
Proceedings on Privacy Enhancing Technologies ; 2021 (4):117–138

Johannes Ernst* and Alexander Koch

Private Stream Aggregation with Labels in the
Standard Model†
Abstract: A private stream aggregation (PSA) scheme
is a protocol of n clients and one aggregator. At ev-
ery time step, the clients send an encrypted value to
the (untrusted) aggregator, who is able to compute the
sum of all client values, but cannot learn the values of
individual clients. One possible application of PSA is
privacy-preserving smart-metering, where a power sup-
plier can learn the total power consumption, but not the
consumption of individual households.
We construct a simple PSA scheme that supports labels
and which we prove to be secure in the standard model.
Labels are useful to restrict the access of the aggrega-
tor, because it prevents the aggregator from combining
ciphertexts with different labels (or from different time-
steps) and thus avoids leaking information about values
of individual clients.
The scheme is based on key-homomorphic pseudoran-
dom functions (PRFs) as the only primitive, supports
a large message space, scales well for a large number of
users and has small ciphertexts.
We provide an implementation of the scheme with
a lattice-based key-homomorphic PRF (secure in the
ROM) and measure the performance of the implemen-
tation. Furthermore, we discuss practical issues such as
how to avoid a trusted party during the setup and how
to cope with clients joining or leaving the system.
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1 Introduction
Smart meters are becoming more and more ubiquitous
in many countries. This has advantages for the power
suppliers, because they get near real-time power con-
sumptions from their clients, which they can use for
load-balancing and prediction in their networks. How-
ever, this raises the question of privacy. Sensitive infor-
mation like the work schedule can easily be guessed from
the variation in the power consumption of a household.
In practice, it is often sufficient for the power supplier to
know the sum of the consumptions of all clients within
a certain area, and this is exactly what a protocol for
private stream aggregation (PSA) [22] can offer. PSA
considers the scenario where an aggregator wishes to
periodically compute the sum of values that are sup-
plied by different clients. The values are encrypted in
such a way that the aggregator can only compute their
sum, but not the individual values. This is captured in
the game-based security definition of aggregator oblivi-
ousness (AO), which is given in Definition 3.

It is desirable for PSA schemes to support the use
of labels. Labels restrict the aggregator to only be able
to compute the sum of values which were encrypted un-
der the same label. This prevents the aggregator from
mixing ciphertexts of different time steps and thereby
learning more about the individual values than would
otherwise be possible.

A clear advantage of PSA schemes is that they do
not require the clients to exchange messages, nor does
the aggregator need to send messages to the clients. Af-
ter the keys have been distributed, the only messages in
the protocol are the ciphertexts which the clients send
to the aggregator. PSA stays secure even if the aggre-
gator colludes with an arbitrary subset of the clients.
In that case, the aggregator only learns the sum of the
non-colluding clients’ values.

When we apply a PSA protocol to the smart meter
scenario, this means that every smart meter encrypts
(e.g. every fifteen minutes) its current power consump-
tion and sends it to the supplier. The supplier then is
able to compute the sum and thereby learns the power
consumption of all households in the specific area. Be-
cause of the way the clients’ values are encrypted, the
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only information the power supplier gets is the sum of
all values.

To further protect the privacy of each client, tech-
niques from differential privacy can be used. In this case,
it means that every client adds a small amount of noise
to their value before encrypting it. This induces a small
error in the resulting sum, but in many cases a small er-
ror is tolerable. However, in this paper we focus on the
encryption part. Differential privacy can then be added
by standard techniques, e.g. as described in [22].

Apart from privacy-preserving smart metering, PSA
has a lot more of possible applications. For example it
can be used in federated learning in a similar way to
the protocol of [11], to compute a global model update
from the local updates that are supplied by the clients.
This can help to prevent an adversary from using the
model to infer information on the, possibly sensitive,
data which the clients used to train the model.

PSA (without differential privacy) can be seen as
special case of inner-product multi-client functional en-
cryption (IP-MCFE) first introduced by [16]. In inner-
product multi-client functional encryption there are sev-
eral clients and one or more aggregators. The aggrega-
tors can ask for functional decryption keys associated
with an arbitrarily chosen vector y. The functional de-
cryption key then enables them to compute the inner
product of the clients’ values with the vector y. When
we only allow the vector y = (1, . . . , 1), then this is ex-
actly the case of PSA (without differential privacy). The
main challenge in IP-MCFE is that the scheme must be
secure, although the vectors y are not known at the
beginning and an aggregator can hold keys for many
different vectors.

1.1 Contribution

Provably secure PSA scheme with labels in the
standard model: The scheme we propose is the first
PSA scheme that both supports labels and is proven to
be aggregator oblivious (AO) with adaptive corruptions
in the standard model. Although, strictly speaking, the
IP-MCFE scheme of [1] can also be used as PSA scheme
with the same properties, compared to their scheme,
ours is more efficient. The size of each user secret key
and the length of the ciphertexts in their scheme grows
linearly with the number of clients, whereas ours are con-
stant, i.e. independent of the number of clients. Becker
et al. have also proposed a PSA scheme in the stan-
dard model, but without labels [9]. They roughly ex-
plain how to extend their scheme to support labels, but

they provide no security proof of this extension. Further-
more, their scheme seems to be subject to a patent [8].
Our scheme is very similar to the PSA scheme of [24]
who used key-homomorphic weak PRFs but only proved
non-adaptive security in the standard model. Also, as
opposed to our scheme, the labels have to be precom-
puted at setup time and distributed to all clients. Thus,
the scheme does not support an unbounded number of
labels and the key size grows linearly with the number
of labels.

Our scheme needs as its only building block a key-
homomorphic pseudorandom function (PRF) whose out-
put space is ZR for some integer R. It thus relies only
on secret-key primitives and is quite flexible. It makes
efficient use of the key-homomorphic PRF, as both en-
cryption and decryption only require one PRF evalu-
ation. The scheme can be instantiated with a lattice-
based key-homomorphic PRF, which are assumed to be
secure against quantum adversaries.

Additionally, we implemented the scheme and a sim-
ple key-homomorphic PRF based on the learning with
rounding (LWR) problem. For simplicity and efficiency,
we chose a PRF that relies on the random oracle model
(ROM). The performance tests show that both encryp-
tion and decryption are very efficient, in this case.

One restriction of our scheme is that it only sup-
ports the encryption of one message per label. However,
this is a mild restriction, because any (correct) PSA
scheme leaks information about individual messages, if
a user encrypts more than one message per label.

Furthermore, we concretely describe how the
scheme can be used for privacy-preserving smart-meter
aggregation. We discuss issues that arise in that setting,
such as clients joining or leaving the system and how to
execute the setup without a trusted party.

1.2 Related Work

In this section, we give an overview of other work that
is related to ours.

1.2.1 Privacy Preserving Aggregation

Shi et al. [22] were the first to formalize the notion of
PSA together with the security definition of AO. They
propose a scheme that is based on the Decisional Diffie–
Hellman (DDH) problem and prove it to be aggregator
oblivious in the ROM. Despite its simplicity, the decryp-
tion procedure is inefficient because it has to compute
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a discrete logarithm. This limits the size of the message
space such that the discrete logarithm can be computed
in reasonable time.

Subsequently, Benhamouda et al. [10] propose a gen-
eral way to build PSA schemes from key-homomorphic
smooth projective hash functions (SPHF). Their con-
struction yields schemes that are aggregator oblivious
in the ROM. They give concrete instantiations from the
DDH-, DCR- and several other assumptions. An advan-
tage over previous schemes is the low reduction loss,
which does not depend on the number of users, but only
on the maximum number of labels used. This allows for
smaller keys and thereby makes the schemes more effi-
cient.

Valovich constructs a PSA scheme from key-
homomorphic weak PRFs [24]. In contrast to the other
PSA schemes, the author only considers semi-honest ad-
versaries. He proves the scheme to be aggregator oblivi-
ous for non-adaptive corruptions in the standard model.
For proving adaptive security, the author resorts to the
ROM. The main differences to our scheme are that [24]
has a weaker security model and that the author uses
weak PRFs. Because of the use of weak PRFs, the labels
need to be uniformly random. Therefore, the set of la-
bels is created at setup time and given to all parties, to
ensure that everyone uses the same labels. This means
that the scheme does not support an unbounded num-
ber of labels and that the key size grows linearly with
the number of labels.

Becker et al. propose a generic PSA scheme [9] that
can be instantiated with an additively homomorphic en-
cryption scheme, where the addition of ciphertexts cor-
responds to the addition of plaintexts, with the addi-
tional property that the ciphertexts are indistinguish-
able from random strings. The security of their scheme
relies on the Learning with Errors (LWE) assumption,
or its ring variant, and is proven to be secure in the
standard model. Two advantages over the scheme of Shi
et al. [22] are the prospective post-quantum security and
the more efficient decryption algorithm. In contrast to
the other PSA schemes, they provide an implementation
and give performance results. Their implementation has
a message space of size 216. The scheme does not directly
support labels which limits the practical use cases. Al-
though the authors sketch how to extend the scheme
to work with labels, they provide no security proof for
that.

Except for [9] all other PSA schemes, including ours,
have the restriction that every client must only encrypt
one message per label. However, this restriction is also
reasonable from a security perspective, because even a

perfectly secure PSA scheme leaks information about in-
dividual client values, if a client encrypts more than one
message per label. We elaborate on this in Section 2.4.1.

The advantage of our scheme over [22] and the DDH
version of [10] is that the size of the message space is
not restricted. The advantage over [10, 22, 24] is that
we prove our scheme to be secure under adaptive cor-
ruptions in the standard model. A disadvantage of our
scheme is the larger key size. Benhamouda et al. [10]
report key sizes of 592 bit for 128 bit security for their
DDH based scheme when using elliptic curves. For our
choices of parameters our scheme provides a security
of 114 bit1 with key-sizes of 268288 bit. Note however,
that this is mainly due to the use of a post-quantum
secure PRF. We give more details on this in Section 4.4.
Advantages of our scheme over [9] are that our scheme
has a security proof for the case that labels are used
and that it is much simpler. Our scheme relies on key-
homomorphic PRFs while theirs needs an additively ho-
momorphic public key encryption scheme with cipher-
texts indistinguishable from random.

The following works are not directly comparable to
ours, because their focus is a bit different.

Emura considers the verifiability of aggregated
sums [18]. This means that, when the aggregator pub-
lishes the sum, they must provide a publicly verifiable
proof that the sum is correct. The author proposes two
schemes, which are based on the DDH version of [10]
and require pairings. In this paper we do not consider
the verifiability of the result.

Ács and Castelluccia [3] propose an aggregation
scheme that uses similar pair-wise masking as the
MCFE scheme of [1]. The users in their scheme agree
on shared keys via the Diffie–Hellman key-exchange. Ad-
ditionally, the scheme offers a mechanism by which the
aggregator can decrypt the sum, even when some clients
drop out. As opposed to PSA, this mechanism needs in-
teraction between the clients and the aggregator. The
authors do not provide a security proof, but argue that
the scheme is secure against certain attacks.

Bonawitz et al. construct a protocol for the aggre-
gation of model updates in distributed machine learn-
ing [11]. Their protocol is resistant to user failures and
is proven secure against malicious adversaries in the
ROM. They use pairwise masks that are set up by
Diffie–Hellman key exchanges between the users. The
protocol has four rounds of communication to aggre-

1 when used with 1000000 clients. With 10000 clients the security
is 132 bit)
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gate one model update. The key difference to PSA is
that their protocol is resistant to user failures, but re-
quires several rounds of communication, whereas PSA
is non-interactive.

1.2.2 Multi-Client Functional Encryption

Chotard et al. [16] are the first to define (decentralized)
multi-client functional encryption (DMCFE) and show
two instantiations for the inner product functionality.
Their schemes have several practical limitations and rely
on pairings and the ROM. Abdalla et al. [2] address
these limitations and remove the need for pairings, while
still relying on the ROM.

Finally, Abdalla et al. [1] construct the first MCFE
scheme with labels that is secure in the standard model.
Their scheme works with any PRF and (single-input)
functional encryption scheme for inner products. Due
to that, their scheme can be based upon many different
mathematical problems including LWE, DDH and DCR.
Our security proof strongly relies on techniques from the
security proof of their MCFE scheme.

The main differences between PSA and MCFE are
that in MCFE the aggregator(s) can compute inner
products with many different vectors and not just the
vector consisting of one-entries. Furthermore, in MCFE
these vectors can be chosen by the aggregator(s) adap-
tively during the protocol execution. This make schemes
for MCFE harder to construct and usually less efficient.
Nevertheless, both areas have a lot of techniques in com-
mon.

1.3 Concurrent Work

Independent of and concurrent to our work, two more
papers on PSA have been published in online pre-print
archives recently.

The authors of [23] propose two PSA schemes
based on variants of two fully homomorphic encryption
schemes. The security of both schemes relies on the ring-
LWE assumption. They also implement the schemes and
provide a performance analysis. According to this anal-
ysis our scheme seems to be faster, however.

Waldner et al. propose a PSA scheme based on
PRFs [25]. As opposed to our scheme, the PRF does
not need to be key-homomorphic. This enables the use
of very efficient PRFs. In [25], the authors use AES
and SHA3. However, this comes at the cost of requir-
ing n evaluations of the PRF for encrypting one mes-

sage, where n is the number of users. The authors also
provide an implementation and performance results.

In Section 4, we compare the running time of the
aforementioned schemes with our implementation.

Table 1 shows a comparison of the different proper-
ties of the PSA schemes that we described in this sec-
tion.

Scheme Proof in
standard
model

Number
supported
labels

Adaptive
corrup-
tions

Encryption
cost per
client

Shi et al. [22] ✗ unbounded ✓ O(1)

Benhamouda
et al. [10]

✗ unbounded ✓ O(1)

Valovich [24]
(1st scheme)

✓ bounded ✗ O(1)

Valovich [24]
(2nd scheme)

✗ bounded ✓ O(1)

LaPS [9] ✓ none ✓ O(1)

SLAP [23] ✗ unbounded ✓ O(1)

LaSS [25] ✓ unbounded ✓ O(n)

Our scheme ✓ unbounded ✓ O(1)

Table 1. Comparison of PSA schemes. Note that the DDH based
schemes in [22] and [10] have the limitation that the message
space needs to be small in order to allow taking a discrete loga-
rithm in reasonable time.

1.4 Outline

We give the necessary definitions and background in Sec-
tion 2. In Section 3 we explain our PSA scheme and
prove its security according to the game-based security
definition of AO. In Section 4 we describe the implemen-
tation and choices of parameters and give performance
results. In Section 5 we discuss several issues related
to the deployment of the scheme in practice, with a fo-
cus on smart-meters. The last section summarizes our
paper.

2 Preliminaries
In this section, we explain our basic notation and define
the cryptographic problems and primitives we use in
this paper.
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2.1 Notation

Here, we quickly explain some of the notation that we
use. By [n] we denote the set {1, . . . , n} and with [n]0
we mean {0, . . . , n}. With log(x) we mean the logarithm
to base 2 and with ln(x) we mean the logarithm to
base e. As security parameter we use λ. Lower-case bold-
face letters such as v denote vectors. We use the terms
client and user synonymously. By a PPT Turing ma-
chine, we mean a probabilistic Turing machine that runs
in polynomial time. By x←$X we mean that x is cho-
sen uniformly random from the set X . With ⟨x, y⟩ we
denote the inner-product of two vectors x and y. Let
q, p ∈ N with q > p. Then, for a value x ∈ Zq we define
⌊x⌋p := ⌊x · p/q⌋.

2.2 Learning With Rounding (LWR)

We will define the learning with rounding (LWR) prob-
lem, which can be seen as a deterministic version of
the learning with errors (LWE) problem. Learning with
rounding was introduced in [7] and has turned out to
be very useful to construct secret-key primitives such as
pseudorandom functions.

Definition 1. Let λ, q, p ∈ N, with q > p and s←$ Zλ
q .

Let Ls be the following distribution over Zλ
q×Zp: Choose

a←$ Zλ
q and output (a, ⌊⟨a, s⟩⌋p). The (decision) LWR

problem then is to distinguish between the distribution
Ls and the uniform distribution over Zλ

q × Zp.

We will use a key-homomorphic pseudorandom function
that is based on the LWR problem to instantiate our
scheme. Next we define pseudorandom functions and
key-homomorphic pseudorandom functions.

2.3 Pseudorandom Functions

Intuitively, a pseudorandom function (PRF) is a func-
tion that is indistinguishable from a random function
(RF). A random function is a function that returns truly
random values on all distinct inputs. We use pseudoran-
dom functions PRFk : X → Y that are indexed by a key
k ∈ K. For a PPT-adversary A, we define A’s advantage
in distinguishing a pseudorandom function PRF from a
random function as

Advprf
A,PRF(λ)

:=|Pr[ExpPRF(λ,A) = 1]− Pr[ExpRF(λ,A) = 1]|,

where the experiments ExpPRF(λ,A), and ExpRF(λ,A)
are defined as follows:

ExpPRF(λ,A)

1 : k←$K

2 : b← APRFk(·)

3 : return b

ExpRF(λ,A)

1 : k←$K

2 : b← ARF(·)

3 : return b

In the first case, A has oracle access to PRF indexed
by a random key k, whereas in the second case A has
oracle access to a random function. Intuitively, A’s goal
can be seen as finding out whether they are in ExpPRF

or ExpRF. A pseudorandom-function is computationally
indistinguishable from a random function, if for all PPT-
adversariesA, there exists a negligible function negl such
that for all sufficiently large λ it holds that

Advprf
A,PRF(λ) ≤ negl(λ).

2.3.1 Key-Homomorphic Pseudorandom Functions

A useful special case of pseudorandom functions are key-
homomorphic pseudorandom functions. A pseudoran-
dom function PRFk : X → Y is key-homomorphic, if for
all x ∈ X , PRF(·)(x) is a group homomorphism between
the key space K and Y. To define this formally, let (K, ∗)
and (Y, •) be groups. Then, for all x ∈ X , k1, k2 ∈ K

PRFk1(x) • PRFk2(x) = PRFk1∗k2(x)

must hold. A key-homomorphic PRF must fulfill the
same security definition as a PRF.

A PRF is almost key-homomorphic if
PRFk1+k2(x) = PRFk1(x) + PRFk2(x) + e for a small
e ∈ N. The PRF we use as main building block in our
PSA scheme is almost key-homomorphic with e ∈ {0, 1}.

2.4 Private Stream Aggregation

In private stream aggregation (PSA) we have an aggre-
gator and several clients. In each time step, the clients
send an encrypted value to the aggregator. The aggrega-
tor is then able to compute the sum of these values but
no individual client value. It is important that the ag-
gregator can only compute the sum of values that were
encrypted under the same time-stamp or label. There
is no further interaction beyond the messages that the
clients send to the aggregator.

Often in PSA differential privacy is additionally
used. For this, every client adds a small amount of noise
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to their value before encrypting it. The aggregator can
then compute the resulting noisy sum of the plaintexts.
When the noise is chosen appropriately, and enough
clients honestly add noise, the noisy sum maintains dif-
ferential privacy. However, in this paper we are only con-
cerned with the encryption and will leave out the noise
in the definition of PSA. Nevertheless, it is no problem
to add differential privacy via standard techniques (e.g.
as in [22]).

Our definition roughly follows the definition of [10],
as it is also without noise.

Definition 2 (Private Stream Aggregation). A private
stream aggregation scheme PSA over ZR (for R ∈ N) and
label space L, consists of the following three PPT algo-
rithms for the setup, the encryption and the decryption
of the aggregate sum:

– Setup(1λ, 1n): Given the security parameter λ and
the number of users n in unary, it outputs public
parameters pp and n + 1 keys (ki)i∈[n]0 . The key k0
is the (secret) key of the aggregator, and each ki is
a (secret) key of a user i ∈ [n].

– Enc(pp, ki, l, xi): Given the public parameters pp, a
key ki of user i ∈ [n], a label l ∈ L and a value
xi ∈ ZR, it outputs an encryption ci of xi under
key ki with label l. This algorithm is supposed to
be executed by each user at every time step, where
the time step is used as label. The user then sends
ci to the aggregator.

– AggrDec(pp, k0, l, {ci}i∈[n]): Given the public param-
eters pp, the aggregator’s key k0, a label l ∈ L, and a
set of n ciphertexts {ci}i∈[n] that were encrypted un-
der the same label l, it outputs

∑
i∈[n] xi (mod R).

We additionally require PSA = (Setup, Enc, AggrDec)
to satisfy correctness, i.e. that for any n, λ ∈
N, x1, . . . , xn ∈ ZR and any label l ∈ L, that
for (pp, {ki}i∈[n]0) ← Setup(1λ, 1n), and ci ←
Enc(pp, ki, l, xi), we have

AggrDec(pp, k0, l, {ci}i∈[n]) =
∑
i∈[n]

xi mod R.

In most PSA schemes (including ours) the sum is com-
puted modulo a public integer R. When the goal is to
compute the sum over Z instead of ZR then the clients
must be restricted to only encrypt values smaller than
a certain value ω and R must be chosen to be greater
than n · ω. This difference can be important, because
some proofs only go through, when the message space
is a group. However, in our proofs it makes no difference
whether the clients are allowed to encrypt values from
ZR or {0, . . . , ω}.

Usually in a PSA scheme, a trusted third party ex-
ecutes the setup algorithm and gives the secret keys to
the clients and the aggregator. The clients then regu-
larly encrypt some value and send the ciphertext to the
aggregator. By calling AggrDec the aggregator is then
able to decrypt the sum of the values. In Section 5.1 we
will describe approaches how the trusted setup can be
avoided.

Next we define the security notion of aggrega-
tor obliviousness. We only define encrypt-once security,
which is security in the case that every client encrypts
only one message per label. This is a reasonable restric-
tion, because it can be easily enforced in practice. Fur-
thermore, encrypting two messages per label leaks the
difference of the messages as explained in Section 2.4.1.
The PSA schemes of [22] and [10] both have this restric-
tion as well.

Definition 3 (Aggregator obliviousness). The game-
based security notion of aggregator obliviousness
(AO) is defined via the following security experiment
AOb(λ, n,A), b ∈ {0, 1} given in Figure 1. First, the chal-
lenger runs Setup and passes the public parameters pp
to the adversary A. Then, A can adaptively ask queries
to the following oracles:

QEnc(i, xi, l): Given a user index i ∈ [n], a value xi ∈
ZR, and a label l, it answers with c = Enc(pp, ki, l, xi).

QCorrupt(i): Given a user index i ∈ [n]0 (including
the aggregator’s index 0), it returns the secret key ki.

QChallenge(U , {x0
i }i∈U , {x1

i }i∈U , l∗): The adversary
specifies a set of users U ⊆ [n], a label l∗ and two
challenge messages for each user from U . The ora-
cle answers with encryptions of xb

i , that is {ci ←
Enc(pp, ki, l∗, xb

i )}i∈U . This oracle can only be queried
once during the game. (If it is not queried, we set U = ∅
in the discussion below.)

At the end, A outputs a guess α, of whether b = 0
or b = 1.

AOb(λ, n,A)

(pp, {ki}i∈[n]0 )← Setup(1λ, 1n)

α← AQCor(·),QEnc(·,·,·),QChallenge(·,·,·,·)(pp)

if condition (∗) is satisfied (see p. 123)

output α

else

output 0

Fig. 1. Aggregator obliviousness experiment for PSA schemes.
Depending on the bit b, the oracle QChallenge answers with
encryptions of x0

i or x1
i .
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To formally define the condition (∗), we introduce the
following sets:

– Let El ⊆ [n] be the set of all users for which A has
asked an encryption query on label l.

– Let CS ⊆ [n] be the set of users for which A has
asked a corruption query. Even if the aggregator is
corrupted, we define this set to only contain the
corrupted users and not the aggregator.

– Let Ql∗ := U ∪ El∗ be the set of users for which A
asked a challenge or encryption query on label l∗.

We say that condition (∗) is satisfied (as used in Fig-
ure 1), if all of the following conditions are satisfied:

– U∩CS = ∅. This means that all users for which A re-
ceives a challenge ciphertext must stay uncorrupted
during the entire game.

– A has not queried QEnc(i, xi, l) twice for the same
(i, l). Doing so would violate the encrypt-once re-
striction.

– U ∩El∗ = ∅. This means that A is not allowed to get
a challenge ciphertext from users for which they ask
an encryption query on the challenge label l∗. Doing
this would violate the encrypt-once restriction.

– If A has corrupted the aggregator and Ql∗∪CS = [n]
then we require that∑

i∈U

x0
i =

∑
i∈U

x1
i .

We will call this condition the balance-condition.

The balance condition captures the fact that if A has
corrupted the aggregator and received a ciphertext from
every uncorrupted user, then they can compute the sum
of the plaintexts. If the plaintexts submitted in the chal-
lenge query would sum to different values, then A could
trivially win the game by using their aggregation capa-
bility. Note that the balance-condition does not apply if
there is a single honest user for which A did not get a
ciphertext on label l∗.

We say that corruptions are adaptive, because A can
ask corruption queries depending on previously asked
queries. If A has to decide at the beginning of the game
which users they want to corrupt, the term static corrup-
tions is used in the literature. In this paper we only con-
sider adaptive corruptions, because it is a more realistic
assumption and because security under adaptive corrup-
tions implies security under static corruptions. We de-
fine A’s advantage as

AdvAO
A,PSA(λ, n) =|Pr[AO0(λ, n,A) = 1]

− Pr[AO1(λ, n,A) = 1]|.

A PSA scheme is aggregator oblivious, if for every PPT
adversary A there is a negligible function negl such that
for all sufficiently large λ

AdvAO
A,PSA(λ, n) ≤ negl(λ).

2.4.1 Inherent Leakage of Sum Queries

Here we will briefly explain why it is dangerous in a PSA
scheme, when a client encrypts more than one message
per label, even though, the scheme may be formally se-
cure. Imagine that user i ∈ [n] encrypts both xi and x′

i

as ciphertexts ci and c′
i, respectively, with the same la-

bel l. When the aggregator got ciphertexts for the same
label l from the other users as well, they can use AggrDec
to compute

AggrDec(pp, k0, l, (c1, . . . , ci, . . . , cn))
−AggrDec(pp, k0, l, (c1, . . . , c′

i, . . . , cn))

= (
∑

j∈[n]\{i}

xj) + xi − (
∑

j∈[n]\{i}

xj)− x′
i = xi − x′

i.

With this, the aggregator learns the difference of the two
messages of user i. It also means that if the aggregator
knows one of the two messages, they can compute the
other one. If the aggregator has two ciphertexts from
more than one client, then they can combine them in
arbitrary ways to get even more information. This leak-
age cannot be avoided, because it is leaked by the sum
functionality itself. This is also a reason why, in this pa-
per, we restrict the clients to only encrypt one message
per label (encrypt-once).

3 Adaptively Secure PSA
In this section, we construct a scheme for private stream
aggregation and prove that it is aggregator oblivious
under adaptive corruptions in the standard model. We
will define the scheme without noise. The noise can be
added via standard techniques (e.g. as in [22]), to ensure
differential privacy.

In the security proofs, we use diagrams to illustrate
the game hops. Figure 2 shows how to read these di-
agrams. In this example there are the four games G0
to G3. In game G0, only the unmodified lines are exe-
cuted, that is the lines which are neither framed nor gray.
Thus, in G0 only line 1 is executed. Game G1 addition-
ally executes the lines that are framed by a rectangular
box, but that are not gray. In our example, G1 executes
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G0 G1 G2 G3

1: executed in G0, G1, G2, G3

2: executed in G1 and G2

3: executed in G2

4: executed in G2 and G3

Fig. 2. Figure showing how to read the game hop diagrams.

lines 1 and 2. Game G2 executes all unmodified lines,
all framed lines and all gray lines, which in this case are
all four lines. In game G3, only the unmodified lines are
executed and the lines that are gray, but not framed.
Therefore, in G3 the lines 1 and 4 are executed.

3.1 The Construction

Our scheme makes use of a key-homomorphic PRF to
create pseudorandom pads which are added to the mes-
sages as encryption.

Let PRFk : X → Y be the key-homomorphic
PRF, where the key spaces (K, +) and (Y, +) are
abelian groups. Thus, we have that for all x ∈
X ,

∑
i PRFki

(x) = PRF∑
i

ki
(x) holds. For our use we

require that (Y, +) is the group (ZR, +), for some in-
teger R. In Section 4, we describe how to instantiate
the scheme with a lattice-based key-homomorphic PRF.
Throughout this section we will often write

∑
i∈[n] xi

and omit the mod R, when it is clear from the context.
That is,

∑
i∈[n] xi denotes the sum in ZR and not the

sum in Z. Also we will write
∑

i∈[n] ki, with which we
mean the sum in the group K.

We define the PSA scheme PSA =
(Setup, Enc, AggrDec) in Figure 3. The setup algorithm
chooses n random keys for the key-homomorphic PRF
and defines the aggregation key as the sum of the
client keys. The encryption algorithm uses the key-
homomorphic PRF to create a pseudorandom pad and
adds it to the message modulo the public modulus R.
The decryption algorithm sums together all ciphertexts
which yields the sum of the client values plus the sum
of the pseudorandom pads. Because the key of the ag-
gregator is the sum of the client keys, the aggregator
can compute the sum of the pseudorandom pads and
subtract it from the ciphertexts’ sum to obtain the sum
of the plaintexts.

In Section 3.2, we show that this construction is ag-
gregator oblivious under adaptive corruptions if the key-

homomorphic PRF is indistinguishable from a random
function. If the PRF is secure in the standard model,
then our construction is also secure in the standard
model.

Setup(1λ, 1n) :

for i ∈ [n] : ki ←$K

k0 :=
∑

i∈[n] ki

pp := R (the modulus)

return (pp, {ki}i∈[n]0 )

Enc(pp, ki, l, xi) :

ti,l := PRFki
(l)

ci,l := xi + ti,l mod R

return ci,l

AggrDec(pp, l, {ci,l}i∈[n]) :

t0,l = PRFk0 (l)

return
∑

i∈[n] ci,l − t0,l mod R

Fig. 3. The PSA scheme that uses key-homomorphic PRFs.

Next, we show that PSA is correct. Note
that because PRF is key-homomorphic, we have∑

i∈[n] PRFki
(l) = PRF∑

i∈[n]
ki

(l) = PRFk0(l).

Correctness: Let n, λ ∈ N, (pp, {ki}i∈[n]0) ←
Setup(1λ, 1n), l ∈ L, xi ∈ ZR, ci,l ← Enc(pp, ki, l, xi).
Then we have

AggrDec(pp, k0, {ci,l}i∈[n], l)
=

∑
i∈[n] ci,l − PRFk0(l) mod R

=
∑

i∈[n](xi + PRFki
(l))− PRFk0(l) mod R

=
∑

i∈[n] xi +
∑

i∈[n] PRFki
(l)− PRFk0(l) mod R

=
∑

i∈[n] xi + PRF∑
i∈[n]

ki
(l)− PRFk0(l) mod R

=
∑

i∈[n] xi mod R

If
∑

i∈[n] xi < R, then we get the sum over the integers∑
i∈[n] xi as result.

3.2 Security Proof

In this section, we prove the aggregator obliviousness of
the above scheme. For this, we follow the proof strategy



Private Stream Aggregation with Labels in the Standard Model 125

of [1], who used this strategy to show the security of an
inner-product MCFE scheme.2

In the proof of this theorem we show that PSA is
aggregator oblivious, if the key-homomorphic PRF is
indistinguishable from a random function.

Theorem 1. For any PPT adversary A on the aggre-
gator obliviousness game, there is a PPT adversary B
on the PRF such that

AdvAO
A,PSA(λ)

≤ 2(4n2(n− 1) + 2n(n− 1) + 2n2) · Advprf
B,PRF(λ)

≤ (8n3 + 8n2) · Advprf
B,PRF(λ),

where n is the number of users. The adversary B has
roughly the same running time as A.

Proof. We use four intermediate games to go from AO0
to AO1. A description of the games is depicted in Fig-
ure 4. We provide the lemmas for the transition between
the games in Appendix A.

Game G0: This is the AO0 game, in which the chal-
lenge query is answered with encryptions of x0

i .
Game G1: This game still answers the challenge

query with encryptions of x0
i , but changes the pseudo-

random pads that are used for the encryption. For cor-
rect decryption, these changes must not affect the sum
of the pseudorandom pads. Therefore, to each pseudo-
random pad, we add a share of a perfect η-out-of-η secret
sharing of zero, where η is the number of users in the
challenge query. This makes the ciphertexts useless, un-
less they are all summed together. This fact enables us
to make the change of the next game.

Game G2: This game answers the challenge query
with encryptions of x1

i instead of x0
i . This is possible

because the secret shares of the previous game hide all
information on the individual ciphertexts.

Game G3: Here we remove the secret shares from
the pseudorandom pads again. Therefore, this game is

2 The definition of the games G0 to G3 is very similar to theirs.
However, there are differences in the proof. Because in the game
of aggregator obliviousness, the adversary is only allowed to ask
one challenge query, the games do not have to guess the number
of honest users. Also we need one game less than [1], because we
do not have a layer of functional encryption. Because we use key-
homomorphic PRFs instead of general PRFs, the transition from
G0 to G1 is also different. Lastly, we directly prove aggregator
obliviousness without relying on lemmas to upgrade the security.
Doing so adds an extra case distinction to the proof, but reduces
the reduction loss. This is possible, because PSA is a simpler
primitive than MCFE.

G0 G1 G2 G3

(pp, {ki}i∈[n]0 )← Setup(1λ, 1n)

α← AQEnc(·,·,·),QCorrupt(·),QChallenge(·,·,·,·)(pp)

Output α if condition (∗) (see p. 123) is satisfied, 0 otherwise

QEnc(i, xi, l) :

return Enc(pp, ki, l, xi)

QCorrupt(i) :

return ki

QChallenge(U , {x0
i }i∈U , {x1

i }i∈U , l∗) :

Let U = {i1, . . . , iη} ⊆ [n]

for all τ ∈ {2, . . . , η} : uτ ←$ ZR

for all i ∈ U

ti,l∗ := PRFki
(l∗)

if η ≥ 2, then:

if i = i1 then ti,l∗ := ti,l∗ +
∑η

τ=2uτ

if i = iτ for τ ∈ {2, . . . , η} then ti,l∗ := ti,l∗ − uτ

wi := x0
i + ti,l∗

wi := x1
i + ti,l∗

return {wi}i∈U

Fig. 4. Game hops of the proof of Theorem 1.

identical to AO1, in which the challenge query is an-
swered with encryptions of x1

i .
We distinguish two cases. In the first case the adver-

sary A corrupts the aggregator. This is the more chal-
lenging case, because it allows the adversary to decrypt
the sum of ciphertexts. Care must be taken to introduce
the changes for the games in a way that cannot be rec-
ognized by the adversary. In Lemma 1, we use a hybrid
argument over all users and several intermediate games
to show that

|Pr[G0(λ,A) = 1]− Pr[G1(λ,A) = 1]|

≤ 2n2(n− 1) · Advprf
B,PRF(λ).

To get from G1 to G2 we show in Lemma 2 that

|Pr[G1(λ,A) = 1]− Pr[G2(λ,A) = 1]|

≤ 2n(n− 1) · Advprf
B,PRF(λ).
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Finally, to get from G2 to G3, we apply Lemma 3 in
which we show that

|Pr[G2(λ,A) = 1]− Pr[G3(λ,A) = 1]|

≤ 2n2(n− 1) · Advprf
B,PRF(λ).

In the second case, A does not corrupt the aggregator.
This enables us to directly go from G0 to G3 by a hybrid
argument over all users. Thus, in Lemma 4 we show that

|Pr[G0(λ,A) = 1]− Pr[G3(λ,A) = 1]|

≤ 2n2 · Advprf
B,PRF(λ).

The reduction B uses an unbiased coin to decide whether
to simulate case 1 or case 2, so in conclusion we get

AdvAO
A,PSA(λ)

≤ 2(4n2(n− 1) + 2n(n− 1) + 2n2) · Advprf
B,PRF(λ)

≤(8n3 + 8n2) · Advprf
B,PRF(λ).

In this section, we proposed a PSA scheme that is based
on key-homomorphic PRFs. We proved that the scheme
is aggregator oblivious in the standard model. In the
next section, we describe how to instantiate the scheme
with a lattice-based PRF and explain our implementa-
tion.

4 Implementation
In this section, we describe the implementation of our
scheme, the choice of parameters and performance re-
sults. The implementation in Go can be found here
https://github.com/johanernst/khPRF-PSA. Both the en-
cryption and the decryption algorithm are fast, so that
they can also be executed on computationally limited
devices such as smart-meters. The setup algorithm is
slower, because for our parameters it needs to draw
λ = 2096 random numbers per client. However it is only
executed very rarely.

4.1 Choice of the Pseudorandom Function

For the implementation, we chose to use an almost key-
homomorphic PRF mentioned in [12]. It relies on the
LWR assumption and is secure in the random oracle
model. Therefore, with this concrete instantiation our
scheme is also only secure in the ROM. We chose a
ROM-based PRF for its simplicity and efficiency. The
standard model PRF of Boneh et al. [12] requires quite

large parameters to be secure. The public parameters
are two λ′ × λ′ matrices. Because the matrices are sam-
pled from {0, 1}λ′×λ′ instead of Zλ′×λ′

q , the dimension
of the matrices must be increased by a factor of log2(q).
Since we use λ = 2096 and q = 2128, this means that
λ′ = 2096 · 128, thus the square matrix would have
λ′2 ≈ 7 · 1010 entries. Even if each entry is stored as
single bit, these are 70 gigabits. Also, for evaluating the
PRF, the matrices need to be multiplied together multi-
ple times, whereby the intermediate entries which need
to be kept in memory get much larger. Thus, this PRF
does not seem practical because of both running time
and memory constraints.

While the key-homomorphic PRF of Banerjee and
Peikert [6] is more efficient, it is also more complex and
thus, more prone to implementation errors, which en-
dangers the security of the implementation. Kim pro-
poses an approach that allows a smaller modulus q at
the cost of larger keys [21]. Since we need q > p = 285

for a message space of 264, we would not gain very much
from a smaller modulus. When our scheme is instanti-
ated with any of the above mentioned standard model
key-homomorphic PRFs, then we obtain a PSA scheme
that is secure in the standard model.

Next, we describe the ROM-based key-
homomorphic PRF of [12], which we use in the following.
For λ, q, p ∈ N, with q > p, k ∈ Zλ

q and a hash function
H : X ↦→ Zλ

q , the PRF is defined as:

Fk(x) := ⌊⟨H(x), k⟩⌋p.

Because in [12] there is no security proof for this func-
tion, we provide a short proof in Appendix B. Because
the output of F is from Zp, we set the public modulus
R in our scheme equal to p.

The hash function H is required to map to Zλ
q . We

construct such a hash function using a standard hash
function H ′, such as SHA3, as follows:

H(x) :=

 H ′(byte(x ‖ " " ‖ "1")) mod q
...

H ′(byte(x ‖ " " ‖ "λ")) mod q

, (1)

where byte converts its argument to a byte array. The
space between x and i ∈ {1, . . . , λ} is necessary to ensure
that all inputs to H ′ are different. Note that if q does not
divide the size of the output space of H ′, extra analysis
is needed to make sure that the mod q operation does
not induce any bias. However in our case we choose q

as power of 2, whereby it divides the size of the output
space of H ′. In our implementation we used SHA3-512
as H ′.

https://github.com/johanernst/khPRF-PSA
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The rounding function ⌊a⌋ is not exactly linear, but
almost linear, which means that:

⌊a + b⌋ = ⌊a⌋+ ⌊b⌋+ e,

for e ∈ {0, 1}. This entails that the PRF is only almost
key-homomorphic:

Fk1+k2(x) = ⌊⟨H(x), k1 + k2⟩⌋p
= ⌊⟨H(x), k1⟩+ ⟨H(x), k2⟩⌋p
= ⌊⟨H(x), k1⟩⌋p + ⌊⟨H(x), k2⟩⌋p + e

= Fk1(x) + Fk2(x) + e

for e ∈ {0, 1}. For our use-case this is not a problem.
Because in the decryption algorithm the PRF values of
n clients are summed, the error from the non-linearity
is at most n − 1. The idea is to use a larger message
space where all legitimate messages have a difference
larger than n. The decrypted message that potentially
contains an error of up to n− 1 is then rounded to the
next legitimate message. In Section 4.3, we describe this
in more detail.

4.2 Choice of Parameters

In this section, we describe how we chose the parameters
for the PRF and approximately which security level we
get from these parameters.

The PRF is parameterized by λ, q, p ∈ N and re-
duces tightly to LWRλ,q,p. We used the LWE-estimator
from [5] to estimate the security level for certain choices
of parameters. The value of 1/p corresponds to the error
rate α in LWE, so we need to choose λ, q, p ∈ N such that
LWEλ,q,1/p is hard. For λ = 2096, q = 2128 and p = 285,
the program estimates a hardness of over 2178. Note that
these parameters also satisfy the recommendation of [7]
that q/p >

√
λ.

According to Theorem 1, the reduction loss is less
than 8n3 +8n2. When we suppose we have n = 220 users,
then the reduction loss is less than 264. This yields a
security of 178− 64 = 114 bit.3

4.3 Concrete Instantiation

As described in the previous section, we set λ := 2096,
q := 2128 and p := 285. In our implementation, we set

3 For the 10000 users in our implementation the security is at
least 132 bit

the public modulus R = p = 285 and PRF := Fk(x) =
⌊⟨H(x), k⟩⌋p with key space Zλ

q and H as defined in (1).
As labels we use strings that are converted to byte arrays
before given to the hash function.

Next, we describe how to mitigate the error intro-
duced by the non-linearity of the rounding function: Be-
cause

∑
i∈[n] ki = k0, we have∑

i∈[n]

Fki
(l) + e mod R = Fk0(l),

for e ∈ {0, . . . , n− 1}. This means that∑
i∈[n]

(xi + Fki
(l))− Fk0(l) mod R =

∑
i∈[n]

xi − e mod R.

To ensure correctness, each client, before calling
Enc(pp, ki, l, x′

i), computes x′
i := n · xi + 1. The multi-

plication with n ensures that all legitimate messages
are apart by n − 1 and the addition of 1 ensures
that the non-linearity error does not cause an un-
derflow mod R. The aggregator, after executing s̄ =
AggrDec(pp, k0, l, {ci}i∈[n]), rounds s̄ up to the next mul-
tiple s′ of n and computes s := (s′ − n)/n.

Correctness: After encryption we have

ci = n · xi + 1 + Fki
(l) mod R.

AggrDec(pp, k0, l, {ci}i∈[n]) yields

s̄ =
∑

i∈[n](n · xi + 1 + Fki
(l))− Fk0(l) mod R

=
∑

i∈[n](n · xi + 1)− e mod R

= n ·
∑

i∈[n] xi + n− e mod R

= n ·
∑

i∈[n] xi + n− e.

For the last equality to hold, we need that

0 ≤ n ·
∑

i∈[n] xi + n− e < R,

which means that e neither creates an underflow nor
an overflow modR. Because e is at most n− 1, we have
0 < n ·

∑
i∈[n] xi + n − e and if

∑
i∈[n] xi < (R − n)/n,

then we also have

n ·
∑
i∈[n]

xi + n− e < R.

When we suppose we have at most n = 220 users,
this means that

∑
i∈[n] xi must be smaller than (R −

220)/220 = 285/220−1 = 265−1. In the next step, the ag-
gregator rounds s̄ up to the next multiple of n, which is
s′ = n·

∑
i∈[n] xi+n. After computing s = (s′−n)/n, they

get s =
∑

i∈[n] xi, which is the desired result. Therefore,
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if the total sum is at most 264, the scheme works cor-
rectly.

Security: Because the clients input n ·xi + 1 to the
encryption algorithm of the PSA scheme, Theorem 1
guarantees that only

∑
i∈[n](n · xi + 1) mod R can be

computed by the aggregator. Because n is known pub-
licly, this value does not contain more information than∑

i∈[n] xi. Thus, our instantiation inherits the security
of the general scheme.

4.4 Performance

In this section, we analyze the performance of our
scheme both in theory and by performing running time
measurements.

Every secret key consists of λ = 2096 elements
from Zq = Z2128 , which means that every secret key
needs 2096 · 128 = 268288 bits of memory. These are
roughly 33.5 kilobyte. For a security level of 128 bit,
Benhamouda et al. [10] report a key size of 592 bit for
their scheme and of 416 bit for the scheme of Shi et al.
[22]. The size of a ciphertext in our scheme is log(p) = 85
bit. Again for a security level of 128 bit, Benhamouda
et al. [10] report a ciphertext size of 296 bit for their
PSA scheme and of 416 bit for the scheme of [22]. Both
values were computed for 220 users and 220 labels. Nei-
ther Takeshita et al. [23] nor Waldner et al. [25] report
their key sizes, however the key size of [25] increases lin-
early with the number of clients, because every client
needs a shared secret with every other client. In many
cases, smaller ciphertexts are preferable over small keys,
because the ciphertexts have to be sent over the network
at every time-step. In our scheme the cost for encryp-
tion mainly is the cost for evaluating the PRF. The PRF
needs 2096 evaluations of the underlying hash function,
2096 modulo operations and 2096 additions and multi-
plications for evaluating the inner product of the hash
and the key.

We executed the performance tests on a laptop on
a single thread of an Intel Core i5-10210U CPU. We
measured the running time of both our scheme and [25].
For a better comparison we executed their scheme with
a message space of 264 and without noise. We executed
the tests 40 times and took the average. In every test we
run the encryption algorithm once for every client and
executed the decryption algorithm 1000 times. Figure 5
shows the average running time of a single execution
of the encryption and decryption algorithm of both our
scheme and [25]. As expected the running time for the
encryption algorithm of our scheme does not depend on

the number of users, whereas the running time of [25]
grows linearly. Somewhat surprisingly the running time
of our decryption algorithm increases with the number
of users. This means that the running time is not com-
pletely dominated by the cost of evaluating the PRF,
but summing together all ciphertexts also takes signifi-
cant time. As the figure clearly shows, our scheme out-
performs [25] starting from about 3500 clients. Table 2
shows the exact numbers of the average running time of
our scheme and [25] for different numbers of users. Ta-
ble 3 shows the running time of [23] and [9] taken from
the respective papers.

In both, our scheme and [25], the evaluation of the
PRF does not depend on the plaintext. Therefore, en-
cryption could be sped up by computing the PRF before-
hand. Then, when the plaintext is available, encryption
only consists of adding the PRF output to the plaintext
and one modulo operation. The same can be done for
decryption as well.

Our scheme LaSS (AES variant)

Users Enc Dec Enc Dec

1000 0.913(0.010) 0.875(0.002) 0.295(0.011) 0.277(0.007)

5000 0.929(0.007) 1.209(0.006) 1.590(0.022) 1.508(0.042)

10000 0.901(0.004) 1.805(0.007) 3.941(0.046) 3.643(0.201)

Table 2. Running time in milliseconds of one execution of the
encryption/decryption algorithm of our scheme and the AES
version of LaSS [25]. The value in parentheses is the standard
deviation. For both schemes we executed 40 measurements and
took the average.

SLAPBGV LaPS

Users Enc Dec Enc Dec

1000 1.17 3.26 3.724 1.964

Table 3. Running time in milliseconds of the optimized version
of SLAPBGV [23] and of LaPS [9]. This version of LaPS only
provides a security of 80 bit. For a security of 128 bit Becker
et al. [9] report a running time of 77.33ms for encryption and
67.62 for decryption. Both implementations were measured with a
message space of size 216. Note that the numbers are taken from
the respective papers. Thus, a comparison is not entirely reliable.

The setup algorithm of our scheme has to draw 2096
random elements from Zq for each user and then com-
pute the sum of the user keys to get the key for the
aggregator. As shown in Figure 6, the running time of
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our setup algorithm grows linearly in the number of
users. The running time of [25] grows quadratically with
the number of users, because every pair of users needs
a shared key. The generation of the random numbers
can trivially be parallelized and thereby be made much
faster in practice. Also, since the setup algorithm is ex-
ecuted very rarely, its running time is not as critical as
the running time of the encryption or decryption algo-
rithm.

Fig. 5. This figure shows the running time of one execution of
the encryption and decryption algorithm of both our scheme and
[25]. The vertical bars show the standard deviation, which is large
enough to be seen only for the decryption algorithm of LaSS.

Fig. 6. This figure shows the running time of the setup algorithm
of both our scheme and LaSS. As in Figure 5 the error bars are
too small to be seen.

5 Deployment Considerations
In this section, we discuss practical issues when deploy-
ing our scheme, with a special focus on the smart-meter
application.

5.1 Setup and Key Management

In the PSA literature the setup procedure is usually
considered to be executed by a trusted party who dis-
tributes secret keys to the clients and the aggregator.
This often means that the trusted party is able to de-
crypt all messages sent by the clients. In the following,
we discuss techniques to overcome this limitation.

One approach to achieve a decentralized setup is to
use techniques very similar to the ones of Chotard et al.
[17]. The idea is that we let each client choose their PRF
key ki at random. The aggregator’s key is supposed to
be the sum of the keys chosen by the clients. So we only
need to let the aggregator know the sum of the client
keys in a secure way. The solution for this is to combine
non-interactive key exchange (NIKE) ([13], [20]) with
a technique from [15] as done in [17]. First the clients
execute the NIKE, i.e. each client generates a public
key and a secret key and uploads the public key to a key
server. Each client downloads the public keys of all other
clients and uses each other client’s public key together
with their own secret key to derive a shared secret with
that client. Then the clients use the shared pairwise keys
to generate random pads with the property that the
pads sum to zero. The clients then add these pads to
their PSA secret keys and send the resulting ciphertext
to the aggregator. The aggregator will obtain the sum
of the client keys by adding all ciphertexts, but learns
nothing else about the keys. The process is essentially
the same as the DSum functionality of [17], but without
the layer of All-or-Nothing Encapsulation and is shown
in Figure 7.

In principle, one can use the same key-homomorphic
PRF as in our PSA scheme. However, the property of
key-homomorphism is not needed here. Hence, we rec-
ommend using a block cipher such as AES as PRF.

One may now argue, that we do not need the rest
of the PSA scheme anymore, because we already have a
way of letting the aggregator know the sum of client val-
ues. Indeed this would basically give us the PSA scheme
of [25]. However then the encryption of each value re-
quires n invocations of the PRF, where n is the num-
ber of users. Doing this for every encryption becomes
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ComputeKeyShare(ki, ski, {pkj}j∈[n], l) :

{ssj}j∈[n]\{i} := NIKE.SharedKey(ski, pkj)

ti :=
∑

j∈[n]\{i}

(−1)i<j · PRFssj ({pkk}k∈[n] ‖ l)

return (ki + ti) mod q

Fig. 7. The decentralized setup algorithm as executed by every
client. The algorithm takes as input the client’s PSA secret key
ki, the NIKE secret key ski and the NIKE public keys of the
other clients pkj .

inefficient as the number of clients becomes large. So
it is preferable to only execute this step once for the
decentralized setup and then continue with our PSA
scheme that only requires one invocation of the key-
homomorphic PRF in the encryption algorithm.

For illustration, let us present a simple example
of how a NIKE scheme can be built from the Diffie–
Hellman key exchange. Every client i publishes their
public key pki := gxi and downloads the public keys of
all other clients. To compute a shared key with client j,
client i computes pkxi

j = gxjxi and hashes this together
with their identities H(i, j, gxjxi). For more details on
constructions and security models see [13] and [20].

The most efficient way to distribute the public keys
is to use a key server which all clients use to upload
and download their public keys. The key server needs
to be semi-honest, i.e. it can share all its knowledge
with the adversary without compromising security, but
must follow the protocol. A malicious key server could
perform a person-in-the-middle attack by replacing all
client public keys with its own public keys. The key
server would then compute a shared secret with every
client and would be able to decrypt all messages. How-
ever such an attack can be detected when clients manu-
ally compare their keys with each other.

The communication costs for the decentralized
setup of one client is uploading their NIKE public-key
to the key-server, downloading n − 1 public-keys and
sending one aggregation key share (the encrypted PSA
secret key) to the aggregator. The computational costs
are n − 1 calls to NIKE.SharedKey to compute the pair-
wise shared keys and n− 1 PRF or AES evaluations to
compute the pseudorandom pad that encrypts the PSA
secret key. These operations only have to be executed
for the setup and have no influence on the cost for en-
cryption, which is still independent of the number of
clients.

An alternative to relying on a key server would be
to let the clients broadcast their public key to all other

clients. However, here a person-in-the-middle attack is
also possible. Furthermore this approach would cause
roughly n2 messages in the setup phase, which can be
too much in the smart-meter scenario, where the num-
ber of clients can be large.

Having a decentralized setup as described above has
the additional advantage that the setup can be repeated
at regular intervals to achieve some sort of forward se-
crecy. Repeating a centralized setup would mean that
the trusted party would have to be available at each time
the setup is repeated. Only relying on a semi-honest key
server which needs to be online once every interval is
much easier to assure.

Another approach from literature to decentralize
the setup is adhoc multi-input functional encryption
(adhoc-MIFE) [4]. In adhoc-MIFE the clients also gen-
erate shares of the aggregation key in a decentralized
way, by getting as input the public keys of the other
parties. The authors consider the computation of inner-
products, which can be seen as a generalization of the
computation of sums in our setting. They use 2-round
MPC protocols with specific properties in their construc-
tion. However their construction does not support labels
and is less efficient due to the use of MPC.

5.2 Client Failures

If one client fails to submit a valid ciphertext, then
the aggregator cannot compute the overall sum, be-
cause that client’s PRF term is missing. The result will
then look like a random value. In the context of smart-
metering this is a problem, because there are many de-
vices and it is quite possible that one device fails due to
technical problems, loss of network connection or active
manipulation by the user. We have several options to
cope with such failures.

A straightforward approach is to partition the users
in several groups and run one instance of the PSA
scheme for each group. For example, if we have 1000
users, we can divide them in ten groups of 100 users
each. When one user fails, we only lose the values of
100 users, instead of 1000. Two disadvantages of this
approach are that a few failing users can cause a lot of
lost values and that it reduces the privacy of the users,
because their values are only aggregated with a smaller
set of other users.

To solve this problem, Chan et al. [14] have pro-
posed a generic solution that incorporates differential
privacy in an essential way. They let the aggregator
learn partial sums of the users’ inputs in such a way



Private Stream Aggregation with Labels in the Standard Model 131

that the sum of the values of the non-failing users can
always be reconstructed. They use a binary tree, where
the clients are the leaf nodes. Each inner node corre-
sponds to the partial sum of the values of the clients
beneath that node. So each client produces log(n) cipher-
texts of which each one corresponds to an inner node on
the path from that client to the root of the tree. When
all clients send ciphertexts, then the aggregator uses the
ciphertexts corresponding to the root node to compute
the total sum. If some clients fail, the aggregator has to
use ciphertexts corresponding to the inner nodes to be
able to reconstruct the sum of the remaining users as
shown in Figure 8. The noise for differential privacy is
essential here, because otherwise the aggregator would
get all the users’ values in the clear.

0 1 2 3

[0,1] [2,3]

[0,3]

Fig. 8. If client 2 fails, the aggregator uses the ciphertexts corre-
sponding to the black nodes to compute the sum of the remain-
ing clients’ values. The notation [i,j] means the (noisy) sum of
the values of clients {i,. . . ,j}. This figure is a smaller version of
Figure 1b from [14].

With this approach each client has log(n) secret
keys, one corresponding to each node on the path to the
root. Also, instead of sending one message, each client
sends log(n) messages. The aggregator holds one aggre-
gation key for each inner node in the tree. Another way
to view this is that we are running one instance of the
PSA scheme for each inner node. This approach does
not add additional rounds of communication. The ag-
gregator will always be able to compute the overall sum,
no matter how many clients fail, however, when more
clients fail, the resulting sum is noisier. The scheme is
generic and does not pose any special requirements on
the underlying PSA scheme, so it can be used to make
our scheme failure tolerant. Only one small adaption
has to be made. The scheme of Chan et al. only consid-
ers user values in {0, 1}, whereas in our case the values
are from {0, . . . , ∆}, where ∆ is the largest reasonable
power consumption. To accommodate for this we need
to multiply the ϵ and δ parameters for differential pri-

vacy with 1/∆. In Appendix C we describe in a bit more
detail how the adapted encryption algorithm works and
also provide figures with pseudocode.

5.3 Client Joins and Leaves

If clients leave the system, for example if they changed
their power supplier, we can treat them as permanently
failed (cf. Section 5.2), as suggested by [14]. This will
slightly increase the noise relative to the number of re-
maining clients. Therefore, when many clients have left,
we can repeat the setup for the remaining clients and
start over with a new tree. Repeating the setup is more
practical when using the decentralized setup described
in Section 5.1, because then we do not need to entrust
a third party with the key generation.

To accommodate for joining clients, [14] propose to
create a tree that has more leaves than there are clients,
where the trusted party creates secret keys for every
leave node. The not-yet-present clients are treated as
failed, until they join. When a new client joins, they get
the secret keys corresponding to their leave node from
the trusted party. This has the advantage that neither
the other clients nor the aggregator need to be notified
when a client joins. However it has the disadvantage
that the trusted party needs to be available whenever a
new client joins.

In the following we describe how client-joins can
work together with the decentralized setup from Sec-
tion 5.1. Since we are using a binary tree now, we are
essentially running one instance of the PSA scheme for
every inner node, where the clients of each instance are
the clients below the respective inner node. This means
that in the beginning, each client creates log(n) aggre-
gation key shares and sends them to the aggregator.

Whenever a new client joins they broadcast their
public key to the other clients by uploading it to the
key server and downloads the public keys of the other
clients and computes a shared key with each of them.
The other clients download the public key of the new
client and use it to compute a shared secret with the
new client. Then a new aggregation key is created for
each node on the path from the new client to the root.
This means that each client, which shares an inner node
with the new client, chooses a new secret key for the re-
spective node and sends the aggregation key share to
the aggregator. The aggregator receives all the aggrega-
tion key shares for each node on the path from the new
client to the root and combines them to obtain a com-
pletely new aggregation key for all these log(n) nodes.
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Another way to view this is that whenever a new client
joins, (a part of) the decentralized setup is repeated for
the inner nodes on the path from the new client to the
root.

The cost for the new (n + 1)th client is computing
a shared secret with the n other clients and comput-
ing aggregation key shares for each node on the path to
the root. The number of PRF/AES evaluations depends
on the position of the new node in the tree, but is at
least n (for the aggregation key associated with the root
node) and at most 2n. The other clients have to com-
pute one new shared secret. The number of PRF/AES
evaluations depends on their position in relation to the
new node, but is again at least n and at most 2n.

5.4 Concrete Smart-Meter Example

In this section we summarize how our PSA scheme to-
gether with the above extensions can be used for pri-
vacy preserving smart-metering. Every smart-meter is
preconfigured with the IP addresses of the key server
and the power-supplier, the public key of the power-
supplier and with an upper bound on the number of
other smart-meter devices that are expected to join the
system4. Every smart-meter creates a random key for
the PSA scheme and a public and secret key for the
NIKE scheme. The smart-meters then upload their pub-
lic keys to the key-server and compute pairwise shared
keys as described in Section 5.1. They then compute
their key share as described in Figure 7, encrypt it with
the power-suppliers public key and send the resulting
ciphertext to the power-supplier. The power-supplier is
then able to compute the aggregation key for each inner
node. This concludes the setup.

At every time step (e.g. every fifteen minutes) the
smart-meters encrypt their current power consump-
tion and send it to the power-supplier. There are two
straightforward ways of choosing the label which is
needed as input for the PRF. One possibility is to use a
counter that starts with 0 and is incremented at every
time step. This has the disadvantage that if a client mal-
functions and misses a time step, its counter becomes
asynchronous to the counters of the other smart-meters,
whereby its ciphertexts cannot be decrypted anymore.
The other possibility provides a solution for this. The
label can be chosen as the current date and hour and a

4 When more users than expected join the system, then the
(non-interactive) setup can simply be repeated

value between 0 and 3 which indicates the quarter of the
hour we are currently in. Then every smart-meter can
deduce the next label from the current time. The clocks
of the smart-meters only need to have the same time up
to fifteen minutes precision and the current time can be
easily obtained via the network. Note that this ensures
that every label is only used once, whereby the encrypt-
once condition is satisfied and thus, our security proof
applies.

To accommodate for users joining the system, every
smart-meter checks the key server for new public keys
at regular intervals such as once every day. If there are
new public keys, the clients recompute some of their
key-shares as described in Section 5.3 and send them to
the aggregator. Failing or leaving smart-meters are also
treated as described in Section 5.3. Since we use the
generic approach of [14] to provide fault-tolerance, the
resulting power-consumption, which is decrypted by the
power-supplier, contains a small amount of noise. How-
ever as stated by [14] the additive error is only slightly
larger than logarithmic in the number of users.

The smart-meters can also be configured to repeat
the setup at regular intervals to provide better forward
secrecy or to reduce the noise, when too many smart-
meters have left the system.

6 Conclusion
PSA is a useful protocol for privately letting an aggrega-
tor know the sum of client-supplied values. It has appli-
cations from privacy-preserving smart metering to dis-
tributed machine learning.

In this paper, we proposed a PSA scheme that is
based on key-homomorphic PRFs as the only building
block. It supports a large message space and scales well
for a large number of users. Also it has very small ci-
phertexts (85 bit in our implementation with a message
space of 264). Both encryption and decryption mostly
consist of only one PRF evaluation.

We proved the security of our scheme in the stan-
dard model. Furthermore we implemented our scheme
using a lattice-based key-homomorphic PRF in the
ROM. We analyzed the performance both in theory and
by measuring the running time in practice and thereby
showed that the scheme is quite efficient. Moreover we
discussed possible solutions for practical issues as how
to decentralize the setup and how to accommodate for
clients joining or leaving the system.
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A Lemmas for the Security Proof
of the PSA Scheme

Lemma 1. (Transition from G0 to G1): For every PPT
adversary A, which corrupts the aggregator, there is a
PPT adversary B, on the PRF with

|Pr[G0(λ,A) = 1]− Pr[G1(λ,A) = 1]|

≤ 2n2(n− 1) · Advprf
B,PRF(λ).

Proof. We prove the transition by a hybrid argument.
As in the proof of [1], the goal in each hybrid step is
to add a random pad to the PRF value of one more
user. Each hybrid step consists of three game hops as
depicted in Figure 9.

We define hybrid games G0,µ for µ ∈ [n]. Let η = |U|
and U = {i1, . . . , iη} be the set of users for which A
asks the challenge query. Let Θ = min(η, µ). If Θ ≥ 2,
in hybrid step µ, the game adds random pads to the
PRF values of the first Θ users in U . The condition that
Θ ≥ 2 is necessary, because we need two users in U to
change the PRF to a RF, because we must not change
the overall sum of the ciphertexts. The pads are set up
such that they are a perfect Θ-out-of-Θ secret sharing of
0. This makes sure that the pads have no effect on the
sum of the ciphertexts. If µ > η, then there are already
random pads on the PRF values of all users from U ,
therefore, the subsequent games are the same. We have
that G0 = G0,1 and G0,n = G1. In the following we will
shortly describe the different games of the transition
from G0,µ−1 to G0,µ:

Game G0,µ−1: This is step µ−1 of the hybrid argu-
ment between G0 and G1. Let Θ = min(η, µ). If Θ ≥ 2,
then in this game there are random pads added to the
PRF-values of the first Θ− 1 honest users.

G0,µ−1 G′
0,µ−1 G′′

0,µ−1 G0,µ

//Note that the game can guess i∗
Θ, without yet

// knowing the value of Θ.

i∗
1 ←$ [n], i∗

Θ ←$ [n] \ {i∗
1}

(pp, {ki}i∈[n]0 )← Setup(1λ, 1n)

α← AQEnc(·,·,·),QCorrupt(·),QChallenge(·,·,·,·)(pp)

Output α if condition (∗) is satisfied AND

the game was not aborted; 0 otherwise

QEnc(i, xi, l) :

ti,l := PRFki
(l)

if i = i∗
1 then ti,l := RF(l)

if i = i∗
Θ then ti,l := −

∑
j∈[n]\{i} tj,l

return xi + ti,l

QCorrupt(i) :

return ki

QChallenge(U , {x0
i }i∈U , {x1

i }i∈U , l∗) :

Let U = {i1, . . . , iη}

Θ := min(η, µ)

for all τ ∈ {2, . . . , Θ} : uτ ←$ ZR

for all i ∈ U

ti,l∗ := PRFki
(l∗)

if Θ ≥ 2 then

if i1 ̸= i∗
1 or iΘ ̸= i∗

Θ then abort game

if µ ≤ η then

if i = i1 then ti,l∗ := PRFki
(l∗) +

∑Θ−1
τ=2 uτ

if i = iτ for τ ∈ {2, . . . , Θ− 1} then:

ti,l∗ := PRFki
(l∗)− uτ

if i = i1 then ti,l := RF(l∗) +
∑Θ−1

τ=2 uτ

if i = iΘ then ti,l := −
∑

j∈[n]\{i} tj,l

if i = i1 then ti,l∗ := ti,l∗ + uΘ

if i = iΘ then ti,l∗ := ti,l∗ − uΘ

else

if i = i1 then ti,l∗ := PRFki
(l∗) +

∑Θ
τ=2 uτ

if i = iτ for τ ∈ {2, . . . , Θ} then:

ti,l∗ := PRFki
(l∗)− uτ

return {x0
i + ti,l∗}i∈U

Fig. 9. Game hops for one step of the hybrid argument

https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data
https://eprint.iacr.org/2020/1611/20210513:151621
https://eprint.iacr.org/2020/1611/20210513:151621
https://doi.org/10.1007/978-3-030-25283-0_14
https://doi.org/10.1007/978-3-030-25283-0_14
https://eprint.iacr.org/2020/081
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Game G′
0,µ−1: In this game, the PRF of user i1 is

replaced by a RF. The pseudorandom pad tiΘ,l of user
iΘ is set such that

∑
i∈[n] ti,l = t0,l still holds. The game

has to guess the first and Θ’th user of U before seeing
the challenge query, because it must be able to answer
encryption queries before seeing the challenge query.

Game G′′
0,µ−1: Here we still have the RF of the

previous game. When answering the challenge query, the
game adds a random pad uΘ to the RF. Now, the first Θ
honest users have a random pad added to their PRF/RF
values.

Game G0,µ: This game again uses a PRF instead of
a RF for honest users i1 and iΘ. Because of the changes
in the previous games, there are random pads added to
the PRF value of the first Θ users of U , so this is the
µ’th hybrid game.

Next we give the reductions for the transitions between
the games.

Transition from G0,µ−1 to G′
0,µ−1: The difficulty

in this step is that
∑

i∈[n] PRFki
(l∗) = PRFk0(l∗). Re-

placing one PRF with a RF while holding the other
keys fixed would violate this property. This is the rea-
son why in each hybrid step of the transition from G0 to
G1 the game guesses two honest users. The pad of one
user is determined by the answer of the PRF challenger
and the pad of the other user is set, such that the pads
still sum to PRFk0(l∗).

Now we show the indistinguishability of G0,µ−1 and
G′

0,µ−1 by a reduction to the security of the PRF. We
assume that there is an adversary A which can distin-
guish G0,µ−1 and G′

0,µ−1. The reduction B guesses the
honest users i∗

1 and i∗
Θ. They generate the secret keys

{ki}i ∈ [n]0 \{i∗
1, i∗

Θ} for all users and the aggregator ex-
cept of users i∗

1 and i∗
Θ. They send the public parameters

pp to A and answer the queries as follows:
QCorrupt(i): If the guess of i∗

1 and i∗
Θ was correct,

these two users stay uncorrupted. Since B generated the
keys of all the other clients, they can simply answer with
the corresponding secret key. If i = 0, then B returns the
aggregation key k0. Note that here k0 is not the sum
of the client keys, but chosen randomly as well. The
pads of i∗

1 and i∗
Θ will be chosen accordingly such that∑

i∈[n] ti,l = t0,l still holds.
QEnc(i, xi, l): If i = i∗

1 or i = i∗
Θ, B queries l to

their own PRF challenger and receives al, which is either
PRFk′(l), for some k′, or RF(l). They set ti∗

1 ,l := al and
ti∗

Θ,l := PRFk0 −
∑

j∈[n]\{i∗
1 ,i∗

Θ} PRFkj
(l) − al = t0,l −∑

j∈[n]\{i∗
Θ} tj,l. This ensures that all ti,l still sum to

t0,l. Note that ti∗
Θ,l = t0,l −

∑
j∈[n]\{i∗

Θ} tj,l also holds
in the unmodified scheme (Figure 3) due to the key-

homomorphism of the PRF. If i = i∗
1, B sends xi + ti∗

1 ,l

to A. If i = i∗
Θ, B sends xi + ti∗

Θ,l to A and stores ti∗
1 ,l

until A asks an encryption query for i∗
1 and label l. For

the other clients B knows the corresponding secret keys
and can, therefore, answer the queries without asking
their PRF challenger.

QChallenge(U , {x0
i }i∈U , {x1

i }i∈U , l∗): Here B en-
crypts x0

i the same way as in the QEnc queries.

If the PRF challenger uses PRFk′ instead of a RF then
ki∗

1
is implicitly set to k′ and ki∗

Θ
is set such that∑

i∈[n] ki = k0. In that case the ki are a perfect secret
sharing of k0, which is exactly as in G0,µ−1. So in that
case, B perfectly simulates G0,µ−1.

If the PRF challenger uses a RF, then ti∗
1 ,l = RF(l)

and ti∗
µ

is set such that all ti,l sum to t0,l. So in this case
B perfectly simulates game G′

0,µ−1.
Transition from G′

0,µ−1 to G′′
0,µ−1 In this step

the goal is to add random pads uΘ to the RF of users i1
and iΘ in the answers of the challenge query. Because
we consider encrypt-once security, A cannot ask an en-
cryption query for user i1 or iΘ on label l∗. Therefore,
the only information that A has about RF(l∗), comes
from the answer to the challenge query. Since RF(l∗) is
identically distributed as RF(l∗) + uΘ, A cannot realize
that they received RF(l∗) + uΘ instead of RF(l∗). Thus,
G′

0,µ−1 and G′′
0,µ−1 are perfectly indistinguishable.

Transition from G′′
0,µ−1 to G0,µ In this step we

need to change back the RF of users i1 and iΘ to a
PRF. This works exactly as the transition from G0,µ−1
to G′

0,µ−1.
After η−1 of these steps we reached Game G1. Now

in G1 the challenge query (U , {x0
i }i∈U , {x1

i }i∈U , l∗) is an-
swered with x0

i + ti,l∗ + ūi, where

ūi =

⎧⎪⎪⎨⎪⎪⎩
∑

j∈U\{i1} uj if i = i1,

−ui if i ∈ U \ {i1},
0 else.

Therefore, the {ūi}i∈U are a perfect η out of η secret
sharing of 0.

The guessing of the two honest users in each hybrid
step incurs a reduction loss of n(n − 1) and using n

hybrid games leads to a loss of n2(n− 1) for the hybrid
argument. Since the hybrid argument is applied twice,
once to add and once to remove the random pads, we
get a total reduction loss of 2n2(n− 1).

Lemma 2. (Transition from G1 to G2): For every PPT
adversary A, which corrupts the aggregator, there is a
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PPT adversary B on the PRF with

|Pr[G1(λ,A) = 1]− Pr[G2(λ,A) = 1]|

≤ 2n(n− 1) · Advprf
B,PRF(λ).

Proof. The goal in this step is to change the answer of
the challenge query from encryptions of x0

i to encryp-
tions of x1

i . We distinguish two cases here. Remember
that Ql∗ is the set of clients for which A has received a
ciphertext on label l∗, either by an encryption or a chal-
lenge query. In the first case Ql∗ = HS, which means
that A gets a ciphertext of every honest user for the chal-
lenge label l∗. Then we have Ql∗∪CS = [n], whereby A’s
challenge query is restricted by the balance-condition.
We then argue that, since

∑
x0

i =
∑

x1
i , the change is

covered by the ūi.
In the second case there is an honest user of whom

A does not get a ciphertext on label l∗. Therefore, the
challenge messages are not restricted by the balance con-
dition. Here we use the fact that A is lacking a cipher-
text of an honest user iq and thereby has no information
about PRFkiq

(l∗).
Case 1 (Ql∗ = HS): In this case A knows k0,

because they corrupted the aggregator. Furthermore
Ql∗ = HS, whereby A’s challenge messages are re-
stricted by the balance-condition. We argue as the au-
thors in [1]. For t0,l := PRFk0(l), we have

∑
ti,l∗ = t0,l∗

and that {ūi}i∈U is a perfect η out of η secret sharing of
0. Therefore, {x0

i + ti,l∗ + ūi}i∈U and {x1
i + ti,l∗ + ūi}i∈U

are perfect secret sharings of
∑

i∈U (x0
i + ti,l∗) and∑

i∈U (x1
i + ti,l∗), respectively. The balance-condition re-

quires that
∑

i∈U x0
i =

∑
i∈U x1

i . So {x0
i + ti,l∗ + ūi}i∈U

and {x1
i + ti,l∗ + ūi}i∈U are both perfect secret sharings

of the same value and are, therefore, perfectly indistin-
guishable.

Case 2 (Ql∗ ̸= HS): Other than in case 1, A’s mes-
sages in the challenge query are not restricted by the
balance-condition, because there is at least one honest
user for which A has no ciphertext on label l∗. Therefore,
in this case we need another reduction. If A asks no chal-
lenge query or a challenge query with U = {}, A has no
information about the challenge bit and, therefore, A’s
advantage is 0. Thus, we can assume that U contains
at least one user. Additionally, in this case Ql∗ ≠ HS,
therefore, HS \ Ql∗ contains an honest user that is dif-
ferent from the user in U . The reduction B guesses the
users i∗

q ∈ HS \ Ql∗ and i∗
u ∈ U . Then B changes the

PRF of these two users to a RF by setting ti∗
u,l := RF(l)

and ti∗
q ,l := t0,l −

∑
i∈[n]\iq∗ ti,l. This is done the same

way as in the transition from G0,µ−1 to G′
0,µ−1.

In the next step we change all ciphertexts in the
challenge query from x0

i + ti,l∗ to x1
i + ti,l∗ . Because of

the ūi, {x0
i + ti,l∗ + ūi}i∈U and {x1

i + ti,l∗ + ūi}i∈U are
perfect η out of η secret sharings of

∑
i∈U (x0

i +ti,l∗) and∑
i∈U (x1

i + ti,l∗) respectively. For both b = 0 and b = 1
we have

∑
i∈U (xb

i + ti,l∗) =
∑

i∈U\{i∗
u}(xb

i + ti,l) + xi∗
u

+
ti∗

u,l∗ . Because ti∗
u,l∗ = RF(l∗), both {x0

i + ti,l∗ + ūi}i∈U
and {x1

i + ti,l∗ + ūi}i∈U are secret sharings of a truly
random value and are, therefore, perfectly indistinguish-
able.

In the last step we change back the RF to a PRF
again.

The reduction loss of n(n − 1) comes from guess-
ing the two users i∗

u and i∗
q . The factor of two is there,

because the RF needs to be changed back into a PRF.
Therefore, the total reduction loss is 2n(n− 1).

Lemma 3. (Transition from G2 to G3): For every PPT
adversary A, that corrupts the aggregator, there is a
PPT adversary B on the PRF with

|Pr[G2(λ,A) = 1]− Pr[G3(λ,A) = 1]|

≤ 2n2(n− 1) · Advprf
B,PRF(λ)

Proof. This transition is just applying the G0−G1 tran-
sition backwards.

Lemma 4. For every PPT adversary A, which does not
corrupt the aggregator, there is a PPT adversary B on
the PRF with

|Pr[G0(λ,A) = 1]− Pr[G3(λ,A) = 1]|

≤ 2n2 · Advprf
B,PRF(λ).

Proof. In this case we can directly go from G0 to G3 via
a hybrid argument over all users. Let {i1, . . . , iη} = U
be the set of users specified in the challenge query. In
hybrid game Hµ the challenge query for (i1, . . . , iµ) is
answered with an encryption of x1

i , whereas for the other
users it is answered with an encryption of x0

i .
Formally, in Hµ we have:

QChallenge(U = {i1, . . . , iη}, {x0
i }i∈U , {x1

i }i∈U , l∗) :

ci,l∗ :=
{

Enc(pp, ki, x0
i ) if i = iτ for τ > µ

Enc(pp, ki, x1
i ) if i = iτ for τ ≤ µ

return {ci,l∗}i∈U

We have that G0 = H0 and G3 = Hn. To get from
Hµ−1 to Hµ we use the two intermediate games H ′

µ−1
and H ′′

µ−1. In H ′
µ−1, the PRF of user iµ is replaced by

a RF and in H ′′
µ−1 the challenge query of user iµ+1 is
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answered with an encryption of x1
q+1 instead of x0

q+1. In
Lemma 1 we needed two honest users in order to change
the PRF to a RF. This was necessary, because we had to
make sure that the sum of the ciphertexts remained un-
changed. Here we are in the case that A does not corrupt
the aggregator and, therefore, A is unable to recognize
when the sum of the ciphertexts changes. Thus, we only
need one honest user to exchange the PRF for a RF. We
now describe the games in a bit more detail:

Game Hµ−1: In this game the challenge query for
users iτ with τ ≤ µ− 1 is answered with encryptions of
x1

iτ
, whereas the challenge query for the users iτ with

τ > µ− 1 is answered with encryptions of x0
iτ

.
Game H ′

µ−1: This game guesses user iµ and uses
a RF instead of a PRF to answer the encryption and
challenge queries for this user.

Game H ′′
µ−1: In this game the challenge query for

user iµ is answered with an encryption of x1
iµ

instead of
x0

iµ
.
Game Hµ: This game uses a PRF instead of a RF

for user iµ again. The answer to the challenge query is
an encryption of x1

iτ
for all users with τ ≤ µ.

Next, we prove the transitions between the games
by reductions to the security of the PRF.

Transition from Hµ−1 to H ′
µ−1: The reduction B

guesses the user i∗
µ and generates keys ki for all users,

including the aggregator, except of user i∗
µ. Then B an-

swers the queries as follows:
QCorrupt(i): If i ̸= i∗

µ then B returns the self gener-
ated key ki. If i = i∗

µ then the guess that i∗
µ would be

honest was wrong and B aborts. If i = 0, i.e. A wishes
to corrupt the aggregator, B aborts, because we are in
the case where A does not corrupt the aggregator.

QEnc(i, xi, l): If i ̸= i∗
µ then B simply answers with

xi + PRFki
(l) mod R. If i = i∗

µ then A asks l to their
PRF challenger CPRF, gets the answer al and sends xi∗

µ
+

al mod R to A.
QChallenge(U = {i1, . . . , iη}, {x0

i }i∈U , {x1
i }i∈U , l∗):

The reduction asks l∗ to CPRF and receives the answer
al∗ . Then B answers with x1

iτ
+ PRFkiτ

(l∗) for τ < µ,
with x0

iτ
+ PRFkiτ

(l∗) for τ > µ and with x0
iτ

+ al∗ for
τ = µ. If iµ ≠ i∗

µ, then B’s guess of i∗
µ was wrong and

they abort the game.
The reduction B can directly use A’s output, as

guess for CPRF. If CPRF used a PRF to generate its an-
swers, then B perfectly simulates Hµ−1 and if CPRF used
a RF, then B perfectly simulates H ′

µ−1.
Transition from H ′

µ−1 to H ′′
µ−1: The games H ′

µ−1
and H ′′

µ−1 are perfectly indistinguishable, because RF +
x0

µ is identically distributed as RF + x1
µ.

Transition from H ′′
µ−1 to Hµ: Here we only need

to change back the RF of user iµ to a PRF. So this
transition is the transition from Hµ−1 to H ′

µ−1 applied
backwards.

Guessing user i∗
µ entails a reduction loss of n, for

both the transition from Hµ−1 to H ′
µ−1 and from H ′′

µ−1
to Hµ. Together with the n hybrid steps leads to a re-
duction loss of 2n2.

B Security Proofs of the PRFs
In this section we prove that the PRF used in Section 4.1
is secure.

Theorem 2. Let λ, q, p ∈ N with q > p, k $← Zλ
q and

H : X ↦→ Zλ
q . When we model H as a random oracle,

then for any PPT adversary A on the PRF Fk(x) :=
⌊⟨H(x), k⟩⌋p, there is an adversary B on LWRλ,q,p with

Advprf
A,F (λ) ≤ AdvLWR

B (λ).

Proof. The idea is for an LWR sample (a, b) ∈ Zλ
q ×

Zp, to interpret a as H(x) for some x and the LWR
secret s as the PRF-key k. Then b = ⌊⟨H(x), k⟩⌋p. This
is possible, because B can program the random oracle
accordingly.

The reduction B works as follows. B maintains a
table of triples (·, ·, ·). If A asks a PRF query for value
x, B looks for an entry (x, a, b) in the table and returns b

if such an entry is present. If there is no such entry, then
B requests an LWR sample from their LWR challenger,
receives (a, b), stores (x, a, b) in the table and returns b

to A.
If A asks a RO query for value x, B again looks for

an entry (x, a, b) in the table, but this time returns a
if an entry is found. If there is no such entry, B again
queries their LWR challenger, stores the answer (a, b) in
the table as (x, a, b) and returns a to B.

In LWR the values of a are uniformly random, there-
fore, B’s answers to the RO queries of A are uniformly
random as well. Furthermore, by maintaining the ta-
ble of triples (x, a, b), B ensures that the answer to the
RO queries are consistent with the answers of the PRF
queries. If the LWR challenger returns random values
b, then B perfectly simulates a random function. If the
LWR challenger returns actual LWR samples then B per-
fectly simulates the PRF Fk(x) := ⌊⟨H(x), k⟩⌋p, where
k is the LWR secret s. Therefore, B can directly forward
A’s guess to their LWR challenger and wins the game,
if A wins.
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Encrypt(pp, {ki,B}B∈B(i), l, xi, ϵ, δ) :

K := ⌊log2(n)⌋+ 1

ϵ0 :=
ϵ

K∆
, δ0 :=

δ

K

for B ∈ B(i)

β := min
(

1
|B|

ln(
1
δ0

), 1
)

r ← Geomβ(ee0 )

x′
i = xi + r

ci,B := PSA.Encrypt(pp, kiB
, l, x′

i)

ci := {ci,B}B∈B(i)

Fig. 10. The encrypt procedure for the fault-tolerant scheme,
where B(i) is the set of all log2(n) nodes of the tree from client i

to the root. For each of these nodes it calls PSA.Encrypt which is
the encrypt algorithm of our proposed scheme in Figure 3.

C Noise and Fault Tolerance
In this section we quickly describe how the noise is
added in the fault tolerant version of our scheme. This
is only a slight adaption of the method of Chan et al.
especially of their Figure 2. They only considered user
values in {0, 1}, whereas we consider values in {0, . . . , ∆},
where ∆ is the largest possible power consumption for
which privacy shall still hold. Therefore we have an ad-
ditional factor of 1/∆ in the computation of ϵ0, the rest
remains unchanged. Note that the factor of 1/∆ is also
present in [22], which introduced PSA. In the literature
of differential privacy, ∆ is also called the sensitivity of
the function.

Figure 10 shows the encryption algorithm of the
fault tolerant scheme. For each node on the path from
client i to the root, i.e. for each instance of the PSA
scheme in which client i is part of, the algorithm cre-
ates one ciphertext by calling the encrypt function from
our PSA scheme in Figure 3. The parameters ϵ and δ

are the same for all clients. One execution of the encrypt
algorithm in Figure 10 provides (ϵ, δ) computational dif-
ferential privacy. The values ϵ0 and δ0 are then set to
accommodate for the fact, that the aggregator gets K

ciphertexts per client.

Geomβ(α) :

r ←
{

Geom(α) with probability β

0 with probability 1− β

return r

Fig. 11. The diluted geometric mechanism from [14]. The func-
tion Geom(α) returns a value k with probability α−1

α+1 α−|k|.
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