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Fortified Multi-Party Computation: Taking
Advantage of Simple Secure Hardware Modules
Abstract: In practice, there are numerous settings where
mutually distrusting parties need to perform distributed
computations on their private inputs. For instance, par-
ticipants in a first-price sealed-bid online auction do not
want their bids to be disclosed. This problem can be ad-
dressed using secure multi-party computation (MPC),
where parties can evaluate a publicly known function on
their private inputs by executing a specific protocol that
only reveals the correct output, but nothing else about
the private inputs. Such distributed computations per-
formed over the Internet are susceptible to remote hacks
that may take place during the computation. As a con-
sequence, sensitive data such as private bids may leak.
All existing MPC protocols do not provide any protec-
tion against the consequences of such remote hacks.
We present the first MPC protocols that protect the re-
motely hacked parties’ inputs and outputs from leaking.
More specifically, unless the remote hack takes place
before the party received its input or all parties are cor-
rupted, a hacker is unable to learn the parties’ inputs
and outputs, and is also unable to modify them. We
achieve these strong (privacy) guarantees by utilizing
the fact that in practice parties may not be susceptible
to remote attacks at every point in time, but only while
they are online, i.e. able to receive messages.
To this end, we model communication via explicit chan-
nels. In particular, we introduce channels with an air-
gap switch (disconnect-able by the party in control of
the switch), and unidirectional data diodes. These chan-
nels and their isolation properties, together with very
few, similarly simple and plausibly remotely unhackable
hardware modules serve as the main ingredient for at-
taining such strong security guarantees. In order to for-
malize these strong guarantees, we propose the UC with
Fortified Security (UC#) framework, a variant of the
Universal Composability (UC) framework.
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1 Introduction
Secure multi-party computation (MPC), which allows
mutually distrusting parties to securely evaluate a pre-
defined function on their private inputs via a protocol,
is a central privacy-enhancing technology that can be
used in a wide range of scenarios. Examples include
– auctions (protecting the bids’ confidentiality) [8],
– contact discovery (protecting the contacts’ confiden-

tiality) [35],
– toll collection (protecting e.g. location data) [21],
– medicine (protecting highly sensitive data such as
(parts of) the genome) [3, 48],

– electronic payment (ensuring privacy and e.g. un-
linkability) or [7],

– voting (e.g. confidentiality of the votes and correct-
ness of the vote count) [46].

Protocol parties may become corrupted, i.e. fall under
adversarial control. This can happen prior to the start
of the protocol execution, which is called static corrup-
tions. Furthermore, protocol parties may also become
corrupted during the protocol execution via remote
hacks. This type of corruption is called adaptive corrup-
tions, first proposed in [13]. Up to now, all MPC con-
structions leak the private inputs of parties corrupted
during protocol execution. However, the fact that the
adversary learns all secrets of a corrupted party should
be of a major concern, as there are plenty of sensitive
MPC applications where this results in substantial real-
world damage. In this work, we provide constructions
where the adversary does not necessarily learn the in-
puts of parties corrupted via remote hacks during the
protocol execution. Furthermore, this also holds for the
corrupted parties’ outputs.

As an example, consider two government agencies
from different countries that want to perform a pri-
vate set intersection to learn who is on both countries’
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wanted lists. In such a setting, it is very plausible that
i) both parties can protect their devices against attacks
requiring direct physical access but ii) are, at the same
time, still susceptible to remote hacks from a nation-
state attacker. Previous MPC protocols, even ones that
are adaptively UC-secure, would not protect the re-
motely hacked party’s inputs’ and outputs’ privacy and
integrity. Surprisingly, such strong and novel guarantees
are possible and provided by our constructions.

We achieve this by exploiting the so-far overlooked
observation that in all likely real-world scenarios, proto-
col parties who are not connected to the Internet just
cannot be remotely “hacked”. For instance, a party may
use data diodes (unidirectional channels) or disconnect
itself via air-gap switches. With this, we can now intro-
duce a distinction (motivated from the real world but
with considerable theoretical interest) between remote
hacks (e.g. sending malware), called online attacks in
the following, and so-called physical attacks (e.g. replac-
ing a part of the hardware or exploiting the larger attack
surface provided by physical access to the device).

In conjunction with data diodes and air-gap
switches, a protocol party may also use additional re-
motely unhackable hardware modules. An example of
such an additional hardware module is a simple encryp-
tion unit that only implements a specific public key en-
cryption scheme. All hardware modules used in our con-
structions are of very limited functionality and could be
potentially formally verified for correctness, making it
plausible to assume them to be resilient against remote
hacking. In particular, an adversary can only corrupt
such modules if he has direct physical access. Our as-
sumptions are backed by commercially available devices
with the required or similar functionality, see Section 5.

Utilizing only few and simple remotely unhackable
hardware modules, we provide constructions with very
strong security guarantees against online attacks. More
specifically, online attacks i) mounted after a party re-
ceived its first input and ii) mounted before a party
received input if the attack comes from the “outside”
do not allow an adversary to learn a corrupted party’s
inputs and outputs nor to modify them, unless all par-
ties are corrupted. Here, the “outside” denotes all chan-
nels except one at a party’s input port1. In more detail,
the parties in our protocols are disconnected from the
outside while waiting for input and can therefore not
be corrupted via online attacks from the outside at that

1 We use the informal notion of an input port to denote the
single channel via which a party can receive its first input.

point. After receiving input (via the input port), the par-
ties authenticate, mask and share their secrets in such
a way that mounting online attacks gives the adversary
control over a party but not the ability to learn the
party’s inputs or outputs, nor to modify them unless
he gains control over all parties. This stands in contrast
to adaptive corruptions where an adversary may learn
and modify the inputs and outputs of corrupted parties
after they received input. Although the possibility for
parties to perform a secure erasure seems necessary for
such a strong protection, we show that this assumption
can be dropped in the full version. Also, the security of
some of our constructions gracefully degrades to (essen-
tially) standard adaptive UC security if the assumptions
about the remotely unhackable hardware modules, chan-
nels and secure erasures turn out to be wrong (cf. Ap-
pendix A). This illustrates that security is not a binary
property. We thus see our work as a first step towards
a nuanced view of cryptographic security, which can be
seen as a step towards the quantification of security.

In a bit more detail, we introduce a method for forti-
fying any generic MPC protocol2 secure in the presence
of adaptive corruptions, so that the resulting protocol
provides the above-mentioned strong (privacy) guaran-
tees. The constructions we present provide these guaran-
tees even when arbitrary (possibly malicious) protocols
are executed concurrently.

In order to adequately capture the guarantees pro-
vided by our remotely unhackable hardware modules in
a concurrent setting, we propose UC with Fortified Se-
curity, a variant of the UC framework [11]. Like UC se-
curity, the notion of UC with Fortified Security is based
on the simulation paradigm where the execution of the
protocol under analysis is compared to an ideal proto-
col execution. In the ideal protocol, all (honest) par-
ties do not communicate with each other but only hand
their private inputs to a trusted third party which lo-
cally evaluates the desired function and privately sends
the results back to the parties. The protocol under anal-
ysis, called the real protocol, is said to be secure if it
“emulates” the ideal protocol, i.e. any attack that can
be mounted in the real protocol can also be carried out
in the ideal protocol. Stated differently, for any given
adversary against the real protocol, there exists an ad-
versary against the ideal protocol, called the simulator,
that can cause the same damage in the ideal protocol

2 Informally, a generic MPC protocol such as [14, 29] can be
used to securely realize practically any efficiently computable
function.
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as the given adversary can cause in the real protocol.
As a consequence, all security guarantees of the ideal
world such as privacy carry over to an execution of the
protocol under analysis. This way, there is no need to
define a security notion for each desired security prop-
erty, as they are captured by the specification of the
ideal protocol.

For conciseness, we introduce the abbreviation UC#
for “UC with Fortified Security”, where the added fence
# symbolizes our “fortified” security. In this new vari-
ant of the UC framework, we deviate from the standard
communication model and restrict the allowed commu-
nication in order to incorporate isolation properties.
A party’s current online state (capturing whether the
party can receive messages) is determined by the type
and state of its channels, e.g., the (opened/closed) state
of its air-gap switches. This will be made precise in Def-
inition 1. The hardware modules used in a protocol and
their connections are part of what we call the protocol
architecture.

These changes of the communication model make it
necessary to re-prove the composition theorem as well
as other properties of the UC framework. We can show
that our notion is equivalent to standard adaptive UC
security if no remotely unhackable hardware units and
isolation assumptions are used.

We stress that our remotely unhackable hardware
modules should not be confused with the tamper-proof
hardware tokens proposed in [30], as our hardware mod-
ules are a substantially weaker assumption. In particu-
lar, they can be tampered with if one has direct physical
access. They cannot be passed to other, possibly mali-
cious parties, but are only used and trusted by their
owner. They are thus not sufficient and not intended
to be used to circumvent the impossibility results of
[12, 15]. In summary, our protocols provide the best pos-
sible protection against online attacks in a setting where
parties cannot be protected while waiting for input.

1.1 Our Protocols in a Nutshell

Our protocols proceed mainly according to the follow-
ing template, which consists of three phases. In the ini-
tial phase, starting for each party after it obtains input,
the parties go offline (including their input port) and
send encrypted and signed shares of their inputs via
data diodes. In this phase, the encrypted shares are re-
ceived by hackable buffers since the parties are offline
and hence cannot receive messages themselves. Being
offline, they also cannot retrieve the public keys neces-

sary for encrypting the shares. This is therefore done
by a remotely unhackable encryption unit (connected
to its party via a data diode), which encrypts and sends
the shares to the other parties’ buffers. At the end of
this phase, each party erases each share except for its
own and also erases the signing key used for authenti-
cating their shares. Subsequently, a new phase begins
where the parties are online and use the shares they re-
ceived to obtain an encryption of the desired results. If
an adversary corrupts a party via an online attack dur-
ing this phase he only learns one share of each party’s
input and only an encryption of that party’s output.
Also, he is unable to modify the party’s input since the
signing key has been erased. Finally, the desired result
is decrypted and output in a final phase. This is done
by modularizing each party into a hackable “core com-
ponent”, which is referred to as the “party”, and a re-
motely unhackable output interface module (OIM) that
verifies and decrypts the desired result. In more detail,
the core component sends two symmetric keys, one for
encryption and one for message authentication, to its
OIM in the first phase. These two keys are shared along
with the input. In the second phase, the core compo-
nent receives the desired result (from the generic MPC
protocol) encrypted and authenticated with these two
keys. In the final phase, the core component hands the
encrypted and authenticated result to its OIM, which
verifies the authenticity of the encrypted result and if
correct, decrypts and outputs the result. Since the OIM
is remotely unhackable and the two keys stored in the
OIM are shared among the parties, the adversary would
have to corrupt every party, i.e. every core component,
in order to be able to learn and modify a party’s output.

In order to highlight the necessity of remotely un-
hackable hardware modules and their isolation proper-
ties, we present two simple constructions in the follow-
ing. Consider the execution of a secret-sharing-based
MPC protocol such as [14] where the protocol parties
P1 and P2 are initially honest. First, P1 creates random
shares s1, s2 of its input x1, erases x1 and sends s2 to
P2 via a secure channel. At this point, the adversary re-
motely hacks P1 and learns both s1 and s2 and is able to
reconstruct the secret input x1. This attack is not pos-
sible in our protocol as the machine holding s1 is still
offline at this point and not susceptible to remote hacks.
This inability to protect the initially honest parties’ se-
cret in case of remote hacks is intrinsic to previous MPC
protocols.

Second, consider a protocol for secure two-party
computations where P1 and P2 have access to a trusted
execution environment (TEE). In the protocol of [43],
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P1 and P2 perform a remote attestation with the TEE,
establishing a secure channel. This channel is used by
the parties to send their inputs xi (i = 1, 2) to the TEE,
which performs the actual computation and returns the
results yi (i = 1, 2) via the secure channel to the parties.
In this setting, an adversary then can remotely hack e.g.
P1 and thus learn or modify the outputs, as the TEEs
protect the computation, but not the I/O. Furthermore,
the adversary could also choose to remotely hack P1 be-
fore it sends its input to the TEE. As P1 has to be online
in order to sends its input to the TEE, it is vulnerable
at this point.

1.2 Our Contribution

We introduce the so-far overlooked distinction between
physical and online attacks to protect the privacy-
sensitive inputs and outputs of the participants in an
MPC protocol against the latter, vastly more common
type of attack. Furthermore, we utilize realistic simple
remotely unhackable hardware modules that, to the best
of our knowledge, have not been used for secure generic
multi-party computation so far. With this, we also ar-
gue for a shift in how the security of the user’s device is
incorporated more concretely into secure computations.

Using only very few simple remotely unhackable
hardware modules, we construct MPC protocols that
provide very strong guarantees against online attacks.
More specifically, an adversary mounting online attacks
i) after a party received its first input and ii) before a
party received input if the attack comes from the “out-
side”, i.e. from all channels except one at a party’s input
port, is unable to
– learn a party’s inputs and outputs
(Strong Privacy)

– or to modify a party’s inputs and outputs
(Strong Integrity)

unless he gains control over all parties.
We present a construction for non-reactive func-

tionalities (Theorem 1) using only two simple re-
motely unhackable hardware modules (apart from air-
gap switches and data diodes) per party and a proto-
col for reactive functionalities (Theorem 3) that uses
only one additional simple remotely unhackable hard-
ware module. Both constructions can be proven secure
in our framework for adversaries that gain control over
all but one party and feature graceful degradation. We
also present an augmentation of these constructions that
allow simulation also in the case that all parties are un-
der adversarial control (Theorems 2 and 4). For simplic-

ity, we assume erasing parties. However, we show how
this assumption can be dropped in the full version.

To properly formalize our above-mentioned guaran-
tees, we propose a variant of the UC framework that ad-
equately captures the advantages provided by remotely
unhackable hardware modules. In this endeavor, we
have to take additional care to obtain a composable se-
curity notion, with some modeling choices that will be
discussed in Section 2. Our security notion is equivalent
to adaptive UC security for protocols that do not use
any remotely unhackable hardware modules. As a con-
sequence, UC-secure protocols can be used as building
blocks in our framework.

1.3 Related Work

Adaptive Security [13] captures security against adver-
saries that can corrupt parties at any point in the pro-
tocol. This notion has received considerable attention
in the literature, see e.g. [14, 16, 27, 29]. In contrast
to adaptive security where an adversary may learn all
secrets of a corrupted party, we achieve that remotely
hacking a party after it received its first input does not
impact the confidentiality and integrity of a party’s in-
puts and outputs, unless all parties have been corrupted.

Mobile Adversaries [4, 39], a notion strictly stronger
than adaptive security, models an adversary taking over
participants (in a way similar in spirit to our “remote
hacks/virus attacks”, although not modeling the online
state) and possibly undoing the corruption later.

Concerning the used trusted building blocks, we as-
sume data diodes, which are channels which allow for
communication only in one specified direction. Garg
et al. [23] analyze the cryptographic power of unidirec-
tional channels as a building block, whereas we use uni-
directional channels as a shield against dangerous incom-
ing data packets. Achenbach et al. [1] make use of other
trusted building blocks, such as a secure equality check
module, to ensure the correct, UC-secure functioning of
a parallel firewall setup in case of one malicious firewall.

Tamper-proof hardware tokens, first proposed by
Katz [30], are an interesting research direction for find-
ing plausible and minimal UC setup assumptions. Along
this line of research, Goyal et al. [25] showed strong
feasibility results of what can be done with these to-
kens. Moreover, Döttling et al. [18] showed that UC se-
curity is possible with a constant number of untrusted
and resettable hardware tokens. Furthermore, [28] gives
constructions of constant-round adaptively secure pro-
tocols which allow all parties to be corrupted. Most
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tokens considered in the literature require token func-
tionalities that are custom and do not capture readily
available hardware (sign-and-commit in [30], bit one-
time memory in [25], combined zero-knowledge and sig-
nature verification in [18] and PRF-from-commitment
in [28]). Such tokens’ functionalities are, apart from in-
put/output capability, of similar complexity when com-
pared to our remotely unhackable hardware modules.
However, the latter constitute a significantly weaker as-
sumption, as they do not have to be physically tamper-
proof and only need to be trusted by their owner. Also,
none of the protocols aim to protect the parties’ secrets
in case of corruption.

Isolation is a general principle in IT security, with
lots of research on isolation through virtualization, see
e.g. [36]. Isolation in this way can be seen as a soft-
ware analog of a trusted, remotely unhackable encryp-
tion module. Moreover, there is a wealth of literature
on data exfiltration/side channel attacks to air-gaps in-
cluding attacks based on acoustic, electromagnetic and
thermal covert channels, cf. [55], which are not relevant
to our work, as they are for protecting against outgoing
communication from malicious internal parties, while we
use data diodes/air-gap switches for the purpose of not
being hackable from the outside. As an example for iso-
lation, the Qubes OS provides strict separation between
application domains, allowing to use an isolated GNU
Privacy Guard (GPG) environment safely [47].

Trusted Execution Environments (TEEs) such as In-
tel SGX promise the existence of an incorruptible secure
enclave where arbitrary computations can be performed
in a secure and isolated way, even if the host system is
compromised. Moreover, parties can establish a secure
channel with a TEE to provide inputs and receive out-
puts of computations. Using attestation, a cryptographic
proof for the identity of code running inside a TEE can
be obtained. TEEs have been used in conjunction with
a global common reference string to achieve compos-
able generic multi-party computation [43]. The resulting
protocol is practically efficient, as it essentially only re-
quires protocol parties to perform attestation, send their
inputs encrypted to the TEE and receive the encrypted
output. All (complex) computations are then performed
inside the TEE without additional cryptographic over-
head. However, if the TEE is insecure, all security is
lost as inputs and outputs will be exposed to the ad-
versary. This is in stark contrast to classic distributed
MPC protocols that at least protect inputs and outputs
of honest parties in case of corruptions. Today’s avail-
able implementations such as Intel SGX have very com-
plex (closed-source) implementations and suffer from a

number of vulnerabilities. In order to be considered re-
motely unhackable, the whole software stack exposed to
the outside would have to be considered secure, in par-
ticular when handling possibly malicious messages. Due
to the high complexity of current implementations, this
may be unrealistic per se. In any case, it becomes less
plausible with more complex code running inside the
TEE, unless special precautions (such as formal verifi-
cation or memory-safe languages) are taken.

Tinfoil Chat (TFC) is a peer-to-peer messaging sys-
tem that uses multiple devices and data diodes to pro-
tect endpoints from remote hacks resp. their conse-
quences (by using data diodes to block outgoing mes-
sages of machines that may have been remotely hacked)
[40]. In contrast to previous frameworks such as the UC
framework, which do e.g. not capture the isolation prop-
erties provided by data diodes, our framework is suitable
to analyze the security of TFC. Compared to the novel
security guarantees of our protocols, the security of TFC
(for which there is no formal proof) is weaker as the in-
tegrity of the parties’ outputs is not protected.

1.4 Outline

We start by explaining the framework that is suitable
to capture our guarantees in Section 2, albeit in a sim-
plified way that hides some of the subtleties and tech-
nicalities that are quick to arise in the UC setting, but
are formally necessary to achieve composability of the
security notion. Section 3 then states our main construc-
tion for the case of non-reactive functionalities, whereas
the case of reactive functionalities is given in Section 4.
For a discussion on graceful degradation, we refer to Ap-
pendix A. For the security proof of the presented con-
struction, see Appendix B. In our exposition, we assume
familiarity with the UC framework, but include a brief
introduction to the UC framework in Appendix C.

2 Universal Composability with
Fortified Security (UC#)

The advantages provided by unhackable hardware mod-
ules, e.g. the isolation properties of data diodes and air-
gap switches, have not been considered in the context
of secure multi-party computation before. The resulting
challenge is twofold: First, the framework has to be able
to express such properties adequately. Secondly, the se-
curity notion must be meaningful and exhibit proper-
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ties such as universal composability. At the same time,
both framework and security notion should be compati-
ble with existing UC-secure protocols, allowing to re-use
them without having to re-prove their security in the
new framework.

Here, we give an overview of how we capture the
advantages provided by remotely unhackable hardware
modules, by explicitly modeling the connection topology
between parties using standard channels, data diodes
and air-gap switches, and their corresponding “online
status”. Finally, we introduce necessary trusted inter-
face modules that handle a (honest) party’s output, and
describe our new security guarantees formally.

2.1 Network Topology, Channel Types and
Online Status

In our model, we make use of the following channels:

Standard Channels between two entities3 allow or-
dinary bi-directional communication. They are de-
picted by a straight line connecting them:

A B .

We say that A and B are connected (via a standard
channel).

Data Diodes between two entities allow for communi-
cation in one direction only. For entities A and B,
we depict this with a connection containing a diode
sign in the direction of the permissible data flow,
here from A to B:

A B .

We say that A is connected to B via a data diode
(but not vice versa).

Air-gap Switches are channels between two entities
that can be connected or disconnected once per acti-
vation by the entity that is in control of the switch.
For entities A and B, where A is in control of the
switch, we depict this with a switch sign, where the
operating entity is next to the hinge:

A B or A B ,

On the left the switch is disconnected, while on the
right it is connected. Disconnected air-gap switches

3 Interactive Turing machine instances such as (sub-)parties,
ideal functionalities F , the environment Z, or the adversary A.

allow no data transmissions at all, while connected
ones allow bi-directional communication. In both
cases, we say that A is connected to B via an air-
gap switch (but not vice versa; and we may add that
it is connected or disconnected).

We allow for the possibility to have multiple channels
of different type between two entities. We say that A
can send messages or provide input/output to B (via
C) if there is a channel C between A and B that allows
the communication from A to B. Note that if there is
no channel between two entities, then no communica-
tion is allowed between them. Channels can be between
(sub-)parties of a protocol or between a (sub-)party and
an ideal functionality. In addition, channels can also be
between a party and the environment or the adversary.
Channels between a party and the environment model
the allowed communication with calling parties (from
other protocols). Channels between a party and the ad-
versary model possible communication to the “outside
world” that can be “delivered” by the adversary.

As in the UC framework, the adversary A and the
environment Z may freely interact with each other. The
same applies to the communication between A and ideal
functionalities. Formally, we always assume standard
channels between these instances of interactive Turing
machines (ITIs). Communication between these ITIs is
therefore independent of the given protocol architecture.

Online State of the Parties. We now define the on-
line state of the parties via the possibility of receiving
messages or input/output:

Definition 1 (Online State). A (sub-)party P of pro-
tocol π is online (via C) if there is a channel C such
that one of the following holds:
1. P can receive messages from the adversary via C.
2. P can receive output from a functionality F via C.
3. P can receive in- or output via C from a sub-party or

calling party M , resp., and M is online via another
channel C′ between M and a party distinct from P .

4. P can receive input from the environment Z via C.

If there is no such channel C, we say that P is offline.
Here, item 1 models that P can receive messages from
the “outside world”. Item 2 captures that messages can
be received from a trusted third party F that “lives”
somewhere in the outside world, such as a public bulletin
board or a common reference string. Item 3 models a
party being transitively online via connections to other
parties who are online. Item 4 models a party being
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transitively online via connections to a calling party (i.e.
a party from another protocol which provides input).

Each time the adversary A is activated, he gets in-
formed via which channels each party is online. This is
called the status. As will be described in Section 2.3, A
will be able to gain control over (hackable) parties when
they are online.

2.2 The Protocol Architecture

The protocol architecture of a protocol π specifies the
set of all channels involving the parties of π, together
with the initial connection state of each air-gap switch,
and for each (sub-)party in π whether it is (remotely)
hackable or unhackable. Formally, the architecture of π
is part of π’s code.

In our figures of protocol architectures, main parties
are represented by boxes with rounded corners, sub-
parties by cornered ones, ideal functionalities are en-
closed in a cloud, and the adversary is enclosed in a
circle. Boxes with a double border denote that the corre-
sponding (sub-)party is unhackable. Channels that end
at the bottom are channels to the environment.4

Example 1 (Online State). An example of a protocol
architecture is given in Fig. 1 (left). There, the protocol
starts with two main parties P1, P2, where P1 and P2
are initially online (P1 and P2 due to item 4 and P2
also due to items 1 and 3), as well as online subparties
Q1, Q2 (online due to item 2, Q2 also due to item 3).
We use the same figures to also depict later protocol
states. Typically, a party P1 will disconnect its air-gap
switch to the environment Z as soon as it has received
input (cf. Fig. 1 middle), making it offline. Later, P1
may connect its air-gap switch to the adversary A at
a specific point, say, after having erased its input (cf.
Fig. 1 right), making it online again.

2.3 Corruption Model

As motivated above, we make use of the fact that in real-
ity there is a significant difference between remote hacks
(e.g. by an exploit that is executed upon a computer

4 These figures capture interactive Turing machines (ITMs) only.
When an ITM instance (ITI) is invoked, run-time information
such as the session ID is accounted for when determining the
channels between ITIs of the same protocol, the environment
(resp. the calling protocol) and the adversary.

parsing some input message, such as an email with at-
tached malware), and the much rarer and more difficult
to perform physical attacks, where a computer’s hard-
ware is tampered with, or the adversary has physical
access to the device. This allows us to provide stronger
protection in the first case, whereas previous corruption
models over-pessimistically assume the latter, hence re-
sorting to less remaining privacy and security guaran-
tees in cases of a corruption. This fits to our plausible
assumption that some simple hardware modules can be
implemented such that they cannot be remotely hacked.
Thus, in our model, an adversary A is given the option
to perform

Physical Attacks, where the targeted main party,
and all its subparties, fall under adversarial control,
as usual in adaptive security, and

Online Attacks, where only the targeted (sub-)party
falls under adversarial control, but only if it is online
and not assumed to be (remotely) unhackable.

If A has gained control over a (sub-)party P through
one of these attacks, we say that P is corrupted. In this
case, we (pessimistically) assume that A has access to
P even if P disconnects its air-gap switches, by formally
creating a new standard channel between P and A.

In order to keep the proofs and discussions sim-
ple, we will restrict ourselves to a simplified adversar-
ial model where physical attacks are only allowed prior
to the start of the protocol. This is motivated by the
fact that physical attacks (i.e. tampering with hardware)
are time consuming and therefore typically must be
mounted before the start of the protocol execution. How-
ever, our constructions for up to N − 1 corrupted par-
ties remain secure even if physical attacks are allowed
throughout the execution, which we will only cover in
the full version to keep the exposition simple.

In the following, we describe our new corruption
model in more detail.5 Let P be the set of main par-
ties of a protocol π. At the first activation, the adver-
sary A may only send a physical-attack instruction
that enables him to gain control over parties regard-
less of the protocol architecture. Formally, A writes
(physical-attack,M), whereM ⊆ P, on his outgoing
message tape. Each P ∈ M and all of its sub-parties

5 Note that the following describes the behavior of protocol
parties in the real model upon receiving corruption messages. As
in the UC framework, in ideal protocols the behavior upon party
corruption is determined by the ideal functionality.
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Fig. 1. Protocol architecture example (left), depicted as described in Section 2.2. Online parties are in gray, and changes are in red. In
step two (middle) P1 disconnects from the environment Z (after having received its input), and connects to the machine M . In step
three (right) P1 connects to the adversary, causing P1 (and now also M) to be online.

are then connected to the adversary via a standard
channel and all air-gap switches controlled by and data
diodes coming from these parties are replaced with stan-
dard channels. From then on, A has full control over all
P ∈M and all of their sub-parties.

From the second activation on, the adversary may
not send a physical-attack instruction anymore. A
may send online-attack instructions that enable A to
gain control over hackable parties when they are online.
Formally, if A writes (online-attack, P ) on his outgo-
ing message tape and P is a (sub-)party of π that is
online and hackable, then a standard channel between
P and A is created and all air-gap switches controlled
by P are connected. P then sends its entire local state
to A. From then on, A has full control over P . If P is
unhackable, then this instruction is ignored.

Finally, if a (sub-)party P is corrupted, then each
ideal functionality F which is connected to P is in-
formed about P being corrupted through a special mes-
sage (corrupt, P ) that is written on F ’s incoming mes-
sage tape. Also, each main party immediately informs
the environment after being corrupted.

2.4 Interface Modules

In order to achieve the strong security guarantees men-
tioned previously, a party’s result of the MPC must re-
main unmodified and hidden from the adversary A even
if the party is corrupted via an online attack after re-
ceiving input. This is not possible if a party learns its
result and outputs it itself since A would learn this re-
sult if he corrupts the party and could then also instruct
the party to output a modified value. Furthermore, for
reactive tasks, a party corrupted after receiving input
(via an online attack) must also not be able to learn or
modify its input(s) for the rounds ≥ 2.

Deviating from the UC framework, we therefore al-
low the main parties to invoke special sub-parties called
interface modules that are connected to their main party
as well as to the environment via channels specified by
the protocol architecture. These interface modules may
thus give subroutine output to or receive input from the
environment subject to the protocol architecture. Intu-
itively, interface modules model simple hardware mod-
ules connected to, e.g., a PC. During the protocol exe-
cution, a user does not trust his PC since it may have
been remotely hacked (in particular, the output of his
PC may have been altered by a hacker). Instead, he only
trusts the unhackable interface modules and, in partic-
ular, the outputs given by them, e.g. via a display.

In our constructions, interface modules will be un-
hackable sub-parties with very limited functionality. We
will assume an interface module called output interface
module (OIM) that is used for ensuring that a party’s
result of the MPC remains unmodified and hidden from
the adversary even in the case that the party is cor-
rupted via an online attack after receiving input. More
specifically, a party’s result will only be learned by its
OIM, which outputs the result instead of the party.

For reactive tasks, we will also assume an input in-
terface module (IIM) that is used for ensuring that a
party’s input for the rounds ≥ 2 remain secret and un-
modified even in the case that the party is corrupted af-
ter receiving (its first) input. In the ideal execution, the
ideal functionality may also interact with dummy par-
ties corresponding to interface modules (Definition 2).

2.5 Our Formal Security Notion

In this section, we give an ideal-model protocol archi-
tecture tailored to our security guarantees and define
fortified functionalities. Recall that, as described in
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Fig. 2. Architecture of the ideal protocol AG(F ) for non-reactive
functionalities (top) and for reactive functionalities (bottom).

Section 2.3, F is informed through a special message
(corrupt, P ), which is written on its incoming message
tape, when a party P connected to F is corrupted. We
now define the protocol architecture for our ideal pro-
tocol AG(F), which stands for “Air-Gap switches” that
are used there. It is defined differently dependent on
whether F is non-reactive or reactive, i.e. whether F
interacts with the parties in a single round, taking at
most one input from each party and providing at most
one output to each party, or whether it may receive in-
puts and provide outputs in multiple rounds (possibly
keeping state between rounds), respectively.

For a non-reactive functionality F , AG(F) is the
ideal protocol where N hackable “dummy main par-
ties” P1, . . . , PN are connected to F via an initially
disconnected air-gap switch and to the environment
via an initially connected air-gap switch and addition-
ally N unhackable “dummy output interface modules”
OIM1, . . . ,OIMN which are connected to F and the en-
vironment via standard channels, see also Fig. 2 (left).

Upon input vi, each party Pi disconnects its air-
gap switch to Z, connects its air-gap switch to F , and
passes vi to F . Each Pi connects its air-gap switch to Z
again upon receiving a special message connect from
F . Furthermore, if F is reactive, AG(F) additionally
contains N unhackable “dummy input interface mod-
ules” IIM1, . . . , IIMN which are connected to F via ini-
tially disconnected air-gap switches controlled by F and
to the environment via initially disconnected air-gap
switches, see Fig. 2 (right) for reference. Each IIMi con-
nects its air-gap switch to the environment upon receiv-
ing connect from F , after F has connected its air-gap
switch to IIMi.

As the air-gap switch between a party Pi and F is
disconnected before Pi has received input, the parties
Pi in AG(F) cannot be corrupted by an online attack
“coming from the outside” (i.e., through channels except

the input port) prior to receiving input. More specifi-
cally, each Pi can only be corrupted by an online attack
prior to receiving input if it is online via its channel to
the environment. In the following we will also refer to
OIMi (and IIMi) as the “dummy OIM (resp. IIM) of Pi”.
Moreover, we call an ideal functionality F standard if
F i) immediately notifies the adversary upon receiving
input from an (honest) party, and ii) is standard corrup-
tion6, and iii) only gives delayed outputs to parties.

2.5.1 Fortified Functionalities

In contrast to functionalities in the adaptive UC security
model, fortified functionalities do not pass the inputs
and outputs of a party Pi corrupted after receiving input
to the adversary A and also do not allow him to modify
Pi’s input or the output to Pi’s dummy OIM, unless all
parties Pj (j = 1, . . . , N) are corrupted.A can only block
an output or instruct the functionality to pass either the
computed output or an error symbol ⊥ to Pi’s dummy
OIM. If all parties are corrupted, A learns all inputs and
outputs and may modify them arbitrarily (including the
outputs to the dummy OIMs). This is formally captured
in the following definition, where we omit session IDs for
simplicity.

Definition 2 (Fortified Functionality). Let G be a non-
reactive standard ideal functionality interacting with N
parties P1, . . . , PN and A. Define the fortified function-
ality [G] of G interacting with A, P1, . . . , PN , and their
dummy OIMs OIM1, . . . ,OIMN as follows:
– [G] internally runs an instance of G.
– [G] initializes a counter c = 0.
– Upon receiving input from Pi, [G] forwards it to G.
– Each time G sends a notification to A upon receiv-

ing input from an (honest) party, [G] forwards that
notification to A.

– [G] forwards all delayed outputs of G for Pi to A.
Upon confirmation by A, [G] forwards the output
to OIMi.

– Upon receiving (corrupt, Pi), [G] increments c,
marks Pi as corrupted before input if [G] has not

6 It proceeds as follows upon receiving a (corrupt, P ) message
from A. First, F marks P as corrupted and outputs corrupted
to P . In the next activation, F sends to A all the inputs and
outputs of P so far. In addition, from this point on, whenever
F gets an input value v from P , it forwards v to A, who may
then send a “modified input value” v′ that overwrites v. Also,
all output values intended for P are sent to A instead.
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yet received input from Pi, or as corrupted after in-
put, otherwise, and forwards (corrupt, Pi) to G. The
subsequent output (corrupted) for Pi from G is for-
warded to Pi.

– Handling parties marked as corrupted before input:
– If G sends the input of Pi to A, [G] forwards that

input to A. Furthermore, if A sends a modified
input value for Pi, [G] forwards that value to G.

– If G sends an output intended for Pi to A, [G]
sends that output to A. A may instruct [G] to
pass any output of his choice to OIMi.

– Handling parties marked as corrupted after input:
– If c < N and G sends the input of Pi to A after

receiving (corrupt, Pi), [G] ignores this message.
Furthermore, if A sends a modified input value
for Pi, ignore this value.

– If c < N and G sends the output intended for Pi
to A, [G] first notifies A that OIMi is about to
receive output. A may then instruct [G] to pass
that output or ⊥ to OIMi.

– Upon reaching c = N , send all inputs and outputs to
A. A may then determine the outputs of all OIMs.

– All other messages between A and G are forwarded.
– If A sends (output, ỹ, Pi), [G] outputs ỹ to Pi if [G]

has marked Pi as corrupted. (While the adversary
cannot modify the output of the dummy OIM of a
party corrupted after receiving input, unless c = N ,
he is able to determine what a corrupted party itself
outputs).

Fortified functionalities of reactive functionalities are de-
fined in the full version. By construction, AG([G]) cap-
tures our desired security goal: i) [G] ensures that cor-
rupting a party Pi via an online attack after it has
received its input does not enable the adversary to
learn or modify Pi’s input(s) and result(s) of the MPC
(i.e. outputs of Pi’s dummy OIM), unless all N parties
are corrupted, and ii) the initially disconnected air-gap
switches between the parties Pi and [G] ensure that the
adversary cannot corrupt a party Pi via an online at-
tack “coming from the outside” before Pi has received
input, i.e. each Pi can only be corrupted via an online
attack at that point if it is online via its channel to the
environment.

2.5.2 Achieving a Meaningful Notion

In the UC framework, the adversary is not activated
when a party provides input or receives subroutine out-
put from a sub-party and is therefore not able to corrupt

it during this communication. In our setting, this is un-
desirable as it does not capture the possibility of parties
being hacked when they are online during this imme-
diate communication. This can yield obviously insecure
protocols that would be secure in our framework. To see
this, consider a party P connected to Z and A as well
as an unhackable sub-party P ′ via standard channels:

PP ′ A

Upon receiving input, P sends secret data to P ′. P ′

then sends a notification message to P who immediately
erases all secret data after being activated again. As this
message delivery is immediate, i.e. A is not activated
during this communication, he is unable to corrupt P
before P has erased its secret data even though P has
been online the entire time. To address this problem,
we introduce a notify transport mechanism in the full
framework that activates the adversary (under certain
conditions) upon immediate message delivery.

We can now define security in UC# in analogy to
the UC framework:

Definition 3 (Emulation in the UC# Framework).
Let π, φ be protocols. π emulates φ in the UC# frame-
work, denoted by π ≥UC# φ, if for every PPT adversary
A there is a PPT adversary S such that for every PPT
environment Z there is a negligible function negl such
that for all n ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[ExecUC#

(
π,A,Z

)
(n, a) = 1]−

Pr[ExecUC#

(
φ,S,Z

)
(n, a) = 1]| ≤ negl(n),

where ExecUC#

(
π,A,Z

)
(n, a) denotes the random vari-

able for the environment Z’s output in the UC# exe-
cution experiment with protocol π and adversary A on
input a and security parameter n.

Let π be a protocol with main parties P1, . . . , PN . Then,
π emulates φ for up to L ≤ N parties under adversarial
control if emulation holds for all (real-model) PPT ad-
versaries A corrupting ≤ L main parties of P1, . . . , PN .

2.6 Properties of the Framework

As in the UC framework, the dummy adversary is com-
plete in UC#. Our security notion is also transitive.
UC# security is equivalent to adaptive UC security for
“plain” UC protocols that are appropriately embedded
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into UC#, i.e., their security also holds in UC#. For the
full properties and proofs, we refer to the full version.

Achieving Composability. Note that for universal
composability, we have to introduce a few additional
twists to the framework that allow us to prove the com-
position theorem. Let us elaborate. In the UC frame-
work, the environment models all protocols that run
concurrently with the protocol under analysis (challenge
protocol). Naturally, the parties in the protocols incor-
porated by the environment also have online states that
may change dynamically during the execution of these
protocols. The online states of the parties incorporated
by the environment may influence the online states of
the parties in the challenge protocol. Therefore, the en-
vironment must be able to modify the online states of
its channels to the challenge protocol depending on the
online states of the parties it incorporates.

Consequently, we allow the environment to addition-
ally set its channels to the parties to activated or deac-
tivated. We therefore change item 4 in Definition 1 by
stipulating that a party is online via a channel C if it
can receive input from the environment via C and C has
been set to “activated” by the environment. Addition-
ally, we provide the environment, for each of its chan-
nels, the information whether it can currently receive
output from that channel. With these changes, our se-
curity notion can be shown to be closed under protocol
composition just like UC security. This is given in the
full version.

3 Construction for Non-Reactive
Functionalities

In this section, we present the construction ΠG for real-
izing the fortified functionality [G] of any non-reactive,
standard, and adaptively well-formed7 functionality G.
The broad idea is to have the parties P1, . . . , PN send
encrypted shares of their inputs via data diodes in an
offline sharing phase and subsequently use these shares
to compute the desired function in an online compute
phase. This, however, cannot be done straightforwardly.

7 An ideal functionality is adaptively well-formed if it consists
of a “shell” and a “core”. The core is an arbitrary PPT TM. The
shell is a TM that acts as a “wrapper”: All incoming messages
are forwarded to the core except for corrupt messages. Further-
more, outputs generated by the core are forwarded by the shell.
Additionally, the shell sends the random tape of the core to the
adversary if all parties are corrupted at some activation.

To begin with, the parties are not able to retrieve pub-
lic keys themselves in the sharing phase since this would
necessitate going online, making them susceptible to on-
line attacks. Therefore, each party Pi sends its shares
to an unhackable sub-party called encryption unit (Enc
unit) via a data diode. The Enc unit retrieves the public
keys and sends encrypted shares to hackable sub-parties
of the designated receivers, called buffers.

Furthermore, each message has to be authenticated
so that the adversary cannot change the input of a party.
One could do this with an additional unhackable “au-
thentication unit” which signs each ciphertext or have
the Enc unit sign all ciphertexts. However, since we want
to use as few and as simple unhackable sub-parties as
possible, we take a different approach. Each party Pi
sends its shares together with valid signatures to its Enc
unit. The verification key is sent, over an intermediary
sub-party called join (J), to a hackable sub-party called
registration module (RM) that disconnects itself from J
after receiving input and forwards the verification key
to a public bulletin board (Freg) via a data diode. Once a
party Pi has sent all of its shares, it erases everything ex-
cept for its own share, its verification key and its decryp-
tion key. In order for this sign-then-encrypt approach
to be secure, we assume that the PKE scheme is non-
malleable (IND-parallel-CCA-secure) [6] and that the
digital signature is unforgeable (EUF-naCMA secure)
and also satisfies a property we call length-normality,
guaranteeing that signatures of messages of equal length
are also of equal length. The latter property prevents an
adversary from learning information of plaintexts based
on the length of their ciphertexts. Each party Pi is con-
nected to its sub-party J via an initially disconnected
air-gap switch in order to prevent the adversary from
corrupting Pi’s RM but not Pi before Pi has received its
input.

In the compute phase, the adversary must be pre-
vented from using values that are different from the
shares sent by the honest parties to the corrupted par-
ties in the sharing phase. Otherwise, he would be able
to modify the inputs of the parties who were honest dur-
ing the sharing phase. The parties Pi therefore not only
use the shares they received but also the signatures of
these shares and the registered verification keys during
the compute phase. The result of the compute phase is
a special “error symbol” if not all signatures are valid.
Since the signing keys were erased at the end of the
sharing phase, the adversary cannot generate new valid
signatures for parties Pi corrupted after receiving input.
He is also unable to revoke the verification key of such
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parties since this would require corrupting the respec-
tive RM, which is impossible since that party is offline.

Moreover, an adversary could swap a message in
the sharing phase addressed to (the buffer of) an hon-
est party Pj with a ciphertext of a share and signature
received by a corrupted party (by encrypting that tuple
with the respective public key). Furthermore, an adver-
sary controlling at least two parties Pi, Pj knows two
shares and valid signatures of each party and could use
one of these tuples twice in the compute phase. To pre-
vent these attacks, a party Pi signs each share along with
the designated receiver’s PID, which will be denoted by
“Pj” in the following. In addition, a party Pi also in-
cludes its own PID in each message it sends to prevent
the adversary from reusing messages sent by honest par-
ties for parties corrupted before receiving input.

Finally, one cannot simply send the result of the
compute phase to a party Pi since this would allow the
adversary to learn and modify the output of the par-
ties corrupted after receiving input. Instead, we use an
unhackable output interface module (OIM). Each party
Pi sends not only the shares of its input xi but also
shares of a random pad ri and of a MAC key ki in
the sharing phase. Furthermore, each party Pi sends
ri and ki to its OIM via a data diode. In the compute
phase, the parties will then use these shares to compute
(yi + ri,Mac(ki, yi + ri)), where yi is the resulting out-
put value (of party Pi) and + denotes the bit-wise XOR.
Each party then sends its result to its OIM, which will
check authenticity by verifying the MAC tag and, if cor-
rect, reconstruct and output the value yi.

In the following, we will take a modular approach
(as facilitated by the composition theorem of UC#) and
define – for an ideal functionality G representing an
MPC – an ideal functionality FG that implements the
verification of the input values in the compute phase
as well as the subsequent multi-party computation (of
G) on the shares. Applying the UC# composition the-
orem, we are able to replace FG with an existing adap-
tively UC-secure protocol, e.g. [14]. Note that this will
require an additional setup assumption, e.g. a common
reference string, as our unhackable sub-parties, chan-
nels, and Freg are not UC#-complete.

Functionality 1 (FG). Let G be a non-reactive stan-
dard adaptively well-formed ideal functionality. FG pro-
ceeds as follows, running with parties P1, . . . , PN and
adversary A and parametrized with a digital signature
scheme SIG and a message authentication code MAC.
1. Initialize the Boolean variable verify = true.

2. Upon receiving input from Pi, store it, mark Pi as
input given and send (received, Pi) to A. Ignore fur-
ther input of Pi.

Consistency Check:
3. Once all parties are marked as input given, check if

each stored input is of form vki = (vk(i)
1 , . . . , vk(i)

N ),
(sji, rji, kji, σji) (j = 1, . . . , N). If not, set verify =
false. Otherwise, check if vk1 = · · · = vkN .
(a) If the check fails, set verify = false.
(b) Else, set (vk1, . . . , vkN ) = (vk(1)

1 , . . . , vk(1)
N ).

Check if VrfySIG(vkj , (Pi, sji, rji, kji), σji) = 1
for all i, j ∈ {1, . . . , N},
i. If the check fails, set verify = false.
ii. Else, proceed with item 4.

Reconstruction and Computation:
4. For i = 1, . . . , N , compute xi = si1 + si2 + · · ·+ siN ,

ki = ki1 +ki2 + · · ·+kiN and ri = ri1 +ri2 + · · ·+riN .
5. Internally run G on input (x1, . . . , xN ). Let

(y1, . . . , yN ) be the output of G. For all i = 1, . . . , N ,
compute oi = yi + ri and θi ← Mac(ki, oi).

6. If party Pi requests an output, proceed as follows:
(i) If verify = false, send a private delayed out-

put ⊥ to Pi.
(ii) Else, if item 5 has already been carried out, send

a private delayed output (oi, θi) to Pi.
7. FG is standard corruption (cf. Footnote 6). Once all

parties are corrupted, FG sends its private random-
ness to A. (This ensures that FG is also adaptively
well-formed).

8. All other messages between A and G are ignored.

Let Freg be the public bulletin board function-
ality (cf. Appendix C.1 for a definition). Let
PKE = (GenPKE,Enc,Dec) be a public-key encryption
scheme, SIG = (GenSIG,Sig,VrfySIG) a digital signature
scheme and MAC = (GenMAC,Mac,VrfyMAC) a mes-
sage authentication code. Given a non-reactive standard
adaptively well-formed functionality G, we next define
our protocol ΠG for realizing AG([G]).

Construction 1. Define the protocol ΠG as follows:
Architecture: See Fig. 3 for a graphical depiction. Figs. 4
and 5 show the changes of ΠG ’s state throughout the
execution.
Offline Sharing Phase
Upon input xi, each party Pi (i = 1, . . . , N) does:
– Disconnect the air-gap switch to the environment.
– Generate (pki, ski) ← GenPKE(1n), ki ←

GenMAC(1n), (sgki, vki) ← GenSIG(1n) and a ran-
dom pad ri ← {0, 1}pi(n), where pi(n) is an unspeci-
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Pi

Freg

RMi

Ji

FG

Enci

Bufferi
A

OIMi

Fig. 3. Architecture of ΠG . Each party Pi has 3 hackable sub-
parties, called buffer, registration module (RM) and join (J), and
2 unhackable sub-parties, called Enc (unit) and OIM. Buffer and
Enc unit are connected to the adversary via standard channels.
All air-gap switches, except for Pi’s air-gap switch to the environ-
ment and the RM’s air-gap switch to J , are initially disconnected.

fied polynomial denoting the length of the one-time
pad used for masking party Pi’s output.

– Generate shares si1 + si2 + · · ·+ siN = xi and ki1 +
ki2 + · · ·+ kiN = ki and ri1 + ri2 + · · ·+ riN = ri.

– Connect the air-gap switch to Ji.
– Send (ki, ri) to OIMi and (pki, vki) to Ji.
– Create signatures σij ← Sig(sgki, (Pj , sij , rij , kij))

(j = 1, . . . , N)
– Send (Pj , (Pi, sij , rij , kij , σij)) (j ∈ {1, . . . , N} \ {i})

to Enci
– Erase everything except sii, rii, kii, σii, vki and ski.

Pi

Freg

RMi

Ji

FG

Enci

Bufferi
A

OIMi

Fig. 4. ΠG after the offline sharing phase: Pi has disconnected
its air-gap switch to the environment (making it offline) and
connected its air-gap switch to Ji.

Registration module (RMi) and Ji: On input (pki, vki)
to Ji, it forwards the input to RMi. RMi then discon-
nects the air-gap switch to Ji and registers pki and vki
by sending these keys to the public bulletin-board func-
tionality Freg.

Enc unit Enci: Receive a list L = {(Pj , vj)}j={1,...,N}\{i}
from one’s main party Pi. At each activation, for each
(Pj , vj) ∈ L, request pkj of Pj from Freg. If retrievable,
compute cij ← Enc(pkj , vj), send (Pi, cij)8 to buffer of
Pj and delete (Pj , vj) from L. Then, go into idle mode.

Buffer: Store each message received. On input retrieve,
send all stored messages to one’s main party.

Online Compute Phase
After the sharing phase, a party Pi does the following:
– Connect air-gap switches to Bufferi, Freg and FG .
– Request all verification keys {vkl}l∈{1,...,N}\{i} from
Freg registered by the other parties’ RMs. If not all
verification keys can be retrieved yet, go into idle
mode and request again at the next activation.

– Send retrieve to Bufferi and check if it sends at
least N − 1 messages. If not, go into idle mode
and, when activated again, send retrieve and check
again. If yes, check if one has received from each
party Pj a set Mj = {(Pj , c̃)} with the following
property (∗) (Validity Check):
There exists a tuple (Pj , ŝji, r̂ji, k̂ji, σ̂ji) and a
(Pj , c) ∈Mj such that:
– Dec(ski, c) = (Pj , ŝji, r̂ji, k̂ji, σ̂ji) and

VrfySIG(vkj , (Pi, ŝji, r̂ji, k̂ji), σ̂ji) = 1
– For all (Pj , c̃) ∈ Mj either Dec(ski, c̃) =

(Pj , ŝji, r̂ji, k̂ji, σ̂ji), or (Pj , c̃) is “invalid”, i.e.,
either decrypts to a tuple (Pj , s̃ji, r̃ji, k̃ji, σ̃ji)
such that VrfySIG(vkj , (Pi, s̃ji, r̃ji, k̃ji), σ̂ji) = 0,
or decrypts to a tuple (P ′, s̃ji, r̃ji, k̃ji, σ̃ji) such
that P ′ 6= Pj , or does not decrypt correctly.

If (∗) does not hold, send ⊥ to FG . Else, send all
retrieved verification keys (vk1, . . . , vkN ) as well as
all tuples (ŝji, r̂ji, k̂ji, σ̂ji) (j ∈ {1, . . . , N} \ {i}) as
well as (sii, rii, kii, σii) to FG .

Online Output Phase
Having completed its last step in the compute phase,
a party Pi requests output from FG and forwards that
output to OIMi.

8 Sending the sender’s PID as prefix is not necessary but sim-
plifies the discussion. Note that for (Pi, c) we also say that “c is
addressed as coming from party Pi”.
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Fig. 5. ΠG during and after the online compute phase: First, RMi

has disconnected its air-gap switch to Ji, keeping it offline. Then,
Pi has connected its air-gap switches to FG , Freg and Bufferi.

OIMi: Store the first input (ki, ri) from one’s main party.
On second input (oi, θi) or ⊥ from one’s main party, do
the following: If the received value equals ⊥, output ⊥.
Otherwise, check if VrfyMAC(ki, oi, θi) = 1 and output
yi = oi + ri if this holds, and ⊥ otherwise.

Remark 1. Note that we do not model how to reuse
modules such as RMi that stay disconnected throughout
the protocol execution. In practice, one may assume,
e.g., a physical reset mechanism for these modules.

Theorem 1 (Up to N − 1 Corruptions, Non-Reactive).
Let G be a non-reactive standard adaptively well-formed
functionality. Assume PKE is IND-pCCA-secure and
SIG is EUF-naCMA-secure and length-normal, and
MAC is EUF-1-CMA-secure. Then, for up to N − 1
parties under adversarial control, it holds that

ΠG ≥UC# AG([G]).

Proof. The proof will be given in Appendix B

3.1 Up to N Corrupted Parties

One can augment Construction 1 to obtain a protocol
ΠN
G that is also secure if the adversary corrupts all par-

ties at the expense of one additional unhackable sub-
party called decryption unit (Dec unit). Note that all
other constructions given in this paper are summarized
in Fig. 6. The main idea in the new construction is that
parties do not decrypt ciphertexts themselves but send
them to their Dec unit. Each Dec unit receives the se-
cret key from its main party during the sharing phase.

In the compute phase, each Dec unit accepts a single
vector of ciphertexts from its main party. Since the Dec
units are unhackable and do not leak the secret keys,
the simulator can report plaintext tuples to Z in such
a way that the shares they contain are consistent with
the parties’ inputs and outputs even if all parties are
corrupted.

Pi

Freg

RMi

Ji

FG

Enci

Bufferi
A

OIMi

Deci

IIMi

Fig. 6. Architecture for a) non-reactive functionalities and up
to N − 1 parties under adversarial control, if red IIM/blue Dec
unit parts are absent, b) non-reactive functionalities and up to
N parties under adversarial control, if the blue Dec unit part is
absent, c) reactive functionalities and up to N − 1 parties under
adversarial control, if the red IIM part is absent, and d) reactive
functionalities and up to N parties under adversarial control, if
the red IIM/blue Dec unit parts are present.

Theorem 2 (Up to N Corruptions, Non-Reactive).
Let G be a non-reactive standard adaptively well-formed
functionality. Assume PKE, SIG, MAC are as in The-
orem 1. Then, for up to N parties under adversarial
control, it holds that

ΠN
G ≥UC# AG([G]).

4 Construction for Reactive
Functionalities

For reactive functionalities, a new problem arises be-
cause parties are online after the first round. The in-
put(s) for the next round(s) can therefore not just be
given to a party since it may have been corrupted. We
therefore need to find a way to insert the input(s) for
round u ≥ 2 into the protocol without allowing a party
to learn or modify them.
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To this end, we introduce an additional unhackable
hardware module called input interface module (IIM)
that acts as the counterpart of the OIM for inputs. In-
puts for round(s) u ≥ 2 have to be inserted into the
protocol via the IIM which masks each input it receives
and computes a MAC tag of the padded input. In the
compute phase, these MAC tags are verified along with
the signatures of the shares (of random pads for the in-
puts/outputs and of a MAC key) (cf. the full version for
details). Denote by Πreac

G this new protocol.

Theorem 3 (Up to N − 1 Corruptions, Reactive). Let
G be a reactive standard adaptively well-formed func-
tionality. Let PKE and SIG be as in Theorem 1 and
assume that MAC is EUF-CMA-secure. Then, for up to
N − 1 parties under adversarial control it holds that

Πreac
G ≥UC# AG([G]).

4.1 Up to N Corrupted Parties

With the same augmentation as described in Section 3.1,
one can obtain a protocol ΠN,reac

G that is also secure if
the adversary corrupts all parties.

Theorem 4 (Up to N Corruptions, Reactive). Let G
be a reactive standard adaptively well-formed function-
ality. Let PKE, SIG, MAC be as in Theorem 3. Then,
for up to N parties under adversarial control, we have

ΠN,reac
G ≥UC# AG([G]).

5 Implementations of Remotely
Unhackable Hardware Modules

In contrast to hardware that can be used as UC setup,
e.g., tamper-proof hardware tokens or TEEs, our re-
motely unhackable hardware modules constitute a much
weaker assumption as i) they only have to be trusted by
their owner, ii) do not need to be sent to other parties
and iii) only have to be secure against remote hacks,
meaning that they do not have to be tamper-proof.

In order to protect from remotely exploitable vulner-
abilities, we suggest to use formal verification wherever
possible. There exists a vast body in the literature that
is applicable to the implementations we discuss below,
like smart cards ([2, 5]), cryptographic implementations
in the IoT world [45], FPGAs and ASICs [9, 20] or mi-
crokernels [26, 31]. Due to the very low complexity of

the cryptographic core, formal verification is applicable
in practice for our modules.

Virtualization and TEEs. As a first attempt, we
consider the case where some or all modules are im-
plemented on the same machine in software. To this
end, there are two main approaches. The first considers
a hypervisor [26, 31] that implements each component
in a dedicated virtual machine. Assuming that i) the
hypervisor is secure and provides isolation between the
individual VMs and the host and ii) the components
are implemented correctly, the resulting system can be
considered a secure implementation of our construction.
When not using dedicated hardware, security can be
strengthened by using a TEE such as Intel SGX to im-
plement some of the components, in particular the Dec
unit, the OIM and the IIM in case of reactive computa-
tions.

Data Diodes and Air-Gap Switches. In principle,
data diodes and air-gap switches can be implemented in
software using packet-filtering firewalls. However, this
approach is susceptible to vulnerabilities in the packet
filter and the associated software stack. There also exist
numerous commercial off-the-shelf hardware solutions
for data diodes (e.g. [22, 24, 44]) and air-gap switches
[32] that can be controlled remotely. However, some are
rather complex and not easily verifiable for correctness.
In contrast, there exist numerous open-source DIY im-
plementations (e.g. [40, 52]) for data diodes that exploit
physical principles and thus require very little trust. The
data diode proposed by [40] can be easily adapted to dif-
ferent communication technologies.

A remotely controlled air-gap switch could also be
achieved by using a micro-controller to control a relay
which (dis)connects one or several wires of an Ether-
net connection (cf. [41]) or, e.g., a RS-232 connection.
Alternatively, one could also use any manageable Eth-
ernet switch or a non-managed switch combined with a
remotely controllable power strip.

Enc and Dec Unit. In contrast to data diodes and
air-gap switches where only correctness and no privacy
is required, the Enc unit additionally has to keep the
share it receives secret. Due to the use of public-key en-
cryption schemes only, the Enc unit does not have to
handle secret keys. Additional complexity is introduced
by having to retrieve public keys from a public key in-
frastructure (PKI), for which a network interface is re-
quired. As long as the PKI’s answers can be verified, e.g.
by using certificates, the interface can be untrusted.
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Due to its low complexity, the Enc unit can be imple-
mented using off-the-shelf hardware with low complex-
ity such as microcontrollers or single-board computers.
While we are not aware of such hardware with formally
verified or at least audited firmware, we believe that the
risk originating from firmware vulnerabilities is accept-
able in this case—especially if the programming inter-
face is not exposed. At the OS layer, implementations
in memory-safe language such as Tock [33] in Rust are
available. Such a memory-safe language could also be
used for the actual protocol implementation. As current
TEEs such as Intel SGX communicate via the host OS,
we do not consider them appropriate for the Enc unit,
whose purpose is to keep the host system offline at the
onset of the computation. Instead, it would be suscep-
tible to remote hacks, contradicting the purpose of the
Enc unit.

For the Dec unit, being very similar to off-the-shelf
hardware like hardware security module (HSM) (e.g.
[54]) or a smart card that can store private keys and per-
form decryptions, we believe that HSMs and smart cards
are very natural candidates. This additionally assumes
an appropriate interface that also enforces that only a
single ciphertext vector is decrypted. There also exist a
number of open-source solutions that can be adapted.
An example is the NetHSM by Nitrokey [38], whose
whole software is written in the memory-safe language
OCaml. As OS, MirageOS with the formally verified mi-
crokernel Muen [26] is used. The security token Solo 2
[50] has an extensible open-source firmware, Trussed
[51], written in Rust and can similarly be adjusted.

The Dec unit could also be implemented using a
field-programmable gate array (FPGA). In our setting,
the FPGA does not have to be tamper-proof, as our
goal is to protect from the consequences of remote hacks
without physical access to the device. This also holds for
side-channels, unless they can be exploited via the con-
nection to the FPGA. The code on the FPGA could be
designed using a special-purpose software like Cryptol
[20], which allows the generation of VHDL code which
provably adheres to its specification. Also, the security
of the FPGA firmware has to be considered. Recent at-
tacks such as [19] have shown that caution is necessary.
Of course, the user also has to trust that its code is cor-
rectly deployed and executed by the FPGA. A number
of FPGA-based HSMs with open-source firmware are
available [17, 42, 49], which could also serve as basis.

It is also conceivable to implement the Dec unit us-
ing a TEE. However, this approach has the drawback
that current implementations are very complex, relying
on a combination of software, firmware and hardware

that have to be trusted by the user due to their closed-
source nature and may all contain potential vulnerabil-
ities or even backdoors. In particular, side-channel at-
tacks [37] that allow the extraction of secrets from a
TEE may be a major problem in our setting, assum-
ing that the adversary is able to compromise the host
system where the Dec unit is running.

Common to complex building blocks such as TEEs
or FPGAs is the difficulty or even inability of the user
to verify that the correct code is actually executed.

OIM and IIM. Remember that OIM and IIM accept
one or several one-time pads and MAC keys and are
responsible for the verification and decryption of results
(OIM) resp. encrypting and authenticating inputs (IIM).
As OIM and IIM only provide interfaces for input resp.
output, no network capability is required. Thus, the host
connection can be realized using some simple protocol
such as RS-232 that can be safely implemented.

We can also extend an HSM, security token or
FPGA with the required functionality and connect it
via an appropriate interface that provides secure I/O,
e.g. using a simple dot-matrix display and a keyboard.
By augmenting TEEs with secure I/O, e.g. [34, 53] for
Intel SGX, OIM and IIM can be in principle realized us-
ing a TEE. However, we believe that these approaches
for TEEs with secure I/O should be considered proof-
of-concepts not yet fit for practice.

6 Conclusion
When using MPC in practice, one has to protect well
against the consequences of remote hacks. Utilizing only
few and simple remotely unhackable hardware modules
and their accompanying isolation assumptions, we con-
structed general MPC protocols providing very strong
composable security guarantees against online attacks.

Some of our protocols even exhibit graceful degrada-
tion, which is a step towards more nuanced, quantifiable
security.
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Appendix

A Graceful Degradation
In the following, we discuss the security implications
of our constructions if the assumptions about the re-
motely unhackable hardware modules (including en-
hanced channels) turn out to be wrong. For our construc-
tions for up to N−1 corrupted parties, we can show that
their security gracefully degrades to essentially adaptive
UC security.

Let ΠG be the protocol of Construction 1 for realiz-
ing AG([G]) for some ideal functionality G. We consider
the protocol Π′G that is identical to ΠG , except that all
unhackable sub-parties are now hackable and that all en-
hanced channels are replaced by standard channels. As
a consequence, all main parties Pi as well as their sub-
parties, including e.g. the previously unhackable Enc
unit or the OIM, are always online and susceptible to
online attacks.

As Π′G still makes use of a (now hackable) inter-
face module, it is not a legal protocol in the standard
UC framework. For the same reason, we cannot hope to
prove that Π′G realizes the ideal protocol SC(G) in UC#,
i.e. provides standard adaptive UC security. Instead, we
have to consider an appropriate ideal functionality along
with an appropriate ideal protocol.

PID-wise Corruption
We now discuss the case of PID-wise corruption, i.e. the
case where the adversary may only corrupt a main party
and its sub-parties together and defer more fine-grained
corruption models to the full version. In the setting of
PID-wise corruption, it suffices to consider the ideal
functionality G′ that is identical to G, except that it pro-
vides the output of parties via their respective dummy
OIM. The corresponding ideal protocol is identical to
SC(G), except that for each party Pi, there also exists a
(hackable) dummy OIM connected to the environment
and G′ via standard channels. As the sub-protocol FG is
adaptively UC-secure, it can be shown that Π′G securely
realizes SC′(G′) in the UC# framework.

B Proof of Theorem 1
We will prove that ΠG emulates the ideal protocol
AG([G]) in the UC# framework for adversaries corrupt-

ing at most N − 1 parties P ∈ {P1, . . . , PN} under the
assumptions that PKE is IND-parallel-CCA-secure, SIG
is EUF-naCMA-secure and length-normal and MAC is
EUF-1-CMA-secure.

Next, we define the following experiment, which will
be used in the proof to show that an environment Z
cannot send “fake messages” (Pi, c′) to an honest party
Pj addressed as coming from a party Pi that has not
been corrupted before receiving input such that i) c′

was not generated by the Enc unit of Pi and ii) (Pi, c′)
is accepted by Pj .

Definition 4 (Auxiliary Experiment). The exper-
iment Expaux

A(z),PKE,SIG(n) is defined as follows:
At the beginning, the experiment generates keys
(pk, sk) ← GenPKE(1n) and (vk, sgk) ← GenSIG(1n).
On input 1n, z and pk, the adversary A may then
non-adaptively send queries to a signing oracle OSig(sgk,·).
Afterwards, the experiment sends vk to A. A may
then send a message of the form (prf1, prf2,m)
to the experiment. The experiment then computes
σ ← Sig(sgk, (prf2,m)), c∗ ← Enc(pk, (prf1,m, σ)),
and sends c∗ to A. During the experiment, A may send
a single parallel query to a decryption oracle ODec(sk,·)
subject to the restriction that the query does not con-
tain c∗. At the end of the experiment, A sends a tuple
(m′, σ′) to the experiment. The experiment then checks
if VrfySIG(vk,m′, σ′) = 1 and m′ has not been sent to
OSig(sgk,·) before. If this holds, the experiment outputs
1 and 0 otherwise.

We have the following lemma.

Lemma 1. If PKE is IND-pCCA-secure and SIG EUF-
naCMA-secure, then for every PPT adversary A and all
z ∈ {0, 1}∗, there exists a negligible function negl such
that

Pr[Expaux
A(z),PKE,SIG(n) = 1] ≤ negl(n).

Sketch. Assume there exists an adversaryA that wins in
the experiment Expaux

PKE,SIG,A(z)(n) with non-negligible
probability. Since PKE is IND-pCCA-secure, one can re-
place c∗ by c′ ← Enc(pk, 0L), where L = |(prf1,m, σ)|,
incurring only a negligible loss in A’s success probabil-
ity. Then, one can directly construct an adversary A′

out of A that breaks the EUF-naCMA-security of SIG
with non-negligible probability.A′ simply internally sim-
ulates the experiment Expaux

PKE,SIG,A(z)(n) forA using his
signing oracle and c′ for c∗. Once A sends a tuple (m,σ)
to the experiment Expaux

PKE,SIG,A(z)(n), A′ sends (m,σ)
to the EUF-naCMA experiment. A′ then wins in the
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EUF-naCMA experiment if and only if A wins in the
experiment Expaux

PKE,SIG,A(z)(n).

Next, we define the simulator for the dummy adversary.

Definition 5 (Definition of the Simulator). Define the
simulator Sim interacting with an environment Z and a
fortified ideal functionality [G] as follows:
1. At the beginning, Sim internally defines N parties

corresponding to the parties in ΠG . Throughout the
simulation, Sim will keep track of the online state
of these parties by marking them as online or offline.
At the beginning, Sim marks these parties according
to the initial online states of the dummy parties in
the ideal protocol.

2. Sim initializes a Boolean variable verify = true.
3. Sim carries out the physical-attack instruction re-

ceived from Z on its first activation. Sim carries out
an (online-attack, Pi) instruction only if Sim has
marked party Pi as online.

4. Each time Z sends status, Sim sends the set of
markings of each party.

5. Throughout the simulation, Sim reports the respec-
tive notify transport tokens to Z (note that we will
not mention them anymore in the following).

6. Sim generates (pki, ski) ← GenPKE(1n), ki ←
GenMAC(1n) and (sgki, vki)← GenSIG(1n) for each
party Pi that was not corrupted before receiving in-
put.

7. For each i such that party Pi is honest, Sim reports
(registered, sid ′, RMi, pki, vki). If Z answers with
“ok”, Sim stores (pki, vki) as “registered”.

8. Each time Sim is activated by [G] after an
honest party Pi received its input, Sim gen-
erates 3N random strings s′ij , r

′
ij , k

′
ij , computes

σ′ij ← Sig(sgki, (Pj , s′ij , r′ij , k′ij)) (j = 1, . . . , N)
and cij ← Enc(pkj , (Pi, s′ij , r′ij , k′ij , σ′ij)). Each time
party Z activates the Enc unit of Pi, Sim reports
the respective tuple (Pi, cij) if pkj is stored as “reg-
istered”.

9. Once Sim has reported all (Pi, cij) for j = 1, . . . , N
as well as (registered, sid ′, RMi, pki, vki) for an
honest Pi, Sim marks Pi as online.

10. If a party Pi is corrupted after receiving input, Sim
sends (s′ii, r′ii, k′ii, σ′ii, vki, ski) to Z.

11. If Z sends a value (pkl, vkl) to Freg for a party Pl cor-
rupted before receiving input, Sim stores (pkl, vkl) as
“registered”.

12. Each time Z sends a message addressed to buffer
of a party Pi, Sim stores that message as a message
“received by Pi”.

13. If Z activates an honest party Pj who is marked
as online and has received at least N − 1 messages
and all vkl (l = 1, . . . , N) are stored as “registered”,
then Sim stores vkj = (vk1, . . . , vkN ) and reports
(received, Pi) to Z. Upon receiving (confirmed, Pi)
from Z, Sim marks Pj as input given.

14. If Z sends a tuple consisting of a vector vkj and
(s′lj , r′lj , k′lj , σ′lj) (l = 1, . . . , N) as the input to FG
for a corrupted party Pj , then Sim stores that input
(if an input has already been stored for Pj then Sim
overwrites it) and, if not done yet, marks Pj as input
given.

15. Once all parties are marked as input given, Sim does
the following:
(i) If not all vki (i = 1, . . . , N) are equal, Sim sets

verify = false.
(ii) For each j such that Pj is honest, Sim checks

the following conditions:
– Pj has received for each i such that party Pi

is not corrupted before receiving input the
tuple (Pi, cij), where cij is the respective
ciphertext generated by Sim.

– Pj has received for each l such that party
Pl is corrupted before receiving input a set
Ml fulfilling property (∗) from p. 324.

If at least one of these conditions does not hold,
Sim sets verify = false.

(iii) For each tuple consisting of a vector vkj and
(s′lj , r′lj , k′lj , σ′lj) (l = 1, . . . , N) which was stored
by Sim as the input to FG for a corrupted party
Pj , Sim checks the following:
– for each i such that party Pi was not cor-

rupted before receiving input, Sim checks
if (s′ij , r′ij , k′ij) = (sij , rij , kij), where
(sij , rij , kij) is the respective tuple gener-
ated by Sim. If this does not hold or
VrfySIG(vki, (Pj , s′ij , r′ij , k′ij), σ′ij) = 0, Sim
sets verify = false.

– for each l such that party Pl was corrupted
before receiving input, Sim sets verify =
false if VrfySIG(vkl, (Pj , s′lj , r′lj , k′lj), σ′lj) =
0.

16. Sim extracts the input, MAC key and random pad
of each party Pl corrupted before receiving input by
decrypting all ciphertexts coming from Z, and by
observing the inputs Z sends to FG for corrupted
parties. Sim sends each extracted input to [G].

17. Once all parties are marked as input given and Z
activates an honest party Pi, then Sim instructs [G]
to
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(i) send the output to Pi’s dummy OIM if verify =
true.

(ii) output ⊥ to Pi’s dummy OIM if verify =
false.

18. Once all parties are marked as input given and Z
requests the output of FG for a party Pi corrupted
after receiving input, then
(i) If verify = true, Sim generates a random

string ỹi ← {0, 1}pi(n) and sends (ỹi,Mac(ki, ỹi))
to Z.

(ii) If verify = false, Sim sends ⊥ to Z.
19. If Z sends a message (m′, t′) addressed to OIM of a

party Pi corrupted after receiving input, then
(i) If Z has not yet requested the output of FG

for Pi yet, Sim instructs [G] to output ⊥ to the
dummy OIM of Pi.

(ii) If Z has already requested the output of FG for
Pi and Sim sent (ỹi,Mac(ki, ỹi)) (in item 18) to
Z, then
– If m′ 6= ỹi, Sim instructs [G] to output ⊥ to

the dummy OIM of Pi.
– If m′ = ỹi and VrfyMAC(ki,m′, t′) = 1, then

Sim instructs [G] to send the output to the
dummy OIM of party Pi. Otherwise, Sim in-
structs [G] to output ⊥ to the dummy OIM
of Pi.

(iii) If Z has already requested the output of FG for
Pi and Sim sent ⊥ (in item 18) to Z, then Sim
instructs [G] to output ⊥ to Pi’s dummy OIM.

20. Once all parties are marked as input given and Z
requests the output of FG for a party Pi corrupted
before receiving input, then
(i) If verify = true, Sim sends (yi+ri,Mac(ki, yi+

ri)) to Z, where yi is the output of [G] for party
Pi and ki, ri are the MAC key and random pad
extracted in item 16.

(ii) If verify = false, Sim sends ⊥ to Z.
21. Sim lets Z determine the output of the dummy OIM

of each party corrupted before receiving input.

Proof. It suffices to find a simulator for the dummy ad-
versary. In the following proof, we will consider a se-
quence of hybrids H0, . . . ,H4. Starting from the real pro-
tocol ΠG , we will define ideal protocols that gradually re-
duce the simulator’s abilities (i.e. restrict the set of par-
ties for which he may learn/modify the inputs/outputs).
The final hybrid H4 will be the ideal protocol AG([G])
and the simulator as defined in Definition 5.

Let Z be an environment that instructs D to corrupt
at most N − 1 parties P ∈ {P1, . . . , PN}. Let outi(Z) be
the output of Z in the hybrid Hi. In the following, we

will say corrupted before input and corrupted after input
for brevity.

Hybrid H0
Let H0 be the execution experiment between the envi-
ronment Z, the dummy adversary D and the real pro-
tocol ΠG .

Hybrid H1
Let H1 be the execution experiment between the en-
vironment Z, the ideal protocol AG(F1) and the ideal-
model adversary Sim1, where F1 and Sim1 are defined
as follows: Define F1 to be identical to [G] except for the
following: F1 hands the adversary the inputs and out-
puts of every party (honest and corrupted) and allows
him to determine the outputs of the dummy OIMs of all
corrupted parties (i.e. all parties corrupted before and
after input). Note that, like [G], F1 does not allow the
adversary to modify the inputs of parties corrupted af-
ter input (unless all parties are corrupted) and also does
not allow him to modify the inputs of honest parties.

Define Sim1 to be like the simulator in Definition 5
except for the following: In item 8, Sim1 reports the ci-
phertexts as they are generated in the real protocol (in
particular, generates shares of the actual inputs). Also,
if a party Pi is corrupted after having received input,
Sim1 reports the respective shares as they are generated
in the real protocol in item 10 along with a valid sig-
nature and vki, ski. In item 18, if verify = true, Sim1
reports (yi + ri,Mac(ki, yi + ri)) to Z, where yi is the
output Sim1 receives for the respective party from F1
and ki, ri are the MAC key and one-time pad generated
in items 6 and 8. If verify = false, Sim1 reports ⊥.
In item 19, if Z sends a message (m′, t′) addressed to
OIM of a party Pi (corrupted after input), Sim1 carries
out the program of the OIM (using the MAC key and
one-time pad generated in items 6 and 8), computing a
value y′ ∈ {0, 1}pi(n) ∪ {⊥}, and then instructs [G] to
output y′ to Pi’s dummy OIM.

Consider the following events:
Let Efakemess be the event that there exists an hon-

est party Pj that retrieves a tuple (Pi, c′) in its buffer
such that party Pi is not corrupted before input and
(Pi, c′) is “valid”, i.e. Dec(skj , c′) = (Pi, s′ij , r′ij , k′ij , σ′ij)
and VrfySIG(vki, (Pj , s′ij , r′ij , k′ij), σ′ij) = 1, but either
c′ 6= cij or cij has not been generated yet (by the Enc
unit of party Pi).

Let Efakein be the event that Z sends an in-
put (s′ij , r′ij , k′ij , σ′ij) for a corrupted party Pj to
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FG such that party Pi is not corrupted before in-
put and VrfySIG(vki, (Pj , s′ij , r′ij , k′ij), σ′ij) = 1, but
(s′ij , r′ij , k′ij) 6= (sij , rij , kij) (where vki and (sij , rij , kij)
were generated by Pi).

Let E = Efakemess ∪Efakein. It holds that

Pr[out0(Z) = 1 ∧ ¬E] = Pr[out1(Z) = 1 ∧ ¬E].

This is because if Efakemess does not occur then a mes-
sage in the buffer of a party Pj that is addressed as
coming from a party Pi who was not corrupted before
input decrypts to a valid message/signature pair if and
only if it equals the ciphertext cij sent by Pi. More-
over, for each corrupted party Pi, since Efakein does
not occur, Z only sends inputs (s′ij , r′ij , k′ij , σ′ij) to FG
such that either VrfySIG(vki, (Pj , s′ij , r′ij , k′ij), σ′ij) = 0 or
VrfySIG(vki, (Pj , s′ij , r′ij , k′ij), σ′ij) = 1 and (s′ij , r′ij , k′ij) =
(sij , rij , kij) was generated by party Pi (who was not cor-
rupted before input).

Therefore, it holds that

|Pr[out0(Z) = 1]− Pr[out1(Z) = 1]| ≤ Pr[E]
≤ Pr[Efakemess] + Pr[Efakein].

Claim 1: Pr[Efakemess] is negligible

Consider the following adversary A in the auxiliary ex-
periment Expaux

PKE,SIG,A(z)(n): At the beginning, A ran-
domly selects a tuple (i, j) ∈ {1, . . . , N} × {1, . . . , N}
such that i 6= j. A then simulates hybrid H0 using the
public key pk from the experiment for pkj in its inter-
nal simulation. When Z gives the party Pi its input
xi, A generates shares sil, ril, kil of xi, of a random
pad ri and of a MAC key ki just like in H0. A sends
the tuples (Pl, sil, ril, kil) for l 6= j to the signing ora-
cle OSig(sgk,·), receiving signatures σil. After receiving
the verification key vk from the experiment, A uses vk
for vki in its internal simulation. Using pk, A encrypts
all tuples (Pi, sil, ril, kil, σil) (l 6∈ {i, j}) and sends them
to the respective party in its internal simulation. Once
the message (Pi, cij) is supposed to be sent in the inter-
nal simulation, A sends (Pi, Pj, sij , rij , kij) to the experi-
ment, receiving c∗. A then uses (Pi, c∗) for (Pi, cij) in its
simulation. When Pj is activated and is online and has
received at least N−1 messages, A sends all ciphertexts
addressed as coming from Pi such that c 6= c∗ to the de-
cryption oracle ODec(sk,·) (if c∗ has not been generated
yet, A sends all ciphertexts addressed as coming from
Pi). For each message (Pl,m, σ) he receives from the or-
acle ODec(sk,·), A checks if VrfySIG(vk, (Pj ,m), σ) = 1.
If this holds for a message (Pl,m′, σ′), then A sends

(Pj ,m′, σ′) to the experiment. If during the simulation,
Pi is corrupted before input or Pj is corrupted (before or
after input) or if no message A receives from ODec(sk,·)
is valid, then A sends ⊥ to the experiment.

By construction, it holds that if Efakemess oc-
curs and A has correctly guessed an index (i, j)
for which Efakemess occurs, then A sends a message
c′ to ODec(sk,·) such that c 6= c∗ or c∗ has not
been generated yet and Dec(sk, c′) = (Pi,m′, σ′) and
VrfySIG(vk, (Pj ,m′), σ′) = 1. Since A does not send
a message of the form (Pj,m) to the signing ora-
cle OSig(sgk,·), it follows that Expaux

PKE,SIG,A(z)(n) = 1.
Furthermore, the probability that A correctly guesses
an index (i, j) for which Efakemess occurs is at least
1/(N · (N − 1)). Hence,

Pr[Expaux
PKE,SIG,A(z)(n) = 1] ≥ Pr[Efakemess]/(N ·(N−1)).

Therefore, since Pr[Expaux
PKE,SIG,A(z)(n) = 1] is negli-

gible by Lemma 1 and N · (N − 1) is polynomial in n, it
follows that Pr[Efakemess] is also negligible.

Claim 2: Pr[Efakein] is negligible

Consider the following adversary A against the EUF-
naCMA security of SIG: At the beginning, A randomly
selects an index i ∈ {1, . . . , N}. A then simulates hybrid
H0. When Z gives the party Pi its input xi, A gener-
ates shares sij , rij , kij of xi, of a random pad ri and
of a MAC key ki just like in H0. A sends the tuples
(Pj , sij , rij , kij) (j 6= i) to the signing oracle OSig(sgk,·),
receiving signatures σij . After receiving vk, A then
uses vk for vki, encrypts all tuples (Pi, sij , rij , kij , σij)
(j = 1, . . . , N) and sends them to the respective party
in its internal simulation. Each time Z sends a tuple
(s′ij , r′ij , k′ij , σ′ij) as input for a corrupted party Pj to
FG such that (s′ij , r′ij , k′ij) 6= (sij , rij , kij), A checks if
VrfySIG(vki, (Pj , s′ij , r′ij , k′ij), σ′ij) = 1. If this holds, A
sends (Pj , s′ij , r′ij , k′ij , σ′ij) to the experiment. If during
the simulation, Pi is corrupted before input or if no
message A checks is valid, then A sends ⊥ to the exper-
iment.

By construction, it holds that if Efakein oc-
curs and A has correctly guessed an index i for
which Efakein occurs, then Expeuf-nacma

SIG,A(z)(n) = 1 be-
cause the tuple (Pj , s′ij , r′ij , k′ij , σij) is valid and
(Pj , s′ij , r′ij , k′ij) 6= (Pj , sij , rij , kij) has not been sent to
the signing oracle OSig(sgk,·). Furthermore, the probabil-
ity that A correctly guesses an index i for which Efakein
occurs is at least 1/N . Hence,
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Pr[Expeuf-nacma
SIG,A(z),(n) = 1] ≥ Pr[Efakein]/N.

Therefore, since Pr[ExpEUF-naCMA
SIG,A(z) (n) = 1] is negligi-

ble because SIG is EUF-naCMA-secure by assumption
and N is polynomial in n, it follows that Pr[Efakein] is
also negligible. Hence, there exist a negligible function
negl1 such that

|Pr[out0(Z) = 1]− Pr[out1(Z) = 1]| ≤ negl1(n).

Hybrid H2
Let H2 be the execution experiment between the envi-
ronment Z, the ideal protocol AG(F1) (again) and the
ideal-model adversary Sim2, where Sim2 is defined as
follows:

Define Sim2 to be like Sim1 except for the fol-
lowing: In item 8, each time Sim2 is activated by
F1 after an honest party Pi received its input,
Sim2 generates N random strings k′ij and computes
σ′ij ← Sig(sgki, (Pj , sij , rij , k′ij)) (j = 1, . . . , N), where
the sij and rij (j = 1, . . . , N) are still the shares of the
input xi and a random pad ri, respectively. Sim2 then
iteratively reports (Pi,Enc(pkj , (Pi, sij , rij , k′ij , σ′ij)))
(j ∈ {1, . . . , N} \ {i}) to Z. If a party Pi is
corrupted after having received input, Sim2 sends
(sii, rii, k′ii, σ′ii, vki, ski) to Z in item 10. (Note that in
item 18 Sim2 still uses the MAC key ki ← GenMAC(1n)
generated in item 6 for the output of FG to a party Pi
corrupted after input (if that output is 6= ⊥)).

Let H2,0, . . . ,H2,N be the execution experiment be-
tween the environment Z, the ideal protocol AG(F1)
and the ideal-model adversary Sim2,0, . . . ,Sim2,N , re-
spectively, where Sim2,i is defined as follows:

Define the simulators Sim2,i to be like Sim1
except for the following: In item 8, each time
Sim2,i is activated by F1 after an honest party
Pl ∈ {P1, . . . , Pi} received its input, Sim2,i gen-
erates N random strings k′lj , computes σ′lj ←
Sig(sgkl, (Pj , slj , rlj , k′lj)) (j = 1, . . . , N), and itera-
tively reports (Pl,Enc(pkj , (Pl, slj , rlj , k′lj , σ′lj))) (j ∈
{1, . . . , N} \ {l}) to Z. If a party Pl ∈ {P1, . . . , Pi}
is corrupted after having received input, Sim2,i sends
(sll, rll, k′ll, σ′ll, vkl, skl) to Z in item 10.

It holds that

Pr[out2,0(Z) = 1] = Pr[out1(Z) = 1]

and
Pr[out2,N (Z) = 1] = Pr[out2(Z) = 1].

Assume that there exists a non-negligible function ε such
that |Pr[out1(Z) = 1] = Pr[out2(Z) = 1]| > ε. Then there
exists an i∗ ∈ {1, . . . , N} such that

|Pr[out2,i∗−1(Z) = 1]− Pr[out2,i∗(Z) = 1]| > ε/N.

Moreover, if party Pi∗ is not corrupted after input,
i.e. if it is corrupted before input or remains honest
throughout the execution, then the views of Z in H2,i∗−1
and H2,i∗ are identically distributed. Therefore,

ε/N <|Pr[out2,i∗−1(Z) = 1]− Pr[out2,i∗(Z) = 1]|
=|Pr[out2,i∗−1(Z) = 1

∧ Pi∗ corrupted after input]
− Pr[out2,i∗(Z) = 1

∧ Pi∗ corrupted after input]|

Consider the following adversary A against the
IND-pCCA security of PKE: At the beginning, A
randomly selects an index j ∈ {1, . . . , N} \ {i∗}. A
then simulates the experiment H2,i∗−1. When Z
gives the party Pi∗ its input xi∗ , A generates shares
si∗l, ri∗l, ki∗l of the input xi∗ , of a random pad ri∗ and
of a MAC key ki∗ just like in H2,i∗−1. A additionally
generates random strings k′i∗l (l ∈ {1, . . . , N}). A then
generates signatures σi∗j , σ

′
i∗j for (Pj , si∗j , ri∗j , ki∗j)

and (Pj , si∗j , ri∗j , k′i∗j), respectively, and sends
(Pi∗ , si∗j , ri∗j , ki∗j , σi∗j), (Pi∗ , si∗j , ri∗j , k′i∗j , σ′i∗j) to
the experiment, receiving a ciphertext c∗. Note that
A’s challenge messages are allowed, i.e. have the same
length, because SIG is length-normal. A then continues
simulating the experiment H2,i∗−1 using c∗ as ci∗j and
his decryption oracle to decrypt the ciphertexts in the
buffer of Pj that are addressed as coming from the
parties corrupted before input but do not equal c∗ (the
ones that are equal to c∗ are ignored. Note that a tuple
(Pl, c∗) sent by a party Pl corrupted before input is
always invalid since Pl 6= Pi∗). Note that in A’s internal
simulation, party Pi∗ receives the correct value from
FG (i.e. (yi∗ + ri∗ ,Mac(ki∗ , yi∗ + ri∗)) or ⊥). At the
end of the experiment, A outputs what Z outputs. If
during the simulation, Z corrupts Pj (before or after
input) or if Pi∗ is not corrupted after input, A sends ⊥
to the experiment.

Let outputb(A) denote the output of A in the IND-
pCCA experiment when the challenge bit b is chosen.
By construction, assuming party Pi∗ is corrupted after
input, if A guessed an index j such that party Pj re-
mains honest then it holds that if the challenge bit is 0
the view of Z in A’s internal simulation is distributed
as in the experiment H2,i∗−1 and if the challenge bit is 1
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the view of Z in A’s internal simulation is distributed as
in the experiment H2,i∗ . Moreover, assuming party Pi∗
is corrupted after input, the probability that A guesses
an index j such that party Pj remains honest is at least
1/(N − 1). Hence,

|Pr[output0(A) = 1]− Pr[output1(A) = 1]|
=|Pr[out2,i∗−1(Z) = 1 ∧ Pi∗ corrupted after input

∧Guess correct]
− Pr[out2,i∗(Z) = 1 ∧ Pi∗ corrupted after input

∧Guess correct]|
> ε/(N · (N − 1)).

This contradicts the IND-pCCA security of PKE. Hence,
there exist a negligible function negl2 such that

|Pr[out1(Z) = 1]− Pr[out2(Z) = 1]| ≤ negl2(n).

Hybrid H3
Let H3 be the execution experiment between the en-
vironment Z, the ideal protocol AG(F2) and the ideal-
model adversary Sim3, where F2 and Sim3 are defined
as follows:

Let F2 be identical to F1 except that now the ad-
versary is allowed to determine the outputs only of the
dummy OIMs of the parties corrupted before input.

Define Sim3 to be like Sim2 except that item 19 is
identical to the same step of the simulator in Defini-
tion 5. Let Efakeout be the event that Z sends a message
(m′, t′) to OIM of a party Pi corrupted after input such
that VrfyMAC(ki,m′, t′) = 1 but either Pi has received
⊥ from FG or a tuple (m, t) such that m′ 6= m or Pi has
not received an output from FG yet. It is easy to see
that the following holds:

Pr[out2(Z) = 1∧¬Efakeout] = Pr[out3(Z) = 1∧¬Efakeout]

Therefore, it holds that

|Pr[out2(Z) = 1]− Pr[out3(Z) = 1]| ≤ Pr[Efakeout].

Claim 3: Pr[Efakeout] is negligible

Consider the adversary A against the EUF-1-CMA-
security of MAC. At the beginning, A randomly selects
an index i ∈ {1, . . . , N}. A then simulates the hybrid H2.
Once Z expects the output from FG for party Pi (if Pi is
corrupted after input), A computes the (padded) result
m for this party. If m = ⊥, A sends ⊥ to Z. Otherwise,
A sends m to the MAC oracle OMac(k,·), receiving a tag

t. A then sends (m, t) to Z. If Z sends a tuple (m′, t′)
to OIM of Pi such that m′ 6= m, then A sends (m′, t′)
to the experiment. If during the simulation, Pi is not
corrupted after input or if Z sends ⊥ or a tuple (m′, t′)
such that m′ = m to OIM of Pi, then A sends ⊥ to the
experiment.

By construction, it holds that if Efakeout occurs and
A correctly guessed an index for which Efakeout occurs,
then Expeuf-1-cma

MAC,A(z)(n) = 1 because (m′, t′) is valid and
m′ 6= m has not been sent to OMac(k,·). Moreover, the
probability that A correctly guesses an index for which
Efakeout occurs is at least 1/N . Hence,

Pr[ExpEUF-1-CMA
MAC,A(z) (n) = 1] ≥ Pr[Efakeout]/N.

Therefore, since Pr[Expeuf-1-cma
MAC,A(z)(n) = 1] is negligible

because MAC is EUF-1-CMA-secure by assumption and
N is polynomial in n, it follows that Pr[Efakeout] is also
negligible. Hence, there exist a negligible function negl3
such that |Pr[out2(Z) = 1]−Pr[out3(Z) = 1]| ≤ negl3(n).

Hybrid H4
Let H4 be the execution experiment between Z, the ideal
protocol AG(F3) and the ideal-model adversary Sim4,
where F3 and Sim4 are defined as follows: Let F3 be
identical to F2 except that the adversary is not given
the inputs and outputs of honest parties anymore. The
adversary is only given the inputs and outputs of parties
corrupted after input when all parties are corrupted.

Define the adversary Sim4 to be like Sim3 except
that items 8, 10 and 18 are identical to the same steps
of the simulator in Definition 5.

Using an argument that is almost identical to the
one in hybrid H2 one can show that that there exists a
negligible function negl3 such that

|Pr[out3(Z) = 1]− Pr[out4(Z) = 1]| ≤ negl3(n)

Since H4 is identical an execution between Z, the
ideal protocol AG([G]) and the simulator as defined in
Definition 5, it follows that there exists a negligible func-
tion negl such that

|Pr[ExecUC#

(
ΠG ,D,Z

)
= 1]−

Pr[ExecUC#

(
AG([G]),Sim,Z

)
= 1]| ≤ negl(n).

The statement follows.
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C A Short Introduction to the
UC Framework

In the following, we give a brief overview of the UC
framework. The following is adapted from [10]. For a
detailed introduction see [11].

In the UC framework, security is defined by the in-
distinguishability of two experiments: the ideal experi-
ment and the real experiment. In the ideal experiment,
the task at hand is carried out by dummy parties with
the help of an ideal incorruptible entity—called the ideal
functionality F . In the real experiment, the parties ex-
ecute a protocol π in order to solve the prescribed task
themselves. A protocol π is said to be a (secure) real-
ization of F if no PPT machine Z, called the environ-
ment, can distinguish between these two experiments.
In contrast to previous simulation-based notions, indis-
tinguishability must not only hold after the protocol
execution has completed, but even if the environment
Z—acting as the interactive distinguisher—takes part
in the experiment, orchestrates all adversarial attacks,
gives input to the parties running the challenge protocol,
receives the parties’ output and observes the communi-
cation during the whole protocol execution.

The Basic Model of Computation
The basic model of computation consists of a set of (a
polynomial number of) instances (ITIs) of interactive
Turing machines (ITMs). An ITM is the description of
a Turing machine with an additional identity tape, three
externally writable input tapes (namely for input, sub-
routine output9 and incoming messages) and an outgo-
ing message tape. The latter is jointly used to provide
input to any of the three input tapes of another ITM.
The tangible instantiation of an ITM—the ITI—is iden-
tified by the content of its identity tape. The order of
activation of the ITIs is completely asynchronous and
message-driven. An ITI gets activated if input, subrou-
tine output or an incoming message is written onto its
respective tape. If the ITI writes onto its outgoing mes-
sage tape and calls the special external write instruc-
tion, the activation of this ITI completes. The message
must explicitly designate the identity and input tape of
the receiving ITI. Each experiment comprises two spe-
cial ITIs: The environment Z, and the adversary A (in

9 Beware: Despite its name, this tape is actually an input tape
as it receives subroutine output.

the real experiment) or the simulator S (in the ideal ex-
periment). The environment Z is the ITI that is initially
activated. If any ITI completes its activation without
giving any output, the environment is activated again
as a fallback. If the environment Z provides subroutine
output, the whole experiments stops. The output of the
experiment is the output of Z. Without loss of general-
ity, we assume that Z outputs a single bit only.

The Control Function and Message Delivery
If an ITI writes a message onto its outgoing message
tape and calls external write, a control function de-
cides if the operation is allowed10. If so, the experiment
proceed as follows: If the receiver is uncorrupted and
the designated input tape is either input or subroutine
output, the message is copied to the respective tape of
receiver. Else (meaning if the message is intended to be
sent to an incoming message tape or the receiver is cor-
rupted) the message is delivered to the respective tape of
the adversary. This captures the natural intuition that
input and subroutine output normally occurs within the
same physical party and thus should be authenticated,
immediate, confidential and of integrity. In contrast, ex-
ternal communication is only possible through an unre-
liable network under adversarial control.

UC Framework Conventions
In the UC framework, many important aspects are un-
specified. For example, it leaves open which ITI is al-
lowed to invoke what kind of new ITIs. The conventions
stated in the following are probably the mostly used
ones and quite natural.

Each party is identified by its party identifier (PID)
pid which is unique to the party and is the UC equiva-
lent of the physical identity of this party. A party runs
a protocol π by means of an ITI which is called the
main party of this instance of π. An ITI can invoke sub-
sidiary ITIs to execute sub-protocols. A subsidiary and
its parent use their input/subroutine output tape to com-
municate with each other. The set of ITIs taking part
in the same protocol but for different parties communi-
cate through their incoming message tapes. An instance

10 N.b.: The control function is another ITI that exists “outside”
of the experiment and checks which combination of sender ID,
receiver ID and message tape are feasible. For example, only
subsidiary ITIs are typically allowed to provide subroutine output
to their main ITI. For details see [11].
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of a protocol is identified by its session identifier (SID)
sid. All ITIs taking part in the same protocol instance
share the same SID. A specific ITI is identified by its
ID id = (pid, sid).

The (Dummy) Adversary
The adversary A is instructed by Z and represents Z’s
interface to the network. To this end, all messages from
any party to a party that has a different main party and
that are intended to be written to an incoming message
tape are copied to the adversary. The adversary can
process the message arbitrarily. The adversary may de-
cide to deliver the message (by writing the message on
its own outgoing message tape), postpone or completely
suppress the message, inject new messages or alter mes-
sages in any way including the recipient and/or alleged
sender.
Z may also instruct A to corrupt a party. In this

case, A takes over the position of the corrupted party,
reports its internal state to Z and from then on may
arbitrarily deviate from the protocol in the name of the
corrupted party as requested by Z. This means when-
ever the corrupted ITI would have been activated (even
due to subroutine output), the adversary gets activated
with the same input.

A special case for the adversary is the so-called
dummy adversary that reports all received messages
to the environment and delivers all messages coming
from the environment. It can be shown that the dummy
adversary is complete, i.e. that if a simulator for the
dummy adversary exists, then there also exists a simu-
lator for any other adversary.

Ideal Functionalities and the Ideal Protocol
An ideal functionality F is a special type of ITM whose
instantiations (ITIs) bear a SID but no PID. Hence,
it is an exception to the aforementioned identification
scheme. Input to and subroutine output from F is per-
formed through dummy parties. Dummy parties merely
forward their input to the input tape of F and subrou-
tine output from F to their own outgoing message tape.
They share the same SID as F , but additionally have
individual party identifiers (PIDs) as if they were the ac-
tual main parties of a (real) protocol. The ideal function-
ality F is simultaneously a subroutine for each dummy
party and conducts the prescribed task. IDEAL(F) is
called the (ideal) protocol for F and denotes the set of
F together with its dummy parties.

The UC Experiment
Let π be a protocol, Z an environment and A an adver-
sary. The UC experiment, denoted by Execπ,A,Z(n, a),
initially activates the environment Z with security pa-
rameter 1n and input a ∈ {0, 1}∗. The first ITI that is
invoked by Z is the adversary A. All other parties in-
voked by Z are set to be main parties of the challenge
protocol π. Z freely chooses their input, their PIDs and
the SID of the challenge protocol. The experiment is
executed as outlined above.

Definition of Security
Let π, φ be protocols. π emulates φ in the UC frame-
work, denoted by π ≥ φ, if for every PPT adversary A
there is a PPT adversary S such that for every PPT
environment Z there is a negligible function negl such
that for all n ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[Exec
(
π,A,Z

)
(n, a) = 1]−

Pr[Exec
(
φ,S,Z

)
(n, a) = 1]| ≤ negl(n),

where Exec
(
π,A,Z

)
(n, a) denotes the random variable

for the environment Z’s output in the UC execution
experiment with protocol π and adversary A on input
a and security parameter n.

The simulator S mimics the adversarial behavior
to the environment as if this were the real experiment
with real parties carrying out the real protocol with
real π-messages. Moreover, S must come up with a con-
vincing internal state upon corrupted parties, consistent
with the simulated protocol execution up to this point
(dummy parties do not have an internal state).

Protocol Composition
UC security is closed under protocol composition: Let
π, φ, ρ be protocols. Then,

π ≥UC φ =⇒ ρπ ≥UC ρ
φ

C.1 Bulletin Board Functionality

In our constructions, we make use of the ideal function-
ality Freg that models a public bulletin board.

Definition 6 (Freg). Freg proceeds as follows:
– Report: Upon receiving a message (register, sid, v)

from party P , send (registered, sid, P, v) to the ad-
versary; upon confirmation, record the pair (P, v).
Otherwise, ignore the message.
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– Retrieve: Upon receiving a message
(retrieve, sid, Pi) from some party Pj (or the
adversary A), generate a public delayed output
(retrieve, sid, Pi, v) to Pj , where v = ⊥ if no record
(P, v) exists.

Note that in contrast to the usual definition, we allow
key revocation in Freg.
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