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Power Analysis Attacks
Abstract: Recent advances in machine learning have en-
abled Neural Network (NN) inference directly on con-
strained embedded devices. This local approach en-
hances the privacy of user data, as the inputs to the
NN inference are not shared with third-party cloud
providers over a communication network. At the same
time, however, performing local NN inference on embed-
ded devices opens up the possibility of Power Analysis
attacks, which have recently been shown to be effective
in recovering NN parameters, as well as their activations
and structure. Knowledge of these NN characteristics
constitutes a privacy threat, as it enables highly effec-
tive Membership Inference and Model Inversion attacks,
which can recover information about the sensitive data
that the NN model was trained on. In this paper we ad-
dress the problem of securing sensitive NN inference pa-
rameters against Power Analysis attacks. Our approach
employs masking, a countermeasure well-studied in the
context of cryptographic algorithms. We design a set
of gadgets, i.e., masked operations, tailored to NN in-
ference. We prove our proposed gadgets secure against
power attacks and show, both formally and experimen-
tally, that they are composable, resulting in secure NN
inference. We further propose optimizations that exploit
intrinsic characteristics of NN inference to reduce the
masking’s runtime and randomness requirements. We
empirically evaluate the performance of our construc-
tions, showing them to incur a slowdown by a factor of
about 2–5.
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1 Introduction
Following ground-breaking advances in the field of ma-
chine learning, an increasing number of real-world ap-
plications, such as image and speech recognition [17, 19,
26, 48], perform classification and prediction tasks using
Neural Network (NN) inference. NN inference has also
found numerous applications in domains that operate on
real-time data. Wearable sensors for health monitoring
[36, 38], smart devices [34, 54] and autonomous vehicles
[32, 56] are typical classes of embedded systems that col-
lect data and perform a classification task in real-time.

In this paper we consider the scenario of NN in-
ference algorithms running locally on an embedded de-
vice (rather than on a cloud computer), as employed by
many popular smart applications and end-user health
monitoring devices [34, 54]. This scenario is preferred in
cases where data privacy is paramount (which may be
compromised in the cloud either during transmission or
by the cloud service itself), or where network connectiv-
ity is unreliable, e.g., in autonomous driving [32, 56].

Even in the scenario of local inference, however,
the privacy of the directly or indirectly involved data
is not fully guaranteed. By pushing trained NN models
to end-user devices, the NN model providers may be in-
advertently making the privacy-sensitive training data
partially recoverable to skilled attackers, which is par-
ticularly concerning in situations that deal with medical
records, health data and biometrics. Membership Infer-
ence [37, 44, 47] and Model Inversion [11, 12] attacks
target the sensitive data that a NN model was trained
on. When executed in a white-box setting, i.e. with de-
tailed knowledge of the NN model (including specific
values of weight parameters), both types of attacks have
been shown to outperform attacks without such knowl-
edge [11, 31], by reducing the false-positive rate during
training data recovery.

Knowledge of some NN model’s parameters is a
natural requirement of white-box attacks. Differential
power analysis (DPA) of the embedded device [23] can
provide this knowledge, paving the way for stealing
privacy-relevant training data. DPA is a form of side-
channel attack in which an adversary recovers sensitive
data involved in the computation of the device, by ob-
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serving its power consumption. Recent work has demon-
strated that DPA can be successfully launched against
NN inference models to reverse-engineer the number of
layers and neurons in each layer, the activations as well
as the values of its various parameters [3, 10, 55].

Motivated by the above privacy concerns, we ask
whether model providers can be better equipped to limit
the leakage of private information from the NN mod-
els they deploy. Specifically, we address the problem of
protecting the internal NN parameters—which, in the
above spirit, we consider to be secrets—against DPA.
We assume the attacker has physical access to the device
executing NN inference (e.g., by purchasing a health
monitoring device) and can therefore control its inputs,
and observe its outputs and power consumption. Our
proposed DPA protection mechanism is masking [5, 16],
a form of secret sharing. We present a suite of masked
operations fundamental in NN inference that are resis-
tant against DPA. Masked computations are carried out
in a finite ring and performed in a shared fashion, i.e.,
they may only operate on randomized shares of a secret,
without reconstructing it.

Two characteristics of NN inference algorithms
make their masking a challenging task. The first is re-
lated to data representation, as NN inference operates
on numerical values which are usually represented by
floating-point arithmetic. Masking of floating-point val-
ues is problematic due to significant precision losses dur-
ing secret sharing and complex floating-point semantics.
In this work we use fixed-point arithmetic for masking
NN inference, as it represents numerical values using
(signed or unsigned) bounded integers, which in turn
are amenable to masking, with marginal losses in pre-
diction accuracy [14, 27].

The second is related to masking of the required op-
erations themselves, which include primitive operations
on fixed-point numbers as well as operations unique to
NN inference. Multiplication in fixed-point arithmetic
requires a truncation operation, which must be masked
as well. We perform masked truncation by adapting an
approach originally proposed in the context of multi-
party computation [35]. Among the non-linear opera-
tions, masking of the activations requires a masked sign
operation, which we accomplish using the bitwise repre-
sentation of signed integers and masked multiplication.

After obtaining a complete set of masked operations
for NN inference, we turn our focus to computational
and randomness requirements. To improve the efficiency
of masked NN inference along both axes, we take into
account its intrinsic characteristics, such as the chain-
ing of layer operations, and propose efficient masked al-

gorithms that are resistant against DPA. Consider the
dot product operation (which takes up a bulk of the
NN inference): instead of a straightforward substitu-
tion of primitive addition, multiplication and trunca-
tion by their masked counterparts, we fuse the masked
primitives into a masked dot product that is more effi-
cient and minimizes precision loss due to truncation. As
for randomness requirements, given the large number of
secret weight parameters (compared to the number of
secret key values of cryptographic algorithms), we de-
vise effective ways to reduce the demands for random-
ness that is required for the weight parameters to be
secret-shared, as well as to perform masked operations
on them.

In summary our contribution are:
1. We devise a library of masked operations fundamen-

tal in NN inference; we call each of them a gadget.
We prove the security of our gadgets under the no-
tion of 1-strong-non-interference (1-SNI) [2]. This
notion guarantees that an attacker observing single
points in the shared computation cannot learn any
information on the secrets, and that 1-SNI gadgets
can be securely composed into larger constructions.

2. We show how to compose our proposed gadgets into
larger constructions, e.g., Multi-Layer Perceptron
(MLP) inference models. We reason about their se-
curity both formally—using again the notion of 1-
SNI—and experimentally, using Test Vector Leak-
age Assessment (TVLA), a standard methodology
for the security evaluation of DPA targets.

3. We describe a tightening of the randomness require-
ments for our proposed inference models. Our ap-
proach vastly reduces the required random numbers,
a scarce resource in embedded devices, from linear
in the number of NN parameters to linear in the
depth of the NN, without impacting security guar-
antees.

4. Finally, we provide secure implementations of MLP
and Convolutional NN (CNN) inference in a pub-
licly available C library, and experimentally evalu-
ate the runtime penalty incurred by our proposed
constructions, as well as the improvements of the
tightening. We provide results for both x86 and
ARM, across different NN architectures. We show
that our masked inference models do not hinder the
accuracy performance and incur about a 5-fold slow-
down for MLP and 2–3-fold slowdown for CNN (in-
cluding the cost of generating the required amount
of random numbers), comparable to or lower than
the slowdowns suffered by commonly encountered
masked cryptographic software [42] (3- to 20-fold).
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Masking of NN in the context of DPA has only been
explored very recently [9, 10]. The prior work targets a
special class of NN, namely Binarized NN (BNN) [39],
which operate mostly on Boolean values, and imple-
ments a masked version of the latter on an FPGA. To
our knowledge, our work is the first to support imple-
menting arbitrary masked Feedforward NN.

2 Motivating Example
Side-channel attacks exploit physical characteristics of
computational systems, such as timing [24], power con-
sumption [23] and electromagnetic emanations [13], to
recover confidential data of the computation. In their
seminal work on Differential Power Analysis (DPA) [23],
Kocher et al. show that an attacker able to observe
power traces of a cryptographic implementation, i.e.,
variations of power consumption during the steps of the
computation, can exploit the correlation between the
values produced along the computation and the amount
of power required to process them, in order to recover
cryptographic secrets.

Threat Model The main objective of this work
is to devise algorithms for NN inference that are resis-
tant against Power Analysis. The pre-trained NNs are
executed as bare-metal applications on a microproces-
sor. Given a classification input, the microprocessor per-
forms an inference round using the NN model. The pa-
rameters constitute the secrets of the NN. Our threat
model assumes a non-invasive, passive attacker [49] that
is able to probe the power consumption of the process-
ing unit. The attacker knows the algorithm executed on
the microprocessor, but doesn’t have access to the ex-
act implementation. The attacker is non-invasive since
they cannot depackage the processing unit in order to
read secrets directly from the wires of the device. The
attacker is passive as they observe the device’s behavior
during the processing without tampering with its func-
tionality, e.g., they don’t inject faults to the computa-
tion or provide malformed inputs. Finally, the attacker
is bounded, i.e., there is a limit on the number of probes
that monitor the device’s power consumption. Attackers
that violate these assumptions, e.g., by using an unlim-
ited number of probes [25] fall outside the scope of this
work.

Example Setting Human Activity Recognition
(HAR) uses mobile sensors of real-time and embedded
systems to enable a wide array of applications such as
life-logging, healthcare, senior care etc. Deep Learning

is a beneficial technology for HAR, as it improves the
inference accuracy without burdening the underlying
hardware [18, 29, 57]. A malicious user with access to a
sensor-based device can launch DPA to reverse engineer
the parameters of the trained network performing HAR.

We demonstrate DPA on a MLP with a single hid-
den layer of 512 neurons (common in HAR tasks [29])
that expects as input motion readings and classifies
them into one of 14 possible activities. The attacker
provides multiple inference inputs to the device, record-
ing the input and the device’s power consumption for
the inference round. The power consumption of an infer-
ence round for input i is the power trace ti; each power
trace consists of the same number of samples. The power
consumption of the device for the trace ti at sample s is
denoted by ti[s]. As a result, the attacker has collected
sets of inputs I and power traces T (|I| = |T |).

Having recorded each inference input, the attacker
targets the multiplication operation between inputs and
weights of the fully connected layer, and makes a guess
wg for the value of a specific weight. Using the guessed
value and the set of inference inputs the attacker com-
putes the set V = {vi := HW (i · wg)|i ∈ I}, where
HW returns the Hamming weight of a value. Then, the
attacker computes Pearson’s correlation ρV,Ts

, where
Ts = {ti[s]|i ∈ I} is the set of power consumption values
at sample s. Figure 1 shows the values of ρ for each sam-
ple of the power traces, for a total of 10K power traces,
for an MLP performing HAR. Around sample 11K we
observe a correlation peak, i.e., a high linear relationship
between vi and the power consumption at sample 11K,
which indicates that at this point of the computation
the MLP performs a multiplication between an input
and the value wg. By performing multiple such correla-
tion tests for different weight guesses, the attacker can
eventually recover the weights of the MLP [3, 49]. In our
work we aim to provide NN inference algorithms that
eliminate any correlations between the values processed
by the device and its power consumption.

Fig. 1. Correlation between the power consumption of MLP in-
ference and the result of multiplication of an input value with a
secret weight.
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3 Background

3.1 (Deep) Feedforward Neural Networks

NN are computing systems that, given some input, ul-
timately render a decision, e.g., assign to the input a
particular classification label. In the context of classi-
fication, Neural networks (NN) can be thought of as
mathematical functions that map an input vector to a
vector of probabilities, each representing the likelihood
for one of the classification outcomes.

Feedforward neural networks (FNN) are the
quintessential deep learning model and form the basis of
many NN applications. They are called feedforward be-
cause information flows through the computation with-
out any feedback. They are called networks because they
can be thought of as composition of multiple functions.
Each function represents a layer of computation, and
the composition of multiple functions forms a chain of
layers. The length of this chain is the depth of the net-
work. The last layer of the chain is the output layer. All
other layers are referred to as the hidden layers.

The number of units in a layer, named neurons,
defines the layer’s width. Each neuron’s output is de-
fined by an expression of the form Activation(

∑
(weight·

input) + bias): the results of the preceding layer form
the inputs of the neuron, which undergo a linear
transformation—i.e., a weighted summation followed by
a bias addition—, and a non-linear activation step.

An entire FNN architecture can be specified by its
parameters along with the type of each layer. An ar-
chitecture such that all the neurons in one layer are
connected to the neurons in the next layer, i.e., it is
Fully Connected (FC), and undergo a linear transfor-
mation followed by an activation function is known as a
MLP. A MLP whose weight parameters are either -1 or
1 is a BNN. A FNN that uses convolutional layer and
potentially pooling and FC layers is a CNN.

3.2 Fixed-Point Arithmetic

Fixed-point arithmetic is an approximation of real arith-
metic that lends itself well to representation on compu-
tational platforms. Fixed-point numbers allocate a fixed
amount of bits to represent their fractional part. An im-
mediate caveat is that for a given word size `, a fixed-
point number can represent a smaller range of decimals
compared to a floating-point number. The fixed num-
ber of bits of the fractional part brings, however, the

advantage that operations over fixed-point numbers can
be carried out by means of simpler circuits. As an ex-
ample, addition in fixed-point arithmetic amounts to
addition over integers that implement wrap-around se-
mantics when overflows occur. This trade-off between
precision/range and simplicity of data representation
and operations has made fixed-point arithmetic a pop-
ular choice on embedded systems and more generally
environments with constrained resources.

Fixed-Point numbers can be represented by signed
or unsigned machine integers parameterized by two pos-
itive numbers ` and `d, where ` is the bit-length of the
integer word, and `d < `. A fixed-point number x can
be now interpreted as a fraction whose numerator is the
two’s complement representation of the `-bit integer x
and whose denominator is 2`d . That is, in fixed-point
representation there is an implicit binary point between
bits `d + 1 and `d. A fixed-point number x can be de-
composed into x1 ·2`d +x2, where x1 is a (signed) integer
and x2 ∈ [0, 2`d).

Fixed-point arithmetic comes in signed or unsigned
forms, depending on whether the bits of the numerator
are interpreted as signed or unsigned numbers. The dif-
ference in sign representation results in different repre-
sentation ranges of a (`, `d) fixed-point number, namely[
−2`−1

2`d
, 2`−1−1

2`d

]
for signed and

[
0, 2`−1

2`d

]
for unsigned.

Addition over fixed-point numbers is straightfor-
ward: it amounts to addition over (signed) integers.
Multiplication is more complicated as it results in a
fixed-point number with 2 · `d bits representing the re-
sult’s fractional part. The solution is an extra operation
that truncates `d bits from the computed product. For
the fixed-point number x = x1 · 2`d + x2, we define the
truncation operation as bxc := x1, which is equivalent
to a right-shift by `d bits of x.

3.3 Masking

Masking [5, 16], the most widely used countermeasure
against DPA, is a form of secret sharing [46] in which
a secret is split into shares that can be combined using
a suitable function to recover the secret. Let ZL be a
finite ring of L elements. A (t+1)-sharing of an element
x ∈ ZL is a (t+ 1)-tuple 〈x〉 = 〈x0, . . . , xt〉 ∈ Zt+1

L such
that x0 ? . . . ? xt = x and xi ∈$ ZL for i ∈ [0, t), where
? ∈ {+,⊕}. Symbol + denotes ring addition, ⊕ is bit-
wise XOR, and ∈$ denotes uniform random selection of
an element from a set. Intuitively, t of the shares are
drawn at random, and the (t+ 1)-th share is computed
from x and the rest of the shares. If ? = +, we speak of
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(t + 1)-arithmetic sharing and denote the (t + 1)-tuple
by 〈x〉L. If ? = ⊕, we speak of (t + 1)-Boolean sharing
and denote the (t+ 1)-tuple by 〈x〉B . Unless stated oth-
erwise, we assume (t+ 1)-arithmetic sharings, or simply
sharings, over ZL and write 〈x〉. In rest of the paper we
use masking and sharing interchangeably.

We call each element of a sharing 〈x〉 a share and
denote the i-th share by 〈x〉i. Given a sharing 〈x〉, we
denote its set of shares by Sx. We use uppercase let-
ters for matrices and vectors, and lowercase for scalars.
Sharings of matrices and vectors are defined as point-
wise sharings of their elements. For an n × m matrix
X ∈ Zn×m

L , 〈X〉 ∈ (Zt+1
L )n×m denotes its (t+ 1)-shared

counterpart; its (i, j)-th element is a t+1-tuple 〈Xij〉 :=
〈X0

i,j , . . . , X
t
i,j〉 such that X0

i,j + . . .+Xt
i,j = Xi,j .

4 Security Model
Our proposed algorithms use masking as the DPA coun-
termeasure [5, 16]. Ishai et al. initiated the theoretical
study of masking and introduced the first notion of secu-
rity against side-channel attacks, namely t-probing se-
curity [20], stating that an adversary that can probe at
most t intermediate results (i.e., values produced along
a computation) of an algorithm cannot recover any in-
formation about the algorithm’s secrets. Proofs of t-
probing security rely on the notion of perfect simulation
and amount to showing that any set of t intermediate
results can be simulated by a proper subset of the input
shares. From the definition of masking, an adversary can
simulate any t of the t+ 1 shares of an input simply by
generating random values. Showing that t intermediate
results can be perfectly simulated by a proper subset
of the input shares implies that the adversary cannot
recover any information on the secrets (beyond the in-
put shares that they generated themselves). A t-probing
secure algorithm is also called t-order secure.

NN inference can be organized as a sequence of op-
erations, each applied layer after layer, giving it a com-
positional structure. Motivated by this characteristic of
NN inference, we provide a set of secure basic NN op-
erations which can in turn be securely composed into
full NN inference algorithms. The standard notion of t-
probing security, however, does not guarantee that the
composition of t-probing secure functions is also secure
[8]. In this paper, we prove all our algorithms secure
under the notion of strong non-interference (SNI) [2]
that enables reasoning about security in a compositional
fashion. Gadgets, i.e., fundamental units of a larger con-

struction, whose inputs are (t+1)-sharings and that are
shown to satisfy SNI, can be composed into algorithms
that satisfy probing security.

Broadly, strong non-interference differs from the
weaker notion of non-interference (NI) (which is a
rephrased notion of t-probing security proposed after
the latter) by distinguishing output shares from inter-
mediate shares (for NI the output shares are also con-
sidered to be intermediate). When output shares are
considered in isolation, their joint distribution must be
uniform, i.e., they must be independent of the input
shares. When considered in conjunction with interme-
diate shares, their joint distribution may only depend
on as many input shares as the number of intermedi-
ate shares considered. These two properties allow SNI
gadgets to be composed safely with other NI gadgets in
a construction, as their output shares reveal no infor-
mation on their input shares. We restate (and slightly
reformulate) here the notions of NI and SNI, originally
introduced by Barthe et al. [2].

Definition 1. Let G be a gadget over n input shar-
ings 〈x0〉, . . . , 〈xn−1〉. G is t-non-interferent, t-NI for
short, if, for every set V of at most t intermediate
shares, there exist n sets A0, . . . , An−1 such that, for
all i, 0 ≤ i < n: Ai ⊆ Sxi , |Ai| ≤ t, and the shares in V
can be perfectly simulated from 〈A0, . . . , An−1〉.

Definition 2. Let G be a gadget over n input sharings
〈x0〉, . . . , 〈xn−1〉 and output sharing 〈o〉. G is t-strong-
non-interferent, t-SNI for short, if, for every set S ⊆
So of at most t output shares and every set V of t′ := t−
|S| intermediate shares, there exist n sets A0, . . . , An−1
such that, for all i, 0 ≤ i < n: Ai ⊆ Sxi , |Ai| ≤ t′, and
the shares in V and S can be perfectly simulated from
〈A0, . . . , An−1〉.

Example 3. We illustrate the differences between the
notions of NI and SNI. Algorithm 1 shows two gad-
gets that add two numbers x, y ∈ ZL each given as a
2-sharing into the result sharing 〈z〉. It is easy to see that
both gadgets are correct: recombining the sharing 〈z〉 by
computing 〈z〉0 + 〈z〉1 results in x + y for both gadgets.
The gadget on the left is 1-NI as each of the intermedi-
ate results depends on at most one of the shares of each
input sharing 〈x〉, 〈y〉. More precisely, using Definition 1
with n = 2 and t = 1, for the intermediate share 〈z〉0
we have that it can be simulated by the 2-tuple of sets
〈A0, A1〉 = 〈{〈x〉0}, {〈y〉0}〉. The same can be shown for
〈z〉1 and therefore the gadget is 1-NI. The same gadget
is not, however, 1-SNI: using Definition 2 with n = 2
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and t = 1, for the output share set S = {〈z〉0} we have
t′ = 0, hence V = A0 = A1 = ∅, but the share 〈z〉0 ∈ S
cannot be simulated from 〈∅, ∅〉.

In order to turn the shared addition algorithm into a
1-SNI gadget, an additional source of fresh randomness
is required, denoted r in the gadget on the right. The
intermediate shares 〈w〉0 and 〈w〉1 are defined using this
random value and can thus be simulated from the empty
set, which settles the case S = ∅ in Definition 2. For
the case S = {〈z〉0}, we get as above: t′ = 0, hence
V = A0 = A1 = ∅. However, unlike with the gadget
on the left, 〈z〉0 can be simulated from the empty set:
we have 〈z〉0 = (〈x〉0 − r) + 〈y〉0. Since r is uniformly
sampled from ZL, this output share is uniform, too. The
same can be shown for the case S = {〈z〉1}.

Algorithm 1 Two gadgets implementing shared addition:
given 2-sharings 〈x〉 and 〈y〉, return 2-sharing 〈z〉 s.t. z = x+y.
The gadget on the right receives an additional input, r ∈$ ZL.

1: 〈z〉0 := 〈x〉0 + 〈y〉0
2: 〈z〉1 := 〈x〉1 + 〈y〉1
3: return 〈z〉

1: 〈w〉0 := 〈x〉0 − r
2: 〈w〉1 := 〈x〉1 + r

3: 〈z〉0 := 〈w〉0 + 〈y〉0
4: 〈z〉1 := 〈w〉1 + 〈y〉1
5: return 〈z〉

To see why NI is not composable, consider a call to
the addition gadget on the left above, followed by a
call to another gadget, name it G, with input sharings
〈z〉, 〈x〉. Under NI, an intermediate result in G that
can be perfectly simulated from shares 〈z〉0 and 〈x〉1
does not reveal any information on neither x nor z. In
this case however, due to the preceding addition gadget
we have that 〈z〉0 = 〈x〉0 + 〈y〉0, which implies that the
ability to simulate 〈z〉0 and 〈x〉1 results in leakage of the
value of x. In the rest of this paper we focus on devising
gadgets that are 1-SNI and therefore lend themselves to
implementing secure NN inference.

5 Masking Neural Networks
In this section we present our masking scheme for se-
cure Neural Network (NN) inference. The main ideas
behind our approach are to use a finite ring of integers
to represent numeric values as fixed-point numbers, to
arithmetically mask this representation, and finally to

design operations that take masked representations of
numeric values as input, and return them as output.

The masked NN hold their masked parameters. At
each inference round, the masked NN must mask the
unshared input and refresh the parameters’ masks (but
never recover them). In order to design operations over
masked representations of fixed-point values, we begin
with gadgets for basic operations (primitives) common
in NN inference. We show masked implementations of
these primitives and prove them to be 1-SNI. An inter-
mediate result is the value stemming from a primitive
operation in an algorithm’s statement. In the case of
multiple operations in a single statement, evaluation or-
der is dictated first by parentheses, in their absence by
the “multiplication-before-addition” rule, and is other-
wise left-to-right. We provide some security proofs and
lemma statements in the main paper and include the
rest of the proofs in the Appendix, along with auxiliary
shared algorithms. The correctness of our algorithms
follows directly from recombining their output shares;
the correctness of our constructions follows by compos-
ing correct gadgets. We then give examples of mask-
ing the computation of network layers by composing
suitable masked gadgets for the basic operations. Cru-
cially, we tap into the strength of SNI, which guarantees
that such compositions preserve the security properties
afforded by masking. Finally, we give an example full
construction by implementing a MLP.

5.1 Representation

For our secure NN inference, we use a finite ring
(ZL,+, ·) of integers to represent signed fixed-point
arithmetic. An integer x ∈ ZL with `d bits allocated
for its fractional part, where `d < ` := log2 L, represents
the numeric value tc(x)

2`d
where tc(x) interprets x in two’s

complement and returns its signed value. At the same
time, x—being an element of ZL—readily lends itself to
arithmetic masking, as described in Section 3.3, i.e., it
can be split into shares 〈x〉 = 〈x0, x1〉, where x1 ∈$ ZL

and x0 = x−x1. The sharings of the gadgets that follow
in the rest of this section represent signed fixed-point
values.

5.2 Basic Operations

Dot Product These operations are fundamental in the
linear components of FNN. In MLP, each neuron com-
putes a dot product between inputs and weight param-
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eters. In CNN, each feature is extracted by convolving
part of the input with a kernel, i.e., by performing a
dot product between the two. Algorithm 2 describes a
masked dot product gadget. It uses sharing 〈c〉 as an
accumulator and performs point-wise secure multiplica-
tion between the elements of its two input vectors.

Algorithm 2 DotProd(〈A〉, 〈B〉, r): shared dot product
Input: 2-sharing vectors 〈A〉, 〈B〉 ∈ (Z2

L)n, r ∈$ ZL.
Output: 2-sharing 〈c〉 s.t. c = A ·B.
1: 〈c〉0 := −r
2: 〈c〉1 := r

3: for k from 0 to n− 1 do
4: 〈c〉0 := 〈c〉0 + 〈Ak〉0〈Bk〉1 + 〈Ak〉1〈Bk〉0
5: 〈c〉1 := 〈c〉1 + 〈Ak〉0〈Bk〉0 + 〈Ak〉1〈Bk〉1
6: return 〈c〉

Algorithm 2 is similar to the secure multiplication
gadget between two masked secrets [42]. It uses a single
fresh random number to mask the accumulator variable.
It is crucial that the accumulator is masked first, be-
fore proceeding with the point-wise masked multiplica-
tions. Alternatively, each masked multiplication can use
a fresh random number, but this would require as many
random numbers as the size of the vectors. The correct-
ness of the algorithm follows by expanding 〈c〉0 + 〈c〉1
and arriving to c. We show below that the optimization
of using a single random number does not compromise
security:

Theorem 4. The DotProd gadget (Alg. 2) is 1-SNI.

Proof. We use Definition 2 with t = 1 and distinguish
two cases. In the first, we consider the output shares,
i.e., S = {〈c〉0} or S = {〈c〉1}, hence t′ = 0 and V =
A0 = A1 = ∅. We have:

〈c〉0 = −r +〈A0〉0〈B0〉1 + 〈A0〉1〈B0〉0 + . . .

+〈Ak〉0〈Bk〉1 + 〈Ak〉1〈Bk〉0
〈c〉1 = r +〈A0〉0〈B0〉0 + 〈A0〉1〈B0〉1 + . . .

+〈Ak〉0〈Bk〉0 + 〈Ak〉1〈Bk〉1

Due to the random value r, both 〈c〉0 and 〈c〉1 are uni-
form and thus can be perfectly simulated by the empty
sets of shares 〈A0, A1〉.

In the second case we consider the intermediate
shares, i.e., S = ∅, hence t′ = 1. We show in Table 1
all single intermediate shares forming set V (left), and
the tuples of sets of input shares with cardinality at
most 1 that can perfectly simulate them (right).

Intermediate shares Sets of input shares

−r ∅
r ∅
〈Ak〉0〈Bk〉0 {〈Ak〉0}, {〈Bk〉0}
〈Ak〉0〈Bk〉1 {〈Ak〉0}, {〈Bk〉1}
〈Ak〉1〈Bk〉0 {〈Ak〉1}, {〈Bk〉0}
〈Ak〉1〈Bk〉1 {〈Ak〉1}, {〈Bk〉1}
r + . . .+ 〈Ak〉0〈Bk〉0 ∅
r + . . .+ 〈Ak〉0〈Bk〉0 + 〈Ak〉1〈Bk〉1 ∅
r + . . .+ 〈Ak〉0〈Bk〉1 ∅
r + . . .+ 〈Ak〉0〈Bk〉1 + 〈Ak〉1〈Bk〉0 ∅

Table 1. Tuples of sets of input shares that can perfectly simulate
the intermediate shares. Instead of presenting 2 ∗ k-tuples of sets
of shares, we show the sets that carry information. If all 2 ∗ k sets
are empty we write ∅.

Truncation The arithmetic 2-sharings we use for
masked NN inference represent signed integers, which in
turn when interpreted as fixed-point integers represent
decimal numbers. As explained in Section 3.2, one of the
benefits of using the fixed-point representation of dec-
imals is that decimal addition and multiplication can
be immediately performed in fixed-point by means of
signed integer addition and multiplication. In the case of
multiplication, an extra truncation step is, however, re-
quired in order to keep the number of bits that represent
the fraction part constant. More precisely, the result of
each signed integer multiplication must be followed by
the truncation of the result’s `d least significant bits.
In the context of multi-party computation of machine
learning models, Mohassel et al. [35] show a probabilis-
tically approximately correct way to truncate an arith-
metic 2-sharing. Their approach is easy and efficient to
implement, and it incurs a small error on the least sig-
nificant bit of the reconstructed result, with high prob-
ability. We recall here a theorem from the prior work:

Theorem 5 ([35]). Let 〈x〉 be the 2-sharing of x ∈
[0, 2`t ]∪ [2`− 2`t , 2`) where `t < `− 1. If 〈bxc〉0 = b〈x〉0c
and 〈bxc〉1 = 2` − b2` − 〈x〉1c then 〈bxc〉0 + 〈bxc〉1 ∈
{bxc − 1, bxc, bxc+ 1} with probability 1− 2`t+1−`.

Broadly, Theorem 5 states that, under some assump-
tions and with high probability, the truncated individ-
ual shares denoted by 〈bxc〉0 and 〈bxc〉1 may have an
off-by-one error from the un-shared truncated value bxc
when recombined. That is, in contrast to all other shared
algorithms in this paper, the truncation operation may
incur a precision loss. Moreover, if the assumptions of
Theorem 5 are not satisfied, the truncation operation
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may result in a faulty value altogether. Specifically, for
the shared truncation to return a value off-by-one from
its unshared counterpart, the unshared value x must fall
into a specific region of ZL, parameterized by the value
`t. Additionally the random number r used in the shar-
ing 〈x〉 must be in the range [2`t , 2`−`t), therefore the
probability of a correct result increases exponentially
with the value of `t. We discuss the choice of appropri-
ate values for `t further in Section 8.

Algorithm 3 shows our rendering of Theorem 5 as a
1-SNI algorithm. The main difference between the two
is the additional fresh randomness at the end of Algo-
rithm 3, which guarantees 1-SNI.

Algorithm 3 Trunc(〈x〉, r): shared truncation
Input: 2-sharing 〈x〉, r ∈$ ZL

Output: 2-sharing 〈z〉 s.t. z ∈ {bxc−1, bxc, bxc+1} with prob-
ability (1− 2lx+1−l)

1: 〈y〉0 := 〈x〉0 � `d B (�) denotes right-shift
2: 〈y〉1 := 2` −

(
(2` − 〈x〉1)� `d

)
3: 〈z〉0 := 〈y〉0 + r

4: 〈z〉1 := 〈y〉1 − r
5: return 〈z〉

Activation These functions constitute the non-
linear component of NN inference. In the context of
this work we consider the rectifier function defined as
ReLU (x) = max(0, x). A straightforward way to com-
pute ReLU (x) in fixed-point arithmetic is via its deriva-
tive ReLU ′ : Z→ {0, 1}: ReLU (x) = ReLU ′(x) · x where
ReLU ′(x) = 1 iff x > 0.

Computing ReLU ′(x) essentially amounts to check-
ing the sign of x. The fixed-point representation that
we consider in this work uses signed integers, which
are in turn represented in two’s complement. The sign
of the number therefore equals its most significant bit
(MSB). However, the shared representation of the MSB
is not simply given by the MSB of the two shares, as
〈x〉0[`−1]+〈x〉1[`−1] 6= x[`−1]. In our approach we use
known transformation functions between arithmetic and
Boolean sharing. We transform the arithmetic 2-sharing
〈x〉 to its corresponding Boolean 2-sharing 〈x〉B , which
satisfies 〈x〉B0 ⊕〈x〉B1 = 〈x〉B . We then compute the MSB
of x by bit extraction.

Algorithm 4 shows how to compute ReLU ′. First
it calls the ArithToBoolean gadget, to transform the
sharing from arithmetic to Boolean. It then extracts
the MSB of the Boolean shares. If their XOR is zero
then—according to two’s complement representation—
x is positive, so ReLU ′ must return 1, otherwise it must

return 0. Hence, we negate one of the extracted bits
(Line 3, via ⊕1). Finally, to return a value that is arith-
metically shared, we transform the Boolean 2-sharing of
the extracted bit to an arithmetic sharing.

Algorithm 4 ReLU ′(〈x〉, R): shared derivative of ReLU
Input: 2-sharing 〈x〉, R ∈$ Z4

L.
Output: 2-sharing 〈y〉 such that y = ReLU ′(x)
1: 〈z〉B := ArithToBoolean(〈x〉, R0, R1)
2: 〈w〉B0 := 〈z〉B0 [`− 1]
3: 〈w〉B1 := 〈z〉B1 [`− 1]⊕ 1
4: 〈y〉 := BooleanToArith(〈w〉B , R2, R3)
5: return 〈y〉

ArithToBoolean and BooleanToArith were originally
introduced by Goubin [15] and shown to be 1-NI. They
have since been optimized and extended to higher-
orders of protection [7] as well as shown to be 1-SNI [6].
The conversion gadgets require 2 fresh random numbers
each, in order to guarantee 1-SNI, so Algorithm 4 ex-
pects an array R consisting of 4 fresh random numbers.

ReLU ′ is the first non-primitive gadget so far, con-
structed by composition of other 1-SNI gadgets. We pro-
vide a lemma useful in proving non-primitive gadgets.

Lemma 6. Let G be a 1-SNI gadget over input shar-
ings 〈x0〉, . . . , 〈xn−1〉, output sharing 〈o〉. Each output
share of G can be perfectly simulated from the empty
set.

Theorem 7. The ReLU ′ gadget (Alg. 5) is 1-SNI.

The final step toward computing the ReLU activation is
to multiply the result of ReLU ′(x) with x. Algorithm 5
implements the shared ReLU activation, using the Mul
gadget to multiply two sharings. Mul is well studied in
the side-channel literature [20, 42] and has been shown
to be SNI. While Algorithm 5 performs a multiplication,
notice that it is not followed by a truncation operation.
This is due to the first operand of the multiplication
being the result of ReLU ′(x) which is either 0 or 1. This
implies that the final multiplication result will be ei-
ther 0 or x, neither of which requires truncating excess
fractional bits. Algorithm 5 expects a vector of 5 fresh
random numbers as parts of its inputs: 4 dedicated to
the shared ReLU ′ computation, and 1 to Mul.
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Algorithm 5 ReLU (〈x〉, R): shared rectifier function
Input: 2-sharing 〈x〉, R ∈$ Z5

L.
Output: 2-sharing 〈y〉 such that y = ReLU(x)
1: 〈z〉 := ReLU ′(〈x〉, R0:4)
2: 〈y〉 := Mul(〈z〉, 〈x〉, R4)
3: return 〈y〉

Max Pool Pooling components appear in CNN
after their linear and non-linear components and are
meant to provide a summary statistic of nearby elements
of a layer. A commonly used statistic is that of the max-
imum element, i.e., MaxPool. To compute MaxPool over
n shared elements, we iteratively compute the maxi-
mum of two values: the i-th element and the maximum
of the i − 1 previous elements and return the result of
the (n− 1)st maximum operation.

The above scheme allows us to focus on the problem
of computing the maximum of two values, max(x, y). We
observe that ReLU is a special case of max with y = 0
and use the same idea of extracting the sign of a value,
only this time of the difference x−y. We do this via the
comparison function Cmp(x, y) := ReLU ′(x − y). The
result of Cmp, i.e., the sign bit of x − y, along with its
negation can now be used to compute the maximum as
max(x, y) = Cmp(x, y) · x+ (Cmp(x, y)⊕ 1) · y.

Algorithm 6 implements shared MaxPool. At itera-
tion i, the shared Cmp(〈Xi+1〉, 〈yi〉) gadget returns a tu-
ple of sign sharings 〈si〉, 〈s′i〉 where si = ReLU ′(Xi+1 −
yi) and s′i = ReLU ′(Xi+1 − yi) ⊕ 1. The sign sharings
are multiplied with the current shared element 〈Xi+1〉
and the previous maximum 〈yi〉, resp., and their results
are added to compute the maximum of the two.

Algorithm 6 MaxPool(〈X〉, R): shared maxpool
Input: 2-sharing vector 〈X〉 ∈ (Z2

L)n, R ∈ Z9n
L

Output: 2-sharing 〈y〉 such that y = max
0≤i<n

Xi

1: 〈y0〉 := 〈X0〉
2: for i from 0 to n− 1 do
3: 〈si〉, 〈s′i〉 := Cmp(〈Xi+1〉, 〈yi〉, R9i:9i+6)
4: 〈wi〉 := Mul(〈si〉, 〈Xi+1〉, R9i+6)
5: 〈zi〉 := Mul(〈s′i〉, 〈yi〉, R9i+7)
6: 〈yi〉 := Add(〈wi〉, 〈zi〉, R9i+8)
7: return 〈yn−1〉

As with ReLU , the two shared multiplications do
not need to be followed by a shared truncation, as one
of their operands is always a sign sharing, representing
either 0 or 1. The Cmp gadget (shown in the Appendix)
closely follows the shared ReLU ′ gadget: it prepends Al-

gorithm 4 with a shared subtraction operation and ap-
pends it with an additional call to BooleanToArith for
the complementary sign sharing. Due to these two addi-
tional operations, shared Cmp requires 6 fresh random
numbers. Shared MaxPool requires 9 random numbers
per binary max computation, for a total of 9(n− 1) for
a MaxPool of n elements.

Theorem 8 summarizes the security proofs for the
remaining gadgets of basic operations.

Theorem 8. The Trunc, ReLU , Add, Mul, Cmp,
MaxPool gadgets are 1-SNI.

5.3 Layer Operations and Full
Constructions

We demonstrate how the gadgets for basic operations
defined in the previous section can be composed into
layer operations, and provide a full construction of a
shared MLP. We compose the DotProd,Trunc,Add gad-
gets into the Linear gadget of Algorithm 7, which com-
putes the linear component of a FC connected layer. To
avoid unnecessary loss of precision we perform trunca-
tion once per neuron, after the dot product and before
bias addition. The Linear gadget requires a number of
fresh randoms linear in the layer’s width m. A convo-
lutional gadget can be constructed (and shown to be
1-SNI) using the same gadgets and invoking them in
the same order (see Appendix). The difference lies in
the selection of inputs that are multiplied with the con-
volution kernel in the DotProd gadget.

Algorithm 7 Linear(〈I〉, 〈W 〉, 〈B〉, R): shared FC lin-
ear component
Input: Input vector 〈I〉 ∈ (Z2

L)n, weight matrix 〈W 〉 ∈
(Z2

L)m×n, bias vector 〈B〉 ∈ (Z2
L)m, R ∈$ Z3m

L .
Output: 〈Z〉 s.t. Z = I ×W +B

1: for i from 0 to m− 1 do
2: 〈Xi〉 := DotProd(〈I〉, 〈Wi,:〉, R3i)
3: 〈Yi〉 := Trunc(〈Xi〉, R3i+1)
4: 〈Zi〉 := Add(〈Yi〉, 〈Bi〉, R3i+2)
5: return 〈Z〉

The Activation gadget, shown in Algorithm 8, is
straightforward and computes the non-linear compo-
nent of a layer by applying the ReLU gadget to all neu-
rons of a layer. As each call to ReLU requires 5 fresh
random numbers the total cost of the activation layer in
terms of fresh randoms is 5m where m the layer’s width.
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Algorithm 8 Activation(〈X〉, R): shared Activation
Component
Input: 2-sharing vector 〈X〉 ∈ (Z2

L)m, R ∈ Z5m
L

Output: 2-sharing vector 〈Z〉 ∈ (Z2
L)m s.t. Zi = ReLU(Xi),

0 ≤ i < m

1: for i from 0 to m− 1 do
2: 〈Zi〉 := ReLU(〈Xi〉, R5i:5(i+1))
3: return 〈Z〉

The layer operations are composed exclusively of 1-
SNI gadgets. Thus, by Lemma 6, all their intermediate
and output shares can be simulated by tuples containing
empty sets of shares. The proof of security for the layer
operations follows directly from this observation.

Theorem 9. The Linear, Activation gadgets are 1-SNI.

Having access to 1-SNI layer operations, we can com-
pose multiple layers in a larger chain construction and
form a shared MLP. In Algorithm 9 we show a shared
MLP with n shared inputs, a single hidden layer of
width m and an output layer of width k. It requires
(3 + 5)m+ 3k fresh random numbers in total, i.e., linear
in the size of the network’s width. The precision loss that
can be incurred in the network, when compared to its
unmasked fixed-point counterpart, grows with the depth
of the network, as each linear layer operation requires
a truncation step. Similarly to the layer operations, the
security of Algorithm 9 follows directly from the 1-SNI
layer gadgets.

Algorithm 9 FNN: 2-shared MLP. (1 hidden layer)
Input: 〈I〉 ∈ (Z2

L)n, 〈W1〉 ∈ (Z2
L)m×n, 〈B1〉 ∈ (Z2

L)m, 〈W2〉 ∈
(Z2

L)k×m, 〈B2〉 ∈ (Z2
L)k: 2-shared inputs and parameters.

Output: 2-shared classification output vector 〈Z〉 ∈ (Z2
L)k.

1: R1 ∈R Z3m
L , R2 ∈R Z5m

L ,R3 ∈R Z3k
L

2: 〈X〉 := Linear(〈I〉, 〈W1〉, 〈B1〉, R1)
3: 〈Y 〉 := Activation(〈X〉, R2)
4: 〈Z〉 := Linear(〈Y 〉, 〈W2〉, 〈B2〉, R3)
5: return 〈Z〉

6 Security Evaluation
In Section 5 we provided masked gadgets whose com-
position leads to masked FNN inference algorithms. We
reasoned about their security in the probing model by
showing the inference algorithms to be 1-SNI. This im-
plies that an attacker probing 1 intermediate result of
the masked computation cannot recover any informa-

tion on the secret, i.e., the network’s parameters. The
probing model however, relies on some assumptions,
e.g., that each intermediate result leaks independently
[40]. In this section we investigate the leakage behavior
of our proposed algorithm in practice, and experimen-
tally validate its security.

Test Vector Leakage Assessment (TVLA)
This is a leakage evaluation methodology [45] that uses
Welch’s t-test to asses the security for implementations
of masked algorithms. TVLA requires the collection of
two power measurement datasets: one where the inputs
to the masked implementation are fixed to a specific
value, and one where the input of each measurement is
random. We then compute the so-called fixed-vs-random
t-test values for the two datasets on all points (i.e., sam-
ples) of the measurement traces and test the hypothesis
that the traces in the two datasets have the same means
on all points. High t-test values indicate violation of
the null hypothesis, i.e., that the traces have the same
means on all points. By increasing the degree of freedom
of the t-test, i.e., the number of measurement traces in
the datasets, the confidence on accepting or rejecting
the null hypothesis also increases. Usually a predefined
threshold is set to reject the null hypothesis based on the
t-test value. In common industry standards for TVLA,
the t-value threshold is set to |th| = 4.5. When the t-
values on all points of the traces are lower than the
threshold, it confirms that there are no leakages on the
traces. Attacking an implementation whose t-test values
lie within |th| is expected to have the same success rate
as a random guess [43].

Experimental SetupWe use a STM32F407IG 32-
bit ARM Cortex-M4 CPU, clocked at 168Mhz and with
1MB of internal flash memory, to execute our masked
implementations as bare-metal applications. We collect
power measurements using a LeCroy oscilloscope with
a sampling rate of 1GS/s (GS =giga-samples) in or-
der to collect approximately 6 samples per clock cycle.
The CPU is part of the Pinata Development board [41],
which bypasses the on-board voltage regulator and pro-
vides less-noisy power signals.

Figure 2 shows a diagram of our collection setup.
A control unit (a PC) generates the input sharings as
well as any random sources required by the gadgets, and
communicates them to the board. The board reads the
parameters and sets a trigger signal, prior to and after
executing the masked algorithm, and communicates the
algorithm’s result to the control. The oscilloscope cap-
tures the power measurement within the trigger window
and communicates it to the control unit: we call each
power measurement collected in this way a trace. For
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reproducibility purposes, we use an AES-based seeded
pseudo-random number generator (PRNG) to generate
the random numbers required for the input and param-
eter sharings and for the fresh random numbers of the
gadget computation.

Oscilloscope

Pinata Board
(Cortex-M4)

Control

shar
ings

,

fresh
rand

oms trigger

trace

Fig. 2. Trace collection setup.

Evaluation We evaluate a masked C implementa-
tion of a MLP similar to the one presented in Algo-
rithm 9, with an architecture of 2 inputs, a single hid-
den layer of 2 neurons, and an output layer of width 2.
We chose this minimal architecture to keep the number
of samples collected for each trace small, while still be-
ing able to exercise all the basic and layer operations
described in Section 5. Following Algorithm 9, our im-
plementation expects as input the input and parameter
sharings (〈I〉, 〈W1〉, 〈B1〉 etc.) as well as the fresh ran-
dom numbers (R), and outputs a classification proba-
bility vector. The sharings and fresh randoms are gen-
erated offline (in the control unit). In our TVLA we use
the non-specific t-test, which makes no assumptions on
the leakage model of the board and targets all interme-
diate shares. During trace collection we interleave (at
random) the traces of the fixed and random datasets
to avoid any external influences or dependencies on the
internal state of the board.

Figure 3 shows fixed vs random t-test results for the
whole inference computation of the MLP described in
the previous paragraph. We have performed three exper-
iments. In the first, called PRNG-Off, instead of using
the PRNG to supply the random values used in sharings
and the fresh random numbers, we set these values to
a constant. This is the baseline, as the lack of random-
ness in the sharings should result in high leakage. This
conjecture is confirmed in Figure 3 (a): at 100K traces,
we see clear deviations from set threshold |th| = 4.5, for
samples throughout the trace, rejecting the null hypoth-
esis and indicating the existence of power leakage.

In the second experiment, called PRNG-On, we use
the seeded PRNG to supply the random values. The re-
sult is shown in Figure 3 (b): at 1 million traces, there is
no indication of exploitable power leakage, as the t-test
values fall within the desired threshold, for all sample

points along the whole trace, validating that our masked
gadgets do eliminate first-order power leakage. In the
third experiment, we increase the order of the t-test in
the TVLA. A second-order TVLA checks the hypoth-
esis that two datasets have the same second statistical
moments (i.e., no second-order leakage). Figure 3 (c)
invalidates this hypothesis by showing values outside of
th, which indicate that there are still second-order leak-
ages in the traces. Since our implementations are 1-SNI,
they do not have first-order leakage but do not protect
against second-order leakage. With this experiment we
validate the correctness of our measurement setup and
the security protection of our gadgets.
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Fig. 3. T-test of full shared MLP inference. (a): PRNG-Off, (b):
PRNG-On, (c): 2nd-order PRNG-On, (d): PRNG-On Tightened.
(a): 100K Traces, (b-d): 1 mil. Traces.

7 Tightening Random Numbers
In Section 5.3 we gave an example of a shared MLP with
n inputs, a single hidden layer of widthm and an output
layer of width k and found that, for an inference round,
masking of the shared layer operations requires a num-
ber of randoms linear in the layer’s width. In addition
to masking operations, at each inference round the in-
puts as well as the weights of the MLP must be masked
with fresh random numbers, increasing the randomness
requirements to linear in the number of parameters of
the MLP. Random numbers are an expensive resource,
as their generation requires either hardware support or
frequent invocation of PRNG routines.

In this section we describe our approach to tighten-
ing the number of required fresh randoms for masking
of both the NN parameters and operations involved in
a layer. The key observation that enables this tighten-
ing is that within a layer, each neuron’s (in the case of
MLP) or feature’s (in the case of CNN) computation can
be done in parallel. The main ideas behind our tighten-
ing approach are i) to re-use the same random numbers
in the sharings of the parameters of a layer, and ii) to
re-use the fresh random numbers in the gadgets across
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different neurons/features of the same layer. We show
that, despite aggressively re-using random numbers, the
gadgets of Section 5 can be made to satisfy 1-SNI.

We begin with tightening the number of randoms in
a layer’s parameter sharings and propose to use a single
random number for all parameters of a layer. We focus
on the DotProd gadget as both MLP and CNN compute
their linear components first. Theorem 10 formalizes the
idea behind using a single random number in sharings
of parameters of a layer and a single random number in
sharings of inputs. Its proof is similar to that of Theo-
rem 4 after swapping the parameter (and input) shares
for a single random number.

Theorem 10. The DotProd gadget with 〈A0〉1 = . . . =
〈An−1〉1 and 〈B0〉1 = . . . = 〈Bn−1〉1 is 1-SNI.

Proof. Let ar := 〈A0〉1 = l · · · = 〈An−1〉1 and br :=
〈B0〉1 = . . . = 〈Bn−1〉1. We use Definition 2 with t = 1
and distinguish two cases. In the first, we consider the
output shares, i.e., S = {〈c〉0} or S = {〈c〉1}, hence
t′ = 0 and V = A0 = A1 = ∅. We have:

〈c〉0 = −r + 〈A0〉0br + ar〈B0〉0 + . . .

+〈An−1〉0br + ar〈Bn−1〉0
〈c〉1 = r + 〈A0〉0〈B0〉0 + arbr + . . .

+〈Ak〉0〈Bk〉0 + arbr

Due to the random value r, both 〈c〉0 and 〈c〉1 are uni-
form and can be perfectly simulated by the empty sets
of shares 〈A0, A1〉.

In the second case we consider the intermediate
shares, i.e., S = ∅, hence t′ = 1. We show in Table 1
all single intermediate shares forming set V (left), and
the tuples of sets of input shares with cardinality at
most 1 that can perfectly simulate them (right).

Intermediate shares Sets of input shares

−r ∅
r ∅
〈Ak〉0〈Bk〉0 {〈Ak〉0}, {〈Bk〉0}〉
〈Ak〉0br {〈Ak〉0}, {br}
ar〈Bk〉0 {ar}, {〈Bk〉0}
arbr {ar}, {br}
r + . . .+ 〈Ak〉0〈Bk〉0 ∅
r + . . .+ 〈Ak〉0〈Bk〉0 + arbr ∅
r + . . .+ 〈Ak〉0br ∅
r + . . .+ 〈Ak〉0br + ar〈Bk〉0 ∅

Table 2. Sets of input shares that can perfectly simulate the in-
termediate shares.

We now turn to tightening the fresh random num-
bers required for sharing layer operations. We discuss
the Linear gadget of MLP; the goal is to use the same
fresh random values across its neurons. More precisely,
the DotProd, Add and Trunc gadgets, which Linear is
composed of, can use the same fresh random values
at each neuron. The reason is that their computations
are completely parallel. We can therefore rewrite Algo-
rithm 7 so that it requires R ∈$ Z3

L instead of R ∈$ Z3m
L

and re-uses the random values R0, R1 and R2 at each in-
vocation of DotProd, Add and Trunc respectively, across
the m neurons. A similar type of reasoning can be ap-
plied to the Activation gadget. All invocations of ReLU
at different neurons can use the same random sources.
Therefore we can rewrite Algorithm 8 so that it requires
R ∈$ Z5

L instead of R ∈$ Z5m
L . Following the above ob-

servations, a theorem similar to Theorem 9 can be eas-
ily shown for the tightened version of the Linear and
Activation gadgets.

We make two remarks. First, the bias parameter
tightening does not compromise 1-SNI of the Add gad-
get as all the calls to Add are invoked in parallel, and
the results of DotProd are masked by R0. Second, the
results of each neuron of a layer depend on the same
fresh random numbers. This satisfies the condition of
Theorem 10 that both its inputs (i.e., the results of the
previous layer) and its parameters can use a single fresh
random value each. We can therefore apply the tighten-
ing strategy in a chain of layers.

Table 3 compares the randomness requirements
of the original gadgets described in Section 5 and
their tightened versions described in this section, which
re-use random numbers. The original layer gadgets
(Linear ,Activation) require a number of randoms lin-
ear in their parameter count. The tightened versions
require a constant number of randoms, without com-
promising the 1-SNI security property of the gadgets.
We have experimentally confirmed that the tightening
has no discernible impact on the leakage behavior of our
implementations. We have performed the same fixed-vs-
random t-test experiment as in Section 6 with PRNG-
on for the tightened implementation and for 1 million
traces. Figure 3 (d) shows that, as in the original ver-
sion, there is no indication of power leakage.

The tightened Linear and Activation gadgets can
be readily used in CNN inference. The MaxPool gadget,
however, is not amenable to our tightening approach.
The reason is that the output of MaxPool depends on
the intermediate shares it introduces (which hold the
max value up to the i-th iteration). Using the same ran-
dom values for these intermediate shares would cancel
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Parameter
sharings

Neuron
computation Total

original m · n+m 3m+ 5m m · n+ 9m
tightened 1 3 + 5 9

Table 3. Randomness requirements for a layer of n inputs and m
neurons, invoking the Linear and Activation gadgets.

the masks and result in leakage. In practice, this is not
problematic as MaxPool is commonly performed over 4
elements, so its randomness requirements do not depend
on the number of CNN parameters. Multiple invocation
of the MaxPool gadget can reuse the same random num-
bers, as their results are independent of each other.

8 Performance Evaluation
In this section we investigate the performance character-
istics of our proposed gadgets and pursue the following
questions: 1) How much overhead does the shared NN
inference incur, compared to its unshared counterpart?,
2) How much does the shared NN inference impact the
model’s accuracy?

8.1 Operation Complexity

We describe first a simple computational cost model and
use it to provide a complexity analysis for shared and
unshared inference. The complexity model counts prim-
itive operations of the same type; it ignores loads and
stores from memory. It consist of 4 types, namely ad-
dition, multiplication, bitwise, and comparison opera-
tions. We apply the model at the layer level, and com-
pare the operation counts per type, for the unshared
and shared NN inference. We focus our analysis on FC
layers and the MaxPool operation. The gadgets used
in FC layers also appear in convolution layers, so their
results transfer directly. Since our shared NN gadgets
rely on fixed-point representation of the numeric values
of the network, we use the fixed-point representation for
unshared NN inference to perform a fair comparison.

Each cell of Table 4 shows how often each type
of operation (shown in columns) occurs, for every un-
shared subcomponent (shown in rows) of. We have im-
plemented the unshared ReLU as (x > 0) ∗x, to allow a
fair comparison with the shared ReLU gadget. The trun-
cation operation is implemented as a right-shift. Asymp-

ADD MUL BIN CMP

Dot Product m · n m · n 0 0
Bias Addition m 0 0 0
Truncation 0 0 m 0
ReLU 0 m 0 m

Total m · n+m m · n+m m m

MaxPool n− 1 2(n− 1) 0 n− 1

Table 4. Primitive operation counts of unshared FC layer with n
inputs, m neurons (top), of Maxpool over n elements (bottom).

totically, for a FC layer, the cost of inference is linear
in the product of its number of inputs and its width.

ADD MUL BIN

DotProd 4m · n 4m · n 0
Add 4m 0 0
Trunc 4m 0 2m
ReLU 8m 36m 130m
Total 4m · n+ 16m 4m · n+ 36m 132m
MaxPool 4(n− 1) 42(n− 1) 252(n− 1)

Table 5. Primitive operation counts of shared FC layer with n
inputs, m neurons (top), of Maxpool over n elements (bottom).

The rows in Table 5 are now the shared gadgets we
presented in Section 5. The operation counts per type
can be inferred from the corresponding gadget. For ex-
ample, the Add gadget is invoked m times and performs
4 primitive additions; therefore, its entry in column ADD
has a count of 4 · m. Notice that there is no CMP op-
eration, as we perform comparison by 0 by means of
the ReLU ′ or Cmp gadgets. ReLU and MaxPool are the
most complicated gadgets as they make use of the Mul,
BooleanToArith and ArithToBoolean (the implementa-
tions of the conversion and comparison gadgets along
with a detailed operation breakdown of all basic gad-
gets are shown in Appendices A, C. Asymptotically, the
cost of shared NN inference is still linear in the layer
size. However, the dominating factor m · n is multiplied
by a constant factor of 4.

8.2 Experimental Evaluation

We evaluate the performance of our unshared, shared
and tightened implementations of NN inference in terms
of runtime and accuracy. We investigate whether the
operation overhead incurred by the sharing matches the
slowdown predicted by our simple complexity model in
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the previous section, and whether sharing influences the
accuracy of NN models.

NN Models We have trained NN of different
classes (MLP, CNN, BNN) in PyTorch on the MNIST
dataset, extracted their floating-point parameters, and
converted them to fixed-point parameters for shared in-
ference. We choose a collection of NN ranging from stan-
dard networks for MNIST [30], to models that were used
in prior work related to secure inference [10, 35, 53]. We
scale up these networks by increasing the depth, width,
and number of channels to further evaluate how our al-
gorithms respond. The architectures we work with are
common in the domain of HAR [18].

Inference Library We have implemented the
shared algorithms for secure inference in a C library 1 .
The library includes the unshared, fixed-point counter-
parts of the algorithms, which we use as a baseline. For
each NN model we provide four inference implementa-
tions. The unshared implementation is straightforward
and implements ReLU(x) as (x > 0) ·x to match the be-
havior of the shared implementation. The shared imple-
mentations follow the algorithms of Section 5 and use
a software PRNG (KECCAK-based [4]) to generate the
random numbers that they require for sharing the inputs
and parameters, as well as those for layer operations. We
have implemented three shared versions. shared-prng-
off doesn’t generate random values but uses constants
in their place. The intention of this version is twofold:
it is meant to separate the cost of sharing from the cost
of randomness generation, and it serves as a baseline for
comparing implementations with different randomness
requirements. shared-original uses a number of ran-
doms linear in the size of each layer and in the number
of the model’s parameters. Finally, shared-tightened
uses a constant number of random numbers for each
layer as well as for the parameters of each layer, as de-
scribed in Table 3 of Section 7.

We represent fixed-point numbers using signed 32-
bit integers. Our shared implementations substitute
each fixed-point value by a tuple of shared values, ef-
fectively doubling the memory requirements of their un-
shared counterparts. We defer a space optimized version
of our library for future work.

We recall from Section 5.2 that the Trunc gadget’s
probability of correctness is parametric to the value
`t < ` = 32, and discuss how to choose values for `t, `d.
`t constrains the range of integers in ZL that can be
shared. In detail, only the integers in [0, 2`t)∪ [2`−`t , 2`)

1 https://gitlab.com/athanasiou.k/masked-nn-lib

can be used to represent plaintext data and random
numbers must come from the range [2`t , 2`−`t). We per-
form a profiling step in which we vary the values of `t
and `d < `t and observe the accuracy performance of an
unshared MNIST MLP. In our experiments, the pair
(`t, `d) = (16, 6) maximized the accuracy. `t = 16 gives
a 99.99% chance for the Trunc gadget to return a wrong
result and allows us to share fixed-point values in the
range [− 2`t

2`d
, 2`t

2`d
) = [−1025, 1025).

Accuracy Our goal is to evaluate the impact
of sharing, and specifically the additional precision
losses of shared truncation, in the accuracy perfor-
mance of fixed-point NN inference. We use the accu-
racy % of unshared as our baseline and report the
differences in accuracy % with the baseline for the
shared-original and shared-tightened implemen-
tations (columns Acc. δ in Table 6). We observe small
differences in the range [−0.33, 0.19] % (negative num-
bers indicate losses).

Neither the class nor the architecture of NN sug-
gest trends for the accuracy δ. Tightening the random-
ness requirements has no significant impact on the ac-
curacy δ as the tightened algorithms perform the same
number of truncation operations, but on different ran-
dom values. This is reflected in the small differences in
the accuracy δ between shared-original and shared-
tightened. Optimizing the accuracy of the unshared
DNN by means of training, and translating the models
from floating-point to fixed-point arithmetic constitute
orthogonal concerns. We omit results on the accuracy
of shared-prng-off since its main goal is to provide
runtime insights.

Runtime We measure the runtime of the four
implementations of each DNN in a desktop Intel-i7-
4770@3.40GHz with 16GB RAM. Working with x86 al-
lows us to evaluate larger networks so we use it to inves-
tigate how our algorithms scale. We measure runtime in
cycles using CPU time-stamp counters and report them
in Table 6. Figure 4 shows the slowdown of the shared
implementations relative to the unshared version.

We note that in MLP models shared-prng-off
is about 5.5 times slower than unshared across all
networks, which matches the complexity analysis of
the previous section. shared-original incurs slow-
downs larger than an order of magnitude in all MLP.
shared-tightened reverses the “trend”: compared to
unshared its slowdown is negligibly larger than that
of shared-prng-off compared to unshared. We also
report in Figure 4 the slowdown of a MLP executed in
ARM Cortex-M4, as embedded devices are the nomi-
nal target of power analysis attacks. Due to memory
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DNN Architecture unshared shared-prng-off shared-original shared-tightened
Acc. % Cycles Cycles Acc. δ Cycles Acc. δ Cycles

MLP 15 92.99 105,952 583,601 -0.01 3,551,167 0.0 596,193
MLP [30] 1000 96.11 7,041,711 37,949,619 0.03 223,276,433 0.01 38,605,268
MLP [35, 53] 128-128 96.6 1,059,416 5,727,786 0.17 33,646,512 0.19 5,833,809
MLP [30] 300-100 96.86 2,379,748 12,708,031 -0.02 75,081,421 0.01 12,934,383
MLP 128-128-128 96.34 1,206,417 6,635,506 0.0 38,644,214 0.0 6,742,266
MLP 256-256-256 97.11 3,000,600 16,270,602 -0.03 95,133,584 -0.06 16,628,439
BNN [10] 512 57.61 3,613,095 19,355,779 -0.11 114,252,312 -0.06 19,681,165
CNN [30, 53] (6,5)-(16,5)-256-120-84 97.92 6,244,028 20,964,586 -0.03 50,164,490 -0.07 21,157,075
CNN (16,5)-(32,5)-1568 98.15 58,757,262 137,914,596 -0.33 238,620,513 -0.28 138,337,964

Table 6. Accuracy and runtime evaluation of DNN models on MNIST. Architecture separates layers by dashes, denotes FC layers by
their width, and convolutional layers by the tuple (c, k) where c the output channels, k the kernel dimension of the convolutional layer.
All architectures have a FC output layer of width 10. Cycles are the average CPU cycles required per inference round over the 10K test
images of MNIST. δ is the result of subtracting the accuracy % of the unshared from the shared implementation.

limitations, the MLP executed in ARM expects 250 in-
puts. The depth and width of hidden layers as well as
the underlying execution platform have no impact on
the MLP implementations’ slowdown as it remains the
same across MLP models and platforms. The BNN im-
plementation’s slowdown follow that of the MLP mod-
els, which is expected as our library handles BNN by
setting their weight parameters as either -1 or 1, and
otherwise treats them as regular MLP.

CNN models demonstrate different slowdown char-
acteristics when compared to MLP, but also between
different CNN architectures. Broadly in CNN, shared-
prng-off shows smaller slowdown that in MLP. We
attribute this to the better data locality between sub-
sequent calls to the dot product operation of a convo-
lutional layer. The slowdown of shared-original in
CNN is again smaller when compared to its equivalent
of MLP (an order of magnitude). CNN models have a
vastly smaller number of parameters compared to MLP
and require less random values to mask them in shared-
original. shared-tightened in CNN has the same
impact as in MLP, i.e., it makes the slowdown mini-
mally larger than that of shared-prng-off. Finally,
we see that between the two CNN models, the one with
fewer FC layers (and total number of neurons) performs
much faster, despite the fact that it’s convolution layers
have a much larger number of channels.

The above trends demonstrate that shared convo-
lution layers perform invariably better than FC layers.
We consider the reported slowdowns to be encouraging
toward the general direction of application of masking
in NN inference. The 2.3–5.6× slowdown of shared NN
inference is lower than the slowdowns suffered by com-

monly encountered masked cryptographic algorithms,
e.g., masked AES [42], in software implementations.
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9 Related Work and Discussion
DPA and Masking in NN Inference Batina et al.
[3] were the first to successfully launch DPA against NN
inference algorithms. They reverse engineer all the pa-
rameters as well as the NN structure for MLP and CNN
inference, executed on AVR and ARM microcontrollers.
Dubey et al. [10] performed DPA on an FPGA executing
BNN inference and Yu et al. extended attacks against
the same type of networks in the domain of electromag-
netic emanations [55]. Dubey et al. [10] were the first to
propose countermeasures for NN against DPA and used
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a combination of Boolean masking and hiding [50] to
protect BNN inference in hardware against DPA.

The work closest to ours is BoMaNet [9] which de-
scribes a Boolean masked hardware implementation of
BNN. Dubey et al. use masked lookup tables (LUT) to
implement masked multiplication, and a masked imple-
mentation of ripple-carry adders for summations. ReLU
activations are implemented by MSB extractions. The
carry computation in the adder circuit requires mask-
ing of non linear AND gates, which they perform using
the Trichina AND gate [51]. BoMaNet’s masked circuits
have been used to implement only MLP architectures
and no formal guarantees of its masked circuits is pro-
vided. The constructions they provide are shown to ex-
perimentally satisfy 1-NI security, however in principle,
we conjecture they could be refined to also satisfy 1-SNI.

BNN MLP inference utilizes the fact that parame-
ters are binary values to perform space and time opti-
mizations. As an example, a dot product computation
over n elements can be carried out as an XNOR op-
eration between two n-bit registers. The constructions
in BoMaNet are specific to such BNN characteristics
and do not extend to non-binarized NN that have pa-
rameters of arbitrary values. While BoMaNet’s masked
adder and MSB extraction for the ReLU computation
could be extended to non-binarized NN, implementing
masked multiplication by means of LUT is prohibited
when dealing with arbitrary weight values. On the flip-
side, while our library can implement NN inference for
any value representable in fixed-point arithmetic, in-
cluding BNN (by simply representing weights as fixed-
point 1 or -1), our gadgets are not optimized to exploit
the binary weights (e.g., by performing dot product via
a single XNOR). In terms of randomness requirements,
BoMaNet does not exploit the layered structure of NN
inference to reduce its randomness requirements. Each
secret parameter requires a fresh random value to be
masked and so does each non-linear operation. Finally,
BoMaNet’s secure circuits have been used to implement
a 2-layer MLP and have not been applied to CNN.

BoMaNet uses additional flip-flops to partially ac-
count for known issues related to hardware glitches in
CMOS circuitry [33]. Our work considers platform spe-
cific leakage characteristics, e.g., glitches or transition
based leakage [1], an orthogonal question.

Secure Multi-Party Computation (MPC) A
large body of work uses secret sharing techniques for
NN and machine learning models in the context of MPC,
both for training [28, 35, 53] and inference [21, 22, 52].
Masking and MPC target orthogonal security proper-
ties, e.g., a party in MPC might be the exclusive owner

of a secret that must be protected against DPA. In
masking there is a single party that holds all t+1 shares
at all times, and an attacker observing at most t shares
must learn no information about the secret. In MPC,
there are at least two parties and a number of shares.
An attacker, being either one of the parties or an ex-
ternal observer of the parties’ communication, must at
no point of hold all shares of the secret. Compared to
masking, MPC incurs additional computational over-
head due to communication and cryptographic assump-
tions which are not present in masking. Without includ-
ing the communication overhead, prior work on secure
inference [35, 53] reported total runtimes of 4.88 and
0.043 seconds per inference for a MLP with two hidden
layers of 128 neurons. The cycles of our shared-tightened
implementation (MLP 128-128 of Table 6) translate to
runtime of 0.001753 seconds, i.e., at least an order of
magnitude faster than the MPC based approaches.

10 Conclusion and Future Work
We have proposed a library of masked gadgets, resistant
against DPA, that are the first to our knowledge that
can be safely composed into full MLP and CNN con-
structions. We demonstrated the security of our con-
struction formally and experimentally. We described
how to reduce the random number requirements of our
NN constructions, and showcased that they incur about
a 2–5× slowdown to their unmasked counterparts, with
minimal, if any, accuracy impairment. We set as future
work to apply our library to more complex DNN target-
ing advanced datasets, as well as expanding to different
architectures such as recurrent NN.
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A Auxiliary Shared Algorithms
Algorithms 10 [6], 11 [6], 12 are used by the gadgets
that appear in the main paper.

Algorithm 10 BooleanToArith(〈x〉, r0, r1)
Input: 2-Boolean sharing 〈x〉, r0 ∈R ZL, r1 ∈R ZL

Output: 2-arithmetic sharing 〈y〉 s.t. y = x

1: 〈x〉0 := 〈x〉0 ⊕ r0
2: 〈x〉1 := 〈x〉1 ⊕ r0
3: t := 〈x〉0 ⊕ r1
4: t := t− r1
5: t := t⊕ 〈x〉0
6: r1 := r1 ⊕ 〈x〉1
7: 〈y〉0 := 〈x〉0 ⊕ r1
8: 〈y〉0 := 〈y〉0 − r1
9: 〈y〉0 := 〈y〉0 ⊕ t

10: 〈y〉1 := 〈x〉1
11: return 〈y〉

Algorithm 11 ArithToBoolean(〈x〉, r0, r1)
Input: 2-arithmetic sharing 〈x〉, r0 ∈R ZL, r1 ∈R ZL

Output: 2-Boolean sharing 〈y〉 s.t. y = x

1: 〈x〉0 := 〈x〉0 ⊕ r0
2: 〈x〉1 := 〈x〉1 ⊕ r0
3: t := 2 · r1
4: 〈y〉0 := r1 ⊕ 〈x〉1
5: o := r1 ∧ 〈y〉0
6: 〈y〉0 := t⊕ 〈x〉0
7: r1 := r1 ⊕ 〈y〉0
8: r1 := r1 ∧ 〈x〉1
9: o := o⊕ r1

10: r1 := t ∧ 〈x〉0
11: o := o⊕ r1
12: for k = 1 to `− 1 do
13: r1 := t ∧ 〈x〉1
14: r1 := r1 ⊕ o
15: t := t ∧ 〈x〉0
16: r1 := r1 ⊕ t
17: t := 2 · r1
18: 〈y〉0 := 〈y〉0 ⊕ t
19: 〈y〉1 := 〈x〉1
20: return 〈y〉

Algorithm 12 Cmp(〈x〉, 〈y〉, R): shared comparison
Input: 2-sharings 〈x〉, 〈y〉, R ∈ Z6

L.
Output: 2-sharings 〈a〉, 〈b〉 such that a = Cmp(x, y), b =
¬Cmp(x, y)

1: 〈w〉0 := 〈x〉0 − 〈y〉0
2: 〈w〉1 := 〈x〉1 − 〈y〉1
3: 〈z〉B := ArithToBoolean(〈w〉, R0, R1)
4: 〈v〉B0 := 〈z〉0[`− 1]
5: 〈u〉B0 := 〈z〉0[`− 1]
6: 〈v〉B1 := 〈z〉1[`− 1]
7: 〈u〉B1 := 〈z〉1[`− 1]⊕ 1
8: 〈a〉 := BooleanToArith(〈v〉B , R2, R3)
9: 〈b〉 := BooleanToArith(〈u〉B , R4, R5)

10: return 〈a〉, 〈b〉

Algorithm 13 shows how the Linear gadget (Alg. 7)
can be adapted to compute shared convolution.

Algorithm 13 Conv2d(〈I〉, 〈W 〉, 〈b〉, R): shared convo-
lutional component
Input: Input 〈I〉, kernel 〈K〉 ∈ (Z2

L)2h+1×2w+1.
Output: 〈Z〉 ∈ (Z2

L)n×m s.t. Z = I ∗K
1: for i from 0 to n do
2: for j from 0 to m do
3: 〈Xi,j〉 := DotProd(〈K〉,

〈Ii−h:i+h,j−w:j+w〉, R3(i+m·j))
4: 〈Yi,j〉 := Trunc(〈Xi,j〉, R3(i+m·j)+1)
5: 〈Zi,j〉 := Add(〈Yi,j〉, 〈bi〉, R3(i+m·j)+2)

B Proofs of Lemmas and
Theorems

We provide here the proofs for the lemmas and theo-
rems stated in the main paper. We also provide proofs
of security for the auxiliary algorithms of Appendix A.
The numbers of the theorems and lemmas correspond
to the numbers of theorems and lemmas in the main
paper.

Lemma 6. Let G be a 1-SNI gadget over input shar-
ings 〈x0〉, . . . , 〈xn−1〉, output sharing 〈o〉. Each output
share of G can be perfectly simulated from the empty
set.

Proof : From Definition 2 with t = 1, let 〈o〉i be the
given output share (i ∈ {0, 1}) and So = {〈o〉i}. We
know that the elements in So can be perfectly simulated
from a tuple of sets 〈A0, . . . , An−1〉 with |Ai| = t′ =
t− |So| = 0, i.e., from the tuple of empty sets. �
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Theorem 7. The ReLU ′ gadget (Alg. 5) is 1-SNI.

Proof : We distinguish two cases. In the first, we con-
sider the output shares, i.e., S = {〈y〉0} or S =
{〈y〉1}, hence t′ = 0 and V = A0 = ∅, where
〈y〉0 = 〈BooleanToArith(〈w〉B , R2, R3)〉0 and 〈y〉1 =
〈BooleanToArith(〈w〉B , R2, R3)〉1. From Lemma 6 we
have that both 〈y〉0, 〈y〉1 can be simulated by 〈A0〉. In
the second case, we consider the intermediate shares,
i.e., S = ∅, hence t′ = 1. From Lemma 6 we have that
both 〈z〉0, 〈z〉1 can be simulated by 〈∅〉. Consequently,
〈w〉0, 〈w〉1 can also be simulated by 〈∅〉 as they only de-
pend on shares of 〈z〉.

Lemma 11. The Trunc gadget (Alg. 3) is 1-SNI.

Proof :
Case 1: |So| = 0: Then So = ∅, and for some i ∈ {0, 1}

V = {〈y〉i} can be perfectly simulated by the tuple
〈{〈x〉i}〉 for some i ∈ {0, 1}.

Case 2: |So| > 0 We have So = {〈z〉i} for some i ∈
{0, 1} and hence V = ∅ and 〈z〉i can be perfectly
simulated by the tuple containing the empty set 〈∅〉.

�

Lemma 12. The ReLU gadget (Alg. 5) is 1-SNI.

Proof :From Lemma 6 and Theorem 7, we have that
the intermediate shares 〈z〉0 and 〈z〉1 can be perfectly
simulated by the empty set of shares, and from Lemma 6
and [20] , we have that the outputs shares 〈y〉0 and 〈y〉1
can be perfectly simulated by the empty set of shares.
We distinguish two cases:
Case 1: |So| = 0: Then So = ∅, V = {zi} for some

i ∈ {0, 1}. We have shown above that 〈z〉i can be
perfectly simulated from the empty set of shares.

Case 2: |So| > 0 We have So = {yi} for some i ∈ {0, 1}
and hence V = ∅. We have shown above how 〈y〉i
can be perfectly simulated from the empty set of
shares.

�

Lemma 13. The Add gadget (Alg. 1, right column) is
1-SNI.

Proof :
Case 1: |So| = 0: Then So = ∅, and for some i ∈ {0, 1}

V = {〈w〉i} can be perfectly simulated by the tuple
containing the empty set 〈∅〉.

Case 2: |So| > 0 We have So = {〈z〉i} for some i ∈
{0, 1} and hence V = ∅ and 〈z〉i can be perfectly
simulated by the tuple containing the empty set 〈∅〉.

�

Lemma 14 (Barthe et al. [2]). The Mul gadget is 1-
SNI.

Lemma 15. The Cmp gadget (Alg. 12) is 1-SNI.

Proof : From Lemma 6 and Theorem 20, Theorem 19
we have that the intermediate shares 〈z〉Bi , 〈a〉i and 〈b〉i
(i ∈ {0, 1}) can be perfectly simulated by the empty
set of shares. The intermediate shares 〈u〉Bi and 〈v〉B
depend only on 〈z〉Bi and can therefore also be perfectly
simulated by the empty set of shares (i ∈ {0, 1}). We
distinguish two cases:
Case 1: |So| = 0: Then So = ∅. For V = {〈u〉Bi }, V =
{〈v〉i} for some i ∈ {0, 1}, we have shown that 〈v〉Bi
and 〈u〉Bi can be perfectly simulated from the empty
set of shares. For V = {〈w〉i} we have that the tuples
of sets of shares 〈{〈x〉i}, {〈y〉i}〉 ⊆ Sx × Sy for i ∈
{0, 1} can perfectly simulate 〈w〉i.

Case 2: |So| > 0 For i ∈ {0, 1} we have So = {〈a〉i} or
So = {〈b〉i} and hence V = ∅. We have shown above
how 〈a〉i, 〈b〉i can be perfectly simulated from the
empty set of shares.

�

Lemma 16. The MaxPool gadget (Alg. 6) is 1-SNI.

Proof : From Lemma 6 and Lemma 14, Lemma 15
we have that the shares 〈yi〉, 〈si〉i, 〈s′i〉, 〈wi〉, (i ∈
{0, . . . , n− 1}) can be perfectly simulated by the empty
set of shares. We distinguish two cases:
Case 1: |So| = 0: Then So = ∅. For V = {〈yi〉} or V =
{〈yi〉} or V = {〈si〉} or V = {〈s′i〉} or V = {〈zi〉}for
some i ∈ {0, . . . , n − 2}, we have shown that they
can be perfectly simulated from the empty set of
shares.

Case 2: |So| > 0 For i ∈ {0, . . . ,m − 1} we have So =
{〈yn−1〉} and So = {〈zn−1〉} and hence V = ∅. We
have shown above how 〈yn−1〉 and 〈zn−1〉can be per-
fectly simulated from the empty set of shares.

�
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Theorem 8. The Trunc, ReLU , Add, Mul, Cmp,
MaxPool gadgets are 1-SNI.

Proof : Follows from Lemmas 11-16. �

Lemma 17. The Linear gadget (Alg. 7) is 1-SNI.

Proof : From Lemma 6 and Theorem 4, Example 3,
Lemma 11 we have that the intermediate shares 〈Xi〉,
〈Yi〉, 〈Zi〉, (i ∈ {0, . . . ,m−1}) can be perfectly simulated
by the empty set of shares. We distinguish two cases:
Case 1: |So| = 0: Then So = ∅. For V = {〈Xi〉}, V =
{〈Yi〉} for some i ∈ {0, . . . ,m − 1}, we have shown
that they can be perfectly simulated from the empty
set of shares.

Case 2: |So| > 0 For i ∈ {0, . . . ,m − 1} we have So =
{〈Zi〉} and hence V = ∅. We have shown above how
〈Zi〉 can be perfectly simulated from the empty set
of shares.

�

Lemma 18. The Activation gadget (Alg. 8) is 1-SNI.

Proof : The algorithm only has output shares so we
focus on them. From Lemma 6 and Lemma 12 we have
that the output shares 〈Zi〉 (i ∈ {0, . . . ,m− 1}) can be
perfectly simulated by the empty set of shares. �

Theorem 9. The Linear, Activation gadgets are 1-SNI.

Proof : Follows from Lemmas 17, 18. �

Theorem 19 (Coron [6]). The BooleanToArith gadget
(Alg. 10) is 1-SNI

Theorem 20 (Coron [6]). The ArithToBoolean gadget
(Alg. 11) is 1-SNI

Theorem 21. The Cmp gadget (Alg. 12) is 1-SNI

Proof : We distinguish two cases. In the first, we con-
sider (without loss of generality) the output sharing 〈a〉,
i.e., S = {〈a〉0} or S = {〈a〉1}, hence t′ = 0 and V =
A0 = ∅, where 〈a〉0 = 〈BooleanToArith(〈v〉B , R2, R3)〉0
and 〈a〉1 = 〈BooleanToArith(〈v〉B , R2, R3)〉1. From
Lemma 6 we have that both 〈a〉0, 〈a〉1 can be simulated
by 〈A0〉. The same holds for the case of the output shar-
ing 〈b〉.

In the second case, we consider the intermediate
shares, i.e., S = ∅, hence t′ = 1. For some i ∈ {0, 1}
V = {〈w〉i} can be perfectly simulated by the tuple
〈{〈x〉i, 〈y〉i}〉 for some i ∈ {0, 1}. From Lemma 6 we have
that 〈z〉0, 〈z〉1 can be simulated by 〈∅〉. Consequently,
〈u〉0, 〈u〉1, 〈v〉0, 〈v〉1 can also be simulated by 〈∅〉 as they
only depend on shares of 〈z〉.

Theorem 22. The Conv2d gadget (Alg. 13) is 1-SNI

Proof : From Lemma 6 and Theorem 4, Example 3,
Lemma 11 we have that the intermediate shares 〈Xi,j〉,
〈Yi,j〉, 〈Zi,j〉, (i ∈ {0, . . . , n− 1}, j ∈ {0, . . . ,m− 1}) can
be perfectly simulated by the empty set of shares. We
distinguish two cases:
Case 1: |So| = 0: Then So = ∅. For V = {〈Xi,j〉},

V = {〈Yi,j〉} for some i ∈ {0, . . . , n − 1} and
j ∈ {0, . . . ,m− 1}, we have shown that they can be
perfectly simulated from the empty set of shares.

Case 2: |So| > 0 For i ∈ {0, . . . , n − 1} and j ∈
{0, . . . ,m − 1} we have So = {〈Zi,j〉} and hence
V = ∅. We have shown above how 〈Zi,j〉 can be
perfectly simulated from the empty set of shares.

�

C Operation Breakdown for Basic
Gadgets

ADD MUL BIN
Add 4 0 0
Mul 4 4 0
DotProd(n) 4*n 4*n 0
Trunc 4 0 2
BooleanToArith 2 0 7
ArithToBoolean 2 32 122

ReLU 8 36 130

Table 7. Primitive Operation Breakdown of Basic Gadgets, ReLU
and, Maxpool Gadget.
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