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Abstract: We propose a new theoretical approach for
building anonymous mixing mechanisms for cryptocur-
rencies. Rather than requiring a fully uniform permuta-
tion during mixing, we relax the requirement, insisting
only that neighboring permutations are similarly likely.
This is defined formally by borrowing from the defini-
tion of differential privacy. This relaxed privacy defini-
tion allows us to greatly reduce the amount of interac-
tion and computation in the mixing protocol. Our con-
struction achieves O(n·polylog(n)) computation time for
mixing n addresses, whereas all other mixing schemes
require O(n2) total computation across all parties. Ad-
ditionally, we support a smooth tolerance of fail-stop
adversaries and do not require any trusted setup. We an-
alyze the security of our generic protocol under the UC
framework, and under a stand-alone, game-based defi-
nition. We finally describe an instantiation using ring
signatures and confidential transactions.
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1 Introduction
Cryptocurrencies are the main application of blockchain
technologies. Starting with Bitcoin back in 2008 [48],
a large number of different types of cryptocurrencies
have emerged, with the total number of distinct avail-
able cryptocurrencies today getting close to 3000. Exist-
ing cryptocurrencies share a market capital of over $1.5
trillion [20] and a total of over 1 million daily transac-
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tions [56]. However, despite the high adoption rates and
the importance of cryptocurrencies in the current finan-
cial ecosystem, user privacy is repeatedly overlooked.

In any typical blockchain based cryptocurrency, all
user transactions are public and stored in the blockchain
forever. In systems like Bitcoin, the user identity is never
posted on the blockchain; instead, users are represented
by random looking addresses (or else pseudonyms),
which in the early years of Bitcoin created the percep-
tion that Bitcoin transactions were anonymous. Today,
however, we are well aware that this is not true. Bit-
coin transactions are only pseudoanonymous, and they
are linkable to each other. Not only can any observer
of the blockchain trivially link together transactions in-
volving a specific address, but they can also cluster to-
gether sets of addresses as belonging to the same user by
relying on simple transaction patterns, such as receiv-
ing change amounts, merging addresses together, and
so on. This linkability, when combined with external
data, such as data from exchanges or ground truth data,
or when aided by active attacks such as “dusting at-
tacks” [22], can result in complete de-anonymization of
users [2, 42, 52]. The trend of linking transactions and
de-anonymizing users has followed in other cryptocur-
rencies that were built using the same mechanics as Bit-
coin, such as Ethereum, Litecoin, BitcoinCash [21, 36]
as well as cryptocurrencies constructed under very dif-
ferent principles such as Ripple [45].

One approach to providing anonymity is through
the use of mixing protocols. The study of mixing pro-
tocols has a long history in cryptography, first in the
context of anonymous messaging and electronic voting,
and then with applications in secure multiparty compu-
tation. Broadly, and without attempting to be exhaus-
tive, protocols for mixing fall into a few categories . In
mix chains, each party takes a turn shuffling the mes-
sages. These are especially useful when there is some
small set of servers that are trusted to contain an hon-
est participant. However, when n parties are involved in
the mix, the communication complexity is O(n2), and
the round complexity is O(n), as each party takes a
turn, sequentially, with mixing the values and forward-
ing them along. Another approach to mixing is to use
secure computation to obliviously evaluate a switching
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network. While we have efficient constant-round pro-
tocols for obliviously evaluating circuits, these proto-
cols require O(n2) communication (independent of the
circuit size).1 Additionally, it is not immediately clear
how to efficiently implement a switching network in the
context of crypto-currencies, as “moving” coins requires
knowledge of a secret signing key, and moving them
obliviously would require creating signatures without
anyone, including the key holder or the recipient, learn-
ing who signed and who received the coin. Obliviously
accessing these keys at each step of the circuit would be
prohibitively expensive.

In the setting of cryptocurrencies, most decentral-
ized mixing mechanisms [44, 54] are designed as peer-
to-peer (P2P) protocols, and allow a set of mutually
distrusting peers to publish their messages anonymously
without requiring any external party. Such protocols are
often realized through the use of DC-nets [19], which
require O(n2) computational cost, and a total of O(n2)
communication when n parties are mixing their coins
(dominated by the underlying anonymous broadcast).
They are also highly interactive, requiring O(n) rounds
if there is a constant fraction of corrupted parties. Con-
cretely, decentralized mixing protocols, such as Coin-
shuffle(++) [53, 54], require heavy coordination among
the participating parties.
The Need for Large Scale Mixing. Summing up the
previous discussion, all known, fully secure mixing pro-
tocols require O(n2) communication, and all that are
amenable to mixing cryptocurrency have round com-
plexity O(n). The high computation and communica-
tion costs of decentralized mixing protocols has lead to
the adoption of small scale mixing, in the hopes that a
little privacy is better than no privacy. For example, as
reported in [26], when the CoinJoin protocol was used
on top of Bitcoin in the 2015-2017 period, it had a mean
of 3.98 coins in each transaction, and a standard de-
viation of 1.72. At the same time, it has been shown
that a small amount of auxiliary information, e.g. that
two or more mixed coins belong to the same entity (po-
tentially learned through cookie tracking), can lead to
cluster intersection attacks, removing the privacy gained
from mixing [26]. Thus, it has been demonstrated that
small scale mixing can be useless. In fact, it is not hard
to imagine a scenario where small scale mixing can do
more harm than good. For example, imagine Alice be-

1 One exception is the work of Movahedi et al. [47], which uses
quorums in the MPC to avoid the O(n2) term but still suffers
from the efficient signing problem we mention.

lieves that Bob is spending his coin at a particular local
coffee shop, but this location accepts hundreds of coins
on any given day. Alice then finds out that Bob has par-
ticipated in a small mix involving a few thousand coins
from around the world. If any coin from that mix is later
spent at the location of interest, it almost certainly be-
longs to Bob, as it is unlikely that many other people in
Bob’s town participated in the same mixing protocol.

Although we do not make a formal claim along these
lines, the intuition is clear: we need large-scale mixing.
To entirely remove the value of auxiliary information, we
must mix the full network of unspent coins (UTXOs)
before any of those coins are spent again. Currently,
the Bitcoin network has about 68 million UTXOs. Scal-
ing current approaches to such a large number of coins
seems prohibitive, and finding protocols with asymp-
totic improvement on this very old problem would rep-
resent a major breakthrough.

1.1 Our Contributions

We propose a new approach for mixing at scale. Rather
than relaxing security by reducing the size of the mix,
we propose to relax the distribution over the shuffling
permutations. Inspired by the definition of differen-
tial privacy [23], we propose the definition of (ε, δ)-
indistinguishability, which requires that for all “neigh-
boring” permutations, any observed leakage from the
mixing using these permutations should be similarly
likely. That is, for all pairs of input addresses (sa, sb)
and output addresses (rc, rd), an observer of the mixing
protocol should learn little, statistically, about whether
sender sa pays receiver rc and sb pays rd, or whether sa
pays rd and sb pays rc. Although traditionally used to
bound leakage when querying datasets, differential pri-
vacy has inspired privacy definitions in many new ap-
plication domains, such as secure computation [30, 41],
oblivious computation in a client/server model [5, 18,
34, 62], and anonymous messaging [38, 57, 60].

We build the first cryptocurrency mixing mecha-
nism inspired by differential privacy, where two neigh-
boring mixing permutations give rise to nearly the same
set of transactions. Our protocol requires O(n logn) to-
tal communication when n users are mixing coins, has
sub-quadratic total computation cost, and requires only
constant or polylog(n) communication rounds (depend-
ing on which protocol variant is chosen). In addition
to our constructions, we provide the first definitions for
anonymous cryptocurrency mixing with leakage. We be-
lieve that this weakening of the anonymity definition
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may open the door to new protocol constructions, be-
yond the ones described here.

1.2 Overview of Our Construction

Our construction is a distributed mixing mechanism for
n users, based on an anonymous transaction building
block, which allows transferring a hidden value from an
address sp to an address rp, such that the link between
sender and receiver is obfuscated. We provide a rigorous
definition of this functionality in Section 3. Such a build-
ing block can be realized via the use of ring signatures
and confidential transactions, as done in Monero [43]
(see Section 1.3), or via the use of generic ZK argu-
ments. A naive solution for mixing, if we implemented
anonymous transactions with ring signatures, would re-
quire every participant to create a spending transaction
with ring size n (in order to ensure an anonymity set
of size n). Although fully secure, such a naive solution
has quadratic computation and verification costs, and
n logn total communication cost (if a state of the art
logarithmic-size ring signature [37, 63] is used).

As discussed above, in order to achieve sub-
quadratic overall computation cost (i.e., sublinear for
each mixing participant) we relax the level of privacy by
allowing some leakage. We divide the mixing procedure
into multiple rounds of smaller mixings (which is a typi-
cal pattern for various mixing protocols). In each round,
every participant creates a transaction that mixes her
coin with a small subset of the total set of participants.
To determine the mix groups for each round, we rely
on the structure of an n-size butterfly network. What
is nice about butterfly networks is that they provide a
path from each of the n input nodes to the n output
nodes while ensuring that the fan-in, k, and the depth
d = logk(n) are sub-linear in n.

At a high level, our protocol (detailed in Section 4)
works as follows. Each participant owns a pair of ad-
dresses: a source address in which their currency resides
at the start of the protocol, and target address that will
hold the currency after the mixing is complete: (sp, rp).
These source address is assigned a unique node at the
input layer of the butterfly network, and the target is
placed randomly in one of the output nodes of the net-
work (possibly sharing that node with another target
address). Participants transfer their currency from the
source to the target by creating and placing public keys
in the intermediate nodes, and making a series of anony-
mous transactions to these keys, one for each level of the
tree, according to the network topology. In the typical

use of butterfly networks, every item takes a disjoint
path to its destination. In our construction, in order to
avoid the need for further coordination, we allow multi-
ple users to pass their currency through the same net-
work nodes by allowing multiple parties to assign ad-
dresses in the same node (with the exception of the in-
put layer). We therefore refer to those intermediate and
output nodes as buckets.

Each participant only handles her own currency,
sending it along the path from the source to the tar-
get. The use of anonymous transactions for moving the
value through the network provides some privacy, but
does not suffice for any formal guarantee: we also need
to hide the number of addresses in each bucket, as this
reveals information about the permutation being used.
The number of addresses in each bucket can be viewed
as a histogram, which is the canonical problem for the
application of differential privacy. We add “noisy” ad-
dresses in every bucket to hide the number of real ad-
dresses. Noisy addresses will be contributed distribu-
tively, by all participants, and without the need of coor-
dination, by using a noise distribution that is additive
(i.e. negative binomial distribution/Polya distribution).
Protocol Complexity: We explore butterfly networks
with different branch factors and depths. If we apply a
butterfly network with only one intermediate layer of
buckets (what we call the “one-layer case”), we achieve
a sub-quadratic expected computation cost of O(n1.5)
for all participants. The communication cost, if instan-
tiated with logarithmic size ring signature, is O(n logn)
for all participants, as in the naive case. Using multi-
layer butterfly networks can further reduce computation
cost, but at the cost of increased communication cost.
For example, by using a logn depth butterfly network
(for the 2-ary case), we have O(n log3 n) expected com-
putational cost and O(n log2 n log logn) expected com-
munication cost. Recall that the naive construction re-
quires O(n2) computation, and, as we will discuss in
Section 1.3, the total computation cost for n transac-
tions in Monero, or an n size mixing mechanism like
Coinshuffle++ is quadatric in n.

Through a clever improvement in which we merge
certain buckets in the one-layer construction, we man-
age to “reuse” some noise, substantially improving the
parameters. Concretely, for privacy parameters ε =
2.303 and δ = 10−4 (a common selection in the liter-
ature), we require an average of 37 noisy addresses in
each bucket. By a proof-of-concept evaluation, we show
that when n > 605, we achieve better concrete computa-
tional efficiency when compared with the naive solution.
We also show, that the communication cost is bounded
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within three times that of the naive approach when us-
ing log-size ring signatures. See Section 6 for details.
Security: In Section 3, we provide two security defi-
nitions for our mixing protocol: a simulation-based one
in the universally composable (UC) security framework
for the case of mixing coins of equal value, and a game-
based definition that supports mixing of variable val-
ues and that explicitly specifies the adversary’s advan-
tage in distinguishing neighboring permutations. For
our simulation-based definition, we design an anony-
mous mixing functionality FTAnonMix that, after receiv-
ing a number of input and output addresses from par-
ticipants, performs mixing at predetermined time slots
T . The mixing functionality FTAnonMix leverages exist-
ing functionalities for a bulletin board and a globally-
accessible clock.

In Section 5 we show that our protocol is secure
against malicious behavior with any number of corrup-
tions (for both our definitions). Intuitively, since each
participant handles her funds all the way to the desti-
nation, there is no way for a malicious party to steal
money. Colluding users can decrease the anonymity set
size by the number of colluding parties, but nothing else
is revealed. Furthermore, our protocol is robust against
aborts, unlike many existing coordination-based proto-
cols that require abandoning the protocol if a malicious
party aborts. A user can drop out at any time, and
the remaining users can complete the protocol without
restarting with a slightly reduced anonymity set.
Composition: A common concern with differentially
private protocols is the deterioration of the privacy pa-
rameter through the composition of multiple executions.
We prove that this is not an issue for our protocol. The
input to our (ε, δ)-indistinguishable mixing mechanism
is the random permutation used for mixing. Each time
the protocol starts, we choose another uniform, indepen-
dent permutation as input; the previous permutation is
discarded and never used again for further mixing. Intu-
itive, repetitive mixing, even a weak one, adds random-
ness to the composed mixing results. We formalize this
concept as an iterated butterfly network in Appendix
G and prove that it provides more privacy, not less in
there. Surprisingly, this iterated approach can also im-
prove efficiency when epsilon is already small. Specifi-
cally, instead of relying on larger noise for better privacy
guarantee, it is more efficient to keep the original noise
magnitude but shuffle multiple times. In contrast, when
differential privacy has been used in an application like
anonymous messaging [57, 60], the input across execu-
tions is correlated in a dangerous way, since pairs of

parties that communicate today are likely to communi-
cate again tomorrow.
Moving Towards Practice: In Section 7, we pro-
vide a strengthening of our construction that handles
transaction fees and provides resilience against DDoS
attacks. In Appendix B, we discuss an instantiation of
our generic mixing construction built upon any anony-
mous transaction functionality, such as Monero’s ring
signatures and confidential transactions. For our instan-
tiation, we modify the ring signature content in order
to support loop-payments, i.e. the ability for an input
address to transfer amounts back to itself. Then, we de-
scribe the ring’s structure as predefined by the parent
buckets in the previous level and the output address for
both real and noisy transactions, and we claim full in-
distinguishability between them. We present a variant
of our construction in Section 7 that is compatible with
current signature and fee requirements of Monero.

1.3 Related Work

The community has reacted to the privacy shortcom-
ings of cryptocurrencies by providing a number of solu-
tions that can be classified under two main categories:
mixing mechanisms for existing, already deployed cryp-
tocurrencies (e.g., [9, 31, 40, 44, 53–55]) that require
O(n2) communication and computation as described
earlier, and new stand-alone private cryptocurrencies
[7, 43, 61, 64] that employ cryptographic mechanisms to
hide the transaction value and participants. Compared
to these works, our protocol relies only on standard
assumptions, does not require a trusted setup phase,
achieves sub-quadratic total computation and commu-
nication cost, protects each person’s currency against
abort attacks, and scales to support large scale mixing.

Monero is a Cryptonote-style protocol that uses ring
signatures [27, 51] to obscure the sender of a transac-
tion within a set of potential senders, plus homomor-
phic commitments and range proofs to hide transaction
values [50]. If n Monero users wish to transact anony-
mously today, each of them must perform computation,
verification, and communication that is linear in the size
of the anonymity set, so the total costs are O(n2). As
a result, Monero is only efficient for small scale mixes;
earlier versions of Monero allowed ring sizes as small as
4, which led to sender deducibility attacks [8, 46]. It is
worth mentioning that a formalized security analysis is
included in [37], but is not compatible with the current
version of the Monero protocol.
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Zcash is based on succinct zero-knowledge argu-
ments (zk-SNARKs) [28] and can offer private mix-
ing at scale, but the underlying zk-SNARKs require
trusted setup as well as strong (non-falsifiable) crypto-
graphic assumptions2. The total computational cost of
generating these zk-SNARKs for all n parties will grow
as O(n log(t) log(log(t)), where t denotes the (monoton-
ically increasing) number of Zcash transactions ever
made. QuisQuis [25] attempts to solve the problem of
UTXO size, but requires similar computation costs to
Monero: O(n2) for n users transacting anonymously.

2 Building Blocks

2.1 Butterfly Network Topology

A butterfly network [29] is a graph structure that fa-
cilitates routing. It provides a path from each of the n
input nodes to the n output nodes while ensuring that
both fan-in k and depth d = logk(n) are sub-linear in n.

Definition 2.1 (k-ary n-size Butterfly Network). A k-
ary n-size butterfly network consists of n nodes in each
of the d+1 layers, where d = logk n. Let 〈i, j〉 denote the
jth node in the ith layer with both indices starting with
0. A directed edge links two nodes 〈i − 1, j1〉 and 〈i, j2〉
if and only if j1 = j2 or the base-k representation of j1
and j2 differ only in the ith most significant position.
A binary butterfly network is a butterfly network with
k = 2 and d = lg(n).

Fig. 1 shows a binary butterfly network of size 8. For
example, 〈1, 2〉 is connected to both 〈2, 0〉 and 〈2, 2〉 be-
cause the base-2 representations 02 = 000 and 22 = 010
only differ in the second most significant bit. Notice that
in the binary butterfly network, a packet travels left if
the ith significant bit of b’s binary representation is 0,
and travels right otherwise.

In this work, we refer to layer 0 nodes as input nodes,
layer d nodes as output buckets, and all nodes in inter-
mediate layers as intermediate buckets.

A butterfly network contains a unique path from
every input node 〈0, a〉 to every output bucket 〈d, b〉. The
path can be calculated incrementally: at layer i− 1, the
packet travels through the rth leftmost outgoing edge

2 Recent works propose zk-SNARKs with different types of
setup and crypto assumptions, though all are still non-standard
and the prover computation cost remains high [6, 12, 39].

Fig. 1. 2-ary 8-size Butterfly Network, with nodes in 1, . . . , d
layers treated as buckets

(starting from 0), where r equals to the ith leftmost
position’s value of b’s base-k representation. In other
words, at layer i, the path proceeds through bucket 〈i, c〉
where c shares its i most significant symbols with b and
the remaining symbols with a (for base k).

A congestion happens when more than one path
pass through the same intermediate bucket. We will
show later in Section 6.1 that a congestion with size
Ω(logn) only happens with negligible probability in our
construction, unless a malicious adversary is conducting
a (detectable) denial of service attack.

Our usage of the butterfly network draws inspira-
tion from switching networks [1, 10]. A novelty of our
construction is the use of buckets so that multiple trans-
actions can be present at the same position in an inter-
mediate layer.

2.2 (ε, δ)-Indistinguishable Mixing

We start by formally providing the definitions of neigh-
boring permutations:

Definition 2.2. Permutations π and π′ are said to be
neighbors if and only if they have a swap distance of
1, where the swap distance is the minimum number of
times that pairs of elements of π must be swapped in
order to produce π′.

Intuitively, defining neighboring permutations through
swap distance ensures that even an adversary who
knows all the mappings between the mixing inputs and
outputs, except any two pairs, still cannot gain a sig-
nificant advantage in determining the mapping of these
two pairs, even when given the leakage of the mixing
mechanism.
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We give the formal definition for (ε, δ)-
indistinguishable mixing, inspired by differential privacy
[23, 24]:

Definition 2.3 ((ε, δ)-Indistinguishable Mixing). Let
L be a randomized algorithm that receives a permuta-
tion as input. We say that L is (ε, δ)-indistinguishable
if for any two neighboring input permutations π and π′

and for all T ⊆ Range(L):

Pr[L(π) ∈ T ] ≤ eε Pr[L(π′) ∈ T ] + δ,

in which Range(L) denotes the universe of all possible
output of algorithm L.

Throughout the text, we also refer to ε and δ as privacy
parameters. Additionally, we say the mixing protocol
is an (ε, δ)-indistinguishable mixing mechanism, if L is
(ε, δ)-indistinguishable and it captures the whole view of
any observer and the adversary of the mixing protocol.

Analogous to the definition of differential privacy for
databases, our definition captures arbitrary background
knowledge of the adversary. Just as in the classic defi-
nition, this follows by providing the adversary the abil-
ity to choose the pair of neighboring permutations. The
fact that the inputs are constrained to being permu-
tations can be viewed as a lower bound on this back-
ground knowledge: the adversary knows, for free, that
all user inputs are unique (i.e. they constitute a per-
mutation). The adversary’s ability to choose the neigh-
boring permutations captures further, arbitrary back-
ground knowledge.

Additionally, while constraining the user inputs to
a permutation imposes a notion of “neighboring” that
results from swapping two inputs, rather than dropping
or modifying a single input value, it has been observed
in the context of differential privacy for databases that
such modifications to the definition of neighboring in-
puts do not have substantive impacts on the definition
([58]). Defining neighboring datasets by removing a sin-
gle input value is appealing, because it captures the in-
tuition that any individual’s participation cannot be de-
tected. Under our definition, the number of participants
is fixed, so this intuition no longer holds. However, even
if it is known that a particular user participated, pri-
vacy is guaranteed because their input could have been
any arbitrary value from the domain.

Formally, we can also apply the same semantically
flavored interpretation of (ε, δ)-indistinguishable mixing
as in [32], modifying it slightly for our scenario: regard-
less of external knowledge, an adversary with access to
our mixing protocol’s leakage (which we characterize

as the histogram of intermediate bucket weights) draws
the same conclusions, regardless of whether my coin was
swapped with that of another party.

Similar to differential privacy, the following lemma
and theorem hold for Definition 2.3 and their proofs
trivially follow the same arguments as used in differen-
tial privacy [24].

Lemma 2.4 (Post-Processing). Let L be a randomized
algorithm that is (ε, δ)-indistinguishable. Let g be an ar-
bitrary deterministic or randomized function. Then g◦L,
the composition of functions g and L, is also (ε, δ)-
indistinguishable.

Theorem 2.5 (Composition). Let Li be a (εi, δi)-
indistinguishable algorithm for i ∈ [k]. Define L[k](π) =
(L1(π), . . . ,Lk(π)). Then L[k](π) is (

∑k
i=1 εi,

∑k
i=1 δi)-

indistinguishable.

Let Π denote the whole set of permutations for n ele-
ments. We consider a deterministic function f : Π→ Nm

that takes a permutation and returns m natural num-
bers. As in standard differential privacy, we define the
sensitivity of f as:

Definition 2.6 (`1-Sensitivity). The `1-sensitivity of f
is:

∆f = max
∀π,π′∈Π

||f(π)− f(π′)||1

where π, π′ denote two neighboring permutations.

∆f captures the magnitude of f ’s output change be-
tween worst-case neighboring inputs.

In this work, we sample noise from the negative bi-
nomial distribution which models the number of suc-
cesses in a series of independent and identically dis-
tributed (i.i.d) Bernoulli trials until r failures occur.
Formally, we have:

Definition 2.7 (Negative Binomial Distribution).
The negative binomial distribution is a non-negative
discrete probability distribution with probability mass
function:

NBr,p(x) =
(
x+ r − 1
r − 1

)
· (1− p)r · px

where r is any positive integer and p ∈ [0, 1]. Addition-
ally, its cumulative distribution function is:

FNB(x; r, p) =
x∑
i=0

NBr,p(x) = I1−p(r, x+ 1)

where I·(·, ·) is the regularized incomplete beta function.
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We use NB(r, p) to refer to the negative binomial dis-
tribution itself. The negative binomial distribution sat-
isfies an additive property: NB(r1, p) + NB(r2, p) =
NB(r1 + r2, p).

The number of failures r in the negative binomial
distribution can also be generalized to any positive real
value, and the generalized distribution is often referred
to as the Polya distribution:

Definition 2.8 (Polya Distribution).

Polr,p(x) = Γ(x+ r)
x!Γ(r) · (1− p)

r · px

where r is any positive real value and p ∈ [0, 1], and Γ(·)
is the Gamma function.

Notice that in the special case that r is an integer,
Γ(x+r)
x!Γ(r) = (x+r−1)!

x!(r−1)! =
(
x+r−1
x

)
. Similarly, the Polya dis-

tribution also satisfies an additive property, let Pol(r1, p)
and Pol(r2, p) be any two Polya distributions, then:
Pol(r1, p) + Pol(r2, p) = Pol(r1 + r2, p).

The additive property of negative binomial distri-
bution and Polya distribution allow all n participants
to collectively sample noise from a negative binomial
distribution NB(r, p) without cooperation. Each partic-
ipant can simply sample noise from a Polya distribution
Pol(r/n, p) and later sum up their noises.

2.3 UC Secure Computation

Cryptographically secure computation is formalized by
demonstrating that an ideal world execution is indistin-
guishable from the real world protocol. At a high level,
the intuition behind security in the universal compos-
ability (UC) framework [13] is that any adversary A at-
tacking a protocol π should learn no more information
than could have been obtained via the use of a simulator
S that makes calls to the ideal functionality F instead.
The UC formalism includes an environment E that rep-
resents “the rest of the world”; it provides inputs to
all parties and also attempts to distinguish between the
real and ideal executions. The UC framework includes a
powerful composition theorem that supports modularity
[13]; composition continues to hold in a “hybrid” setting
in which both the real protocol and ideal functionality
may call a common sub-routine. In this work, we re-
quire the strengthened model of UC with global setup
[15] that has recently been instantiated as the default
behavior within the UC framework [13].

Definition 2.9 (Universal Composability). Let F be
an ideal functionality, and let Π be an interactive pro-
tocol for computing F among a set of parties P while
making calls to an ideal functionality G. Protocol Π is
said to UC realize F in the G-hybrid model if for every
non-uniform PPT malicious adversary A, there exists a
non-uniform PPT adversary S in the ideal model such
that for all non-uniform PPT environments E and all
valid inputs x1, . . . , xp, the following two distributions
are computationally indistinguishable in κ:

EXECΠG ,A,E
c≡ EXECFG ,S,E

The polynomial running times of the various interactive
Turing machines are related; we refer to [13] for details.

2.4 UC Functionalities

We use three UC functionalities as building blocks. The
first two have been extensively examined in prior work:
a public bulletin board Gbb [14, 16, 17] and a globally-
accessible clock Gclock [3, 16, 33, 59]. We include these
functionalities in Appendix A for completeness.
Anonymous Transaction Functionality. In Figure
2, we provide a UC functionality GAnonTrans for partially-
anonymous transactions on top of a ledger. This func-
tionality utilizes the simple bulletin board functionality
Gbb and is meant to be a simplified version of exist-
ing UC models of blockchain ledgers [4, 35] that take a
transaction amount from a sender and deliver the spec-
ified value to the receiver by updating the recorded bal-
ances. In order to focus on details that are more relevant
to this work, our functionality intentionally lacks some
features, such as clustering transactions into blocks,
that are more realistic reflections of cryptocurrencies,
but that are irrelevant to our constructions. At the same
time, our transaction functionality more closely resem-
bles that of an account based system as opposed to a
transaction based one, i.e. the functionality is responsi-
ble for checking user balances before transactions.

On the other hand, our UC anonymous transac-
tion functionality augments prior work that was mostly
modeling linkable, Bitcoin style, ledgers in two ways:
first, we provide confidential transactions, and second,
we permit equivocation of the sender of any transac-
tion within a small anonymity set S. This set must be
specified by the (real) sender at the time of the trans-
action, and it will be publicly revealed to all parties.
We caution that a small equivocation set may be pri-
vate in a standalone setting but need not retain this
privacy when composed with other transactions [46].
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GAnonTrans[Gbb]: Anonymous Transaction
functionality

Registration: User i submits a pair of an
address addr and a value v. If addr is not yet
assigned to any other users, the functionality
assigns addr to i and stores a record (addr, v)
indexed with i.

Transfer: User i, or FTAnonMix on its behalf,
submits a transfer request with parameters
(S, j, addrr, vr) where S denotes a set of ad-
dresses S = {addr1, ..., addr`} and j is an index
j ∈ {1, . . . , `}. The functionality first checks if
addrr is already registered. Then, it also checks if
addr1, ..., addr` are registered and whether addrj
is indexed with the user index i. The function-
ality checks if vj ≥ vr (i.e. the sending address
carries enough funds). If any of the checks fail,
it returns an “Error” message.
Then the functionality replaces (addrr, v′

r)
with (addrr, v′

r + vr) and (addrj , vj) with
(addrj , vj − vr) for addrj that belongs to user i.
Additionally, the functionality adds (S, addrr)
to Gbb. Else, it ignores the request.

Balance: User i submits a balance request
with address addr. If user i has a registered
record (addrs, vs), then a delayed output is sent
to user i with the private value vs; otherwise, it
returns “Error”.

Output: The functionality sends (S, addrr) to
all the participants.

Fig. 2. Anonymous Transaction functionality

At the same time, a large equivocation set provides
strong security but may be prohibitively expensive in
many cryptocurrencies; in Monero for instance, trans-
action size and computation scale linearly with the size
of the anonymity set. This work provides a way to boot-
strap the privacy benefits of a large anonymity set, in
a provable manner, while only calling the functionality
GAnonTrans using small anonymity sets.

3 Definitions

3.1 A UC Definition for Secure and
(ε, δ)-Indistinguishable Mixing

In this section, we define anonymous mixing in the UC
setting by presenting our functionality FTAnonMix in Fig-
ure 3. Our functionality will capture our mixing proto-
col, which uses a butterfly network topology that ob-

scures the true permutation π which maps the source
addresses to the receiver addresses.

In a high level, our FTAnonMix functionality receives
input and output addresses from participants, up until
some fixed time T . When the mixing begins at time T ,
the functionality will follow steps that will resemble a
mixing protocol utilizing the GAnonTrans functionality. It
will additionally provide the leakage function L to the
adversary as defined by the input and output addresses.
The adversary will return a set of transactions for a k-
ary butterfly network of size n including transactions
made to intermediate addresses for each of the logk n
layers. The functionality will construct the transactions
through calls to the GAnonTrans functionality and notify
the adversary on completion.

Assumptions. The assumptions made by our ideal func-
tionality are as follows:
– Mixing Value: We assume that all honest input ad-

dresses carry the same value v, i.e. all parties are
mixing equal funds. Also each participant can spec-
ify multiple input and output addresses.

– Sufficient Funds: Given that our protocol does not
have an upper bound on the number of parties that
can mix in any given session, and that it will not
begin prior to time T , there is no reason to check
whether an input address carries a sufficient balance
prior to T . If a user does not carry the fixed mixing
amount v, it will be dropped by the mixing protocol.

– Corruption Model: The adversary can register any
number of corrupted parties during registration.

Discussion. We note that an extension of our UC func-
tionality in the multi-value mixing case is not trivial.
The difficulty stems by the fact that a simulator needs
to know the transaction values of each path of the but-
terfly network in order to be able to simulate them.

3.2 A Game-Based Definition for
(ε, δ)-Indistinguishable Mixing

We also provide a game-based indistinguishability (GB-
indistinguishability) definition to more clearly showcase
the adversary’s advantage in distinguishing between two
neighbor mixing addresses permutations.

Definition 3.1. Let Πn be a mixing protocol involving
n parties. Consider the following experiment ExpMix

between a challenger C and an adversary A:
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FTAnonMix[GAnonTrans,Gbb,Gclock](v, k,L):
Anonymous Mixing Functionality

The AnonMix functionality interacts with
the adversary, all parties, and three sub-
functionalities. It is parameterized by some
mixing value v, the fan-in parameter for the
butterfly network k, and a leakage distribution
L. Mixing occurs at a specific, pre-defined
absolute time T . A list L is initialized to ∅.

Register: Upon receiving
(Register, addrINi , addrOUTi ) from party
Pi, first run Check and only continue if Mix is
not invoked. Add (Pi, addrINi , addrOUTi ) to L,
the list of participants in the current mixing
session. The functionality posts addrINi to Gbb.

Ping: This method has no parameters and can
be called by anyone (even the environment). It
invokes Check and returns execution to its caller.

Check: Send GetTime to Gclock and receive τ
from Gclock. If τ > T then run the Mix process.
Otherwise, return to the calling method.

Mix:
– The functionality randomly assigns an out-

put bucket to each output address in L. Let
~w denote the vector of bucket weights, i.e.,
the number of output addresses contained
in each bucket.

– The functionality determines π based on
the sets addrIN [], addrOUT [], and the out-
put bucket assignments. It computes L(π),
and provides (L(π), ~w) to the adversary.

– The adversary returns a set of transactions
for a k-ary butterfly network of size n,
specifying for each transaction the values
(S, j, addrr, v) and which layer of the net-
work it corresponds to.

– The functionality calls GAnonTrans() for all re-
quested transactions.

– Notify Adversary that mixing was done.

Fig. 3. Anonymous Mixing Functionality

1. The challenger sends SIN = {addrIN1 , . . . , addrINn′ }
and SOUT = {addrOUT1 , . . . , addrOUTn′ } to A. The
sets denote the input and output addresses of honest
parties (respectively), and each set is of size n′.

2. A sends to C two chosen sets of input and output
addresses ŜIN , ŜOUT on behalf of the malicious par-
ties, along with their secret keys (in order to al-
low C to run the mixing protocol itself). Addition-
ally, the adversary might opt to corrupt some of
the addresses sent by the challenger, in which case
he is given their secret keys and these addresses
are moved from set S to corresponding Ŝ. Let t

be the total number of adversarial parties and n

the total number of parties. A selects two neighbor-
ing permutations π0, π1 (cf. Definition 2.2) over the
unions of the challenger and the adversary’s sets,
i.e., π0, π1 : SIN ∪ ŜIN → SOUT ∪ ŜOUT . The per-
mutations must agree on the adversarial addresses
π0|ŜIN = π1|ŜIN .

3. The challenger flips a coin b ∈ {0, 1} and runs the
mixing protocol Πn on input πb. We define the out-
put of the protocol as Out.

4. The adversary is given Out and guesses b′. He wins
if b = b′.

We say that Πn is a (z, t)-GB-indistinguishable mixing
protocol for any PPT adversary who has corrupted up
to t parties if the advantage of winning the game defined
in ExpMix is bounded by some value z parameterized by
our choice of privacy parameters.

4 Construction
We construct an anonymous mixing protocol Π~s,~v,~rT,n,d,c

that allows n participants, where each participant p

owns a sender address sp and a receiver address rp, to
anonymously transfer a value vp from sp to rp. To hide
the mapping between sender and receiver addresses, we
employ d rounds of mixing in which the participants mix
with a subset of all participants in the round (these sub-
sets are determined by the interconnections between two
consecutive layers of buckets on a butterfly network).
Each participant creates ephemeral addresses to hold
the value in each round, except the last round where
transactions are made to the receiver addresses.

In order to argue that the view of the protocol is
(ε, δ)-indistinguishable, participants contribute to sev-
eral “noisy addresses” that contain zero value via “noisy
transactions” that carry zero value. We refer to the ad-
dresses that actually carry value as described in the
above paragraph as real addresses. In particular, we rely
on confidential transactions to ensure that a noisy trans-
action is individually indistinguishable from a real one,
and we sample the number of noisy addresses from neg-
ative binomial distribution.

To determine the mixing participants, our protocol
relies on using a blockchain as a public bulletin board
where parties publish all necessary addresses in a layer
by layer fashion. When a party wishes to have a transac-
tion output mixed, it includes a relevant “to be mixed"
flag. In the first phase of the mixing protocol, the sender
addresses to be mixed will all be output transaction



(ε, δ)-Indistinguishable Mixing for Cryptocurrencies 58

addresses marked as “to be mixed" within some spe-
cific time period T (i.e. last 100 blocks). Similarly, any
subsequent layers of transactions can rely on transac-
tion outputs posted on the blockchain from the previous
layer to form the subset of mixing parties in the current
layer. We note that, similar to other privacy preserving
cryptocurrencies, we require anonymous communication
when users post their transactions on the bulletin board.

4.1 Building the Butterfly Network

Given n parties and an arbitrary choice of fan-in k, the
transaction graph in our protocol follows a k-ary n-size
butterfly network with depth d = logk(n) in which the
input layer nodes correspond to sender addresses and
the output layer nodes correspond to receiver addresses.
Each participant owns one pair of such nodes. We re-
mark that most of our construction applies generically
to any network topology that ensures unique paths from
source to receiver addresses, however, we restrict our at-
tention to the butterfly network in this work.

The sender addresses in the input layer are ordered
by simply sorting them, where each address occupies one
position in the input layer. The positions for receiver
addresses in the output layer are independently chosen
by each participant. For every address except the sender
address, the participant includes its position in current
layer in the transaction posted to blockchain.

In our protocol, each participant is solely respon-
sible for transferring her own coins through the en-
tire (unique) path in the butterfly network from her
sender address to her receiver address. As a result, she
must own an address for each layer along that trans-
action path. Since paths by different participants can
cross through the same position in the intermediate
(1, . . . , d− 1) and output layers, our protocol allows for
multiple addresses to reside in these positions and refer
each position as a bucket.

We use sp and rp respectively to denote the sender
address and receiver address of a participant p. We use
vp to denote the value that p wants to transfer from sp
to rp. More generally, we denote each address by a〈i,j〉p,l .
Here, the superscript 〈i, j〉 denotes that the address is
located within the bucket in layer i at the jth position
from the left. The left subscript indicates that this ad-
dress is owned by participant p, and we use the counter
l ∈ N as a unique index to distinguish between all ad-
dresses owned by participant p within bucket a〈i,j〉p,l . By
convention, we reserve l = 0 to denote the one real ad-
dress (if any) that p places in bucket 〈i, j〉, and we index

noisy addresses (if any) with positive integers. We also
use array notation to refer to all addresses meeting cer-
tain characteristics. Specifically, the array ap[] contains
all addresses made by participant p (in the whole net-
work), and a[] contains all addresses for all participants
while s[] contains all sender addresses.

4.2 Generating and Sending Addresses

We describe our full mixing protocol Π~s,~v,~rT,n,d,c in Figure
4. The protocol involves n parties but given that it is
symmetric, we opt to describe the protocol from the per-
spective of a single party p. Throughout the protocol,
we let ←$ refer to sampling value from certain distri-
butions, or sampling a key from some key generation
algorithm. At a high level, the protocol can be divided
into an offline and an online phase.
1. Offline Phase. Each party posts a transaction in-
dicating its intent to participate in a mix. In lines 2-7,
each participant retrieves the collection of sender ad-
dresses from the ledger and sorts them to determine
their starting position, source. Each participant then
randomly samples an output layer position, target, and
locally runs a sub-routine Path(source, target) to deter-
mine her unique path from the sender address to the re-
ceiver address along the network. In lines 9-12, for each
bucket on the participant’s path through the intermedi-
ate layers, she creates a fresh “real address” which will
be used to pass non-zero transactions from her sender
address to the intended receiver address. In lines 13-
17, each participant independently generates a certain
number of noisy addresses, which could be zero, for each
bucket in the intermediate layers.

In this phase, all real and noisy addresses except the
sender address are freshly created by the participant and
kept locally.
2. Online Phase. Next, the participants use the ledger
in order to synchronize each layer of transactions. De-
pending on the size of n and the specifics of the underly-
ing ledger (i.e. block/transaction size), a specific number
of ledger blocks will be devoted for each mixing layer;
only transactions posted within these blocks contribute
toward this layer. In each round of these transactions,
every participant is responsible to create transactions
paid to all addresses she owned, real or noisy, in the
current/lower layer.
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Fig. 4. Protocol Π~s,~v,~r
T,n,d,c

(s[]). The protocol is symmetric, so we
show the protocol from the view of a single participant p who
sends vp value from sender address sp to receiver address rp.

1 : Gbb.Write(sp,Mix, T )// Post sp to mix at time T

. . . . . . . . . . . . . . . . . . . . .Offline Phase. . . . . . . . . . . . . . . . . . . . .

2 : Gbb.Read(s[])// Read all addresses posted at time T

3 : Sort(s[])

4 : source := Find(sp, s[])

// Return location index of p’s sender address.

5 : target := ←$ Uniform(n)

// Sample location index of p’s receiver address.

6 : a〈0,source〉
p,0 := sp

7 : a〈d,target〉
p,0 := rp

8 : ap[].Append(a〈0,source〉
p,0 , a〈d,target〉

p,0 )

// Maintain an array of p’s own addresses.

9 : pathbuckets[] := Path(source, target)

// Find path from sender address to receiver address

10 : for bucket〈i,j〉 in pathbuckets[] do

// Generate real addresses for buckets along the path

11 : a〈i,j〉
p,0 ←$ AddressGen(1κ)

12 : ap[].Append(a〈i,j〉
p,0 )

13 : for bucket〈i,j〉 in allbuckets[] do

// Iterate for every bucket in the intermediate network

14 : x←$ Noise(n, ε, δ)

15 : for l = 1..x do// Generate x noisy addresses

16 : a〈i,j〉
p,l

←$ AddressGen(1κ)

17 : ap[].Append(a〈i,j〉
p,l

)

. . . . . . . . . . . . . . . . . . . . .Online Phase. . . . . . . . . . . . . . . . . . . . .

18 : for i = 1, 2, . . . , d do

// Synchronize each layer of transactions among all

19 : for a〈i,j〉
p,l

in ap[] do

// Iterate through every p’s address in the current layer

20 : if i == 1

21 : inputs[] := Parent(〈i, j〉, s[])

// Read parent addresses from the sender addresses array

22 : else

23 : inputs[] := ReadParent(〈i, j〉,Gbb.Read)

// Read parent addresses from the ledger

24 : output := a〈i,j〉
p,l

25 : if l == 0 then // Create real transaction

26 : GAnonTrans.Transfer(inputs[], output, vp)

27 : else // Create fake transaction

28 : GAnonTrans.Transfer(inputs[], output, 0)

In lines 20-23, each participant determines the cur-
rent set of input addresses from either the sorted sender
addresses array or the ledger, depending on whether
this is a first round transaction or not. For the latter,
each output address in the previous layer must also in-
clude its bucket location on the ledger. In lines 24-28,
for a real transaction paid to a real output address, the
participant disguises the real input address among all
other addresses from the input set. Notice that since
this transaction is along the path that a real value fol-
lows, there must exist a real input address owned by the
same participant in one of the parent buckets on pre-
vious layer. On the other hand, if it is a noisy transac-
tion, there might not exist a parent input address owned
by the same participant. Here, we simply assume that
a participant can create a transaction with zero value
without owning any address in the input set. Later, we
show a slightly different construction that remove this
assumption.
Sub-Routines. The full protocol Π~s,~v,~rT,n,d,c in Figure 4
uses the following sub-routines. For some we have UC
functionalities described in Section 2.4 and the others
are straightforward enough that we omit detailed de-
scriptions for brevity.
– GAnonTrans.Transfer(inputs[], output, v): Transfers v

coins to the output address from one of the addresses
in inputs[], as specified by the partially-anonymous
transaction ledger functionality defined in Figure 2.

– AddressGen(1κ): Generates an ephemeral address.
Notice that both a real address and fake address
are generated in the same way.

– Find(arr[], value): Return the index of the value in
the array.

– Path(source, target): Return an array of buckets (de-
noted by 〈i, j〉) along the unique path from source

to target.
– Sort(arr[]): Sort the array in increasing order. We

use this function to sort the broadcasted array of
participants’ addresses. If each address is generated
randomly, then the sort itself can be viewed as ran-
dom permutation.

– Noise(n, ε, δ): Sample noise that satisfies the (ε, δ)-
indistinguishable guarantee. Since the total noise is
contributed by all n participants, the amount of in-
dividual noise required is also a function of n. In
particular, to ensure the total noise follows a nega-
tive binomial distribution NB(r, p), each participant
samples noise independently from a Polya distribu-
tion Pol(r/n, p).
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– Parent(〈i, j〉, s[]): Return the set of addresses resided
in the parent buckets of 〈i, j〉 from all sender ad-
dresses s[] where i is the layer number and j is the
bucket location within the current layer. The parent
relationship is defined by the network topology.

– ReadParent(〈i, j〉,Gbb.Read): Return the set of ad-
dresses from the parent buckets of 〈i, j〉 from Gbb.

Communication Cost. As the participants rely on
published transactions on blockchain to establish the
network construction, it suffices to only consider the on-
chain communication cost. (We store on-chain all infor-
mation that is needed for future transaction verification
i.e., the sequence of the transactions). On-chain com-
munication happens in Steps 26 and 28 and consists of
an expected total of n(1 +λ)×d messages for all partic-
ipants. Here λ is the average amount of noisy addresses
per bucket. Concretely messages are transactions with
one output address and their size depends on the in-
put set size and specific instantiation (discussed in Ap-
pendix B). As mentioned earlier, on-chain communica-
tion requires anonymous communication channels (i.e.
Tor or Atom without the need of a bulletin board).
Handling Address Overflow. Having many ad-
dresses in a parent bucket (either through malicious
behavior or excessive noisy addresses from honest sam-
pling) forces the child bucket/node to create anonymous
transactions of larger sizes, and increases the overall
computation. We formally describe such a scenario in
Section 6, and provide a formal bound. As a counter-
measure, the participants can set an upper bound on
the number of total address allowed in one bucket, and
agree to abort the protocol (or simply halt the trans-
actions that connect to this bucket) when any bucket
exceeds this bound. This prevents inefficient executions,
but could lead to denial of service attacks where an ad-
versary maliciously adds noise that exceed the bound.
In Section 7 we explain how to avoid such attacks.
User Aborts. Our discussion accounts for both hon-
est user aborts and malicious aborts during the protocol
execution. As opposed to previous work on cryptocur-
rency mixing [53, 54], our protocol makes no attempt to
detect and handle user aborts. This is mainly because
an aborted user does not hinder the normal transaction
flow for the rest of the users. In terms of privacy loss,
we assume the worst case scenario where all aborts are
caused by t malicious parties. Aborts can happen in any
phase of the protocol, and without loss of generality we
assume that in the end all malicious parties publicly
reveal all their real and noisy addresses. The real ad-

dress paths of malicious parties will be identified, and
cause the reduction of anonymity set to n− t. The noisy
addresses disclosed will reduce the effective noise mag-
nitude to (n − t)/n of the original for each bucket. To
achieve the target anonymity set size and privacy pa-
rameter, both issues can be easily addressed by setting
a larger required number of mixing parties n′ = n+ t.
Instantiation of Our Protocol Using Ring Signa-
tures. For compatibility with Monero, in Appendix B,
we provide an instantiation of our protocol using ring
signatures over confidential transactions (CTs).

5 Privacy and Security Analysis

5.1 Privacy Analysis

We now rigorously prove that the leakage in our mix-
ing protocol Π~s,~v,~rT,n,d,c is (ε, δ)-indistinguishable. We build
up to this proof via a series of lemmas that first an-
alyze the negative binomial mechanism generally and
then apply this analysis toward the noise distribution
within Π~s,~v,~rT,n,d,c.

Lemma 5.1. Let f1 : Π → N be a function with `1-
sensitivity 1. Let M1(π) be the mechanism that output
the sum of f1(π) and some noisy value sampled from
NB(r, p) with r ≥ 1. ThenM1 is (ε, δ)-indistinguishable
for ε ≥ ln(1/p) and δ = I1−p(r, k + 1) − eεI1−p(r, k),
where k =

⌊
p(r−1)
eε−p

⌋
.

We defer the proof of this lemma to Appendix C.

Lemma 5.2. Let f2 : Π → N2 be a function such that
for any pair of neighboring inputs π and π′ (Defini-
tion 2.2), with f2(π) = (x1, x2), f2(π′) equals to either
(x1 + 1, x2 − 1) or (x1 − 1, x2 + 1). Let M2 be a mech-
anism that perturbs the output of f2 by independently
adding NB(r, p) noise to each element. Then, M2 is
(2ε, δ)-indistinguishable with ε, δ defined as in Lemma
5.1.

We defer the proof of this lemma to Appendix C.
Next, we consider the (randomized) leakage func-

tion L : Π→ Nn×(d−1) as a map from an input/output
permutation to a matrix representing the intermediate
bucket weights in the network. We informally state that
L captures the whole view of the adversary (and leave
the formal argument to Section 5.2) from our mixing
protocol, so it suffices to prove L is indistinguishable to
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show that our mixing protocol is an indistinguishable
mixing mechanism. Note that in Fig. 3, the set of out-
put weights are given. We first argue that the output
weight itself does not leak any information regarding
the permutation chosen, i.e., the output buckets weights
are independent of the permutation (which is why we
do not place any noisy addresses in the output layer).
To see this, consider neighboring permutations, π1 and
π2, that have swapped targets in the source/target pairs
(s1, t1), (s2, t2). For any fixed sequence of weights ~w in
the output layer, its probability of occurrence is identi-
cal under both permutations, as the probability of swap-
ping the locations of t1 and t2 such that they are con-
sistent with π2 is identical to the probability of placing
them in the locations consistent π1. As a result, our
analysis of Lemma 5.3 and Theorem 5.4 are conditioned
on any fixed sequence of weights in the output layer.

We begin with the following simple observation.

Lemma 5.3 (Swap Sensitivity). For any fixed se-
quence of output weights ~w, in each layer of the inter-
mediate buckets, a swap from permutation π to a neigh-
boring permutation π′ can result in one of the following
two cases: (a) the number of real addresses in two buck-
ets each increase by one and the number of addresses
in another two buckets each decrease by one, or (b) the
number of real addresses in each of this layer’s buckets
remain unchanged.

Proof. This is an immediate consequence of the fact
that the sender and receiver addresses in π or π′ imply a
unique path and one weight to each bucket it passes.

Finally, the following theorem holds for any output layer
bucket weights.

Theorem 5.4. For any fixed sequence of output weights
~w, the leakage function L : Π → Nn×(d−1) is (ε̄, δ̄)-
indistinguishable, where ε̄ = 4(d − 1)ε, δ̄ = 2(d − 1)δ,
and ε, δ are defined as in Lemma 5.1.

Proof. According to Lemma 5.3, there are at most
2(d − 1) pairs of buckets that increase and decrease by
one across all d− 1 intermediate layers. As our protocol
essentially applies noise sampled from negative binomial
distribution on all buckets, it can be decomposed into
2(d − 1) parallel run of M2 on each pair of buckets.
Each run of M2 is (2ε, δ)-indistinguishable, according
to Lemma 5.2. Therefore, composition (Theorem 2.5)
yields the desired result.

5.2 Security Analysis

UC Security. Our protocol satisfies the anonymous
mixing functionality FTAnonMix defined in Section 3.1. In
Appendix D, we describe a simulator that internally em-
ulates an execution of the real protocol with black-box
access to the real adversary.

Theorem 5.5. Given the probabilistic, polynomial time
function L defined in the previous section, the proto-
col described in Figure 4 UC-realizes FTAnonMix in the
(GAnonTrans, Gbb, Gclock)-hybrid world with static corrup-
tion, with L leakage and (κ, ε̄, δ̄)-privacy for ε̄ and δ̄ as
specified in Theorem 5.4.

We defer the proof of this theorem to Appendix D.
Game-Based Security.

Theorem 5.6. Protocol Π~s,~v,~rT,n,d,c is a ( ε̄2 + δ̄, t)-GB-
indistinguishable mixing protocol for any PPT adver-
sary, under the condition that the noise magnitude in
the mixing protocol is multiplied by a factor of n/(n−t),
where t is the number of corruption parties.

The proof is in Appendix E. It relies on the post-
processing property (Lemma 2.4).

6 Complexity of Our Construction

6.1 One Layer Butterfly Network

In this subsection, we discuss a practical setup of our
protocol, using a

√
n-ary Butterfly network. In the rest

of this section, we also simply refer to this as the “one-
layer case,” as there is only one intermediate layer.
Asymptotic Analysis. Under the assumption that the
computational cost of a single anonymous transaction is
linear in the size of the input set, we can calculate the
overall computational and communication costs of the
protocol by counting the number of edges connecting
addresses in the butterfly network. We stress that for
any address, there is an edge between it and every ad-
dress in its parent buckets. In other words, the in-degree
of an address is equal to the number of addresses in its
parent buckets, not the number of its parent buckets.

Theorem 6.1. The expected number of edges for
one layer butterfly network is O(n1.5). Addition-
ally, the number of edges is upper bounded by
O(n1.5 logn log logn) except for negligible probability.
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We defer the proof to Appendix F.
If an anonymous transaction is implemented using

log-size ring signatures [37, 63], then the size of a single
anonymous transaction is logarithmic in the size of the
input set. In our one-layer case, the total size is domi-
nated by the first round of transactions (larger number
of transactions with smaller rings compared to the 2nd
round). Let µ denote the expected number of noisy ad-
dresses in each bucket, the expected size of all ring sig-
natures is: (1 + µ)n · log(

√
n) ∈ O(n logn), and the size

is bounded by O(n log2 n log logn) except with negligible
probability.
Merged Buckets. The asymptotic analysis neglects
the inefficiency caused by the noise in practise. Con-
cretely, the noisy addresses end up constituting a ma-
jority of all addresses in the intermediate layer (in aver-
age, µ times the number of real addresses), which signif-
icantly increases the number of edges. Here we propose
an optimized network topology based on the butter-
fly network that yields better computational and space
costs in practice.

The essential idea is to “merge” some of the inter-
mediate buckets together. The motivation here is to re-
duce the number of buckets that we need to add noise
too, given that the noise magnitude for each bucket is
invariant to n, and independent of the specific network
topology use. However, merging arbitrary buckets could
potentially increase the number of incoming edges and
outgoing edges of each address in the bucket (Recall that
we require addresses in the same bucket share the same
set of parent addresses and child addresses). To avoid
this, we choose buckets such that some of them already
share their parent addresses or child addresses, so that
the in-degree and out-degree increase sub-linearly with
the number of merging buckets.

Concretely, we denote the intermediate buckets
from left to right as Bucket0, . . . ,Bucketn−1. For any
two buckets, Bucketa and Bucketb, their indices can be
represented as a = a1

√
n + a0 and b = b1

√
n + b0. Ac-

cording to Definition 2.1, if a1 = b1, then Bucketa and
Bucketb share the same set of output buckets in the but-
terfly network. Correspondingly, if a0 = b0, Bucketa and
Bucketb share the same set of input nodes. The size of
these sets are both

√
n. We merge the buckets µ-wise

to form a total of n
µ merged buckets. We will show in

Claim 6.3 that by choosing µ as the number of buckets
to merge, the expected number of edges is minimized.
For ease of analysis, we assume n is divisible by µ. Let
MBucket0, ...,MBucketn

µ−1 denote the n
µ merged buck-

ets. For each MBucketj , with j = j1
√
n/µ + j0, then

MBucketj is constructed from merging the following set
of buckets: {Bucketa | j1

√
µ ≤ a1 < (j1 + 1)√µ, j0

√
µ ≤

a0 < (j0 + 1)√µ}. Through this construction, each
MBucketj connects to √µ input node sets and √µ out-
put bucket sets, which translate to √µn of input nodes
and √µn of output buckets.

We give the following claims regarding the practical
efficiency of the merged bucket invariant and defer all
their proofs to Appendix F.

Claim 6.2. The expected number of edges in one-layer
merged bucket network is 4n · √µn+ n−√µn.

Notice that the same claim works for size, if we assume
a linear size anonymous transaction.

Claim 6.3. For the one-layer merged bucket network,
the expected number of edges is minimized when the
buckets are merged µ-wise.

Claim 6.4. If a log-size anonymous transaction is used
and n > 2µ, the total size of the transactions using the
one layer merged bucket is bounded by 3n logn.

Proof-of-Concept Evaluation With Ring Signa-
tures. We now provide a proof of concept evaluation
of our protocol for the one-layer case, when anonymous
transactions are instantiated using the Concise Link-
able Spontaneous Anonymous Group (CLSAG) signa-
ture [27] which is currently used by Monero.

We conduct our experiment on a Intel Core 2.90GHz
processor using the library https://crates.io/crates/
nazgul3 that implements CLSAG. In Table 1, for each
ring size listed, we report the average signing and ver-
ification costs (in ms) over 5 iterations of experiment.
For a naive comparison, we consider the case where all
users use a ring size as large as the number of mixing
parties.

Using the negative binomial distribution for our
noise sampling mechanism, we give the comparisons of
signing/verification costs between the naive approach
and our one layer merged bucket protocol under dif-
ferent privacy parameters. In particular, we estimate
the average ring size for each transaction and interpo-
late the result of our experiment to calculate the sign-
ing/verification cost. Figure 5 shows the expected sign-
ing cost per party while Figure 6 shows the expected
verification cost of all parties.

3 We post an issue on their GitHub and apply a small fix in our
experiment.

https://crates.io/crates/nazgul
https://crates.io/crates/nazgul
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Ring size Sign Verify Ring size Sign Verify
2 4.4 3.2 256 446.6 441.2
4 8 7 512 888.2 885.8
8 15 14.2 1024 1777.8 1773.4
16 29.2 27.6 2048 3558.4 3542
32 57.2 56 4096 7098.2 7063.8
64 113 111 8192 14179.2 14132
128 224.6 221.4 16384 28406.6 28242.2

Table 1. Signing and verification times (ms) for CLSAG

Fig. 5. Expected signing time per party for naive and one layer
merged bucket with different privacy parameters.

Concretely, if we set ε = ln 10 and δ = 10−4 (a
selection consistent with the literature, i.e. in Stadium
[57]), we sample an average of 37 noisy addresses in each
bucket. Thus, if the number of mixing parties is greater
than 605, our protocol is computationally more efficient
than the naive approach.

We note that the verification time is extremely high
(both for our solution, and the for the naive construc-
tion). When amortized over the number of transactions
supported (2500-20,000), this might be deemed reason-
able, but we also envision several ways of reducing this
cost in the future. Batched verification of ring signa-
tures is an active area of research [49]. Additionally, the
task of verifying could be divided up among miners, at
random, with sufficient redundancy to ensure that every
signature is verified by at least one honest miner.

6.2 Multi Layer Butterfly

Our protocol also works on a multi-layer butterfly net-
work which can reduce computation costs at the price
of increased communication costs.
Asymptotic Analysis. Using multiple layers of inter-
mediate buckets introduces more leakage than the one

Fig. 6. Expected total verification time for naive and one layer
merged bucket with different privacy parameters.

layer case. Specifically, the overall sensitivity is multi-
plied by (d−1). In particular, a 2-ary butterfly network
has logn − 1 times larger sensitivity than the sensitiv-
ity of the one layer case. Naturally, an increase in noise
magnitude is required to cope with the increased sen-
sitivity. Let µm denote the expected noise required in
each bucket. Similar to the analysis for one-layer case
in Section 6.1, we can capture the expected computa-
tion cost by counting the expected number of edges. We
give the following theorem:

Theorem 6.5. The expected number of edges for 2-ary
butterfly network is O(n logn · µ2

m).

We defer the proof to Appendix F.
Noise Choices. We also give an empirical analysis on
choosing µm and defer it to Appendix H.

Finally, we point out that the merged bucket tech-
nique for the one-layer case does not work well for a 2-
ary butterfly network, and it is generally inefficient for
any butterfly network with larger than constant depth.
For a high level intuition, the small branch factor in
such cases limits the number of buckets that already
share the same set of parent and child buckets before
the merge. As a result, we can not claim a similar sub-
linear increase for the in-degree and out-degree of the
merged bucket, ruining the efficiency gain.

7 Fees and DDoS Prevention
In our construction, as the noise responsibility at all
buckets is evenly divided, a participant can potentially
generate noisy addresses that does not lie on any of her
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paths. This is problematic as the participant does not
own a real address in the parent buckets, hence can-
not create a valid transaction. In addition to that, most
cyptocurrencies require the users to pay a transaction
fee for each transaction. A participant also needs to de-
posit some funds to the noisy address’s parent address,
allowing it to pay the transaction fee. Without a sepa-
rate address that is unlinkable to her input address to
pay the fee, she inevitably needs to diverge the fee from
her input address, which exposes links between her in-
put address and her noisy addresses. Also, it is worth
noting that a naive alternative of evenly splitting fee
paying responsibility among all participants will facili-
tate a DDoS attack, as a malicious party can flood noise
into a bucket with a relatively small cost, causing the
protocol to halt to prevent the computation penalty of
making large rings.

We present a variant construction for the one-layer
case to allow participants to fund their noisy transac-
tions with safe leakage. In particular, we add one more
layer of n buckets between the input layer and the in-
termediate layer and call it “inserted layer”. Each par-
ticipant generates a real address in the inserted layer
bucket directly below its input node. For every noisy
address she sampled in the intermediate layer, she cre-
ates an address in any one of its parent buckets with
uniform probability. For the rest of this subsection, we
refer to this address in the parent bucket simply as a
noisy parent address. Apparently, if this parent address
contains enough funds, it can make a valid transaction
to the noisy address in the intermediate layer, and the
transaction itself can be completely indistinguishable to
a real transaction if it ropes-in the same set of addresses
as another transaction. It remains to see how this parent
address should receive funds.

The solution is quite simple yet counter-intuitive.
The participant simply makes one multi-output trans-
action between the input layer and the inserted layer.
While she transfers the majority of her mixing value
to the real address directly below, she also allocates a
certain amount of values to each noisy parent address
to cover the fee later. This makes our protocol satis-
fying fee requirement, and posts a financial penalty for
flooding noises. In addition, as the amount of noise each
participant contributed is open, all honest participants
can agree on a threshold to exclude those flooding noise.

Now we informally argue why the extra inserted
layer and exposing the interconnection between the in-
put layer and inserted layer (notice we do not require
the participant to rope in other input addresses) do not
degrade our previous privacy guarantee. We show that

it is possible to simulate both the inserted layer bucket
weight and the interconnection between the first two
layers given the bucket weight of intermediate layers.
First, let us consider any subset of intermediate buck-
ets that are parented by the same set of inserted layer
buckets. The number of real addresses within any set of
buckets is equal to the number of parent buckets, as each
inserted layer bucket only contains one real address. By
summing the intermediate buckets’ weight, we can also
get the number of total noisy addresses. To simulate the
view, it suffice to create an address corresponding to a
real address in each one of the inserted layer bucket. And
we randomly position the parent noisy addresses with
each address uniformly choose a parent bucket. Next,
to complete the interconnection between the input layer
and inserted layer, we can assign the ownership through
following measure: First, we determine the probability
that s noisy addresses are contributed by t participant
each with si noisy address. We first sample a set of si.
Due to symmetry of each participant generating noise,
we can randomly attribute si to any t of them. Finally,
we connect each participant’s input address and the in-
serted layer addresses accordingly.
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A Additional UC Functionalities
We present a bulletin functionality Gbb in Figure 7 and a
globally-accessible clock functionality Gclock in Figure 8.
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B Protocol Instantiation
Below we present an instantiation of our protocol based
on ring signatures and confidential transactions. We
start by discussing some background on ring signatures.

B.1 Linkable Ring Signatures and
Confidential Transactions

Ring signatures allow a user to dynamically choose a set
of public keys (including her own) and to sign messages
on behalf of the set, without revealing her identity [51].
Confidential Transactions (CT) hide the amounts and
replace that information with a proof of balance. Our
instantiation assumes basic background on ring signa-
tures and Confidential transactions which can be found
in [50] due to page limitations.

To present an instantiation of our overal protocol,
we start by proposing an instantiation of our anonymous
transaction functionality using ring signatures over con-
fidential transactions (CTs), as defined in Section B.1,
for compatibility with Monero. We use a ring signature
scheme in order to hide the real sender and therefore
the real path within a ring of “possible” senders. CTs
are mainly needed to hide the distinction between real

Gbb: Global Setup Bulletin Board
Functionality

Upon initialization, it creates an empty list L.
Write: Upon receiving (write, x) from
GAnonTrans, it appends the record x to L and
sends (write, x) to adversary. Ignore requests
sent by any other entity.
Read: Upon receiving Read from any party P ,
it returns L to the requester.

Fig. 7. Global Setup Bulletin Board Functionality

Gclock: Global Clock Functionality

Gclock maintains an integer C corresponding to
the absolute time. When created, the box ini-
tializes C = 0.

IncrementTime: Upon receiving Increment-
Time from the environment, update C = C + 1
and send an “ok” message to the environment.
Ignore the request if sent by any other entity.

GetTime: Return C to the requester.

Fig. 8. Global Ideal functionality representing absolute time
Gclock.

transactions along the payment’s real path (which trans-
fer non-zero amounts of money) and the transactions
containing zero balance (noisy ones that hide the true
transaction paths). CTs also allow participants to mix
different amounts, without revealing the connection be-
tween the input and output addresses.

In protocol 4, addresses are instantiated with ring
signature key pairs. An address registration is a coin
generation, represented by a public key, accompanied
by its secret key knowledge and some amount-loading
mechanism (this is usually taken care of by prior CT in-
stances). Address sorting throughout the protocol cor-
responds to public key ordering.

B.2 Instantiation

We focus on transaction-based systems (UTXO set-
ting) as confidentiality and anonymity in the account-
based setting [11] relies on extra tools such as locks and
epochs. In the next paragraph, we explain how GAnonTrans
functionality (Section 2.4) can be converted to capture
this setting. Monero is an example of a currency in the
UTXO setting that is equipped with ring signatures over
CTs.

We instantiate GAnonTrans.Transfer() as follows: A
successful call corresponds to a valid ring signature with
S being the corresponding signature ring R and the
message signed being the transaction information, in-
cluding the transferred value, which is hidden under a
commitment as part of the CT. (Signing is also used
to prevent transaction information tampering by other
users.) As in Monero, we will assume linkable ring sig-
natures, where each key can be only used once for
signing, in order to avoid double-spending attacks. To
capture this transaction-based style, we would have to
modify GAnonTrans to delete the record of the performer
of a successful transfer. The registration check during
transfer corresponds to the knowledge of a secret key
for the to-be-spent coin (proved through signing). The
combined use of CT guarantees balance preservation.
In transaction-based systems with one-time spendable
coins, this corresponds to a proof that input amounts
exceed output amounts. It also realizes the receiver’s
v′r + vr aggregate balance, in a sense that two different
CTs with the same receiver can be merged under a new
one and be spent as a whole. This is how anonymity
mechanisms work on Monero [43] if we ignore one-time
addresses used for recipient unlinkability, i.e. we im-
mediately use the receiver’s public key instead of some
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other key derived from it. In mixing protocols, we can
do this because users pay themselves.

Given the above instantiation of GAnonTrans.Transfer(),
we now present how our main protocol (Figure 4) can
be instantiated. We instantiate terminal/intermediate
addresses in phases 1 and 2 as pairs of ring signature
keys. We note that both real and noisy addresses are
instantiated the same way, and the moment they get
broadcast, they do not yet carry any value. The syn-
chronized transactions phase (phase 2 of the protocol)
involves the following step, repeated for every layer of
the network: “each participant is responsible to create
transactions paid to all addresses she created in that
layer". This is done with calls to GAnonTrans.Transfer() as
described in lines 29,31 of Figure 4. Instead of choosing
the rings, senders construct rings according to the ad-
dresses of the network. The anonymity set S (or else the
ring R) is the set of all possible payers (called parents)
according to the network topology. The calls are identi-
cal for transactions to real and noisy addresses. In other
words, these transactions can either carry real amount
to real addresses, or be noisy transactions, carrying a
zero payment amount to a noisy address.
Multi-Layer Instantiation. In the case of noisy
transactions, the transaction sender might not know
any secret for the predefined input ring. This is the
case when the sender has to make a noisy transaction
that, due to the butterfly network structure, originates
from a bucket in which the sender does not own a key.
Note however, that the sender will always own the se-
cret key that corresponds to the receiving address of
the transactions. Thus, we make a slight modification
in the usual ring signature content by allowing the re-
ceiving address (which is essentially a public key) to be
part of the sending ring. More precisely, if a a key pair
(skout, pkout) exists in bucket 〈i, j〉, the input Ring R will
be (Parent(〈i, j〉 , pkout).append({pkout})) and the output
will be pkout.

This modification of including the output in the ring
allows for what we call a loop payment: a payment from
pkout to pkout. While this action is not forbidden by
Monero, we remark that it has little value outside of our
protocol. Specifically, in systems that use UTXOs (or
transaction-based cryptocurrencies), each coin can be
spent only once. This implies that a loop-transaction is
a coin that cannot be used in the future. In our instanti-
ation, we only use loop payments for noisy transactions
(of value zero), thus we do not care about moving such
an amount further in the network. However, we still
care about indistinguishability between real and noisy

transactions. More specifically, we have the following
two types of transactions:
1. type 1: input key = output key, i.e. zero-amount

transaction that is not used to transfer amounts to
the next layer

2. type 2: input key 6= output key, i.e. real payment
transaction that is used to transfer amounts to the
next layer

Our protocol keeps type 1 and type 2 transactions in-
distinguishable and eventually hides the payments’ true
paths. An observer cannot tell if for two sequential
transactions, it was the case of two type 2 payments
signed by the same participant (real path) or any other
combination of type 1/type 2 payments signed by the
same or different participants (that own a key in the
ring). The two types of transactions can become distin-
guishable in the case where there is no noise or real keys
in the parent buckets. This happens with a very small
probability and the real path can still be hidden in the
rest of the layers.

Confidential Transactions (CTs) are usually imple-
mented using commitments to the address’ amount (in
Monero for example) or more generally with a bind-
ing function (as defined in [37]) and a proof of balance
between inputs and outputs aggregated. By using the
modified ring signature format we proposed above, the
input ring now includes a new key that is not bound
to any amount yet. In other words, it is not the out-
put of any previous valid transaction. Fortunately, it
is expected that these new keys will be distinguishable
and known to carry zero amount, therefore users can
post intermediate keys along with a commitment and a
proof that it opens to zero (a technique already sug-
gested in [25]). The moment this address is used as
the transaction output, its commitment immediately
changes (new randomness is added no matter if this was
a zero-amount or a real transaction).

C Proof of Lemmas 5.1 and 5.2
Proof of Lemma 5.1. Let x = f1(π). It suffices to
separately prove the following two inequalities: For ar-
bitrary S ⊆ Range(M1),

Pr[M1(x) ∈ S] ≤ eε Pr[M1(x+ 1) ∈ S] + δ (1)
Pr[M1(x+ 1) ∈ S] ≤ eε Pr[M1(x) ∈ S] (2)

In particular, for inequality (2), we will show the differ-
ence could be bounded by eε alone whenever ε ≥ ln(1/p).
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Let y denote the noise thatM1 adds; it is sampled
from the negative binomial distribution NB(r, p). And
let NBr,p(y) denote the probability to sample y. To show
that inequality (1) holds, it is equivalent to showing, for
arbitrary Y ⊆ {0, 1, 2, . . . }, that∑

y∈Y

NBr,p(y) ≤ eε
∑
y∈Y

NBr,p(y − 1) + δ

In particular, we show the maximum additive difference
between

∑
y∈Y NBr,p(y) and eε

∑
y∈Y NBr,p(y−1) over

all choice of S is upper bounded by δ. First, for all y ≥
p(r−1)
eε−p , we have

NBr,p(y)
NBr,p(y − 1) =

(
y+r−1
y

)
· (1− p)r · py(

y+r−2
y−1

)
· (1− p)r · py−1

= p(y + r − 1)
y

≤ eε

Hence, it suffices to focus on the case that y < p(r−1)
eε−p

to bound the additive difference. Recall that we let k =⌊
p(r−1)
eε−p

⌋
. Moreover, the maximum additive difference is

achieved when Y contains all y ≤ k. Hence, we have:

δ =
∑

y∈[0,k]

(NBr,p(y)− eεNBr,p(y − 1))

=
∑

y∈[0,k]

NBr,p(y)− eε
∑

y∈[0,k−1]

NBr,p(y)

=FNB(k; r, p)− eεFNB(k − 1; r, p)
=I1−p(r, k + 1)− eεI1−p(r, k),

where the second equality holds because NBr,p(−1) = 0.
Recall I·(·, ·) is the regularized incomplete beta function.

Now assume ε ≥ ln(1/p) for the rest of the proof, to
show that inequality (2) holds, it is equivalent to show
for arbitrary Y ⊆ {0, 1, 2, . . . } , we have:∑

y∈Y

NBr,p(y − 1) ≤ eε
∑
y∈Y

NBr,p(y)

And it suffices to show for any single y ∈ {1, 2, 3, . . . }:

NBr,p(y − 1)/NBr,p(y) ≤ eε

This holds as

NBr,p(y − 1)
NBr,p(y) =

(
y+r−2
y−1

)
· (1− p)r · py−1(

y+r−1
y

)
· (1− p)r · py

= y

p(y + r − 1) ≤
1
p
≤ eε

where the second to last inequality is due to r ≥ 1.

Proof of Lemma 5.2. We prove that for arbitrary
S = {(z1, z2)} ∈ Range(M2), the following inequality
holds:

Pr[M2(x1, x2) ∈ S]
≤ e2ε Pr[M2(x1 − 1, x2 + 1) ∈ S] + δ.

The proof for the other case with f2(π′) = (x1+1, x2−1)
follows from symmetry.

Let S1 = {z1 | ∃z2 : (z1, z2) ∈ S}, let S2(z1) = {z2 |
(z1, z2) ∈ S}. We have:

Pr[M2(x1, x2) ∈ S]

=
∑
z1∈S1

Pr[M1(x1) = z1] Pr[M1(x2) ∈ S2(z1)]

≤
∑
z1∈S1

Pr[M1(x1) = z1](eε Pr[M1(x2 + 1) ∈ S2(z1)]

+ δ)

=
∑
z1∈S1

eε Pr[M1(x1) = z1] Pr[M1(x2 + 1) ∈ S2(z1)] + δ

≤
∑
z1∈S1

e2ε Pr[M1(x1 − 1) = z1] Pr[M1(x2 + 1) ∈ S2(z1)]

+ δ.

=e2ε Pr[M2(x1 − 1, x2 + 1) ∈ S] + δ

The first inequality is due to (1) and the second
inequality is due to (2).

D Proof of Theorem 5.5
Since we have already shown that L preserves (ε̄, δ̄) pri-
vacy, it only remains to show that the main protocol
presented above (Figure 4) UC-realizes the ideal func-
tionality FTAnonMix, presented in Figure 3. We now de-
scribe a simulator and argue that it emulates the real
world execution up to statistical error δ̄.

Our simulator locally executes the code of all honest
parties, it interfaces with the real environment, adver-
sary, and global functionalities GAnonTrans, Gbb and Gclock.
The simulator relays and monitors all traffic sent be-
tween the emulated parties/functionalities, the adver-
sary, and the external environment. Some of these mes-
sages cause the simulator to perform actions in the ideal
world with FTAnonMix, with the (potentially dummy) ad-
versary, or with the environment, as detailed below.
Address Registration. The simulator reads Gbb to
collect the input addresses of corrupted parties that will
participate in the next mixing period. The simulator
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then chooses output addresses for the malicious par-
ties arbitrarily, and submits these input-output pairs
to FTAnonMix’s registration routine. The simulator also
forwards to the adversary any input addresses received
from the functionality that were registered by honest
parties during registration.
Leakage Function L. At Time T , the simulator
queries the ideal functionality using the Ping command,
and it receives in response the output O from the leak-
age function L and the bucket weights ~w. The simulator
forwards the full list of registered addresses to the ad-
versary.

Recall that O contains the integer weight for the
real + noisy addresses contained within each bucket of
the butterfly network, where bucket sizes at the out-
put layer are publicly known (as defined in Section 5.1).
The simulator’s goal is to construct a butterfly network
consistent with O.

To do this, the simulator must create a new matrix
O∗ that removes the real and noisy addresses that the
leakage contains from the corrupted parties. To remove
the real addresses, the simulator removes one node from
each bucket along the path between the input and out-
put address that it registered for each adversarial party.
To remove the noisy addresses, the simulator subtracts
m samples of the negative binomial distribution from
each entry in O, where m denotes the number of ad-
versarial parties. (Recall from the theorem statement
that we assume that the set of dishonest parties remains
static throughout the mixing protocol.) The resulting
matrix O∗ is a perfect simulation of the honest parties’
bucket weights in the real world because the negative
binomial distribution is additive.
Intermediate Addresses. The simulator generates in-
termediate addresses (these include both noisy and real
addresses) on behalf of the honest parties, ensuring that
the number of keys is consistent with O∗. He forwards
these to the adversary and awaits a list of intermediate
addresses in response. Any corrupted party that fails to
post their intermediate addresses in the ledger is marked
locally by the simulator as having aborted the proto-
col. Any party that was previously marked as having
aborted is ignored if it sends intermediate addresses.
Creating Synthetic Transactions. The simulator
uniformly samples a 1-to-1 mapping from the honest in-
put keys to the honest output keys, and creates a path
through the butterfly network for each pair in the map-
ping. Note that such a path exists with probability at
least 1− δ̄ since an empty path in the butterfly network
is the “failure” case in which someone’s privacy has been
breached.

Posting Transactions. For each edge in the butter-
fly network, the simulator sends a transaction carrying
value v to the ideal functionality. Additionally, Sim cre-
ates sufficiently many “dummy” transactions carrying 0
value until the weight of each node matches its value in
O∗.

The simulator posts all of these transactions to
the anonymous transaction functionality, and Sim also
sends these transactions within the emulated world’s
mixing protocol.
Communication With the Environment. All mes-
sages from the adversary to the environment are faith-
fully forwarded by the simulator.

To conclude our proof, as per Definition 2.9, we need
to argue why our simulator provides a statistical emula-
tion of the real world protocol. During address registra-
tion the honest addresses are created exactly as in the
real world, so the views of the adversary are identical.
The adversary can also choose its own own adversarial
addresses and the decision of whether to abort will also
faithfully follow the same decision paths as in the real
world. The synthetically-chosen transactions are also
sampled from the appropriate negative binomial distri-
bution as long as the matrix O∗ permits at least 1 node
in each of the buckets along the uniformly-chosen real
path, which happens with probability at least 1− δ̄. The
leakage function is determined exactly the same way as
in the real world so this is indistinguishable from the
point of view of the adversary. The simulator picks the
intermediate addresses from the same distribution as in
the real protocol and ensures that the number of ad-
dresses per bucket is picked in accordance to L thus
the view of the adversary is again identical to the real
protocol. The most critical part is to guarantee indistin-
guishability during the posting transactions phase. We
first note that the interaction of the FTAnonMix functional-
ity with the other functionalities is specifically designed
to capture the exact use of these functionalities in the
real world, and all messages from the adversary to the
environment are faithfully forwarded. During transac-
tion posting the simulator does not know the true per-
mutation of input/output addresses that was sampled
by the functionality and samples his own 1-to-1 mapping
between honest input and output addresses. We note
however that because all honest parties mix the same
value v, the environment (or adversary) cannot deter-
mine whether the correct permutation was used: every-
one terminates with the right balance, even if they may
receive v from the wrong sender.
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E Proof of Theorem 5.6
We start by recognizing that the adversary can only
passively observe the protocol. In particular, the Out
given to the adversary is captured the leakage function
defined in Theorem 5.4. Still, due to the potential loss of
noisy transactions by the adversarial parties, n/(n − t)
times of original noise magnitude is used. Eventually,
this allow us to argue the leakage from Π~s,~v,~rT,n,d,c is still
(ε̄, δ̄)-indistinguishable as proven in Theorem 5.4.

We prove the bound of the adversary advantage by
contradiction. We assume the adversary can win with
advantage greater than ε̄

2 + δ̄. In particular, we regard
the adversary as a function f that takes the output of
the leakage function and output a guess bit b′. We use
the notation like Pr[b′ = 0|π0] to denote the probability
that f output 0 conditioned on the challenger choosing
π0. The following inequality shows an adversary with
advantage greater than ε̄

2 + δ̄:

Pr[b′ = 0|π0] + Pr[b′ = 1|π1]
− Pr[b′ = 0|π1]− Pr[b′ = 1|π0] > 2(ε̄/2 + δ̄)

Note that:

Pr[b′ = 0|π0]− Pr[b′ = 0|π1]
= (1− Pr[b′ = 1|π0])− (1− Pr[b′ = 1|π1])
= Pr[b′ = 1|π1]− Pr[b′ = 1|π0]
> ε̄/2 + δ̄.

Clearly, at least one of the Pr[b′ = 0|π1] and Pr[b′ = 1|π0]
is smaller than 1/2. Without loss of generality, assume
Pr[b′ = 0|π1] < 1/2. Therefore:

Pr[b′ = 0|π0]− Pr[b′ = 0|π1] > ε̄

2 + δ̄

Pr[b′ = 0|π0] > Pr[b′ = 0|π1] + ε̄

2 + δ̄

> Pr[b′ = 0|π1] + ε̄Pr[b′ = 0|π1] + δ̄

> (1 + ε̄) Pr[b′ = 0|π1] + δ̄

= eε̄ Pr[b′ = 0|π1] + δ̄ (if ε̄ = 0),

where the third inequality is because Pr[b′ = 0|π1] <
1/2. Notice that this inequality violates the post-
processing property (Lemma 2.4). This concludes our
proof.

F Proof in Section 6
Proof of Theorem 6.1

Let X1, ...., Xn denote the random variables for the
number of real addresses in the intermediate layer buck-
ets. Clearly, each Xi is not independent of the oth-
ers; one of the constraints is

∑n
i=1Xi = n. Let Y1, ..., Yn

denote the independent and identically distributed ran-
dom variables for the number of noisy addresses sam-
pled from a negative binomial distribution with mean µ
in each bucket.

We first consider the expected edge count. The
edges between the input layer and the intermediate layer
can be easily calculated as in degree for every address
is fixed, i.e.,

√
n. Thus, the expected number of edges in

between the first two layers is E[
√
n
∑n
i=1(Xi + Yi)] =

(1 + µ)n1.5.
For the edges between the intermediate layer and

the output layer, we group every
√
n buckets that share

the same “butterfly”, i.e. they connect to the same set
of
√
n output buckets. Let S1, ...., S√n (resp. T1, ..., T√n)

denote the random variable for the number of real (resp.
noisy) addresses in each of these groups. Notice that
E[Si] =

√
n, E[Ti] =

√
nµ and the variance Var[Si] =

n · (1/
√
n · (1− 1/

√
n)) =

√
n− 1, as Si follows binomial

distribution with p = 1/
√
n.

The expected number of edges in between can be
calculated as:

E

√n∑
i=1

(Si + Ti)Si

 =

√
n∑

i=1
E[S2

i ] + E[Ti · Si]

=

√
n∑

i=1
(E[Si]2 + Var[Si] + E[Ti] · E[Si])

(Ti and Si are independent to each other.)

=

√
n∑

i=1
(n+

√
n− 1 +

√
n · µ
√
n) = (1 + µ)n1.5 + n−

√
n.

Finally, due to the linearity of expectation, the total
expected edges is 2(1 + µ)n1.5 + n−

√
n ∈ O(n1.5).

We now prove that the total edges count is bounded
by O(n1.5 logn log logn) except with negligible probabil-
ity. To do this, we show that Xi is bounded by logn and
Yi is bounded by logn log logn.

For Xi, we have:

Pr[Xi ≥ k] ≤
(√

n

k

)(
1√
n

)k
≤ 1
k! ≤

( e
k

)k
,

which is negligible when k = logn.
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For Yi ∼ NB(r, p), we first divide into r i.i.d random
variables, Z1, . . . , Zr ∼ NB(1, p), for each Zj , we have:

Pr[Zj > k/r] = (1− p)k/r+1,

which is negligible when k = logn log logn. Using the
union bound, the probability that there exists a random
variable from Z1, . . . , Zr such that one of them is greater
than k/r is also negligible. This suggests the probability
that Pr[Yi ≥ k] is also negligible.
Proof of Claim 6.2 The number of real addresses in
the intermediate layer of buckets is n, while the expected
amount of noise addresses is µ · nµ = n. As the in-degree
for each merged bucket is √µn, the total number of
edges between the input and intermediate layer is 2n ·
√
µn. For the edge count between the intermediate layer

and output layer, we can apply a similar analysis as in
the original one-layer case and the expected number of
edges is 2n·√µn+n−√µn. So the total expected number
of edges is 4n · √µn+ n−√µn.
Proof of Claim 6.3 Assume each merged bucket con-
tains r original buckets, so the total number of merged
buckets is n

r . The expected number of addresses in the
whole intermediate layer is µ · nr noisy addresses plus
n real addresses. Using the same strategy to pick the
merging buckets, we can achieve merged buckets with
a
√
rn in-degree and out-degree. The total number of

edges is thus 2 · (n(1 +µ/r)) ·
√
rn = 2n1.5 · (

√
r+µ/

√
r).

And this term is minimum when r = µ.
Proof of Claim 6.4 For the one-layer case, the users
need to perform two rounds of transactions. The first
round corresponds to the upper half of the network, in
which we have an average of 2n intermediate addresses,
each requiring one transaction. All of them have input
size √µn. For the lower half, we have n output ad-
dresses, each with an average input size 2√µn. As a
result, with log-size anonymous transactions, the total
size of all transactions are 2n · log√µn+n · log(2√µn) =
3
2n(logn+logµ)+n. If n > 2c, then the cost is bounded
by 3n logn.
Proof of Theorem 6.5 To calculate the expected
number of edges between the lth and l + 1 layers, let
Sl,1, ...., Sl,n/2 (resp. Tl,1..., Tl,n/2) denote the random
variable for the number of real (resp. noisy) addresses
in each of the current mixing groups. In addition to that,
let T ′l,1, ..., T ′l,n/2 denote the number of noisy address in
each group in the l + 1 layer. (Here the group is de-
termined by the connection between l and l + 1 layers
so that T ′l,1 and Tl+1,1 refer to two different random
variables, hence the different notations.) Notice that
E[Sl,i] = 2, E[Tl,i] = E[T ′l,i] = 2µm and the variance
Var[Sl,i] = 2l+1 · 2/n · (1− 2/n) ≤ 2, as Sl,i follows bino-

mial distribution with number of trials ntrial = 2l+1 and
p = 2/n. Hence, the number of edges can be calculated
as:

E

n/2∑
i=1

(Sl,i + Tl,i)(Sl,i + T ′l,i)


=

n/2∑
i=1

E[S2
l,i] + E[Sl,i · T ′l,i] + E[Tl,i · Sl,i] + E[Tl,i · T ′l,i]

=
n/2∑
i=1

E[Sl,i]2 + Var[Sl,i] + E[Sl,i]E[T ′l,i] + E[Tl,i]E[Sl,i]

+ E[Tl,i]E[T ′l,i]

≤
n/2∑
i=1

4 + 2 + 4µm + 4µm + 4µ2
m = O(µ2

mn).

With logn layers, the expected number of edges is
O(n logn · µ2

m).

G Iterated Butterfly Network
In this section, we demonstrate that the repetitive run
of our mixing protocol can achieve a better privacy
guarantee. In particular, we define an iterated butter-
fly network as containing multiple butterfly networks
in a sequence, with each network’s (except the last
one’s) output addresses served as the input addresses
of the next network. Each butterfly network also inde-
pendently picks an uniform permutation.

On a very high level, each run of a butterfly network
contributes some randomness to the composed permu-
tation, so the repetitive run of butterfly networks makes
it harder for the adversary to guess what the final com-
posed permutation is. Without loss of generality, we
prove this intuition in the case that we have two but-
terfly networks.

Formally, let L1,L2 : Π→ Nn×(d−1) be the leakage
functions for the two consecutive butterfly networks. We
define the overall leakage function for the whole mixing
as L : Π → Nn×(d−1) × Nn×(d−1) and interpret it as
follows: given input permutation π, L uniformly picks a
π1 and set π2 = ππ−1

1 (so that π = π2π1), and output
L1(π1),L2(π2). Notice this interpretation is equivalent
to the original statement.

Theorem G.1. Let L1 and L2 be (ε0, δ0)-
indistinguishable. Then L is (ε, δ)-indistinguishable with
ε = ln( e

2ε0 +1
2eε0 ) ≤ ε0 and δ = (eε0 − e2ε0 +1

2eε0 + δ0
2 ) · δ0 ≤ δ0.
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Proof. Let n be the number of participants. Let π de-
note the permutation composed by two consecutive mix-
ings, and π′ be one of its neighboring permutations.
We use O to be short of Nn×(d−1) × Nn×(d−1) and let
O be any subset of O. Throughout the proof, we use
the simplified notation of conditional probability such
as Pr[O|π] rather than Pr[L(π) ∈ O]. Given that both
rounds of mixing are (ε0, δ0)-indistinguishable. Our goal
is to find ε and δ such that for arbitrary O ∈ O:

Pr[O|π] ≤ eε Pr[O|π′] + δ (3)

Let us consider all pair of permutation π1, π2 such
that π = π2π1. Since there exists exactly one π2 for
every π1 that satisfies this equation, there are a total
of n! pairs. The probability Pr[O|π] is essentially av-
eraged (with uniformly sample permutation) across all
such pairs, π1, π2.

Pr[O|π] =
∑
∀π1,π2

Pr[π1, π2|π] · Pr[O|π1, π2].

According to Bayes rules,

Pr[π1, π2|π] = Pr[π|π1, π2] · Pr[π1, π2]/Pr[π]

= 1 · 1
n!n!/

1
n! = 1

n!
Let π′1 be the neighboring permutation of π1 such

that the two swapped elements correspond to those
swapped in π and π′. Similarly, let π′2 be the neigh-
boring permutation of π2 that also satisfies π2(π1(x)) =
π′2(π′1(x)). (π′2 basically reverse the swap from π1 to π′1).

As a result, we partition all possible n! pair of per-
mutations for π into n!/2 pairs of neighboring pair per-
mutations and rewrite the probability as the following
summation:

Pr[O|π] =
∑

∀π1,π′1,π2,π′2

(Pr[O|π1, π2] Pr[π1, π2|π] (4)

+ Pr[O|π′1, π′2] Pr[π′1, π′2|π]) (5)

=
∑

∀π1,π′1,π2,π′2

1
n! (Pr[O|π1, π2] + Pr[O|π′1, π′2]) (6)

=
∑

∀π1,π′1,π2,π′2

∑
∀o∈O

1
n! (Pr[o|π1, π2] + Pr[o|π′1, π′2]) (7)

Similarly, Pr[O|π′] can be written as:

Pr[O|π′] =
∑

∀π1,π′1,π2,π′2

1
n! (Pr[O|π′1, π2] + Pr[O|π1, π

′
2])

(8)

=
∑

∀π1,π′1,π2,π′2

∑
∀o∈O

1
n! (Pr[o|π′1, π2] + Pr[o|π1, π

′
2]) (9)

Given that each mixing is (ε0, δ0)-indistinguishable,
we have the following inequality for all O1 ⊆ Nn×(d−1)

and O2 ⊆ Nn×(d−1):

Pr[O1|π1] ≤ eε0 Pr[O1|π′1] + δ0

Pr[O2|π2] ≤ eε0 Pr[O2|π′2] + δ0

For any o1 ∈ Nn×(d−1), let µ(o1) = max(Pr[o1|π1] −
eε0 Pr[o1|π′1], 0) and notice that

∑
o1∈Nn×(d−1) µ(o1) ≤ δ0

follows from the indistinguishability definition. Given a
fixed O, let O1 denote the set of o1 such that there exist
some o2 and (o1, o2) ∈ O. Let O2(o1) denote the set of
all o2 such that (o1, o2) ∈ O. using the newly defined
notations, we have:

(4) =
∑

∀π1,π′1,π2,π′2

∑
∀o1∈O1

1
n! (Pr[o1|π1] Pr[O2(o1)|π2]

+ Pr[o1|π′1] Pr[O2(o1)|π′2]

(8) =
∑

∀π1,π′1,π2,π′2

∑
∀o1∈O1

1
n! (Pr[o1|π′1] Pr[O2(o1)|π2]

+ Pr[o1|π1] Pr[O2(o1)|π′2]

For any quadruple π1, π
′
1, π2, π

′
2, we substitute the

four conditional probabilities with simple notations:
let p, q, p′, q′ denotes Pr[o1|π1], Pr[O2(o1)|π2], Pr[o1|π′1],
Pr[O2(o1)|π′2] respectively. Without loss of generality,
we assume p ≥ p′ and q ≥ q′. Clearly, pq+p′q′ ≥ pq′+p′q.
Hence, (8) ≤ (4). Moreover, let p = eε1(o1)p′+δ1(o1) and
q = eε2(O2(o1))q′ + δ2(O2(o1)). Here we abuse the nota-
tions of ε and δ and let them denote functions to specify
the exact multiplicative and additive differences for each
case of o1 and O2(o1). Note that according to the indis-
tinguishable definitions, all ε1, ε2 ≤ ε0 and δ1, δ2 ≤ δ0.
We can substitute and rewrite as follows by neglecting
the function parenthesis for legibility reasons:

(4) = 1
n!

∑
∀π1,π′1,π2,π′2

∑
∀o1∈O1

((eε1+ε2 + 1)p′q′ + δ1δ2

+ eε2q′δ1 + eε1p′δ2)

(8) = 1
n!

∑
∀π1,π′1,π2,π′2

∑
∀o1∈O1

((eε2 + eε1)p′q′ + q′δ1 + p′δ2)

Notice that the ratio between the eε1+ε2 +1 and eε1 +eε2

can be maximized when ε1 = ε2 = ε0 as the partial
derivative are non-negative for ε1, ε2 ≥ 0. We use this to
relax both equations and multiply (8) with term e2ε0 +1

2eε0

to match (4) :
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(4) ≤ 1
n!

∑
∀π1,π′1,π2,π′2

∑
∀o1∈O1

((e2ε0 + 1)p′q′

+ δ1δ2 + eε0q′δ1 + eε0p′δ2)
e2ε0 + 1

2eε0
· (8) ≤ 1

n!
∑

∀π1,π′1,π2,π′2

∑
∀o1∈O1

((e2ε0 + 1)p′q′

+ e2ε0 + 1
2eε0

· q′δ1 + e2ε0 + 1
2eε0

· p′δ2)

Now, the additive gap is maximized when all δ1(o1) =
µ(o1), δ2(O2(o1)) = δ0. Let s′ =

∑
∀o1∈O1

p′ and sepa-
rate the additive terms, we can rewrite them as:

(4) = 1
n!

∑
∀π1,π′1,π2,π′2

(e2ε0 + 1)s′q′

+ 1
n!

∑
∀π1,π′1,π2,π′2

(δ2
0 + eε0δ0(s′ + q′))

e2ε0 + 1
2eε0

· (8) = 1
n!

∑
∀π1,π′1,π2,π′2

(e2ε0 + 1)s′q′

+ 1
n!

∑
∀π1,π′1,π2,π′2

(e
2ε0 + 1
2eε0

δ0(s′ + q′))

Notice the the summation is over n!/2 quadruple of
π1, π

′
1, π2, π

′
2, and the additive difference between this

two terms can be calculated as:

(4)− e2ε0 + 1
2eε0

· (8)

= 1
n!

∑
∀π1,π′1,π2,π′2

((δ2
0 + (eε0 − e2ε0 + 1

2eε0
)δ0(s′ + q′))

= δ2
0
2 + (eε0 − e2ε0 + 1

2eε0
)δ0 ·

1
n!

∑
∀π1,π′1,π2,π′2

(s′ + q′)

≤ (eε0 − e2ε0 + 1
2eε0

+ δ0
2 ) · δ0

Let eε = e2ε0 +1
2eε0 and δ = (eε0 − e2ε0 +1

2eε0 + δ0
2 ) · δ0. Specif-

ically, consider the case if we want to roughly half the
ε0 and δ0, when ε0 ≤ 1.219, eε ≤ eε0/2. Also when
ε0 ≤ 0.481, eε0 − e2ε0 +1

2eε0 ≤ 0.5 and given that δ0 is small,
the last term is easily compensated by setting the re-
quirement of ε0 a little smaller.

The result shows that two consecutive indistinguishable
mixings are equivalent to one indistinguishable mixing
with strictly no worse privacy parameters. Concretely,
if the original ε0 of individual shuffle has ε0 < 0.481, we
can reduce both ε and δ by at least half. Additionally,
our result also generalizes to t iterated mixing through
recursively applying the theorem, given that t is a power
of 2.

H Noise Mechanisms for Multi
Layer Butterfly

Empirically, to keep the same privacy parameter, the
noise magnitude µm roughly scales linearly with the sen-
sitivity, which in turns scales linearly with the number
of intermediate layers. In particular, for a 2-ary butter-
fly network, µm = O(logn). As a result, the total com-
putation cost is O(n log3 n), and the total communica-
tion cost is O(n log2 n log logn) with the assumption of
log-size signature. Notice while the computation cost is
asymptotic smaller compared to one-layer case, in prac-
tice it is less efficient in the range of n we care about
(no more than hundreds of thousands). Additionally, the
communication cost is strictly worse than the one-layer
case, which has an upper bound of 3n logn. Intuitively,
this is because with log-size anonymous transactions, it
is more efficient to have fewer transactions with larger
input size, rather than more transactions of smaller in-
put size.
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