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Abstract: Business intelligence and AI services often
involve the collection of copious amounts of multi-
dimensional personal data. Since these data usually con-
tain sensitive information of individuals, the direct col-
lection can lead to privacy violations. Local differen-
tial privacy (LDP) is currently considered a state-of-
the-art solution for privacy-preserving data collection.
However, existing LDP algorithms are not applicable to
high-dimensional data; not only because of the increase
in computation and communication cost, but also poor
data utility.
In this paper, we aim at addressing the curse-of-
dimensionality problem in LDP-based high-dimensional
data collection. Based on the idea of machine learning
and data synthesis, we propose DP-Fed-Wae, an effi-
cient privacy-preserving framework for collecting high-
dimensional categorical data. With the combination of
a generative autoencoder, federated learning, and dif-
ferential privacy, our framework is capable of privately
learning the statistical distributions of local data and
generating high utility synthetic data on the server side
without revealing users’ private information. We have
evaluated the framework in terms of data utility and pri-
vacy protection on a number of real-world datasets con-
taining 68–124 classification attributes. We show that
our framework outperforms the LDP-based baseline al-
gorithms in capturing joint distributions and correla-
tions of attributes and generating high-utility synthetic
data. With a local privacy guarantee ε = 8, the ma-
chine learning models trained with the synthetic data
generated by the baseline algorithm cause an accuracy
loss of 10% ∼ 30%, whereas the accuracy loss is signif-
icantly reduced to less than 3% and at best even less
than 1% with our framework. Extensive experimental
results demonstrate the capability and efficiency of our
framework in synthesizing high-dimensional data while
striking a satisfactory utility-privacy balance.
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1 Introduction
With the rapid development of network and com-
puter technologies, large and diverse quantities of multi-
dimensional person-specific data are frequently gener-
ated on local devices such as smartphones and IoT
sensors. These data usually contain rich information
of univariate and multivariate (joint) distributions de-
scribing user profiles, which is valuable for data ana-
lysts to explore the hidden correlations and patterns of
data from different perspectives and to obtain a bet-
ter understanding of the characteristics of user groups.
For instance, a digital healthcare application may uti-
lize users’ physical information (i.e., temperature, blood
pressure, activity signals, etc.) for health monitoring
and disease predictions, while an online shopping web-
site may take users’ age, gender, and purchase his-
tory for providing suitable product recommendations.
In principle, the more dimensions the data consist of,
the more information can be used for describing an
individual user; thus, the more accurate the decision-
making system can be. Therefore, the collection of
multi-dimensional data can be of significant help for
companies and organizations in designing and building
effective business intelligence & AI services.

However, since the data are generated based on in-
dividuals’ ongoing behaviors, the direct collection can
reveal sensitive information about them and lead to se-
vere privacy problems (see, for example, [7, 12]). Local
differential privacy (LDP) [31], as a state-of-the-art data
anonymization mechanism, has been recently deployed
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by major technology organizations such as Apple [14],
Google [23], and Microsoft [15] for privacy-preserving
data collection. By locally randomizing the user data
before sending it to the server, the LDP algorithms en-
sure that the server cannot access the original user data,
but is able to learn the population’s overall statistics.
However, prior research on LDP-based data collection
mainly focuses on one-dimensional statistics, such as
frequency estimation [14, 23], heavy-hitter identification
[6, 11], and itemset mining [43, 54], etc. But since the
attributes in multi-dimensional data are usually corre-
lated, the server is particularly interested in learning the
correlations and joint distributions among attributes.

Directly applying the above-mentioned LDP algo-
rithms for estimating the joint distributions of multi-
dimensional data faces a foundational problem: the
curse-of-dimensionality. The domain size increases ex-
ponentially with data dimensionality, which will lead to
extremely large communication cost and storage com-
plexity, as well as a significant degradation in data util-
ity. To reduce the large communication overhead, Fanti
et al. [24] proposed to separately collect data of each di-
mension under LDP and to estimate the joint distribu-
tions using expectation maximization (EM). However,
the algorithm only supports estimates of the joint dis-
tribution of two attributes. Further, Ren et al. [44] intro-
duced LoPub, which splits the c-dimensional data into
k-dimensional clusters (k < c) using dependence graphs
and estimates k-way joint distributions via an EM-based
and Lasso regression-based approach. However, the al-
gorithm still suffers from high computational complex-
ity and low data utility when k is large. Based on these
facts, alternative solutions for privacy-preserving high-
dimensional data collection are still greatly needed.

Recently, data synthesis has been considered a
promising approach for addressing data privacy issues
in business intelligence & AI services. With the strong
capabilities of characterizing the joint distributions and
correlations of high-dimensional data, deep generative
models are increasingly used for generating high-utility
and low-sensitivity synthetic data. In this paper, we
follow the idea of data synthesis and propose DP-
Fed-Wae, a privacy-preserving framework for high-
dimensional categorical data collection. Different from
prior work on differentially private synthetic data gen-
eration algorithms [41, 49, 57], which mainly focuses on
the centralized setting where the real data are already
collected by the server, our framework conducts the data
synthesis without collecting real local data. The main
idea is to train a (generative) Wasserstein Autoencoder
[48] (WAE) under the federated learning [38] (FL) set-

ting to learn the distributions of the high-dimensional
local data and then to generate high-quality synthetic
data on the cloud server. Moreover, we propose a novel
local randomization algorithm SignDS, which is applied
on a client’s local updates to prevent potential privacy
leakages in FL. The algorithm provides a strict ε-LDP
privacy guarantee for any client’s local dataset.

In comparison with previous data collection ap-
proaches, our framework shows significant advantages in
both data utility and privacy protection. As for data util-
ity, the WAE model has a strong capability in capturing
correlations and joint distributions of high-dimensional
data and generating high-utility synthetic data. The
generated synthetic data can be easily scaled up to re-
place the real data for data analysis and AI training
tasks. As for privacy, the generated data are fully syn-
thetic, which effectively reduce risks of re-identification
attacks or attribute disclosure [41]. Moreover, training
the WAE model under the LDP-FL setting not only
avoids the collection of raw user data but also pro-
vides comprehensive privacy guarantees to the frame-
work. Our contributions can be summarized as follows:
– We propose DP-Fed-Wae, an efficient and privacy-

preserving framework that effectively combines a
generative autoencoder, FL, and DP for collect-
ing high-dimensional categorical data. Based on the
idea of data synthesis, the framework effectively
solves the curse-of-dimensionality problem in LDP-
based data collection solutions. The synthetic data
preserves high utility and can replace real data for
data mining and AI training tasks.

– We further propose a novel local randomization al-
gorithm SignDS, which perturbs clients’ local up-
dates and prevents potential privacy leakages in FL.
We prove that the algorithm follows a strict ε-LDP
definition and provides a strong local privacy guar-
antee to any client’s local data.

– We have implemented our framework and evaluated
the performance in terms of data utility and pri-
vacy protection using real-world datasets containing
68–124 classification attributes. Through compari-
son with the LDP-based algorithms, we show that
the synthetic data generated by our framework al-
ways preserve much closer joint distributions and
correlations to real data. Also, the accuracy loss of
the model trained with synthetic data generated by
our framework is significantly reduced in compar-
ison to the baseline method. With a local privacy
guarantee ε = 8, we reduced the accuracy loss from
10% ∼ 30% to less than 3% and at best even less
than 1%. Extensive evaluation experiments show
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that our framework has outperforming capability
and efficiency in collecting high-dimensional data
while striking a satisfactory utility-privacy balance.

2 Problem Statement
In this paper, we consider a scenario where a large num-
ber of local users hold high-dimensional personal data.
A central server aims to estimate the joint distributions
of these high-dimensional data and to generate similar
synthetic data for data analysis or designing new AI
services. Here, we assume the server to be honest-but-
curious, who follows the system protocols but tries to
infer sensitive information of local users. Thus, to pro-
tect local privacy, we require the server not to have ac-
cess to raw local data but only anonymized versions of
data or their feature representations.

Assume that there are N local users, each hold-
ing one or more data records, which have c attributes
W = {wi|i = 1, · · · , c}. Each attribute wi has a do-
main Ωi of possible values. The full domain for the c-
dimensional data record is denoted as Ω = Ω1×· · ·×Ωc,
where × is the Cartesian product. The total domain size
is |Ω| =

∏c
i=1 |Ωi|, which increases exponentially with

data dimensionality c. Based on the notation above, the
problem can then be formulated as follows: given a c-
dimensional private dataset X distributed among N lo-
cal users, a central server aims to generate a synthetic
dataset X ′ without access to raw data X. The synthetic
dataset X ′ has the same attributes W, and preserves
similar joint distributions of X, namely

PX′(w1 · · ·wc) ≈ PX(w1 · · ·wc). (1)

It can be further derived that the synthetic data X ′ also
preserves m-way joint distributions as X. Namely, given
an m-way attribute combination ω ⊆ W, we have

PX′(ω) ≈ PX(ω). (2)

3 Proposed Solution
As discussed previously, existing LDP algorithms are
impractical for collecting high-dimensional data due to
both high computation and communication cost and
poor data utility (e.g., [23, 24, 44]). In order to solve
the curse-of-dimensionality problem, we propose DP-
Fed-Wae, an efficient privacy-preserving framework for
collecting high-dimensional categorical data. The frame-

work contains three main components: a generative au-
toencoder, FL, and DP. Following the idea of recent data
synthesis techniques, the framework utilizes generative
autoencoders to learn the statistical distributions and
correlations of high-dimensional user data and then to
generate high-utility synthetic data on the server side.
Different from existing works of synthetic data gener-
ation where the real data are already available to the
server (e.g., [41, 49, 57]), our framework focuses on the
scenario where the real data are distributed on local
devices. Therefore, we propose to train the generative
autoencoder under the FL setting, which only exchanges
model parameters during the training process and keeps
the raw user data inaccessible to the server. Further-
more, we incorporate DP during the training process
in order to prevent potential privacy leakages in FL. In
comparison to the previous DP-FL frameworks that add
DP noise on the server side [5, 39], we propose a novel
local randomization algorithm that perturbs the local
updates before uploading them to the server. This en-
sures that the server cannot gain access to the real local
updates and efficiently prevents local privacy leakages.
We prove that the randomization algorithm follows a
strict LDP definition and provides a strong local pri-
vacy guarantee to each client’s local dataset.

The overall workflow is presented in Figure 1, which
is processed in the following sequence:
1. The local clients first process the original categorical

data into a numerical form, which can be used for
training the generative autoencoder. At the same
time, the server defines the structure of the gener-
ative autoencoder based on the dimensionality of
local data and initializes the model.

2. The generative autoencoder is then collaboratively
trained under the FL mechanism that is incorpo-
rated with LDP to achieve strict privacy guarantees.

3. After the model gets trained, the decoder is ex-
tracted for generating synthetic data. The gener-
ated data will be finally converted back to categor-
ical form and used for data mining and building
machine learning models.

3.1 Data Pre-Processing and Design of
the Generative Model

Since the original data are categorical and cannot be
directly processed by machine learning models, we first
convert the data into numerical form. Here, we use a
one-hot encoding to encode each categorical attribute
into a binary vector. Each entry in the binary vector
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Fig. 1. Overview of the DP-Fed-Wae framework. The generative Wasserstein Autoencoder is first trained under the federated setting,
which learns the distributions of real local data. An LDP algorithm SignDS is applied to the local updates to provide strict local pri-
vacy guarantees. After the model is trained, the decoder part is used to generate high-utility synthetic data. The generated data will
be used for data mining and building AI services.

stands for a unique attribute value and the entry of the
given value is set to 1 while all the others are set to 0.
Finally, we concatenate all the binary vectors into one
vector as the input data for the generative model.

In this paper, we have chosen the Wasserstein Au-
toencoder (WAE) as the generative model in our frame-
work, which provides better data synthesis capability
in comparison to the Variational Autoencoder (VAE)
[33] and less training difficulty than the Generative Ad-
versarial Network (GAN) [26]. As a variant from the
family of autoencoders, WAE preserves the encoder-
decoder architecture. The encoder Qφ compresses the
original high-dimensional input x ∼ Px into the low-
dimensional latent feature z = Qφ(x) and the decoder
Gθ maps z to the reconstructed output x′ = Gθ(z),
which is the same shape as x. The distance between the
original input and the reconstructed output can be pre-
sented as Dr(x,Gθ(Qφ(x))). In addition, a regularizer
term Dz(qz, pz) is applied to measure the distance be-
tween the latent space distribution qz and certain prior
distribution pz. The final objective function of the WAE
model can thus be formulated as follows:

LWAE = Ex∼Px [Dr(x,Gθ(Qφ(x)))] +λ ·Dz(qz, pz), (3)

where λ is a hyperparameter for balancing the two
terms. The goal of training is to find an optimal set of
parameters, which minimizes the distance between the
inputs and outputs while restricting the latent space to
follow the prior distribution.

We designed the WAE models with fully-connected
hidden layers. We apply the relu activation on the out-
put of each hidden layer for better training performance.
Moreover, since the inputs are binary vectors, we use
the sigmoid activation on the output layer, which re-
stricts the output value within [0,1]. Then, we calculate

the binary cross-entropy of each input/output dimen-
sion and compute the average as the reconstruction dis-
tance Dr(x,Gθ(Qφ(x))). For the latent space distance
Dz(qz, pz), we use the standard Gaussian distribution
as the prior distribution pz and use the maximum mean
discrepancy (MMD) to measure the distance between
the latent space distribution qz and pz, as in [48]. Given
a batch of data sampled from the two distributions, i.e.,
{q1, · · · , qn} ∼ qz and {p1, · · · , pn} ∼ pz, Dz(qz, pz) can
be empirically estimated as

Dz(qz, pz) = 1
n(n− 1)

∑
i6=j

K(pi, pj)− 2
n2

∑
i,j

K(pi, qj)

+ 1
n(n− 1)

∑
i 6=j

K(qi, qj),

(4)

where K(x, y) = κ
κ+‖x−y‖2

2
. Given dz as the dimension of

latent layer and σz as the scale of the prior distribution,
κ = 2dzσ2

z . We choose λ equal to 1.

3.2 Training the Generative Model

Previous LDP-FL frameworks (e.g., [19, 21, 52]) evenly
split the privacy budget across dimensions and ap-
ply the perturbation independently. However, the per-
dimension privacy budget becomes extremely small for
high-dimensional models, which results in a significant
increase of noise. A recent work [37] proposed a two-
stage LDP-FL framework, which splits the privacy bud-
get into a dimension selection (DS) stage and a value
perturbation (VP) stage. In the DS stage, the local up-
date is sorted by absolute value and one "important"
dimension is privately selected from the top-k dimen-
sions; in the VP stage, the value of the selected di-
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Algorithm 1: SignDS
Input: ∆ ∈ Rd: local update; k: size of the

top-k set; ε: privacy budget; s: sampled
sign

Output: j: selected dimension index
1: if s = 1 then
2: Select dimensions of k largest values in ∆

to build the top-k dimension set Stopk
3: else
4: Select dimensions of k smallest values in ∆

to build the top-k dimension set Stopk
5: end if
6: Sample a Bernoulli variable x such that

Pr[x = 1] = eε·k
d−k+eε·k

7: if x = 1 then
8: Randomly sample a dimension

j ∈ {a ∈ {1, · · · , d}|a ∈ Stopk}
9: else

10: Randomly sample a dimension
j ∈ {a ∈ {1, · · · , d}|a /∈ Stopk}

11: end if
12: Return j

mension is perturbed. Finally, a sparse local update is
constructed and returned to the server. Although [37]
mitigated the dimension-dependency problem by only
selecting one "important" dimension, the privacy bud-
get is still consumed by the two stages. In high-privacy
scenarios (where the privacy budget is small), each stage
may therefore obtain only an insufficient privacy budget
and cause large randomness.

Motivated by the limitations of [37], we propose a
sign-based dimension selection algorithm SignDS, as
presented in Algorithm 1. The main idea is to sub-
stitute the VP stage by assigning a constant value to
the selected dimension. Since the parameter values may
have different signs, we introduce an extra variable
s ∈ {−1, 1}, which is randomly sampled by the client
with equal probability. Then, given each local update ∆,
we build the top-k dimension set Stopk according to ∆’s
real values and the sampled sign s: if s = 1, Stopk is built
with the dimensions of the k largest values; otherwise,
it is built with the dimensions of the k smallest values.
We refer the dimensions included in Stopk as top-k di-
mensions and the rest as non-top-k dimensions. Then,
a dimension index j is randomly sampled as follows:

j ∈

{
{a ∈ {1, · · · , d}|a ∈ Stopk} w.p. p

{a ∈ {1, · · · , d}|a /∈ Stopk} w.p. 1− p
, (5)

Namely, the index j is sampled from the top-k dimen-
sions with a probability of p and otherwise from the
non-top-k dimensions with a probability of 1 − p. We
refer to p as the top-k probability. Finally, the dimen-
sion index j and the sampled sign value s are returned
to the server. Since our algorithm does not return the
dimension value to the server, we save the privacy bud-
get for the value perturbation stage in [37]. With the
same privacy level, we can now achieve less randomness
and thus higher accuracy in dimension selection.

In the following, we provide the privacy guarantee
and utility analysis of Algorithm 1.

Lemma 1. Algorithm 1 satisfies ε-LDP when the top-k
probability p ≤ eε·k

d−k+eε·k .

Proof. For each client, given the sampled sign s and
any output dimension j ∈ {1, · · · , d}, let Stopk, S′topk
be the top-k dimension set of any two possible local
update vectors ∆ and ∆′. Given the top-k probability
p, the probability of sampling a dimension j from the
top-k set and the non-top-k set are respectively p · 1k and
(1− p) · 1

d−k . Thus, when p ≤
eε·k

d−k+eε·k we have

Pr[j|∆]
Pr[j|∆′] =

Pr[j|Stopk]
Pr[j|S′topk] ≤

Pr[j|j ∈ Stopk]
Pr[j|j /∈ S′topk]

=
p · 1

k

(1− p) · 1
d−k

≤ eε
(6)

which completes the proof.

In addition to the privacy guarantee, we are also inter-
ested in how to choose proper k and ε in order to achieve
a certain top-k probability p. Let α = k/d be the ratio
of the top-k parameters regarding the total number of
parameters. An α = 1 means to randomly select one
dimension from the entire dimension group. Intuitively,
the smaller α, the closer the parameter values of top-k
dimensions to the real largest (or smallest) value and
the better the model utility. We derive relations among
ε, p, and α as follows:

Corollary 1. With a fixed privacy budget ε, in order to
achieve a probability p, α should satisfy α ≥ p

eε·(1−p)+p .

Corollary 2. With a fixed top-k ratio α, in order to
achieve a probability p, ε should satisfy ε ≥ log p·(1−α)

(1−p)·α .

Proof. From Lemma 1, we have p ≤ eε·k
d−k+eε·k =

eε·α
1−α+eε·α . Thus, with a fixed ε, we have α ≥ p

eε·(1−p)+p ;
with a fixed α, we have ε ≥ log p·(1−α)

(1−p)·α
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Fig. 2. Relations among ε, p, and α. (a): given privacy budget
ε and the expected top-k probability p, the minimum top-k ra-
tio α required. (b): given the expected top-k ratio α and top-k
probability p, the minimum privacy budget ε required.

Corollary 1 states that with a fixed privacy budget ε, a
smaller top-k ratio α leads to a decrease of top-k proba-
bility p. Moreover, given an expected top-k probability
p and a predefined top-k ratio α, the minimum required
privacy budget ε can be calculated using Corollary 2.
We further visualize the relations of ε, p, and α in Fig-
ure 2. As shown in Figure 2a, in high-privacy scenarios
(e.g., ε ≤ 2), the required top-k ratio α differs distinc-
tively with the choices of p. Namely, we have to choose a
large α in order to ensure that the index is more likely to
be sampled from top-k dimensions. As ε increases (e.g.,
ε ≥ 6), α does not differ much regarding p. In other
words, we can always achieve a high top-k probability
even with a small top-k ratio. In Figure 2b, we further
present the minimum ε under various α and p.

We now describe the overall training process pre-
sented in Algorithm 2. At each global round t, the server
selects a group of n clients and broadcasts the current
global model Mt. On the local side, each client i in the
group trains the global model for several epochs with his
local data Xi and computes the local update ∆i

t. Then,
the client randomly samples a sign sit ∈ {−1, 1} with
equal probability and uses it along with the predefined
privacy budget εr to privately select a dimension index
jit of the local update. Finally, sit and jit are returned
to the server. After receiving the dimension jit and the
sampled sign sit, the server builds a sparse local up-
date ∆̂i

t and assigns sit to the selected dimension. Since
the selected dimension jit satisfies the ε-LDP guarantee
and the assigned sign value sit is unrelated to the local
data, according to DP’s robustness to post-processing
(Property 1 in Appendix A.2), the sparse local updates
also satisfy ε-LDP. Finally, the server aggregates all the
sparse local updates and updates the global model with
a global learning rate γ. The updated global modelMt+1
is distributed to local clients to start the next round.

Note that according to the sequential composition
property (Property 2 in Appendix A.2), if the same
client repeatedly participates in the training and sub-

Algorithm 2: Training the Generative Model
Input: M1 ∈ Rd: initial global model; n:

number of per-round clients; E: number
of local epochs; η: local learning rate; k:
number of parameters in the top-k set
of each local update; T : number of
global aggregation rounds; γ: global
learning rate; εr: per-round privacy
budget

Output: Trained WAE model M

Server executes:
1: for global round t = 1, · · · , T do
2: Randomly select a group of n clients
3: for client i = 1, · · · , n in parallel do
4: Broadcast current global model Mt

5: Receive sampled sign and dimension
sit, j

i
t = LocalUpdate(Mt, E, η, εr, k)

6: Build sparse local update ∆̂i
t = {0}d

and set ∆̂i
t[jit ] = sit

7: end for
8: Aggregate local updates: ∆̂t = 1

n

∑n
i=1 ∆̂i

t

9: Update global model Mt+1 = Mt + γ · ∆̂t

10: end for
11: Return Global model M = MT+1

LocalUpdate(Mt, E, η, εr, k):
// Run on the client side

13: Initialize local model M i
t ←Mt

14: for epoch e = 1, · · · , E do
15: M i

t = M i
t − η · ∇L(M i

t , X
i)

16: end for
17: Calculate local update: ∆i

t = M i
t −Mt

18: Randomly sample a sign sit ∈ {1,−1} with
probability Pr[sit = 1] = 0.5

19: Dimension selection jit = SignDS(∆i
t, k, εr, s

i
t)

20: Return sit, j
i
t

mits the local update for multiple global rounds, the
overall privacy guarantee for his local data will be accu-
mulated. Assume each client is allowed to participate in
at most tr global rounds. In order to ensure an overall
privacy guarantee of ε-LDP for each client’s local data
after the whole training process, the per-round privacy
guarantee should satisfy εr ≤ ε/tr. Moreover, during the
training process, we monitor the number of rounds each
client participates in. If a client has reached the maxi-
mum participating rounds (which is tr here), he is not
allowed to participate in the later training process.
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3.3 Generating Synthetic Data and Data
Post-Processing

Once the model has been trained, the server can use the
decoder part to generate synthetic data. Recall that the
latent space features are enforced to follow the standard
Gaussian distribution pz. Therefore, we can simply gen-
erate random latent features from pz and feed them into
the decoder. The decoder output has the same length as
the encoded input described in Section 3.1, where each
dimension is a numerical value between 0 and 1.

Finally, we need to convert the synthetic data back
to categorical form. Given an output vector, we first
split it into pieces of short vectors, each representing
one categorical attribute. Then, for each short vector,
we choose the entry with the maximum value as the
attribute value. In the end, we concatenate all the cate-
gorical labels into one vector as the final synthetic data.
The synthetic data will be used for data analysis and
training of machine learning models.

4 Experiments and Results
We implemented the proposed framework and per-
formed comprehensive experiments with a number of
open-source datasets to evaluate its performance.1 In
this section, we introduce the experimental settings and
discuss the evaluation results.

4.1 Experiment Setup

4.1.1 Datasets and WAE Models

We used four open-source datasets for evaluating the
performance of our framework. Each dataset contains
multi-dimensional data records, which were used for
classification tasks:
– The Census dataset [17] contains records drawn

from the 1990 United States census data, which in-
clude 68 personal attributes such as gender, income,
and marriage status. We used the dataset for a clas-
sification task to determine the duration of people’s
active duty service.

– The Twitter dataset [32] contains records with 77
attributes such as the number of discussions, aver-

1 The code will be available at https://gitee.com/mindspore/
mindspore/tree/r1.3/tests/st/fl/mobile/.

Table 1. Datasets details

Dataset Type Num. Num. Domain
Records Attributes Size

Census Integer 2458285 68 2150

Twitter Integer 140707 78 2181

Vehicle Binary 98528 101 2101

Adult Binary 32561 124 2124

Table 2. Structure of WAE models

Dataset Num.Params Model Structure

Census 76524 Input-Dense(96, relu)-Dense(24)
-Dense(96, relu)-Output(sigmoid)

Twitter 94961 Input-Dense(128, relu)-Dense(36)
-Dense(128, relu)-Output(sigmoid)

Vehicle 13093 Input-Dense(64, relu)-Dense(16)
Adult 16060 -Dense(64, relu)-Output(sigmoid)

age discussion length, and the number of authors,
which are used to predict the number of active dis-
cussions, namely the popularity magnitude of each
instance. In our experiment, we quantified the val-
ues of each attribute into five bins. The goal was to
classify the level of popularity of each instance.

– The Vehicle dataset [18] contains data collected
in wireless distributed sensor networks. Each record
has 100 attributes representing data collected from
different acoustic and seismic sensors. The goal was
to train a classifier for vehicle type classification.

– The original Adult dataset [34] contains records
with 15 personal attributes such as age, occupation,
education, and gender. The goal was to train a bi-
nary classifier which determines whether a person
earns more than 50K a year. We used the processed
version from [42], which converted the original at-
tributes into binary features.

We present details of each dataset in Table 1, which in-
clude the number of records and attributes, the length
of the one-hot encoded input, and the total domain size.
Since the number of user data should be large in order
to preserve data utility (which will be discussed in Sec-
tion 6.1), in the following experiments we simulated the
large-scale distributed scenario by assuming there were
5 × 104 clients, each holding two data records. Hence,
we randomly sampled 105 records for each dataset. For
datasets with more than 105 records (i.e., Census and
Twitter), we did the sampling without replacement.

We varied the structure of the WAE models to fit
the input size of different datasets. Details of the WAE
models can be found in Table 2. For binary datasets

https://gitee.com/mindspore/mindspore/tree/r1.3/tests/st/fl/mobile/
https://gitee.com/mindspore/mindspore/tree/r1.3/tests/st/fl/mobile/
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Fig. 3. Structure of the WAE model used for Adult dataset.

(i.e., Vehicle and Adult), small WAE models with a
latent-layer size of 16 were already sufficient to achieve
satisfactory data synthesis performance. On the other
hand, for the other two complex datasets that had dis-
tinctively higher domain sizes, we used larger models
with a higher latent-layer size to better capture the hid-
den distribution and cross-attribute correlations. More-
over, it is also possible to use auxilliary data to further
optimize the model structure, which we will discuss in
Section 5.2. We also provide an example structure of
the WAE model used for the Adult dataset (Figure 3),
where FC represents fully-connected layers, BCE repre-
sents the binary cross-entropy and MMD represents the
MMD penalty.

4.1.2 Baseline Methods

In the following experiments, we have used LoPub [44]
and LoCop [53] as our baseline algorithms. Both algo-
rithms apply LDP directly on the local data and send
the randomized data to the server. The local random-
ization follows the RAPPOR algorithm [23]. As derived
in [44], given c as the dimension of local data, h as the
number of hash functions and f as the flip probability,
the overall privacy for each individual client is

ε = 2 · c · h · ln((2− f)/f). (7)

Then, the randomized data will be aggregated on the
server side for estimating the joint distributions and
attribute dependencies. Such information will then be
finally used for constructing the synthetic dataset:

LoPub generates the dependency graph based on a de-
pendence threshold φ and estimates k-way joint distri-
butions to generate the synthetic data; LoCop leverages
multivariate Gaussian copula to determine attribute de-
pendencies and generates synthetic data by only using
one- and two-way joint distributions. For both algo-
rithms, we used the Lasso-based regression for estimat-
ing the joint distributions. In addition, we followed [44]
to choose the number of hash function h = 4 and the
dependence threshold φ = 0.4.

4.1.3 Evaluation Metrics

We evaluated the performance of our framework from
two perspectives, namely the data utility evaluation and
the privacy evaluation:
– For the data utility evaluation, we first compared

the statistical distributions of synthetic data and
real data. Then, we used different machine learning
models to investigate the utility of synthetic data
in AI training tasks. Intuitively, synthetic data with
high utility should show similar statistical proper-
ties and model accuracy as real data.

– For the privacy evaluation, we investigated the ca-
pability of our framework against membership in-
ference attacks, where an attacker aimed to use
the synthetic dataset to determine whether a tar-
get data was used for training the WAE model.

4.1.4 Parameter Configurations

In the experiments, we assumed there were 5 × 104

clients. We set the global round T = 5000, and n = 10
clients were sampled to train the WAE model in each
global round; namely, each client was sampled once dur-
ing the whole training process. We set the global learn-
ing rate γ = 1 due to the good empirical performance.
For local training, each client updated the model for
E = 10 epochs. We used the Adam optimizer with a
default learning rate η = 0.001 for all the WAE mod-
els. For the local randomization, we chose the top-k
ratio α from {0.05, 0.1, 0.25} and the privacy budget
ε ∈ {0.5, 1, 2, 4, 6, 8} to explore the influence of privacy
on the framework performance.

It should be noted that ε here was the overall local
privacy budget for each client. As mentioned in Sec-
tion 3.2, if each client participated in tr global train-
ing rounds, the per-round privacy budget should satisfy
εr ≤ ε/tr. Since we assumed that each client only partic-



Privacy-Preserving High-dimensional Data Collection with Federated Generative Autoencoder 489

Table 3. Computation time of model training and synthetic data
generation

Dataset Adult Vehicle Census Twitter

Training Client 1.06 s 0.93 s 1.28 s 1.25 s
Server 3.51 ms 3.05 ms 4.95 ms 4.92 ms

Data Generation 7.38 s 7.37 s 9.44 s 10.47 s

ipated once during the whole training process, we have
tr = 1 and the per-round privacy budget is equal to
the overall privacy budget. Moreover, we would like to
emphasize that the selected ε values are reasonable lo-
cal privacy guarantees for collecting c-dimensional data.
Consider the privacy guarantee of the baseline algo-
rithms (Equation (7)), with the number of hash function
h = 1 and a flipping probability f = 0.5, we already have
ε = 150 for the Census dataset with c = 68. For the
Adult dataset with c = 124, the overall ε is even 272,
which is significantly larger than our setting.

4.1.5 Computation Environments

We performed all the experiments on a server with Intel
E5-2470 2.40GHz CPU. In Table 3, we report the com-
putational time of 1) 10 epochs of local training on each
client; 2) one round of local updates aggregation and
global model update on the server side; 3) generation of
105 synthetic data records on the server.

4.2 Evaluation for Data Utility

In this section, we evaluate the utility of the synthetic
data generated using our framework in comparison to
the baseline. The evaluations can be generally divided
into statistical comparison and AI training performance.

4.2.1 Statistical Comparison

For the statistical comparison, the goal is to investigate
whether the synthetic data generated by our framework
can preserve the joint distributions and correlations of
real data. Intuitively, synthetic data with high utility
should show similar statistical properties as real data.
We have respectively compared m-way joint distribu-
tions and the cross-attribute correlations to analyze the
utility of the synthetic data.

Fig. 4. Average total variation distance (AVD) of four-way joint
distribution between the real and synthetic data with respect to
different privacy levels.

4.2.1.1 Comparison of Joint Distributions
For the analysis of joint distributions, we used the Aver-
age Variant Distance (AVD) to quantify the distribution
difference between the real data and synthetic data, as
suggested in [44], which is defined as

AVD = 1
2
∑
ω∈Ω

|Preal(ω)− Psyn(ω)|, (8)

where Preal(ω) and Psyn(ω) are m-way joint distribu-
tions of real data and synthetic data. More specifically,
given an m-way attribute combination ω with a domain
size of |ω|, Preal and Psyn are |ω|-dimensional vectors,
where each entry is the probability of a specific value
combination (namely the ratio of occurrence in the en-
tire real or synthetic dataset). For each dataset, we ran-
domly chose 100 combinations of m attributes and cal-
culated the average distribution difference.

We first analyzed the AVD of all three algorithms
with respect to the privacy level ε. For each dataset, we
respectively compared the AVD of the synthetic data
generated by the baseline algorithms and by our frame-
work. In Figure 4, we present the results for the four-
way joint distribution with different privacy budgets.
The error bars represent the 95% confidence interval
(also for the remaining experimental results). It can be
seen that the AVD of all the algorithms decreases with
the increase of ε. For all datasets, the synthetic data
generated by our framework (referred to as WAE) have
smaller AVD in comparison to the baseline methods (re-
ferred to as LoPub and LoCop), indicating that the syn-
thetic data generated by our framework preserves better
multivariate distributions than the baseline methods.
Also, we notice that the non-binary datasets Census
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Fig. 5. Average total variation distance (AVD) of m-way joint
distributions between the real and synthetic data with respect to
different dimension of joint distribution.

and Twitter usually show larger AVD in comparison
to the other two binary datasets. This is due to the
fact that the non-binary datasets have a larger domain
size, which leads to lower frequencies of the potential at-
tribute combinations. Therefore, it is more difficult for
the generative models to find meaningful mappings be-
tween the original input space and the compact latent
space, which results in a comparatively larger difference
between the synthetic data and real data. Moreover, we
observe that for our solution, when the privacy budget
ε is small, the synthetic data with larger top-k ratio
have smaller AVD; while for larger ε, the synthetic data
with smaller α show better utility. This complies with
the discussion in Section 3.2. By intuition, the smaller α
is, the better model performance is. However, when ε is
small, the decrease of α leads to a significant decrease in
top-k probability p, which increases the randomness of
dimension selection and affects the model convergence.
As ε increases, p is always relatively high and does not
differ much regarding to α. In this case, a smaller α en-
hances the model performance and thus improves the
utility of the synthetic data.

We further analyzed the AVD of all the algorithms
with regard to the dimension of joint distributions m, in
order to get a deeper insight into our framework’s capa-
bility on complex statistics. For each dataset, we tested
the m-way AVD where m ∈ {2, 3, 4, 5, 6} and present
the results under ε = 4 in Figure 5. It can be seen that
for all the datasets, the AVD increases with a larger
m. In addition, our proposed solution consistently out-
performs the baseline algorithms. More specifically, the
AVD of the baseline algorithms is close to our frame-
work when m is small, yet gets distinctively larger with

Fig. 6. Averaged correlation error (CMD) between the real and
synthetic data with different privacy levels.

Fig. 7. Correlation comparison between the real and synthetic
data with ε = 8 and α = 0.1. For each dataset, we present
the correlations of the first 10 attributes. It can be seen that the
synthetic data preserves similar correlations as real data.

an increase of m. This indicates that our framework can
effectively capture the information of high-dimensional
joint distributions of real data.

4.2.1.2 Comparison of Correlation
For the comparison of correlation, we have respectively
computed the Pearson correlation coefficient of the real
and synthetic dataset and used the Correlation Matrix
Distance (CMD) [27] to measure the distance between
the two correlations, which is defined as follows:

CMD = 1−
tr{RrealRsyn}
‖Rreal‖2‖Rsyn‖2

, (9)

where Rreal and Rsyn are correlation coefficient matri-
ces of real and synthetic data, tr(·) is the matrix trace,
‖ · ‖2 is the Frobenius norm. The CMD is bounded by
[0, 1], where zero means the two correlation matrices are
identical.
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For each dataset, we calculated the CMD of the syn-
thetic data generated by both the baseline algorithms
and our framework under different privacy levels and
compare the results in Figure 6. It can be seen that
with the same ε, the baseline algorithms always show a
much larger CMD in comparison to the results of our
framework. Although increasing the ε helps to reduce
the CMD, it is still insufficient for preserving the mul-
tivariate correlations of real data. On the other hand,
the synthetic data generated by our framework shows a
distinctive decrease with the increase of ε. In particular,
the CMD is close to zero when ε ≥ 4, indicating that the
synthetic data have similar cross-attribute correlations
as real data.

We further visualized the correlation coefficient ma-
trix of real data and synthetic data with heat maps in
order to better understand the capability of our method
in capturing and preserving the cross-attribute correla-
tions. Figure 7 shows the comparison result of the differ-
ent datasets with ε = 8 and α = 0.1. For each dataset, we
present the correlations of the first 10 attributes. From
the visualization results, it can be seen that the corre-
lation of synthetic data is similar to the correlation of
real data, indicating that the synthetic data successfully
preserves the attribute correlations of real data.

4.2.2 AI Training Performance

Next, we used different machine learning models to eval-
uate the utility of synthetic data in different AI train-
ing tasks. More specifically, we trained two classification
models Mreal, Msyn, respectively, with real data and
synthetic data, and tested both models with an amount
of held-out real data. Then, we compared the test accu-
racy Accreal and Accsyn, which represent the test accu-
racy of Mreal, Msyn. If Accsyn was close to Accreal, we
considered that the synthetic data are of high utility.

For each dataset, we used a two-layer Neural Net-
work (NN) and Random Forest (RF) as the classifica-
tion models. We trained each classification model 10
times and calculated the averaged Accsyn. In Figure 8
and Figure 12, we present the results of Accreal as well
as Accsyn evaluated on the synthetic data generated
by all three methods under different privacy levels. It
can be seen that the Accsyn of the baselines shows, in
general, distinctive distance from Accreal on both eval-
uation models and only has slight improvement with
larger privacy budget ε. In comparison, the Accsyn of
our method consistently outperforms the baselines for
both classification algorithm. With an increase of ε, the

Fig. 8. Classification accuracy of the neural network (NN) trained
with real data (Real Data) and synthetic data generated by our
framework (WAE) as well as by the baseline algorithms (LoPub,
LoCop) under different privacy levels.

Fig. 9. Classification accuracy of the neural network (NN) with
different number of records under the privacy level of ε = 8.

Accsyn gradually gets close to Accreal. Moreover, we ob-
serve higher Accsyn with the decrease of top-k ratio α.
In particular, with ε = 8 and α = 0.05, the reduction
of Accsyn is less than 1% for the Census and Adult
dataset and less than 3% for the other two datasets.
The results above further indicate that the synthetic
data generated by our framework largely preserves the
joint distributions and hidden correlations of real data,
and can replace real data for AI training tasks.

4.2.3 Impact of the Number of Records

In the above experiments, we assumed a group size of
5 × 104 clients and in total 105 records. We further in-
vestigated how the number of records impacts the util-
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Fig. 10. Classification accuracy of the neural network (NN) with
different number of users under different privacy levels.

ity of synthetic data. We varied the number of records
among {104, 105, 106} (thus the total number of clients
is respectively {5 × 103, 5 × 104, 5 × 105}). Similar to
previous experiments, we assumed that each client held
two data records and only participated once during the
whole training process. For the experiments with 104, we
set the total global rounds T = 500 with n = 10 clients
for each round. For the experiments with 106 records,
we set the total global rounds T = 5000 with n = 100
clients for each round.

We have evaluated the accuracy of both classifica-
tion models (i.e., two-layer NN and RF) with respect
to the number of records and present the results in Fig-
ure 9 and Figure 13. Here we compare the results un-
der a privacy of ε = 8 (and α = 0.1 for our method).
Although both algorithms show higher classification ac-
curacy with a larger number of records, the baseline al-
gorithms still cannot achieve significant improvements
even with the largest number of records. In compari-
son, the classification accuracy of our method constantly
outperforms the baseline algorithms. In addition, we no-
tice that the classification accuracy in the experiments
with 104 records is distinctively lower than others. This
is because the generative model is underfitted when
trained on a limited number of records and thus can-
not generate high-utility synthetic data. On the other
hand, although a larger number of local data (e.g., 106)
ensures the generative model be fully-trained, the model
performance does not improve much after achieving con-
vergence and thus cannot reach much improvement re-
garding classification accuracy.

4.2.4 Impact of the Number of Users

In previous experiments, we assumed that there were
a large number of users (e.g., 5 × 104) who each only
participated once during the entire training process. We
further extended the scenario by assuming there were
fewer clients and each client was selected multiple times
for model training. To this end, we respectively assumed
there were 5×104, 5×103, 5×102 clients, each with 2, 20,
and 200 data records. Each client participated in 1, 10,
and 100 global training rounds and the corresponding
per-round privacy budget εr equals ε, ε/10 and ε/100 (ε
is the total privacy cost).

For each dataset, we conducted experiments with
the total privacy budget ε ∈ {2, 4, 8} and evaluated
the accuracy of both classification models regarding the
number of users. The results are shown in Figure 10
and Figure 14. It can be generally seen that participat-
ing in multiple training rounds can cause a distinctive
impact on the framework performance and data util-
ity, especially for datasets with larger generative mod-
els (Census and Twitter). This is because with a fixed
total privacy budget the per-round privacy budget is in-
versely proportional to the participating rounds. There-
fore, having each client participating in multiple train-
ing rounds will significantly increase the randomness in-
jected during model training and affect the model con-
vergence. Thus, we need to further increase the total
privacy budget ε to achieve satisfying data utility.

4.3 Evaluation for Privacy Protection

Although a larger privacy budget ε has a distinctive
contribution to data utility, this may be at the expense
of privacy. Currently, there is no concrete understand-
ing of how to choose an appropriate ε in practice for a
satisfactory utility-privacy trade-off. In this section, we
have empirically analyzed the privacy protection capa-
bilities of our framework against the membership infer-
ence attack (MIA). We followed the MIA protocol of
[46]. The protocol assumed that the attacker holds a
reference dataset that shares similar distribution as the
real training data. The attacker respectively trains a
pair of generative models Gin and Gout using the refer-
ence data with and without the target record. Then, an
attack model is trained to distinguish the synthetic data
generated by Gin and Gout, which can be considered as
a binary classification task. Finally, given the published
synthetic dataset, the attacker can use the attack model
to test whether the synthetic data is generated by a
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Table 4. Accuracy of membership inference attack

Dataset Census Twitter Vehicle Adult
No Privacy 0.735 0.698 0.637 0.642

ε = 8 0.574 0.547 0.546 0.535
ε = 2 0.548 0.529 0.513 0.519

ε = 0.5 0.529 0.524 0.507 0.506

model trained with the target record, namely whether
the target record is included in the generative model’s
training dataset.

We randomly picked 30 records as the target record.
For each target record, we trained generative models
under different privacy settings and repeated the at-
tack 10 times. In each attack trial, we used a list of
machine learning models such as SVMs, logistic regres-
sion models, KNNs, RFs, and NNs as the attacker and
picked the highest attack accuracy over all the attack-
ers. Finally, we computed the averaged attack accuracy
against all the target records under different privacy set-
tings and present the results in Table 4. It can be seen
that synthetic data generated by the non-private gen-
erative model is more likely to reveal the membership
information of the target record. The attack accuracy of
all the datasets is more than 60% and even up to 73.5%
for the Census dataset. On the other hand, applying
DP can effectively reduce the attack accuracy. With
ε = 0.5, the attack accuracy is reduced by 13% ∼ 20%.
Even with ε = 8, the attack accuracy can still be re-
duced by 8% ∼ 16% and is close to 50%, namely the
accuracy of a random guess. The results demonstrate
that our framework is able to reduce the risk of mem-
bership inference attacks and provide privacy protection
to the local data.

5 Discussion

5.1 Extension to Other Data Types

In this paper, we demonstrated that our framework per-
forms well on high-dimensional categorical data. In or-
der to do so, we converted the categorical data into nu-
merical form for training the WAE model and then re-
versed the model’s numerical outputs back to categori-
cal form. In future studies, it is also possible to modify
the current model structure and the loss function in or-
der to extend the framework for supporting other data
types, image data and text data. For instance, for im-
age data, we can further apply convolution layers to

Fig. 11. Results of data synthesis on image datasets.

Table 5. Classification accuracy of synthetic data generated by
WAE models with (w) and without (w/o) pre-training

Accuracy - NN Accuracy - RF
Dataset w/o w w/o w

Census ε = 8 0.948 0.960 0.952 0.965
ε = 4 0.929 0.935 0.932 0.940

Twitter ε = 8 0.786 0.798 0.788 0.796
ε = 4 0.771 0.782 0.778 0.785

Vehicle ε = 8 0.781 0.795 0.788 0.794
ε = 4 0.762 0.789 0.763 0.782

Adult ε = 8 0.808 0.815 0.812 0.820
ε = 4 0.787 0.798 0.775 0.789

enhance the feature extraction capability and use the
mean squared error instead of the cross-entropy to mea-
sure the reconstruction distance. Despite the variation
of the generative models, the main idea of training the
model under privacy-preserving federated learning and
generating synthetic data remains unchanged. In Fig-
ure 11, we give the synthesis results evaluated on the
MNIST [35] and Fashion-MNIST [56] dataset. For
each dataset, we show the synthetic data produced by
generated models trained under different privacy set-
tings, namely, non-private, with privacy of ε = 8 and
ε = 4. Note that the synthetic data are randomly gener-
ated and may look different from real data. However, it
can be observed that our framework is also capable of
synthesizing image datasets, and generated images have
better quality with an increase of the privacy budget.

5.2 Auxiliary Data for Pre-Training

Before applying the WAE model for collecting local user
data, the server needs to design the model structure. An
appropriate model structure helps to enhance the capa-
bility of capturing the local data distributions and thus
the utility of synthetic data. In our scenario, the server
only knows the basic properties of the data to be col-
lected, such as the number of attributes and the domain
of each attribute. The server can thus use some auxil-
iary data to optimize the model structure. The auxiliary
data here refer to certain public datasets or the random
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data generated by uniformly sampling from the domain
of the local data. The server can use such data to sim-
ulate the data collection process and tune the model
structure by evaluating the utility of the synthetic data.
Moreover, the auxiliary data can also be used for pre-
training the WAE model before applying the model in
the data collection process, so as to improve the model
convergence and the utility of synthetic data.

In Table 5, we compare the utility of synthetic data
generated by WAE models with (w) and without (w/o)
pre-training under the setting of α = 0.1 and ε ∈ {4, 8}.
For each dataset, we have randomly generated an auxil-
iary dataset only using the basic properties of real data,
as mentioned before. We used the auxiliary dataset to
pre-train the WAE model and applied the pre-trained
model to the data collection process. We respectively
evaluated the utility of synthetic data generated in both
scenarios based on the classification accuracy of NNs
and RFs. For both types of models, we observe that the
synthetic data generated by pre-trained WAE models
achieve 1 ∼ 2% increase in classification accuracy. The
results demonstrate that using auxiliary data to pre-
train the WAE model is feasible to enhance the model
convergence in the data collection process and further
improve the synthetic data utility.

5.3 Limitations and Future Work

5.3.1 Utility Loss Under High Privacy Regimes

Although our proposed framework shows significant per-
formance improvement in comparison to the baseline
methods, the synthetic data still suffer from obvious
utility loss when ε ≤ 1. Therefore, improving the frame-
work performance under high-privacy regimes is one
of the essential future research directions. Besides fine-
tuning the hyperparameters such as the number of per-
round participants n and the top-k ratio α, one of the
other potential solutions is to pre-train the model with
auxiliary data before the FL training procedure, as dis-
cussed in Section 5.2. In addition, the current SignDS
algorithm can be further extended to support the se-
lection of multiple top-k indices, which will also help
improve the model convergence.

5.3.2 Communication Cost of Download Link

In comparison to the traditional LDP-based data col-
lection approaches, our framework trains the generative

models under the federated learning setting, where each
client needs to download the global model and upload
the model updates at once. Although our framework
significantly reduces the communication cost of the up-
load link by only transmitting one dimension index and
the corresponding sign value, the communication cost
of downloading the global model may also become a
bottleneck as the model size increases, especially for
large-scale FL scenarios. As discussed in Section 6.3.1,
a few recent studies propose dropout-based and model
pruning-based solutions for reducing the download link
communication cost. The basic idea is to reduce the
size of the model broadcast to the client side by ex-
tracting sub-models or pruning redundant weights from
the global model. Meanwhile, using smaller models for
local training can also help to reduce the computational
cost of the client devices. Therefore, exploring whether
such techniques can be integrated into our framework
to further improve communication and computational
efficiency will be an important future work.

6 Related Work

6.1 Data Collection Under LDP

Differential privacy (DP) [21], as a strong mathemat-
ical formalization of privacy, has been used as a crite-
rion for privacy protection in data publishing, data min-
ing, and machine learning ([1, 20, 57]). However, tradi-
tional DP assume a trusted server (data curator), who
first collects the original user data, then performs data
analysis under differential privacy. In order to eliminate
the assumptions of trustworthy servers, local differen-
tial privacy (LDP) [31] has been proposed, which pro-
vides strong privacy guarantees to local data. By uti-
lizing local randomization algorithms, the server can-
not infer any individual’s original data, but can learn
the overall statistics of the whole population. How-
ever, prior research on LDP mainly focuses on collect-
ing one-dimensional statistics, such as frequency esti-
mation ([14, 23]), heavy-hitter identification ([6, 11]),
and itemset mining ([43, 54]). Regarding scenarios with
multi-dimensional data, Alaggan et al. [2, 3] proposed
using Bloom filters to encode local data and analyze ag-
gregated statistics. However, their works do not involve
the estimation of joint distributions and cross-attribute
correlations, which differs from our objectives.

Directly applying the above LDP-based algorithms
to estimate complex statistics of high-dimensional data
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will cause extremely large communication overhead as
well as a degradation in data utility. Consider, for exam-
ple, RAPPOR [23], a state-of-the-art LDP-based data
collection algorithm. For c-dimensional binary data with
c = 32, we have domain size |Ω| = 232 ≈ 4.3× 1010. Di-
rectly applying RAPPOR consumes a communication
cost and a storage space of O(|Ω|) [44]. Also, for high-
dimensional input domains, it is common for each user
to have a unique feature combination. Therefore, it is es-
sential to collect a large number of data in order to cover
all the possible combinations in the feature domain.
Given a domain size |Ω|, as a general rule of thumb [23],
the number of user data N should follow

√
N/10 ≥ |Ω|.

In the above example, N ≥ 100 · 264 ≈ 1.8 × 1021. All
of these requirements are impractical for real-world ap-
plications. In subsequent research, Fanti et al. [24] pro-
posed to separately collect data of each dimension under
RAPPOR and estimate the joint distributions using ex-
pectation maximization (EM). Although the algorithm
significantly reduces the communication overhead be-
tween clients and the server, it only supports to esti-
mate the joint distribution of two attributes. Based on
[24], Ren et al. proposed LoPub [44], which reduces
c-dimensional data to k-dimensional clusters (k < c) us-
ing dependence graphs and estimates k-way joint distri-
butions with an EM-based and Lasso regression-based
approach. However, the algorithm still suffers from high
computational complexity and low data utility when k is
large. An improved scheme, LoCop [53] was further pro-
posed, which leverages multivariate Gaussian copula to
estimate cross-attribute dependencies and to construct
synthetic data.

Instead of directly randomizing the local data, our
framework uses deep generative models to learn the data
distributions and to generate synthetic data without ac-
cessing real data, which effectively enhances data utility.
In our experiments, we used LoPub and LoCop as the
baselines to compare the frameworks’ performance in
terms of data utility.

6.2 DP Synthetic Data Generation

Differentially private synthetic data generation has been
extensively studied over recent years as an alternative
solution to privacy-preserving data publishing. Previ-
ous works ([36, 57]) analyzed statistical distributions of
original data under differential privacy and used them to
generate synthetic data. Later works have proposed us-
ing differentially private generative models ([41, 49]) to
directly generate high-utility synthetic data. However,

these works only focus on the centralized setting, where
the server has already collected the real data and uses
them to generate private synthetic data. In contrast, our
approach is practical for a distributed setting, where the
server cannot access the real data, but is interested in
learning statistical information about the data.

Recent works by Augenstein et al. [5] and Triastcyn
et al. [50] also investigate the synthetic data generation
under the distributed setting. [5] aims to use generative
models to detect errors and bugs in local data. However,
as they claimed, such applications do not require high-
fidelity generation. On the other hand, although [50] fo-
cused on generating and publishing synthetic data, their
method is only limited to image data. In addition, they
adopted a weaker measure of privacy for preserving the
model performance. In comparison to both works, our
framework is able to generate synthetic data with high
utility and fidelity, which can replace real data in data
mining and AI training tasks. Moreover, we apply strict
LDP randomization on the client side, which provides
strong privacy guarantees for clients’ local privacy.

6.3 Efficiency and Privacy in FL

6.3.1 Communication Efficiency in FL

It is widely acknowledged that communication cost can
be a bottleneck for FL, especially when training high-
dimensional models. Recently, a number of upload link
and download link compression methods have been pro-
posed to alleviate the communication cost in FL.

The upload link compression applies quantization or
sparsification on the model updates to reduce the com-
munication cost from clients to the server. The main
idea of quantization is to reduce the number of bits of
update values. For instance, Seide et al. [45] proposed
the 1-bit SGD, which quantizes the update values
larger than a pre-defined threshold to 1 and the rest to
0. Similarly, Bernstein et al. [8] proposed SignSGD and
SIGNUM, where the update values quantized to its sign
value. The study theoretically proved that SignSGD
can effectively reduce the communication cost while en-
joying a satisfying convergence rate. In contrast, sparsi-
fication aims to transmit only a subset of update values.
For instance, the top-k mechanisms (e.g., [4, 16]) only
keep the top-k largest magnitude values of each model
update and set the others to 0. Stich et al. [47] pro-
posed a similar scheme with memory. Ivkin et al. [28]
further proposed to use the count-sketch algorithm to
approximately select the top-k updates.
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On the other hand, reducing the communication
cost of the download link has recently also gained in-
creasing attention. Caldas et al. [13] gave the first
attempt of the download link compression and pro-
posed Federated Dropout, which extracts small sub-
models from the original high-dimensional and send to
the clients local training. Based on this idea, Bouacida et
al. further proposed [10] an adaptive federated dropout
algorithm, which builds the sub-models using an adap-
tive activation score map. In addition, Jiang et al. [30]
proposed to gradually prune the global model during
the training process to achieve better communication
and computational efficiency without loss of accuracy.

6.3.2 Privacy Protection in FL

Although FL enjoys significant privacy benefits in com-
parison to centralized learning, recent works showed
that FL is still vulnerable to various privacy attacks
[25, 40] against the exchanged local updates and the
global model. Thus, an increasing number of studies pro-
pose to incorporate differential privacy (DP) into the FL
framework. Some works (e.g., [5, 39]) add Gaussian noise
on the server side to protect the privacy of the global
model. However, such solutions cannot prevent the pri-
vacy leakages from the local updates. Thus, other works
propose hybrid frameworks (e.g., [22, 29, 51]), which use
crypto-based solutions such as homomorphic encryption
(HE) and secure multi-party computation (SMC) to fur-
ther achieve local privacy protection. However, these so-
lutions require extra communication and computation
costs during the key-distribution phase and thus, may
not be practical to large-scale scenarios.

Considering the privacy and efficiency issues in the
above-mentioned solutions, a more practical solution is
to apply local differential privacy (LDP) to FL, which
perturbs the local updates before sending them to the
server. Previous LDP-FL frameworks (e.g., [19, 52, 58])
perturb the local updates using private mean estimation
algorithms. However, these algorithms evenly split the
privacy budget across dimensions and the injected noise
is proportional to the model dimension, making them
only applicable to simple ML models. A recent work
proposed FedSel [37], a two-stage LDP-FL framework
that includes a dimension selection (DS) stage and a
value perturbation (VP) stage. The DS stage first sorts
the local update by absolute value and then privately se-
lects one "important" dimension from the top-k dimen-
sion set (namely, the set of k dimensions with the largest
absolute values). Then, in the VP stage, the value of

the selected dimension is perturbed via the LDP algo-
rithms in [52] and used to construct a sparse privatized
local update. Although [37] mitigates the dimension-
dependency problem by only selecting one "important"
dimension, the privacy budget is still consumed by the
two stages. In high-privacy scenarios, each stage may
therefore obtain only an insufficient privacy budget and
cause large randomness.

Inspired by the effectiveness of SignSGD [8] and
top-k sparsification ([4, 16, 37]), we propose a novel local
randomization algorithm called SignDS. The main idea
is to save the the privacy budget for the VP stage in
[37] by assigning sign values instead of the perturbed
dimension values to the selected dimensions. With the
same privacy budget, we can achieve less randomness
and thus higher model utility.

7 Conclusion
Building effective business and AI services requires the
collection of personal data, which often introduces chal-
lenges related to an insufficient amount of data on the
one hand, and privacy violations on the other hand.
Recently, deep generative model-based data synthesis
techniques have created opportunities for addressing
these challenges: the generative models have strong ca-
pabilities in capturing the cross-attribute correlations of
real data and can easily generate large-scale high-utility
data; in addition, since the generated data are fully syn-
thetic and cannot be linked to any particular individual,
re-identification attacks or attribute disclosure becomes
almost impossible.

In this paper, we have followed the idea of data syn-
thesis and proposed DP-Fed-Wae, a privacy-preserving
framework for high-dimensional data collection. The
framework utilizes a (generative) Wasserstein autoen-
coder to learn the joint distributions and correlations
of high-dimensional user data and generate high-utility
synthetic data on the server side. Moreover, we applied a
novel LDP-FL framework for training the autoencoder,
which not only avoids the collection of real local data
but also provides strong local privacy guarantees. Ex-
perimental evaluation with real-world datasets shows
that our framework significantly outperforms the LDP-
based baseline algorithms for high-dimensional data col-
lection and synthesis. The synthetic data generated by
our framework preserves very similar statistical prop-
erties as real data and can replace real data for data
mining and model training tasks.
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A Preliminaries
In the following, we offer additional background infor-
mation about federated learning and differential privacy.

A.1 Federated Learning

Federated learning [38] (FL) is a decentralized learning
mechanism which achieves computational efficiency and
privacy benefits by distributing the training task to local
devices. At each global round, the server distributes the
current global model to a number of local clients. Each
client locally updates the global model and returns the
model update to the server. On the server side, all the lo-
cal updates are aggregated to update the global model,
which will be distributed in the next global round. Since
only model parameters are exchanged during the train-
ing process, FL allows the model trained without ac-
cessing raw local data.

Although FL provides enhanced privacy protection
in comparison to centralized training, recent contribu-
tions (e.g., [25, 40, 55]) point out that the mechanism
still has privacy risks. In the context of FL, privacy risks
can be mainly divided into local privacy and global pri-
vacy aspects. Local privacy risks appear when the local
updates reveal insights about local data, while global
privacy risks represent situations when the global model
memorizes local data. Motivated by this, privacy en-
hancing techniques such as secure multi-party compu-
tation (MPC) [9] or differential privacy (DP) [39] are
incorporated into the original FL mechanism, providing
protections against global and local privacy risks.

A.2 Differential Privacy

Differential Privacy (DP) [21] is a state-of-the-art data
anonymization technique which provides strong privacy
guarantees for data analysis. The mathematical defini-
tion of DP is as follows:

Definition 1 (Differential Privacy [21]). A random-
ized mechanism M : D → O satisfies ε-DP if for any
two adjacent datasets D,D′ differing in one data sam-
ple and for any measurable subset of outputs Y ⊆ O we
have

Pr [M(D) ∈ Y] ≤ eε · Pr
[
M(D′) ∈ Y

]
, (10)

where ε describes the privacy loss.

The Definition 1 is usually applied in centralized set-
tings where the data have already been collected by a
trusted server. However, in the local settings, we aim to
ensure that each client’s local data will not be accessed
by the server. Thus, the definition of local differential
privacy (LDP) has been proposed [31], which provides



Privacy-Preserving High-dimensional Data Collection with Federated Generative Autoencoder 500

strong local privacy guarantees for each user. The defi-
nition is as follows:

Definition 2 (Local Differential Privacy [31]). A ran-
domized mechanism M : D → O satisfies ε-LDP if and
only if for any two inputs x, x′ ∈ D and for any output
y ∈ O we have

Pr [M(x) = y] ≤ eε · Pr
[
M(x′) = y

]
, (11)

where ε describes the privacy loss.

In addition, LDP also holds two widely-used properties
[21], namely Robustness to Post-Processing and Sequen-
tial Composition. The former property states that any
deterministic or randomized function defined over an
LDP mechanism also satisfies LDP. The latter states
that interactively applying the LDP mechanism on the
same set of data yields an accumulated privacy cost.

Property 1 (Robustness to Post-Processing). Let M
be an ε-LDP mechanism and g be an arbitrary map-
ping from the set of possible outputs to an arbitrary set.
Then, g ◦M is ε-LDP.

Property 2 (Sequential Composition). Suppose there
are n mechanisms {M1, · · · ,Mn} that respectively sat-
isfy εi-LDP and are sequentially computed on the same
set of private data D, then a mechanism formed by
(M1, · · · ,Mn) satisfies (

∑n
i=1 εi)-LDP.

B Additional Experiment Results
In this section, we provide additional experiment re-
sults of the evaluation of AI training performance (Sec-
tion 4.2.2), including the classification accuracy of ran-
dom forests trained with synthetic data under different
privacy levels (Figure 12), as well as the impact of ac-
curacy regarding the number of records (Figure 13) and
the number of clients (Figure 14).

Fig. 12. Classification accuracy of the random forest (RF) trained
with real data (Real Data) and synthetic data generated by our
framework (WAE) as well as by the baseline algorithms (LoPub,
LoCop) under different privacy levels.

Fig. 13. Classification accuracy of the random forest (RF) with
different number of records under the privacy level of ε = 8.

Fig. 14. Classification accuracy of the random forest (RF) with
different number of users under different privacy levels.
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