
Proceedings on Privacy Enhancing Technologies ; 2021 (2):48–69

Jean-Pierre Smith*, Prateek Mittal, and Adrian Perrig

Website Fingerprinting in the Age of QUIC
Abstract: With the meteoric rise of the QUIC protocol,
the supremacy of TCP as the de facto transport pro-
tocol underlying web traffic will soon cease. HTTP/3,
the next version of the HTTP protocol, will not sup-
port TCP. Current website-fingerprinting literature has
ignored the introduction of this new protocol to all mod-
ern browsers. In this work, we investigate whether clas-
sifiers trained in the TCP setting generalise to QUIC
traces, whether QUIC is inherently more difficult to fin-
gerprint than TCP, how feature importance changes be-
tween these protocols, and how to jointly classify QUIC
and TCP traces. Experiments using four state-of-the-
art website-fingerprinting classifiers and our combined
QUIC-TCP dataset of ∼117,000 traces show that while
QUIC is not inherently more difficult to fingerprint than
TCP, TCP-trained classifiers may fail to detect up to
96% of QUIC visits to monitored URLs. Furthermore,
classifiers that take advantage of the common informa-
tion between QUIC and TCP traces for the same URL
may outperform ensembles of protocol-specific classi-
fiers in limited data settings.

Keywords: Traffic Analysis, Website Fingerprinting,
QUIC, Wireguard

DOI 10.2478/popets-2021-0017
Received 2020-08-31; revised 2020-12-15; accepted 2020-12-16.

1 Introduction
While the Internet continues to entrench itself in our
daily lives, users have begun to grasp the extent of
their digital footprints as both industry and govern-
ments alike encroach upon privacy in an effort to ex-
tract value from the mass of personal data. Privacy-
enhancing technologies, such as Tor [1] and VPNs, allow
users to browse the web in relative privacy by hiding
communication meta-data, such as destination IP ad-

*Corresponding Author: Jean-Pierre Smith: ETH
Zurich, E-mail: jean-pierre.smith@inf.ethz.ch
Prateek Mittal: Princeton University, E-mail: pmit-
tal@princeton.edu
Adrian Perrig: ETH Zurich, E-mail:
adrian.perrig@inf.ethz.ch

dresses, using intermediate proxies. However, the funda-
mental trade-offs among latency, bandwidth overhead,
and privacy imply that their encrypted network com-
munications still leak information about the underly-
ing connection [2]. This information, in the form of en-
crypted packet timings, sizes, and directions, is the basis
of website-fingerprinting attacks.

In a website-fingerprinting attack, an observer at-
tempts to identify a visited website from a network
communication trace by comparing it to previously
collected samples of known websites. Modern website-
fingerprinting attacks can identify web-pages requested
through Tor with accuracy and precision in excess of
90% [3–7].

Previous works on website fingerprinting, however,
have all been limited to the use of TCP as the under-
lying network transport protocol. This choice was mo-
tivated by TCP being the dominant transport protocol
in use, even as other technologies driving the Web at
the application layer – browsers, scripting and styling
languages, and web servers – rapidly evolved. The dom-
inance of TCP is changing with the swift rise of the
QUIC transport protocol, a connection-oriented proto-
col layered atop UDP, as an alternative transport proto-
col for delivering web traffic [8]. Driven by corporations
such as Google [9], Akamai [10], and Cloudflare [11],
QUIC is positioned to expel TCP as the de facto HTTP
transport protocol. Indeed, HTTP/3, the next version of
the core web protocol, will only support QUIC, and not
TCP [12]. Although QUIC – first deployed in 2013 [9]
– is a recent protocol, in some regions it already ac-
counts for up to 10% of Internet traffic [13, 14]. This
number is expected to further increase as other large
content providers such as Facebook [15], Cloudflare [11]
and Microsoft [16] continue to deploy support for QUIC.

QUIC’s success is in no small part due to a host
of new promising features, ranging from 0-RTT session
resumption and protocol versioning, to stream-based
multiplexing and variable in-band control information.
These new features, as well as the co-existence of QUIC
and TCP traffic, warrant a rethinking of the current
state of website fingerprinting. Consequently, with the
Internet’s transition to QUIC, the following research
questions arise: do classifiers trained in the TCP setting
generalise to QUIC traces, is QUIC inherently more dif-
ficult to fingerprint than TCP, how does the importance



Website Fingerprinting in the Age of QUIC 49

of features change between the two protocols, and how
can we jointly classify QUIC and TCP traces?

This paper makes the following contributions:

– We discuss challenges to website fingerprinting that
arise with the shift in the HTTP landscape from
TCP to QUIC, such as co-existence and dependence
on TCP, embedded and variable-length control in-
formation, and protocol versioning (Section 3).

– We collect and evaluate the first publicly avail-
able1 QUIC-TCP website-fingerprinting dataset,
with around 117,000 QUIC and TCP web-page
traces. Our closed-world dataset consists 20,000
traces across 200 TCP and QUIC visits for 100
URLs. Our open-world dataset adds an additional
97,000 traces across 16,000 URLs and both proto-
cols (Section 4).

– We demonstrate that up to 96% of web-pages of in-
terest that are requested via QUIC instead of TCP
go undetected by state-of-the-art TCP-trained clas-
sifiers, such as k-FP [5], DF [7], Var-CNN [17], and
p-FP(C) [18] (Section 6).

– We show that features manually engineered for TCP
can be applied in the QUIC setting, but that care
must be taken when transitioning since the features
that are important may shift between settings (Sec-
tion 6).

– Finally, we evaluate two approaches towards jointly
classifying QUIC and TCP traces: a direct classi-
fication based approach (Mixed) and an ensemble-
based approach (Split). We show that though clas-
sifying QUIC is not inherently more difficult than
TCP, classifying both together is non-trivial given
a constant training-set size (Section 7).

2 Background
In this section we introduce website fingerprinting, our
threat model and assumptions, and the classifiers used
throughout this paper.

2.1 Website Fingerprinting

In website fingerprinting, the goal of an observer is to
identify a visited website over an encrypted channel,
based on side-channel information such as those derived

1 https://github.com/jpcsmith/wf-in-the-age-of-quic

from packet sizes and timestamps [19]. The observer ac-
complishes this using a classifier [3, 5–7, 17–23]. The
classifier, having been trained on samples of web-pages,
receives a vector of features derived from the trace of a
loading web-page and labels it as a previously observed
web-page.

In the closed-world setting, the trace is known to
be from one of n monitored web-pages, and the clas-
sifier must determine which. In the open-world setting,
the trace belongs to either one of the n monitored web-
pages or to any other unmonitored web-page. The clas-
sifier must therefore determine whether the trace is of a
monitored web-page, and if so, which, or whether it is of
some unmonitored web-page. This latter setting better
emulates the real-world in which a sample may come
from a previously unseen or unknown web-page.

2.2 Threat Model and Assumptions

We consider the open-world setting where a passive
eavesdropper wishes to identify whether a client is vis-
iting a monitored web-page, and if so which. The client,
desiring to conceal this information, obscures trivially
identifying information such as the HTTP requests,
TLS server name indication extensions, and destina-
tion IP addresses by encrypting and proxying his com-
munications. To do so, the client utilises a datagram-
oriented encryption layer such as WPA2 on wireless
LANs (IEEE 802.11i), or VPN services services such
as Wireguard [24], OpenVPN, or IPSec in tunnel mode.
The observer can therefore only witness the sizes and
timings of the packets. We focus on datagram-oriented
tunnelling approaches since QUIC running over TCP
would exhibit a behaviour that is neither QUIC nor
TCP, whereas our goal is to investigate the differences
between these two protocols. Furthermore, Tor [1] does
not widely support the QUIC protocol. We select Wire-
guard [24] as a representative VPN technology.

Current website-fingerprinting attacks implicitly
utilise a number of simplifying assumptions related to
the collection of the traces used in both the learn-
ing of the fingerprints and identification of the web-
sites [6, 17, 18, 23, 25]: (1) an observer can identify the
start and end of a web-page load, and can thus extract
its trace from the overall traffic; (2) web-page loads are
not interleaved, i.e., web-pages load sequentially, and
the connection is free of background noise such as me-
dia or file transfers; and (3) the page of interest is the
index page of the domain.



Website Fingerprinting in the Age of QUIC 50

We inherit these assumptions to remain consistent
with current evaluation approaches, as we investigate
the impact of QUIC on the current website fingerprint-
ing setting. Additionally, previous works have shown
these assumptions are not unfounded [26, 27]. Further-
more, we posit that the impact of the QUIC protocol
would persist even for more complex fingerprinting set-
tings.

2.3 State-of-the-Art Classifiers

Previous works have proposed numerous classifiers for
use in the website fingerprinting setting. Below we in-
troduce and motivate the classifiers used in this work.
Section 10 describes other related work in the website-
fingerprinting setting.
k-fingerprinting classifier (k-FP). The k-
fingerprinting classifier of Hayes and Danezis [5] is
composed of a random forest and nearest neighbour
algorithm. It uses the random forest to extract an al-
ternate feature set comprised of the leaf index at which
the sample arrives in each tree in the forest. Using these
alternate feature vectors, the classifier determines the
k-nearest neighbours to the test sample as measured by
their Hamming distances. If the classes associated with
these neighbours from the training set are in agreement,
then the test sample is given the same class; otherwise,
it is associated with the unmonitored class. We extract
the prediction probability of a class as the fraction of
nearest neighbours for that class when k = 6 [7]. The k-
FP classifier utilises features manually engineered from
the traces which allows for more explainable classifica-
tions.
Deep Fingerprinting classifier (DF). The Deep
Fingerprinting classifier proposed by Sirinam et al. [7] is
a deep-learning classifier based on convolutional neural
networks. It leverages techniques from computer vision
to automatically extract features from the sequences of
packet directions of each trace.
p-FP(C) classifier. The p-FP(C) classifier of Oh et al.
[18] is another deep-learning classifier based on convo-
lutional neural networks and sequences of packet direc-
tions. We select p-FP(C) over their multi-layer percep-
tron classifier, p-FP(M), as it performed better in the
TLS setting [18] which is more analogous to our setting.
Var-CNN classifier. The Var-CNN classifier by Bhat
et al. [17] is the final classifier utilised in our evaluation.
It uses two instances of computer vision’s state-of-the-
art ResNets, trained on packet directions (Var-CNNS)

and packet timings (Var-CNNT ) in addition to manu-
ally extracted summary statistics. It is one of the only
website-fingerprinting classifiers to utilise both auto-
matically learned and manually extracted features [17].

3 A QUIC Disruption
QUIC is a new transport protocol that is increasingly re-
placing TCP as the main carrier of HTTP traffic, raising
new challenges for creating website fingerprints. These
challenges include co-existence and dependence on TCP,
embedded, variable-length control information, and pro-
tocol versioning, and are described in this section.

3.1 QUIC

QUIC is a new connection-oriented transport proto-
col layered upon UDP. It was originally designed by
Google with the intent of speeding up the Web [9], but
is now undergoing standardisation in the Internet En-
gineering Task Force [8]. It will be the sole transport
protocol of the next generation of the HTTP protocol,
HTTP/3 [12]. QUIC and HTTP/3 – with the support of
browser vendors such as Google, Apple, Microsoft, and
Mozilla [16] as well as major content-delivery-network
players such as Cloudflare [11] and Akamai [10] – are
swiftly rising to displace HTTP/2 and TCP. Despite not
yet having been fully standardised, QUIC is already be-
ing used extensively to deliver web content. Depending
on the vantage point [13, 14], more than 2.6%–10% of
the Internet’s traffic is currently transported via QUIC.

QUIC’s goals include establishing connections
swiftly, minimising transport latency, providing multi-
plexing without head-of-line blocking, and providing an
always-secure transport by mandating encryption [8].

3.2 New Challenges in Fingerprinting
Websites

With the rise of the QUIC protocol in the HTTP land-
scape, we anticipate greater difficulty in the task of web-
site fingerprinting. The introduction of the QUIC pro-
tocol adds further variations to the traces for a given
web-page. To combat this, we expect challenges in col-
lecting and maintaining the associated datasets, as well
as in the complexity of the classifier.



Website Fingerprinting in the Age of QUIC 51

Backwards compatibility with TCP.QUIC is a ver-
sioned protocol and endpoints are expected to revert to
TCP in the event of version incompatibility. A web-
site supporting QUIC must therefore continue to sup-
port TCP for the indefinite future [28]. This, coupled
with practices such as “racing” QUIC and TCP con-
nections to determine the better protocol for a given
setting, means that web-pages may not be consistently
loaded with only one protocol. An observer must now
accommodate the possibility of web-pages being loaded
with either QUIC or TCP.

Furthermore, loading a web-page involves request-
ing its constituent resources from potentially different
servers. While a website and its associated web-pages
may support QUIC, their required resources may not.
In response, the browser loads the offending resources
over TCP. Given the dynamic nature of web-pages and
their required resources, this results in varying portions
of the web-page at any given time being loaded by TCP
instead of QUIC. Therefore QUIC traces, such as those
collected in Section 4, consist of varying mixtures of
QUIC and TCP connections.
Variable-length control packets. Packet payloads in
QUIC carry frames: blocks of control information or ap-
plication data. This allows embedding control informa-
tion such as flow control or acknowledgements alongside
application data as necessary. As the protocol reacts to
changes in the network state, it embeds control infor-
mation into the packets. In contrast to TCP where con-
trol messages occupy a fixed and consistent size in the
header of each packet, control information in QUIC is
embedded in frames in the packet when required. Some
control frames, such as acknowledgement ranges, addi-
tionally consume a variable amount of bandwidth.

Differentiating between an encrypted packet carry-
ing data, control information or a mixture of both, and
thus the states of the connection, is therefore no longer
as trivial as inspecting sequence and acknowledgement
numbers.
Versioned protocol. QUIC is a versioned protocol,
where each connection endpoint is expected to support
multiple recent versions. The version that is used in the
connection is agreed upon during the initial handshake.
The use of versions, encryption of control and packet
data, and a user-space implementation allow new QUIC
versions to be rapidly developed and deployed.

Given the incremental changes between Google’s
QUIC versions [29], we presume that the behavioural
differences that are present in the traces among subse-

quent versions will be minor. Versioning may, however,
change the protocol’s behaviour completely [28].

3.3 Other Notable Changes to the
Transport Layer

The following changes add further variation to the col-
lected traces, but may not substantially impact the
traces for a web-page.
Multiplexed streams. Data in a QUIC connection is
sent over streams. Streams provide a lightweight, or-
dered byte-stream abstraction to the application. Data
for a stream is transmitted in stream frames within
the encrypted payload. Each stream has its own stream
identifier, offset and flow control, thereby allowing data
to be concurrently sent on multiple streams.

The use of multiplexed streams in the QUIC proto-
col prevents losses in transmission of a single resource
from delaying the entire transmission. Instead, such oc-
currences may result in different traces associated with
the resources being requested, since the order of server
responses is more reliant on network conditions.
Always-encrypted transport. Similar to TCP,
QUIC leverages TLS to encrypt its communication. In
contrast to TCP however, this encryption is manda-
tory and encompasses the entire QUIC packet, with the
exception of a few flags and the connection identifier,
which are visible for most data packets.
Connection identifiers. QUIC connections are asso-
ciated with a pair of connection identifiers. Each iden-
tifier represents an endpoint of the connection and is
chosen by that endpoint’s peer. Additionally, new iden-
tifiers are available to an endpoint upon request. These
identifiers allow a QUIC connection to survive changes
to an endpoint’s IP address or port.
0-RTT session resumption. QUIC endpoints that
previously communicated are able to send encrypted
data within their first packet. QUIC’s handshake and
TLS 1.3’s session resumption [30] eliminate TCP’s min-
imum of 1 round trip necessary to establish the con-
nection, thereby hastening data transfers and web-page
loads.

4 Combined QUIC-TCP Dataset
We utilise a combined QUIC-TCP dataset in investigat-
ing the impact of the transition from TCP to QUIC on



Website Fingerprinting in the Age of QUIC 52

Table 1. Final distribution of traces within the dataset across the
monitored and unmonitored sets. The gateway locations are New
York (NY), Frankfurt (FRA) and Bengaluru (BLR).

Monitored Unmonitored

URLs / Classes 100 16,182
Traces per URL 200 6

. . . per protocol (QUIC, TCP) 100 3

. . . per gateway (NY, FRA, BLR) ∼66 2

. . . per protocol per gateway ∼33 1

Total traces 20,000 97,092

website fingerprinting. We therefore began by collecting
such a dataset, as existing datasets only contain traces
collected with TLS, Tor, or VPNs over TCP [4–7, 26].

The labelled QUIC-TCP dataset (summarised in
Table 1) consists of 20,000 monitored traces divided into
100 web-pages with 100 traces per transport protocol;
and a set of around 97,000 unmonitored traces with ap-
proximately 16,000 unique domains and 3 samples per
protocol. Our inclusion of both QUIC and TCP traces
in a single dataset enables direct comparison across both
protocols for the same web-page.

We collected the dataset in two phases: identifica-
tion of QUIC-enabled web-pages and the recording of
their traces.

4.1 Identifying QUIC-Enabled Web-Pages

We identified QUIC-enabled web-pages by filtering
them from a large set of popular domains using the
HTTP alternative service header described below [31].

We first combined the Alexa Top 1M domain list
used in previous works [6, 7] with the Cisco Um-
brella top 1 million list of frequently queried DNS do-
mains [32], and the Majestic Million list of the 1 million
most referred domains [33]. We then filtered the list of
duplicates and of invalid domains (e.g., reverse DNS do-
mains) by removing domain names that do not end in
a top-level domain [34]. The resulting list consisted of
around 2.2 million domain names.

Next, we converted each domain name to a URL
by pre-pending it with “https://”2, and fetched a single
instance of the web-page over HTTPS/TCP, using the
Python aiohttp library [35]. For each fetch, we recorded

2 QUIC mandates the use of encryption, and so we assumed
that web-pages not supporting HTTPS will also not support
QUIC.

the final redirected URL, HTTP status, and alterna-
tive service (alt-svc) response header where present.
A web-page may provide an alt-svc header in its re-
sponse to indicate alternative network locations where
the web-page or resource can be retrieved [31]. This
header informs the client that the web-page is avail-
able via HTTP/3 or HTTP/2 over QUIC [12], as well
as which versions of QUIC are supported. We timed out
each request after 30 seconds, and rate-limited them to
avoid overwhelming the server.

Of the 2.2 million domains, around 0.99 million do-
mains returned a successful HTTP response code in
the 200-range, indicating a valid, HTTPS-enabled do-
main. We then filtered these domains by selecting only
domains with alternative services containing either the
string “h3” (HTTP/3) or “quic”. Finally, we ensured a
diverse set of domains by keeping only a single result
where multiple pages redirected to the same final URL
(ignoring any trailing slash or path in the URL); and by
selecting a single URL among domains with the same
private domain name but different public suffixes [36]
(e.g. “google.com” and “google.de”). In this way, we
identified a total of approximately 98,300 unique URLs
which supported some version of the QUIC protocol.
Of these URLs we selected 30,000 URLs that supported
recent QUIC versions.

4.2 Collecting the Traces

Having identified a set of domains supporting the QUIC
protocol, we then split our dataset into monitored and
unmonitored web-pages and collected their traces.

We split the 30,000 URLs into a monitored set con-
sisting of 300 URLs, and an unmonitored set consist-
ing of the remaining URLs. Though interested in col-
lecting traces from 100 monitored URL, we conserva-
tively crawled 300 URLs to account for failures such
varying QUIC support across our VPN gateway re-
gions, timeouts, and IP blacklisting. We then sampled
the 300 URLs uniformly at random from the remain-
ing URLs. When sampling the monitored domains, we
ensured that no private domain occurred more than 50
times in the dataset, for example, ‘*.blogspot.com’ or
‘*.myshopify.com’. This latter step controls for biases
where such domains, by virtue of their shared infras-
tructure, account for a disproportionate fraction of the
QUIC-enabled domains. For each monitored URL we
collected 120 TCP traces and 120 QUIC traces, to en-
sure our quota of 100 traces for each URL in the final



Website Fingerprinting in the Age of QUIC 53

D.
O

. C
lo

ud

Bengaluru
Gateway

Lo
ca

l H
os

t
In

te
rn

et

Web
Server

Frankfurt
Gateway

New York
Gateway

Co
nt

ain
er

tcpdump
VPN Co

nt
ain

er

tcpdump
VPN Co

nt
ain

er

tcpdump
VPN

Encrypted VPN
Tunnel

HTTP/3 over
QUIC or TCP

Fig. 1. The collection infrastructure spanning a host with multiple
docker containers connected to three VPN gateways in the cloud
and collecting a single web-page from a web-server.

dataset. For each unmonitored URL we collected 3 TCP
traces and 3 QUIC traces.

We collected the dataset through three Wireguard
VPN gateways deployed globally – in New York, U.S.A;
Frankfurt, Germany; and Bengaluru, India – to ensure
robustness of the dataset to the client’s choice of VPN
location (Figure 1). For each web-page in the monitored
set, 40 TCP traces and 40 QUIC traces were collected
via each VPN server. For each web-page in the unmon-
itored domain, 1 TCP and 1 QUIC trace were collected
via each VPN server.

Each VPN server was deployed on a VM in the Dig-
ital Ocean cloud service and was provisioned with 1 GB
of memory and 2 CPUs. We further utilised 15 simulta-
neous instances of the Chromium browser on a RedHat
Linux virtual machine with thirty-two 2.7GHz proces-
sors and 20GB of RAM. We deployed each instance in a
docker container to isolate the state, network, memory,
and CPU consumption of each browser instance from
any other. Five browser instances were assigned to each
of the VPNs, and each browser instance performed a
single web-page request then was closed and reopened
to clear the session cache. Additionally, requests for each
web-page collected over a single VPN server were spaced
by at least 30 seconds to prevent the IP of the VPN
server being blacklisted by the web-server. Further de-
tails on collection and trace sanitisation can be found
in Appendix A.

5 Features and Methods
To investigate the potential impact of the QUIC proto-
col on the website fingerprinting landscape, we utilised a
combination of machine learning classification and fea-
ture analysis. We describe the utilised features, our ex-
perimental methods, and the reported metrics in this
section.

5.1 Features

We adapted the k-fingerprinting (k-FP) [5], Deep Fin-
gerprinting (DF) [7], p-FP(C) [18], and Var-CNN [17]
classifiers to the VPN and QUIC settings by addressing
the inclusion of packet sizes, the presence of encrypted
control packets, and the shift in feature importances.

We trained all classifiers on packet-size informa-
tion, in addition to packet directions used in previous
works [5, 7, 17, 18]. In contrast to the Tor-setting in
which all packets are padded to fixed length, packet
sizes are available in the VPN setting. We therefore pro-
vided the deep-learning classifiers, DF, p-FP(C), and
Var-CNN, with the signed packet sizes instead of signed
directions. Additionally, we trained the Var-CNN classi-
fier with 5 additional metadata features based on packet
sizes: incoming, outgoing, and total bytes, as well as
the fraction of incoming and outgoing bytes. These fea-
tures are analogous to those utilised by Var-CNN on the
packet counts [17]. While only the p-FP(C) classifier had
been evaluated with packet sizes, we anticipate that the
additional information will not disadvantage the classi-
fiers, and they may simply train to ignore them. Fur-
thermore, we trained the k-FP classifier with the full
set of timing, direction, and size features identified by
Hayes and Danezis [5].

Moreover, we removed acknowledgement and con-
trol packets by filtering small packets since this increases
classifier performance and is employed in the Tor and
TLS fingerprinting settings [37, 38]. By contrast, re-
moving control packets from a QUIC connection is non-
trivial, as acknowledgements are variable in length and,
like other control information, are encrypted. Further-
more, in the tunnelled VPN setting considered in this
paper, TCP acknowledgements are also not clearly in-
dicated. To remove such small packets we instead de-
termined an appropriate packet-size threshold and re-
moved all packets that are below this threshold, as ex-
plained in Section 8.



Website Fingerprinting in the Age of QUIC 54

Finally, we utilised a QUIC-specific feature set for
the k-FP classifier, as the shift in classification domain
from TCP to QUIC may necessitate a change of the un-
derlying features. While deep learning classifiers learn
their own features and so should adapt to the new set-
ting, the features engineered for k-FP were specific to
the TCP setting. We therefore evaluated the applicabil-
ity of these features to the QUIC setting in Section 6.2.

5.2 Open-World Experiments

We evaluated the classifiers in the more realistic open-
world scenario. We describe the general procedure be-
low, and identify in subsequent sections whenever we
diverge from this procedure.

We trained and tested each classifier on the traces
from our monitored and unmonitored datasets. The
monitored set consisted of 100 domains with 100 (poten-
tially mixed-protocol) samples as is common in the lit-
erature [3, 5, 26]. By contrast, the unmonitored set con-
tains approximately 97,000 traces with around 16,000
URLs collected through the various VPN locations via
both protocols.

For each experiment we performed at least 10 repe-
titions using 10-fold cross-validation. When splitting the
monitored dataset, we ensured that each class (or class-
protocol pair) had equal representation in the training
and test sets, thereby reducing the variance of our mea-
surements across the multiple splits. When splitting the
unmonitored dataset, we ensured that no URL appears
in both the training and validation set, as well as that no
URL is common to the two protocols. This ensures that
the unmonitored test set represents previously unseen
URLs, and that recurring unmonitored URLs do not
influence comparisons between QUIC and TCP. This
latter constraint results in an unmonitored set of effec-
tively 48,000 traces.

Where a classifier was trained on both protocol ver-
sions, we used a 1:1 ratio of QUIC and TCP traces. The
transition to QUIC and HTTP/3 is ongoing and it is
not currently possible to determine the resulting usage
distribution of HTTP/1 and HTTP/2 over TCP, and
HTTP/3 over QUIC. We therefore assumed a uniform
distribution between these two protocol.

5.3 Metrics

Below we provide the definitions of the metrics used in
our evaluations.

True-, wrong-, and false-positives. When a trace
is labelled as a monitored web-page it is called a posi-
tive. We use the definitions of positives as presented by
Wang [25], since they have shown them to be more rep-
resentative of classifier performance [25]. A true-positive
is a monitored trace that is correctly labelled. A wrong-
positive is a monitored trace incorrectly labelled as a dif-
ferent monitored web-page. A false-positive occurs when
a trace belonging to an unmonitored web-page is incor-
rectly labelled as a monitored web-page [25]. Their re-
spective rates (TPR, WPR, and FPR) are calculated
by dividing by the number of positive (TPR and WPR)
and negative (FPR) labels respectively.
Recall. Recall is equivalent to the true-positive rate
(TPR). It is the rate of labelling a monitored web-page
as the correct monitored web-page.
r-precision (πr). The precision or sensitivity of a clas-
sifier on a given dataset is the ratio of true-positives to
other positives. This metric is inherently coupled to the
number of positive and negative samples in the dataset,
and requires knowledge of the dataset’s distribution to
adequately judge how the classifier would generalise in
the real world. Wang proposed r-precision in order to
make this distribution explicit [25]. r-precision is defined
as:

πr = TPR
TPR + WPR + r · FPR

Here, r is the expected ratio of negative to positive vis-
its in the real world. Throughout this paper, we use a
ratio of r = 20 corresponding to a visit to a single mon-
itored web-page for every 20 unmonitored web-pages,
consistent with that of Wang [25].

6 From TCP to QUIC
In this section, we investigate whether classifiers trained
in the TCP setting generalise to QUIC traces, how the
importance of features changes between the two proto-
cols, and whether QUIC is inherently more difficult to
fingerprint than TCP.

6.1 Generalisation from TCP to QUIC

Generalisation, a core concept in machine learning,
refers to the ability of a classifier to correctly clas-
sify previously unobserved samples. In website finger-
printing, this traditionally applies to the classification
of traces observed in deployment, after having trained



Website Fingerprinting in the Age of QUIC 55

Control Unmon Both
84

88

92

96

100
π

20
(%

)
Var-CNN

Control Unmon Both
70

77

85

92

100
k-FP

Control Unmon Both
60

70

80

90

100
p-FP(C)

Control Unmon Both
50

62

75

87

100
DF

Control Unmon Both
40

55

70

85

100

Re
ca
ll
(%

)

Control Unmon Both
50

62

75

87

100

Control Unmon Both
35

51

67

83

100

Control Unmon Both
65

73

82

91

100

Presence of QUIC Traces in the Test Set

Fig. 2. Median r20-precision and recall scores of the various classifiers when trained on TCP samples but tested in the settings where
the client does not visit websites using QUIC and there exists QUIC traces in the open-world (Unmon.); and where the client may ad-
ditionally visit web-pages using either QUIC or TCP (Both). The performance in the TCP-only setting is shown for comparison (Con-
trol).

on traces collected in the lab. In this setting, given the
current approach of training classifiers for VPNs/TLS
proxies in a manner agnostic of the tunnelled proto-
col, we investigate whether a classifier trained on tun-
nelled TCP traces is generalisable to settings involving
the QUIC protocol.
TCP-trained classifiers are robust to unmoni-
tored QUIC traces. First, we evaluated whether the
classifier is able to maintain its predictive power in the
presence of unmonitored QUIC traffic. We investigated
this by evaluating the classifiers in two open-world set-
tings, each with a dataset of 100×100 monitored traces
and 48,500 unmonitored traces. In the control setting,
we trained and tested the classifier on TCP traces only.
In the experimental setting, we replaced half of the un-
monitored test samples with unmonitored QUIC traces.
Classifier hyper-parameters were set according to their
respective papers.

Figure 2 shows the median r20-precision and recall
for these two settings as “Control” and “Unmon” respec-
tively. Here, the largest changes in precision are a de-
crease of 3.5% for the DF classifier, and decrease of 1.8%
for the k-FP classifier. The largest change in recall is a
1.8% decrease for the p-FP(C) classifier. These changes,
however, fall generally within the interquartile-ranges
of Control’s results. We therefore conclude that despite
there being a change in protocol, the unmonitored QUIC

traces are sufficiently different from the monitored set
that they are still classified as unmonitored traces, with
only a slight loss of precision.
Up to 96% of monitored QUIC traces evade
TCP-trained classifiers. Next, we investigated
whether a client can evade detection of visits to a mon-
itored page by requesting pages using QUIC.

We utilised the above setting, but with a 1:1 ratio of
QUIC and TCP in both the monitored and unmonitored
test sets. These results are also shown in Figure 2 as
“Both”. Here, we find larger decreases in the median
r20-precision than in the setting above – 10% decrease
for p-FP(C) and 9.3% for DF. Furthermore, the changes
in recall are significantly more pronounced.

We observe a steep reduction in the recall of the
classifiers in comparison to the control setting, with a
difference of 47%, 37%, 27%, and 23% for the Var-CNN,
k-FP, p-FP(C), and DF classifiers respectively. This be-
haviour is confirmed for additional QUIC-TCP ratios in
Appendix B.

The confusion matrix shown in Table 2 of the Var-
CNN classifier provides an explanation for the severe
reduction in recall. Of the 5,000 tested QUIC samples,
4,801 (96%) of them are incorrectly classified as unmon-
itored traces by the classifier. Despite the traces being
of the same page, they are distinct enough to result in
client visits to the monitored URLs going undetected.



Website Fingerprinting in the Age of QUIC 56

Table 2. Confusion matrix for the Var-CNN classifier’s predic-
tions across all 10 repetitions, when trained on TCP and tested
on monitored and unmonitored TCP and QUIC samples. Wrong-
positives are treated as true-positives for simplicity of presenta-
tion.

Actual Predicted Misclassify (%)

Monitored Unmonitored

Monitored
QUIC 199 4,801 96.02
TCP 4,776 224 4.48

Unmonitored
QUIC 7 24,293 0.03
TCP 40 24,230 0.16

6.2 Feature Comparison Between QUIC
and TCP

In the previous section, we saw that a classifier trained
on TCP is inaccurate at identifying QUIC traces. In
this section, we determined whether TCP’s manually
engineered features are adequate for use with dedicated
QUIC classifiers.

We measured the importance of each of the 3,043
manually engineered features collated by Li et al. [39],
using the mean decrease in impurity (MDI) as deter-
mined by the random-forest underpinning the k-FP clas-
sifier. The mean-decrease in impurity identifies the de-
gree to which a random-forest classifier has learned to
use that feature to perform predictions, and has been
used to identify important features for TCP [5, 37].
We trained the k-FP classifier on TCP- and QUIC-only
datasets, using 3 repetitions of 10-fold cross-validation
(30 repetitions total), and extracted the mean decrease
in impurity across the trees in the forest. We then
ranked the resulting MDIs, averaging ties, and com-
puted the mean rank over the 30 repetitions.

Figure 3 illustrates the rank of each feature in the
QUIC dataset plotted against the rank in the TCP
dataset, for various groups of the features. We observe
three sets of trends across the various semantic feature
groups: groups that remain consistent across the proto-
cols, that shift in importance towards one protocol or
the other, and that shift the importance across protocols
for features within the feature group.
Packet count importances generally remain con-
sistent. The groups Packet Count and First-30 packet
counts show little bias toward one protocol or the other.
A classifier trained with these features should therefore
have no issue utilising them regardless of whether the

protocol is QUIC or TCP. The Last-30 packet counts
however show more importance to TCP than QUIC.
Many features lose or gain in importance across
protocols. The Time Statistics, Burst, First20, Last30
Packet Count, and Packets Per Second feature groups
were ranked more important for the TCP classifier than
the QUIC classifier. By contrast, the Transposition fea-
ture group shows a trend towards being more important
for the QUIC classifier.
Features from incoming packets affected more
than from outgoing packets. We further divided the
Transposition and the Intervals I–III feature groups by
their incoming and outgoing components. The Transpo-
sition group encodes the number of packets before the
first 300 incoming and outgoing packets; whereas the
Intervals feature groups are variations of the number of
packets between each sequential pair of incoming or out-
going packets. Intervals III is created from Intervals II
by aggregating a few of its features and exhibits a sim-
ilar behaviour across the protocols. In these as well as
the Transposition feature group, the incoming interval
features show no bias towards either protocol, whereas
the outgoing show a bias towards being important for
QUIC. Contrarily, the incoming Intervals I group shows
a slight bias towards TCP.
Importances shift within distribution features.
The Packet Distribution and CUMUL feature groups
belong to our final group are spread around the x = y

line, especially at the higher (less important) ranks.
There are two main reasons for this. Firstly, the higher
ranks are relatively unstable. Given the other features,
the ranks greater than 1000 account for only around
5% of the importance (mean-decrease in impurity). Sec-
ondly, these features are computed over windows of each
trace and shift with the change in protocol. For exam-
ple, for the Burst feature group, which is delineated by
incoming packets, the size of the third burst of outgoing
packets was the number 1 ranked QUIC feature, whereas
it was ranked 225 in TCP. By contrast, the fourth burst
(one later) was ranked 88th in TCP but 301st in QUIC.
QUIC’s handshake establishes connections with 1-RTT
less. Therefore a feature which would have appeared in
the fourth burst in TCP occurs in the previous BURST
in QUIC. Therefore, while features exist within these
groups that are beneficial to each protocol, the exact
feature may differ between the protocols.
Feature selection must consider both proto-
cols. These results highlight that while the QUIC and
HTTP/3 protocols are evolutions of the TCP- HTTP/2
stack, feature engineering for these protocols may take



Website Fingerprinting in the Age of QUIC 57

0 25 50 75 100

0

25

50

75

100

M
ea
n
Q
U
IC

Fe
at
ur
e
Ra

nk

Packet Count

100 175 250 325 400

100

175

250

325

400

Time Statistics

0 500 1000 1500 2000

0

500

1000

1500

2000

Transposition

0 625 1250 1875 2500

0

625

1250

1875

2500

M
ea
n
Q
U
IC

Fe
at
ur
e
Ra

nk

Intervals I - KNN

0 750 1500 2250 3000

0

750

1500

2250

3000

Intervals II - ICICS

0 750 1500 2250 3000

0

750

1500

2250

3000

Intervals III - WPES11

Incoming
Outgoing
Other

0 250 500 750 1000

0

250

500

750

1000

Bursts

0 750 1500 2250 3000

0

750

1500

2250

3000

Packet Distribution

0 375 750 1125 1500
Mean TCP Feature Rank

0

375

750

1125

1500

M
ea
n
Q
U
IC

Fe
at
ur
e
Ra

nk

First20

150 200 250 300 350
Mean TCP Feature Rank

150

200

250

300

350

First30 Pkt. Count

150 200 250 300 350
Mean TCP Feature Rank

150

200

250

300

350

Last30 Pkt. Count

0 750 1500 2250 3000
Mean TCP Feature Rank

0

750

1500

2250

3000

Pkts. Per Second

0 50 100 150 200
Mean TCP Feature Rank

0

50

100

150

200

CUMUL

Fig. 3. Mean rank of features on the QUIC dataset versus the TCP dataset for the various semantic feature groups. A rank of 1 indi-
cates the most important feature for that dataset. The dotted lines indicate regions where a rank is equal to, 1.5, or twice the other;
that is, rank(fi,QUIC) = r · rank(fi,TCP), for r ∈ {0.5, 0.667, 1, 1.5, 2}. See Appendix D for a description of the features.

different shapes. Feature selection for QUIC and TCP
must therefore consider both protocols simultaneously.
This is especially true when selecting features derived
from windows of the trace, since the importance of those
features may drastically change when going from one
protocol to the next.

6.3 Is QUIC Harder to Fingerprint than
TCP?

Next, we investigated whether the additional complex-
ity in the QUIC protocol makes QUIC more difficult
to fingerprinting than TCP. We select a subset of the
features above for use with k-FP for classifying QUIC
traces, and compare the classifiers’ performances to the
TCP-only setting.

6.3.1 Dedicated QUIC Features

Figure 4 shows the r20-precision and recall of the k-FP
classifier in the open-world QUIC setting, when trained
and evaluated on the most highly ranked features. We

0 100 200 300 400 500 600 700
Number of Top Features

80

85

90

95

100

Sc
or
e
(%

)

metric
Recall
π20

Fig. 4. Mean and 95% bootstrapped confidence intervals of the
r20-precision and recall scores for the k-FP classifier trained on
varying numbers of the most highly ranked QUIC features in the
open-world setting.

can see that similar to the TCP setting and the original
k-FP feature-set, the top 200 features are sufficient to
reach nearly peak precision and recall. The r20-precision
reaches its maximum at around 93% after around 150
features, whereas the recall achieves its maximum at
around 97.5% after around 200 features. We therefore



Website Fingerprinting in the Age of QUIC 58

conservatively use the top 300 features for further clas-
sification of the QUIC protocol when using k-FP.

6.3.2 Classifying QUIC Traces: No Harder than TCP

Figure 5 shows the median r20-precision and recall of
the classifiers in the open-world setting when trained
and tested on either QUIC or TCP traces. We find neg-
ligible changes, both increases and decreases, in the r20-
precision for all the classifiers.

The largest absolute changes in precision, a 2.6%
increase for the p-FP(C) classifier and a 1.2% decrease
for the k-FP classifier when moving from the TCP to
QUIC settings, are still well within the spread of the re-
sults. Classifier recall however, seems to increase in the
QUIC setting. The k-FP classifier sees a 2.6% increase
in recall. This, however, is likely due to the inclusion of
features in the QUIC setting that were not originally
considered for k-FP. The p-FP(C) classifier exhibits a
4.7% increase in median recall, and the Var-CNN clas-
sifier a 1.6% increase, with significantly less variability
than the TCP setting. The DF classifier exhibits only a
0.15% increase in median recall.

The increases in recall hint towards more consistent
features for the QUIC traces than TCP. Indeed given
these results it is clear that QUIC not fundamentally
more difficult to fingerprint than TCP.

7 Joint Classification of QUIC
and TCP

Specialised classifiers are capable of adeptly classifying
either QUIC or TCP traces. We now explore two ap-
proaches for jointly classifying QUIC and TCP traces.

7.1 The Mixed Classifier: Combining the
Protocols

Since some web resources are not retrievable using
QUIC, QUIC traces contain a mixture of QUIC and
TCP connections. These TCP connections are therefore
likely also present in the TCP-only traces. Modern clas-
sifiers are highly expressive and should be able to lever-
age these commonalities for an effective classification.

The classifier Mixed in Figure 5 shows the evalua-
tion results for classifiers trained and tested on samples
from both QUIC and TCP. In this setting, an observer

would collect a training set with an equivalent number
of QUIC and TCP traces for each URL. This accounts
for the observer not knowing whether the targeted web-
page will be downloaded via QUIC or TCP. Specifically,
we trained the classifier on half-QUIC and half-TCP
traces in the monitored set and half of the URLs in
the unmonitored set contributed QUIC traces while the
other half contributed TCP traces. Here, the k-FP clas-
sifier uses the union of the original k-FP features and
those selected for QUIC in Section 6.2.

We find median decreases in r20-precision of around
13.4% (DF), 4.1% (p-FP(C)), 3.5% (k-FP), and 0.91%
(Var-CNN) when compared to the TCP setting for an
equivalent training-set size. The Var-CNN suffered the
least, but its precision is likely due to the utilisation of
two-classifiers on the inter-arrival times and packet sizes
of the trace, as well as its variable number of training
epochs. Most classifiers showed only minor decreases in
median recall (≤ 0.60%), with the exception of the p-
FP(C) classifier, which suffered around an 11% decrease
in median recall.

Such a mixture of QUIC and TCP traces negatively
affects precision more than recall, as more unmonitored
pages are confused as monitored. At the same time, how-
ever, for an observer primarily interested in recall, this
approach provides comparable recall to that of the TCP
setting for most classifiers.

7.2 The Split Ensemble: Distinguishing
the Protocol

The high precision and recall scores for the protocol-
specific classifiers lend themselves to an ensemble-based
approach for classification. Were an observer to deter-
mine to which protocol a trace belongs, the trace could
be submitted to a protocol-specific classifier for iden-
tification. Indeed, while collecting the training set the
observer is able to record the protocol used to fetch each
instance of each web-page. Using this information, a
classifier could be trained to distinguish between traces
corresponding to each protocol, and the traces passed
to their respective classifier.

7.2.1 Identifying QUIC Traces

In a QUIC trace, the main web-page is loaded via QUIC
and subsequent resources are loaded via the same or ad-
ditional QUIC or TCP connections. Therefore, classify-
ing a trace as QUIC corresponds to determining whether



Website Fingerprinting in the Age of QUIC 59

TCP QUICMixed Split
80

85

90

95

100
π

20
(%

)
k-FP

TCP QUICMixed Split
20

40

60

80

100
DF

TCP QUICMixed Split
20

40

60

80

100
p-FP(C)

TCP QUICMixed Split
80

85

90

95

100
Var-CNN

TCP QUICMixed Split
92

94

96

98

100

Re
ca
ll
(%

)

TCP QUICMixed Split
92

94

96

98

100

TCP QUICMixed Split
20

40

60

80

100

TCP QUICMixed Split
20

40

60

80

100

Fig. 5. Median r20-precision and recall scores of the various classifiers when trained and tested on TCP samples (TCP), QUIC samples
(QUIC), TCP and QUIC samples (Mixed), and TCP and QUIC samples along with the distinguisher (Split).

0 50 100 150 200 250 300 350 400
Training Set Size

90

92

94

96

98

100

Ac
cu
ra
cy

(%
)

Fig. 6. Mean accuracy and bootstrapped 95% confidence in-
tervals of the distinguisher in identifying traces that containing
QUIC.

the trace contains the QUIC protocol. For this binary
classification task, we utilised the random-forest clas-
sifier with the same features used for website classifi-
cation. We anticipated that features useful for website
classification may also be effective in distinguishing be-
tween the traces. We selected the random-forest classi-
fier as it is compatible with the feature set and a highly
effective classifier. We term the classifier tasked with dis-
tinguishing TCP from QUIC traces the distinguisher.
QUIC and TCP traces are easily distinguishable.
We trained the distinguisher on two feature vectors per
URL, one corresponding to a QUIC trace and the other
to a TCP. These feature vectors were taken from both
the monitored and unmonitored datasets. These sam-

ples were allocated to either the training set or the test
set, in varying proportions, but no single URL was com-
mon to both the training and test sets. Figure 6 shows
the mean accuracy of the distinguisher for a training
set whose size increases from 20 to 400 samples. With
only 100 samples (50 URLs), the distinguisher is able
to differentiate between QUIC and TCP traces with
an average accuracy over 99%. With 400 samples (200
URLs), it is able to distinguish QUIC and TCP traces
with 99.5% accuracy, rising to 99.8% accuracy with 2560
samples (1280 URLs). The distinguisher is therefore able
to determine with high accuracy whether a trace contains
QUIC or TCP connections, with only a small number
of training samples.
Handshakes identify QUIC and TCP traces. Fig-
ure 7 illustrates the feature importance scores (MDI)
reported by the distinguisher, and gives insight into
this performance. The most significant features were re-
lated to the outgoing packet sizes, with the most signif-
icant being the size of the 1st outgoing burst of pack-
ets. Clients using the QUIC protocol must pad their
handshake packets to a minimum of 1,200 bytes [8]. A
browser may also send multiple of these initial hand-
shake packets to ensure connection establishment in the
face of loss. This initial burst therefore starkly contrasts
with the small SYN packets of TCP. With the excep-
tion of the maximum, variance, and standard deviations
of the outgoing packet sizes, the majority of these top-
ranked features focus on the initial round of packets and
bursts, namely the first 20 packets and the first 3 bursts.



Website Fingerprinting in the Age of QUIC 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature Rank

0.00

0.03

0.06

0.09

0.12

0.15

0.18

Im
po

rt
an
ce

(M
D
I)

Rank Feature Description

1 Size of the 1st outgoing burst of packets (Burst)
2 Size of the 10th packet (First20)
3–4 Var. and std. of the outgoing packet sizes
5–8 Sizes of the 7th, 9th, 17th, and 19th packets (First20)
9 # pkts. before the third outgoing packet (Transposition)
10–11 Sizes of the 14th and 18th packets (First20)
12 Maximum outgoing packet size
13–15 Sizes of the 20th, 11th, and 12th packets (First20)
16 Size of the third outgoing burst of packets (Burst)
17 Size of the 13th packet (First20)
18 # pkts. before the 5th outgoing packet (Transposition)
19 The 56th cumulative feature (CUMUL)
20 # pkts. before the 6th outgoing packet (Transposition)

Fig. 7. Relative importance of the features used to distinguish
between QUIC and TCP using the mean decrease in impurity.

This indicates that the distinguisher is primarily utilis-
ing the difference in the handshakes at the beginning of
the trace to distinguish between traces containing the
two different protocols. Given the excellent accuracy, we
retain this feature-set and classifier for distinguishing
between QUIC and TCP.

7.2.2 Splitting the Difference

We can now attempt to split the set of test samples
based on their protocol. The ensemble of classifiers
works as follows. Given a training set of size n in equal
proportions QUIC and TCP, we trained the QUIC clas-
sifier to identify the label associated with the n/2 QUIC
samples, and the TCP classifier to identify the remain-
ing n/2 TCP samples. The distinguisher is trained to
identify the protocol with all n samples. To classify a
trace, we first pass its features to the distinguisher and
get a likelihood of the trace being QUIC or TCP. We
then perform a weighted (by the confidence of the dis-

tinguisher) mean with the predictions of the QUIC and
TCP classifiers’ probabilities.

We evaluated the Split ensemble in the open-world
setting and allowed it the same data-budget as the
Mixed classifier. Maintaining a consistent data budget
ensures a fair comparison to the Mixed classifier, as
both classification approaches utilise the same number
of training samples. Generally, we see a reduction in r20-
precision and recall across all classifiers when compared
to the Mixed classification approach (Figure 5).

The scores achieved by the Split ensemble are not
the averages of the classification performances of the
QUIC and TCP classifiers, despite near 100% accuracy
in distinguishing between traces containing the two pro-
tocols. The reason for this is the reduction in the train-
ing set size. While in total the number of traces col-
lected and used to train the classifiers in the Split en-
semble is the same as the Mixed classifier, each protocol-
specific classifier in the ensemble only sees half of the
total samples. Despite containing a different protocol,
QUIC traces contain information that may be beneficial
for classification of the TCP traces for the same URL
and vice-versa. The Split ensemble, by training distinct
classifiers, is unable to leverage this shared information.
Given a fixed budget for the provisioning of traces to
train the classifier, the Mixed classifier therefore appears
to be superior as it can make use of the commonalities
between the protocols’ traces.

8 Removing Control Packets
Prior work has shown that the removal of acknowl-
edgement and control packets improves classifier perfor-
mance [37, 38]. We show that filtering based on packet
sizes in the encrypted tunnel setting, where control in-
formation is also encrypted, is sufficient to improve clas-
sifier performance.
Over 73% of outgoing packets are smaller than
130-bytes. Figure 8 shows the distribution of packet
sizes across the samples in the TCP dataset. Around
73% of all outgoing packets have a size less than 130
bytes, compared to 8.1% of incoming packets. This is
consistent with the encapsulation added by Wireguard,
where a TCP acknowledgement is embedded in an addi-
tional IP header (min. 20 bytes), UDP header (8 bytes),
and its TCP packet header header (16 bytes). We found,
therefore, that the minimum packet size hovers between
120–130 bytes for TCP traces, with few, smaller Wire-
guard control packets.



Website Fingerprinting in the Age of QUIC 61

0 200 400 600 800 1000 1200 1400 1600
Packet Sizes (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

EC
D
F

Outgoing
Incoming

Fig. 8. Empirical cumulative distribution function for incoming
and outgoing TCP-over-Wireguard packet sizes across all the
traces.

Given the magnitude of these small packets, we an-
ticipate that removing them should reduce the noise
inherent in their presence. We evaluated each classi-
fier after removing packets below 175 bytes and 130
bytes, and compared their performance to the use of
the full trace. After removing the packets, we adjusted
all timestamps to be relative to the new initial packet.
We evaluated each classifier in the open-world setting
with around 9,000 monitored TCP traces across 100
classes and 17,000 unmonitored TCP traces, using 10-
fold cross-validation.
Filtering small packets generally improves preci-
sion. Table 3 shows the median r20-precision and recall
for the classifiers evaluated on the entire trace and with
packets below 130 or 175 bytes removed. We see a con-
sistent increase in the median precision for all of the
classifiers with small packets removed, regardless of the
threshold used. The DF classifier showed the highest
increase in r20-precision, with around a 12% and 11%
increase in median precision, followed by k-FP (7.8%,
8.7%) and Var-CNNS (5.6%, 2.7%).
Filtering small packets improves recall for time-
based classifiers. For recall however, we find more
variegated results. While the size component Var-CNN
(Var-CNNS) shows almost no change in median recall,
k-FP and the time component of Var-CNN (Var-CNNT )
show large increases in median recall. The k-FP clas-
sifier experienced a 2.3%–2.7% increase in median re-
call, whereas Var-CNNT enjoyed an 18%–31% increase
in median recall, albeit with high variability. By com-
parison, the DF classifier suffers a minor decrease in
median recall, around 0.5%, and the p-FP(C) classifier
3.1%–4.8% decrease in median recall. The larger benefit
in recall for both the k-FP and Var-CNNT classifiers is

likely due to their reliance on inter-arrival times, which
is heavily distorted by the presence of control packets.

Given these results, and the importance of precision
over recall in the website-fingerprinting setting [25], we
selected 175 bytes as the filtering threshold for the traces
in the earlier experiments.

9 Discussion
Traces requested via either protocol are similarly classi-
fiable. However, differences in the protocols warrant at-
tention when utilising them in conjunction with privacy-
sensitive web-pages or when incorporating them into
privacy-enhancing technologies.
Privacy-conscious websites take heed. Privacy-
conscious websites should take heed in deploying sup-
port for the QUIC protocol. The hindrance in classify-
ing QUIC traces with a TCP-only classifier (§6.1) and
the potentially reduced performance in accounting for
the additional protocol (§7) suggest that it would be
beneficial to support QUIC. However, consider the set-
ting where an observer is aware of QUIC and web-pages
are accessed over a VPN. An observer that determines
whether the web-page was requested with QUIC (§7.2)
can use this information to reduce the set of possible
web-pages to those that support the QUIC protocol, or
to eliminate possible confusions with TCP-only domains
within their monitored set.
Clearer connection boundaries. Initial QUIC pack-
ets sent by the client have a minimum size of 1200 bytes
and may be sent in duplicate to mitigate loss. This is
in contrast to TCP’s small, acknowledgement-like SYN
packets. Such a distinct pattern not only allows differ-
entiating QUIC traces from TCP traces (§7.2), but may
also aid in separating sequential traces or enumerating
QUIC connections within a trace.

This problem as well as that of the identification of
browsers based on the chosen initial packet sizes, may
be mitigated by employing constant, MTU-sized hand-
shake packets. Unfortunately, MTU probing occurs af-
ter the handshake and so committing to a smaller MTU
would reduce the protocol’s performance. Additionally,
this large, minimum initial packet size implies that traf-
fic analysis defences that resize packets may need to
fragment and reassemble these packets if they are to be
accepted by the endpoints.
QUIC and Tor. Tor does not support QUIC connec-
tions, but doing so would allow the next generation of



Website Fingerprinting in the Age of QUIC 62

Table 3. Median r20-precision and recall of the various classifiers when evaluated on the TCP dataset where no packets, packets below
130 bytes, and packets below 175 bytes have been removed. Var-CNNS and Var-CNNT correspond to the size and time components of
the Var-CNN ensemble classifier.

DF k-FP Var-CNNS Var-CNNT p-FP(C)

metric = π20 (%)
None 37.1 (34.0–44.4) 69.8 (68.3–71.5) 75.8 (72.5–78.8) 59.6 (56.5–64.1) 55.7 (54.3–58.3)
130 49.2 (47.7–52.8) 77.6 (76.8–82.6) 81.5 (78.7–83.0) 62.8 (50.2–75.1) 58.4 (49.9–68.3)
175 48.6 (48.0–55.0) 78.5 (75.7–82.5) 78.5 (77.0–80.5) 61.8 (58.7–73.0) 55.8 (51.7–65.6)

metric = Recall (%)
None 99.4 (99.3–99.4) 94.6 (93.5–94.9) 98.5 (98.2–98.8) 53.3 (43.0–68.3) 89.4 (87.0–91.6)
130 99.0 (98.8–99.3) 96.9 (96.7–97.0) 98.4 (98.2–98.8) 84.1 (59.9–86.5) 84.6 (73.7–89.4)
175 98.9 (98.7–99.1) 97.2 (97.0–97.7) 98.4 (98.2–98.8) 71.0 (63.4–77.9) 86.3 (78.8–89.9)

Internet applications to access its privacy benefits. Per-
haps the most direct way to achieve this would be to
support UDP proxying. Unfortunately, though a desire
of the Tor Project, supporting UDP or general IP traffic
brings a host of challenges [40] and diverges from Tor’s
established TCP security model.

In Tor, TCP connections are established between
neighbouring nodes on an overlay path (Tor circuit) in
the Internet. Only the data from the user’s TCP connec-
tion traverses the circuit – control messages do not. Sup-
porting QUIC via UDP proxying would result in QUIC’s
handshakes, acknowledgements, and other control mes-
sages traversing the circuit. This may allow an observer
to identify the underlying protocol (§7.2) or fingerprint
the user’s QUIC implementation, and would need to be
mitigated. Furthermore, it is unclear if QUIC’s perfor-
mance benefits can be realised atop Tor’s reliable TCP-
based design.

Another avenue for Tor would be to utilise QUIC
connections within the network itself [41–43]. Here,
QUIC’s features such as stream multiplexing and au-
thenticated control messages can help to reduce con-
gestion [41] and interference among circuits [42], and
prevent attacks that leverage TCP’s unencrypted con-
trol packets, such as TCP reset attacks [8, 44]. These
changes, whether replacing the TCP connections be-
tween nodes with QUIC connections [42, 43] or estab-
lishing Tor-client-to-exit QUIC connections [41], consti-
tute a shift in the security model of Tor. Mathewson and
Perry [44] have outlined how this may impact privacy
in Tor but further security analyses are necessary.

9.1 Limitations

We acknowledge the following limitations of our work.
First, we collected web-pages that supported both

QUIC and TCP. This enabled us to evaluate settings in
which the classifier is trained on samples from both pro-
tocols. Any biases in the distribution of web-pages that
support QUIC and TLS/TCP, such as the exclusion
of all HTTP-only websites, are therefore also present
in our dataset. HTTPS promotion efforts have led to
over 75% of Chrome web-page loads being performed
by HTTPS [45, 46], but there may be websites, such
as private or hobby sites, that have not undertaken the
transition. We note however that similar biases towards
popularity are present in the Alexa Top 1m domain list
employed in previous works [6, 7].

Furthermore, despite our dataset consisting of
around 117,000 traces, similar to recent works collect-
ing 98,000 [18] and 135,000 [7] traces, the inclusion of
a second transport protocol and multiple VPN vantage
points in our dataset reduced our effective training set
size. Researchers, however, still rely upon datasets of
4,000–20,000 [18, 22, 25, 27, 47] traces to train and eval-
uate their classifiers, which are smaller than a protocol-
based partition of our dataset; and we were able to
achieve r20-precision and recall scores of over 90% on
these undefended traces (§5). Nevertheless, advanced
artificial neural networks and traffic analysis defence
evaluations may benefit from a larger dataset.

10 Related Work
Cheng and Avnur [48], Sun et al. [49] and Hintz [50] were
among the first to show that it was possible to iden-
tify a visited website using only the inferred sizes of the
HTML page and resources. Bissias et al. [19] introduced
the more challenging setting of classifying traces based
on only packet sizes, directions, and timings as are avail-
able in the VPN and Tor settings. Since then, website



Website Fingerprinting in the Age of QUIC 63

fingerprinting attacks have grown in both complexity
and power. They utilise algorithms such as the nearest
neighbour search [3], random forest classifiers [5], hid-
den Markov models [20], stream algorithms [21, 22], and
neural networks [6, 7, 17, 18, 23] to achieve identification
rates of over 95% on encrypted, padded network traffic;
whereas others have sought to boost classifier perfor-
mance with detailed feature analyses [5, 37, 39, 51].

Numerous website fingerprinting defences have been
proposed [3, 47, 52–60]. Among these, fixed-rate and
padded defences such as BuFLO [56], CS-BuFLO [55],
and Tamaraw [61] offer among the highest levels of pri-
vacy albeit with high overheads. Other defences, such
as Glove [54], Supersequence [3], Walkie-Talkie [53],
FRONT, and GLUE [47] selectively apply cover traffic,
padding, and delays to reduce the uniqueness of finger-
prints while avoiding high overheads.

Another branch of the website fingerprinting litera-
ture has sought to verify the assumptions underpinning
the attacks. These works have developed algorithms for
splitting or otherwise classifying sequential and overlap-
ping traces [21, 26, 27, 47, 62]. They have also addressed
the scalability of training and maintaining classifiers,
with models that may be incrementally updated [22] or
can transfer their learning to the classification of previ-
ously unseen URLs using only a few samples [23].

More generally, Sy et al. [63] evaluated the QUIC
protocol header for potential privacy leaks; and Govil
et al. [64] utilised QUIC’s connection migration feature
to improve user privacy by continuously changing the
client’s IP address mid-connection. However, despite the
varied literature, none of these works have investigated
the impact of the introduction of the QUIC protocol to
the HTTP landscape on website fingerprinting.

11 Conclusions
The introduction of QUIC is complicating the task of
fingerprinting tunnelled web traffic.
Website fingerprinting in the age of QUIC.While
classification of QUIC traces is not inherently more
difficult than that of TCP traces, website fingerprint-
ing classifiers trained on tunnelled TCP traces do not
generalise well when monitored URLs may be visited
using the QUIC protocol. Indeed, such failure to ac-
count for the possibility of the web-page being requested
via the QUIC protocol can result in up to 96% of the
QUIC traces for monitored URLs evading such a classi-
fier. However, if the observer knows that the monitored

URLs do not support the QUIC protocol, then using
such a classifier has little to no penalty in the presence
of unmonitored QUIC traces.

Classification of both QUIC and TCP traces to-
gether is possible, but comes at a cost. We explored two
approaches to performing such classification and found
that neither performs equivalent to TCP-only classifiers
with the same data-budget. Training the classifier on
samples from both QUIC and TCP leverages patterns
common to both the QUIC and TCP traces for a given
URL. The ensemble approach, by contrast, utilises the
high performance of the protocol-specialised classifiers
by first determining to which protocol a trace belongs.
While we observed high accuracy in determining the
protocol to be associated with a trace, the reduction in
the size of the training set for each classifier results in
an overall reduction of performance.
Changes for the “New Age”. We encourage future
works in website fingerprinting to consider and account
for the impact of the QUIC protocol on their attack,
defence, or feasibility analysis. We provide access to our
combined QUIC-TCP dataset for this.

While manually engineered features for TCP are
also usable in the QUIC setting, it is important to con-
sider both protocols while performing feature selection.
Alternatively, the added complexity of performing fea-
ture engineering and selection for both protocols can be
avoided by using artificial-neural-network based classi-
fiers. These classifiers have already shown great perfor-
mance in the website-fingerprinting setting, and their
automatic feature creation avoids the feature engineer-
ing overhead of the additional protocol.

Furthermore, the addition of a new protocol to the
ossified HTTP stack presents an opportunity to enhance
user-privacy. The presence of such a critical protocol in
user-space facilitates privacy-conscious protocol imple-
mentations. Future work may explore how such imple-
mentations could distort the fingerprint of network traf-
fic while remaining compatible with the QUIC standard.

Finally, in this work we investigated the addition of
a new protocol to the transport layer. Reliable trans-
port protocols, such as QUIC and TCP, are primarily
composed of their congestion control and loss recovery
components. Therefore other changes in the transport
layer may drastically impact the resulting fingerprints.
For example, the BBR congestion-control algorithm [65]
is a potential congestion-control game-changer that de-
parts from the traditional loss based approach of pre-
vious congestion-control algorithms. Like QUIC there
may be benefits to accounting for its presence.



Website Fingerprinting in the Age of QUIC 64

Acknowledgements
We gratefully acknowledge support from ETH Zurich,
and from the Zurich Information Security and Privacy
Centre. This work was supported in part by the Na-
tional Science Foundation under grants CNS-1553437
and CNS-1704105, and by the United States Air Force
and DARPA under Contract No. FA8750-19-C-0079.
Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the
United States Air Force, DARPA, or any other sponsor-
ing agency.

References
[1] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:

The second-generation onion router. In Proceedings of the
13th Conference on USENIX Security Symposium - Volume
13, SSYM’04, page 21, USA, 2004. USENIX Association.

[2] D. Das, S. Meiser, E. Mohammadi, and A. Kate. Anonymity
trilemma: Strong anonymity, low bandwidth overhead,
low latency - choose two. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 108–126, May 2018.
10.1109/SP.2018.00011.

[3] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson,
and Ian Goldberg. Effective attacks and provable defenses
for website fingerprinting. In 23rd USENIX Security Sympo-
sium (USENIX Security 14), pages 143–157, San Diego,
CA, August 2014. USENIX Association. ISBN 978-1-
931971-15-7. URL https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/wang_tao.

[4] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas
Engel, Andreas Zinnen, Martin Henze, and Klaus Wehrle.
Website fingerprinting at internet scale. In 23rd Annual Net-
work and Distributed System Security Symposium, NDSS
2016, San Diego, California, USA, February 21-24, 2016.
The Internet Society, 2016. URL https://nymity.ch/tor-
dns/pdf/Panchenko2016a.pdf.

[5] Jamie Hayes and George Danezis. k-fingerprinting: A ro-
bust scalable website fingerprinting technique. In 25th
USENIX Security Symposium (USENIX Security 16),
pages 1187–1203, Austin, TX, August 2016. USENIX
Association. ISBN 978-1-931971-32-4. URL https:
//www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/hayes.

[6] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van
Goethem, and Wouter Joosen. Automated website finger-
printing through deep learning. In Proceedings 2018 Net-
work and Distributed System Security Symposium. Internet
Society, 2018. 10.14722/ndss.2018.23105.

[7] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew
Wright. Deep Fingerprinting: Undermining website finger-
printing defenses with deep learning. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’18, pages 1928–1943, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN
9781450356930. 10.1145/3243734.3243768.

[8] Jana Iyengar and Martin Thomson. QUIC: A UDP-based
multiplexed and secure transport. Internet-Draft draft-ietf-
quic-transport-27, Internet Engineering Task Force, Febru-
ary 2020. URL https://tools.ietf.org/html/draft-ietf-quic-
transport-27.

[9] Jim Roskind. Experimenting with QUIC, 2013. URL https://
blog.chromium.org/2013/06/experimenting-with-quic.html.

[10] Medhat Yakan and Akhil Jayaprakash. Introducing QUIC for
web content, October 2018.

[11] Alessandro Ghedini and Rustam Lalkaka. HTTP/3: the past,
the present, and the future, September 2019. URL https:
//blog.cloudflare.com/http3-the-past-present-and-future.

[12] Mike Bishop. Hypertext transfer protocol version 3
(HTTP/3). Internet-Draft draft-ietf-quic-http-27, In-
ternet Engineering Task Force, February 2020. URL
https://tools.ietf.org/html/draft-ietf-quic-http-27. http:
//www.ietf.org/internet-drafts/draft-ietf-quic-http-27.txt.

[13] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver
Hohlfeld. A first look at QUIC in the wild. In Robert Bev-
erly, Georgios Smaragdakis, and Anja Feldmann, editors,
Passive and Active Measurement, pages 255–268, Cham,
2018. Springer International Publishing. ISBN 978-3-319-
76481-8. 10.1007/978-3-319-76481-8_19.

[14] Mirja Kühlewind. Some updates on QUIC deployment num-
bers. In IETF 106 Proceedings, November 2019. URL
https://trac.ietf.org/trac/irtf/wiki/map.

[15] Facebook. mvfst, 2019. URL https://github.com/
facebookincubator/mvfst.

[16] IETF QUIC Working Group. [QUIC] implementations,
2019. URL https://github.com/quicwg/base-drafts/wiki/
Implementations.

[17] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas.
Var-CNN: A data-efficient website fingerprinting attack
based on deep learning. Proceedings on Privacy Enhancing
Technologies, 2019(4):292–310, 2019. 10.2478/popets-2019-
0070.

[18] Se Eun Oh, Saikrishna Sunkam, and Nicholas Hopper.
p1-FP: Extraction, classification, and prediction of web-
site fingerprints with deep learning. Proceedings on Pri-
vacy Enhancing Technologies, 2019(3):191–209, July 2019.
10.2478/popets-2019-0043.

[19] George Dean Bissias, Marc Liberatore, David Jensen, and
Brian Neil Levine. Privacy vulnerabilities in encrypted HTTP
streams. In George Danezis and David Martin, editors, Pri-
vacy Enhancing Technologies, pages 1–11, Berlin, Heidel-
berg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-
34746-0. 10.1007/11767831_1.

[20] Z. Zhuo, Y. Zhang, Z. Zhang, X. Zhang, and J. Zhang.
Website fingerprinting attack on anonymity networks based
on profile hidden Markov model. IEEE Transactions on
Information Forensics and Security, 13(5):1081–1095, May
2018. ISSN 1556-6021. 10.1109/TIFS.2017.2762825.

[21] Abdullah Qasem, Sami Zhioua, and Karima Makhlouf. Find-
ing a needle in a haystack: The traffic analysis version. Pro-
ceedings on Privacy Enhancing Technologies, 2019(2):270–
290, 2019. URL https://content.sciendo.com/view/journals/
popets/2019/2/article-p270.xml.

https://doi.org/10.1109/SP.2018.00011
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://nymity.ch/tor-dns/pdf/Panchenko2016a.pdf
https://nymity.ch/tor-dns/pdf/Panchenko2016a.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://doi.org/10.14722/ndss.2018.23105
https://doi.org/10.1145/3243734.3243768
https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.cloudflare.com/http3-the-past-present-and-future
https://blog.cloudflare.com/http3-the-past-present-and-future
https://tools.ietf.org/html/draft-ietf-quic-http-27
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-27.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-27.txt
https://doi.org/10.1007/978-3-319-76481-8_19
https://trac.ietf.org/trac/irtf/wiki/map
https://github.com/facebookincubator/mvfst
https://github.com/facebookincubator/mvfst
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.2478/popets-2019-0043
https://doi.org/10.1007/11767831_1
https://doi.org/10.1109/TIFS.2017.2762825
https://content.sciendo.com/view/journals/popets/2019/2/article-p270.xml
https://content.sciendo.com/view/journals/popets/2019/2/article-p270.xml


Website Fingerprinting in the Age of QUIC 65

[22] Reyhane Attarian, Lida Abdi, and Sattar Hashemi.
AdaWFPA: Adaptive online website fingerprinting attack
for tor anonymous network: A stream-wise paradigm. Com-
puter Communications, 148:74–85, December 2019. ISSN
0140-3664. 10.1016/j.comcom.2019.09.008.

[23] Payap Sirinam, Nate Mathews, Mohammad Saidur Rah-
man, and Matthew Wright. Triplet Fingerprinting: More
practical and portable website fingerprinting with N-shot
learning. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS
’19, pages 1131–1148, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery. ISBN 9781450367479.
10.1145/3319535.3354217.

[24] Jason A. Donenfeld. Wireguard, July 2020. URL https:
//www.wireguard.com.

[25] T. Wang. High precision open-world website fingerprinting.
In 2020 IEEE Symposium on Security and Privacy (SP),
pages 231–246, Los Alamitos, CA, USA, May 2020. IEEE
Computer Society. 10.1109/SP.2020.00015.

[26] Tao Wang and Ian Goldberg. On realistically attacking
Tor with website fingerprinting. Proceedings on Privacy
Enhancing Technologies, 2016(4):21–36, October 2016.
10.1515/popets-2016-0027.

[27] Weiqi Cui, Tao Chen, Christian Fields, Julianna Chen, An-
thony Sierra, and Eric Chan-Tin. Revisiting assumptions for
website fingerprinting attacks. In Proceedings of the 2019
ACM Asia Conference on Computer and Communications
Security, Asia CCS ’19, pages 328–339, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN
9781450367523. 10.1145/3321705.3329802.

[28] Mirja Kühlewind and Brian Trammell. Applicability of the
QUIC transport protocol. Internet-Draft draft-ietf-quic-
applicability-07, Internet Engineering Task Force, 2020.
URL https://datatracker.ietf.org/doc/html/draft-ietf-quic-
applicability-07.

[29] The QUICHE Team. Chrome QUIC protocol versions, 2019.
[30] E. Rescorla. The transport layer security (TLS) protocol

version 1.3. RFC 8446, Internet Engineering Task Force,
August 2018.

[31] M. Nottingham, P. McManus, and J. Reschke. HTTP alter-
native services. RFC 7838, Internet Engineering Task Force,
April 2016.

[32] Cisco Umbrella. Umbrella popularity list - top 1 million,
June 2020. URL http://s3-us-west-1.amazonaws.com/
umbrella-static/index.html.

[33] Majestic. The majestic million, June 2020. URL https:
//majestic.com/reports/majestic-million.

[34] Internet Corporation for Assigned Names and Numbers
(ICANN). List of top-level domains, June 2020. URL
https://www.icann.org/resources/pages/tlds-2012-02-25-en.

[35] Nikolay Kim. aiohttp: Async http client/server framework
(v3.6.2), October 2019. URL https://github.com/aio-libs/
aiohttp.

[36] Mozilla Foundation. Public suffix list, June 2020. URL
https://publicsuffix.org.

[37] Junhua Yan and Jasleen Kaur. Feature selection for website
fingerprinting. Proceedings on Privacy Enhancing Technolo-
gies, 2018(4):200–219, 2018. URL https://content.sciendo.
com/view/journals/popets/2018/4/article-p200.xml.

[38] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and
Rachel Greenstadt. A critical evaluation of website finger-
printing attacks. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’14, pages 263–274, New York, NY, USA, 2014. As-
sociation for Computing Machinery. ISBN 9781450329576.
10.1145/2660267.2660368.

[39] Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring
information leakage in website fingerprinting attacks and
defenses. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS
’18, pages 1977–1992, New York, NY, USA, 2018. Asso-
ciation for Computing Machinery. ISBN 9781450356930.
10.1145/3243734.3243832.

[40] The Tor Project. Tor FAQ. Online, 2019. URL https://2019.
www.torproject.org/docs/faq.html.en#TransportIPnotTCP.

[41] Mike Perry. The case for Tor-over-QUIC. Tor developer
mailing list, March 2018. URL https://lists.torproject.org/
pipermail/tor-dev/2018-March/013026.html.

[42] W. F. Sabée. Adding QUIC support to the Tor network.
Master’s thesis, Delft University of Technology, 2019.

[43] L. Basyoni, A. Erbad, M. Alsabah, N. Fetais, and
M. Guizani. Empirical performance evaluation of quic
protocol for tor anonymity network. In 2019 15th In-
ternational Wireless Communications Mobile Comput-
ing Conference (IWCMC), pages 635–642, June 2019.
10.1109/IWCMC.2019.8766609.

[44] Nick Mathewson and Mike Perry. Towards side channel
analysis of datagram Tor vs current Tor. Technical Report
2018-11-002, The Tor Project, November 2018. URL https:
//research.torproject.org/techreports/side-channel-analysis-
2018-11-27.pdf.

[45] Google. HTTPS encryption on the web, December 2020.
URL https://transparencyreport.google.com/https/overview.

[46] Adrienne Porter Felt, Richard Barnes, April King, Chris
Palmer, Chris Bentzel, and Parisa Tabriz. Measuring HTTPS
adoption on the web. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 1323–1338, Vancou-
ver, BC, August 2017. USENIX Association. ISBN 978-1-
931971-40-9. URL https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/felt.

[47] Jiajun Gong and Tao Wang. Zero-delay lightweight defenses
against website fingerprinting. In 29th USENIX Security
Symposium (USENIX Security 20), Boston, MA, August
2020. USENIX Association. URL https://www.usenix.org/
conference/usenixsecurity20/presentation/gong.

[48] Heyning Cheng and Ron Avnur. Traffic analysis of SSL
encrypted web browsing. Technical report, University of
California, Berkeley, 1998.

[49] Qixiang Sun, D. R. Simon, Yi-Min Wang, W. Russell, V. N.
Padmanabhan, and Lili Qiu. Statistical identification of
encrypted web browsing traffic. In Proceedings 2002 IEEE
Symposium on Security and Privacy. IEEE Comput. Soc,
2002. 10.1109/secpri.2002.1004359.

[50] Andrew Hintz. Fingerprinting websites using traffic analysis.
In Privacy Enhancing Technologies, pages 171–178. Springer
Berlin Heidelberg, 2003. 10.1007/3-540-36467-6_13.

[51] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews,
Kantha Girish Gangadhara, and Matthew Wright. Tik-Tok:
The utility of packet timing in website fingerprinting attacks.

https://doi.org/10.1016/j.comcom.2019.09.008
https://doi.org/10.1145/3319535.3354217
https://www.wireguard.com
https://www.wireguard.com
https://doi.org/10.1109/SP.2020.00015
https://doi.org/10.1515/popets-2016-0027
https://doi.org/10.1145/3321705.3329802
https://datatracker.ietf.org/doc/html/draft-ietf-quic-applicability-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-applicability-07
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://www.icann.org/resources/pages/tlds-2012-02-25-en
https://github.com/aio-libs/aiohttp
https://github.com/aio-libs/aiohttp
https://publicsuffix.org
https://content.sciendo.com/view/journals/popets/2018/4/article-p200.xml
https://content.sciendo.com/view/journals/popets/2018/4/article-p200.xml
https://doi.org/10.1145/2660267.2660368
https://doi.org/10.1145/3243734.3243832
https://2019.www.torproject.org/docs/faq.html.en#TransportIPnotTCP
https://2019.www.torproject.org/docs/faq.html.en#TransportIPnotTCP
https://lists.torproject.org/pipermail/tor-dev/2018-March/013026.html
https://lists.torproject.org/pipermail/tor-dev/2018-March/013026.html
https://doi.org/10.1109/IWCMC.2019.8766609
https://research.torproject.org/techreports/side-channel-analysis-2018-11-27.pdf
https://research.torproject.org/techreports/side-channel-analysis-2018-11-27.pdf
https://research.torproject.org/techreports/side-channel-analysis-2018-11-27.pdf
https://transparencyreport.google.com/https/overview
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity20/presentation/gong
https://www.usenix.org/conference/usenixsecurity20/presentation/gong
https://doi.org/10.1109/secpri.2002.1004359
https://doi.org/10.1007/3-540-36467-6_13


Website Fingerprinting in the Age of QUIC 66

Proceedings on Privacy Enhancing Technologies, 2020(3):
5–24, 2020. 10.2478/popets-2020-0043.

[52] W. Cui, J. Yu, Y. Gong, and E. Chan-Tin. Realistic cover
traffic to mitigate website fingerprinting attacks. In 2018
IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS), pages 1579–1584, July 2018.
10.1109/ICDCS.2018.00175.

[53] Tao Wang and Ian Goldberg. Walkie-Talkie: An efficient
defense against passive website fingerprinting attacks. In
26th USENIX Security Symposium (USENIX Security 17),
pages 1375–1390, Vancouver, BC, August 2017. USENIX
Association. ISBN 978-1-931971-40-9. URL https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/wang-tao.

[54] Rishab Nithyanand, Xiang Cai, and Rob Johnson. Glove:
A bespoke website fingerprinting defense. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society,
WPES ’14, pages 131–134, New York, NY, USA, 2014. As-
sociation for Computing Machinery. ISBN 9781450331487.
10.1145/2665943.2665950.

[55] Xiang Cai, Rishab Nithyanand, and Rob Johnson. CS-
BuFLO: A congestion sensitive website fingerprinting de-
fense. In Proceedings of the 13th Workshop on Privacy
in the Electronic Society, WPES ’14, pages 121–130, New
York, NY, USA, 2014. Association for Computing Machin-
ery. ISBN 9781450331487. 10.1145/2665943.2665949.

[56] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimp-
ton. Peek-a-boo, i still see you: Why efficient traffic
analysis countermeasures fail. In 2012 IEEE Sympo-
sium on Security and Privacy, pages 332–346, May 2012.
10.1109/SP.2012.28.

[57] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz,
and Matthew Wright. Toward an efficient website finger-
printing defense. In Ioannis Askoxylakis, Sotiris Ioannidis,
Sokratis Katsikas, and Catherine Meadows, editors, Com-
puter Security – ESORICS 2016, pages 27–46, Cham, 2016.
Springer International Publishing. ISBN 978-3-319-45744-4.
10.1007/978-3-319-45744-4_2.

[58] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee,
Rocky K. C. Chang, and Roberto Perdisci. HTTPOS:
sealing information leaks with browser-side obfuscation
of encrypted flows. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2011,
San Diego, California, USA, 6th February - 9th February
2011. The Internet Society, 2011. URL https://www.ndss-
symposium.org/ndss2011/httpos-sealing-information-leaks-
with-browser-side-obfuscation-of-encrypted-flows.

[59] Charles V. Wright, Scott E. Coull, and Fabian Monrose.
Traffic Morphing: An efficient defense against statistical
traffic analysis. In NDSS, volume 9. Citeseer, 2009.

[60] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website fingerprinting in onion routing
based anonymization networks. In Proceedings of the 10th
annual ACM workshop on Privacy in the electronic society -
WPES '11. ACM Press, 2011. 10.1145/2046556.2046570.

[61] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson,
and Ian Goldberg. A systematic approach to developing and
evaluating website fingerprinting defenses. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 227–238, New

York, NY, USA, 2014. Association for Computing Machin-
ery. ISBN 9781450329576. 10.1145/2660267.2660362.

[62] Yixiao Xu, Tao Wang, Qi Li, Qingyuan Gong, Yang Chen,
and Yong Jiang. A multi-tab website fingerprinting at-
tack. In Proceedings of the 34th Annual Computer Security
Applications Conference, pages 327–341, New York, New
York, USA, December 2018. ACM. ISBN 9781450365697.
10.1145/3274694.3274697.

[63] Erik Sy, Christian Burkert, Hannes Federrath, and Mathias
Fischer. A QUIC look at web tracking. Proceedings on
Privacy Enhancing Technologies, 2019(3):255–266, 2019.
10.2478/popets-2019-0046.

[64] Yashodhar Govil, Liang Wang, and Jennifer Rexford.
MIMIQ: Masking IPs with migration in QUIC. In 10th
USENIX Workshop on Free and Open Communications
on the Internet (FOCI 20). USENIX Association, August
2020. URL https://www.usenix.org/conference/foci20/
presentation/govil.

[65] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, So-
heil Hassas Yeganeh, and Van Jacobson. BBR: Congestion-
based congestion control. ACM Queue, 14, September-
October:20–53, 2016. URL http://queue.acm.org/detail.
cfm?id=3022184.

[66] Google. Chromium (commit 756066), April 2020. URL
https://commondatastorage.googleapis.com/chromium-
browser-snapshots/index.html?prefix=Linux_x64/756066.

[67] Yi Shi and Kanta Matsuura. Fingerprinting attack on the
Tor anonymity system. In Sihan Qing, Chris J. Mitchell, and
Guilin Wang, editors, Information and Communications Se-
curity, pages 425–438. Springer, Berlin, Heidelberg, Berlin,
Heidelberg, December 2009. ISBN 978-3-642-11145-7.
10.1007/978-3-642-11145-7_33.

A Trace Collection, Sanitisation,
and Composition

The collection of the traces involved numerous tech-
nologies and procedures for ensuring a clean dataset.
We describe these methods, the resulting composition
of traces, and invalid samples that evaded our measures.
Trace collection. We fetched each web-page using
the Chromium web browser, controlled via the Sele-
nium browser automation framework. The Chromium
browser underpins both the Google Chrome and Mi-
crosoft Edge browser, and was the first browser to sup-
port QUIC. We utilised the Chromium browser based on
revision 756066 from 2020-04-02 [66], which roughly cor-
responds to Google Chrome version 83. This allowed us
to maintain a stable and reproducible experiment plat-
form, as outdated versions of Chrome are not provided
by Google. Each fetch, by an instance of the browser,
was performed in a Docker container and therefore iso-

https://doi.org/10.2478/popets-2020-0043
https://doi.org/10.1109/ICDCS.2018.00175
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://doi.org/10.1145/2665943.2665950
https://doi.org/10.1145/2665943.2665949
https://doi.org/10.1109/SP.2012.28
https://doi.org/10.1007/978-3-319-45744-4_2
https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-leaks-with-browser-side-obfuscation-of-encrypted-flows
https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-leaks-with-browser-side-obfuscation-of-encrypted-flows
https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-leaks-with-browser-side-obfuscation-of-encrypted-flows
https://doi.org/10.1145/2046556.2046570
https://doi.org/10.1145/2660267.2660362
https://doi.org/10.1145/3274694.3274697
https://doi.org/10.2478/popets-2019-0046
https://www.usenix.org/conference/foci20/presentation/govil
https://www.usenix.org/conference/foci20/presentation/govil
http://queue.acm.org/detail.cfm?id=3022184
http://queue.acm.org/detail.cfm?id=3022184
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html?prefix=Linux_x64/756066
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html?prefix=Linux_x64/756066
https://doi.org/10.1007/978-3-642-11145-7_33


Website Fingerprinting in the Age of QUIC 67

0.00

0.01

0.02

D
en
sit
y

Monitored

TCP
QUIC

0 50 100 150
Number of Resources

Returned

0.00

0.01

0.02

D
en
sit
y

Unmonitored

-512 -64 -8 0 8 64 512
log8(QUIC − TCP)

Resources

0.0

0.2

0.4

0.6

0.8

1.0

EC
D
F

Traces
Monitored
Unmonitored

Fig. 9. Distribution of the number of resources returned over
TCP or QUIC for QUIC traces in the dataset (left). The ECDF
plot (right) shows the fraction of traces that had x or less QUIC
resources more than TCP resources.

lated from the network traffic of the host machine and
other browser instances. Within the container, we cap-
tured all network traffic to and from the isolated net-
work stack using the tcpdump utility and filtered it to
packets belonging to the Wireguard protocol.
Dataset sanitisation. Additionally, we performed a
number of procedures to ensure a clean dataset. First,
for each TCP request we disabled the QUIC protocol,
and for each QUIC request we forced the browser to only
open the initial connection using QUIC. This prevented
the browser from attempting to optimise the request by
potentially switching to QUIC from TCP or vice-versa.
Second, failed requests were detected using a combi-
nation of time-outs, connection errors, empty HTML
pages, and performance logs provided by the browser.
Any HTTP response codes present in the performance
logs with a value greater than or equal to 400 for the
main domain represented a failure by the server or the
client and was removed. Third, any trace with only in-
coming or outgoing packets were removed. Finally, we
filtered the QUIC and TCP domains to those common
across both protocols and all versions.

Unfortunately, despite our best efforts, we subse-
quently noticed that the QUIC traces belonging to 1
URL in the monitored set, and 63 (of 17,000) URLs in
the unmonitored set erroneously contained solely TCP
connections. We note however that the presence of these
traces would bias our results towards finding less of a
difference between QUIC and TCP (such as found in
Section 6), and therefore strengthen these results.
Trace composition. As mentioned in Section 3, re-
questing a web-page using QUIC may involve loading
resources from additional servers using TCP. We there-
fore investigated the composition of the collected traces.

0.00 0.25 0.50 0.75 1.00

20

40

60

80

100

Sc
or
e
(%

)

k-FP

metric
Recall
π20

0.00 0.25 0.50 0.75 1.00

DF

Fraction of QUIC Traces

Fig. 10. Mean r20-precision and recall scores and their 95% con-
fidence intervals for classifiers trained on TCP samples but tested
in the settings where the client may visit the web-page using
QUIC or TCP.

Each monitored trace loaded a median of around 43
resources with QUIC, but only around 14 resources with
TCP, and each unmonitored trace 40 and 12 resources
respectively (Figure 9). Furthermore, the right-hand of
Figure 9 shows that 84% of the traces in the monitored
and unmonitored datasets loaded more resources via
QUIC than TCP, and around 17% loaded 64 or more
resources via QUIC. In total, over twice as many re-
sources were loaded with QUIC than with TCP. Hence,
despite QUIC traces containing TCP connections, the
majority of the resources requested during the loading
of web-pages are returned via QUIC.

B Varying the QUIC Ratio in the
Generalisability Experiment

We evaluated whether the observed reduction in classi-
fier performance, in the setting where a client attempts
to evade the detection of monitored web-page visit by
requesting the web-page using QUIC (Section 6.1), is
consistent for various ratios of QUIC to TCP traces.
We repeated the experiment for one deep-learning and
one non-deep-learning classifier, DF and k-FP respec-
tively, while varying the fraction of traces that support
QUIC for each URL.

Figure 10 shows the results of this experiment. As
the presence of QUIC traces increase in the monitored
and unmonitored sets, the k-FP classifier sees an overall
decrease in r20-precision of around 18.9%, whereas the
DF classifier sees an overall decrease of around 9.1%.
Additionally, both classifiers show a consistent decrease
in recall. The recall of the k-FP classifier drops steeply



Website Fingerprinting in the Age of QUIC 68

from 87.9% to 28.6%, a decrease of 59.3%. The DF clas-
sifier also shows a consistent, albeit less steep decrease
from 94.6% to 60.3%, a decrease of 34.3%.

We therefore conclude that the reduction in classi-
fier recall is present for the spectrum of potential QUIC
trace presence in the dataset. Additionally, the features
learned by the DF classifiers appear to be more robust
to the presence of QUIC traces.

C Another Perspective:
Precision-Recall Curves

In attempting to identify monitored web-pages, some
observers may prefer precision to recall or vice-versa.
Classification can be made more or less precise by ad-
justing a classifier’s decision threshold.

For a given sample the classifier reported a con-
fidence value, pc for each monitored class c, where
0 ≤ pc ≤ 1. If the maximum confidence over the dif-
ferent classes, maxc (pc), is below the decision threshold
we classified the sample as an unmonitored sample. Oth-
erwise, we classified the sample as the associated moni-
tored class. Finally, this procedure was repeated for each
sample across 10 splits of the dataset, and r20-precision
and recall scores were calculated over all samples.

The r20-precision-recall curves shown in Figure 11
for the generalisation (Section 6.1), comparison (Sec-
tion 6.3), joint classification (Section 7), and control
packet (Section 8) experiments echo our previously
stated findings. In addition, the following findings are
further illustrated by Figure 11.

– Incorporating unmonitored QUIC samples into
training may improve precision of the p-FP(C) and
Var-CNN classifiers (Figure 11a).

– The Var-CNN classifier is fairly robust across the
QUIC, TCP, Mixed, and Split settings (Figure 11b).

– Classification seems to be slightly easier when clas-
sifying QUIC as opposed to TCP (Figure 11b).

– The k-FP classifier and the time component of the
Var-CNN classifier (Var-CNNT ) benefited the most
from the removal of small packets (Figure 11c).

D Descriptions of Features
Below we describe the features utilised in Section 6.2.
For a more detailed description of the computation of

the features see Appendix E in the work of Li et al. [39],
or the respective papers.
Packet count. Features based on packet counts: the
total packet count, the count of outgoing packets, the
count of incoming packets, the ratio between the incom-
ing and total packet counts, and the ratio between the
outgoing and total packet counts.
Time Statistics. The maximum, mean, standard de-
viation, and third quartile of the inter-arrival times for
the total, incoming, and outgoing packet sequences. Ad-
ditionally, the first, second (median), and third quartiles
of the packet timestamps, as well as the total transmis-
sion time.
Transposition. The total number of packets before
each of the first 300 incoming packets and before each
of the first 300 outgoing packets.
Intervals I–III. An interval is the window of packets
between a packet and the previous packet with the same
direction. Interval I [3] records the number of packets in
each incoming and in each outgoing interval. Interval
II [67] records the frequency of intervals sizes for sizes
from 0 to 300. Intervals with more than 300 packets are
counted as containing 300 packets. Interval III [39] is
Interval II with the 3rd to 5th, 6th to 8th, and 9th to
13th entries each summed to a single value.
Bursts [3]. The number of packets in each sequence of
outgoing packets with no two adjacent incoming pack-
ets. Additionally, the maximum and average number of
packets in each burst, as well as the total number of
bursts and the number of bursts with more than 5, 10,
and 20 packets.
Packet Distribution. The number of outgoing pack-
ets in the first 200 overlapping chunks of 30 packets,
the standard deviation, mean, median, and maximum of
these 200 features, and the sums of each non-overlapping
subsequence of length 10 of these features.
First20, First30 Pkt. Count, and Last30 Pkt.
Count. The packet sizes of the first 20 packets, as well
as the incoming and outgoing packet counts of the first
and last 30 packets of the trace.
Pkts per Second. The number of packets transmitted
in each second for the first 100 seconds, as well as the
standard deviation, mean, median, minimum, and max-
imum of these features. Additionally, the totals for each
of the twenty 10-second intervals.
CUMUL [60]. A sample of 100 points from the piece-
wise linear interpolation of the cumulative sum of the
packet sizes.



Website Fingerprinting in the Age of QUIC 69

0 50 100
Recall (%)

0

50

100

π
20

(%
)

DF

Unmon.
Control
Both

0 50 100
Recall (%)

k-FP

0 50 100
Recall (%)

p-FP(C)

0 50 100
Recall (%)

Var-CNN

(a) r20-precision-recall curves for the various classifiers when trained on TCP samples but tested in the settings where the client does not visit websites
using QUIC and there exists QUIC traces in the open-world (Unmon.); and where the client may additionally visit web-pages using either QUIC or TCP
(Both). The performance in the TCP-only setting is shown for comparison (Control).

0 50 100
Recall (%)

0

50

100

π
20

(%
)

DF

TCP
QUIC
Mixed
Split

0 50 100
Recall (%)

k-FP

0 50 100
Recall (%)

p-FP(C)

0 50 100
Recall (%)

Var-CNN

(b) r20-precision-recall curves for the various classifiers when trained and tested on TCP samples (TCP), QUIC samples (QUIC), TCP and QUIC samples
(Mixed), and TCP and QUIC samples along with the distinguisher (Split).

0 50 100
Recall (%)

0

50

100

π
20

(%
)

DF

130 bytes
175 bytes
None

0 50 100
Recall (%)

k-FP

0 50 100
Recall (%)

p-FP(C)

0 50 100
Recall (%)

Var-CNNS

0 50 100
Recall (%)

Var-CNNT

(c) r20-precision-recall curves for the various classifiers when evaluated on the TCP dataset where no packets, packets below 130 bytes, and packets
below 175 bytes have been removed. Var-CNNS and Var-CNNT correspond to the size and time components of the Var-CNN ensemble classifier

Fig. 11. Precision-recall curves for the various experiments, when varying the decision threshold to predict a positive class from 0 to 1.


	Website Fingerprinting in the Age of QUIC
	1 Introduction
	2 Background
	2.1 Website Fingerprinting
	2.2 Threat Model and Assumptions
	2.3 State-of-the-Art Classifiers

	3 A QUIC Disruption
	3.1 QUIC
	3.2 New Challenges in Fingerprinting Websites
	3.3 Other Notable Changes to the Transport Layer

	4 Combined QUIC-TCP Dataset
	4.1 Identifying QUIC-Enabled Web-Pages
	4.2 Collecting the Traces

	5 Features and Methods
	5.1 Features
	5.2 Open-World Experiments
	5.3 Metrics

	6 From TCP to QUIC
	6.1 Generalisation from TCP to QUIC
	6.2 Feature Comparison Between QUIC and TCP
	6.3 Is QUIC Harder to Fingerprint than TCP?
	6.3.1 Dedicated QUIC Features
	6.3.2 Classifying QUIC Traces: No Harder than TCP


	7 Joint Classification of QUIC and TCP
	7.1 The Mixed Classifier: Combining the Protocols
	7.2 The Split Ensemble: Distinguishing the Protocol
	7.2.1 Identifying QUIC Traces
	7.2.2 Splitting the Difference


	8 Removing Control Packets
	9 Discussion
	9.1 Limitations

	10 Related Work
	11 Conclusions
	A Trace Collection, Sanitisation, and Composition
	B Varying the QUIC Ratio in the Generalisability Experiment
	C Another Perspective: Precision-Recall Curves
	D Descriptions of Features


