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Growing synthetic data through
differentially-private vine copulas
Abstract: In this work, we propose a novel approach for
the synthetization of data based on copulas, which are
interpretable and robust models, extensively used in the
actuarial domain. More precisely, our method COPULA-
SHIRLEY is based on the differentially-private training
of vine copulas, which are a family of copulas allow-
ing to model and generate data of arbitrary dimensions.
The framework of COPULA-SHIRLEY is simple yet flex-
ible, as it can be applied to many types of data while
preserving the utility as demonstrated by experiments
conducted on real datasets. We also evaluate the pro-
tection level of our data synthesis method through a
membership inference attack recently proposed in the
literature.
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1 Introduction
With the advent of Big Data and the widespread de-
velopment of machine learning, the sharing of datasets
has become a crucial part of the knowledge discovery
process. For instance, Kaggle1, a major actor in the
data portal platforms, supports more than 19 000 pub-
lic datasets and the University of California at Irvine
(UCI)2 repository is another important data portal with
more 550 curated datasets that can be used for ma-
chine learning purposes. Numerous public institutions
also publicly share datasets such as the Canadian open
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1 https://www.kaggle.com/datasets
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data portal3 and the American data portal4, respec-
tively each with 83 460 and 209 765 datasets. The open
data movement has also led cities to open more and
more data. Concrete examples are the cities of Mon-
tréal5 and Toronto6, with around 350 datasets each.

The major drawback of this augmentation in the
availability of data is that it is accompanied by the in-
crease in privacy risks for the individuals whose records
are contained in the shared data. Such privacy risks
have been demonstrated many times in the literature,
even in the situation in which the data was supposed
to be anonymized. For instance, in the context of mo-
bility data, researchers have shown that any individual
is unique in a population with respect to his mobil-
ity behaviour simply given three to five points of in-
terests (i.e., frequently visited locations) [17]. Follow-
ing the same approach but in the context of financial
data, another study has demonstrated that five credit
card transactions are sufficient to uniquely pinpoint an
individual [18]. Finally, even data that appears to be
“harmless” at first sight such as movie ratings could
lead to privacy risks as illustrated by Narayanan and
Shmatikov [48, 59].

To address these issues, multiple anonymization
techniques have been developed in the last two decades.
Among these, there has recently been a growing interest
in generative models and synthetic data. A key prop-
erty of generative methods is their ability to mince even
more the link between identities and the data shared in
comparison with other anonymization techniques. This
property is due to the summarization of the data to
probabilistic representations that can be sampled to
produce new profiles that are not associated with a par-
ticular identity. Nonetheless, generative models as well
as the synthetic data they produce, can still leak infor-
mation about the dataset used to train the generative
model and thus lead to privacy breaches. In particular,
a recent study by Stadler, Oprisanu and Troncoso [62]
have demonstrated that generative models trained in

3 https://open.canada.ca/en/open-data
4 https://www.data.gov/
5 https://donnees.ville.montreal.qc.ca/
6 https://open.toronto.ca/
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a non-private manner provide little protection against
inference attacks compared to simply publishing the
original data. They also showed that generative models
trained in a differentially-private manner did not im-
prove the protection.

Thus, in addition to being based on a formal model
such as differential privacy, we believe that data synthe-
sis methods should be assessed with a privacy evalua-
tion based on inference attacks to further quantify the
privacy protection provided by the synthesis method.
In this paper, we propose a copula-based approach to
differentially-private data synthesis. Our approach aims
at providing an answer to the following conundrum:How
to generate synthetic data that is private yet realistic
with respect to the original data?

The proposed generative model is called COPULA-
SHIRLEY, which stands for COPULA-based genera-
tion of SyntHetIc diffeRentialL(E)Y-private data. In a
nutshell, COPULA-SHIRLEY constructs a differentially-
private vine copulas model that privately summarizes
the training data and can later be used to generate syn-
thetic data. We believe that our method has the follow-
ing strengths:
– Simple to use and deploy - due to the nature of the

mathematical objects upon which it is based, which
are mainly density functions.

– Flexible - due to the highly customizable framework
of copulas and their inherent ability to model even
complex distributions by decomposing them into a
combination of bivariate copulas.

– Private - due to the use of differential privacy to
train the generative model as well as the privacy
test for membership inference.

The outline of the paper is as follows. First, we re-
view the literature on differentially-private data syn-
thesis methods in Section 2 before presenting the back-
ground notions of differential privacy and copulas theory
in Section 3. Afterwards, we describe in detail in Sec-
tion 4 the synthesis based vine copulas that we propose
COPULA-SHIRLEY, followed by an experimental evalu-
ation of the utility-privacy trade-off that it can achieve
on three real datasets in Section 5 before concluding.

2 Related work on private data
synthesis

Although the literature on anonymization methods is
huge, hereafter we focus on the methods for synthesiz-

ing data in a private manner. Most of these methods
rely on generative models that condense the information
in probabilistic models, thus severing the link between
identity and data through randomness and abstrac-
tion. Common generative models include Bayesian net-
works [32], Markov models [63] and neural networks [4].
It is possible to roughly distinguish between two types
of synthesis methods: partial and complete.

Partial data synthesis. Partial synthesis implies
that for a given profile, some attributes are fixed while
the rest is sampled by using the generative model. As
a consequence partial synthesis requires both the access
to part of the original profiles and the trained generative
model.

A seminal work on partial data synthesis is done by
Bindschadler, Shokri and Gunter in [11], in which they
develop a framework based on plausible deniability and
differential privacy. The generative model used is based
on differentially private Bayesian networks capturing
the joint probability distribution of the attributes. In a
nutshell, the “seed-based” synthesis of new records takes
a record from the original dataset and “updates” a ran-
dom subset of its attributes through the model. Their
approach releases a record only if it passes the privacy
test of being similar to at least k records from the orig-
inal dataset, hence the plausible deniability. A notable
drawback of this approach is the high computational
time and the large addition of noise, which makes it dif-
ficult to scale to high-dimensional datasets as pointed
out in [15].

In contrast, complete synthesis methods output new
profiles directly from the generative model. Hereafter,
we focus on complete data synthesis methods.

Statistical-based generation. The PrivBayes ap-
proach [77] has become one of the standards in the lit-
erature for complete data synthesis through Bayesian
networks. PrivBayes integrates differential privacy in
each step of the construction of the Bayesian network
while optimizing the privacy budget. More precisely, the
construction applies the Exponential mechanism on the
mutual information between pairs of attributes and the
Laplace mechanism to protect the conditional distribu-
tions [22]. Moreover, the privacy of the method relies
solely on the use of differential privacy and no inference
attacks are provided. In addition, the greedy construc-
tion of the Bayesian network is time consuming, which
makes it impractical for high-dimensional data.

Gaussian models are widely used for data mod-
elling, independently of the properties of the data it-
self, as the structure of the data can be accurately
estimated with only the mean and covariance of the
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data. Recently Chanyaswad, Liu and Mittal have pro-
posed a differentially-private method to generate high-
dimensional private data through the use of random
orthonormal projection (RON) and Gaussian models
named RON-Gauss [15]. RON is a dimensionality reduc-
tion technique that lowers the amount of noise added to
achieve differential privacy and achieves the Diaconis-
Freedman-Meckes (DFM) effect stating that “under
suitable conditions, most projections are approximately
Gaussian”. With the DFM effect, Gaussian generative
models are then well suited to model the projected data
and are easily made differentially private. The authors
have implemented the membership inference attack de-
scribed in [58] as a privacy test and shown that with a
privacy budget ε < 1.5 the success of the attack is no
better than a random guess.

Copula-based generation. Comparable works to
our use copula functions as generative models [6, 36]. To
the best of our knowledge, the first differentially-private
synthesis method based on copulas is by Li, Xiong and
Jiang and is called DP-COPULA [36]. The authors have
used copulas to model the joint distributions based on
marginal distributions. They use differentially-private
histograms as marginal distributions and the Gaussian
copula to estimate the joint distribution. No privacy
tests on their differentially-private synthetic data was
considered by the authors and much like RON-Gauss
[15], they simplify the structure to a Gaussian model.
However, some authors have shown that some tail de-
pendencies are not fully capture by Gaussian models,
which can lead to an important loss of information [38].
In contrast, as described in Section 3.2, vine copulas,
which are the basis of COPULA-SHIRLEY, split the mul-
tivariate function into multiple bivariate functions en-
abling the bivariate families of copulas to successfully
capture the dependence structure.

Tree-based generation. A vine copula is a struc-
ture with nested trees, which can thus be viewed as
a tree-based generation model (TGM). Other PGMs
for synthetic data generation such as Reiter’s work [55]
and [14] rely on trees to model the conditional proba-
bilities between a variable Y and some other predictor
variables Xi, in which i varies from 1 to n, the number
of attributes. More precisely, each leaf corresponds to a
conditional distribution of Y given ai ≤ Xi ≤ bi. Such
an approach can be classified as partial data synthesis
due to the use of the predictor variables to form the
imputed synthetic Y . In comparison, the nested trees of
vine copulas have the advantages to provide fully syn-
thetic data as well as deeper modelling of conditional
distributions due to a more flexible representation.

GAN-based generation. Since the influential
work of Goodfellow and collaborators [28] on Genera-
tive Adversarial Networks (GANs), this approach has
been leveraged on for private data generation [24, 34,
67, 70, 75] to name a few. For instance, the work of Jor-
don, Yoon and van der Schaar has introduced PATE-
GAN [34], which combines two previous differentially-
private machine learning techniques of machine learn-
ing, namely Private Aggregation of Teacher Ensembles
(PATE) [50] and Differentially Private Generative Ad-
versarial Network (DPGAN) [74]. The combination of
these two is done by using a “student” layer that learns
from the differentially-private classifier PATE as the dis-
criminator in the DPGAN framework, thus enabling the
training of both a differentially-private generator and
discriminator. The work of [34] advocates the privacy
of their synthetic records because of the use of differen-
tial privacy but do not use any privacy tests to validate
it. The main disadvantages of using techniques such as
GANs are that they need a large quantity of data, a fine-
grained tuning of their hyper parameters and they have
a high complexity, which makes them inappropriate for
a number of real-life applications.

Privacy evaluation. The amount of data synthe-
sis methods based on generative models trained in a
differentially private manner as grown significantly in
recent years. However, a fundamental question to solve
when deploying these models in practice is what value
of ε to choose to provide an efficient protection. While
there is currently no consensus on the “right value” of
ε, often researchers set ε ∈ (0, 2] but it can sometimes
be greater than ε > 105 [37, 46, 50]. Moreover, a recent
study has shown the importance of providing a privacy
assessment even when the model is trained in a differen-
tial privacy manner [62]. In particular, the authors have
demonstrated that differential privacy in model train-
ing does not provide uniform privacy protection and
that some models fail to provide any protection at all.
Thus, while achieving differential privacy is a first step
for data synthesis, we believe that it is also important
to complement them with methods that can be used
to evaluate the remaining privacy risks of sharing the
synthetic data.

To the best of our knowledge, very few works on
data synthesis achieving differential privacy have also
proposed methods to assess the remaining privacy risks
related to synthetic data with the exception of [11],
which assesses the plausible deniability level of the gen-
erated data. Privacy can be assessed in multiple ways.
A common approach when using differential privacy,
which mitigates the risk of membership disclosure risk
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by diminishing the contribution of any individual in the
model learned, is testing via membership inference at-
tacks. A recent paper [30] proposed a model-agnostic
method to assess the membership disclosure risk by
quantifying the ease of distinguishing training records
from other records drawn from a disjoint set with the
same distribution.

In the machine learning context, the approach
recently developed by Meehan, Chaudhuri and Das-
gupta [43] tackled the data-copying issue that can arise
from generative models. Data-copying is defined as a
form of overfitting in which trained models output iden-
tical or very similar profiles to the training samples. The
proposed framework focuses on global and local detec-
tion of data-copying by measuring the distribution of
distances between the synthetic profiles and their near-
est neighbours in the training set as well as in a test set.
The main idea here is that a smaller distance between
the synthetic profiles and the training ones compared
to the synthetic to test ones is an indication that the
data generation process has a tendency to exhibit data-
copying.

3 Preliminaries
In this section, we review the background notions nec-
essary to the understanding of our work, namely dif-
ferential privacy as the privacy model upon which our
method is built as well as copulas and vine copulas as
the underlying generative model.

3.1 Differential privacy

Differential Privacy (DP) is a privacy model that aims
at providing strong privacy guarantees with respect to
the amount of information that can leak about individ-
uals that are part of a database [22]. In a nutshell, DP
ensures that the contribution of a particular profile will
have a limited impact on the outcome of a computation
run on the input database. This property is achieved
by ensuring (e.g., through the addition of noise to the
output or by randomizing the computation) that the
distribution of outputs of the computation or the query
is “almost the same” whether or not the profile of an
individual was in the input database.

For our framework, we use the bounded defini-
tion of differential privacy. The following definitions are

based on the notation used in the book of Dwork and
Roth [22].

Definition 3.1 (Differential privacy (bounded)). Let
x and y two databases of equal size such that they differ
at most by one record. A randomized mechanism M is
ε-differentially private such that for the space of possible
outputs S ⊆ =(M) we have:

Pr[M(x) ∈ S] ≤ exp(ε) · Pr[M(y) ∈ S].

This property ensures that the difference in the outputs
of the randomized mechanism is indistinguishable up
to exp(ε) for two databases that differ in at most one
profile. Here, ε is the parameter defining the level of
privacy. In particular, the smaller is the value of ε, the
higher is the protection offered due to the increase in
indistinguishability.

The (global) sensitivity ∆ of a function f is an im-
portant notion in differential privacy formalizing the
contribution of a particular individual on the output
of this function. More precisely, the sensibility charac-
terizes the answer to the following question: “What is
the maximal contribution that an individual can have
on the outcome of a particular function f?”.

For an arbitrary function f , there exists many ways
to make it ε-differentially private. For instance, the
Laplacian mechanism [22] can be used to make a numer-
ical function returning a real or a set of reals f : D → Rk

ε-differentially private by drawing randomly from the
Laplacian distribution Lap(∆f

ε ).
Another important concept in differential privacy is

the notion of the privacy budget, which bounds the total
amount of information leaked about the input database
when applying several mechanisms on this database.
The application of several mechanisms do not always
have the same impact on the privacy budget depending
on whether these mechanisms are applied in a sequential
or parallel manner. The following theorems are inherent
properties of differential privacy and help to adequately
manage the privacy budget.

In the following, R and R′ are arbitrary sets, which
refer to the image of the functions defined in the theo-
rems.

Theorem 3.1 (Closure under post-processing [22]).
LetM : D → R be a ε-differentially private randomized
mechanism and f : R → R′ be an arbitrary function,
independent of D, then the composition f ◦M : D → R′

is also ε-differentially private.
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A subtle but important point of Theorem 3.1 of the
closure under post-processing is that the function f has
to independent of D, which means that it should not
have access to or use any information about D. If this
is not the case, the theorem does not apply anymore.

Theorem 3.2 (Sequential composition [22]). LetM1 :
D → R and M2 : D → R′ be two randomized mecha-
nisms that are respectively ε1 and ε2-differentially pri-
vate, then the composition (M1,M2)(x) : D → R×R′

is (ε1 + ε2)-differentially private.

Theorem 3.3 (Parallel composition [22]). Let M1 :
D1 → R and M2 : D2 → R′ be two randomized mech-
anisms that are respectively ε1 and ε2-differentially pri-
vate, such that D1,D2 ⊂ D and D1 ∩ D2 = ∅, then the
composition (M1,M2)(x) : D → R×R′ is max(ε1, ε2)-
differentially private.

Theorems 3.2 and 3.3 can easily generalized to k sequen-
tial mechanisms or disjoint subsets.

3.2 Copulas and vine copulas

Copulas. Historically, copulas date back from 1959
with Abe Sklar that has introduced this notion in his
seminal paper [60] at which time they were mainly theo-
retical statistical tools. However, in the last decade they
have experienced a significant growth in many domains
including earth science for modelling atmospheric pre-
cipitation [8], in health for diagnostic tests [31], in fi-
nances for the study of financial time series [51], in social
sciences for modelling the different usages of a technol-
ogy [35], in genetics for the study of phenotypes [29] and
even more recently in privacy for estimating the risk of
re-identification [56].

In a nutshell, a copula is a multivariate Cumula-
tive Density Function (CDF) on the unit cube with the
marginal distributions (or simply marginals) on its axes
modelling the dependence between the said marginals.
The formal definition of a copula is as follows:

Definition 3.2 (Copula [49]). Let (X1, X2, . . . , Xn) be
a random vector such as the associated cumulative
density functions FXi

are continuous. The copula of
(X1, X2, . . . , Xn), denoted by C(U1, U2, . . . , Un), is de-
fined as the multivariate cumulative density function of
(U1, U2, . . . , Un) in which Ui = FXi

(Xi) are the standard
uniform marginal distributions of (X1, X2, . . . , Xn).

Estimating the copula function with a known distribu-
tion family results in modelling the dependence struc-
ture of the data. Assuming a variable of interest of di-
mension n, the modelling by copula is generally done by
first choosing a family of copulas and then verifying the
“goodness-of-fit” of this modelling, in the same manner
that a known distribution can be used to estimate an
arbitrary distribution.

Figure 1 [27] illustrates simulations from five com-
mon bivariate copulas and the tail dependence they help
to model. We refer the interested reader to [33, 49] for
further reading about the many existing families of cop-
ulas and their tail dependence modelling (each of these
books defines and discusses more than 20 families of
copulas).

Fig. 1. Simulations from common copulas family.

Sklar’s theorem is a fundamental tool in copula the-
ory that binds together the marginals and the copula,
which means that we only need the marginals of the
data to model the dependence structure.

Theorem 3.4 (Sklar’s Theorem [60]). Let F be
a multivariate cumulative distribution function
with marginals FXi

with i ∈ {1, 2, . . . , n}.
Then, there exists a copula C such that
F (X1, X2, . . . , Xn) = C(FX1 , FX2 , . . . , FXn

). If all
the marginals are continuous, then C is unique.
Conversely, if FXi

are univariate distribution func-
tions and C is a copula, then C(u1, u2, . . . , un) =
F (F−1

X1
(u1), F−1

X2
(u2), . . . , FXn

)−1(un)) with F−1
Xi

being
the inverse CDF of FXi

.

Finally, a last fundamental theorem of the domain of
copulas is the Probability Integral Transform (PIT) as
well as the Inverse PIT.
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Theorem 3.5 (PIT [19]). Let X be a random variable
with FX as its cumulative density function (CDF). The
variable Y = FX(X) is uniform standard.

Theorem 3.6 (Inverse PIT [19]). Let U be a uniform
standard random variable and F an arbitrary CDF, then
Y = F−1(U) is a random variable with F as its CDF.

The PIT and its inverse are used to transform data into
uniform standard distribution for the copulas to model
and back into the original domain after the generation
of new observations.

When applied on experimental data, uniform stan-
dard marginals take the form of pseudo-observations
(i.e., normalized ranked data) that are computed via
the PIT. The pseudo-observations are then used to find
the best fitted copula model. Figure 1 illustrates such an
example in which data points (i.e., pseudo-observations)
are shown to best fit various copula models. The vine
copulas described hereafter offer a more refined manner
to describe the dependency structure.

Vine copulas. Vine copulas were introduced by
Bedford and Cooke in the early 2000s to refine the mod-
elling capabilities of copulas [9, 10]. The principle be-
hind them is simple: they decompose the multivariate
functions of the copula into multiple “couples” of cop-
ulas. A vine on n variables is a set of nested connected
trees (T1, T2, . . . , Tn) such that edges of a tree Ti corre-
sponds to vertexes in the following tree Ti+1. Regular
vines refer to a subset of vines constructed in a more
constrained way. As we only use regular vines in this
paper, the term “vines” will refer to regular vines here-
after.

Definition 3.3 (Regular vine [9]). A regular vine on n
variables contains n − 1 connected nested trees denoted
T1, T2, . . . , Tn−1. Let Ni and Ei be the set of nodes and
edges of the tree Ti. These trees satisfy the following
properties:
1. T1 is the tree that contains n nodes corresponding

to the n variables.
2. For i ∈ {2, 3, . . . , n− 1}, the nodes set of Ti is such

as Ni = Ei−1.
3. For i ∈ {2, 3, . . . , n−1}, {a, b} ∈ Ei with a = (a1, a2)

and b = (b1, b2), it must hold that |a ∩ b| = 1.

Condition 3. is called the proximity condition and can
be translated to two nodes in tree Ti are connected by
an edge if and only if these nodes, as edges, share a
common node in tree Ti−1.

With this definition, each edge e ∈ Ei is associated
to (the density of) a bivariate copula cje,ke|De

, in which
je, ke are the conditioned variables over the condition-
ing variables set De. Thus, the conditioned variables
and the conditioning set form the conditional variables
Uje|De

and Uke|De
. The existence of such conditional

variables is guaranteed by the conditions on the trees
Ti, i ∈ {1, 2, . . . , n− 1} [9, 20].

To help visualize what is a vine, Figure 2 [1] shows
an example of a vine on 5 variables. In this example, on
the tree T4, the conditioned variables are 1 and 5 and the
conditioning set is {2, 3, 4} forming the variables U1|2,3,4
and U5|2,3,4.

Fig. 2. Example of a vine on 5 variables.

From a vine V , it is possible to describe a multivari-
ate density function as the product of bivariate copulas.
The following theorem implies that the joint density of a
multivariate random variables can always be estimated
via vine copulas.

Theorem 3.7 (Vine density decomposition [9]). Let
V be a vine on n variables, then there is a unique
density function f such as

f(X1, X2, . . . ,Xn) =
n∏
i=1

fi(Xi)

n−1∏
m=1

∏
e∈Em

cje,ke|De

(
Uje|De

, Uke|De

)
in which Uje|De

= Fje|De
(Xje|De

) and Uke|De
=

Fke|De
(Xke|De

).

Formal and thorough definitions of vine copulas are
available in [9, 10, 20].

The construction of a vine is non-trivial as there are
approximately n!

2 · 2
(n−2

2 ) different vines on n variables.
The current state-of-the-art technique of construction
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uses a top-down greedy heuristic known as the Diss-
mann’s algorithm [20].

Dissmann’s algorithm for vine copula selec-
tion. The technique known as the Dissmann’s algorithm
[20] is based on the hypothesis that the top of the tree
is more important in modelling the data than the lower
branches as they contain raw information about the cor-
relation between attributes. Dissmann’s algorithm can
be summarized as:
1. Choose the optimal tree that maximizes the sum of

correlation coefficients between variables.
2. Choose the optimal copula family for each pair of

attributes (imposed by the tree) that minimizes the
information loss.

3. Construct all the following trees (from the previous
optimal tree) that respect the regular vine defini-
tion 3.3 and return to Step 1. or stop if no tree can
be constructed.

Step 1 is done by computing all the possible linear trees
(i.e., paths) and assigning to each edge the correlation
coefficients between the two variables represented by the
vertices. The path with the maximal sum of the corre-
lation coefficients is chosen. For Step 2, each pair of
attributes linked in the path are fitted on bivariate cop-
ula functions and the best fitted one is chosen using a
model selection criterion (such as Akaike Information
Criterion [3] or Bayesian Information Criterion [57]).

Note that due to the sequential aspect of the algo-
rithm, it can be stopped at any level [12]. A truncated
vine copula will have independent bivariate copulas to
model the conditional variables for all the trees below
the threshold. We will refer to the truncation level as
Ψ.

The complexity of this heuristic lies on the fitting
of n bivariate copulas on the first tree T1, n− 1 copulas
on the second tree T2 and so on until the last bivariate
copula on the last tree Tn−1, in which n is the number
of attributes. If e(m) is the complexity of estimating a
bivariate copula givenm records, then the complexity of
the Dissmann’s algorithm is given by O(e(m)× n×Ψ).

The critical drawback of a sequential heuristic such
as Dissmann’s algorithm is that reaching the optimal
solution is not guaranteed, in particular for high dimen-
sions. Moreover, the greedy algorithm needs to compute
the spanning tree and to choose a copula family for ev-
ery pair of nodes at each level of the vine leading to
important computational time with the increase in di-
mensionality.

Recent advances regarding vine copulas construc-
tion such as [45] and [65] propose respectively the use

of the Lasso [69] method and the use of Reinforcement
Learning (RL) with Long Short Term Memory net-
works (LSTM) for near-optimal vine selection. Another
approach found in the literature uses auto-encoders
on the data (here it could be used on the private
pseudo-observations) to mitigate the curse of dimension-
ality [66]. A recent paper proposed a differentially pri-
vate graphical model for low-dimensional marginals [42]
that could also be beneficial to our work. This work
defines an ad hoc framework for accurately and pri-
vately estimate marginals and improve existing genera-
tive models such as PrivBayes. We leave the investiga-
tion of these approaches as future works.

4 COPULA-SHIRLEY
COPULA-SHIRLEY is a simple and flexible framework
for private data synthesis through vine copulas. In this
section, we will first provide an overview of the algo-
rithm, before describing in detail each of its subcompo-
nents. Finally, we present our privacy analysis as well
as the membership inference attack that we have used
to evaluate the privacy level provided by our method.

4.1 Overview

Algorithm 1 outlines the framework of our method. The
COPULA-SHIRLEY algorithm takes as input a dataset
D as well as a parameter ε, representing the privacy
budget. The last two input parameters of COPULA-
SHIRLEY, nGen and EncodingMethod correspond re-
spectively to the number of synthetic data points to
generate and which method of encoding for the categor-
ical attributes to use.

Note that copulas are originally mathematical ob-
jects used for modelling continuous numerical variables.
This means that the application of copulas to categori-
cal attributes requires an adequate preprocessing of the
data, which is done by the Preprocessing function. Us-
ing the preprocessed data, the algorithm can tackle the
task of building a vine copula for modelling the data in a
differentially-private manner. Afterwards, this vine cop-
ula can be sampled for producing new synthetic data.

4.2 Preprocessing

As directly cited from [36]: “Although the data should
be continuous to guarantee the continuity of margins,
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Algorithm 1: COPULA-SHIRLEY
Input: Dataset: D, global privacy budget: ε,

number of records to generate: nGen,
encoding method : EncodingMethod

Output: Differentially-private synthetic
records: Dsyn

1 (pseudoObs, dpCDFs)←−
Preprocess(D, ε,EncodingMethod)
(Section 4.2)

2 vineModel←− SelectVineCopula(pseudoObs)
(Section 4.3)

3 Dsyn ←−
GenerateData(vineModel, nGen, dpCDFs)
(Section 4.4)

4 return Dsyn

discrete data in a large domain can still be considered
as approximately continuous as their cumulative density
functions do not have jumps, which ensures the conti-
nuity of margins.” This implies that if treated as con-
tinuous, discrete data can be modelled with copulas.
Thus, copulas can be used to model a wide range of
data without the need of much preprocessing. However,
an important issue arises when copulas are applied on
categorical data as such data do not have an ordinal
scale and copulas mostly use rank correlation for mod-
elling. In this situation, one common trick is to view
categorical data simply as discrete data in which the
order is chosen arbitrarily (e.g., by alphabetical order),
which is known as ordinal encoding. This trick has been
proven to be a downfall for vine copula modelling for
some metrics, as it will be discussed in Section 5.

Another technique to deal with categorical at-
tributes is the use of dummy variables, in which cat-
egorical values are transformed into binary indicator
variables [64] (this technique is also known as one-hot
encoding). The use of dummy variables helps preserve
the rank correlation between the attributes used by the
copulas (pseudo-observations).

Two other supervised encoding techniques known
as the Weight of Evidence (WOE) encoding [72] and
the Generalized Linear Mixed Model (GLMM) encod-
ing [13, 71] have been evaluated. Both need a reference
attribute (called a predictor) and encode the categori-
cal attributes in a way that maximizes the correlation
between the pair of encoded and reference attributes.
The WOE encoder can only be used with a binary ref-
erence attribute and is computed using the natural log
of the number of 1’s over the number of 0’s of the ref-

erence attribute given the (encoded) attribute’s value.
The GLMM can be seen as an extension of logistic re-
gression in which the encoding of an attribute is com-
puted by the expected value of an event (i.e., encoded
attribute) given the values of the predictor.

The preprocessing method shown in Algorithm 2
converts categorical values into dummy variables (if nec-
essary), computes the differentially-private CDFs from
the noisy histograms and outputs the noisy pseudo-
observations needed for the vine copula model construc-
tion. In the following, we describe in more details these
different processes.

Split training. Since our framework needs two
sequential training processes: learning differentially-
private cumulative functions and learning the vine-
copula model, we rely on the parallel composition (The-
orem 3.3) of differential privacy by splitting the dataset
D into two subsets instead of using the sequential com-
position (Theorem 3.2) and splitting the global bud-
get ε. In this manner, we efficiently use the modelling
strengths of copulas functions by sacrificing data points
to reduce the noise added via the differentially-private
mechanism (such as the Laplacian mechanism) while
preserving much of the data’s utility. Algorithm 2, line 3
shows the process of splitting the dataset into two sub-
sets.

Algorithm 2: Preprocessing
Input: Dataset: D, global privacy budget: ε,

encoding method : EncodingMethod

Output: Differentially-private
pseudo-observations: pseudoObs,
differentially-private CDFs: dpCDFs

1 D ← EncodingMethod(D)
2 (dpTrainSet,modelTrainSet)←

SplitDataset(D)
3 dpHistograms←

ComputeDPHistograms(dpTrainSet, ε)
4 foreach hist in dpHistograms do
5 cdf ← CumulSum(hist[binCounts])

Sum(hist[binCounts])
6 dpCDFs[col]← cdf

7 foreach col in modelTrainSet do
8 cdf ← dpCDFs[col]
9 pseudoObs[col]← cdf(modelTrainSet[col])

10 return (pseudoObs, dpCDFS)

Computation of DP histograms. The estima-
tion of differentially-private histograms is the key pro-
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cess of COPULA-SHIRLEY. The current implementation
computes naively a differentially-private histogram by
adding Laplacian noise of mean 0 and scale ∆

ε with ∆ =
2 to each bin count of every histogram (in the bounded
setting of DP, the global sensitivity ∆ of histogram com-
putation is 2). A more sophisticated method, such as
the ones defined in [2, 73, 76], could possibly be used to
improve on the utility of the synthetic data.

Computations of CDFs. Cumulative and proba-
bility density functions are intrinsically linked together
and it is almost trivial to go from one to another. With
continuous functions, CDFs are estimated via integra-
tion of the PDF curves. In a discrete environment like
ours, as we use histograms to estimate PDFs, a sim-
ple normalized cumulative sum over the bin counts pro-
vides a good enough estimation of the CDFs, which is
shown on line 6 of Algorithm 2. This is similar to the
approach proposed by the Harvard University Privacy
Tools Project in the lecture notes about DP-CDFs [44],
in which they add noise to the cumulative sum counts
and then normalize. Our method always produces a
strictly monotonically increasing function, whereas their
approach tends to produce non-monotonic jagged CDFs.
A strictly monotonic increasing function is desirable
as it means that the theoretical CDF always has an
inverse. Non-monotonic jagged CDFs can produce er-
ratic behaviours when transforming data to pseudo-
observations and especially when mapping back to the
natural scale with the inverse CDFs.

Computation of pseudo-observations. As cop-
ulas can only model uniform standard marginals (i.e.,
pseudo-observations, we need to transform our data.
Easily enough, the PIT states that for a random vari-
able X and its CDF FX , we have that FX(X) is uniform
standard. Algorithm 2 does this at lines 8-10 by first ex-
tracting the corresponding CDF (line 9) before applying
the said CDF onto the data (disjoint from the set used
for computing the CDFs) (line 10).

4.3 Construction of the vine copula

The two existing previous works at the intersection of
differential privacy and copulas are restricted to Gaus-
sian copulas [6, 36] because it makes it easier to build
them in a differentially private manner. Indeed, it is pos-
sible to represent a Gaussian copula by the combination
of a correlation matrix and the marginal densities. In
such case, it is enough to introduce appropriate noise
in these two mathematical structures to obtain a cop-
ula model that is differentially-private by design. The

use of vine copulas in such context is more complex, as
for each pair of copulas, a noisy estimation of its pa-
rameters is required, which results in an overall huge
injection of noise. Such a framework would also need a
differentially-private implementation of the Dissmann’s
algorithm, which is a complex task.

In contrast, COPULA-SHIRLEY reduces consider-
ably the noise added and the complexity of the im-
plementation by computing the dependencies on the
noisy marginal densities rather than on the original
data, thus enabling the use of vine copulas in a pri-
vate manner. COPULA-SHIRLEY is generic in the sense
that it can be used with any tree or copula selection
criterion, any algorithm for vine construction and any
method for differentially-private histograms or PDFs.
The complexity of COPULA-SHIRLEY is mainly im-
pacted by the algorithm for selecting the vine copula as
the complexity of ComputeDPHistograms, ComputeCDFs
and ComputePseudoObs is O(nd), in which n is the num-
ber of profiles and d is the number of attributes (i.e., di-
mensions) describing each profile. This latest cost is neg-
ligible compared to the cost of Dissmann’s algorithm.

Algorithm 3: SelectVineCopula
Input: Pseudo-observations: pseudoObs
Output: Vine Copula Model: vineModel

1 vineModel←
DissmannVineSelection(pseudoObs)
(Section 3.2)

2 return (vineModel)

Algorithm 3 outlines the general process for the
vine selection. As stated earlier, our method only needs
the differentially-private uniform standard pseudo-
observations in order to select a vine. Dissmann’s al-
gorithm is then used with the noisy observations, and
only these observations, to fit the best vine copula. The
current implementation of COPULA-SHIRLEY uses the
implementation of Dissmann’s algorithm from the R li-
brary rvinecopulib [47]. It offers a complete and highly
configurable method for vine selection as well as some
optimization techniques for reducing the computational
time for building the vine.

4.4 Generation of synthetic private data

The last step of our framework is the generation
of synthetic data. To realize this, uniform standard
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observations must be sampled from the vine copula
model selected via the previous method. As we use the
rvinecopulib implementation of the vine selection al-
gorithm, we naturally use their implementation of the
observation sampling from vines. Line 1 of Algorithm 4
refers to the implementation of this sampling. We re-
fer the interested reader to [20] for more details about
how to sample from nested conditional probabilities as
defined by the vine copula structure.

To map the sampled observations back to their
original values, we use the Inverse Probability Integral
Transform (Inverse PIT), which only requires the in-
verse CDFs of the attributes. This process is shown on
lines 2 to 5 of Algorithm 4. This last step concludes the
framework of differentially-private data generation with
COPULA-SHIRLEY.

Algorithm 4: GenerateData
Input: Vine Copula Model: vineModel,

Number of records to generate: nGen,
Differentially-private CDFs: dpCDFs

Output: Synthetic records: Dsyn
1 synthObs←

SampleFromVine(vineModel, nGen)
2 foreach col in synthObs do
3 cdf ← dpCDFs[col]
4 invcdf ← InverseFunction(cdf)
5 Dsyn[col]← invcdf(synthObs[col])

6 return Dsyn

4.5 Differential privacy analysis

It should be clear by now that COPULA-SHIRLEY relies
solely on differentially-private histograms, which makes
the whole framework differentially-private by design.

Theorem 4.1 (DP character of COPULA-SHIRLEY).
Algorithm 1 is ε-differentially-private.

Proof. The method ComputeDPHistograms provides ε-
differentially-private histograms by the Laplacian mech-
anism theorem [22]. The computation of dpCDFs only
uses the previous differentially-private histograms to
compute the CDFs, in a parallel fashion; thus these
density functions are ε-differentially-private as per the
Closure Under Post-Processing and Parallel Composi-
tion properties of differential privacy. To obtain the

pseudoObs, we simply apply the differentially-private
CDFs to the held-to model training set. The resulting
pseudoObs data is ε-differentially-private due to the ap-
plication of a ε-differentially-private mechanism and by
the Parallel Composition theorem.

DissmannVineSelection only uses the ε-differentially-
private set of data pseudoObs for its selection, resulting
in a ε-differentially-private vine structure by the Closure
Under Post-Processing property. Both, SampleFromVine
and InverseFunction only use private data and therefore
do not violate the Closure Under Post-Processing prop-
erty. Finally, the whole process is closed and never vi-
olates the Closure Under Post-Processing property of
differential privacy, as the algorithm only operates in-
dependently for each attribute and therefore makes use
of the Parallel Composition property; thus Algorithm 1
is ε-differentially-private.

4.6 Privacy evaluation through
membership inference

As stated earlier, we believe that one should not rely
solely on the respect of a formal model such as differ-
ential privacy but also that synthetic data should be
assessed with respect to a privacy test based on infer-
ence attacks to quantify the privacy protection provided
by the synthesis method.

In this work, we opted for the Monte Carlo mem-
bership inference attack (MCMIA) introduced by Hil-
precht, Härterich and Bernau [30] to assess the privacy
of our method. Simply put, MCMIA quantifies the risk
of pinpointing training records from other records drawn
from the same distribution given synthetic profiles. One
of the benefits of MCMIA is that it is a non-parametric
and model-agnostic attack. In addition, MCMIA pro-
vides high accuracy in situations of model overfitting
in generative models and outperforms previous attacks
based on shadow models.

The framework of the attack is as follows. Let ST
be a subset of m records from the training set of the
model and SC be a subset of m control records. Control
records are defined as records from the same distribu-
tion as the training ones but never used in the training
process. Let x be a record from the global data domain
D; Ur(x) = {x′ ∈ D | d(x, x′) ≤ r} is defined as the
neighbourhood of x with respect to the distance d (i.e.
the set of records x′i close to x). A synthetic record g

from a generative model G is more likely to be similar
to a record x as the probability P [g ∈ Ur(x)] increases.
The probability P [g ∈ Ur(x)] is estimated via the Monte
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Carlo integration: P [g ∈ Ur(x)] ≈ 1
n

∑n
i=1 1gi∈Ur(x), in

which gi are synthetic samples from G.
To further refine the attack, the authors propose

an alternative estimation of P [g ∈ Ur(x)] based on the
distance between x and its neighbours :

P [g ∈ Uε(x)] ≈ 1
n

n∑
i=1

1gi∈Ur(x) log (d(x, gi) + η)

in which η is an arbitrary small value set to avoid log 0
(we used η = 10−12). The function

f̂MC(x) := 1
n

n∑
i=1

1gi∈Ur(x) log (d(x, gi) + η)

will be the record-scoring function. From this definition,
if the record x obtains a high score, the synthetic sam-
ples gi are very likely to be close to x and implies an
overfitted model over x.

To compute the privacy score of a synthetic dataset,
given SG a set of n synthetic samples from a generative
model G, we first compute f̂MC(x) over SG for all x ∈
ST ∪ SC . Afterwards, we take the m records from the
union set ST ∪ SC with the highest f̂MC scores to form
the set I. By computing the ratio of records that are
both in ST and I, we obtain the Privacy Score of the
model over the set ST :

PrivacyScore(ST ) := card(ST ∩ I)
card(ST )

PrivacyScore(ST ) can be interpreted as the ratio of
training records successfully distinguished from control
records. From this definition, a score of 1 means that the
full training set has been successfully recovered, thus
implying a privacy breach while a score of 0.5 means
that the records from the training and control sets are
indistinguishable among the synthetic profiles.

In our experiments, we found out that using a
coarser distance like the Hamming distance provide
higher membership inference scores than the Euclidean
distance. To set the value of r, the size of the neigh-
bourhood, we used the median heuristic as defined by
the authors as it was the one providing the highest ac-
curacy:

r = median1≤i≤2m

(
min

1≤j≤n
d(xi, gj)

)
in which xi ∈ ST ∪ SC and gj ∈ SG.

5 Experiments
In this section, we investigate experimentally the
privacy-utility trade-off of the synthetic data gener-

ated by COPULA-SHIRLEY. In addition, we compare it
with two ε-differentially private data synthesis meth-
ods presented in Section 2, namely PrivBayes [77]
and DP-Copula [36]. In McKay’s and Snoke’s arti-
cle about the NIST challenge on differentially-private
data synthesis [41], the authors ranked PrivBayes in
the top 5, supporting its usage in our comparative
work. As COPULA-SHIRLEY can be seen as a refine-
ment of the DP-Copula model with the introduction
of vines, we wanted to compare our method to a
differentially-private Gaussian copula approach. Our ex-
perimental setup is available as a Python script at:
https://github.com/alxxrg/copula-shirley.

5.1 Experimental setting

Datasets. Three datasets of various dimensions have
been used in our experiments. The first one is the UCI
Adult dataset [21], which contains 32 561 profiles. Each
profile is described by 14 attributes such as gender, age,
marital status and native country. The attributes are
mostly categorical (8), the rest is discrete (6).

The second dataset used is COMPAS [5], which con-
sists of records from criminal offenders in Florida during
2013 and 2014. It is the smallest set of the three and con-
tains 10 568 profiles, each described with 13 attributes
quite similar to Adult that are either discrete or cate-
gorical with the same proportion.

The third dataset used is Texas Hospital [68] from
which we uniformly sampled 150 000 records from a set
of 636 140 records and selected 17 attributes, 11 of which
are categorical. We sample down this dataset to reduce
the burden of the computational task, mainly for the
PrivBayes algorithm.

Parameters for data synthesis. To evaluate the data
synthesis, we have run a k-fold cross-validation tech-
nique [25] with k = 5. For each fold, all generative mod-
els are learned on the training set of this fold and then
synthesized the same number of records. All evaluation
metrics are measured by using the fold’s left-out test set
and the newly generated synthetic data. For the privacy
budget, we have tried various values for this parame-
ter in the range ε ∈ [0.0, 8.0, 1.0, 0.1, 0.01] (here ε = 0
means that the DP is deactivated), similar to the pa-
rameters used in the comparative study of the NIST
competition for evaluating differentially-private synthe-
sis method [41].

For the categorical encoders, we have used the
Python library category_encoders [40]. For the super-
vised encoders (WOE & GLMM), to avoid leaking in-

https://github.com/alxxrg/copula-shirley
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formation about the training set, we train the encoders
on a disjoint set that is the fold’s left-out test set. By
default, we used the WOE encoder as it was shown to
provide slightly better results (see Figure 4). For the
membership inference attack implementation discussed
in Section 4.6, the control set used is the fold’s left-out
set.

Implementation details. As previously mentioned,
COPULA-SHIRLEY uses the implementation of Diss-
mann’s algorithm from the R library rvinecopulib [47].
In our tests, we used all the default parameters of the
vine selection method, which can be found in the refer-
ence section [47], except for two parameters: the trunca-
tion level Ψ and the measure of correlation for the opti-
mal tree selection. We opted to stop at the second level
of the tree (Ψ = 2). The truncation level has been thor-
oughly studied and we show that a deeper vine model
does not drastically improve the model as shown in Ap-
pendix C. We also opted for the Spearman’s ρ rank cor-
relation as it is the preferred statistic when ties occur
in the data [53].

As stated earlier, we have split the training set into
two disjoint subsets with a ratio of 50/50, respectively
for the differentially-private histograms and the pseudo-
observations. The impact of different ratios is illustrated
in Figure 3. Finally, for a more refined representation,
we choose to use as many bins for our histograms as
there are unique values in the input data. By default,
we use the Laplacian mechanism for computing the DP-
histograms (see, however, Appendix B for the impact on
the utility of other DP mechanisms).

PrivBayes. We use the implementation of PrivBayes
referenced by [41] called DataSynthesizer [52]. Apart
from the privacy budget ε, the implementation of
PrivBayes we have run has only one parameter, which
is the maximal number of parents nodes in the Bayesian
network. We use the default parameter which is 3.

DP-Copula. While we did not find an official imple-
mentation of Li, Xiong and Jiang [36], we discovered
and used an open-source implementation available on
GitHub [54]. In addition to the privacy budget, the only
parameter of DP-Copula is used to tune how this bud-
get is divided between the computation of the marginal
densities and the correlation matrix in a differentially-
private manner. We choose to set the value of this pa-
rameter so that half of the privacy budget is dedicated
to the computation of the marginal densities and half
to the computation of the correlation matrix.

5.2 Utility testing

Statistical tests. Statistical tests can be used to quantify
the similarity between the original dataset and the syn-
thetic one. We use the Kolmogorov-Smirnov (KS) dis-
tance to estimate the fidelity of the distributions of the
synthetic data compared to the original data. The KS
distance is computed per attributes, the reported scores
in the results section representing the average score over
all attributes. We also evaluate the variation in the cor-
relation matrices between the raw and synthetic data
using the Spearman’s ρ rank correlation. The score rep-
resent the mean absolute difference of the correlation
coefficients between the two matrices. In the following
section, we refer to this score as the correlation delta
metric. See Appendix A for more details on these tests.

Classification tasks. Classification tasks are comple-
mentary to statistical tests in the sense that they sim-
ulate a specific use case, which is the prediction of a
specific attribute, thus helping to evaluate if the cor-
relations between attributes are preserved with respect
to the classification task considered. In this setting, the
utility is measured by training two classifiers. The first
classifier is learned on a training set (i.e., the same train-
ing set used by the generative models), drawn from the
original data while the second one is trained on the syn-
thetic data produced by a generative model. Afterwards,
the classifiers are tested on the same test set, which is
drawn from the original data but disjoint from the train-
ing set. Ideally, a classifier trained on the synthetic data
would have a classification performance similar to the
one trained on the original data. The comparison be-
tween classifiers is done through the use of the Matthews
Correlation Coefficient (MCC) [39], which is a measure
of the quality of a classification (see Appendix A). Note
that the MCC of a random classifier is close to ≈ 0.0
while the score of perfect classifier would be 1.

In our experiments, we evaluated the synthetic data
on two classification tasks: on a binary classification
problem and a multi-class classification problem. We
opted for gradient boosting [23] classifier as this algo-
rithm is known for its robustness to overfitting and its
performance that is often close to the state-of-the-art
methods, such as deep neural networks, on many classi-
fication tasks. We use the XGBoost [16] implementation
of the gradient boosting algorithm.

To further deepen our analysis, we also evaluated
the synthetic data over a simple linear regression task.
To evaluate its success, we computed the root mean
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square error (RMSE):

RMSE(Y, Ỹ ) =

√∑n
i=0(ỹi − yi)2

n

in which Y are the true values and Ỹ are the linear
model’s outputs.

For the Adult dataset, the binary classification
problem is over the attribute salary, the multi-class
classification problem over the attribute relationship
and the linear regression over age. On COMPAS,
the binary classification task is over the attribute
is_violent_recid, the multi-class problem on race and
the linear regression on the attribute decile_score.
For the classification and regression tasks on Texas,
the attributes ETHNICITY, TYPE_OF_ADMISSION and
TOTAL_CHARGES are used respectively for the binary,
multi-class and regression problems.

5.3 Results

Splitting ratios for the vine copula model. Recall that
in our preprocessing step (Algorithm 2, the training
dataset is split in two sets, one for learning the DP-CDFs
and the other for computing pseudo-observations. We
first evaluate the splitting ratios between the two sets.
As shown in Figure 3, most metrics are stable across
the different ratios. One exception is the KS distance,
which exhibits an increase when the ratio given for the
pseudo-observations is higher, giving the importance of
the DP-CDFs. As there is no clear consensus in the data,
we opted for a ratio of 50/50 for the other experiments.

Encoding of the categorical attributes. The proper
encoding of the categorical attributes is crucial for our
approach. As shown in Figure 4, both classification tasks
display lower performances with the ordinal encoding.
In addition, the one-hot encoding could not be tested
on Texas as the number of attributes augment from 17
to 5375, due to the increase in the computational bur-
den as our approach scales linearly with the number
of attributes. The one-hot encoding also perform badly
for the KS distance and the regression task in addition
of considerably increasing the execution time. We opted
for the WOE encoder as it performed best for both clas-
sification tasks compared to the GLMM encoder.

Comparative study of the models. Figure 5 illus-
trates the scores for each privacy budget over the three
datasets and four models separately while Figure 6 dis-
plays the score over all the values of the privacy bud-
get combined. One of the trends that we observed is
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Fig. 3. Impact of the splitting ratios for the vine copula model
with ε = 1.0. The linear regression RMSE and the execution
time are normalized. For the MCC, higher is better, while the
other metrics, lower is better. Measures are averaged over a 5-
fold cross-validation run.

that PrivBayes provides better score than COPULA-
SHIRLEY for most of the other classification tasks. In
addition, DP-Copula and DP-Histograms failed com-
pletely at the two classification tasks. Our approach
and PrivBayes performed well on the regression task
compared to DP-Copula. PrivBayes generated the data
that with the smallest correlation coefficients difference
from the original datasets except for the Texas dataset
in which COPULA-SHIRLEY provides the best results
overall. In addition, COPULA-SHIRLEY is always the
preferred one for generating faithful distributions. The
privacy evaluation demonstrates that a smaller privacy
budget does not necessarily mean a lower risk of mem-
bership inference. Furthermore, all models do not pro-
vide a consistent protection over all the datasets. While
PrivBayes offers the best protection on the smallest
dataset (i.e., COMPAS), COPULA-SHIRLEY is the best
on the biggest dataset (i.e., Texas).

Figure 6 exhibits the global scores for each gener-
ative model’s synthetic data. PrivBayes produced the
best results overall for the classification tasks and some
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Fig. 4. Impact of the categorical attributes encoding with
ε = 1.0. The linear regression RMSE and the execution time are
normalized. For the MCC, higher is better, while for the other
metrics, lower is better. Measures are averaged over a 5-fold
cross-validation run.

decent results for the linear regression task and the cor-
relation delta metric. From these results, it seems the
best over the four models for capturing the attributes
interdependence. From the heights of the bars, it is pos-
sible to say that PrivBayes is second to being the most
inconsistent generative model. DP-Histogram produced
some of the worst data for classification and some of
the worst scores for the correlation metric which is not
surprising giving that no dependence structure learned.
COPULA-SHIRLEYis the runner-up for most of the tests
as it produced some of the most faithful distributions
along DP-Histogram. Vine-copula models also show a
more stable fit to the training data than PrivBayes and
DP-Copula. The DP-Copula model produced the most
unreliable distributions as well as failing completely at
the multi-label classification task and the linear regres-
sion task. For the membership inference attack test, all
models provided a decent protection but our method
provided the best overall protection with the largest
dataset of the three, PrivBayes offering the worst. From
Figures 5 and 6, COPULA-SHIRLEYseems to be the best

at modelling and protecting Texas, the biggest dataset.

Running time. All experiments were conducted on
an Intel core i5-6600k with 16 GB of flash memory.
The running times given in Table 1 strengthen the ob-
servation that Bayesian approaches can be extremely
time-consuming when the dimensionality of data in-
creases. The complexity of using vine copulas (COPULA-
SHIRLEY) is also significantly higher than using simple
multivariate copulas (DP-Copula).

Dataset COPULA-SHIRLEY PrivBayes DP-Copula
Adult (32 561 × 14) 33.452 67.211 2.241
COMPAS (10 568 × 13) 1.592 3.184 0.695
Texas (150 000 × 17) 34.055 123.157 17.945

Table 1. Average running times in minutes of each method on
the three datasets.

Additional analysis on multivariate correlations.We
created a small synthetic dataset composed of 5000
records and 6 attributes (named from A to F) with var-
ious correlation coefficients between the attributes to
show the models strength in capturing the dependence
structure in the data. The dataset was curated so that
the attributes A and F are highly positively correlated
when the values of A are below zero but only slightly
negatively correlated when the values of A are above
zero. This is shown in Table 2 at columns ‘A<0 - F’
and ‘A>0 - F’. Our method offers the closest correlation
coefficients to the original ones four times out of seven.
PrivBayes is better at capturing the dependence when it
varies in different parts of the data. These also empha-
sizes the fact that the vine copula approach is superior
at modelling the dependence structure than DP-Copula
and the naive approach of simply sampling from DP-
Histograms. See Appendix D for the scatter plot of the
curated synthetic data as well as the scatter plots of the
observations sampled from the models.

A - B A - C A - D A - E A - F A<0 - F A>0 - F
Synth Data 0.9150 -0.9565 0.2319 -0.1701 0.4018 0.7881 -0.1137
COP-SHIRL 0.9161 -0.9555 0.2763 -0.0477 0.4059 0.5484 0.0216
PrivBayes 0.8794 -0.9076 0.0899 -0.1860 0.3529 0.655 -0.1014
DP-Cop 0.7933 -0.1284 0.1507 -0.0552 0.3417 0.1829 0.1472
DP-Hist 0.0220 0.0127 -0.0268 -0.0367 -0.0191 -0.0186 -0.0002

Table 2. The Spearman’s correlation coefficients between the pair
of attributes. Best scores are bold.

Summary of results. Our method COPULA-
SHIRLEY displays the highest statistical similarity be-
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Fig. 5. From left to right: results on COMPAS, Texas and Adult datasets with various ε privacy budget. The linear regression RMSE is
normalized. Dashed lines represent the scores over raw data and measures are aggregated over a 5-fold cross-validation run.
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Fig. 6. Global average results of the generative models over all
the ε dp-budget values combined. The linear regression RMSE is
normalized. Dashed lines represent the scores over raw data and
measures are aggregated over a 5-fold cross-validation run.

tween raw and synthetic data. While our vine-copula
approach outperforms DP-Copula on the classifica-
tion tasks most of the time, it did not do the same

for PrivBayes. COPULA-SHIRLEY was on par with
PrivBayes a few times, mostly for the linear regres-
sion task. PrivBayes generated decent synthetic distri-
butions with outstanding inter-attributes dependence,
which is why PrivBayes always achieve the best score
for the classification tasks. The significant drawback
of PrivBayes is the execution time for training the
model. Globally, COPULA-SHIRLEY offered decent data
quality, a more stable fitting and a stronger protec-
tion than PrivBayes on the largest dataset. Compared
to its copula-based counterpart DP-Copula, COPULA-
SHIRLEY globally produced far better data, in addition
of being a clear improvement over multivariate copula
and the naive DP-Histograms sampling. In addition, we
believe the performances of COPULA-SHIRLEY could
be boosted with a few optimizations like a more sophis-
ticated vine-copula selection algorithm or a thorough
preprocess for better rank correlation preservation.

6 Conclusion
Data synthesis methods that have been trained to also
provide strong privacy guarantees are considered to be
a promising approach in data anonymization. In this
work, we have proposed COPULA-SHIRLEY, a new data
synthesis method based on differentially-private vine
copulas. Our method benefits from the simplicity and
flexibility of the modelling power of vine copulas, which
reproduces distributions faithfully while ensuring pri-
vacy through the use of differential privacy as well as



Growing synthetic data through differentially-private vine copulas 137

a privacy test based on membership inference. However
a fundamental open question is to characterize what it
means for synthetic data to be private yet realistic. Fu-
ture work will include the development of a more com-
plete framework to evaluate the privacy risks of releas-
ing synthetic data through the use of diverse inference
attacks.
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7 Appendix

A Details on statistical measures

Kolmogorov-Smirnov distance. The Kolmogorov-
Smirnov (KS) test is a classical statistical hypothesis
test that can be used to test if two samples are drawn
from the same distribution [61]. In this test, the hypoth-
esis that the reference distribution and the experimental
one follow the same law is considered to be valid only if
the statistic of the test DKS is below a threshold σ(α).
To realize this test, a reference (or theoretical) distribu-
tion ft is needed as well as an experimental distribution
fe and their respective cumulative density functions Ft
and Fe. The statistic of the KS test is given by :

DKS(Ft, Fe) = sup
x

∣∣Ft(x)− Fe(x)
∣∣. (1)

The KS statistic, also known as the Kolmogorov-
Smirnov distance, is a distance between the empirical
distribution function of the experimental sample and
the cumulative distribution function of the reference dis-
tribution. The KS distance is between 0 and 1. The KS
test can be used to assess the capacity of the generative
model to recreate faithful distributions to the original
data.

Mean Correlation Delta. The score represent the
mean absolute difference of the correlation coefficients
between the correlation matrices of the reference dataset
and the synthetic dataset. If Co represent the Spearman
correlation matrix of the reference dataset and Cs rep-
resent the correlation matrix of the synthetic dataset,
the Mean Correlation Delta is computed as follows:∑n

i,j=1 |Co(i, j)− Cs(i, j)|∑
i,j 1

where C(i, j) is the correlation coefficient between the i-
th and j-th attributes. This metric is inspired by the one
used in the PWSCUP 2020 “Anonymity against Mem-
bership Inference” Contest7.

Matthews Correlation Coefficient. The Matthews
Correlation Coefficient [39] (MCC) is computed in the
following manner:

MCC =
TP
N − (S · P )√

(S · P )(1− S)(1− P )

7 https://www.iwsec.org/pws/2020/Images/PWSCUP2020_
rule_20200826_e.pdf

https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://www.iwsec.org/pws/2020/Images/PWSCUP2020_rule_20200826_e.pdf
https://www.iwsec.org/pws/2020/Images/PWSCUP2020_rule_20200826_e.pdf
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where

N = Number of records TP = True positive rate
FN = False negative rate FP = False positive rate

S = TP + FN

N
P = TP + FP

N

The MCC is preferable to the F1-measure because it
is more robust in the situation of class imbalance. This
measure is between -1 and 1. The MCC can be general-
ized to multi-class classification.
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Fig. 7. Impact of the dp-mechanism on the metrics. Obtained
with ε = 0.1. The linear regression RMSE is normalized. For
the MCC, higher is better, for the privacy score, closer to 0.5 is
better and for the other metrics, lower is better. Measures are
aggregated over a 5-fold cross-validation run.

B Impact of other differential privacy
mechanisms.

The Laplacian mechanism is the classical approach
to provide differentially-private outputs. However, this
mechanism is optimized for continuous values while our
implementation currently uses discrete histograms. We
investigated two other differentially-private mechanisms

to possibly improve our approach. The first is the Geo-
metric mechanism [26] which is the discrete counterpart
of the Laplacian mechanism. The second is the Gaus-
sian mechanism [22], which provides relaxed privacy
protection but often a higher query accuracy. We used
the implementations of the mechanism from the IBM
Differential Privacy Library8. For the Gaussian mech-
anism, the optimized δ is used according to Balle and
Wang [7]. Similarly to the study performed by McKay
and Snoke [41], we set δ = 0.001.

As shown in Figure 7, our method is generally sta-
ble across the three mechanisms. The three mechanisms
also seems to offer a similar protection as illustrated by
the privacy scores. The Geometric mechanism shows in-
creased performance compared to the other two for the
KS distance.
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Fig. 8. Impact of the truncation level of the vine on the metrics.
Obtained with ε = 1.0. The linear regression RMSE and the
execution time are normalized. For the MCC, higher is better for
the other metrics, lower is better. Measures are aggregated over a
5-fold cross-validation run.

8 https://diffprivlib.readthedocs.io/

https://diffprivlib.readthedocs.io/
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C Impact of truncation level of vine
models.

In Figure 8, when Ψ = ‘auto’, the level of truncation
uses the threshold method implemented in the R library
that stops the Dissmann’s algorithm when all the bivari-
ate copulas are fitted to the independent copula. Ψ = 0
means that no truncation is done.

Figure 8 illustrates that a deeper vine model is not
necessarily a better model. When truncated to the sec-
ond tree, vine models exhibit good statistical measures
as well as good regression performances. There is no con-
sensus on the classification tasks other than all values
of Ψ offer somewhat similar measures.

D Multivariate correlation analysis.

Here we illustrate the difference between the original
data and the synthetic data generated from the models.
Figure 9 shows the curated synthetic dataset observa-
tions used in our analysis. Figures 10, 11, 12 and 13 show
respectively the sampled observations from COPULA-
SHIRLEY, PrivBayes, DP-Copula and DP-Histograms.
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Fig. 9. Reference synthetic data used for the multivariate correla-
tion analysis.
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Fig. 10. Observations sampled from COPULA-SHIRLEY.
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Fig. 11. Observations sampled from PrivBayes.
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Fig. 12. Observations sampled from DP-Copula.

−5 0 5

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

−5 0 5

−5

0

5

10

−5 0 5

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

−5 0 5

−5

0

5

10

−5 0 5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Fig. 13. Observations sampled from DP-Histograms.
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