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LogPicker: Strengthening Certificate
Transparency Against Covert Adversaries
Abstract: HTTPS is a cornerstone of privacy in the
modern Web. The public key infrastructure underly-
ing HTTPS, however, is a frequent target of attacks.
In several cases, forged certificates have been issued by
compromised Certificate Authorities (CA) and used to
spy on users at large scale. While the concept of Certifi-
cate Transparency (CT) provides a means for detecting
such forgeries, it builds on a distributed system of CT
logs whose correctness is still insufficiently protected.
By compromising a certificate authority and the corre-
sponding log, a covert adversary can still issue rogue
certificates unnoticed.

We introduce LogPicker, a novel protocol for
strengthening the public key infrastructure of HTTPS.
LogPicker enables a pool of CT logs to collaborate,
where a randomly selected log includes the certificate
while the rest witness and testify the certificate issuance
process. As a result, CT logs become capable of auditing
the log in charge independently without the need for a
trusted third party. This auditing forces an attacker to
control each participating witness, which significantly
raises the bar for issuing rogue certificates. LogPicker is
efficient and designed to be deployed incrementally, al-
lowing a smooth transition towards a more secure Web.
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1 Introduction
Over the last decades the popularity of web-based ap-
plications like online shopping, banking or instant mes-
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saging has greatly increased. So has the deployment of
HTTPS, which has become the cornerstone of privacy
on the Web. In January 2020, 95% of page loads in
Google Chrome were served over HTTPS [28]. Conse-
quently the number of attacks on the Web’s Public Key
Infrastructure (Web PKI), which is in charge of issu-
ing certificates used by HTTPS, is increasing. The trust
anchors of the PKI are Certificate Authorities (CA),
that issue X.509 certificates [17] used on the Web. The
CA/Browser Forum [3, 21, 22] agreed upon guidelines
for issuance and management of X.509 certificates.

However, trusting CAs has not always turned out
well. Several cases of illicit certificate creations have
been reported [33, Sec. 3.3]. The creation of such rogue
certificates usually goes unseen and can be used for iden-
tity theft. Hence it follows, not all CAs can be trusted
to check the ownership of a domain before issuing a cer-
tificate, which is a violation of the guidelines. Although
the first documented certificate mississuance happened
in 2001 [10], the case of DigiNotar in 2014 was the
first to raise public awareness. This security breach re-
sulted in the issuing of more than 500 rogue certificates
which were used to intercept the communication of over
300.000 Iranian citizens [23, 56]. Further violations were
documented up to this year [39, 40, 46, 49].

The cryptographic properties of the Web PKI pro-
vide a high level of security and are assumed to not
be forgeable. Soghoian and Stamm [65] introduce an
attacker who bypasses the cryptographic mechanisms
by compelling CAs and service providers to assist in
their act of surveillance. This implies a strong attacker
like a government, that is in control of a subset of the
DNS structure and uses rogue certificates for Man-in-
the-Middle (MitM) attacks in order to intercept user
communication. The authors refer to this surveillance
attempts as government compelled certificate creation.

Some cases indeed demonstrate that states are will-
ing to abuse the Web PKI for surveillance purposes.
In 2016 and 2019 the government of Kazakhstan asked
Mozilla to include their national security certificate,
which was intended to intercept citizen’s data [35, 48,
57]. After the request had been declined, the government
officially instructed all Kazakh citizens to manually in-
stall this certificate. Both attempts of surveillance did
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not remain unseen and browser vendors took action to
protect their users [48].

In 2014 Ben Laurie proposed Certificate Trans-
parency (CT) [41, 43] in response to these attacks. It was
first deployed by Google’s browser Chrome and volun-
tarily used by some CAs. CT uses public append-only
logs in which all certificate issuances must be logged.
Domain owners can now detect possible miss-issuances
by monitoring those logs for their own domains. The
impact of CT soon became visible [34, 66]. To speed up
adoption Google forced CAs to comply with CT guide-
lines if they wanted their certificates to be trusted by
Chrome by the end of 2017 [62].

Unfortunately in May 2020, DigiCert reported the
compromise of one of its CT logs due to a technical
vulnerability [4]. To our knowledge, this is the first doc-
umented case of a log compromise and it was reported
one day after its discovery by the operator itself. This
is of high concern, since DigiCert not only is a CA but
also operates CT logs and it is difficult to prove that
those logs have not been affected by this vulnerabil-
ity as well. It is evident that combined attacks against
CAs and CT logs will increase, once existing strategies
for surveillance of internet users are not applicable any-
more.

1.1 Motivation

All usable CT logs included in the Chrome browser are
still operated by CA vendors only [26]. This raises two
major concerns: On the one hand, a compromise of a
CA easily leads to a compromise of a CT log of the
same vendor. On the other hand, CAs can send the cer-
tificates to their preferred CT logs at the outset of its
issuance process. It leads to an opportunity for suffi-
ciently strong attackers to perform the aforementioned
compelled certificate creation attack. The attack model
assuming both CA and CT log being malicious has been
proposed by Kent [37]. Soghoian and Stamm described
in [65] a realistic scenario that shows how this attack
can be of use during diplomatic negotiations or for in-
dustrial espionage. This kind of attack is known as a
“low probability, high impact” event and has been in-
troduced by Bussiere and Fratzscher [14]. For political,
commercial or socially motivated attacks, as it is mostly
the case with surveillance and espionage, Aumann and
Lindell [8] introduced the covert adversary model. With
these assumptions in mind we ask: How can we ensure
the security of the Web’s PKI if no single entity in the
system can be trusted?

Strengthening the security of this PKI, however, is
a challenging task. Several attempts have been made
to improve the idea of CT, yet they suffer from issues
of deployability, usability, and security. We believe that
the current Web PKI is already complex enough and
thus we strive for security mechanisms that do not add
further single points of failure.

1.2 Contribution

We introduce LogPicker, a protocol that strengthens the
Web PKI in multiple ways:

First, attacks resulting from the collaboration of
malicious CAs and CT log are mitigated. Second, the
protocol enables the automatic and targeted auditing
of CT log entries. Third, the new certificate issuance
process allows the inclusion of CT Monitoring into the
process, in order to make rogue certificates detectable.

LogPicker rests on a collaborative logging scheme,
where a randomly selected log includes the certificate
while the remaining witness and testify the certificate
issuance process. For this the roles of existing compo-
nents of the Web PKI are extended, opening up new op-
portunities to address other problems like CT Monitor-
ing. We evaluate LogPicker’s contribution to the overall
correctness probability of the Web PKI using a proba-
bilistic analysis and compare the results to CT and its
extension Gossip. In addition, we present a prototype
of LogPicker implemented in a simulated Web PKI and
analyse our simulations.

Section 2 highlights some background and related
work. Our threat model and goals are described in Sec-
tion 3. Section 4 introduces the preliminaries and a de-
tailed presentation of the LogPicker protocol. Then,
LogPicker’s achievements are analysed in Section 5 and
the prototype as well as its measurements are presented
in Section 6. Finally, Sections 7–8 discuss some limita-
tions and future work and conclude the paper.

2 Certificate Transparency
Throughout this work we denote the basic PKI by CA-
based PKI while other PKIs including additional mitiga-
tions are prefixed with their name, e.g., CT-based PKI.
In this section we discuss the concept of the CT-based
PKI, its extension Gossip as well as other proposals to
the CA-based PKI, related to our work. In addition, we
discuss the impact of these on the user’s privacy.



LogPicker 186

2.1 Concept

The concept of CT enforces CAs to log all certificate
issuances to public logs. This allows domain owners to
continually check whether all issued certificates for their
domain are legitimate. Those logs are operated by inde-
pendent entities, who currently have no financial ben-
efit from running these logs. Log operators cite their
commitment to improving the overall security of the
Web PKI as their motivation [68]. Logs must accept all
certificates submitted by trusted CAs, append them to
their history and make them available to the public.

After a certificate is submitted to a log it must re-
spond with a Signed Certificate Timestamp (SCT) [43,
Sec. 3] for this certificate, containing the log’s signature,
among others. An SCT can be seen as a cryptographic
promise that the certificate will be included within a
Minimum Merge Delay (MMD), usually 24 hours. CAs
can then serve the SCT along with the newly created
certificate to domain owners. CT-enforcing browsers dis-
play websites as secure only if they serve a valid SCT
with the corresponding certificate. Both, the CT log, is-
suing the SCT and the CA, issuing the certificate must
be trusted by the browser. There are three ways for do-
main owners to deliver SCTs to web clients [2]:
• SCTs can be embedded into certificates using an

X.509 extension. However, the SCT cannot be
changed once the certificate is created.

• SCTs can be sent using a TLS extension during con-
nection establishment. Using this, domain owners
can still profit from CT even if their CA does not
support it. However, in order to support TLS ex-
tensions web servers require an update, which is a
major drawback, as discussed in Sec. 3.4.

• SCTs can be delivered via the Online Certificate
Status Protocol (OCSP) [60]. This requires support
from all PKI participants and raises the question of
how to deal with unresponsive OCSP responders,
which is the reason why it still lacks sufficient de-
ployment.

Since the deployment of CT the user’s trust is shifted
from former CAs to CT logs. This leads to the ques-
tion why CT logs deserve more trust than CAs. To this
date (July 6, 2021), all logs in Chrome’s trust store are
operated by CAs, spread over five companies. Therefore
it is reasonable to assume that the difficulty of attack-
ing a log is similar to attacking a CA. During the initial
design of CT Laurie already considered this problem:
”fixing one set of trusted third parties by introducing an-
other doesn’t seem like a step forward.“ [41]. Due to the

design of CT it is hard to ensure that the selected log is
not controlled by an attacker. In order to mitigate this
problem, CT introduces additional roles to the PKI:

Monitor: They check CT logs for rogue certificates is-
sued for (usually their own) domains.

Auditor: They check whether a log’s behavior com-
plies with the CT specification.

In the current state, only the issuing CA and the corre-
sponding log are aware of the creation of a certificate.
This creates an attack window for the aforementioned
compelled certificate creation and split-view attacks, de-
scribed in Sec. 2.2. The adoption of LogPicker changes
the issuance protocol in a way that the choice of the log
in charge is shifted from the issuing CA to a set of other
logs, resulting in a large number of witnesses of the cer-
tificate creation. As a result, an adversary is required
to compromise a complete set of CT logs to successfully
launch a surveillance attack.

However, consideration must be given to how pro-
tocol changes on the CT-based PKI would affect all cur-
rent participants that must adopt it:

CAs/ CT logs: It is their business to provide services
to the Web PKI. Their customers expect them to
deal with all changes to the infrastructure and is-
sue certificates which are accepted by all common
web browsers. Thus they are motivated to adopt all
changes that are enforced by browsers.

Web Clients: They are mostly web browsers, whose
vendors are motivated to increase their user’s secu-
rity. Due to the fast release cycles and auto-updates
they can deploy new protocol changes quickly.

Web Servers: A significant number of them run out-
dated software [71], this indicates that usually no
changes to a server configuration are made as long
as it continues to function.

Policies of the CT-based PKI
Since 2018 two of the major browsers enforce CT:
Google’s Chrome [51] and Apple’s Safari [5]. Mozilla has
announced to follow suit with Firefox [15]. Browsers do
this by requiring each website’s certificate being accom-
panied by a valid SCT in order to be accepted. The
requirements on the CT-based PKI are defined in two
policies:

CT Policy: It requires each CT log to comply with
the common CT specification [32]. These include
e.g., inclusion of a certificate within the MMD, an



LogPicker 187

availability of at least 99 % and never creating a
split view attack.

Browser’s CT Policy: Since browsers trust log oper-
ators only partially they place additional constrains
on their own individual policy [5, 64]. Browsers
maintain a list of trusted CT logs which is updated
with the browser’s regular update mechanism. If a
log applies for inclusion in such a list it is first au-
dited for a certain duration to ensure it complies
with this policy. A browser accepts only SCTs from
logs appearing in it’s trusted list.

If a webserver wishes it’s certificates to be accepted by
a browser, it must comply with the browser’s CT policy.

2.2 Auditing

Technically, logs are implemented using a Merkle Tree
structure. The tree’s root hash, along with the logs sig-
nature, is called Signed Tree Hash (STH) and the leaves
are hashes of certificates to include. According to the
specification in RFC6962 [43] a CT log must:

L1 be available for public queries
L2 include certificates for which it issued an SCT

within MMD
L3 maintain an append-only history

To audit whether logs comply with the RFC, voluntary
auditors are employed. They make use of the Merkle
Tree structure of the logs to request the following proofs
for subjected certificates:

Inclusion In order to prove the inclusion of a certifi-
cate (L2 ) of a given SCT, an auditor computes a
root hash and compares it to the latest root hash
provided by the log.

Consistency STHs are used for proving a log’s con-
sistency. Auditors collect them from time to time
and check whether newer STHs contain the older
ones, as required by L3. According to specifications,
a log must always respond to STH requests with the
newest STH no older than the logs MMD.

To allow auditors to check for L1 and L2, compliance
with L1 is required. If a log violates the specification, it
will be documented via the proofs gathered by auditors.
Logs cannot deny violations since they have to sign all
SCTs/STHs. Usually, auditing is meant to be performed
by third parties or clients.

Third Party Auditing
Third party auditors must collect SCTs, e.g.,ḃy crawl-
ing the Web, to perform their auditing task. However,
crawling cannot guarantee that all SCTs used on the
Web are found. More importantly, third party auditors
cannot see SCTs used for targeted MitM attacks, de-
scribed in Sec. 3.1. In those attacks rogue SCTs and
certificates are presented to the victim only. Thus they
are not included in public logs, as discussed in Sec. 3.2.

Auditing is an essential task needed to ensure the
correct execution of CT. As we stated in Sec. 1.1, in
the current state the CT-based PKI lacks an auditing
procedure that deserves the client’s trust.

Client Auditing
Another approach proposes that clients audit the logs
on their own. This can be done in two different ways:

Synchronous during the connection establishment.
Since this results in an additional request it slows
down the connection and raises the question of how
clients deal with unresponsive logs.

Asynchronous by caching SCTs and auditing them in
a batch later. Firstly, solutions based on caches are
prone to cache flushing attacks [9]. Secondly, it is
questionable whether resource-limited devices can
perform this task.

More important, if clients reveal an SCT, they dis-
close a portion of their browsing history. In many cases
even a subset of this history is sufficient to identify a
user [53]. Thus client auditing poses additional privacy
breaches [45] like user tracking [50, Sec. 10.5.2]. Until
today no browser implements client based auditing or
plans to do so in the future.

Split-View Attacks
CT, by design, allows rogue certificates to be detected
only after they have already been issued, and possibly
misused. In addition, the MMD provides an attack win-
dow where rogue certificates are accepted if accompa-
nied by an SCT but without ever appearing in the log.
To implement such an attack a malicous log has to cre-
ate and maintain two diverging Merkle Trees, which is
called a split view attack [16][50, Sec. 10.1]. One of the
trees contains a rogue certificate and is served to the
victim only. The other tree without the rogue certifi-
cate is presented to the public. In order to carry out its
attack successfully, the attacker further must identify
the victim’s request anytime during the malicious log’s
lifetime. This is especially difficult with moving victims
or those with an unknown network infrastructure.
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The split-view attack was already considered an
open problem in CT’s threat model [37, Sec. 3.3.2]. In
2017 the IETF published a draft for a protection mech-
anism against split view attacks in CT-based PKI [31].
This mitigation, named STH-Cross Logging, proposes
to log STHs in one additional witnessing log. However,
as stated in [31, Sec. 7], if the additional witness is ma-
licious as well, this procedure is useless.

2.3 Extensions

This section first introduces Gossip, an extension to CT
that tackles the problem of split view attacks, proposed
by Chuat et. al [16]. In addition, we briefly recap other
proposals to the Web PKI or CT, as analysed and cat-
egorized by Jiangshan and Mark in 2017 [75]

Certificate Transparency - Gossip
The Gossip protocol was adopted as an IETF draft [50].
It’s goal is to have clients share their view of a website
at different times. On first page load, clients cache SCTs
and STHs received by the website, which is referred to
as gossip. At a later reconnect, the clients return the
gossip collected earlier back to the website. In addition,
gossip is autonomously collected by third party auditors
directly from the website.
If an attacker uses a rogue certificate for a MitM attack
on a website, they must hide it from a public view and
deceive the client by serving the client an SCT and STH
of the malicious view. This allows auditors to detect
the attack post mortem, since the malicious log never
included the rogue certificate and thus cannot provide
the inclusion proof.
The efficacy of the Gossip protocol is based on “the
hope that [the] MitM attack will eventually cease, and
the client will eventually communicate with the real web
server” [1, Sec. 3.3]. In this case diverging SCTs from dif-
ferent sides of the split view would “hopefully find their
way to CT auditors”, who are in charge of verifying in-
clusion proofs from the logs [50, Sec. 3].
For users CT Gossip comes with the privacy issues re-
sulting from e.g., fingerprinting attacks [50, Chp.10.5.2].
In addition, each web server must support Gossip since
“a web server not deploying SCT Feedback may never
learn that it was attacked by a malicious log” [50,
Chp.9.1]. Requiring Gossip support by all web servers
makes the web-wide adoption nearly impossible. In [58]
Ritter, one of the original authors of CT further dis-
cusses the challenges of deploying CT Gossip.

Difference Observation
The idea is to have clients share the certificates they
observe for a certain domain with each other. This tech-
nique was first implemented as a Firefox extension [73].
Another approach was TACK [47] which waives CAs
completely. Web servers use their private key for sign-
ing self-issued certificates. TACK uses the trust on first
use (TOFU) assumption, where clients establish a trust
relationship to the server on first contact by adding its
public key to their trust store. If another key is send
upon a later connection, they consider the server un-
trusted. The usage of TOFU poses the danger of a proto-
col lock-out due to the fact that a legitimate key change
is indistinguishable to one issued by an attacker. Due to
these concerns we refrain from the TOFU assumption
in LogPicker.

Scope Restrictions
Another way of dealing with the problem of misbehaving
CAs is by limiting their abilities to create certificates for
domains that will be accepted by clients. In the setting
of HPKP [19] a server pins its public key for the use
of future TLS connections and announces this via an
HTTP header. Similar to TACK, HPKP is based on
TOFU and meanwhile deprecated due to problems like
HPKP suicide [76]. DANE is based on DNS records [32]
and allows web servers to pin their certificate in a DNS
record. Another approach is the use of CAA records [30].
A domain owner can specify which CAs are allowed to
issue certificates for its domain.

Management Transparency
This approach forces CAs to make their certificate is-
suance transparent, but generally only allows the detec-
tion of miss-issuance afterwards. CT, which was already
discussed in Sec. 2.1, is probably the most prominent
technique.
Using Sovereign Keys [18] domain owners cross-sign
their CA-issued certificates and publish their related
public keys to append-only logs. This solution is sim-
ilar to TACK. ARPKI [11] introduces ARCert, which
is composed of two certificates issued by different CAs
and published on integrity logs, similar to CT. The
logs must be synchronized to prevent split view attacks.
DTKI [74] allows key revocation for web server keys
with the use of Sovereign Keys. However, it requires
clients to audit synchronously which is hardly feasible
as described in Sec. 2.2. In context of CT CoSi [70] al-
lows a group of witnesses to co-sign a log’s SHTs and
append their resulting commit as aggregated signatures
to it. This makes split view attacks more difficult but
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requires the clients to perform inclusion proof checks.
CoSi shares some similarities with LogPicker. However,
due to the aforementioned issues we strictly refrain from
involving clients into the process of auditing.

3 Threat Model and Goals
A broad threat analysis on CT has been proposed by
Kent and published by the IETF [37]. We focus on the
specific case where the corresponding CA and CT log
are compromised and collaborate in the attack. Kent
admits to this attack scenario being out of scope for CT
and states that a “distributed audit mechanism” must
be employed to detect it.

This work provides such a mechanism: With the
integration of LogPicker, the selected log no longer
needs to be trusted, such that one single log is suffi-
cient to include the certificate. Thus throughout this
work we assume that the browser’s policy requires one
log (Sec 5.1.1). As described in Sec. 1.1 we assume the
covert adversary [8] model for this attacker.
In addition, each individual entity of the Web PKI that
behaves arbitrarily, e.g.malicious or faulty, is assumed
byzantine, as defined by Lamport et al. [38].

3.1 Attack Scenario

For our model we assume a targeted attack where the
attacker wants to violate a user’s privacy by either spy-
ing on or modifying the data sent between the user and a
server. The attacker wants to perform a MitM attack on
the web traffic between them. We assume TLS commu-
nication operates as expected and the attacker refrains
from attacking its cryptographic primitives. Instead the
attacker aims to obtain a certificate for the domain they
wish to attack. They control a CA and a CT log, which
is even easier if the CA already operates a CT log. The
attack is performed in two steps:

1. The attacker compels the CA to omit the domain
ownership check in order to create a certificate for a
domain, which they have no access to. Thus the CA
must omit the domain ownership check and submit
the certificate to a log that is also controlled by the
attacker.

2. This log creates an SCT for the corresponding cer-
tificate. It serves the victim a view containing the
rogue certificate while omitting it from the public
view.

We are aware that reaching this level of control is not
easy. CA and CT log operators know that they are high-
value targets and thus it can be assumed they use good
security practices. However, as highlighted by the mul-
titude of security issues in Sec. 1.1 we consider this a
realistic scenario. In the following we introduce the at-
tacker’s capabilities and the security and privacy goals
which LogPicker must achieve to protect the Web PKI
against them.

3.2 Attacker Capabilities

We consider a malicious-but-cautious adversary, who is
“malicious if they can get away with it” and “cautious
in not leaving any verifiable evidence of its misbehavior”
described by Ryan et al. in [59]. This refers to the covert
adversary model [8]. To successfully carry out the attack
described in Sec. 3.1 the attacker must:

AC1 Compel a CA to omit the domain ownership check
and create a rogue certificate.

AC2 Control a CT log that hides the rogue certificate
from the domain owner’s monitor and present a ma-
licious view to the auditors. This control can be in a
direct manner or delegated, e.g., by instructing the
compelled CA to use a CT log of the same malicious
vendor.

AC3 Control the connection between victim and
server. They are either able to directly redirect the
victim’s traffic or they use known attacks on TCP
like session hijacking [24] or DNS attacks like DNS
cache poisoning [67] just to name a few.

3.3 Privacy & Security Goals

Our goal is to strengthen the Web PKI against the pre-
sented attacker in order to preserve the user’s privacy.
Our defense has to fulfill the following security goals:

SG1 The attacker should not be able to create a rogue
certificate without being detected eventually. This
goal is crucial since the covert adversary will not
take any risk of being detected.

SG2 The solution should not require trusting single en-
tities. Vice versa, it has to work under the assump-
tion that participating CAs and a high number of
logs are malicious.

SG3 To avoid a privacy breach, the client or any of the
user’s private data must not participate neither in
protocol execution nor in auditing.
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SG4 To avoid lockouts, the solution should not rely on
additional trust assumption like TOFU.

3.4 Design Goals
We consider the following design goals to create a solu-
tion acceptable to all entities in the Web PKI:

DG1 Performance: A significant slow down of page
loads decreases the user’s web experience [12, 72].
A viable solution must not slow down the connec-
tion, else it runs the risk of not being accepted by
browser vendors.

DG2 Independence: We want CT logs to remain inde-
pendent in the sense that they may contain different
certificates. We do not see the proposals for synchro-
nized CT logs, e.g., ARPKI [11] as practical, as it
would require additional coordination between all
log providers.

DG3 Scalability: The protocol should be scalable to ap-
plication in the whole Web. It must be able to deal
with the volume of certificate issuance today and
expected in the future. It should enable operators
to distribute the computational load on single logs.

DG4 Incremental Deployment: We believe that one of
the main reasons for the success of CT was its in-
cremental deployability. In contrast to browsers op-
tional backwards-compatible changes on the proto-
cols are unlikely to be adopted by servers as seen
with HTTP/2 [77]. Thus changes to the Web PKI
should not affect web servers.

4 Log Picker
In this section we first give a high-level overview of
the LogPicker protocol. Then we introduce the build-
ing blocks and notation used in the protocol’s descrip-
tion, followed by a detailed description of the protocol’s
different phases and an additional discussion.

4.1 High-Level Overview
From a high-level point of view LogPicker achieves the
goals described in Sec. 3 in three steps:

Step 1 Convening the witnesses Depending on the
browser policy, a list of logs is selected for the pro-
tocol. A CA complying with LogPicker has to obey
this selection. The CA chooses one log from this
list as a leader and submits the certificate to it for

further processing. Note that even if the CA delib-
erately chooses a malicious log, this has no influ-
ence on the security of LogPicker (Sec. 4.3.4). The
remaining logs form the log pool.

Step 2 Random log selection Under the leader’s coor-
dination, the pool has the task to collaboratively
select one log among them, which will be in charge
of including the certificate in its history.

Step 3 Generating an SCT and LPP. The leader col-
lects a cryptographic receipt from each log that wit-
nesses and agrees on the selection’s outcome. In ad-
dition, the selected log creates the SCT and sends
it to the leader. From this data it creates a compact
LogPicker Proof (LPP) documenting the outcome
and successful execution.

Clients who enforce LogPicker accept only certifi-
cates that are presented with a valid LPP. Each correct
log that witnessed the execution will audit the winning
log for inclusion and consistency after the MMD has
passed.

4.2 Preliminaries
To formally describe the inner working of the protocol,
we first introduce some basic notation and the building
blocks utilized to realize the different steps described
in Sec. 4.1. Our notation resembles what the reader will
find in standard literature on cryptography [36]. The
main tools used in our work, namely a digital (aggre-
gate) signature, a commitment scheme and distributed
randomness are described best in this notational frame-
work. Throughout this section we assume that the Web
PKI’s key distribution is reused for LogPicker.

4.2.1 Notation

In the LP-based PKI CT logs are bound to an identity
u ∈ I with an associated key triple (sku, pku, k[ck]u),
where the first denotes the secret key, the second the
public key and the third the public commitment key.
By L ⊂ I we denote the identities of all logs.

Let a and b be two bit strings. By a‖b we denote
the concatenation of these two bit strings. We denote
the empty string by ε. If a and b are not bit strings
we assume that a and b are implicitly encoded into bit
strings via a bijective encoding function before concate-
nation. By [n] we denote the set {1, . . . , n}, with n ∈ N.
By writing {xi}i∈[n] we denote the set {x1, . . . , xn}. By
X = (x1, . . . , xn) we denote a vector with n = |X|
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elements. Let S be a finite set. By s←$S we denote
that s was sampled uniformly at random from S. With
y←$ A(x) we denote the output y of a probabilistic al-
gorithm A for input x. Whenever we use ← it denotes
a deterministic assignment. The operator ∧ denotes the
logical ‘and’. Whenever the algorithm Now is executed
it outputs the current timestamp. With H we denote a
cryptographic hash function.

4.2.2 Digital Signature

A digital signature scheme S = (Gen,Sign,Vrf) consists
of three algorithms. Initially the signer generates a key
pair via (sk, pk)←$ S.Gen(), where sk is kept secret to the
signer and pk is the public key. An arbitrary message m
is signed via σ←$ S.Sign(sk,m). All verifiers in posses-
sion of the public key pk can verify the message signa-
ture pair via S.Vrf(pk, σ,m) = true. Informally a digital
signature scheme is secure if for a malicious user it is
infeasible to forge a valid signature for any m without
being in possession of sk. We refer the interested reader
to [36]. Our protocol design will use this property later
to ensure integrity and authenticity of messages sent by
logs.

With a basic digital signature scheme the band-
width and space requirement for sending and storing
signed messages grows linearly with the number of
signed messages. Same holds if multiple entities want
to sign the same message. In this work we use Ag-
gregate Signatures [13] to reduce this overhead, de-
noted by AS. An aggregate signature scheme AS =
(Gen, Sign,Agg,Vrf) consists of four algorithms. The first
two algorithms AS.Gen and AS.Sign are functionally the
same as S.Gen and S.Sign. Consider Σ = (σ1, . . . , σn),
M = (m1, . . . ,mn), k[SK] = (sk1, . . . , skn) and
k[PK] = (pk1, . . . , pkn), where σi←$ AS.Sign(ski,mi).
Via σagg ←$ AS.Agg(k[PK],Σ,M), a user is able
to aggregate multiple signatures into one aggre-
gate signature. Everyone in possession of the pub-
lic keys k[PK] can verify the aggregate signature via
AS.Vrf(k[PK],Σ,M) = true. Analogue to the basic sig-
nature scheme, AS is deemed secure, iff for a malicious
user not in possession of the entire secret key vector
k[SK], it is infeasible to forge a valid aggregate signa-
ture for any message vector M , under public key vector
k[PK]. Our main intention for introducing this cryp-
tographic primitive is to enable LogPicker to output a
compact proof.

4.2.3 Commitment Scheme

Commitment Schemes are a corner stone of many cryp-
tographic protocols. Discussing all the details is out
of scope at this place. For clarity we just discuss the
basics here and refer the reader to general literature
on cryptography [25, 36]. A commitment scheme C =
(Gen,Com,Open) consists of three algorithms. Consider
two entities: a prover and a verifier. Initially the prover
generates a public commitment key via k[ck]←$ C.Gen().
Via (c, r)←$ C.Com(k[ck],m) a prover can commit to
a message m by sending (c, k[ck]) to the verifier and
keeping r and m secret. Later on the prover eventually
decides to reveal the message by sending (r,m) to the
verifier which ‘opens’ the commitment by verifying the
statement C.Open(k[ck], c, r,m) = true.

A commitment scheme comes with two important
security properties. First it is binding. This means, after
a commitment tom it is infeasible for a malicious prover
to change his mind about m and convince the verifier
that for some other message m′ C.Open(k[ck], c, r,m′) =
true. Second a commitment scheme is hiding, meaning
no malicious verifier in possession of (c, k[ck]) but (r,m)
is able to determine m. Why LogPicker utilizes a com-
mitment scheme will become clear in the next section.

4.2.4 Distributed Randomness

The third core element of LogPicker is that a set of
logs randomly selects one log among them. In order to
provide an unbiased and random selection even in the
presence of potentially byzantine logs we adopted the
concept of distributed randomness (DR) first introduced
by Popov [55]. Basic DR protocols would require either
to trust the leader or each log directly broadcasting its
messages to all other logs. Both approaches are unsuit-
able for LogPicker, because (a) we do not want to intro-
duce a trusted entity and (b) we want to reduce com-
munication complexity. Therefore we propose a leader-
driven Commit-Then-Reveal approach, inspired by Syta
et al. [69, 70].

Consider a log pool U = (u1, . . . , un), where ui ∈ L
and a leader u0 ∈ L\{ui}i∈[n]. First of all u0 will act as
a ‘router’ by forwarding messages from a log to all other
logs in U . This is intended to keep the communication
complexity low.

Commit. The logs in the pool commit to a random
value vi←$ Z|U | without revealing it. By sending their
commitment to the leader u0. After the commitment
the random values vi are fixed due to the binding prop-
erty of C and still hidden due to the hiding property
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of C. This has the advantage that neither the leader
nor any participating log is able to bias the outcome
by adaptively choosing a vi. At the end of this phase
unresponsive logs are excluded from U and the further
protocol procedure. Finally the leader broadcasts the
vector V = (v1, . . . , vn′) to the remaining logs.

Reveal. Due to the eventual exclusion of unrespon-
sive logs during the previous phase the protocol pro-
ceeds with the remaining pool U ′ = (u′0, . . . , u′n′),
where {u′i}i∈[n′] ⊆ {ui}i∈[n]. The remaining logs reveal
their hidden vi. The leader u0 will broadcast the reveal
messages to all logs. Each log can then calculate the fi-
nal random value v as shown in Eq. 1. We will use this
concept to randomly ‘pick’ a log u′v from U ′.

v = 1 +

∑
i∈[n′]

vi mod n′

 (1)

4.3 The LogPicker Protocol
Recall, the goal of one LogPicker execution for an in-
put certificate Γ is to randomly select a log from the
pool that is supposed to include the issued certificate
Γ. Therefore the pool must collaboratively choose a log
at random by agreeing on a value v which represents
the index of the chosen log. On successful execution the
protocol outputs the SCT with an additional LPP that
proves the validity of a protocol run.

LogPicker must be able to deal with possibly unre-
liable or malicious logs. For this task it employs a leader
driven protocol, in which some participants may behave
byzantine, i.e.:

Logs by not including certificates due to failure or by
cooperating with malicious CAs.

CA by not performing domain ownership checks or
compelling a log to not include a rogue certificate.

Leader by not creating a valid protocol output or by
excluding logs from the execution.

4.3.1 Sending Messages

All messages m sent between logs participating in a
protocol run are prepended by a session id sid ←
H(u0‖t0‖Γ), the senders public identifier us ∈ I, and
a signature σ←$ S.Sign(skus

, sid‖us‖m), where Γ is the
new certificate, t0 the initial timestamp and u0 the lead-
ers identity. The algorithm to verify such messages is
defined in Fig. 1. By ∆t we denote the maximum accep-
tance timespan for messages with the same sid. Mes-

sage verification is designed to prevent replay attacks
or other malicious activities that may compromise the
integrity or authenticity of a message. Further the sid
will aid the logs in separating and keeping track of mul-
tiple protocol instances.

LP.VrfMsg(pkus
, t0, sid, us,m, σ)

r1 ← Now()− t0 < ∆t

r2 ← S.Vrf(pkus
, σ, sid‖us‖m)

return r1 ∧ r2

Fig. 1. Procedure for verifying LogPicker messages

4.3.2 Main Protocol

The protocol between the CA and the leader is pre-
sented in Fig. 2 with the subprotocol embedded as a
black box.

LogPicker Request (CA). First the CA1 selects
a log pool U = (u1, . . . , un), where ui ∈ L and a leader
u0 ∈ L\ {ui}i∈[n]. The issuing CA can freely choose the
leader, since the leader is assumed byzantine anyway.
Afterwards the CA invokes the protocol run by sending
a LogPicker request (Γ, U) with the issued certificate Γ
to the leader. The leader triggers the subprotocol and
runs through all four phases with the log pool, described
in Sec. 4.3.3.

LogPicker Reply (Leader). Within a predefined
time period the leader returns the resulting SCT and
LPP to the CA, which can then deliver them along with
the certificate Γ. Unresponsive leaders or protocol exe-
cutions without a valid result are addressed in Sec. 4.3.4.

4.3.3 Subprotocol

In the following we describe the four phases of Log-
Picker’s subprotocol, shown in Fig. 3. Each log in the
pool will keep an transcript τ where it stores relevant
messages of a protocol instance.
P1 Commit Request (Leader). The leader gener-

ates the sid ← H(u0‖t0‖Γ) from the submitted cer-
tificate Γ, the timestamp t0 ← Now() and its pub-
lic identifier u0. Next it broadcasts the message

1 Note that a certificate may also be submitted by other entities
like a website operator.
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P1. commit

P2. reveal

P3. proof

P4. finalize

CA
Leader

Γ, U

SCT, LPP

Fig. 2. The LogPicker protocol overview

(sid, u0, t0,Γ, U, σ1
0) to each log in the pool, where

σ1
0 ←$ S.Sign(sku0 , sid‖u0‖t0‖Γ‖U).

Commit Reply (Pool). After computing
the sid ← H(u0‖t0‖Γ) and verifying that
LP.VrfMsg(pku0 , t0, sid, u0, t0‖Γ‖U, σ1

0) = true each
log adds (t0, u0,Γ, U) to its transcript τi. Next it
samples a random value vi←$ Z|U | and creates a
commitment ci←$ C.Com(k[ck]ui , vi). It sends the
commit reply (sid, ui, ci, σ

1
i ) to the leader, where

σ1
i ←$ S.Sign(skui

, sid‖ui‖ci).
P2 Reveal Request (Leader). After exclud-

ing unresponsive logs the leader fixes the
remaining pool U ′ = (u′0, . . . , u′n′), where
{u′i}i∈[n′] ⊆ {ui}i∈[n]. Next the leader ver-
ifies that LP.VrfMsg(pku′

i
, t0, sid, ui, ci, σ

1
i ) =

true. Finally the leader broadcasts the mes-
sage (sid, u0, C,Σ1, U ′, σ2

0) to the remaining
pool U ′, where C is the list of all com-
mits, Σ1 the corresponding signatures and
σ2

0 ←$ S.Sign(sku0 , sid‖u0‖C‖Σ1‖U ′).
Reveal Reply (Pool). After verifying that
LP.VrfMsg(pku0 , t0, sid, u0, C‖Σ1‖U ′, σ2

0) = true
and LP.VrfMsg(pku′

i
, t0, sid, u′i, ci, σ

1
i ) = true each

log adds (C,U ′) to its transcript τi and reveals its
random value vi by sending (sid, u′i, vi, ri, σ

2
i ) to the

leader, where (vi, ri) is the opening to its previous
commitment and σ2

i ←$ S.Sign(sku′
i
, sid‖u′i‖vi‖ri).

P3 Proof Request (Leader). The leader computes
r1 ← LP.VrfMsg(pku′

i
, t0, sid, u′i, vi‖ri, σ

2
i ), r2 ←

C.Open(k[ck]u′
i
, ci, ri,m) and verifies that r1 ∧ r2 =

true. Next the leader broadcasts the message
(sid, u0, V,R,Σ2, σ3

0) to the pool U ′, where (V,R)
is the list of all reveals, Σ2 the corresponding signa-
tures and σ3

0 ←$ S.Sign(sku0 , sid‖u0‖V ‖R‖Σ2).
Proof Reply (Pool). Each log computes
r1 ← LP.VrfMsg(pku0 , t0, sid, u0, V ‖R‖Σ2, σ3

0),
r2 ← LP.VrfMsg(pku′

i
, t0, sid, u′i, vi‖ri, σ

2
i ), r3 ←

Field Name Description

version LPP version to allow protocol evolution
transcript Transcript of the protocol run
extensions List of extensions for future use
signature Aggr. signature over the transcript including

the certificate

Table 1. Exemplary structure of a LPP

C.Open(k[ck]u′
i
, ci, ri,m) and verifies that r1 ∧ r2 ∧

r3 = true. If the verification succeeded each log
determines the random index v according to Eq. 1
and adds (V,R) to its transcript τi. Now every
log creates its part of the LPP by computing
σ3

i ←$ AS.Sign(sku′
i
, τi) and thus accepts the pro-

tocol pass. Additionally the selected log u′v creates
the SCT. Finally the pool answers the proof request
with the message (sid, u′i,SCTi, τi, σ

3
i ). In case of

u′i 6= u′v the SCTi is the empty string ε, in case of
u′i = u′v the SCTi is the SCT.

P4 Finalize (Leader). The leader also calculates the
resulting index v from V according to Eq. 1. Next
the leader verifies that ∀i, j ∈ [n′] : τi = τj . To final-
ize the protocol run the leader aggregates the sig-
natures Σ3 into one condensed aggregate signature
σ via σ←$ AS.Sign(k[PK],Σ3,T), where k[PK] =
(pku′

1
, . . . , pku′

n′
). The leader fixes the final tran-

script τ = τi and finalizes the protocol run by broad-
casting the message (SCT,LPP) to the pool and the
CA, where SCT = SCTv and LPP = (τ, σ). Each
log verifies whether the SCT and the LPP match
the certificate Γ. They also verify whether the SCT
was created by the expected log.

4.3.4 Discussion

In order to proof its consent on the outcome of a Log-
Picker’s execution, each log must sign the transcript.
This consent is documented in the LPP. Analogue to
an SCT, the LPP will be served to clients accompanied
by the certificate in question. The exemplary structure
of a LPP is shown in Tab. 1. Clients accept an LPP iff
it meets the client’s policy.

To validate a LPP, the client must verify the ag-
gregate signature contained in the LPP. This requires
the public keys of all participating logs. These keys can
be distributed with the regular browser update mecha-
nisms, as it is the case by now [26].



LogPicker 194

P
1

.
co

m
m

it
P

2
.

re
ve

a
l

P
3

.
p

ro
o

f
P

4
.

fi
n

a
li

ze

Leader Pool

sid , u0, t0,Γ, U, σ
1
0

sid , ui, ci, σ
1
i

sid , u0, C,Σ
1, U ′, σ2

0

sid , u′
i, vi, ri, σ

2
i

sid , u0, V, R,Σ
2, σ3

0

sid , u′
i, SCTi, τi, σ

3
i

SCT, LPP

Fig. 3. Overview of LogPicker’s subprotocol

Inter-Log Auditing
The fact that multiple logs witness the issuance of a
certificate and corresponding SCT makes them suitable
to automatically audit this result. This relieves clients
and third-parties of the duty to perform auditing, which
we consider critical as discussed in Sec. 2.2. The SCT
sent by the leader during P4 is the selected log’s promise
to include the corresponding certificate into it’s history
within the MMD. After the MMD has passed, each other
log audits whether this promise was kept. If at least one
correct log completed the LogPicker run it will discover
a malicious log’s behavior, as discussed in Sec. 5.1.2.

Handling Protocol Violations
In LogPicker each entity which directly takes part in
the execution witnesses the certificate issuance. As soon
as someone violates the protocol’s specification, there
are multiple witnesses who can expose it and trigger a
protocol abort, if necessary. Since each message is signed
by its sender, the witnesses can use this to prove the
sender’s misbehavior:

• Log pool and leader can check whether the CA sub-
mits a valid certificate.

• CA and log pool can observe the leader creating a
valid LPP and not repeatedly exclude logs from the
execution.

• CA, leader and each other log in the pool can watch
the log in charge creating a valid SCT.

• Leader and log pool can inspect each other’s re-
sponse time, which is part of the CT policy.

However, not each protocol violation necessarily re-
quires an abort. During the execution the leader waits
for a certain time for the pool’s responses to arrive. If a
log’s response is missing or the verification of its signa-
tures fail, it must be excluded from the execution. If this
happens before P2 the execution can proceed without
this log. If this happens up from P2 but within the ex-
ecution, it must be aborted. The leader must notify the
waiting CA and other logs with detailed errors about
the abort.

Syta et al. described an attacker [69], who is able
to influence the result of a DR protocol by repeatedly
forcing the protocol to restart until a favorable result
appears by chance. As the leader is assumed byzantine
in LogPicker, they have several opportunities to trigger
protocol aborts. We propose the following mitigation
against this attack:

• Based on the approach in [69] logs can keep count of
commit requests keyed by domain. After a defined
count of commits for the same domain they refuse
to participate in further executions for this domain
for a certain time. The logs must report the entity
responsible (CA or leader).

• The covert adversary used for our threat model
wants to conceal any evidence of its misbehavior,
as described in Sec. 3. Punishing protocol aborts by
logging them would deter an attacker from forcing
protocol restarts as well.

As described in Sec. 5.1.2 if one entity repeatedly
violates the protocol’s specification, it must be reported
and browser vendors and CAs must take actions accord-
ing to their regulations, e.g., excluding the faulty entity
from their trusted lists.

Note, that if the CA chooses a malicious leader, the
protocols outcome still cannot be influenced: The leader
cannot forge the signatures of the witnessing logs, and
thus change individual votes. Repeated aborts of the
protocol, if the leader is not satisfied with the vote,
would be noted by the witnesses and thus be reported.
Excluding individual logs from the protocol execution
violates fairness, but does not influence the random se-
lection as well.

5 LogPicker Analysis
We proceed to analyse and evaluate the efficacy of Log-
Picker in different experiments. Our goal is to investi-
gate how LogPicker meets the security and design goals
set in Sec. 3. We then investigate how a log’s malicious
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behavior is detected and how the current CT policies
are applied to the LP-based PKI. In addition, we anal-
yse the overall correctness probability of the Web PKI
including its different extensions.

5.1 Analysis of LogPicker’s Properties

In the following we briefly review the achievements of
LogPicker according to goals described in Sec. 3.

5.1.1 Policies of the LP-based PKI

Despite the adoption of LogPicker, the lower-bound con-
strain on CT logs remains the same such that the gen-
eral CT policy introduced in Sec. 2.1 can be respected.
It only needs to be expanded with the additional con-
straints that arise on the logs.

Browsers can maintain their own policy (Browser
LP Policy) the same way as in the CT-based PKI. Even
individual browser constrains, like the logging in two
logs [63], can be applied to LogPicker with only minor
modifications to the protocol’s execution. In addition,
browser vendors can set additional requirements in their
Browser’s LP Policy, i.e., enforcing an LPP to be signed
by at least one log from the browser’s individual trusted
list. This way it ensures that at least one trusted log
participates in the LP run which hardens the 1-correct-
log assumption. This requirement must be taken into
account by the CA during pool selection and does not
require any change to the protocol.

However, we encourage browser vendors to join
forces and merge their policies in order to make the
Web PKI less complex and provide the same security
guarantees to all users on the Web. Therefore we sup-
port Chrome’s decision for dropping a part of their CT
policy, which required one of the logs in charge to be
operated by Google [52].

5.1.2 Detection of Rogue Certificates

If a CT log wants to support a malicious CA to carry out
the attack described in Sec. 3.1 they must hide the cor-
responding rogue certificate from their public log. Since
in the LP-based PKI a user’s browser enforces each cer-
tificate to be accompanied by a valid LPP, it leads to
inter-log auditing by correct logs. This poses a high risk
for the attacker to be detected. However, hiding certifi-
cates from public logs is a violation of the CT specifi-
cation, such that the attacker must serve each auditing
log that participated in the appropriate LogPicker run a

view containing the rogue certificate. If at least one cor-
rect log participates in the LP run, after MMD it will
audit the malicious logs promise to include the rogue
certificate. If the rogue certificate is missing in the pub-
lic view, this violation is detected by at least one correct
log. As a consequence the malicious log will be forced to
include the rogue certificate in its public view and can
therefore be found by monitors.

The infrastructure introduced by LogPicker allows
the interplay of auditing and monitoring. This gives fur-
ther options to detect and to mitigate split-view attacks
against monitors as well. E.g., logs participating in a
LogPicker run that target the domain of a monitor can
notify it about the run in progress and even prove their
participation by presenting the LPP. This would cause
the malicious log to be monitored by the domain owner’s
monitor and result in the detection of the rogue certifi-
cate. The communication between the log and the mon-
itor, however, requires a secure communication channel.
Establishing such a channel is a non-trivial task in prac-
tice and thus we defer its concrete implementation to
future work.

5.1.3 Analysis of Security Goals

LogPicker strengstens the Web PKI against attacks re-
sulting from the collaboration of malicious CAs and CT
logs. If this attack is foiled by the random log selec-
tion, it will prevent the CA from influencing the log.
If the attacker gets lucky and a malicious log is se-
lected by chance, the interplay of auditing and moni-
toring mitigates split view attacks. Both scenarios pose
a high risk for the attacker, which they are not willing
to take (Sec. 3.2) (SG1).

By design LogPicker tolerates byzantine CAs and
can handle a high number of byzantine logs (SG2). Con-
cretely, it is robust against collaboration of malicious
entities among the Web PKI, as introduced in Sec. 3.1.

Client-side auditing is not required using LogPicker
since it is performed by the logs. Firstly, this preserves
the clients privacy (SG3). Secondly, logs are best suited
for this task due to their involvement in the certificate
issuance process.

Clients can verify the aggregated signature using the
LPP served alongside the certificate. There is no need to
rely on trust assumptions (SG4) since the LPP attests
the successful execution of LogPicker.
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5.1.4 Analysis of Design Goals

To validate the authenticity of a LPP, the user’s browser
does only need to verify the aggregate signature con-
tained in the LPP. LogPicker thus does not introduce
any additional network requests on loading a website
and thus conforms to DG1.

LogPicker does not require logs to synchronize with
others, such that they remain independent (DG2).

Implementations of LogPicker can be scaled effi-
ciently across multiple servers and thus keep up with
the expected growth of the Web PKI. Our prototype
in Sec. 6 shows that LogPicker can even handle possible
future loads of the Web (DG3).

The deployment of LogPicker requires only changes
to CT logs and browsers (DG4), which we argue to
be realistically achievable. The LP-based PKI is down-
wards compatible, such that outdated clients can still
be used.

5.2 Probabilistic Analysis
In order to examine the effectiveness of LogPicker we
need to analyze the likelihood of a future compromise
of this protocol in the context of the Web PKI. For this
purpose we use the probabilistic approach as applied to
the CA-based PKI by Oppliger [54].
We define an entity of the Web PKI, e.g., a CT log or a
CA, as correct if it always behaves according to its spec-
ification. An entity with arbitrary behavior is assumed
byzantine. A system of entities like the CA-based PKI is
assumed correct, if it behaves correct as a whole, even in
the presence of some byzantine entities. In this chapter
we present only the results of the analysis and refer to
Appendix. B and [54] for more details.

5.2.1 CA-Based PKI

Fig. 4 shows the correctness probability of the CA-based
PKI taking into account the correctness probability of
each individual CA, denoted by p and the number of all
existing CAs in the system, denoted by nCA.
Recall that most browsers include less than 200 CAs
in their trust list [6, 27] and this number does not even
include intermediate CAs, which are able to issue cer-
tificates the same way as root CAs. As shown in Fig. 4
the correctness of the CA-based PKI diminishes quickly.
Even by assuming a high value of p = 0.99 this results
in a correctness probability for the whole system of less
than 0.2 which we consider a critical value for the trust-
worthiness of the CA-based PKI.

Fig. 4. Probability that all CAs are correct as defined in Eq. 2
over a number of CAs nCA

5.2.2 CT-Based PKI

In the CT-based PKI browsers enforce the logging of
certificates to CT logs, whose purpose is to make CA
misbehavior public. In addition to nCA the CT-based
PKI adds a number of CT logs, denoted by nlog, from
which the issuing CA is free to choose one. This way
incorrect behavior of a CA is detected if the chosen log
is correct and includes the CA’s rogue certificate into
its public history.
Fig. 5 shows the correctness probability of the CT-based
PKI by utilizing a ratio r between CAs and CT logs par-
ticipating in the CT-based PKI with r = nca

nlog
. To ap-

proximately reflect the reality at the time of this writing
we chose r = 5.67, i.e.nCA = 0.85 ·n and nlog = 0.15 ·n.
An improvement from the CT-based PKI to the pre-
vious one is noticeable: For p = 0.99 and n = 200 the
value has increased from 0.20 to 0.80. However, this re-
quires a high level of trust in the individual CAs: with
p = 0.90 the correctness probability quickly approaches
zero. In addition Fig. 9 shows how varying the ratio in-
fluence the correctness probability by assuming a fixed
p = 0.99.

5.2.3 Gossip-Based PKI

The use of CT Gossip adds another layer of fallback by
introducing the probability that all websites are gossip-
ing. Even if a CA and the log in charge are compromised,
mississued certificates can be detected if the visited web-
site is gossiping. If Gossip is rolled-out partially, only the
communication with the corresponding websites is pro-
tected, the Web as a whole remains vulnerable. Thus
Gossip’s contribution to the system’s correctness prob-
ability depends on each individual website’s probability
for gossiping.
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Fig. 5. Probability that all CAs or all logs are correct as defined
in Eq. 4 over number of entities n with a fixed ratio r ≈ 5.67
with r = nCA

nlog

Due to the large number of existing websites the proba-
bility that all websites are gossiping is close to zero such
that Gossip’s contribution to the correctness of the CT-
based PKI is negligible. Thus we assume the correctness
probability for the resulting Gossip-based PKI to be the
same as for the CT-based PKI.

LP-Based PKI
In order to guarantee an unpredictable outcome at least
one correct CT log must contribute to the random log
selection. For this analysis we assume all logs to par-
ticipate in each LogPicker run. The maximum number
of byzantine logs f that can be handled by LogPicker
is denoted by f = nlog − 1. For simplicity we use a
coin toss to decide for each individual log whether it
is correct or not. We consider it an unrealistic scenario
to assume such a high number of logs to be byzantine.
Nevertheless, we analysed the LP-based PKI using this
lower bound in order to show that even in this worst
case scenario LogPicker is able to maintain a high cor-
rectness probability.
The result shown in Fig. 6 represents the overall cor-
rectness probability for the LP-based PKI applied for
different probabilities of correctness of the participat-
ing CAs. A significant improvement compared to the
previously analysed systems can be seen. For any value
of p > 0.25 the probability approaches 1 for n > 50.
This results in a correctness of almost 100 % for each
successful execution of LogPicker. In addition Fig. 10
shows that varying the ratio has little influence on the
correctness probability of the PL-based PKI, even by
assuming a low p = 0.5.

Fig. 6. Probability that all CAs are correct or at most f = nlog−1
logs are byzantine as defined in Eq. 7 over number of entities n
with a fixed ratio r ≈ 5.67 with r = nCA

nlog

6 Prototype
To ensure compliance with DG3 from Sec. 3.4 we
demonstrate that LogPicker does not impose unaccept-
able delays to certificate issuances for the current scale
of the Web PKI and beyond. We therefore prototyped
LogPicker2 to show it meeting the aforementioned de-
sign goals. Our prototype covers all phases described
in Sec. 4.3.2. Its implementation is described in more
detail in Apx. A.

We performed the experiment on a cluster consist-
ing of 9 nodes, each equipped with two Intel Xeon E5-
2640v4 CPUs and 64 GB of RAM, running CentOS 7.
We ran 15 instances of our prototype on each node.

At the time of writing, Chrome trusts ≈ 30 usable
CT logs [26]. As we expect the CT ecosystem to grow
further, our experiment described in the following high-
lights that LogPicker does not impose constraints on the
future growth of the Web PKI.

Performance Characteristics
According to DG3 LogPicker must not slow down the
certificate creation significantly. As stated by Schoen
customers of Let’s Encrypt “[. . . ] should be able to get
a new cert [. . . ] in one minute” [61]. Fig. 7 shows the
runtime of the LogPicker protocol to issue one certifi-
cate with an increasing number of logs. In our experi-
ment the client submits 1000 certificates to a leader pro-
cess for varying numbers of logs. We measured the time
each certificate took from reaching the leader process to
the completion of the protocol and averaged the results.
Under conditions roughly four times the size of the cur-

2 The prototype is available under https://logpicker.github.io/.

https://logpicker.github.io/
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Fig. 7. Time taken to complete one LogPicker run

rent Web PKI’s scale, the additional time required by
LogPicker is still below 2 s, a delay we consider to be
acceptable.

The LogPicker protocol requires the leader to re-
ceive 1 + 3 · nlog and send 1 + 4 · nlog messages for each
run. The number of processed messages thus scales lin-
early with the size of the log pool. Each participating
log receives 4 messages and sends 3 messages per Log-
Picker run. The communication complexity is therefore
linear for the leader and constant for each log. This
matches the results shown in Fig. 7 where the required
time scales roughly linear with the number of partici-
pating logs.

As the participating logs do not need to perform any
kind of synchronization between concurrent LogPicker
runs, the issuance speed is the main performance crite-
ria. Additional measurements regarding the throughput
of our prototype are provided in Apx. A, Fig. 8.

7 Limitations and Future Work
LogPicker adds additional complexity to the issuance
process of certificates. This is largely confined to CT
logs, which must implement the core of the protocol.
In addition, CAs must modify their issuance process by
taking the detour via LogPicker instead of directly sub-
mitting certificates to their favorite logs. Although due
to our experiments we consider the resulting slowdown
to be acceptable, we point out that there is some room
for extensions.

Monitoring still suffers from several problems, as
shown 2019 by Li et al. [44]. The interplay of auditing
and monitoring allows the incorporation of pro-active
notifications during certificate creation. This can be
done for example by utilizing DNS txt records [20] that
stores a domain owner’s callback URL. Correct logs can
use it to send a notification about each certificate cre-
ation attempt targeting this domains during the proto-

col’s first phase. This way protocol aborts by a malicious
leader are reported automatically. As soon as a leader
becomes malicious participating logs can force a proto-
col abort. However, this requires the establishment of
a new LogPicker round with a new leader, which slows
down the generation time of the certificate. A proof of
the leader’s misbehavior could help to fasten up proto-
col restarts by e.g. reusing parameters from the previous
round.

As soon as a rogue certificate is discovered dur-
ing e.g., auditing it must be revoked, which is still a
problem of active research. Combining LogPicker with
other solutions, e.g., Laurie and Kasper’s idea of Revo-
cation Transparency [42] may lead to promising new
approaches.

The protocol’s cryptographic building blocks,
e.g., Aggregate Signatures, provide a perfect fit for the
design of the protocol. As with several other proto-
cols, however, other designs and combinations of cryp-
tographic primitives are also possible and might provide
similar results.

8 Conclusion
LogPicker enhances the privacy of web users by making
auditing of certificates more effective. Instead of indi-
vidual trust anchors, the protocol enables collaboration
of CT logs in order to withstand byzantine CA and CT
logs, likewise.

The adoption of LogPicker enhances the protection
of a user’s privacy on the internet by hardening the
Web PKI against attacks resulting from collaboration
of a byzantine CA and CT logs. In addition, LogPicker
makes auditing more practicable by involving witnesses
in the issuance process of certificates.

We justified our threat by reviewing the history of
certificate mississuance and the weaknesses of the cur-
rent Web PKI and its alternative approaches. From this
we derived our attacker model and the goals required
to protect the Web PKI. To create a feasible solution,
we identified additional protocol design goals. We intro-
duced the LogPicker protocol, which extends the CT-
based PKI to comply with our goals and presented its
building blocks. Our probabilistic analysis shows a sig-
nificant improvement of the correctness probability of
the LP-based PKI compared to others. To get a sense
of how LogPicker performs, we developed a prototype of
our solution and presented its promising results. Finally,
we reviewed LogPicker’s limitations and the remaining
challenges.
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The design of LogPicker builds on two general con-
cepts for improving security: collaboration and reduced
complexity. We believe that this combination does not
only help to protect the Web PKI from certificate mi-
sissuance but ultimately provides a general basis for
managing and monitoring trust in the internet. Conse-
quently, we conjecture that variants of LogPicker might
also be applicable in other scenarios where multiple par-
ties need to audit themselves, such as in distributed au-
thentication and application mash-ups.
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9 Appendix
A Details on Prototype

We implemented LogPicker as a C++ prototype, that
performs each phase of the protocol. However, our pro-
totype does not model the interaction with the actual
CT log software, i.e., once the leader receives the SCT
and LPP our prototype concludes the LogPicker run.
We use RSA signatures with keylengths of 2048 bit from
the RELIC toolkit [7] to verify the authenticity of the
exchanged messages. In P4 we use BLS signatures with

aggregation based on bls-signatures3 for the creation of
the LPP. The TCP communication of the protocol’s
participants was realized with msgpack-RPC using the
rpclib4 library.

We calculated the throughput shown in Fig. 8 based
on the elapsed time at the leader for processing 500
certificates. Please note that to increase the throughput
the log’s operator can simply deploy more LogPicker
processes and distribute the workload via a regular load
balancer.
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Fig. 8. Certificate Throughput

B Details on Probabilistic Analysis

Since the correctness probability for each entity in a sys-
tem is hard to determine, Oppliger chooses [54] an equal
correctness probability for all entities in the system in
order to make them comparable at all.
In our work we apply his approach to the subsequent
evolutions of the Web PKI including LogPicker. We are
aware of the fact that this procedure does not reflect the
real behavior of the system. However, it is still valuable
as it represents the worst case behavior for each system
equally.

CA-based PKI
The number of all CAs in the CA-based PKI is denoted
by nCA. The attacker can choose which CA they wish
to attack, such that the CA-based PKI is only correct if
each CA is correct, even the weakest one. This implies
that the correctness of the CA-based PKI is dependent
on the correctness of the weakest CA, denoted by p.
Using this assumption, Eq. 2 expresses the correctness
probability for the whole CA-based PKI.

3 https://github.com/Chia-Network/bls-signatures
4 https://github.com/qchateau/rpclib

https://security.googleblog.com/2015/09/improved-digital-certificate-security.html
https://blog.cloudflare.com/introducing-certificate-transparency-and-nimbus/
https://blog.cloudflare.com/introducing-certificate-transparency-and-nimbus/
https://developers.google.com/web/fundamentals/performance/why-performance-matters
https://developers.google.com/web/fundamentals/performance/why-performance-matters
https://developers.google.com/web/fundamentals/performance/why-performance-matters
https://github.com/Chia-Network/bls-signatures
https://github.com/qchateau/rpclib
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Fig. 9. Probability that all CAs or all logs are correct for p = 0.99
and a variable ratio r = nCA

nlog

Fig. 10. Probability that all CAs are correct or at most f logs
byzantine for p = 0.50 and a variable ratio r = nCA

nlog

Pr[all CA correct ] =

nCA∏
i=1

p = p
nCA (2)

CT-based PKI
During certificate creation CAs can freely choose the log
that shall record their certificates. The same way as for
CA-based PKI the attacker can choose the weakest log
to attack from the set of all participating CT logs. Again
this implies the set of all logs is correct if the weakest
log in this set is correct as well, defined by Eq. 3.

Pr[all logs correct ] = p
nlog (3)

In the CT-based PKI incorrect behavior is detected if
at least one correct log publishes this misbehavior in
its history. Taking into account the assumptions above
it can be assumed that the CT-based PKI is correct if
either even the weakest CA is correct or the weakest log
is correct. The correctness probability for the CT-based
PKI yields in Eq. 4.

Pr[all CA ∨ all log corr. ] = 1− (1− p
nCA )(1− p

nlog ) (4)

LP-based PKI
For each log in the log pool a coin toss decides whether
this log behaves correct or not, which can be modeled

as a Bernoulli Trial B, described by a binomial distri-
bution [29].
The number of logs in a log pool is denoted by nlog.
The probability for each of those logs being correct is
p, the counter-event is denoted by p. Let k be a number
with k < nlog. The probability that exactly k logs are
byzantine, is denoted by:

Pr[Exactly k logs byzantine ] = B(p, nlog, k) (5)

We seek the probability that at most f logs are byzan-
tine, by inserting each possible probability outcome for
k ≤ f from Eq. 5 and adding them up:

Pr[At most f logs byzantine ] =
f∑

k=0

B(f, nlog, k) (6)

Hence, the overall correctness probability for the LP-
based PKI results from the probability that all CAs are
correct or at most f logs are byzantine:

Pr[all CA correct ∨ at most f logs byzantine ]
= 1− (1− Pr[all CA correct])(1− Pr[at most f logs byz])

= 1− (1− pnCA)

(
1−

f∑
k=0

B(f, nlog, k)

)
(7)
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