm
of c0; i.e., they provide a proof for the relation RVote1:

RVote1 =
{

(c0, x) : c0 = gx0
}

They send this to the contract, along with a deposit
amtdep that acts to promise they’ll come back to vote in
the second round, and the number of tokens wgt that
they want to put behind their vote. The contract then
verifies the proof and checks that the participant has
enough tokens, and if so it stores the sent values in
voters, associated with the same public key.

At the end of the first round of voting, the contract
fixes the set of participants to be all keys in voters,
after ensuring that all their first-round votes are distinct
(i.e., that they use different values for c0). To achieve
the self-tallying property, we follow Hao et al. [16] in
fixing a specific group element for each participant to
use in the second round; in particular, if there are m
voters then we define

Yj ←
∏

0≤i<j,j<k≤m

c
wgti
i,0 c

−wgtk

k,0

for all j, 1 ≤ j ≤ m (where j represents the j-th public
key, and the ordering on keys can be either lexicograph-
ical or in the order they were received).
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Tally()
find total such that gtotal = tallyG
tally← total

Payout()
for all pk ∈ voters
Upk ←

(
g1−outcome

1 c2·outcome−1
pk,1

)
curators[pk][C]← curators[pk][C] · Upk

Fig. 5. The internal smart contract functions.

In the second round, the j-th voter can compute
their value Yj . They now provide another value, c2, that
is a commitment to their vote, still using x as the ran-
domness but this time using Y as the base instead of
h0. They also include another ElGamal-style encryption
(c3, c4) (but again one for which no one knows the de-
cryption key), which is used only in our proof of dispute
freeness. They then prove a relation RVote2 to demon-
strate that (1) the same value x is used as randomness
in the first and second rounds; (2) the commitments c1
and c2 from the first and second round contain the same
vote and (3) that this vote is either a 0 or a 1; and (4)
that c3 and c4 are also formed correctly.

RVote2 ={((Y, c0, c1, c2, c3, c4), (vote, x, s)) : c0 = gx0 ∧
((c1, c2) = (hx0 , Y x) ∨ (c1g

−1
1 , c2g

−1
1 ) = (hx0 , Y x))

∧ (c3, c4) = (gs0, (h−1
0 Y )xhs1)}

A zero-knowledge argument of knowledge for RVote2 is
specified in Section 6.

To process this, the contract checks the proof, using
the data from both rounds of voting, as shown in Fig-
ure 4. If the proof verifies, then the contract folds the
value c2 into its tally and returns the deposit from the
first round to the participant. If not, or if the user never
sends the second-round transaction in the first place,
the deposit acts as a penalty fee and also could be used
to reimburse gas costs for honest participants. If needed,
the contract could also deduct from the user’s deposited
tokens to further penalize them, especially after repeat
offenses (at which point the user would eventually be
stripped of their tokens and removed as a curator).

Tallying and paying out. Finally, the smart con-
tract tallies the result, as seen in Figure 5. The running
tally has already been computed by the contract dur-
ing Process_Vote2, and we argue now that this process
is self-tallying; i.e., the contract can compute the tally
without any help.

Lemma 5.1. After the second-round transactions of all

m voters have been processed, tallyG = g

∑m

i=1
wgtivotei

1 .

Proof. According to how the Yj values were computed,

Yj =
∏

i<j,j<k

c
wgti
i,0 c

−wgtk
k,0

=
∏

i<j,j<k

g
xiwgti
0 g

−xkwgtk
0

= g

∑
i<j

xiwgti−
∑

j<i
xiwgti

0 .

It is thus the case that
m∏

j=1

Y
xj wgtj

j = g

∑
j

xj wgtj (
∑

i<j
xiwgti−

∑
j<i

xiwgti)

0

= g

∑
j

∑
i<j

xixj wgtiwgtj−
∑

j

∑
j<i

xixj wgtiwgtj

0

= g

∑
j

∑
i<j

xixj wgtiwgtj−
∑

j

∑
i<j

xj xiwgtj wgti

0

= 1.

After all m voters have run Vote2 we then get

tallyG =
m∏

i=1

c
wgti
i,2

=
m∏

i=1

g
wgtivotei
1 Y

wgtixi
i

= g

∑m

i=1
wgtivotei

1

as desired.

Thus, finding the real tally means finding the discrete
logarithm of tallyG, which can be achieved by brute
force. While this is a potentially expensive computa-
tion (especially to do on-chain), it is made significantly
cheaper by restricting the allowable weights and the
number of voters, which can be parameters built into
the contract. For example, if the only allowable weight
is 1, then the maximum value in the exponent is the
number of voters. Additionally, a volunteer could com-
pute the tally off-chain and submit it to the smart con-
tract, which could verify the correctness of this tally by
confirming that gtally

1 = tallyG.
The contract then sets a variable outcome according

to the value of tally and the voting policy for the poll.
For example, if the policy states that a simple majority
wins, then if tally > 1

2
∑m
i=1 wgti the smart contract

sets outcome← 1, and otherwise outcome← 0.
Finally, the contract must update the tokens of each

curator according to how they voted. (In addition, it
sends the public deposits created in Apply and Challenge
to the service or challenger, according to the outcome
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of the vote.) As seen in Figure 5 and discussed in Sec-
tion 5.1, we can use c1, which acts as a commitment to
the boolean vote vote, to form a commitment Upk to the
outcome of the boolean expression (vote = outcome);
i.e., Upk is a commitment to 1 if vote = outcome and
a commitment to 0 otherwise. We can then add this
value into their committed balance C = gwgt

0 hr1 by mul-
tiplying the two commitments together, which means
the curator earns one token for voting “correctly” and
nothing otherwise. If a different payout structure were
desired, this could be achieved by manipulating Upk ap-
propriately (e.g., squaring it if the reward should be
two tokens). Importantly, the reward for a curator is
not proportional to the weight they used in the vote.

Since the curator knows both the original random-
ness used in C and the randomness used in c1, as well
as how much they were rewarded, they can update their
locally stored weight and randomness so that they still
know the opening of the commitment C, which is needed
to run Update. This means updating the value of (amt, r)
as follows:

outcome = 0 outcome = 1

vote = 0 (amt + 1, r − x) (amt, r + x)
vote = 1 (amt, r − x) (amt + 1, r + x)

5.3 Security

We now argue why our construction achieves the notions
of security defined in Section 4. For notational simplic-
ity, our proofs assume all weights are equal to 1, but
could be modified to allow for arbitrary weights.

Theorem 5.2. If (Prove,Verify) is a zero-knowledge ar-
gument of knowledge and DDH holds, then the construc-
tion above satisfies vote secrecy, as specified in Defini-
tion 4.1.

Our full proof of vote secrecy is quite involved, and can
be found in Appendix C. Intuitively, we must transition
from the honest vote secrecy game to a game in which
all information about the votes of honest participants
is hidden, at which point the adversary can have no
advantage. In terms of honest participants, there must
be at least two in order to satisfy the requirement that
vote_count = 0, so we consider the case of two honest
participants as the most hostile (but our results gener-
alize to any even number of honest participants, which
is again required in the game).

We first transition from real to simulated proofs,
which is indistinguishable by zero-knowledge. Using
DDH, we now target an honest pair of participants and
embed extra randomness into their c2 values at the same
time. This means, however, that we embed the DDH
challenge into their c0 values, and thus don’t know their
values for x, which in turn makes it difficult for them to
compute Y x. Luckily, we don’t need to compute these
values until the second round, at which point all of the
first-round votes have been sent. We can thus extract
from the adversary’s first-round proof of knowledge to
get their values of x, at which point we can use them to
simulate Y x. In order to argue that the extractor can
successfully extract these values across all adversarial
participants, we must restrict the adversary to operat-
ing in a single session; i.e., we restrict j = 1 and cannot
prove concurrent vote secrecy for this protocol (but can
for a subsequent version [9]).

We next switch to decoupling the randomness be-
tween c0 and c1. While this is an easier task, as c1 has
the form of a normal Pedersen commitment, we still
embed a DDH challenge into c0, which still makes it
difficult to compute the Y x term in c2. We must thus
proceed voter by voter to ensure that the discrete loga-
rithm of Y is known at every step, since we can extract
the contribution to it for each adversarial participant
and form it ourselves for the other honest participants.
We then switch to decoupling the randomness between
c3 and c4, which is significantly easier. Finally, we reach
a game in which the c1 and c4 values both use indepen-
dent randomness, which perfectly hides the information
they contain, and the c2 values use extra randomness
that is correlated across pairs of honest participants. We
can nevertheless argue that the distributions are iden-
tical for both cases, b = 0 or b = 1, which proves the
theorem.

Theorem 5.3. If (Prove,Verify) is an argument of
knowledge, then the construction above satisfies dispute
freeness, as specified in Definition 4.2.

Our proof of this theorem can be found in Appendix D,
and in contrast is quite simple. This is due to the fact
that the (c0, c1) and (c3, c4) pairs are formed as ElGamal
ciphertexts, albeit one for which no real-world partici-
pant knows the decryption key. Our reduction can in-
stead form the parameters (in particular, h0 and h1) so
that it does know the decryption key, which allows it to
recover gvote

1 from (c0, c1) and (h−1
0 Y )x from (c3, c4). It

can furthermore remove the h−x0 term here, as it knows
the discrete logarithm of h0 with respect to g0 (and
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knows c0 = gx0 ), to recover Y x, and in turn gvote
1 from

c2. If these are not equal to each other, or not equal
to 1 (vote = 0) or g1 (vote = 1), then this instance is
not in the language. On the other hand, in order for
the vote to complete successfully, all proofs must verify,
so the reduction can output the instance and proof to
successfully break knowledge soundness.

Aside from the obvious implications of these two
security properties, they also combine to prevent more
subtle attacks. For example, we can consider a front-
running attack in which an adversary observes the
transactions of other participants before sending its own
to potentially change its mind about its own vote (e.g.,
to try to earn tokens by voting with the majority). These
attacks are impossible based on our two security prop-
erties: vote secrecy ensures that the adversary doesn’t
learn anything about the votes of others in the first
round (so can’t use any information to its advantage),
and dispute freeness ensures that the adversary must
stick to its original vote in the second round.

There are also some properties, however, that are
not covered in our model. As discussed above, we do not
prevent an adversary from thwarting the voting process
by not sending its second-round vote or otherwise pro-
vide robustness, but we do provide financial disincen-
tives for this behavior in the form of a deposit refunded
only after a valid second-round vote is cast (and per-
haps harsher penalties if there is repeated misbehavior).
More crucially, we currently do not provide any notion
of receipt-freeness, or coercion resistance, as voters can
easily prove they voted a certain way by revealing x.
This is quite important for some of the potential appli-
cations of TCRs, in which bribery is a real threat that
could undermine the quality of the registry.

One approach we could take would be to disincen-
tivize coercion by again applying financial penalties, in
this case if someone can demonstrate that a participant
revealed their vote. For example, if a bribed curator re-
veals x and someone submits this to the contract, it
could check that this is the correct x and take some
penalty fee from their deposited tokens, or even remove
them as a curator altogether, which would in turn make
them less attractive as a target for bribery. This ap-
proach could also be extended to more sophisticated
methods for revealing x (e.g., the contract could check
a proof of knowledge of x), although it is unlikely to be
able to handle all of them. Another option would be to
have the other curators manually inspect any evidence
of bribery and submit votes indicating whether or not
they think it is valid, and having the contract apply
a penalty if a sufficient fraction of them agree that it

is. Thus, while we currently do not provide any cryp-
tographic guarantee about coercion resistance, this can
again be addressed with an incentive-driven approach,
and we leave it as interesting future work to see if it can
be addressed more rigorously.

6 Arguments of Knowledge for
our Construction

6.1 Proving Rwgt and RVote1

To construct our zero-knowledge arguments for Rwgt,
RVote1, and RVote2 we use two main building blocks: a
proof of discrete logarithm and a proof that one out of
two values is a commitment to 0. These can both be
achieved using sigma protocols and then applying the
Fiat-Shamir heuristic [11] to obtain a non-interactive
proof. The protocols are both standard but are included
for completeness in Figure 7 (in Appendix A).

To prove Rwgt, which is used in Deposit, a prover
must demonstrate knowledge of r such that C = gwgt

1 hr0,
for known wgt. This can be achieved using a proof of
knowledge of discrete logarithm (the left-hand side of
Figure 7), where the prover’s input is r and the shared
input is hr0 = g−wgt

1 C.
To prove RVote1, which is used in Vote1, a prover

must demonstrate knowledge of x such that c0 = gx0 .
Again, this can be achieved using a proof of knowledge
of discrete logarithm (the left-hand side of Figure 7),
where the prover’s input is x and the shared input is c0.

6.2 Proving RVote2

To prove RVote2, which is used in Vote2, a prover must
demonstrate that {ci}4i=0 are formed correctly. More
specifically, it needs to show knowledge of (vote, x, s)
such that (1) c0 = gx0 , (2) (c1, c2) = (hx0 , Y x)
or (c1g

−1
1 , c2g

−1
1 ) = (hx0 , Y x), and (3) (c3, c4) =

(gs0, (h
−1
0 Y )xhs1). Rather than prove this directly, we

claim that—assuming computing discrete logarithms is
hard—this follows if we instead provide a proof for the
following expanded relation.

R′ =



((Y, {Ai}5i=0), ({xi}2i=0, b)) : A0 = gx0
0

A1 = gb1h
x1
0

A2 = gb1Y
x1

A3 = (h0Y
−1)x0

A4 = hx2
1

A5 = gx2
0
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where
A0 = c0 A1 = c1 A2 = c2 A3 = c1c

−1
2

A4 = c1c
−1
2 c4 A5 = c3.

Using a prover for R′, our argument for RVote2 is
then quite simple: the prover and verifier independently
calculate the instance for R′ using the ci values, and the
prover calculates the witness using b = vote, x0 = x1 =
x, and x2 = s. More formally,

Prove(RVote2, (Y, {ci}4
i=0), (vote, x, s))

φ← (Y, c0, c1, c2, c1c
−1
2 , c1c

−1
2 c4, c3)

w ← (x, s, vote)
π ← Prove(R′, φ, w)
return π

Verify(RVote2, (Y, {ci}4
i=0), π)

φ← (Y, c0, c1, c2, c1c
−1
2 , c1c

−1
2 c4, c3)

return Verify(R′, φ, π)

We now must prove that it suffices to prove RVote2
by giving an argument of knowledge for R′.

Lemma 6.1. Suppose that (Prove,Verify) is a zero-
knowledge argument of knowledge for R′. Then our proof
above is a zero-knowledge argument of knowledge for
RVote2.

Proof. Zero knowledge is achieved directly by using the
simulator for R′. Suppose that there exists a PT em-
ulator X such that for any PT adversary A, if A has
a non-negligible advantage of outputting a valid proof
for R′ then X has an overwhelming probability of out-
putting a valid witness for R′. We construct an emulator
Xvote and an adversary B such that Xvote outputs a valid
witness for RVote2.

We first focus on the values x0, x1 ∈ F and b ∈ {0, 1}
output by X (after rewinding once), which are such that

c0 = gx0
0 c1 = gb1h

x1
0

c2 = gb1Y
x1 c1c

−1
2 = (h0Y

−1)x0 .

Observe that hx1
0 Y −x1 = (h0Y

−1)x0 and thus x0 = x1.
Next, we focus on the value x2 ∈ F output by X

(again, after rewinding once), which is such that

c1c
−1
2 c4 = hx2

1 and c3 = gx2
0 .

By our argument above, c1c
−1
2 = hx0Y

−x, and so

c4 = h−x0 Y xhx2
1 .

Thus the emulator has found b, x0, x2 such that

(c0, c1, c2, c3, c4) = (gx0
0 , gb1h

x0
0 , gb1Y

x0 , gx2
0 , h−x0

0 Y x0hx2
1 ),

as required for RVote2.

Prover’s input: ({xi}2
i=0, b) such that

A0 = gx0
0 , A1 = gb1h

x1
0 , A2 = gb1Y

x1 , b ∈ {0, 1}
A3 = (h0Y

−1)x0 , A4 = hx2
1 , A5 = gx2

0

Shared input: (Y, {Ai}5
i=0)

Prove 7→ Verify :

r0, r1, s0, s1, s2
$←− F

R0, R1, R2, R3 ← gr0
0 , (h0Y

−1)r0 , hr1
1 , gr1

0
S0, T ← gs0

1 hs1
0 , gs0b

1 hs2
0

S1 ← gs0
1 Y s1

send R0, R1, R2, R3, S0, S1, T

Verify 7→ Prove :

send a0, a1, a2
$←− F

Prove 7→ Verify :
d0 ← r0 + a0x0
d1 ← r1 + a1x2
u, v, w ← s0 + a2b, s1 + a2x1, s2 + x1(a2 − u)
send d0, d1, u, v, w

Verify :
check gd0

0 = R0A
a0
0

check (h0Y
−1)d0 = R1A

a0
3

check hd1
1 = R2A

a1
4

check gd1
0 = R3A

a1
5

check gu1hv0 = S0A
a2
1

check gu1Y v = S1A
a2
2

check hw0 = TAa2−u
1

return 1 if checks pass, else 0

Fig. 6. Zero-knowledge argument of knowledge for R′.

6.2.1 Proving R′

Now that we have convinced ourselves that we can prove
RVote2 by proving R′, we need only construct a zero-
knowledge argument for R′. This is in Figure 6 and is
essentially a combination of the building blocks above,
using a one-out-of-two proof for A1 and A2 and a proof
of discrete logarithm for the rest.

Lemma 6.2. If discrete logarithm holds, then the argu-
ment presented in Figure 6 for the relation R′ satisfies
zero knowledge and 2-special soundness.

We provide a proof of Lemma 6.2 in Appendix B. Given
that the proof of R′ is a straightforward combination of
standard building blocks, its security follows relatively
easily from theirs.
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6.2.2 Efficiency

In terms of the overall efficiency of proving RVote2, both
the prover and the verifier must compute two group ex-
ponentiations (one for c−1

2 and one for Y −1) to translate
the instance for RVote2 into an instance for R′.

To prove R′, from Figure 6 we see that the proof
consists of 7 group elements and 3 field elements. Com-
puting R0, R1, R2, R3 requires 4 exponentiations, and
computing S0, S1, T requires an additional 5 exponenti-
ations, so the prover computes 9 group exponentiations
in total for R′. Across all checks, the verifier computes
16 group exponentiations in proving R′.

Putting everything together, we see that for RVote2,
proofs consist of 7 group elements and 3 field elements,
the prover computes 11 group exponentiations, and the
verifier computes 18 group exponentiations. We discuss
the practicality of this for a smart contract-based setting
in Section 7.

7 Implementation
We implement Deposit, Update, Vote1, and Vote2 on the
curator side, and each of the corresponding verification
functions on the smart contract side. The curator code is
written in 200 lines of Rust, using the bn crate for ellip-
tic curve arithmetic; specifically, we use 256-bit primes
and the BN256 G1 curve. The verifier code is written in
200 lines of Solidity. The costs associated with each of
these phases are in Table 1.

As of the Ethereum Istanbul upgrade in Decem-
ber 2019, the gas cost for performing one exponenti-
ation, or ECMUL, is 6,000 gas [7] (as compared to the
40,000 gas it was before this upgrade [21]). As we see in
Table 1, this dramatic decrease brings our protocol into
the realm of practicality, even on a constrained platform
like Ethereum. Each transaction in Ethereum is associ-
ated with a transaction cost, which in some cases is more
than the gas consumption of our verification functions.
This cost must be paid with each transaction, so if a
verifier is calling several functions at once, this cost can
be amortized across the functions. In practice we do not
expect curators to be able to benefit from this amorti-
zation, since votes must be placed by distinct curators
and voting proceeds in sequential phases. Nevertheless,
for the purposes of illustration we show the cost both
with and without the transaction cost.

At the time of writing, the standard gas cost is 2
GWei/gas,8 and 1 ether is the equivalent of 223 USD.
This means that each individual phase costs up to
7 cents, and that it costs under 12 cents to cast a vote
(running Vote1 and Vote2).

8 Conclusions
In this paper, we provided the first cryptographic con-
struction of a token-curated registry, which we prove
secure under the DDH assumption in a new model that
also encapsulates electronic voting. In particular, our
construction is the first to achieve a provable notion
of vote secrecy, and our proofs of security also imply
the security of an existing voting protocol due to Hao
et al. [16]. Our protocol is quite minimal, as demon-
strated by its inexpensive implementation on top of the
Ethereum platform. Nevertheless, it raises the question
of whether or not there are new proof techniques (e.g.,
ways to shift computation from the verifier to the prover
other than SNARKs) that might be developed to further
lower costs.
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A Standard definitions and
building blocks for
zero-knowledge proofs

We begin by providing the standard definitions of se-
curity for zero-knowledge proofs, starting with special
honest verifier zero-knowledge and 2-special soundness.
These can be defined formally (omitting public param-
eters that are given to each party) as follows:
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Definition A.1 (SHVZK). A sigma protocol
(Prove,Verify) for a relation R satisfies special hon-
est verifier zero knowledge (SHVZK) if there exists
a PT simulator Sim such that for all interactive PT
adversaries A,

Pr[(φ,w, x) $←− A(1λ); a $←− Prove(φ,w);

z
$←− Prove(x) : A(a, z) = 1]

≈ Pr[(φ,w, x) $←− A(1λ); (a, z) $←− Sim(φ, x) : A(a, z) = 1],

where A outputs (φ,w, x) such that (φ,w) ∈ R and x ∈
{0, 1}λ. If the distributions are identical, the protocol
satisfies perfect SHVZK.

Definition A.2 (2-special soundness). A sigma proto-
col (Prove,Verify) for a relation R satisfies 2-special
soundness if there exists an efficient extractor X that
can compute the witness given two accepting transcripts
with the same initial message. Formally, for all PT A,

Pr[(φ, a, x1, z1, x2, z2) $←− A(1λ);
w ← X (1λ, φ, a, x1, z1, x2, z2) : (φ,w) ∈ R] ≈ 1,

where A outputs distinct x1, x2 ∈ {0, 1}λ and both tran-
scripts are accepting; i.e., Verify(1λ, φ, a, xi, zi) = 1 for
i = 1, 2. If the probability is exactly 1, the protocol sat-
isfies perfect 2-special soundness.

We now provide in Figure 7 the full specification of two
building blocks that are useful in the proofs in Section 6:
a proof of discrete logarithm and a proof that one out
of two values is a commitment to 0.

Lemma A.3. The arguments presented in Figure 7 sat-
isfy zero knowledge and 2-special soundness.

Proof. We start with the proof of knowledge of discrete
logarithm. To show that it satisfies zero knowledge, con-
sider a simulator that, given an instance Y , chooses ran-
dom a, d ∈ F, sets R = gdY −a, and returns (Y,R, a, d).
Then in both the real and simulated transcripts R is dis-
tributed uniformly at random, given the random r in the
real transcript and the random d in the simulated tran-
script. Similarly, a is distributed uniformly at random.
Given R and a there is a unique d that satisfies the veri-
fier’s equations. Thus the real and simulated transcripts
are indistinguishable. To show 2-special soundness, con-
sider an extractor that, given two accepting transcripts
(Y,R, a1, d1) and (Y,R, a2, d2), returns x = d1−d2

a1−a2
. We

argue that x is always the discrete logarithm of Y . To
see this observe that RY a1 = gd1 and RY a2 = gd2 im-
plies that Y a1−a2 = gd1−d2 and hence Y = g

d1−d2
a2−a1 .

Prover’s input: Prover’s input:
x such that Y = gx b ∈ {0, 1},

x such that C = gbhx

Shared input: Y Shared input: C

Prove 7→ Verify Prove 7→ Verify
r

$←− F s0, s1, s2
$←− F

send R← gr S ← gs0hs1

T ← gs0bhs2

send S, T

Verify 7→ Prove Verify 7→ Prove
send a $←− F send a $←− F

Prove 7→ Verify Prove 7→ Verify
send d← r + ax u← s0 + ab

v ← s1 + ax

w ← s2 + x(a− u)
send u, v, w

Verify Verify
return (RY a = gd) return (SCa = guhv)∧

(TCa−u = hw)

Fig. 7. Standard zero-knowledge argument of knowledge for
discrete logarithm (on the left-hand side) and for a committed
value containing zero or one (on the right-hand side).

For the one-of-two proof, consider a simulator that,
given an instance C, chooses random a, u, v, w ∈ F and
sets S = guhvC−a and T = hwCu−a. Then in both
the real and simulated transcripts u, S, T and u are
distributed uniformly at random due to the random
s0, s1 and s2 in the real transcript and the random v

and w in the simulated transcript. Similarly, a is dis-
tributed uniformly at random. Given S, T, a, u there is a
unique v, w that satisfies the verifier’s equations. Thus
the real and simulated transcripts are indistinguishable.
To show 2-special soundness, consider an extractor that,
given two accepting transcripts (C, S, T, a1, u1, v1, w1)
and (C, S, T, a2, u2, v2, w2), returns

b = 0, x = (w1 − w2)
a1 − u1 − a2 + u2

if(a1 − a2) 6= (u1 − u2)

b = 1, x = (v1 − v2)
a1 − a2

if(a1 − a2) = (u1 − u2)

We argue that C = gbhx. To see this observe that if (a1−
a2) 6= (u1 − u2) then TCa1−u1 = hw1 and TCa2−u2 =
hw2 gives us that Ca1−u1−a2+u2 = hw1−w2 and hence
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C = h
w1−w2

a1−u1−a2+u2 . If (a1−a2) = (u1−u2) then SCa1 =
gu1hv1 and SCa2 = gu2hv2 gives us that Ca1−a2 =
gu1−u2hv1−v2 and hence C = g

u1−u2
a1−a2 h

v1−v2
a1−a2 = ghx.

B Proof of Lemma 6.2
Proof. We begin by proving the zero-knowledge prop-
erty of the argument. To do this we define a simulator
that outputs proof elements that are indistinguishable
from the outputs of an honest prover. We give this sim-
ulator a trapdoor, which is the discrete logarithm rela-
tions between g0, h0, h1, and Y . Our simulator is further
able to program the random oracle.

Zero-knowledge. Consider the simulator that knows
γ0 such that (h0Y

−1) = gγ0
0 and g0 = hγ1

1 . It begins by
choosing random values

a0, a1, a2, d0, d1, u, v, w

It then sets

R0 = gd0
0 A−a0

0 R1 = Rγ0
0

R2 = hd1
1 A−a1

4 R3 = Rγ1
1

S0 = gu1h
v
0A
−a2
1 S1 = gu1Y

vA−a2
2

T = hw0 A
u−a2
1

and programs the random oracle to return a0, a1, a2 on
the query (R0, R1, R2, R3, S0, S1, T ). Finally it returns

(R0, R1, R2, R3, S0, S1, T ), (d0, d1, u, v, w).

To see that the output of the simulator is indistin-
guishable from the output of the honest prover, first see
that the R0 and R2 output by both the prover and the
simulator are chosen uniformly at random. Moreover,
both values of R1 and R3 are respectively equal to Rγ0

0
and Rγ1

1 , so are distributed identically. Similarly, both
values of S0, S1, T are distributed uniformly at random
due to the blinders s0, s1, s2. Then because

gu1h
v
0 = S0A

a2
1 ∧ g

u
1Y

v = S1A
a2
2

we have that

(h0Y
−1)v = S0S

−1
1 Aa2

1 A−a2
2 ,

so there is a unique value v that satisfies the verifier’s
equations. Given v there are also unique values u and
w that satisfies the verifier’s equations. Hence the sim-
ulator’s output u, v, w is distributed identically to the
same values output by the prover. The simulator and
the prover thus sample proofs from the same distribu-
tion and the scheme is zero-knowledge.

Knowledge soundness. We now prove knowledge
soundness by designing an extractor X that rewinds
a succeeding adversary at most once. We demonstrate
how this extractor either breaks the discrete logarithm
assumption or extracts a valid witness.

To begin, X runsA to obtain R0, R1, R2, R3, S0, S1, T .
Then, by rewinding the adversary the extractor obtains,
for i ∈ {0, 1},

(ai,0, ai,1, ai,2)

and
(di,0, di,1, ui, vi, wi)

that satisfy the verifier’s checks.
From the first check we see that R0 = g

−di,0
0 A

ai,0
0 .

Hence, setting logg0(A0) to the indeterminate X0, we
see that

a0,0X0 − d0,0 = a1,0X0 − d1,0

and
X0 =

d0,0 − d1,0
a0,0 − a1,0

.

From the second check we see that R1 =
(h0Y

−1)−di,0A
ai,0
3 . Hence, setting logh0Y −1(A3) to the

indeterminate X1, we see that

a0,0X1 − d0,0 = a1,0X1 − d1,0

and
X1 =

d0,0 − d1,0
a0,0 − a1,0

= X0.

The extractor returns x0 = d0,0−d1,0
a0,0−a1,0

.
From the third check we see that R3 = h

−di,1
1 A

ai,1
4 .

Hence, setting logh1(A4) to the indeterminate X2, we
see that

a0,1X2 − d0,1 = a1,1X2 − d1,1

and
X2 =

d0,1 − d1,1
a0,1 − a1,1

.

From the fourth check we see that R4 = g0−di,1A
ai,1
5 .

Hence, setting logg0(A5) to the indeterminate X3, we
see that

a0,1X3 − d0,1 = a1,1X3 − d1,1

and
X3 =

d0,1 − d1,1
a0,1 − a1,1

= X2.

The extractor returns x2 = d0,1−d1,1
a0,1−a1,1

.
From the fifth check we see that gui

1 hvi
0 = S0A

ai,2
1

so
gu0−u1

1 hv0−v1
0 = A

a0,2−a1,2
1 .
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Thus the extractor obtains (b, x1) such that A1 = gb1h
vi
0

and
(b, x1) =

(
u0 − u1
a0,2 − a1,2

,
v0 − v1

a0,2 − a1,2

)
(1)

Similarly, from the sixth check we see that hwi
0 =

T0A
ai,2−ui

1 so

hw0−w1
0 = A

a0,2−u0−a1,2+u1
1 =

(
gb1h

x1
0
)(a0,2−u0−a1,2+u1)

.

Thus, either the extractor finds a non-trivial discrete-
log relation between h0 and g1, which it then returns to
break discrete logarithm, or b = 0 (and thus is a valid
witness component), or

(a0,2 − a1,2) = (u0 − u1).

Looking back on Equation 1, we thus see that

b = u0 − u1
a0,2 − a1,2

= u0 − u1
u0 − u1

= 1

and thus b ∈ {0, 1} is a valid witness component.
From the seventh check we see that gui

1 Y vi =
S1A

ai,2
2 so

gu0−u1
1 Y v0−v1 = A

a0,2−a1,2
2 .

Thus the extractor obtains (b′, x′1) such that A1 =
gb
′

1 Y
v′i and

(b′, x′1) =
(

u0 − u1
a0,2 − a1,2

,
v0 − v1

a0,2 − a1,2

)
.

These values are exactly equal to (b, x1). Hence

A2 = gb1Y
x1

and (x0, x1, x2, b) is a valid witness for R′.

C Proof of Vote Secrecy
(Theorem 5.2)

Let A be a PT adversary playing game Gsecrecy
A (λ), and

let n denote the number of honest voters. We provide
PT adversaries B0, B1, B2, B4, and a family of PT ad-
versaries Bi,3 for i, 0 ≤ i ≤ n, such that

Advsecrecy
A (λ)

= 2(Advzk
B0(λ) + Advzk

B1(λ) + Advsnd
B1 (λ)

+ n

2 (Advddh
B2 (λ) + Advsnd

B2 (λ)) +
n∑
i=1

Advddh
Bi,3(λ)

+ Advddh
B4 (λ))− 1

for all λ ∈ N, from which the theorem follows. To do
this, we build B0, B1, B2, B4, and a family Bi,3 such
that

|Pr[Gsecrecy
A (λ)]− Pr[GA1 (λ)]| ≤ Advzk

B0(λ) (2)
|Pr[GA1 (λ)]− Pr[GA2 (λ)]| ≤ Advzk

B1(λ) + Advsnd
B1 (λ)

(3)

|Pr[GA2 (λ)]− Pr[GA3 (λ)]| ≤ n

2 (Advddh
B2 (λ) + Advsnd

B2 (λ))

(4)

|Pr[GAi,3(λ)]− Pr[GAi+1,3(λ)]| ≤ Advddh
Bi,3(λ) (5)

|Pr[GA4 (λ)]− Pr[GA5 (λ)]| ≤ Advddh
B4 (λ) (6)

Pr[GA5 (λ)] = 0 (7)
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main Gsecrecy
A (λ)

1 vote_count← ~0

2 b
$←− {0, 1}

3 (pki, ski)
$←− KeyGen(1λ) ∀i ∈ [n]

4 b′
$←− AAP,HP,CP(1λ, contracts, {pki}i)

5 return (b′ = b)

AP.Vote1(j, txvote1)
6 contracts[j].Process_Vote1(txvote1)

AP.Vote2(j, txvote2)
7 if (contracts[j].vote_flag = 0) contracts[j].vote_flag← 1
8 contracts[j].Process_Vote2(txvote2)

HP.Vote1(j, i, bA)
9 if (bA = 0) vote_count[j] −= 1

10 else vote_count[j] += 1
11 vote← (bA EQ b)

12 x
$←− F, G4 : x, r̃ $←− F

13 c0 ← gx0

14 c1 ← gvote
1 hx0 , G4 : c1 ← gvote

1 hr̃0

15 π1 ← Prove(RVote1, c0, x), G1 : π1 ← Sim(RVote1, c0)

16 txvote1
$←− FormTx(amtdep, (c0, c1, π1,wgt))

17 contracts[j].Process_Vote1(txvote1)

HP.Vote2(j, i)
18 if (vote_count[j] 6= 0) return 0
19 if (contracts[j].vote_flag = 0) contracts[j].vote_flag← 1

20 s
$←− F, G5 : s, s̃ $←− F

21 Y ← voters[pk][Y ]
22 c2 ← gvote

1 Y x, G3 : c2 ← gvote
1 T

23 c3 ← gs0

24 c4 ← (h−1
0 Y )xhs1, G3 : c4 ← (h−x0 T )hs1 ,

G4 : c4 ← (h−r̃0 T )hs1 , G5 : c4 ← (h−r̃0 T )hs̃1

25 π2 ← Prove(RVote2, (Y, {ci}4
i=0), (vote, x, s)),

G2 : π2 ← Sim(RVote2, (Y, {ci}4
i=0))

26 txvote2
$←− FormTx(0, (c2, c3, c4, π2))

27 contracts[j].Process_Vote2(txvote2)

Fig. 8. The “unrolled” vote secrecy game and, in boxes, the
changes introduced by our various game transitions. The value
T used in lines 22 and 24 depends on the index of the par-
ticipant, so we leave a definition of it until the relevant game
transition.

Summaries of all of these games are provided in Fig-
ure 8, where GA0,3(λ) = GA3 (λ) and GAn,3(λ) = GA4 (λ). We
then have that

Advsecrecy
A (λ)

= 2Pr[Gsecrecy
A (λ)] − 1

= 2(Pr[Gsecrecy
A (λ)] − Pr[GA1 (λ)] + Pr[GA1 (λ)]) − 1

= 2(Advzk
B0

(λ) + Pr[GA1 (λ)] − Pr[GA2 (λ)] + Pr[GA2 (λ)]) − 1

= 2(Advzk
B0

(λ) + Advzk
B1

(λ) + Advsnd
B1

(λ) + Pr[GA2 (λ)]

− Pr[GA3 (λ)] + Pr[GA3 (λ)]) − 1

= 2(Advzk
B0

(λ) + Advzk
B1

(λ) + Advsnd
B1

(λ) + n/2(Advddh
B2

(λ)

+ Advsnd
B2

(λ)) + Pr[GA3 (λ)] − Pr[GA4 (λ)] + Pr[GA4 (λ)]) − 1

= 2(Advzk
B0

(λ) + Advzk
B1

(λ) + Advsnd
B1

(λ) + n/2(Advddh
B2

(λ)

+ Advsnd
B2

(λ)) +
∑n

i=1 Advddh
Bi,3

(λ) + Pr[GA4 (λ)]

− Pr[GA5 (λ)] + Pr[GA5 (λ)]) − 1

= 2(Advzk
B0

(λ) + Advzk
B1

(λ) + Advsnd
B1

(λ) + n/2(Advddh
B2

(λ)

+ Advsnd
B2

(λ)) +
∑n

i=1 Advddh
Bi,3

(λ) + Advddh
B4

(λ)) − 1.

Equation (2): Gsecrecy
A (λ) to GA1 (λ)

Intuitively, this follows in a completely straightforward
way from the zero-knowledge property of the underly-
ing proofs (here a simple Schnorr proof). Formally, B0
behaves as follows (omitting all lines that they follow
honestly):

BO0 (1λ)
15 π1 ← O(c0, x)

If B0 gets real proofs from O then this is identical to
Gsecrecy
A (λ). If instead B0 gets simulated proofs from O

then this is identical to GA1 (λ).

Equation (3): GA1 (λ) to GA2 (λ)

Intuitively, this also follows from the zero-knowledge
property of the proof for R′, although here the simula-
tor for R′ needs to know the discrete logarithm of Y , so
we first need to extract from the adversary’s first-round
votes to get their contributions. Formally, B1 behaves as
follows (again, omitting all lines that they follow hon-
estly):

BO1 (1λ)
25 π2 ← O((Y, {ci}4

i=0), (vote, x, s))

If B1 gets real proofs from O then this is identical
to GA1 (λ). If instead B1 gets simulated proofs from O
(which are produced with the help of the extractor de-
fined below) then this is identical to GA2 (λ). In order
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to run the simulator, we must define an extractor X
that outputs x1, . . . , x` such that the adversary’s values
satisfy c1,0, . . . , c`,0 = gx1

0 , . . . , gx`
0 . While this would

generally be quite difficult, we do not claim to achieve
concurrent vote secrecy in our scheme, meaning we
must restrict j = 1. In the first round, A must query its
random oracle to produce proofs of knowledge of the
discrete logarithm of each ci,0 for participant i. When
A queries the oracle, X returns truly random values.
The extractor now rewinds A and runs it again on the
same random coins, but programs the random oracle to
return different random outputs on A’s queries. For any
c0 values produced by honest participants, A cannot
reuse their proofs of knowledge, because the contract
does not accept first-round votes with equal c0 values.
Similarly, because we restrict to only one session, A
cannot reuse its own proofs of knowledge from other
sessions here, so all proofs of knowledge must have been
produced using access to this random oracle (controlled
by X ). Thus, by the 2-special soundness of the argu-
ment for RVote1, either B2 is able to output A’s instance
and proof in order to break knowledge soundness, or X
is able to output valid x0, . . . , x`. It can then provide
these to the simulator to allow it to reconstruct the
discrete logarithm of Y .

Equation (4): GA2 (λ) to GA3 (λ)

Intuitively, we start by assuming that there are two hon-
est participants, who are queried at indices i1 and i2 (if
there are more, then we proceed in a pairwise fashion,
which is why we end up with a looseness of n/2). We
embed DDH challenge terms D1 and D2 into their re-
spective c0 values, and must now be able to form the
corresponding c2 values. While this makes it slightly
more difficult to form Y x, we can extract all of the ad-
versary’s contributions to Y , and then embed the re-
maining g±xi1xi2 terms using the DDH challenge term
C. If C = gxi1xi2 then this is the honest term Y x, and
if it is random then this embeds some extra random-
ness into c2. Crucially, because we are embedding the
same randomness for both participants, it can still can-
cel and satisfy the self-tallying requirement. Formally,
B2 behaves as follows:

B2(g0, Di1 , Di2 , C)

η0, η1
$←− F; h0, h1 ← g

η0
0 , g

η1
0

AP.Vote1(j, txvote1)
xi ← Ext(π1) ∀i
// at the end of round 1
zi1 ←

∑i1−1
i=1 xi −

∑i2−1
i=i1+1 xi −

∑m

i=i2+1 xi

zi2 ←
∑i1−1

i=1 xi +
∑i2−1

i=i1+1 xi −
∑m

i=i2+1 xi

Ti1 ← C−1 ·D
zi1
i1

Ti2 ← C ·D
zi2
i2

HP.Vote1(j, i ∈ {i1, i2}, bA)
13 c0 ← Di
14 c1 ← g

votei
1 D

η0
i

HP.Vote2(j, i ∈ {i1, i2})
22 c2 ← g

votei
1 · Ti

24 c4 ← D
−η0
i · Ti · h

si
1

25 π2 ← Sim∗((Di, C, x′ =
∑m

k=0,k 6=i1,i2
xi, η0, η1),

c0, c1, c2, c3, c4)

where the algorithm Sim∗ is a modified simulation algo-
rithm, needed because B2 does not know the contribu-
tions xi1 and xi2 to Y , that behaves as follows:

Sim∗((Di, C, x′ =
∑m

k=0,k 6=i1,i2
xi, η0, η1), c0, c1, c2, c3, c4)

(A0, A1, A2, A3, A4, A5)← (c0, c1, c2, c1c
−1
2 , c1c

−1
2 c4, c3)

(a0, a1, a2, d0, d1, u, v, w) $←− F
R0 = gd0

0 A−a0
0 ; R1 = (gd0

0 A−a0
0 )−η0+x′

(Dk)d0C

R2 = hd1
1 A−a1

4 ; R3 = R
η1
1

S0 = gu1h
v
0A
−a2
1 ; S1 = gu1Y

vA−a2
2

T = hw0 A
u−a2
1

program the random oracle to return a0, . . . , a2
on input (R0, R1, R2, R3, S0, S1, T )
return (R0, R1, R2, R3, S0, S1, T ), (d0, d1, u, v, w)

If A does not form its c2 values correctly, then B2
can output its instance and proof to break knowledge
soundness. If it does form them correctly, then we have
that

logg0(
∏

j 6=i1,i2

Y
xj

j ) = xi1(GAND + G1L2− LAND)

+ xi2(GAND− G1L2− LAND)
= (xi1 + xi2)(GAND− LAND)
+ (xi1 − xi2)G1L2,
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where these values are defined as

LAND =
∑

j<i1∧i2

xj

G1L2 =
∑

j<i2,j>i1

xj

GAND =
∑

j>i1∧i2

xj

Using these definitions, we also have that zi1 = LAND+
G1L2 − GAND, and zi2 = LAND − G1L2 − GAND. Com-
bining this and calling c the discrete logarithm of C, we
have

logg0(
∏

j 6=i1,i2

Y
xj

j · Ti1 · Ti2)

= (xi1 + xi2)(GAND− LAND) + (xi1 − xi2)G1L2
+ c+ xi1zi1 − c+ xi2zi2

= (xi1 + xi2)(GAND− LAND) + (xi1 − xi2)G1L2
+ xi1(LAND + G1L2− GAND)
+ xi2(LAND− G1L2− GAND)

= (xi1 + xi2)(GAND− LAND) + (xi1 − xi2)G1L2
+ (xi1 + xi2)(LAND− GAND) + (xi2 − xi1)G1L2

= 0,

meaning self-tallying holds regardless of the value of C.
Furthermore, if C = g

xi1xi2
0 then this is identical to

GA2 (λ) with simulated proofs. This is clear for c2, and
for the proofs observe that (continuing to assume two
honest participants, without loss of generality):

R1 = (gd0
0 A−a0

0 )−η0+
∑

j≤i1
xj−
∑

i1<j,j 6=i2
xj (D2)d0C−1

= (gd0−a0xi1
0 )−η0+

∑
j≤i1

xj−
∑

i1<j,j 6=i2
xj
g
d0xi2
0 g

−xi1xi2
0

= (gd0−axi1
0 )−η0+

∑
j≤i1

xj−
∑

i1<j,j 6=i2
xj+xi2

= R
−η0+

∑
j≤i1

xj−
∑

i1<j
xj

0

so R1 is distributed identically to the simulated R1. If
instead C = gr0 for r $←− F then this is identical to GA3 (λ).
We continue to use these values of Ti1 = g

xi1zi1−r
0 and

Ti2 = g
xi2zi2 +r
0 (such that ci,2 = gvotei

1 Ti) in future
games.

Equation (5): GA3 (λ) to GA4 (λ)

Intuitively, this game hop proceeds in a hybrid fash-
ion, in which we switch for each participant from c1 =
gvote

1 hx0 to c1 = gvote
1 hr0. While ordinarily it might be

possible to do this all at once, we are again treating the
value x as part of the DDH challenge, and in order to

form c2 for unknown x it is necessary to know all other
contributions to Y . Formally, we define GAk,3(λ) as the
game in which the first n − k honest participants are
using the values of c1 as in GA3 (λ), and the remaining
k are using the values of c1 as in GA4 (λ); it’s then the
case that GA0,3(λ) = GA3 (λ) and GAn,3(λ) = GA4 (λ). Each
adversary Bk,3 behaves as follows, using the definitions
of Ti from the previous game:

Bk,3(g0, A1, A2, C)
h0 ← A2

HP.Vote1(j, i, bA)
for i ≤ k

13 c0 ← g
xi
0

14 c1 ← g
votei
1 A

xi
2

for i = k + 1
13 c0 ← A1
14 c1 ← g

votei
1 C

for i > k + 1
13 c0 ← g

xi
0

14 c1 ← g
votei
1 h

r̃i
0

HP.Vote2(j, i)
22 c2 ← g

votei
1 · Ti

for i ≤ k
24 c4 ← A

−xi
2 · Ti · h

si
1

for i = k + 1
24 c4 ← C−1 · Ti · h

si
1

for i > k + 1
24 c4 ← h

−r̃i
0 · Ti · h

si
1

If C = g
xi1xi2
0 then this is identical to GAk,3(λ). If

instead C = gr0 for r $←− F then this is identical to
GAk+1,3(λ).

Equation (6): GA4 (λ) to GA5 (λ)

Intuitively, in this game hop we decouple the random-
ness between c3 and c4. This is easier than it is to de-
couple the randomness between c0 and c1, because the
commitment randomness is different from the value x
(i.e., it is not used anywhere else). Formally, we use the
generalized Decisional Diffie-Hellman assumption [3],
which states that it is difficult to distinguish between
(g1, . . . , g`, u1, . . . , u`), for g1, . . . , g`, u1, . . . , u` are uni-
formly distributed in G2`, and (g1, . . . , g`, g

r
1, . . . , g

r
` ) for

r
$←− F. This is implied (tightly) by DDH, and for our

purposes we use ` = n+ 1. The adversary B4 behaves as
follows:
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B4(g1, . . . , gn+1, u1, . . . , un+1)
g0 ← gn+1, h1 ← un+1

HP.Vote2(j, i ∈ [n])
23 c3 ← gi

24 c4 ← h
−r̃i
0 · Ti · ui

If ui = gri for all i then this is identical to GA4 (λ),
since for gi = gsi

0 we have that ui = hsi
1 . If instead

ui = gs̃i
0 for s̃i

$←− F then this is identical to GA5 (λ).

Equation (7): GA5 (λ)
Intuitively, each honest participant now uses random
values in their computation of c1 and c4 that do not
appear anywhere else, which completely hides all in-
formation there. We can thus focus our attention on
c2 and argue that, despite the correlated randomness
across pairs of honest participants, the values are dis-
tributed identically whether b = 0 or b = 1.

More formally, assuming again a single honest pair
of participants (and operating across honest pairs to
generalize), we have for voter 1:

(c0, c1, c2, c3, c4) =
(gx1

0 , gvote1
1 hr̃1

0 , g
vote1
1 g−r+x1z1

0 , gs1
0 , h−r̃1

0 g−r+x1z1
0 hs̃1

1 ).

For voter 2, we have:

(c0, c1, c2, c3, c4) =
(gx2

0 , gvote2
1 hr̃2

0 , g
vote2
1 gr+x2z2

0 , gs2
0 , h−r̃2

0 gr+x2z2
0 hs̃2

1 ).

Since r̃1, r̃2, s̃1, s̃2 are random and appear in only
a single term, the contents of the c1 and c4 elements
are hidden. Thus, the adversary’s goal is to distinguish
between the c2 elements in the case in which voter 1
voted for 0 (meaning voter 2 must have voted for 1), or
voter 1 voted for 1 and voter 2 voted for 0. These two
cases can be written as follows for g1 = gγ0 :

Case 1: (g1, c2, c
′
2) = (gγ0 , g

−r+x1z1
0 , gγ+r+x2z2

0 )
Case 2: (g1, c

′
2, c2) = (gγ0 , g

γ−r+x1z1
0 , gr+x2z2

0 )

Since the adversary knows z1 and z2, this amounts
to distinguishing between the tuples

(gγ0 , g
−r
0 , gγ+r

0 ) and (gγ0 , g
γ−r
0 , gr0).

Let ρ = γ + r. Then −r = γ − ρ, so the two cases
have the exact same form, meaning the distributions are
identical.

D Proof of Dispute Freeness
(Theorem 5.3)

Let A be a PT adversary playing game Gdispute
A (λ). We

know that A wins if for some j, (1) tally1 6= tally2,
which we call E1, (2) tally1 6= contracts.tally, which we
call E2, or (3) tally2 6= contracts.tally, which we call E3.
More precisely for how our construction operates, we
use contracts.tally = tallyG. We build a PT adversary
B, which implicitly embeds the required extractor Ext,
such that

Advdispute
A (λ) ≤ Advsnd

B (λ).

B behaves as follows:

B(1λ)
Q← ∅

k0, k1
$←− F; h0 ← gk0

0 , h1 ← gk1
0

AP.Vote1(j, txvote1)
(c0, c1, π1,wgt)← txvote1[data]
V1 ← c1 · c−k0

0 // code for Ext
Q[pk]← V1

AP.Vote2(j, txvote2)
(c2, c3, c4, π2)← txvote2[data]
φ← (Y, {ci}4

i=0)
bπ ← Verify(RVote2, φ, π2)
V2 ← c−k0

0 · c−1
4 · ck1

3 · c2 // code for Ext
if (bπ ∧ V2 6= Q[pk]) return (φ, π2) // E1
if (bπ ∧Q[pk] 6= 1, g1) return (φ, π2) // E2
if (bπ ∧ V2 6= 1, g1) return (φ, π2) // E3

In the setup, the values h0 and h1 are uniformly
random, so are distributed identically to their values in
the honest setup.

In the first round, B performs an ElGamal decryp-
tion to recover

V1 = c1 · c−k0
0

= gvote
1 · hx0 · (gx0 )−k0

= gvote
1 · gxk0

0 · g−xk0
0

= gvote
1

for vote ∈ {0, 1}, assuming c0 and c1 were formed cor-
rectly. If they were not formed correctly, meaning B does
not extract 1 or g1, then φ 6∈ LVote2. B can thus output
this instance and π2 to break knowledge soundness (an
extractor cannot return a witness if the instance is not
in the language).
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In the second round, B again performs an ElGamal
decryption to first recover

c−1
4 · ck1

3 = (h0Y
−1)x · h−s1 · (gs0)k1

= (h0Y
−1)x · g−k1s

0 · gk1s
0

= (h0Y
−1)x

again assuming c3 and c4 were computed correctly. It
then continues to compute

V2 = c−k0
0 · c−1

4 · ck1
3 · c2

= g−xk0
0 · (h0Y

−1)x · gvote
1 · Y x

= g−xk0
0 · gxk0

0 · Y −x · gvote
1 · Y x

= gvote
1

for vote ∈ {0, 1}, assuming c2 was computed correctly. If
any of these values were not computed correctly, mean-
ing B does not extract 1 or g1, then again the instance is
not in the language so B can output it and π2 to break
knowledge soundness.

If E1 happens and tally1 6= tally2, there must be at
least one participant for whom V1 6= V2, which means B
succeeds. If E2 happens and tally1 6= tallyG, then again
there must be at least one participant such that V1 6=
1, g1, which means B succeeds. Finally, if E3 happens
and tally2 6= tallyG, then again there must be at least
one participant such that V2 6= 1, g1, which means B
succeeds. Thus B succeeds whenever A does.


