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Abstract: Consider the setting where multiple parties
each hold a multiset of users and the task is to esti-
mate the reach (i.e., the number of distinct users ap-
pearing across all parties) and the frequency histogram
(i.e., fraction of users appearing a given number of
times across all parties). In this work we introduce a
new sketch for this task, based on an exponentially dis-
tributed counting Bloom filter. We combine this sketch
with a communication-efficient multi-party protocol to
solve the task in the multi-worker setting. Our protocol
exhibits both differential privacy and security guaran-
tees in the honest-but-curious model and in the presence
of large subsets of colluding workers; furthermore, its
reach and frequency histogram estimates have a prov-
ably small error. Finally, we show the practicality of the
protocol by evaluating it on internet-scale audiences.
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1 Introduction
A core problem in online advertising is to estimate the
reach and frequency histogram of cross-publisher adver-
tising campaigns. In this setting, an advertiser conducts
a campaign across several publishers (defined as entities
that host content and show advertisements on behalf
of advertisers), with the potential of reaching overlap-
ping sets of individuals (or households). The reach (aka
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cardinality) is the number of distinct users exposed to
the campaign by at least one publisher. The frequency
histogram is the fraction of users that are reached any
particular number of times (e.g., once, twice, thrice...)
by the campaign across all the publishers.1

Reach is an important metric for evaluating the effi-
cacy of a campaign, and it is often used as the basis for
billing agreements between advertisers and publishers.
The frequency histogram is also crucial as it helps adver-
tisers determine if individuals are being underexposed or
overexposed to particular advertisements.2 Advertisers
are often interested in learning the frequency histogram
in the range of {1, . . . , 14, 15+}, where “15+” denotes a
bucket containing the fraction of individuals exposed to
the advertisement 15 or more times.

The desire to protect user privacy coupled with the
lack of trust between the publishers (who usually com-
pete for advertising revenue and are protective of their
business intelligence) prevents them from sharing their
raw reach data. Moreover, concerns about data breaches
along with the absence of a trusted authority rule out
any centralized solutions. This naturally leads to consid-
ering a distributed solution. The distributed setting we
study consists of a set of publishers, a set of workers,
and a single aggregator. Each publisher transmits in-
formation to one worker, and the workers and aggre-
gators communicate amongst themselves. We augment
this setting with formal security guarantees, which pre-
clude eavesdroppers (along with a number of colluding
publishers and workers) from learning substantial new
information that is not supposed to be revealed by the
output of the protocol. Moreover, the widespread con-
cerns around user privacy lead us to seek a formal pri-
vacy guarantee, ensuring that the messages received by
any entity during the protocol do not leak substantial
new information about any individual user.

1 We note that in the literature on differential privacy, fre-
quency estimation/oracle is also used to refer to the task where
given a universe element, the goal is to estimate the number of
users holding it, see, e.g., [60].
2 www.sublime.xyz/en/blog/sublime-research-campaign-finds-
overexposure-negative-impact

www.sublime.xyz/en/blog/sublime-research-campaign-finds-overexposure-negative-impact
www.sublime.xyz/en/blog/sublime-research-campaign-finds-overexposure-negative-impact
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The security notion we consider is the statistical
indistinguishability under computational assumptions,
which is standard in cryptography in general, and in se-
cure multi-party computation (SMPC) in particular [36].
Furthermore, we consider the multi-party honest-but-
curious setting, where any proper subset of the workers
could be colluding (allowing for a dishonest/corrupt ma-
jority). For privacy, we use differential privacy (DP)
[28, 29], which has recently emerged as the gold stan-
dard for quantifying the privacy properties of algo-
rithms, and has been deployed by government agencies
[1] and tech [6, 26, 33, 41, 55]. For formal definitions,
see Section 2.

The massive datasets typically generated in online
advertising as well as the common desired goal of com-
puting the reach and frequency histogram across multi-
ple publishers and for several hundreds of thousands of
campaign slices per day dictate the use of scalable algo-
rithms. Specifically, we seek algorithms with small com-
putational and communication footprints, and tractable
dependence on the number of publishers. Accuracy is
also critical, though we allow high probability bounds
and approximate solutions, e.g., aiming for at least 95%
of all estimates to be within 5% error.

In this work, we provide a novel sketching method
for the cardinality and frequency histogram problems
along with a distributed protocol for combining such
sketches while satisfying all of the above properties,
namely, security, privacy, scalability, and accuracy.

1.1 Technical Overview

Our solution combines Bloom filter-based [12] sketch-
ing with homomorphic encryption [2], SMPC [36], and
DP [30].

It turns out that a conservatively-updated [34]
counting Bloom filter (CBF) [58] could be used to ac-
curately compute both reach and frequency histogram.
Indeed, since the union operation only requires comput-
ing the entry-wise sum of the vector representing the
data structure, an efficient multi-party protocol using
homomorphic encryption could be used to estimate the
frequency histogram, which is just the histogram of the
CBF’s counters, normalized. The main limitation of this
approach is that a standard CBF requires space pro-
portional to the number of items to be counted, which
prevents it from scaling to internet-size audience esti-
mation. This limitation led us to the development of a
method for allocating items to registers exponentially,
which allows audiences to be measured in space loga-

rithmic in their size. Unfortunately, distributing the al-
location this way causes a large number of collisions in
the registers with the largest mass, which means that
a naive estimation of the frequency histogram from the
histogram of counters will result in a distribution that is
incorrectly left-skewed. For this reason, we develop the
Same Key Aggregator (SKA), which can be viewed as
a cryptographic implementation of the not equal func-
tion, and which further emphasizes the need to sparsely
represent the CBF when running the MPC protocol.

As part of the protocol execution we add appro-
priately calibrated noise to ensure our protocol is DP.
In fact, not only is the final output private, but so are
all intermediates, even if all but a single party collude.
Achieving this presents us with multiple challenges. This
is because the view of each party in each step of the
protocol is distinct, requiring us to add multiple types
of noise to hide different types of revealed information.
Such noise must be crafted to make the protocol both
private and accurate; e.g., some noise is added in an
earlier step but must be filtered before the reach and
frequency histogram estimation stages for accuracy.

1.2 Related Work and Alternatives

HyperLogLog. Computing reach for a single party
or publisher is equivalent to the ubiquitous cardinal-
ity estimation problem. Numerous methods have been
invented to solve this problem [42], and HyperLogLog
[37] and its variants [44] are the de facto standard, with
implementations of these algorithms available in many
leading database and data warehousing solutions such
as Redis, Google BigQuery, and Amazon Redshift. The
multi-party extension of cardinality estimation could be
easily dealt with if each party shared its HLL with all
other parties or with some central authority; however it
is known that HLLs are subject to leaking the presence
of individual records and have the potential to leak an
unbounded amount of negative information (i.e., records
that are not in the set) [25]. Given these privacy con-
cerns, new approaches to estimating multi-party cardi-
nality are needed, for which ads measurement is just one
of many possible use cases that include healthcare [62]
and WiFi analytics [3]. Frequency, while being economi-
cally useful to the advertising ecosystem, also poses new
and interesting technical challenges.

BLIP. Before landing on the approach outlined
above, we explored several alternatives. One of these
was BLoom-and-flIP (BLIP), which is a DP mechanism
for Bloom filters that entails randomly flipping each bit
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of the Bloom filter with some probability [4]. Unfor-
tunately, this technique did not scale beyond a small
handful of parties, and in particular we found that this
number was inversely proportional to the probability of
flipping each bit, which means that for a DP parameter
ε of ln(3), which has a corresponding flip probability of
0.25, approximately 4 Bloom filters can be unioned be-
fore the error explodes. We also found that for a fixed
Bloom filter size, the standard error of the cardinality
estimate was sensitive to the size of the set being es-
timated. Frequency estimation posed additional prob-
lems. Specifically, defining a privacy mechanism for a
CBF requires that the sensitivity be defined based upon
the number of impressions associated with the user who
has the largest number of impressions, and since we are
dealing with counts not bits, the analogue to bit flipping
is to perturb the count, for which we used the geomet-
ric mechanism [39]. The result of this, even in the single
party case, and despite attempts to correct for the noise,
is a highly inaccurate estimate.

Private Set Union. A related method for securely
unioning Bloom filters and deriving a cardinality esti-
mate was given by [31]. Their method starts with each
input party splitting its Bloom filter into shares and
transmitting them, one share to each node. Then each
node combines the shares it receives, resulting in a com-
bined share. Next, the nodes agree upon a permutation
and each permutes its combined share. Finally, each
node sends its permuted combined share to another in-
dependent node that does not know the permutation,
and which combines the permuted shares, thereby giv-
ing a permuted Bloom filter. The resulting permuted
Bloom filter is used to compute a cardinality estimate.
This protocol has several shortcomings, the first being
that the topology of the protocol could be simplified
while simultaneously keeping the permutation hidden
using techniques for distributed permutations presented
herein. A second problem is that the output is not DP. A
third issue is that the protocol relies on uniform Bloom
filters and will therefore not scale to internet-sized au-
dience estimation, nor is it adapted to computing fre-
quency. We contend that either one of these last two
issues could be easily addressed in the context of that
protocol, but that the left-skew problem associated with
the frequency estimation discussed above makes simul-
taneously addressing these problems quite difficult.

We have also considered combining HLLs via MPC,
but it is unclear how to obtain a suitable method. The
one devised by [62] for combining HLLs does not pro-
duce a DP result and also relies on shared secrets, which
do not meet our bar for privacy and security respec-

tively. We note that HLLs have been previously adapted
for frequency estimation at Google using a similar tech-
nique to the one described herein [56].

Generic MPC. While generic SMPC results (e.g.,
[36]) could be applied to computing reach and frequency
histogram, the resulting protocol would incur sizeable
polynomial blow-ups, and thus would not scale. Special-
ized protocols for computing set intersection have been
previously reported in real-world applications, for exam-
ple the two-party protocol used by Google [45] which is
similar to the protocol we present below. An important
difference in our setting is the requirement that the out-
puts be DP, which is not met by that protocol.

In addition to its prevalence in database manage-
ment systems, cardinality estimation has been studied
in sketching, streaming, and communication complexity
(e.g., [5, 8, 10, 15, 21, 23, 27, 35, 38, 47, 61] and the
references therein).

In the DP literature, the Element Distinctness prob-
lem has been well-studied, see, e.g., [7, 18, 20, 25, 49, 53].
Moreover, estimating the frequency histogram is related
to the anonymized histogram problem [43, 57].

Multi-Party DP. In the distributed setting, there
has been some work at the intersection of privacy and
security, e.g., [9]. A widely studied distributed model
of privacy is local DP [48]. A drawback of this model
is the large error that has to be incurred even for very
simple tasks such as binary summation, where the er-
ror is known to grow asymptotically with the square
root of the number of users [9, 16]. In addition to the
shuffle setting [11, 19, 32, 46], other distributed models
can be combined with DP including Secure Aggrega-
tion [13] and PRIO [24]; like ours, the latter operates
in the multi-worker setting. As far as we know, a DP
protocol computing reach and frequency histogram for
internet-scale audiences is known neither in the Secure
Aggregation model nor in the multi-worker setting.

Count(-Min) Sketch. The count sketch [17] and
count-min sketch [22], while useful for determining the
items in a set with the highest frequencies (aka heavy-
hitters), are not well-suited for the frequency histogram
problem. However, these structures do have a striking
resemblance to CBFs.

1.3 Organization

We start by providing some background material in Sec-
tion 2. Our sketching technique is given in Section 3, and
our MPC protocol is in Section 4. We state its security
guarantee in Section 5 and its privacy properties in Sec-
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tion 6. We discuss its efficiency in Section 7 and perform
an empirical evaluation in Section 8. We conclude with
some future directions in Section 9. Additional details
on the privacy proof are in Appendix A.

2 Preliminaries
For any positive integer k, let [k] denote the set
{1, . . . , k}. Let R≥0 (respectively, R>0) be the set of
all non-negative (respectively, positive) reals. Similarly,
Z≥0 denotes the set of all non-negative integers.

We next recall the definition and basic properties
of DP. Datasets X, X′ are said to be neighboring if X′

results from adding or removing3 a single user from X.

Definition 1 (Differential Privacy (DP) [28, 29]). Let
ε, δ ∈ R≥0. A randomized algorithm Alg taking as in-
put a dataset is said to be (ε, δ)-differentially private if
for any two neighboring datasets X and X′, and for any
subset S of outputs of Alg, it holds that Pr[Alg(X) ∈
S] ≤ eε · Pr[Alg(X′) ∈ S] + δ.

For an extensive introduction to DP, we refer the reader
to [30, 59]. Since we will combine the security of MPC
protocols with privacy, we require a definition of com-
putational DP [50]. Below we state a simplified version
from [30, Definition 9.4].

Definition 2 (Computational DP). Let ε, δ ∈ R≥0 and
n ∈ N. A randomized algorithm Alg taking as input
a dataset is said to be (ε, δ)-computational DP if for
any two neighboring datasets X and X′, and for any
polynomial (in |X|) time algorithm Dist, it holds that
Pr[Dist(Alg(X)) = 1] ≤ eε · Pr[Dist(Alg(X′)) = 1] +
δ+negl(|X|), where |X| denotes the size of input dataset
X and negl(·) is a function that grows slower than the
inverse of any polynomial.

Table 1 contains notation that we use in the paper. Each
term will be described in detail when it is introduced.

3 We note that while we define neighboring datasets in terms
of addition/removal of elements, our results immediately imply
bounds for the substitution notion of DP (where two datasets
are considered neighboring if they can be obtained by changing
a single element) albeit with a factor of 2 increase in ε and δ.

Notation Meaning
n; n̂ cardinality; estimate of n
fmax maximum frequency level of interest
ri; r̂i ith entry of the frequency histogram, i.e., cardinality

at frequency level i divided by n; estimate of ri
L LiquidLegions sketch
m total number of registers in a LiquidLegions sketch
a decay rate of the LiquidLegions sketch
p number of publishers
w number of non-aggregator MPC workers
T number of non-colluding MPC nodes
υ noise for cardinality estimation
η noise for frequency estimation
κ noise for blinded histogram
λ publisher noise
χ noise for publisher noise added by protocol
(ε∗, δ∗) privacy parameters for noise type ∗
µ∗ mean of the noise type ∗
Table 1. Notation used in the paper. To highlight that the noise
comes from a certain party, we write it in the superscript; e.g.,
ηworker(j) denotes the frequency estimation noise from worker j.

3 LiquidLegions Sketch
In this section we describe LiquidLegions, an exponen-
tially distributed variant of a counting Bloom filter
(CBF) sketch, which we use to estimate reach and fre-
quency at Internet scale. LiquidLegions is parameterized
by a decay rate a and is an array of m registers, each of
which is a 〈count, key〉 pair as described below.
Basic Sketch Operations. Items are assigned to reg-
isters according to a truncated exponential distribution
(tExp) with parameter a, which has a probability den-
sity function (PDF) of

f(x; a) = ae−ax

1− e−a , x ∈ (0, 1). (1)

To assign an item to a register, we first split the
interval [0, 1] into m equal segments, where the ith seg-
ment corresponds to the ith register, and sample a real
number from tExp and assign the item to the register
corresponding to the interval in which the number fell.
Thus an item is assigned to the ith register with prob-
ability

pi = a

m(1− e−a) exp
(
−ai
m

)
. (2)

Note that sampling from tExp can be done by sampling
a number in [0, 1] uniformly (i.e., by hashing the item
to be inserted by applying a function Hash(·), assumed
henceforth in the analysis to be a source of uniform
shared randomness), and then using the inverse CDF of



Multiparty Reach and Frequency Histogram: Private, Secure, and Practical 377

tExp, given by:

F−1(u; a) = 1− log(ea + u(1− ea))
a

.

AssignRegister in Algorithm 1 describes this.

Algorithm 1 Basic LiquidLegions Operations.
procedure InitializeSketch
Input: number m of registers
Output: empty sketch L
L ← array of 〈0, null〉 of size m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

procedure AssignRegister
Input: item x to assign, number m of registers
Output: LiquidLegions register index

f ← Hash(x)
u← (f mod 264)/264

z ← 1− log(exp(a) + u ∗ (1− exp(a)))/a
return bz ∗mc+ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

procedure InsertItem
Input: item x, sketch L
Output: updated sketch L

j ← AssignRegister(x)
k ← Hash(x)
Lj .count← Lj .count + 1
if Lj .key = null or Lj .key = k then
Lj .key← k

else
Lj .key← destroyed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

procedure MergeSketch
Input: sketches L,L′ with same number of registers
Output: merged sketch L

for j = 1, . . . ,m do
Lj .count← Lj .count + L′j .count
if Lj .key 6= null and L′j .key 6= null and Lj .key 6=

L′j .key then
Lj .key← destroyed

else if Lj .key = null then
Lj .key← L′j .key

We next describe how an item is inserted into the
sketch (InsertItem in Algorithm 1). Initially the key
is null, and this holds until an item is assigned to
the register, at which time a fingerprint (chosen as the
Hash(·) digest in our protocol) of the assigned item is
stored as the key. Then as a subsequent item is as-
signed to the register, the count is incremented by 1.
Meanwhile, the key of the register and the fingerprint
of the newly assigned item are compared. If they dis-
agree, then the key of the register is marked with a sen-
tinel value, destroyed, indicating that the register has
been destroyed; see Figure 1 for an example. An unde-
stroyed register is termed active. A destroyed register’s
count will not be used for estimating frequency, however
a destroyed register will still contribute to the count of

index 0 1 2 m− 1
count 0 0 0 . . . 0
key ∅ ∅ ∅ ∅

(a) A LiquidLegions sketch is an
exponentially distributed CBFs
that tracks register collisions us-
ing the fingerprint of the first
item to be assigned to that reg-
ister. It is represented as an array
of (count, key) pairs. For brevity,
∅ denotes null.

index 0 1 2 m− 1
count 1 0 1 . . . 0
key k1 ∅ k2 ∅

(b) A LiquidLegions sketch with
two items inserted. When an item
is inserted into the sketch it is as-
signed to a register according to
the AssignRegister procedure
in Algorithm 1. In the case where
the register is empty its count is
set to 1 and its key is set to that
of the item’s fingerprint.

index 0 1 2 m− 1
count 2 0 1 . . . 0
key k1 ∅ k2 ∅

(c) A third item is inserted and
assigned to register 0. Since its
fingerprint is the same as that
of the register key, the key is
unchanged. The count is incre-
mented.

index 0 1 2 m− 1
count 2 0 2 . . . 0
key k1 ∅ ⊥ ∅

(d) A fourth item is inserted and
assigned to register 2. Its finger-
print is different than that of the
register’s key and therefore the
key is replaced with destroyed
(for brevity, denoted ⊥) indicat-
ing that the register is destroyed.
The count is still incremented for
convenience.

Fig. 1. Examples of basic operations or LiquidLegions.

non-zero registers, which is required for estimating car-
dinality.

Merging two sketches, which is lossless, is done
register-wise, by summing the counts and ensuring the
register is marked destroyed if the keys differ and are
non-null; see MergeSketch in Algorithm 1.
Estimation Using LiquidLegions. Cardinality esti-
mation is based on all the non-empty registers in the
sketch, i.e., registers that contain at least one item.
Note that each item is assigned to the ith register
(0 ≤ i ≤ m − 1) with probability pi = (1/m)f(i/m; a),
where f is the pdf of tExp (1). Then, a mapping from
the cardinality n to the expected fraction of non-empty
registers can be obtained as follows:

E(n) =
1
m

m−1∑
i=0

P(the ith register is non-empty)

=
1
m

m−1∑
i=0

(1− (1− pi)n) ≈ 1−
1
m

m−1∑
i=0

exp(−npi)

=1−
1
m

m−1∑
i=0

exp
(
−f
(
i

m
; a
)
·
n

m

)
≈1−

1∫
0

exp
(
−f (x; a)

n

m

)
dx = 1−

1∫
0

exp
(
−
ae−ax

1− e−a
n

m

)
dx.

We then arrive at

E(n) ≈ 1−
1
a

(
Ei
(
−

an

(1− e−a)m

)
− Ei

(
−

ane−a

(1− e−a)m

))
, (3)
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where Ei(t) =
∫ t
−∞(eu/u)du is the exponential inte-

gral (Algorithm 2, EstimateCardinality). As E(·) is
monotone, a binary search can find its root.

Algorithm 2 Estimation with LiquidLegions.
procedure EstimateCardinality
Input: LiquidLegions sketch L
Output: Estimated cardinality n̂ of the set stored in L

x← #{j | Lj .key 6= null}
n̂← root of E(n) = x/m, as defined in (3)
return n̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

procedure EstimateFrequency
Input: LiquidLegions sketch L
Output: Estimates r̂1, . . . , r̂fmax such that

∑
i∈[fmax] r̂i = 1

H ← [0, . . . , 0] ∈ Zfmax

for j = 1, . . . ,m do
if Lj .key 6= null and Lj .key 6= destroyed then

i← min(Lj .count, fmax)
H[i]← H[i] + 1

S ←
∑fmax

i=1 H[i]
for i = 1, . . . , fmax do

r̂i ← H[i]/S
return r̂1, . . . , r̂fmax

Frequency estimation is based on all the active reg-
isters in the sketch, i.e., registers that contain exactly
one item. Assuming Hash(·) is truly random, the reg-
ister index of each item is independent of its frequency.
Therefore, the items that fall in the active registers form
an unbiased sample of all the items. The frequency his-
togram of these active registers is thus an unbiased es-
timate of the frequency histogram of all the items. See
EstimateFrequency in Algorithm 2.

Theorems 1 and 2 below describe the accuracy of
the proposed cardinality and frequency estimators; the
proofs are in Appendices B and C respectively.

Theorem 1. Fix n/m = z to be any positive ratio, and
let m→∞. Then,

E[n̂]− n
n

→ 0 and m

n2 · var(n̂)→ f (a, z) ,

where for any a > 0,

f(a, z) =
a
(

Ei(−c)− Ei(−2c)− Ei(−e−ac) + Ei(−2e−ac)
)

(exp(−e−ac)− exp(−c))2 − z−1
,

(4)

with
c = az

1− e−a , (5)

and
f(0, z) = lim

a→0+
f(a, z) = ez − 1

z2 − 1
z
.

Theorem 2. Fix n/m = z as any positive ratio, fix
each i, and let m→∞. Then,

(a) E[r̂i] = ri.
(b) Let A be the number of active registers and let

γ = exp(−e−ac)− exp(−c)
a

,

with c defined in (5). Then

E[A]
m
→ γ and m · var(r̂i)→

z − γ
zγ

· ri(1− ri).

LiquidLegions for Internet Scale. We next discuss
the parameter choices for LiquidLegions to work at
internet-scale. Let m be large enough, say, m > 1000.
For cardinality estimation, from Theorem 1, the esti-
mate has a relative standard deviation4 of

rstd(n̂ | a,m, n) ≈
√
f(a, n/m)

m
. (6)

From (6) we can approximately derive

mmin(a, n, α) := min{m | rstd(n̂ | a,m, n) ≤ α},

for any a, n, and a threshold α on the relative standard
deviation. Figure 2 shows how mmin depends on a and
log10(n), for α = 2.5%. The upper bound of internet
population in all different countries is about 109, so the
plot is up to log10(n) = 9. When a = 12, mmin is within
105. For a ≤ 8, however, mmin grows exponentially from
some point, and exceeds 105 (in fact, exceeds even 106)
when log10(n) = 9—such sketch length is computation-
ally infeasible! We thus conclude that

(i) LiquidLegions with a ≥ 12 can scale to internet-
size audience estimation. (In addition, since the curve
for a = 16 is above that for a = 12 for most n, a = 12 is
more favorable than a = 16.)

(ii) LiquidLegions with a ≤ 8, in particular, the uni-
form Bloom Filter (a = 0) cannot scale.

The above theoretical conclusions have been em-
pirically validated; see Table 2. The empirical relative
biases5 are close to 0 as expected, and the empirical
standard deviations align well with theoretical standard
deviations. As can be seen from Table 2(b), for a uni-
form Bloom filter with m = 105 registers, the estimate
quickly becomes more dispersed when n > 5 · 105. And
when n > 106, one has > 1% chance of encountering a
saturated Bloom filter and thus failing to estimate the
cardinality. On the other hand, a LiquidLegions sketch
with a = 12 gives an estimate of ∼ 1% rstd, for n ≤ 109.

4 Standard deviation of the estimate divided by the truth.
5 Mean of (estimate− truth)/truth.
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Fig. 2. The minimum m to achieve α = 2.5% relative standard
deviation of cardinality estimation, for different a and log10(n).

true empirical empirical theoretical
cardinality rel. bias rel. std rel. std

102 -0.00009 0.00561 0.00549
103 -0.00004 0.00587 0.00555
104 -0.00018 0.00615 0.00620
105 0.00003 0.00839 0.00855
106 -0.00009 0.00953 0.00907
107 0.00069 0.00960 0.00913
108 -0.00001 0.00938 0.00931
109 -0.00033 0.01142 0.01132

(a) a = 12.

true empirical empirical theoretical
cardinality rel. bias rel. std rel. std

10 -0.00005 0.00316 0.00224
103 0.00018 0.00214 0.00224
105 0.00000 0.00282 0.00268

5 · 105 0.00009 0.00746 0.00755
8 · 105 0.00251 0.02159 0.02155
9 · 105 0.00608 0.03450 0.03161

When n ≥ 106, saturation occurs with > 1% probability, and
the empirical bias and std are no longer measurable.

(b) a = 0, i.e., uniform Bloom filter.

Table 2. Empirical results for LiquidLegions with m = 1e5; empir-
ical bias and std obtained from 1000 replicates.

At this point, we stress that LiquidLegions is unsuit-
able for set membership, for which the standard Bloom
filter is used. Indeed, because of the fairly large decay
rate a we use, our technique encourages collisions in or-
der to reduce the sketch size; thus, in that regime Liq-
uidLegions would perform poorly for set membership.

For frequency estimation, Theorem 2 says r̂i approx-
imately has standard deviation6

std(r̂i | a,m, n, ri) =
√
z − γ
mzγ

· ri(1− ri).

6 Since
∑fmax

i=1 ri = 1, we consider std instead of rstd.

This attains the maximum when ri = 0.5, so given
a,m, n, std(r̂i | a,m, n, ri) has a supremum of

sup std(a,m, n) = 0.5
√
z − γ
mzγ

.

As for cardinality, we define

mfreq
min(a, n, αfreq) := min{m | sup std(a,m, n) ≤ αfreq}.

For αfreq = 1%, the dependence of mfreq
min(a, n, αfreq) on

a and log10(a) is shown in Figure 3. (Note that αfreq is
not necessarily equal to α since they are about std and
rstd respectively.) It is similar to Figure 2, in spite of
slight differences in the magnitude. We reach the same
conclusion as before about LiquidLegions’s scalability.

Fig. 3. The minimum m to achieve αfreq = 1% standard devia-
tion of frequency estimation, for different a and log10(n).

4 MPC Protocol
The protocol described below first extracts a differen-
tially private, henceforth “private”, count of distinct
LiquidLegions register IDs (i.e., the index of the regis-
ters) in the union of several sketches. This count is then
used as the input to LiquidLegions, which gives an esti-
mate of the cardinality of the cross-publisher union. We
also extract a private frequency histogram in the range
[1, fmax+], where the last bucket of the histogram has
a count of values ≥ fmax. Throughout, noise is injected
to ensure that all intermediate outputs are private.

There are three types of entities involved in the pro-
tocol: p publishers, w workers, and a single aggregator.
The term node is used to refer to either a worker or the
aggregator. The total communication and computation
overheads grow linearly with the number w of workers.
For any particular execution of the protocol, the num-
ber p of publishers is fixed. Each publisher sends its
sketch to exactly one of the workers at the beginning of
the computation (Figure 4). We next introduce a few
primitives before describing the protocol.
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4.1 Basic Primitives

Our protocol requires four core cryptographic ingredi-
ents, which are supplied by the Elliptic Curve (EC)
ElGamal cryptosystem and the Pohlig–Hellman ci-
pher [54]. The first property is an N-of-N threshold vari-
ant of EC ElGamal that is constructed by multiplying
any number of public keys together. The second prop-
erty, which is also supplied by the EC ElGamal cryp-
tosystem, is additive homomorphism, which allows the
counts of the input sketches to be summed. A conse-
quence of this property is that a ciperhtext can be reran-
domized by adding a new encryption of zero to it. We
assume the existence of a function called ReRandomize
that applies this operation to a ciphertext. The next
primitive is supplied by the Pohlig–Hellman cipher,
which commutes with EC ElGamal, and allows for the
creation of a distributed pseudorandom function. Fi-
nally we require a source of cryptographic random num-
bers, for which we assume the existence of a function
UnifInt that returns a random number of the same size
as that of the elliptic curve points we use. Throughout
we also use Enc and Dec to refer to encryption and
decryption operations respectively.

In addition to these core primitives we define an ad-
ditional function called the same-key aggregator (SKA).
The purpose of this function is to ensure that the key
of a register, to which multiple publishers contributed,
is identical. Or in other words, it is a cryptographic
mechanism for determining whether a register is de-
stroyed, and ensures that only non-destroyed registers
are used for computing the frequency histogram. To
achieve this, we track a flag that when decrypted re-
veals only whether the count is valid.

We begin with encrypted pairs 〈C1,K1〉, 〈C2,K2〉, . . .
of count and key that we wish to combine. This list
can be thought of as the values for a single register,
where each tuple is the value contributed by a spe-
cific publisher. Algorithm 3 shows how to construct the
encrypted sum of the counts and an encrypted flag in-
dicating whether all of the keys are identical. The value
of the flag is a well-known constant same_key.

To ensure a private output, the protocol generates
noise registers using the shifted and truncated geomet-
ric mechanism, where each node contributes an equal
fraction of the noise distribution. This is achieved by
having each worker generate noise that is distributed
according to a difference of two truncated Polya ran-
dom variables (Algorithm 4). The noise distribution is
selected so that if T non-colluding parties added the
noise, then we achieve (ε, δ)-DP if the measured quan-

Algorithm 3 Same-key aggregator.
procedure SKA
Input: a list 〈C1,K1〉, . . . , 〈C`,K`〉 of pairs of encrypted
count and encrypted key; pk is an ElGamal public key
Output: if all the keys are the same, then an encryption s of
same_key and encryption C′ of the sum of the counts, where
same_key is a well-known constant; otherwise, an encryption
of two random numbers

s← Enc(same_key, pk)
C′ ← 0
for i = 1, . . . , ` do

s← s+ UnifInt() ∗ (Ki −K1)
C′ ← C′ + Ci

C′ ← C′ + UnifInt() ∗ (s+ Enc(−same_key, pk))
return (s, C′)

tity has sensitivity Λ (see Appendix A.1). We will invoke
the noise sampling multiple times in the protocol with
varying sensitivities depending on the quantity we are
noising, e.g., the noise for the frequency histogram (i.e.,
η) has Λ set to 2 since adding/removing a single user
can change 2 entries of the frequency histogram. Note
that the output noise has mean µ and lies in [0, 2µ].

Algorithm 4 Noise sampling.
procedure SampleNoise
Input: privacy parameters (ε, δ), sensitivity Λ, number T of
non-colluding nodes
Output: a random variable that is the difference of two
truncated Polya random variables shifted by µ

r ← 1/T
s← ε/Λ
µ← dln(2TΛ(1 + eε)/δ)/se
do . Sample X1 and X2 until both are ≤ µ

X1 ← Polya(r, e−s); X2 ← Polya(r, e−s)
while X1 > µ or X2 > µ

X = X1 −X2
return µ+X

4.2 Protocol Description

The operation of the protocol is divided into five phases:
Creation, Setup, and three execution phases: Aggrega-
tion, ReachEstimation, and FreqEstimation. The details
of each of these phases are quite complicated and hence
we first describe the flow of the protocol at a high level
while intentionally ignoring privacy (Figure 4).

In the Creation phase we assume that each publisher
has already created a sketch that represents the audi-
ence to be reported on. From here, the publisher trans-
forms each non-zero register into a three-tuple, which
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consists of the register ID, the count, and the key, or
if the register has been destroyed, the key is replaced
with destroyed indicating this. Each element of each
tuple is then encrypted with the EC ElGamal cipher
and transmitted to a random MPC worker.

After each publisher has transmitted its sketch to
exactly one worker, the protocol commences. The first
phase of the protocol is Setup, wherein each worker
loads the arrays of three-tuples that were sent to it and
concatenates them. This array is then shuffled tuple-
wise and sent to the designated aggregator.

From here the workers and the aggregator commu-
nicate in a ring topology to remove the ElGamal en-
cryption from the register IDs, while applying a Pohlig–
Hellman key, which results in all of the register IDs
being deterministically encrypted. Once this has hap-
pened, the three-tuples are joined on the register ID
by the aggregator. Then the joined counters are sim-
ply summed, while the keys are combined using Algo-
rithm 3; this is the Aggregation phase. From here it
is possible to estimate reach by counting the number
of distinct register IDs and applying the LiquidLegions
estimator (EstimateCardinality in Algorithm 2) to
this count. Note that due to the intricacies of maintain-
ing privacy, the version of the protocol described below
provides a reach estimate only after the second round is
completed; this is the ReachEstimation phase.

After these phases, we are left with a set of two-
tuples, where the first element of the tuple is a SKA
ciphertext and the second is a count. The next round of
communication decrypts the SKA ciphertext. All of tu-
ples that are determined to be destroyed are discarded,
leaving an array of counters for the undestroyed regis-
ters. Finally, in the third round of communication, the
counters are decrypted and used to estimate the fre-
quency histogram; this is the FreqEstimation phase.

The following sections describe all of this is in-
creased detail and add several mechanisms for ensuring
that all intermediate and final outputs are private.

4.2.1 Creation Phase

In this phase, each publisher begins by creating a Liq-
uidLegions sketch (Section 3). It then retrieves the pub-
lic ElGamal key from each worker and combines these
into a single “full public key”. Next, the publisher runs
the PrepareSketch procedure in Algorithm 5, which
begins by generating a three-tuple for each non-empty
register. Each active register is represented by a three-
tuple of register ID, count, and key. Each destroyed reg-

(a) Creation Phase: Each pub-
lisher creates a sketch, adds noise
registers, encrypts all non-zero
registers register-wise, shuffles
the encrypted register vector, and
sends it to a random worker.

(b) Setup Phase: Each worker
loads the publisher register vec-
tor, concatenates them, adds the
appropriate noise distribution,
shuffles all of them, and sends
the result to the aggregator.

(c) Execution Phases: In each
of the phases, the workers and
aggregator communicate in a
ring in order to estimate the
cardinality (ReachEstimation)
and the frequency histogram
(FreqEstimation) of the union.
Several (private) intermediate
results are also revealed.

(d) Results: Once the ReachEs-
timation phase is finished, the
aggregator, which was the only
party to learn the cardinality
or frequency histogram of the
union, provides the results to an
advertiser.

Fig. 4. The MPC protocol.

ister is represented by a three-tuple of the register ID,
count, and key_destroyed, where key_destroyed is a
well-known constant that will subsequently ensure that
these registers are not used for frequency histogram es-
timation. After the register vector has been created, tu-
ples of the form 〈reg_pub_noise, 0,UnifInt()〉 are ap-
pended, where reg_pub_noise is a well-known constant
(these are fake registers added for privacy purposes).
Next, the register vector is randomly shuffled, each ele-
ment of each tuple is encrypted with the combined El-
Gamal key, and is then sent to a random worker.

4.2.2 Setup Phase

This phase begins when all publisher register vectors
have been received by one of the workers. Each worker
loads and concatenates the register vectors before ap-
pending four different noise types (see Table 3 and
SetupWorker procedure in Algorithm 6).

Each of the four noise types is associated with a
particular form of register tuple and each is intended
to ensure either an intermediate result or the final
output is private. The first type of noise applies to
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Noise Added by Added in (phase) Removed in (phase) Purpose

λ Publisher Creation ReachEstimation
Noise cardinality of publisher’s

# of non-empty registers
κ

Worker &
Aggregator

Setup ReachEstimation
Noise the blind histogram

χ Noise publisher’s noises

υ

Noise cardinality of non-empty registers
(affecting reach estimate)

η Worker &
Aggregator ReachEstimation -

Noise frequency histogram
(affecting frequency histogram estimate)

η̂ FreqEstimation
Noise frequency histogram (with “flags”

as in AggregationAggregator)

Table 3. In addition to the noise terms listed in this table, the Setup and ReachEstimation phases feature “padding noise” that ensures
that the number of noise registers output by each party is fixed (in order to avoid leaking information through this count).

Algorithm 5 Creation Phase.
procedure EncTuple
Inputs: register ID r, count c, key k, public key pk
Output: encrypted three-tuple of the inputs

return 〈Enc(r, pk),Enc(c, pk),Enc(k, pk)〉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
procedure PrepareSketch
Inputs: LiquidLegions L, combined ElGamal public key pk
Output: a register vector of three-tuples, where each element
is encrypted using pk

rv ← [ ]
for j = 1, . . . ,m do

c← Lj .count
k ← Lj .key
if c = 0 then continue
if k = destroyed then

k ← key_destroyed

r ← Hash(j)
rv.append(EncTuple(r, c, k, pk))

λ← SampleNoise(ελ, δλ, p, 1)
for i = 1, . . . , λ do

r ← Hash(reg_pub_noise)
rv.append(EncTuple(r, 0,UnifInt(), pk)

rv.shuffle() . Randomly permute
return rv

the count of distinct register IDs and has the form
〈∗, ∗, key_destroyed〉. This noise, along with all other
destroyed registers, will be filtered before estimating the
frequency histogram.

The second type of noise applies to the blinded his-
togram, h ∈ Zp≥0, where ha is the number of register IDs
that are non-empty in a of the publisher sketches, which
is revealed in the Aggregation phase. These noise reg-
isters take on the form 〈∗, ∗, key_bh_noise〉 and will be
filtered in the ReachEstimation phase before calculating
the count of distinct register IDs.

The third type of noise register is intended to “hide”
the publisher noise that was added in the Creation phase
and takes the form 〈reg_pub_noise, ∗, ∗〉. This ensures

that individual publisher register counts cannot be de-
termined when the publisher noise is filtered at the end
of the Aggregation phase.

The final type of noise is padding for the rest of
the noise, and takes on the form 〈reg_pad_noise, ∗, ∗〉.
A number of noise registers equal to a well-known con-
stant, B minus the number of previously added noise
registers is added, thus ensuring that the worker adds
exactly B to its register vector. This noise is also fil-
tered, and does not impact any estimates.

Once all noise registers are appended to the register
vector, it is shuffled and sent to the aggregator. After
the aggregator receives the register vectors from all the
workers, it adds its own noise registers as above and
shuffles, forming the combined register vector (CRV);
see SetupAggregator procedure in Algorithm 6.

4.2.3 Aggregation Phase

This phase starts when the aggregator passes the CRV
to the first worker. Then for each register ID, the worker
uses its secret key, skeg, to remove its ElGamal encryp-
tion before applying a newly generated Pohlig–Hellman
key, skec. The combined effect of this, once all work-
ers have performed these two operations, is to apply a
distributed pseudorandom function to the register IDs,
allowing them to be later joined by the aggregator.

After operating on the register IDs, the worker then
re-randomizes all of the keys and counts. The CRV
is then shuffled and passed to the next worker, which
repeats the same process (see AggregationWorker
procedure in Algorithm 7). Once all of the workers
have processed the CRV, the aggregator removes its
ElGamal key from the register IDs, which then al-
lows the register IDs to be joined. The result of the
join is the noisy blinded histogram of register IDs.
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Algorithm 6 Setup Phase.
procedure SetupWorker
Inputs: concatenated publisher register vectors rv, full public
key pk
Output: modified rv
. Step 1: noise for distinct count of register IDs

υ ← SampleNoise(ευ , δυ , 1, T )
for i = 1, . . . , υ do

r ← UnifInt() > m

rv.append(EncTuple(r, 0,key_destroyed, pk))
. Step 2: blinded histogram noise

N ← 0
for k = 1, . . . , p do

κk ← SampleNoise(εκ, δκ, 2, T )
N ← N + k · κk
for i = 1, . . . , κk do

r ← UnifInt() > m

for j = 1, . . . , k do
rv.append(EncTuple(r, 0, key_bh_noise, pk))

. Step 3: noise for publisher noise
χ← SampleNoise(εχ, δχ, p, T )
for i = 1, . . . , χ do

rv.append(EncTuple(
reg_pub_noise,UnifInt(),UnifInt(), pk))

. Step 4: padding noise
for i = N + υ + χ+ 1, . . . , B do

rv.append(EncTuple(
reg_pad_noise,UnifInt(),UnifInt(), pk))

. Step 5: randomly permute
rv.shuffle(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

procedure SetupAggregator
Input: concatenated worker register vectors, crv
Output: modified crv
. Step 1: add noise and shuffle

crv ← SetupWorker(crv)

The aggregator then runs the SKA on the counts
and keys associated with each register ID yielding an
encrypted count and an encrypted flag that is zero
if all keys are the same; we denote this flag1. Two
other flags, flag2 and flag3, which indicate whether
all keys for the register are equal to key_destroyed
or key_bh_noise respectively (Table 4), are also com-
puted. Finally, the register IDs are discarded, leaving a
set of four-tuples of the form 〈count,flag1,flag2,flag3〉;
see AggregationAggregator in Algorithm 7.

4.2.4 ReachEstimation Phase

The purpose of this phase is two-fold. First, a private
estimation of the cardinality of the union of publisher
sketches is achieved by decrypting the flags, and second,
noise is added to ensure that the frequency histogram

Algorithm 7 Aggregation Phase.
procedure AggregationWorker
Input: combined register vector crv, where each element of
the tuple is encrypted
Output: modified crv

for 〈reg, count, key〉 ∈ crv do
reg ← Enc(Dec(reg, skeg), skec)
count← ReRandomize(count)
key ← ReRandomize(key)

crv.shuffle(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
procedure AggregationAggregator
Input: combined register vector crv
Output: a list of 〈count, flag1, flag2,flag3〉

for (reg,_,_) ∈ crv do
reg ← Dec(reg, skeg)

. Join on the register IDs of crv to obtain a map of

. register ID to a list of count, key pairs
map = crv.joinOnRegID()
L← [·]
for (_, pairs) ∈ map do

(count, flag1)← SKA(pairs)
flag2 ← UnifInt()∗

(pairs[1].key− key_destroyed + flag1)
flag3 ← UnifInt()∗

(pairs[1].key− key_bh_noise + flag1)
L.append(〈count, flag1,flag2, flag3〉)

return L

revealed in the FreqEstimation phase is private. This
noise has the form 〈f, 0, ∗, ∗〉 for each f ≤ fmax. Next,
noise of the form 〈∗, ∗, ∗, ∗〉 is added in order to hide the
count of destroyed registers. Finally, similar to the Setup
phase, we pad the above noise to a well-known value, D
for each worker, with registers of the form 〈∗, 0, 0, ∗〉.

The phase begins with the aggregator, which adds
the requisite noise before passing the shuffled set of four
tuples to the first worker. Then once each worker has
added the noise tuples and has decrypted the flags, the
aggregator regains control and decrypts the set of flags,
revealing their values (see ReachEstimationWorker

flag1 flag2 flag3 semantics

0 R R
register is not destroyed and
not blinded histogram noise

0 R 0 register is blinded histogram noise

0 0 R
destroyed by all publishers or

Step 1 noise added in Algorithm 6
R R R destroyed in join

Table 4. Meaning of the various valid combinations of flag values;
the remaining combinations are impossible. “R” indicates a ran-
dom number. If all keys were the same, then flag1 is zero. If all
keys are equal to key_destroyed, then flag2 is zero. Finally, if all
keys are equal to key_bh_noise, then flag3 is zero.
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and ReachEstimationAggregator procedures in Al-
gorithm 8).

The input to the LiquidLegions cardinality estima-
tor is determined by counting the number of non-zero
flag3 values and subtracting from this the value w∗D−2.
Thus the blinded histogram noise is removed by drop-
ping registers with flag3 = 0. The publisher and padding
noise from the Setup phase are removed by observing
that by this time they contribute to just a single regis-
ter each, and the frequency histogram noise is removed
by observing that each worker contributed exactly D

noise registers during this phase. The input to the next
phase, which consists only of the non-destroyed counts,
is determined by keeping only those counts that have
flag1 = 0 and flag2 6= 0 and flag3 6= 0.

4.2.5 FreqEstimation Phase

In this phase, the private frequency histogram of the
combined publisher sketches is revealed. This begins
with the aggregator creating an SKA-matrix of coun-
ters, where the column indices of the matrix correspond
to the counter indices and the row indices correspond to
the range [fmax−1]. Each cell of the matrix is populated
by a same-key aggregator, where the key is equal to the
row index, and upon decryption will indicate whether
the counter has the value denoted by the row index.
Note that there will be at most one cell per column
that is zero, thus indicating the value of the counter.

Columns with no zero value are put in the fmax bin
(Table 5). Once constructed by the aggregator the SKA-
matrix is circulated to each worker and decrypted, after
which the aggregator finally removes its decryption, re-
vealing the frequency histogram; see Algorithm 9 for
more details.

The primary outputs of our protocol are the noisy
reach and the noisy frequency histogram. Additionally,
the outputs also include certain intermediate values re-
vealed during the different phases, which have to be
taken into account for security and privacy proofs. More
details are in Lemma 2 and Lemma 3.

We note that the protocol described above can be
used to generate an estimate of any real or categorical
distribution, e.g., the total duration the audience was
exposed to an advertisement or its demographics. This
is done by introducing additional “counters” and using
an additional SKA-matrix to reveal the distribution.

Algorithm 8 ReachEstimation Phase.
procedure AddFrequencyNoise
Inputs: list L of tuples of the form 〈count,flag1, flag2, flag3〉,
ElGamal public key pkeg for encrypting tuples
Output: modified L

. items in below tuples are encrypted with pkeg
ηtotal ← 0
for f = 1, . . . , fmax do

ηf ← SampleNoise(εη , δη , 2, T )
ηtotal ← ηtotal + ηf
for i = 1, . . . , ηf do

L.append(〈f, 0,UnifInt(),UnifInt()〉)
η̂ ← SampleNoise(εη , δη , 2, T )
ηtotal ← ηtotal + η̂

for i = 1, . . . , η̂ do
L.append(
〈UnifInt(),UnifInt(),UnifInt(),UnifInt()〉)

for i = ηtotal + 1, . . . , D do
L.append(〈UnifInt(), 0, 0,UnifInt()〉)

L.shuffle(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
procedure ReachEstimationWorkerj
Input: list L of tuples of the form 〈count,flag1, flag2, flag3〉
Output: modified L

for 〈_, flag1, flag2, flag3〉 ∈ L do
Dec(flag1, skeg)
Dec(flag2, skeg)
Dec(flag3, skeg)

. pk is combined key of downstream nodes
AddFrequencyNoise(L, pk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

procedure ReachEstimationAggregator
Input: list L of tuples of the form 〈count, flag1, flag2,flag3〉
Outputs: unique register count, list of undestroyed counts

AddFrequencyNoise(L, pkfull)
yield to worker1
. control returns after last worker sends L
B ← 0
active = [·]
for (count,flag1, flag2, flag3) ∈ L do

flag1 ← Dec(flag1, skeg)
flag2 ← Dec(flag2, skeg)
flag3 ← Dec(flag3, skeg)
if flag3 6= 0 then

B ← B + 1
if flag1 = 0 and flag2 6= 0 and flag3 6= 0 then

active.append(count)
. X is the input to the LiquidLegions estimator
X ← B − w ∗D − 2
return (X, active)
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Enc(1) Enc(1) Enc(2) Enc(3)
f1 η(1, 1) η(1, 1) η(1, 2) η(1, 3)
f2 η(2, 1) η(2, 1) η(2, 2) η(2, 3)

Table 5. Example of a same-key aggregator matrix for four active
registers with counts of {1, 1, 2, 3} and fmax = 3, where η(i, j) =
R · (Enc(i, pk)− Enc(j, pk)) and R is a distinct random number.
Each column has at most one zero value which determines the
frequency of that counter, while columns with no zero values are
assigned to fmax.

Algorithm 9 FreqEstimation Phase.
procedure FreqEstimationWorkerj
Input: SKA-matrix Ms

Output: decrypts entries of Ms using skeg
for x ∈Ms do

x← Dec(x, skeg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
procedure FreqEstimationAggregator
Input: list La of undestroyed (i.e., active) counters
Output: decrypted SKA-matrix M

M ← [·, ·]
col← 0
for c ∈ La do

for f = 1, . . . , fmax − 1 do
M [col, f ]← (c− Enc(f, pk)) ∗UnifInt()

col← col + 1
yield M to worker1
. control returns here after all workers have processed M
FreqEstimationWorkeragg(M)

5 Security Property
Definition 3 (Honest-but-Curious Security). Let f =
(f1, . . . , fW ) be a function over W inputs x =
(x1, . . . , xW ), where each fi is an output for party
i and let π be a W -party protocol for computing f .
The protocol π is secure in the honest-but-curious
model with static corruptions if for any subset I con-
sisting of T ≤ W parties there exists a simulator
SI such that {(SI(1k, {xi}i∈I , {fi(x)}i∈I), f(x))}x,k ≈
{(viewπI(x, k), outputπ(x, k))}x,k.

By the view we mean the inputs, randomness, and tran-
script of the messages received by all parties in I,
i.e., viewi = (xi, ri, transcripti). Moreover, output =
{outputi}1≤i≤W is the result computed by each party
following an execution of π. Note that in the honest-
but-curious model the parties are assumed to output a
specific function, and that security is defined in terms of

the joint distribution of outputs of all parties. The sim-
ulator SI must produce {transcripti}i∈I given only
the inputs and outputs of each party in I.

Theorem 3. Under the Decisional Diffie–Hellman As-
sumption [14], the protocol described in Section 4 (Al-
gorithms 6-9) satisfies Definition 3.

A proof sketch of Theorem 3 is in Appendix D

6 Privacy Guarantee
The privacy guarantee of our protocol is encapsulated
in the following theorem.

Theorem 4. Let ελ, δλ, ευ, δυ, εκ, δκ, εη, δη, εχ, δχ be as
in Algorithms 5, 6, and 8. The view of any set of all but
T nodes (i.e., workers or aggregator) in the protocol is
(ελ+ευ+εκ+εη+εχ, δλ+δυ+δκ+δη+δχ)-computational
DP.

The proof of the above theorem is discussed in more
detail in Appendix A.
Expected Total Number of Noise Registers. The
numbers of noise registers, which contribute to the pro-
tocol communication overhead, are as follows:

– Publisher Noise. Each publisher adds µλ noise
registers to their sketch in expectation.

– Setup Phase. Each worker/aggregator sends ex-
actly B noise registers. The smallest possible B

we can set so that the protocol is well-defined is
2 ·µχ+2 ·µυ +µκ ·p · (p+1); we will set B to be this
number to minimize the number of noise registers.

– ReachEstimation Phase. Each worker/aggregator
sends exactly D noise registers. The smallest possi-
ble D we can set so that the protocol is well-defined
is 2 ·µη · (fmax + 1); we will set D to be this number
to minimize the number of noise registers.

In total, the expected number of noise registers added
during the entire protocol is

µλ · p+ (w + 1) · (2µχ + 2µυ + µκ · p · (p+ 1)
+2µη · (fmax + 1)).

(7)

Variance of the Noise in Reach Estimation. For
parameters a, b, let Polyaa,b denote the Polya distribu-
tion and let tPolyaDiffa,b denote the difference of two
truncated Polya distributions (see Definition 6). The
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number of non-empty registers used in reach estima-
tion is the true number of non-empty registers plus the
noise υaggregator+

(∑
j∈[w] υ

worker(j)
)
. When setting the

parameters in our protocol, this noise has variance

σ2
υ := (w + 1) · var(tPolyaDiffµυ,1/T,e−ευ )

≤ (w + 1) · 2 · var(Polya1/T,e−ευ )

= (w + 1) · 2e−ευ
T (1− e−ευ )2 .

(8)

Note that ευ is a parameter that can be set based on
the ε of the entire protocol (see the example below).
Variance of the Noise in Frequency Estima-
tion. The frequency histogram is noised by ηaggregator +∑
j∈[w] η

worker(j). (Note that this noise is a fmax-
dimensional vector.) When setting the parameters in
our protocol each entry of this noise vector has variance

σ2
η := (w + 1) · var(tPolyaDiffµη,1/T,e−εη/2)

≤ (w + 1) · 2 · var(Polya1/T,e−εη/2)

= (w + 1) · e−εη/2

T (1− e−εη/2)
.

(9)

Similar to above, εη can be based on the total ε.
Example. Suppose that we have ε = ln(3), δ =

10−9, the number of workers (not including the aggre-
gator) is w = 2, the number of publishers is p = 3 and
fmax = 5. Moreover, suppose that the adversary com-
promises only one of the workers or aggregator (i.e.,
there are T = 2 uncorrupted parties). While there
are several ways to split the privacy budget among
ευ, εη, ελ, εκ, εχ, recall that only the first two ε’s affect
the accuracy of the protocol. As such, to maximize util-
ity, we should spend as little budget as possible among
the latter three ε’s. In this example, we only allocate
30% of the total ε to the latter three. Specifically, we
pick ευ = εη = 0.35 ln(3) and εχ = εκ = ελ = ln(3)/10.

For δ, how we divide it among δυ, δλ, δκ, δη, δχ does
not make a big difference since the dependency is only
ln(δ∗) and the total δ is already quite small to begin
with. Thus, we only split it equally in this example for
simplicity, i.e., δυ = δλ = δκ = δη = δχ = 0.2 · 10−9.
Our protocol, specifically the SampleNoise procedure
(Algorithm 4), will select the following parameters: µυ =
65, µη = 132, µκ = 459, µλ = 680, µχ = 699. Plugging
this back into (7) implies that the expected total number
of noise registers added is ≤ 18K, which is an acceptable
overhead for, e.g., sketch size m = 100K. Note that
the number of noise registers can be reduced further
by allocating more privacy budget to εχ, εκ, ελ, but will
result in worse accuracy (as indicated by (9), (8)).

7 Efficiency
We briefly discuss the efficiency of our protocol; we
will focus on the total number of cryptographic oper-
ations (i.e., encryptions and decryptions) performed by
each party, which is also an upper bound, e.g., on the
communication complexity. For brevity, we will refer
to this as the complexity of that party. Furthermore,
we assume that ε ≤ O(1) and δ is sufficiently small
(e.g., 1/δ > 10w/p) to simplify the bounds. First, ob-
serve that each publisher constructs at most m non-
noise encrypted registers, and at most 2µλ registers
for publisher noise. Thus, its complexity is at most
O(m+ µλ) ≤ O (m+ p · log(1/δλ)/ελ).

Next, we consider each worker or the aggregator.
In the Setup phase, it processes a total of at most
O((m + µλ)p + B) registers (where B is as defined in
the previous section). In the Aggregation phase, each
worker/aggregator has to rerandomize O((m+µλ)·p+w·
B) registers. In the ReachEstimation phase, it processes
at most O(m+w ·B+w ·µη ·fmax) tuples, where the first
term comes from the fact that after joining there can be
at most m non-noise tuples left, the second term comes
from the fact that joining in the previous step does not
increase the number of tuples, and the last comes from
the frequency noise. In the FreqEstimation phase, the
matrixM consists of O(m ·fmax) entries, which also up-
per bounds the complexity of the worker. In total, each
worker/aggregator’s complexity is at most

O((m+ µλ) · p+m · fmax

+ w · (µχ + µυ + µκ · p2 + µη · fmax)).

To simplify the expression above, suppose that we set
δλ, δχ, δυ, δκ, δη ≥ Ω(δ) and ελ, εχ, ευ, εκ, εη ≥ Ω(ε). Re-
call also that it suffices to consider fmax ≤ p. Then, the
complexity is upper bounded by

O

(
m · p+ log(1/δ)

ε
· wp2

)
.

In other words, when the number of publishers is
sufficiently small, each worker/aggregator’s complexity
grows linearly with the number of publishers; but once
it is sufficiently large, it grows quadratically. However,
as we observe in the experiments in the next section, for
reasonable values of p (e.g., ≤ 20) and m (e.g., 105), we
are mostly in the former case.
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Phase
CPU

time (s)
Bytes

sent (MB)
with w/o with w/o

noise noise
Setup 341.9 0.9 781.4 429.8

Aggregation 3600 2280.2 862.4 528.7
ReachEstimation 385.1 132.3 83.2 52.9
FreqEstimation 47.7 22.3 26.0 13.4

Total 4374.9 2435.7 1752.9 1024.8

Table 6. Average (10 runs) computation cost of running the
protocol with p = 20, reach per publisher = 10M, w = 2,
T = 3, LiquidLegions (a = 12, m = 100K), fmax = 15,
ευ = εη = 0.35 ln(3), εχ = εκ = ελ = ln(3)/10, and
δυ = δλ = δκ = δη = δχ = 2 · 10−10.

8 Evaluation

8.1 Computational Costs

We implemented the proposed MPC protocol in C++
using the cryptographic primitive provided by Google’s
Private-Join-And-Compute library [40], which is built
on top of OpenSSL. All crypto operations are done on
the NID_X9_62_prime256v1 elliptical curve and each
crypto word is 32 bytes. Deploying our experimental im-
plementation of the protocol on the Google Kubernetes
Engine (CPU base frequency = 3.1 GHz, Memory =
16 GB), with data sets containing 20 publishers, 10M
reach per publisher and 3 MPC nodes (w = 2, T = 3),
the measured computation and communication costs are
shown in Table 6. For the dataset, we sampled the IDs
independently and uniformly at random from a known
universe, and inserted them into each sketch. We set the
Hash(·) function to SHA-256.

As expected, the Aggregation phase consumes the
majority of the total CPU time, since it deals with non-
aggregated sketches, whose total size highly depends on
the number of publishers. The noises added also have
a significant impact on the total computation and com-
munication costs. Table 7 shows the cost of three other
scenarios for comparison.

The total computation cost is linear in the number
of workers in the system if no noise is added, since each
additional non-aggregator worker introduces the same
amount of extra work. When noise is applied, a larger
number of MPC nodes will also result in more noise be-
ing added. Thus, the protocol costs more at each worker.
As a result, the total computation cost increases some-
where between linearly and quadratically in the number

Total CPU
time (s)

Total Bytes
sent (MB)

with w/o with w/o
noise noise

p = 5, reach per
publisher = 100K 533.2 323.9 232.6 147.5
p = 5, reach per
publisher = 10M 927.4 675.6 413.7 323.3
p = 20, reach per
publisher = 100K 2577.5 1150.5 1119.6 457.0

Table 7. Average (10 runs) computation cost of running the pro-
tocol with different p and reach per publisher. The other settings
are the same as the test in Table 6.

Total CPU
time (s)

Total Bytes
sent (MB)

w = 2 w = 5 w = 2 w = 5
T = 3 T = 6 T = 3 T = 6

p = 5, reach per
publisher = 10M 927.4 2711.2 413.7 900.6
p = 20, reach per
publisher = 10M 4374.9 12962.4 1752.9 4291.1

Table 8. Average (10 runs) computation cost of running the pro-
tocol with different w and T . The other settings are the same as
the test in Table 6.

of total MPC nodes. Table 8 shows the cost of two sce-
narios with 3 and 6 MPC nodes respectively.

8.2 Accuracy

Section 3 described the accuracy of cardinality and fre-
quency estimation for unnoised LiquidLegions sketches.
We recommended the paramter a = 12 for Internet-scale
estimation. Here, we extend the theory to the case in-
cluding the noise added by our protocol. Accordingly,
we provide recommendations for the other parameters
(m and fmax).

Theorem 5. Fix n/m and let m→∞. With noise,√
var(n̂)
n

−
√
g(a,m, n)

m
→ 0,

where

g(a,m, n) = f
( n
m
, a
)

+ a2σ2
υ

m (exp(−e−ac)− exp(−c))2 ,

with σ2
υ given in (8), f in (4), and c in (5).

The proof sketch of Theorem 5 is given in Appendix B.
As in Section 3, we plot the dependence of the minimum
sketch length mmin on the other parameters. We follow
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the recommendation of a = 12 in Section 3, and still
consider the rstd threshold α = 2.5%. Figure 6 shows
the dependence of mmin on ευ and log10(n). It can be
seen that for m = 105 we can afford any ευ ≥ 0.1 (while
larger m is needed for smaller values of ευ).

Fig. 6. The minimum m to achieve α = 2.5% rstd for cardinality
estimation, for different values of ευ and log10(n), when a = 12.

Now, fixm = 105 and consider frequency estimation
with noise. In this case, there does not exist a closed-
form for std(r̂i). It is easy to see though that the larger
fmax, the larger std(r̂i). By simulation we obtained the
dependence of the maximum affordable fmax on εη and
log10(n), as shown in Figure 7. It can be seen that for
any εη ≥ 0.1 and n ∈ [105, 109], we can achieve an std of
1% for any fmax = 15. With larger ε = 1, we can even
afford an fmax of 200. Note that Figure 7 shows that
fmax decreases for large n. This is indeed to be expected
since the LiquidLegions sketch gradually saturates and
there are fewer active registers.

Fig. 7. The maximum fmax to achieve αfreq = 1% std for fre-
quency estimation, for different values of εη and log10(n), when
a = 12 and m = 105. Dashed line: fmax = 15.

A cross-media measurement initiative study run
by the World Federation of Advertisers has evaluated
the accuracy of our sketch against several additional
datasets and has shown the accuracy of the method to
be independent of the input data distribution [52].

9 Conclusions & Future Work
In this work, we presented a scalable, secure, and private
protocol for reach and frequency estimation.

With the goal of keeping the implementation simple,
we assumed in this work that each publisher communi-
cates to exactly one worker at the beginning of the pro-
tocol. It would be interesting to investigate if allowing
interactive communication between the publishers and
the other parties (workers and/or aggregator) could lead
to better privacy-accuracy-communication trade-offs.

The DP guarantees we proved in fact bound the
privacy leakage both from the execution of the MPC
protocol, and from the release of its output, using a
single (ε, δ) pair of privacy parameters. As the output
is usually to be shared much more broadly than the
internal state, it seems natural to separate the privacy
guarantee into two (ε, δ) pairs of parameters: one for
the output (which is still set strictly), and one for the
internal execution (which could be set more generously).
Our preliminary investigations indicate that doing so
could result in a decent reduction in the communication
and computational overhead of the protocol.

Finally, it would be very interesting to extend our
protocol to the malicious setting where a publisher could
deviate from the protocol, either to compromise the pri-
vacy of users or to distort the protocol’s output.
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A Privacy Proof
We will now give more details about the differential pri-
vacy proof of the protocol (Theorem 4).

In order to prove that the view of the corrupted
parties is computational DP, we may invoke the security
property of our protocol (Theorem 3) to reduce the task
to showing that the output of the corrupted parties is
DP. To summarize, it suffices for us to prove:

Theorem 6. The outputs of any set of all but T parties
(i.e., workers or aggregator) of the protocol is (ευ + ελ+
εκ + εη + εχ, δυ + δλ + δκ + δη + δχ)-DP.

The rest of this section is devoted to the proof of
Theorem 6 and is organized as follows. First, in Ap-
pendix A.1, we provide several additional definitions,
facts and lemmas that will be used throughout the
proof. Then, in Appendix A.2, we specify the properties
of the sketches that we need for the privacy proof. The
main proof itself is separated into two cases, one where
the aggregator is corrupted and the other where the ag-
gregator is not corrupted; these two cases are handled
in Appendix A.3 and Appendix A.4, respectively.

A.1 Privacy Primitives

For a discrete distribution D, we use D(x) to denote the
probability mass at x. By X ∼ D, we denote a random
variable X independently sampled from D. Let D ∗D′

denote the convolution of D,D′, i.e., the distribution
of X + Y where X ∼ D,Y ∼ D′ are independent. For
brevity, let D∗n denote the n-fold convolution of D (i.e.,
convolving D with itself n− 1 times).

We now introduce a few distributions that are used
throughout this work, starting with the discrete Laplace
(aka symmetric geometric) distribution:

Definition 4 (Discrete Laplace Distribution). The
discrete Laplace distribution with parameters µ ∈ Z, s ∈
R>0, denoted by DLapµ,s, is supported on Z, and given
by DLapµ,s(x) ∝ exp (−|x− µ| · s).

We will also use (a truncated version) of the Polya (aka
Negative Binomial) distribution, defined next.

Definition 5 (Truncated Polya Distribution). The
truncated Polya distribution with parameters r > 0, p ∈
[0, 1], u ∈ Z≥0, denoted by tPolyar,p,u, is supported on
{1, . . . , u} with the following probability mass function:

tPolyar,p,u(x) ∝
(
x+ r − 1

x

)
(1− p)rpx.

https://github.com/world-federation-of-advertisers/cross_media_measurement_project_site/blob/master/public_papers/PRFE_results/Private Reach & Frequency Estimators Evaluation Results.md
https://github.com/world-federation-of-advertisers/cross_media_measurement_project_site/blob/master/public_papers/PRFE_results/Private Reach & Frequency Estimators Evaluation Results.md
https://github.com/world-federation-of-advertisers/cross_media_measurement_project_site/blob/master/public_papers/PRFE_results/Private Reach & Frequency Estimators Evaluation Results.md
https://github.com/world-federation-of-advertisers/cross_media_measurement_project_site/blob/master/public_papers/PRFE_results/Private Reach & Frequency Estimators Evaluation Results.md
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Finally, for notational convenience, we define the distri-
bution of the difference of two truncated Polya distri-
butions (shifted by µ):

Definition 6 (Truncated Polya Difference Distribution).
The Truncated Polya Difference distribution with pa-
rameters µ ∈ Z≥0, r ∈ R>0, p ∈ [0, 1], denoted by
tPolyaDiffµ,r,p, is defined as the distribution of µ+X−Y
where X,Y are independent identically distributed
tPolyar,p,µ random variables.

Let µ(ε, δ,Λ, T ) := dln(2TΛ(1+eε)/δ)/(ε/Λ)e be as in the
SampleNoise algorithm (Algorithm 4). Observe that
the noise output by SampleNoise is exactly distributed
as tPolyaDiffµ(ε,δ,Λ,T ),1/T,e−ε/Λ .

It is known [39] that the algorithm that adds dis-
crete Laplace noise to the output is DP (when param-
eters are appropriately chosen). Furthermore, it is also
well-known that the discrete Laplace distribution can be
written as a convolution of the (non-truncated and non-
shifted) Polya Difference. By bounding the difference in
the statistical distance due to truncation, we arrive at
the following DP guarantee of an algorithm that adds a
random variable distributed as the convolution of trun-
cated Polya Difference to the output. Recall that for
a function f whose range is Rd, its (`1-)sensitivity is
maxX,X′

∑
i∈[d] |f(X)i− f(X′)i| where the maximum is

over neighboring datasets X,X′.

Lemma 1. Let f be any function whose output is a vec-
tor of integers, and whose sensitivity is at most Λ. For
any µ ≥ µ(ε, δ,Λ, n), an algorithm that adds an indepen-
dent noise term sampled from (tPolyaDiffµ,1/n,e−ε/Λ)∗n

to each output coordinate is (ε, δ)-DP.

In our analysis below, we often have multiple overlap-
ping parts of the input. The following is an observation
that we may subtract a part of the output from another
part without compromising on privacy; this will allow
us to substantially simplify the analysis.

Fact 1. Let Alg be any algorithm whose outputs are
λ1, . . . , λΛ. Let i, j be any fixed indices in [Λ], and define
Alg′ to be an algorithm which is the same as Alg except
that λi is changed to λi−λj . Then, Alg is (ε, δ)-DP iff
Alg′ is (ε, δ)-DP.

Once we simplify the outputs, we are often left with
parts of the input that are either constants (e.g., ze-
ros) or just an independent noise that does not appear

anywhere else. The following lemma lets us completely
discard such a part.

Fact 2. Let Alg be any algorithm whose outputs are
λ1, . . . , λΛ. Suppose that λ1 is a random variable sam-
pled from a distribution that does not depend on the
users’ inputs. Furthermore, suppose that λ2, . . . , λΛ are
independent of λ1. Let Alg′ be the algorithm that is
the same as Alg except that it only outputs λ2, . . . , λΛ.
Then, Alg is (ε, δ)-DP iff Alg′ is (ε, δ)-DP.

In working with multiple output parts, it is sometimes
useful to include more parts in the output in order to
further simplify the other terms. Intuitively, this can
only increase the power of the adversary. The following
lemma formalizes this property.

Fact 3. Let Alg be any algorithm whose outputs are
λ1, . . . , λΛ. Let λΛ+1 be any random variable (possibly
dependent on λ1, . . . , λΛ). Consider an algorithm Alg′

whose outputs are λ1, . . . , λΛ+1. If Alg′ is (ε, δ)-DP,
then Alg is (ε, δ)-DP.

We will also use the following well-known property of
differential privacy.

Theorem 7 (Basic Composition Theorem; e.g., [30]).
An algorithm that applies a (possibly adaptive) se-
quence of (ε1, δ1)-DP, . . . , (εm, δm)-DP algorithms is
(ε1 + · · ·+ εm, δ1 + · · ·+ δm)-DP.

A.2 Properties of the Sketches

To state the properties of the sketches that we need,
let us first introduce a few additional notation for the
sketches and intermediate states:
– h: the “blinded histogram” of the noise registers.

Specifically, h ∈ Zp≥0, and ha denotes the number of
register IDs that are non-empty in exactly a of the
publisher sketches.

– F̂ : the frequency histogram with flags. Specif-
ically, F̂ ∈ Z[fmax]×{(0,1,1),(0,0,1),(1,1,1)}

≥0 where
F̂(b,flag1,flag2,flag3) denotes the number of registers
which are undestroyed and have count b for b ≤
fmax − 1 or count at least fmax for b = fmax, the
first flag value set to flag1, the second flag value set
to flag2 and the third flag value set to flag3. (This is
with respect to the unnoised sketch. Moreover, for
convenience, we use 1 to denote any non-zero flag
values.)
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– For notational convenience, we define F to be the
“undestroyed” counterpart of F̂ ; specifically, for all
b ∈ [fmax], we let Fb = F̂(b,0,1,1).
Throughout our analysis, we use the following prop-

erties of the sketches:

– Adding or removing a user changes at most p

coordinates of the sketches in total across all
publishers. This holds for LiquidLegions because
adding/removing a user only changes at most one
coordinate in each publisher’s sketch.

– Adding or removing a user increases at most one
entry of the blinded histogram h by a value of at
most one and decreases at most one entry of h by a
value of at most one. This holds for LiquidLegions
because adding/removing a user affects a single reg-
ister index. If this register ID appeared k times be-
fore the addition/removal and k′ times after, then
the blinded histogram will decrease at bucket k and
increase at bucket k′.

– Adding or removing a user increases at most one
entry of F̂ by a value of at most one and decreases
at most one entry of F̂ by a value of at most one.
The reason this holds for LiquidLegions is similar
to that of h.

The last two items imply that the sensitivities
of h and F̂ are at most two. This is somewhat of
an unusual bound as histograms often have sensitiv-
ity one in the case of addition/removal notion for
neighboring datasets. However, as explained above,
adding/removing a user in our setting corresponds to
“moving” a register ID from one bucket to another, re-
sulting in the sensitivity of two.

A.3 Privacy Proof for Collusion With
Aggregator

We begin with the case when the collusion includes the
aggregator, which is the more challenging one:

Theorem 8. The outputs of the aggregator together
with any set of all but T workers are (ευ + ελ + εκ +
εη + εχ, δυ + δλ + δκ + δη + δχ)-DP.

To prove the above theorem, we need to precisely state
the outputs of the aggregator and any set of workers,
for which we will prove the privacy guarantee. Here we
use x(i) to denote the number of non-zero coordinates
in the ith sketch (before noising).

Lemma 2. Consider a set I of the aggregator and
workers. The outputs of I are as follows, where Ā de-
notes the set of workers not included in the collusion.
1. Noisy number of non-empty registers:(∑

k∈[p] hk

)
+
∑
j∈Ā υ

worker(j)

2. Noisy frequency histogram:
F +

∑
j∈Ā η

worker(j)

3. Intermediate outputs:
(a) The following for all i ∈ [p]: x(i) + λpublisher(i)

(b)
(∑

j∈Ā χ
worker(j)

)
−
∑
k∈[p] k · hk

(c) (h+
∑
j∈Ā κ

worker(j))k for all k ∈ {2, . . . , p}

(d) −
∑
k∈{2,...,p} hk +

(∑
j∈Ā κ

worker(j)
1

)
(e)

(∑
b∈[fmax] F̂(b,1,1,1)

)
+
(∑

j∈Ā η̂
worker(j)

)
The proof of Lemma 2 is deferred to the full version.
We are now ready to prove Theorem 8.

Proof of Theorem 8. Suppose that the adversary can
access the outputs of the aggregator and workers j for
all j ∈ A where |A| = w − T . We write Ā to denote
[w] \A, i.e., the set of workers not compromised by the
adversary.

Recall the outputs from Lemma 2. We may now
compute the privacy guarantees for each part of the
above output as follows:

1. Since each υworker(j) is sampled from
tPolyaDiffµυ,1/T,e−ευ with µυ = µ(ευ, δυ, 1, T ) and the
sensitivity of

∑
k∈[p] hk is one, we can apply Lemma 1

to conclude that the algorithm that only outputs this
item is (ευ, δυ)-DP.

2, 3(e). Since each η̂worker(j) and each η
worker(j)
b

is sampled from tPolyaDiffµη,1/T,e−εη/2 , µη =
µ(εη, δη, 2, T ) and the `1-sensitivity of F̂ is at most two,
we can apply Lemma 1 to conclude that the algorithm
that only outputs items 2 and 3(e) is (εη, δη)-DP.

3(a). Since λpublisher(i) ∼ tPolyaDiffµλ,1,e−ελ/p ,
µλ = µ(ελ, δλ, p, 1) and the sensitivity of (x(i))i∈[p] is
p, we may apply Lemma 1, which implies that the algo-
rithm outputting just the last item is (ελ, δλ)-DP.

3(b). Since χworker(j) ∼ tPolyaDiffµχ,1/T,e−εχ/p ,
µχ = µ(εχ, δχ, p, T ) and the sensitivity of −

∑
k∈[p] k ·hk

is at most p), we can apply Lemma 1 to conclude that
the algorithm that only outputs this item is (εχ, δχ)-DP.

3(c), 3(d). Consider (h2, . . . , hk,−
∑
k∈{2,...,p} hk).

We claim that its sensitivity is at most two. To see that
this is true, recall that adding or removing a user in-
creases at most one entry of h by at most one and de-
creases at most one entry of h by at most one. As a
result, if −

∑
k∈{2,...,p} hk remains the same, then the

total change in other coordinates is at most two as de-
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sired. On the other hand, if −
∑
k∈{2,...,p} hk changes, it

can change by at most one and it also implies that at
most one of h2, . . . , hk changes by at most one; hence,
in this case, the total change is at most two as well.

Since κ
worker(j)
k ∼ tPolyaDiffµκ,1/T,e−εκ/2 ,

µκ = µ(εκ, δκ, 2, T ) and the sensitivity of
(h2, . . . , hk,−

∑
k∈{2,...,p} hk) is at most two, we can

apply Lemma 1 to conclude that the algorithm that
only outputs these two items is (εκ, δκ)-DP.

By basic composition of differential privacy (Theo-
rem 7), all the outputs combined is (ευ + ελ + εκ + εη +
εχ, δυ + δλ + δκ + δη + δχ)-DP as desired.

A.4 Proof for Collusion Without
Aggregator

Finally, we analyze the easier case where the aggregator
is not part of the collusion, stated below.

Theorem 9. The outputs of any set of all but T − 1
workers of the protocol is (ελ+ ευ + εη, δλ+ δυ + δη)-DP.

It should be noted here that the privacy guarantee in
this case is quantitatively stronger than that of the gen-
eral case (Theorem 6); specifically, the former guaran-
tees (ελ+ευ+εη, δλ+δυ+δη)-DP, whereas the latter only
guarantees (ευ + ελ+ εκ+ εη + εχ, δυ + δλ+ δκ+ δη + δχ)-
DP. In other words, if we assume that the aggregator
is not compromised, then we can add less noise while
maintaining a similar level of privacy.

We now precisely state the outputs of any set of
workers, for which we will prove the privacy guarantee:

Lemma 3. Consider a set I of the workers. The out-
puts of I are as follows, where Ā denotes the set of
workers not part of the collusion.
1.
(∑

b∈[fmax],(flag1,flag2,flag3)∈{(0,1,1),(0,0,1),(1,1,1)}

F̂(b,flag1,flag2,flag3)
)

+ υaggregator +
(∑

j∈Ā υ
worker(j)

)
2.
(∑

b∈[fmax] Fb + ηaggregator
b

)
+(∑

j∈Ā
∑
b∈[fmax] η

worker(j)
b

)
3. The following for all i ∈ [p]: x(i) + λpublisher(i)

The proof of Lemma 3 is deferred to the full version.
We are now ready to prove Theorem 9.

Proof of Theorem 9. Suppose that the adversary can
access the outputs of workers j for all j ∈ A where
|A| = w− T + 1. Recall the outputs from Lemma 3. We

may now compute the privacy guarantees for each part
of the above output as follows:

1. Since each υworker(j) and υaggregator is
sampled from tPolyaDiffµυ,1/T,e−ευ , with
µυ = µ(ευ, δυ, 1, T ) and the sensitivity of(∑

b∈[fmax],(flag1,flag2,flag3)∈{(0,1,1),(0,0,1),(1,1,1)}
F̂(b,flag1,flag2,flag3)

)
is at most one, we can apply

Lemma 1 to conclude that the algorithm that only
outputs this item is (ευ, δυ)-DP.

2. Since each η
worker(j)
b and ηaggregator

b are sampled
from tPolyaDiffµη,1/(T ),e−εη/2 , µη = µ(εη, δη, 2, T )
and the sensitivity of F is at most two, we can apply
Lemma 1 to conclude that the algorithm that only
outputs the second item is (εη, δη)-DP.

3. Since λpublisher(i) ∼ tPolyaDiffµλ,1,e−ελ/p , µλ =
µ(ελ, δλ, p, 1) and the sensitivity of (x(i))i∈[p] is p,
we may apply Lemma 1, which implies that the al-
gorithm outputting just the last item is (ελ, δλ)-DP.

By the basic composition of differential privacy (The-
orem 7), we can conclude that the entire algorithm is
(ελ + ευ + εη, δλ + δυ + δη)-DP.

B Accuracy Proof for Cardinality
Estimator

This section proves Theorems 1 and 5 on the accuracy
of the cardinality estimator. We aim to estimate n from
the LiquidLegions sketch. Let X denote the number of
non-empty registers in the sketch. Then X = Xraw + ξ,
where Xraw is the number of non-empty registers in the
unnoised sketch, and ξ is the noise introduced by MPC.
The distribution of Xraw is determined by the register
probabilities pj (1 ≤ j ≤ m). The noise ξ has mean
zero and variance being the σ2

υ in equation (8). The
cardinality is estimated as

n̂ = E−1(X/m),

with E given in (3).
Below we sketch the proof of Theorem 5; Theorem

1 is a special case of it.
Since E(n̂) = X, by the delta method [51],

E(n̂) ≈ E−1 (E(X)/m) .

and
var(n̂) = var(X)

m2[E ′(E(n̂))]2 .
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asymptotically. The asymptotic conditions can be spec-
ified as “m→∞ while fixing n/m = z” as stated in the
theorem.

E(X) = E(Xraw) and var(X) = var(Xraw) + σ2
υ.

Xraw can be expressed as
∑m
j=1 Λj , where

Λj = I[at least one item is in the jth register].

By definition, it is easy to obtain that E(Λj) =
(1 − pj)n ∼ exp(−npj), var(Λj) = (1 − pj)n − (1 −
pj)2n ∼ exp(−npj) − exp(−2npj), and cov(Λi,Λj) =
(1 − pi − pj)n − (1 − pi)n(1 − pj)n ∼ [exp(−npipj) −
1] exp(−npi) exp(−npj), where ∼means “asymptotically
equivalent to”, for any 1 ≤ j ≤ m and any i 6= j.

Then E(Xraw) and var(Xraw) can be expressed as
summations of exponential functions on pj and can
be further approximated as exponential integrals. From
this, E(X) and var(X) and hence, E(n̂) and var(n̂) can
be obtained.

C Accuracy Proof for Frequency
Estimator

This section proves Theorem 2 on the accuracy of
the frequency estimator. As explained following Algo-
rithm 2, the items in the active registers form an unbi-
ased sample of all the items. In Algorithm 2, H is the
frequency histogram of the unbiased sample, and thusH
follows a multivariate hypergeometric distribution with
parameters n,A, and [ri ·n]1≤i≤fmax , conditional on the
number of active registers A. Intuitively, consider fmax
different bins with n × ri balls in the ith bin, and ran-
dom drawing A balls from all the fmax bins—then H is
distributed as the number of drawn balls from each bin.
Following the properties of the multivariate hypergeo-
metric distribution, we have E(H[i]) = Ari and

var(H[i]) = A
n−A
n− 1

rin

n

(
1− rin

n

)
≈ A(n−A)

n
ri(1− ri),

and thus r̂i = H[i]/A has E(r̂i) = ri and

var(r̂i) ≈
n−A
nA

ri(1− ri) ∼
n− E[A]
nE[A] ri(1− ri),

where the last step follows from the law of large num-
bers, and ∼ means “on the order of”—in our context,
a ∼ b if and only if a/b→ 1 as n,A→∞.

To complete the proof of Theorem 2, it remains to
show that E[A] ∼ γ ·m with γ defined in the theorem.

Note that A =
∑m
j=1 Λ′j where

Λ′j = I[exactly one item is in the jth register].

By definition, it is easy to obtain that E[Λ′j ] = npj(1−
pj)n−1 ∼ npj exp[−(n−1)pj ]. Then E(A) can be approx-
imated as its integral which turns out to be asymptoti-
cally equivalent to γ ·m.

D Security Proof Sketch
Proof of Theorem 3. Let I be the parties under simu-
lation. Wlog, assume |I| = W − 1 i.e., assume only one
party is honest. As in privacy, we consider two cases:
the case where the honest party is the aggregator, and
the case where the aggregator is not honest.
Honest Aggregator. In this case the only outputs are
the sizes of the encrypted registers seen by each worker
in each round of communication, corresponding to the
input sizes and the noise registers added by the workers
and aggregator. Since the aggregator is honest, the sim-
ulator will act as the aggregator to pad the combined
register vector sent to the first worker with appropri-
ate noise. The CRV sent by the simulator should con-
sist only of random group elements for each encrypted
tuple, and security follows from a reduction to the se-
curity of ElGamal encryption (which is a reduction to
DDH). The simulator repeats this process, with fresh
random elements, for the beginning of the ReachEsti-
mation phase. Finally, in the FreqEstimation phase, the
simulator constructs a matrix of pairs of random EC
elements and sends this matrix to the first worker, and
once all workers have partially decrypted the matrix the
simulator outputs whatever each worker outputs.
Adversarial Aggregator. Here, in addition to adding
appropriate noise, the simulator will also prepare mes-
sages for the aggregator. At a high level the simulation
strategy involves discarding the messages sent to the
honest party, and generating new, synthetic messages
from the honest party that will be based on the output
of the protocol in each phase. As in the honest aggrega-
tor case, the simulator will pad messages to the appro-
priate size; however, instead of random messages, the
simulator will encrypt, using a public key based on the
combined public key shares from the remaining parties
between the honest worker and the aggregator (includ-
ing the aggregator’s key), a message that is of the correct
distribution for the aggregator’s output in that round.

In the Setup phase, the aggregator must receive
a register vector from each worker with noise added.
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The simulator will generate this message for the hon-
est worker, using random EC elements for each en-
crypted register, adding noise according to the aggre-
gator’s setup phase output (message size).

In the Aggregation phase, the simulator generates a
message based on the aggregator’s cardinality histogram
(the register ID histogram). For each histogram bar h,
the simulator will choose a random EC element and en-
crypt that element h times, along with two pairs of ran-
dom elements, and add these to the simulated crv. It
then shuffles this crv and sends it the next worker.

In the ReachEstimation phase, the aggregator’s out-
put is the LiquidLegions estimator X and the number
of active registers A. Given a received message of size N
the simulator generates a synthetic message as follows.
First, A four-tuples are generated with a random pair of
EC elements for the encrypted count, an encryption of
0 for flag1, and encryptions of random EC elements for
flag2 and flag3. A−X−kD−2 four-tuples will be added
with an encryption of a random count and random val-
ues for flag1, flag2, and flag3 where k is the number of
workers preceding the honest worker. Next, the length
is padded to kD with a random count, 0 for flag1 and
flag2, and a random value for flag3. Finally the message
is padded to length N by adding a four-tuple with a
random count, 0 for flag1, random for flag22 and 0 for
flag3. The simulator then pads this by adding its own
noise and forwards to the next party.

In the FreqEstimation phase, the simulator sets up
the SKA matrix according to the histogram, choosing
random columns to set the 0 index for the corresponding
rows for the histogram bars.
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