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Abstract: There is increasing awareness of the need to
protect individual privacy in the training data used to
develop machine learning models. Differential Privacy is
a strong concept of protecting individuals. Naïve Bayes
is a popular machine learning algorithm, used as a base-
line for many tasks. In this work, we have provided a dif-
ferentially private Naïve Bayes classifier that adds noise
proportional to the smooth sensitivity of its parameters.
We compare our results to Vaidya, Shafiq, Basu, and
Hong [1] which scales noise to the global sensitivity of
the parameters. Our experimental results on real-world
datasets show that smooth sensitivity significantly im-
proves accuracy while still guaranteeing ε-differential
privacy.
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1 Introduction
With the growth of user data across the internet, it
has become more important to protect users’ sensitive
information. One solution to this problem is privacy-
preserving data analysis, providing ability to share in-
formation while protecting users’ data. Dwork, McSh-
erry, Nissim, and Smith [2] introduced differential pri-
vacy, providing a strong privacy guarantee for statis-
tical data release. At a high level, Differential Privacy
guarantees that the outcome of a differentially private
algorithm would be similar no matter if a particular in-
dividual contributes personal data to the database or
not. There are several common approaches to differen-
tial privacy, including the Laplace Mechanism, which
perturbs the parameters of the model with noise that
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is drawn from the Laplace distribution, scaled to the
impact of a single individual on the result. The expo-
nential Mechanism is another important mechanism to
guarantee (ε, δ)−differential privacy [3].

A model generated by a machine learning algorithm,
when trained on a dataset, can reveal information about
the training dataset. There are a series of recent works
that guarantee that the output of a machine learning
model satisfies differential privacy. These include differ-
entially private Decision Trees [4], SVM [5], Deep Neural
Networks [6], and Logistic Regression [7]. Differential
privacy is particularly relevant for ensuring that ma-
chine learning models do not disclose individual infor-
mation and even has the promise of improving general-
ization [8]. Naïve Bayes is a baseline for many classifica-
tion tasks. Vaidya, Shafiq, Basu, and Hong [1] provided
a differentially private algorithm for the Naïve Bayes
classifier. They use the Laplace Mechanism to provide
this guarantee based on computing the global sensitiv-
ity of the parameters. One of the main drawbacks of
using global sensitivity is that the amount of the noise
added to the output can be high if their could be a
dataset where an individual would have a large impact
on an outcome. Nissim, Raskhodnikova, and Smith [9]
provided a general solution for this problem. In their
paper they compute the Smooth Sensitivity for a given
function f building on the definition of local sensitivity.
The local sensitivity of f is the maximum amount of
change in f if we change a single element in a particu-
lar dataset x. It is obvious that the local sensitivity of
a given function is not greater than its global sensitiv-
ity. Ideally, we would like to add noise proportional to
the local sensitivity of f , but this does not satisfy the
definition of differential privacy (the amount of noise
needed reveals too much about the data), hence, in [9]
they compute a β−smooth function which is the small-
est upper bound for the local sensitivity that provides
ε-differential privacy. In this paper, we show how this
approach can be used to provide a ε-differentially pri-
vate algorithm for the Naïve Bayes classifier based on
the smooth sensitivity of the parameters of the model.

Bun and Steinke [10]also provide an algorithm for
estimating the mean of a distribution using i.i.d. sam-
ple x using smooth sensitivity. They first assume a crude
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bound on the µ ∈ [a, b], then they truncate the samples,
i.e. they remove the largest m samples and smallest m
samples from x, and compute the mean of the n − 2m
samples. Finally they project the estimated mean to
the range [a, b]. We compare our algorithm to Vaidya,
Shafiq, Basu, and Hong [1] and Naïve Bayes using Bun
and Steinke [10]’s mean estimation algorithm.

2 Preliminaries
We first give a brief overview of the Naïve Bayes
classifier, then provide an overview of differential pri-
vacy. More specifically, we state the definitions for
ε−differential privacy and smooth sensitivity.

2.1 Naïve Bayes Classifier

The Naïve Bayes classifier is a family of probabilistic
classifiers that uses Bayes’ theorem and assumes inde-
pendence between features. That is, it assumes that the
value of a particular feature is unrelated to any other
features. The Naïve Bayes classifier can handle an arbi-
trary number of independent variables, whether contin-
uous or categorical, and classifies an instance to one of
a finite number of classes.

To train the Naïve Bayes model, a set of train-
ing examples with a corresponding target label is pro-
vided. The task is to assign a new class cMAP to an
unseen instance X =< X1, X2, . . . , Xm >. Thus, the
learning task would be that for each instance X =<
X1, X2, . . . , Xm > consists ofm features, it assigns prob-
ability

Pr(cj |X1, X2, . . . , Xm)
for each of K possible label classes C = {c1, c2, . . . , cK}.

cMAP = arg max
j∈{1,...,K}

Pr(cj |X1, X2, . . . , Xm)

By using Bayes’ theorem, we can further decompose the
conditional probability to:

cMAP = arg max
j∈{1,...,K}

(
Pr(X1, X2, . . . , Xm|cj) Pr(cj)

Pr(X1, X2, . . . , Xm)

)
= arg max

j∈{1,...,K}
(Pr(X1, X2, . . . , Xm|cj) Pr(cj))

The Naïve Bayes classifier makes the further sim-
plifying assumption that the attribute values are condi-
tionally independent, given the target value. Therefore:

cNB = arg max
j∈{1,...,K}

Pr(cj)
m∏
i=1

Pr(Xi|cj)

where cNB denotes the final class label for the instance
X =< X1, X2, . . . , Xm >.

From the training dataset, we can pre-compute the
conditional probabilities Pr(Xi|cj). Also, Pr(cj) can be
computed by counting the number of items that are la-
beled cj in the training dataset. As with Vaidya, Shafiq,
Basu, and Hong’s work [1], we deal with both categori-
cal and numerical attributes. The way that we estimate
the probability is different for each class:
– Categorical Value: For a categorical attribute Xi

with J possible attribute values a1, a2, . . . , aJ , the
probability Pr(Xi = ak|cj) = τ{Xi=ak∧C=cj}

τ{C=cj} ,
where the τ{x} operator returns the number of ele-
ments in the training set D that satisfy property x.
To prevent division by zero, we use Laplace smooth-
ing which adds 1 to all counts.

– Numerical Value: For a numerical attribute Xi, one
standard approach is to assume that for each pos-
sible discrete value ck of C, the distribution of each
continuous Xi is Gaussian, and is defined by a mean
and standard deviation specific to Xi and ck [11]. To
train such a Naïve Bayes classifier we must therefore
estimate the mean and standard deviation of these
Gaussians,

µik = E[Xi|C = ck]

σ2
ik = E[(Xi − µik)2|C = ck]

, for each numerical attribute Xi and each possible
value ck of C.
If the numerical values are bounded, one can use
the Truncated normal distribution and estimate its
parameters. The probability density function of the
Truncated normal distribution for a ≤ x ≤ b is:

f(x;µ, σ, a, b) = 1
σ

φ(x−µσ )
φ( b−µσ )− φ(a−µσ )

Where
φ(τ) = 1√

2π
exp(−1

2τ
2)

After estimating the values for mean and variance,
the probability that an instance is of class Cj can
be directly computed from the density function.

2.2 Differential Privacy

Dwork, McSherry, Nissim, and Smith [2] defined the
notion of differential privacy. At a high level, differen-
tial privacy guarantees that if your data is a part of a
database from which we release information, then the
released information will be similar if your data is a
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part of the database or not. That is, your data will have
a negligible impact on the released information. Hence,
no meaningful information can be inferred about indi-
viduals. The definitions below come from their work.

Definition 2.1. (Laplace Distribution) The probabil-
ity density function (p.d.f) of the Laplace distribution
Lap(µ, λ) is f(x|µ, λ) = 1

2λe
−|x−µ|/λ with mean µ and

standard deviation
√

2λ.

Definition 2.2. (Cauchy Distribution) The probabil-
ity density function (p.d.f) of the Cauchy distribution
Cauchy(x0, λ) is f(x|x0, λ) = 1

λπ(1+((x−x0)/λ)2) with lo-
cation parameter x0 and scale λ.

Let D1, . . . ,Dm denote domains, each of which could
be categorical or numerical. A database D consists of
n rows, {X(1), X(2), . . . , X(n)}, where each X(i) ∈ D1 ×
. . .×Dm.

We say two databases D1 and D2 are at distance k
of each other and we write it as d(D1, D2) = k if they
differ by k rows. Two database D1 and D2 are called
neighbors if d(D1, D2) = 1.

Definition 2.3. (Global Sensitivity). For f : D → R,
the global sensitivity of f with respect to `1 metric is:

GSf = max
x,y:d(x,y)=1

||f(x)− f(y)||1

Definition 2.4. (Differential Privacy). A randomized
Mechanism M : D → R with domain D and range R
is ε-differentially private if for all D1, D2 ∈ D satisfy-
ing d(D1, D2) = 1, and for all sets S ⊆ R of possible
outputs:

Pr[M(D1) ∈ S] ≤ eε Pr[M(D2) ∈ S]

We also introduce concentrated differential privacy;
while we do not require this, our comparison with [10]
involves situations where [10] satisfies concentrated dif-
ferential privacy rather than Definition 2.4.

Definition 2.5. (Concentrated Differential Privacy). A
randomized Mechanism M : D → R with domain D
and range R is 1

2ε
2-CDP if for all D1, D2 ∈ D satisfying

d(D1, D2) = 1:

∀α > 1 Dα(M||M(x′)) ≤ 1
2ε

2α

where Dα is the Rényi divergence and α is a divergence
parameter.

We also make use of a couple of properties of the way dif-
ferentially private mechanisms combine. Sequential com-

position states that privacy loss is additive: If we take
“multiple looks” at the data, the privacy budget ε ex-
pended is the sum of the privacy budgets εi of each
“look”.

Theorem 1. (Sequential Composition [12][13]) Let
M1 : D → R1 be an ε1-differentially private algo-
rithm, and let M2 : D → R2 be an ε2-differentially
private algorithm. Then their combination, defined to
be M1,2 : D → R1 × R2 by the mapping: M1,2(x) =
(M1(x),M2(x)) is ε1 + ε2-differentially private.

Dwork et al. [2] showed how to calibrate the noise
to the global sensitivity of the function f such that
it satisfies ε−differential privacy . In their work, they
have shown that the magnitude of the noise is propor-
tional to Lap(0, GSf/ε). Intuitively, whenever we add
noise proportional to the global sensitivity of f , we are
adding noise proportional to the maximum magnitude
of changes in f .

3 Smooth Sensitivity
One drawback of computing the global sensitivity of f
is that for many functions, there may be some possi-
ble datasets where changing one individual can make a
dramatic change in the outcome. For example, suppose
we are computing median on a value ranging from 0..1.
The dataset consisting of individuals with values 0, 0,
and 1 has median 0, but by changing one individual the
median goes to 1 - so the added noise must essentially
obscure the entire result.

In practice, most databases will not have this prop-
erty. Nissim, Raskhodnikova, and Smith [9] showed that
we can add noise based on the actual dataset we have
rather than a worst-case dataset, and still satisfy ε-
differential privacy. We now outline their result.

Definition 3.1. (Local Sensitivity). For f : D → R
and x ∈ D the local sensitivity of f at x (with respect
to the `1 metric) is:

LSf (x) = max
y:d(x,y)=1

||f(x)− f(y)||1

Note that GSf = max
x

LSf (x). We would like to be
able to add noise proportional to local sensitivity. How-
ever, the local sensitivity may itself be high sensitivity,
i.e., noise magnitude may compromise privacy. Nissim,
Raskhodnikova, and Smith define a Smooth bound that
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addresses this issue by looking not just at neighbors of
the current dataset, but also their neighbors, etc.

Definition 3.2. (A Smooth bound). For β > 0, a func-
tion S : D → R+ is a β−smooth upper bound on the
local sensitivity of f if it satisfies the following require-
ments:
– ∀x ∈ D : S(x) ≥ LSf (x)
– ∀x, y ∈ D, d(x, y) = 1 : S(x) ≤ eβS(y)

Definition 3.3. (Smooth Sensitivity). For β > 0, the
β-smooth sensitivity of f is:

S∗f,β(x) = max
y∈D

(LSf (y) · e−βd(x,y))

The smooth sensitivity S∗f,β(x) is the smallest function
that satisfies Definition 3.2.

Nissim et al. [9] showed that one could do much
better than scaling the noise to the global sensitivity of
f by adding noise proportional to the Smooth sensitivity
of f where it will give much higher output accuracy.

3.1 Computing Smooth Sensitivity

We now describe how to compute the smooth sensitivity
of a function.

Definition 3.4. The sensitivity of f at distance k is:

Ak(x) = max
y∈D:d(x,y)≤k

LSf (y)

We can express the smooth sensitivity of f in terms of
Ak as follows:

S∗f,ε(x) = max
k=0,1,...,n

e−kε( max
y:d(x,y)=k

LSf (y))

= max
k=0,1...,n

e−kεA(k)(x)

3.2 Calibrating Noise to the Smooth
Sensitivity

To release a function f of the database D, the curator
computes f and publishesM(D) = f(D) + λZ where Z
is a random variable drawn from a noise distribution,
and λ is the scaling parameter.

Theorem 2. (Nissim et al. [9]) Let f : D → R be any
real-valued function and let S : D → R be a β-smooth
upper bound on the local sensitivity of f . Then we have:

if β ≤ ε
2(γ+1) and γ > 1, the algorithm x → f(x) +

2(γ+1)S(x)
ε

η where η is sampled with distribution h(z) ≈
1

1+|z|γ , is ε-differentially private.

Nissim et al. [9] showed that to scale the noise to the
smooth sensitivity of f , it is sufficient to sample from
an admissible noise distribution, defined as follows.

For a subset S of Rd, we write S + ξ for the set
{z+ ξ|z ∈ S}, and εδ.S for the set {ελ.z|z ∈ S}. We also
write a± b for the interval [a− b, a+ b].

Definition 3.5. (Nissim et al. [9]) A probability distri-
bution on Rn, given by a density function h, is (α, β)-
admissible (with respect to `1), if for α = α(ε, δ),
β = β(ε, δ), the following two conditions hold for all
δ ∈ Rn and λ ∈ R satisfying ||ξ||1 ≤ α and |λ| ≤ β, and
for all measurable subsets S ⊂ Rn:
– Sliding Property:

Pr
Z∼h

[Z ∈ S] ≤ e
ε
2 . Pr
Z∼h

[Z ∈ S + ξ] + δ/2

– Dilation Property:

Pr
Z∼h

[Z ∈ S] ≤ eε/2. Pr
Z∼h

[Z ∈ eλ.S] + δ/2

Theorem 3. (Nissim et al. [9]) For any γ >

1, the distribution with density h(z) ≈ 1
1+|z|γ

is ( ε
2(γ+1) ,

ε
2(γ+1) )−admissible. Moreover, the

n−dimensional product of independent copies of h is
( ε

2(γ+1) ,
ε

2(γ+1) ) admissible.

Nissim et al. show that a Cauchy distribution satisfies
Theorem 3. They also show that approximate differen-
tial privacy can be satisfied under smooth sensitivity us-
ing noise from a gaussian or laplace distribution. While
we show only pure (ε, 0)-differential privacy below, it is
easily extended to approximate differential privacy; we
show how this compares empirically in Section 7.

4 Differentially Private Naïve
Bayes

While smooth sensitivity has been known for some time,
it is often challenging to apply to practical problems.
Unlike global sensitivity, which requires only a worst-
case analysis, to use Theorem 2 with a naive application
of Definition 3.4 is exponential in dataset size. We now
show how smooth sensitivity can be applied to create
a differentially private Naïve Bayes classifier. We first
compute the Naïve Bayes parameters (Section 2.1). We
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then perturb the parameters with noise that preserves
ε-differential privacy. As stated in Section 2.1, a stan-
dard approach for fitting a machine learning model to
a numerical attribute is to assume that the underlying
distribution is Gaussian. We also assume that the nu-
merical feature values are bounded. Hence, we start by
computing the smooth sensitivity for estimating the pa-
rameters of the Truncated normal distribution.

Note that we only train using a subset of the data.
The way this subset is defined enables a smooth bound,
as neighboring databases result in (at worst) training
on a different subset rather than completely new data.

Definition 4.1. (Trimmed Sample) Let X =
x1, x2, . . . , xn denote the sample in sorted order and
m be a trimming parameter. The trimmed sequence of
sample X is:

xm+1, xm+2, . . . , xn−m

In other words, we draw a window of size n−2m on the
data.

4.1 Smooth Sensitivity of the Mean

We start by computing the Smooth sensitivity of the
mean of a dataset.

Theorem 4. Given a list of n bounded real numbers
V = {x1, x2, . . . , xn} in the range of the interval [L,U ],
the Smooth sensitivity of the mean of V can be com-
puted in O(n2).

Proof. Without loss of generality we assume that V

is in non-decreasing order. Now consider the set V =
{x1, x2, . . . , xn} with mean µV = x1+x2+...+xn

n and a
set V ′ = {x′1, x′2, . . . , x′n} with mean µV ′ = x′1+x′2+...+x′n

n

where d(V, V ′) = k, i.e., it differs from V by k elements
such that |µV −µV ′ | is maximized. In the case that µV ′ >
µV , it is easy to see that we have to replace x1, x2, . . . , xk
with U (See Fig. 1). Similarly, in the case that µV > µV ′ ,
we should replace xn−k+1, xn−k+2, . . . , xn with L. Iter-
ating through all possible choices of 1 ≤ k ≤ n and
changing one last element to its extreme case (L or U)
would give use the smooth sensitivity.

4.2 Smooth Sensitivity of Variance

In this section, we will describe how to compute the
smooth sensitivity of the variance of a dataset.

Fig. 1. (top): blue dots represents points on the x axis where the
red cross mark represents their corresponding mean. (middle):
shifting the mean towards the right-side by picking the k-smallest
numbers and replacing them with U . (bottom): shifting the mean
towards the left-side by picking the k-largest numbers and replac-
ing them with L.

Definition 4.2. (k-maximal variance subset) Given a
set V = {x1, x2, . . . , xn} of n real numbers in ascending
order and an integer k (k < n), a subset Q ⊂ V is
called a k-maximal variance subset of V if |Q| = k and
∀Q′ ⊂ V,Q′ 6= Q where |Q′| = k, Var[Q′] ≤ Var[Q].

Theorem 5. Given a list of n bounded real numbers
V = {x1, x2, . . . , xn} in the range of interval [L,U ] and
an integer k (k < n), the k−maximal variance subset
can be computed in O(n2).

Proof. Without loss of generality assume that V is in
non-decreasing order. Let Q = {Γ1, Γ2, . . . , Γk} be the
k−maximal variance of V . We define the mean of Q to
be µQ = 1

k (Γ1+Γ2+. . .+Γk). Let Q′ = {Γ1, Γ2, . . . , Γk+∆},
i.e., it only differs from Q by adding ∆ to Γk. Let µQ′
be the mean of Q′, we have:

µQ′ = µQ + 1
k
∆

Let σ2
Q and σ2

Q′ be the variance of Q and Q′, respec-
tively. The variance of Q = {Γ1, Γ2, . . . , Γk} (multiplied
by k) is:

kσ2
Q = (Γ2

1 + . . .+ Γ2
k )− kµ2

Q

Now we will see the impact of adding ∆ to Γk on the
variance.

kσ2
Q′ − kσ2

Q = [(Γk + ∆)2 − Γ2
k ]− k[µ2

Q′ − µ2
Q]

= [Γ2
k + ∆2 + 2Γk∆− Γ2

k ]− k(µQ + ∆

k
)2

+ kµ2
Q

= [Γ2
k + ∆2 + 2Γk∆− Γ2

k ]− kµ2
Q

− ∆2

k
− 2µQ∆ + kµ2

Q

= 2∆(Γk − µQ) + k − 1
k

∆2

≥ 2∆(Γk − µQ)

This value will be non-negative whenever the sign
of ∆ and (Γk −µQ) are the same. That is, the difference
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in the variance will increase if we move Γk further from
the mean µQ.
Now assume that we are given a variance-maximizing se-
quence S of k values chosen from V = {x1, x2, . . . , xn}.
Assume for the contradiction that S contains an ele-
ment xm where xm is not at the tail of V . That means
there exists xr (r 6= m), where if we replace xm with xr
by the given inequalities we will increase the variance
and ∆ = xm− xr which contradicts that S is a variance
maximizing sequence. So given V = {x1, x2, . . . , xn}, we
know that the k-maximal variance subset selects ele-
ments from the tail of V . Iterating through all possible
cases of 0 ≤ i ≤ k, j = k−i, where the first i elements are
selected from the beginning of V , i.e., (x1, x2, . . . , xi) ,
and j elements are selected from the end of the sequence,
i.e., (xn−j+1, . . . , xn−1, xn), selecting the sequence that
gives the maximum variance will be the solution to the
k-maximal variance subset.

Corollary 5.1. Given a list of n bounded real num-
bers V = {x1, x2, . . . , xn} in the range [L,U ] and an
integer k (k < n), the k-maximal variance subset can be
achieved by removing n− k consecutive elements in V .

Definition 4.3. (k-minimal variance subset) Given a
set V = {x1, x2, . . . , xn} of n real numbers in ascending
order and an integer k (k < n), a subset Q ⊂ V is
called k-minimal variance subset of V if |Q| = k and
∀Q′ ⊂ V,Q′ 6= Q where |Q| = k, Var[Q′] ≥ Var[Q].

Theorem 6. Given a list of n real numbers V =
{x1, x2, . . . , xn} in the range of the interval [L,U ] and
an integer k (k < n), the k-minimal variance subset can
be computed in O(n2).

Proof. The proof is similar to the proof of Theorem 5.
Without loss of generality assume that V is in non-
decreasing order. Hence, given V = {x1, x2, . . . , xn}
the optimal solution would remove {x1, x2, . . . , xi} and
{xn−k+i, . . . , xn−1, xn}. Iterating through all possible
0 ≤ i ≤ k would give the optimal solution.

Theorem 7. Given a list of n bounded real numbers
V = {x1, x2, . . . , xn} in the range of interval [L,U ], the
Smooth sensitivity of the variance of V can be computed
in O(n2).

Fig. 2. Blue dots represents points on the x axis where the red
cross mark represents their corresponding mean. For a fixed k =
6, we use a sliding window (shaded box) and move it through x
axis. We assign t of the numbers to L and k − t to U and save
the maximum variance of the resulted sequence.

Proof. By Corollary 5.1, the k-maximal variance sub-
set can be achieved by removing n − k consecutive el-
ements. Without loss of generality assume that V is in
non-decreasing order. We can iterate through all k con-
secutive elements in V and assign t of them to be L,
and k − t of them to be U . The maximum over all
possible cases would be the maximal variance. Simi-
larly, for minimizing the variance by using Theorem 6,
we replace {x1, x2, . . . , xt}, i.e., the first t elements and
{xn−k+t, . . . , xn}, i.e., the last k − t elements with µ =
xt+1,xt+2,...,xn−k+t−1

(n−k−2) . Changing one element to its ex-
treme case (U or L), or to the mean of the sequence
would give us the smooth sensitivity.

Fig. 3 shows an example for the extreme change of the
global sensitivity.

L

L

U

U

Fig. 3. Maximum change of the global sensitivity. (top): all points
are on L, by changing k = 3 points to the other extreme point
(U), the variance and mean have the maximum change.

Note that another way to compute a differentially
private variance of bounded dataset is to use V ar(X) =
E[X2]−E[X]2. In this case, we would need to compute
a differentially private E[X] and E[X2]. While we al-
ready have the mean E[X], we would need to use the
privacy budget used for V ar(X) to instead calculate
E[X2]. However, this results in V ar(X) being computed
from two noisy values, resulting in a less accurate result
than our method of computing it directly.
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5 Bun and Steinke’s Mean
Estimation Using Smooth
Sensitivity

Bun and Steinke [10] provided an algorithm for pri-
vately estimating the mean of a distribution. Their al-
gorithm estimates the mean from an i.i.d. sample x of
the dataset. They first assume a crude bound on the
mean µ ∈ [a, b], then they truncate the samples, i.e. they
remove the largest m samples and smallest m samples
from x, and compute the mean of the n−2m samples. Fi-
nally they project the estimated mean to the range [a, b].
They have defined several admissible distributions such
that adding noise proportional to them would guarantee
1
2ε

2-CDP (Concentrated Differential Privacy). These in-
clude Student’s T, Laplace log-normal, uniform log-
normal, and arsinh-normal. Theorem 8 is the main re-
sult of their paper:

Theorem 8. (Bun and Steinke [10]) Let n ≥ O(log((b−
a)σ)/ε), then there exist a ε-DP (or 1

2ε
2-CDP) algo-

rithmM : Rn → R such that, for all µ ∈ [a, b], we have:

E[(M(x)− µ)2] ≤ σ2

n
+ σ2

n2 .O(
log b−a

σ

ε
+ logn

ε2 )

In Theorem 8, the first part is the non-private optimal
mean-squared error and the additional term is the cost
of the privacy. The key difference between our approach
and that of [10] is that we assume structural or data-
independent bounds on values (e.g., age between 0 and
125). While less general than [10], in practical cases this
allows for better differentially private estimates. This
also enables an independent private estimate of variance
(Section 4.2) that provides better results than basing
variance on estimates of the mean. The approach of [10]
also requires choosing a smoothing parameter; it is not
clear how to do this in a data independent or differen-
tially private manner (although in our experiments and
those of [10], the results were not that sensitive to the
choice of smoothing parameter.)

Lemma 9 in [10] shows that concentrated-
differential privacy holds for the Laplace log-normal dis-
tribution. From [10] and the smooth sensitivity paper
[9], it follows that pure differential privacy holds (the
above Theorem) when using the Cauchy distribution.
To give a fair comparison with the pure differential pri-
vacy of our approach, we use the Cauchy distribution
with Bun and Steinke’s approach in our comparisons.

6 Algorithm
We now give pseudocode to describe the algorithm for
computing the smooth sensitivity of the Naïve Bayes
classifier. At a high level, we first compute the parame-
ters of the Naïve Bayes model, then compute the smooth
sensitivity of each parameter and perturb the parame-
ters with noise drawn from a Cauchy distribution. From
Theorem 4 and Theorem 7, one can compute the smooth
sensitivity of the parameters for fitting a Gaussian dis-
tribution to the continuous data. For discrete variables
the sensitivity is 1 and can be perturbed by adding the
small amount of noise 1/ε.

We use an equal division of privacy budget between
all accesses to data in keeping with [1]. Our goal for this
paper is to show the value of smooth sensitivity, so we
have kept with their division; we briefly discuss other
allocations of privacy budget in Section 10.1.

Similar to Vaidya et al.’s [1] approach, when Cauchy
noise is added, it is possible to make mean, standard de-
viation, counts, and class prior negative. To prevent this,
we truncate the negative values to zero (a postprocess-
ing step that does not impact the differential privacy
guarantee.)

6.1 Complete Privacy Guarantee

Theorem 9. Algorithm 1 provides ε-differential pri-
vacy.

Proof. Each step i of the Algorithm 1 is ε′i-differentially
private. By Theorem 1, the composition of finite
number of ε′i-differentially private algorithm is itself
(
∑
i

ε′i)−differentially private.

6.2 Runtime Analysis of Algorithm 1

Bounding the smooth sensitivity for a given dataset does
come at a cost:

Theorem 10. Algorithm 1 computes differentially pri-
vate Naïve Bayes in O(nk + n2).

Proof. The most time consuming part of computing dif-
ferentially private Naïve Bayes classifier is Theorem 5
that computes the smooth sensitivity of the variance in
O(n2) where n is the number of rows in dataset. The rest
of the computation can be done in linear time, hence,
the pre-processing time is O(n2). The running time of
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Algorithm 1: Differentially private
Naïve Bayes Classifier
Input:
– Labeled training data D = {(X(i), yi)}ni=1
– ε : the privacy parameter
– Lap(α, β): samples the Laplace distribution with

mean α and scale β
– Cauchy(α, β): samples the Cauchy distribution

with location parameter α and scale β
– Bound [ai, bi] for each numerical attribute Xi

1 num_count ← number of numerical attributes
of D

2 cat_count ← number of categorical attributes
of D

3 ε′ ← ε/(2 ∗ num_count + cat_count + 1)
4 for each attribute Xj do
5 if Xj is categorical then
6 sensitivity, s ← 1
7 scale factor, sf ← s/ε′

8 ∀ counts τ{Xj = ak ∧ C = cl}′ =
τ{Xj = ak ∧ C = cl}+ Laplace(0, sf)

9 Use τ{Xj = ak ∧ C = cl}′ to compute
Pr(ak|cl)

10 else if Xj is numeric then
11 Trim the given sample based on

Definition 4.1.
12 Compute the Smooth Sensitivity, s for

mean µjk as per Theorem 4 with
bound [aj , bj ]

13 scale factor, sf ←
√

2s/ε′

14 µ′jk ← µjk + Cauchy(0, sf)
15 Compute the Smooth Sensitivity, s for

the standard deviation σjk as per
Theorem 7 with bound [aj , bj ]

16 scale factor, sf ←
√

2s/ε′

17 σ′jk ← σjk + Cauchy(0, sf)
18 Use µ′jk and σ′jk to compute Pr(xi|ck)

19 for each class cj do
20 count τ{C = cj}′ ← τ{C = cj}+

Cauchy(0,
√

2S/ε′)
21 Use τ{C = cj}′ to compute the prior

Pr(cj)

the standard Naïve Bayes is O(nk), therefore, the total
running time of differentially private Naïve Bayes with
the added pre-processing is O(nk + n2).

7 Empirical Analysis
We have implemented the Naïve Bayes classifier of Algo-
rithm 1 in Python. We show a comparison with the re-
sults presented in [1], as well as a more realistic example
that was not used in their work. We have also compared
our algorithm to Bun and Steinke’s [10] private mean
estimation. Since they did not specify an algorithm for
computing the variance of a distribution, and our vari-
ance computation requires known bounds on values, we
have naively used their mean estimation algorithm to
estimate the variance using V ar(x) = E[X2] − E[X]2.
This demonstrates the practical improvements realized
with smooth sensitivity. We also show practical compu-
tational costs required to achieve this benefit.

7.1 Datasets

The datasets used in our experiment include those from
the UCI repository [14] used in [1]: Adult, Mushroom,
Skin, Seed and Glass. We also give results from a much
more realistic dataset: the IPUMS USA: Version 8.0 Ex-
tract of 1940 Census for U.S. Census Bureau Disclosure
Avoidance Research.

The UCIAdult dataset is drawn from 1994 census
data of the United States. It consists of a 48K record
subset drawn from a stratified sample of the U.S. popu-
lation, the binary classification task is to predict if the
income of an individual is less than or equal to 50K or
not.

The UCI Mushroom dataset includes descrip-
tions of hypothetical samples corresponding to 23
species of gilled mushrooms in the Agaricus and Lep-
iota Family. Each species is identified as definitely ed-
ible, definitely poisonous, or of unknown edibility and
not recommended.

The UCI Skin dataset [15] is collected by ran-
domly sampling B,G,R values from face images of var-
ious age groups (young, middle, and old), race groups
(white, black, and asian), and genders obtained from
the FERET [16] and PAL databases.

The UCI Seed dataset includes group comprised
kernels belonging to three different varieties of wheat:
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Kama, Rosa and Canadian, 70 elements each, randomly
selected for the experiment.

The UCIGlass dataset contains the description of
214 fragments of glass originally collected for a study in
the context of criminal investigation. Each fragment has
a measured reflectivity index and chemical composition
(weight percent of Na, Mg, Al, Si, K, Ca, Ba and Fe).

The IPUMS 1940 Census dataset is a sample
drawn uniformly at random from the U.S. popula-
tion, taken from the 1940 Census. The Adult dataset,
and most other IPUMS microdata sets, are stratified
datasets intended to be used with weighted values, and
as such are not representative of real populations when
used as unweighted values. Using with weighted values
poses additional difficulties for computing sensitivity
that are beyond the scope of this paper. When used as
training data for machine learning, they are not repre-
sentative of performance on real populations. The 1940
Census data is a uniform sample of the population, and
as such is an appropriate representation for a machine
learning task.1 We used the 13 attributes that are in-
cluded in the adult dataset, and construct a binary clas-
sification task to predict whether the income of an in-
dividual is less than or equal to the mean income of the
population, a similar prediction task to that used with
the Adult dataset (although with a different threshold,
due to inflation between 1940 and 1994.) We discarded
individuals with unknown values. To give an idea of the
variance across different subpopulations, we report val-
ues for different U.S. States. Table 1 shows the detailed
description of the datasets that we have used for this
experiment.

Dataset No. of Records Attributes Classes
Adult 48K 14 2
Mushroom 8K 22 2
Seed 210 7 3
Skin 245K 3 2
Glass 214 9 7
Wyoming 250K 13 2
Nevada 110K 13 2
Washington 1.7M 13 2
Oregon 1M 13 2

Table 1. Description of the datasets used for our experiment.

1 The IPUMS data is available at https://usa.ipums.org/usa/
1940CensusDASTestData.shtml.

7.2 Experimental Results

Since there is randomness in our algorithm for adding
noise, we have run all algorithms five iterations with
10-fold cross-validation; we show mean and error bars
across the iterations. We use two baselines: a standard
Naïve Bayes classifier and the constant “predict the ma-
jority class” classifier. Probably the most interesting
comparison is with the Differentially Private classifier
by Vaidya, Shafiq, Basu, and Hong [1] and Bun and
Steinke’s mean estimation algorithm [10] as this shows
the specific gains achieved through using smooth sensi-
tivity rather than global sensitivity.

Note that [1] reports results in terms of the privacy
budget used for each attribute; we instead report the
total privacy budget utilized under sequential composi-
tion (Theorem 1). This is simply a scaling of ε and does
not fundamentally change their reported results.

Results are shown in Figures 4-12. We give the
mean value across multiple draws from the differen-
tially privacy mechanisms, as well as standard devia-
tion. Smooth sensitivity gives significant improvements
in classifier accuracy, particularly for the datasets using
human data. For completeness we also show results for
(ε, δ)-differential privacy [12], a weaker form of differ-
ential privacy, for δ = 1/n and 1/n2. (For clarity, algo-
rithm 1 shows only (ε, 0)-differential privacy; the exten-
sion to (ε, δ) is straightforward.) As shown by Nissim
et al. [9], if we add Laplace or Gaussian noise of mag-
nitude calibrated to the smooth sensitivity, this would
give approximate differential privacy. In this work, to
achieve approximate differential privacy, instead of us-
ing Cauchy distribution in Algorithm 1, we have used
Gaussian distribution. As it is shown in Figures 4-12,
approximate-DP does give some accuracy improvement,
but at a cost of a weaker privacy guarantee.

Since we only use smooth sensitivity with contin-
uous values and the Mushroom dataset contains only
categorical values, the results in Figure 5 are the same
for all methods; we include for completeness with [1]
and to show variance across parameter values.

7.3 Computational Costs

As we showed in Theorem 1, smooth sensitivity does
not come for free. The global sensitivity algorithm is
O(n logn), smooth sensitivity takes us to O(n2). To
demonstrate what this means in practical terms, we
show how results change as we vary the dataset size.
Fig. 13 compares the two approaches, showing runtimes

https://usa.ipums.org/usa/1940CensusDASTestData.shtml .
https://usa.ipums.org/usa/1940CensusDASTestData.shtml .
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Fig. 4. Accuracy at various values of ε: Adult dataset
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Fig. 5. Accuracy at various values of ε: Mushroom dataset
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Fig. 6. Accuracy at various values of ε: Glass dataset
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Fig. 7. Accuracy at various values of ε: Seed dataset
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Fig. 8. Accuracy at various values of ε: Skin dataset
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Fig. 9. Accuracy at various values of ε: Wyoming from 1940
Census
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Fig. 10. Accuracy at various values of ε: Nevada from 1940
Census

100 10¡1 5 ¤ 10¡2 10¡2 5 ¤ 10¡3 10¡3

"

55

60

65

70

Ac
cu

ra
cy

 Pe
rce

nt
ag

e

Global Sensitivity
Naive Bayes Baseline
Most Frequent Class
Zafarani, Clifton (²; 0)
Zafarani, Clifton (²; 1=n)

Zafarani, Clifton (²; 1=n2)
Bun, Steinke (²; 0)
Bun, Steinke (²; 1=n)
Bun, Steinke (²; 1=n2)

Fig. 11. Accuracy at various values of ε: Oregon from 1940
Census
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Fig. 12. Accuracy at various values of ε: Washington from 1940
Census

102 103 104 105 106 107

Dataset size (log scale)

10-1

100

101

102

103

104

105

Ru
nt

im
e 

in
 se

co
nd

s (
lo

g 
sc

al
e) Global Sensitivity

Smooth Sensitivity

Fig. 13. Runtime Analysis on datasets provided in Table 1, blue
dot represents the Global Sensitivity training time while the red
star represent the corresponding Smooth sensitivity training time
in seconds (log log scale).

of Python implementations on a computer with an 2.2
GHz Intel Core i7 CPU, 64 GB 1600 MHz DDR3 RAM,
running Ubuntu 18.04. While we do see a substantial
runtime cost in training the Naïve Bayes classifier, these
are reasonable times for many practical applications. It
is interesting to note that as the dataset size increases,
factors other than sensitivity calculation become in-
creasingly important; the nearly order of magnitude dif-
ference in cost with a 5000 instance dataset drops to half
an order of magnitude (although still a substantial time
difference) with over a million instances.

8 Related Work
We have discussed the work of Vaidya et al. [1], which
addresses the same problem we do using global sensi-
tivity. Li et al. [17] proposed a new model for a dif-
ferentially private Naïve Bayes classifier over multiple
data sources. Their proposed method enables a trainer
to train a Naïve Bayes classifier over the dataset pro-
vided jointly by different data owners, without requir-
ing a trusted aggregator as in our work and [1]. Yil-
maz et al. [18] provided a differentially private Naïve
Bayes classifier under the local differential privacy set-
ting. With local differential privacy, individuals perturb
their data before sending to an untrusted aggregator.
The stronger adversary model of these two approaches
(eliminating the trusted aggregator) results in signifi-
cantly more noise and reduced accuracy.
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There have been studies of privacy-preserving Naïve
Bayes under different privacy models. Kantarcioglu et
al. [19] proposed a privacy-preserving Naïve Bayes clas-
sifier for horizontally partitioned data. Their solution
uses secure summation and logarithm to learn a dis-
tributed Naïve Bayes classifier securely. Vaidya and
Clifton [20] gave a solution to the same problem but for
vertically partitioned data under the semi-honest model.
These approaches protect the data during training, an
orthogonal problem to differential privacy’s protection
of disclosure via the learned model.

Making machine learning models differentially pri-
vate has had more general interest, with solutions pro-
posed for several machine learning approaches. Some
of the more well known include Jagannathan, Pil-
laipakkamnatt and Wright [4] that gives a differentially
private algorithm for random decision trees, and Abadi
et al. [6] that give a differentially private framework for
deep learning models. One possible area for future work
is to determine if these approaches could benefit from
using smooth sensitivity rather than global sensitivity,
and if so, how that might be tractably computed.

Beyond machine learning, there are many differen-
tially private algorithms for statistical tests. Campbell
et al. [21] gave a differentially private ANOVA test. Task
and Clifton [22] provided differentially private signifi-
cance testing on paired-sample data. In Fig. 14, we show
that a non-uniform allocation of privacy budget to dif-
ferent attributes can have an impact; we discuss this
further in the Appendix. This is not a trivial problem in
the context of differential privacy. Anandan and Clifton
[23] provided a differentially private solution for a more
basic version of this problem, feature selection for data
mining tasks. In their work they analyze the sensitiv-
ity of various feature selection techniques used in data
mining and show that some of them are not suitable for
differentially private analysis due to high sensitivity.

9 Conclusion
In this paper, we have developed a differentially pri-
vate Naïve Bayes Classifier using Smooth Sensitivity for
numerical data, along with global sensitivity for cat-
egorical values. For fitting numerical values, we have
made the assumption typically used with Naïve Bayes
that the data follows a Gaussian distribution. When
the features are bounded, we assume that the under-
lying data follows a truncated normal distribution. We
have computed the smooth sensitivity of the parameters

of the Gaussian, µ and σ. To obtain the ε-differential
private algorithm, we have added noise proportional
to the smooth sensitivity of the parameters. Previous
work on Naïve Bayes differential private classifier done
by Vaidya, Shafiq, Basu, and Hong [1] perturb the pa-
rameters of the Naïve Bayes classifier by a noise that is
scaled to the global sensitivity of the parameters. We
demonstrate on real-world datasets that our method
achieves a significant accuracy improvement. While this
comes at a computational cost, it is a cost only in model
training. The released model is essentially identical to
[1], but with higher accuracy, and still satisfying the
ε-differential privacy definition. Smooth sensitivity pro-
vides the same differential privacy guarantee as global
sensitivity for given values of ε and δ, including (ε, 0).
The greater the impact of numerical features on the re-
sult, the greater the benefit of smooth sensitivity. We
have also compared our result with private mean esti-
mation of Bun and Steinke [10] where they estimate the
mean of an unknown distribution based on an i.i.d. sam-
ple from the dataset, adding noise proportional to the
smooth sensitivity of the truncated mean.
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Fig. 14. Adult dataset: Accuracy at various values of ε for varying
allocation of privacy budget - numerical:categorical

10 Appendix

10.1 Varying Allocation of the Privacy
Budget

We briefly experimented with varying the allocation of
the privacy budget between categorical and numeric
variables, an example is shown in Fig. 14. With the ex-
ception of substantially overweighting categorical vari-
ables and giving little privacy budget (high noise) for
numeric (line 1:2), the results are inconclusive; the dif-
ferences are well within the error seen across cross-
validation groups. This suggests that numeric attributes
are important to this classification problem, and due to
the higher sensitivity, giving too little privacy budget to
them limits their value.

Algorithm 1 and all other figures correspond to the
“2:1” allocation in Fig. 14: 2 ∗ ε′ allocated to each nu-
meric attribute, one for the mean estimation, and one
for standard deviation.

Further research would be needed to establish rea-
soning to apply additional weight to numeric or cat-
egorical variables. Making the selection empirically be-
fore applying differential privacy would constitute a dis-
closure of information, and those violate the provided
ε−differential privacy guarantee. (Our choice of a “2:1”
allocation outside of Fig. 14 was based on the need
to need to gather both mean and standard deviation,
rather than based on empirical analysis.) Properly ar-
riving at a weighting in a way that is both private and
effective is an interesting problem, and one that comes
up generally in differentially private machine learning.
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Fig. 15. Accuracy at various values of ε for varying allocation of
privacy budget - numerical:categorical on synthetic dataset where
only the categorical attributes are correlated with the class.
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Fig. 16. Accuracy at various values of ε for varying allocation of
privacy budget - numerical:categorical on synthetic data where
only the numerical attributes are correlated with the class.

To measure the effect of privacy budget on numer-
ical and categorical attributes we further experimented
on a synthetic dataset. We generated two synthetic
datasets of 10000 entries with 5 categorical attributes
and 5 numerical. In the first dataset, the numerical at-
tributes are correlated with the label while the cate-
gorical values are uncorrelated. In the second dataset,
the categorical attributes are correlated with the label
while numerical attributes are uncorrelated. The impact
of different distributions of privacy budget are presented
in Fig. 16 and Fig. 15. Unsurprisingly, the optimal pri-
vacy budget distribution is dataset dependent.

The unbalanced weight helps numerical more than it
hurts categorical, particularly at higher privacy values.
This supports our conjecture that a 2:1 split would be

appropriate since we estimate more values for numerical
attributes.
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