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From “Onion Not Found” to Guard Discovery
Abstract: We present a novel web-based attack that
identifies a Tor user’s guard in a matter of seconds. Our
attack is low-cost, fast, and stealthy. It requires only a
moderate amount of resources and can be deployed by
website owners, third-party script providers, and mali-
cious exits—if the website traffic is unencrypted. The
attack works by injecting resources from non-existing
onion service addresses into a webpage. Upon visiting
the attack webpage with Tor Browser, the victim’s Tor
client creates many circuits to look up the non-existing
addresses. This allows middle relays controlled by the
adversary to detect the distinctive traffic pattern of
the “404 Not Found” lookups and identify the victim’s
guard. We evaluate our attack with extensive simula-
tions and live Tor network measurements, taking a range
of victim machine, network, and geolocation configura-
tions into account. We find that an adversary running a
small number of HSDirs and providing 5% of Tor’s relay
bandwidth needs 12.06 seconds to identify the guards of
50% of the victims, while it takes 22.01 seconds to dis-
cover 90% of the victims’ guards. Finally, we evaluate
a set of countermeasures against our attack including a
defense that we develop based on a token bucket and
the recently proposed Vanguards-lite defense in Tor.
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1 Introduction
With an estimated eight million daily users [31], Tor [9]
is the most popular anonymous communication network
in use today. Tor enables users to browse privately, evade
censorship, and access or run anonymous network ser-
vices (onion services). In order to access the web via
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Tor, users install Tor Browser, a modified version of
Firefox that routes all traffic through the Tor network.
With its strong defenses against cross-site tracking and
browser fingerprinting [39], Tor Browser also protects
users from unwanted tracking at the application level.

When users visit a webpage with Tor Browser, their
traffic is sent on a circuit routed through a sequence of
Tor relays. When Tor Browser encounters a subresource
(e.g., an image) located at an onion address, it first con-
tacts a hidden service directory (HSDir) to resolve the
address to its descriptor (HS_DESC). This resolution is
made automatically over a newly created circuit. Using
the descriptor, Tor Browser can privately connect to the
onion service and access the content.

Every time a new circuit is created, Tor freshly
selects new relays for all circuit positions—except the
first (called guard), which Tor users keep fixed for many
months. Guards play a critical role among all relays as
they typically know the IP addresses of the Tor users
connected to them. By picking one guard and keeping
it for a long time, Tor users avoid repeatedly exposing
themselves to selecting malicious relays as the first hop
in their circuits, which would happen after a short time
if users selected new first-hop relays every time [60].
The Tor network has put strong requirements in place
for relays that want to become eligible as guards [8].

Attacks that discover the guard of a Tor user (vic-
tim) are thus an important subject of research. Iden-
tifying a victim’s guard may help expose the victim’s
identity or enable other attacks, including user geolo-
cation [18], traffic confirmation [25, 36], website fin-
gerprinting [37, 44, 57, 58], and selective denial-of-
service attacks to force the victim to choose a malicious
guard [7, 13, 21, 23]. Depending on bilateral agreements
and the guard’s jurisdiction, an adversary may seize [56]
or subpoena [6, 11] the guard or its network provider to
access traffic logs. Adversaries with offensive capabilities
may try to compromise the guard server.

We present an attack that allows an adversary to
identify the guard of a Tor user visiting a target web-
page, using a novel method that is low-cost, fast, and
stealthy. The adversary controls (parts of) the target
webpage and runs a limited number of HSDirs and Tor
relays. When a victim visits the target webpage, the
adversary launches the attack by injecting a large num-
ber of subresources (e.g., images) on non-existing onion
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service addresses. To obtain the embedded resources,
the victim first connects to the HSDirs responsible for
the addresses’ descriptors, providing many opportuni-
ties for adversarial relays to be selected as second hops.
Scanning her second-hop relays for the distinctive traffic
pattern of an HS_DESC lookup for a non-existing address,
the adversary obtains the victim’s guard as the prede-
cessor on the circuit that matched the target pattern.

A large class of adversaries is able to deploy our at-
tack: website owners, embedded third parties such as ad-
vertisers, administrators of online marketplaces, users of
blogging platforms, and malicious Tor exit relays when
outbound connections are unencrypted or not protected
against SSL stripping attacks [19]. While we assume the
adversary injects the subresources using JavaScript, a
scriptless version of our attack proves effective against
Tor users who have disabled JavaScript.

We run our attack against a large number of our
own clients on the live Tor network to obtain a set of
realistic victim profiles. We find that Tor users on faster
computers and network connections are more vulnera-
ble to our attack, while geographical proximity to the
majority of Tor relays also makes our attack more effec-
tive. Through extensive experimentation, we determine
that our attack identifies the guards of most victims af-
ter they visit the attack webpage for a short amount of
time. For instance, an adversary with a small number of
HSDirs and 1% share of Tor’s relay bandwidth identi-
fies half the victims’ guards in less than 40 seconds. An
adversary providing 5% of Tor’s relay bandwidth dis-
covers more than 99% of the victims’ guards in under
50 seconds. In some instances, the adversary requires
less than a second to learn a victim’s guard.

Our attack is cheap and easy for the adversary to
deploy. Of the Tor relays that the adversary requires
for the attack, only a few HSDirs (e.g., ten) need to
be launched at least 96 hours in advance of the attack.
As our attack does not require to run relays in distin-
guished circuit positions (e.g., guards, exits), it attracts
little attention to the adversary. An adversary control-
ling 5% of Tor’s relay bandwidth only needs a moder-
ate budget of EUR 1,579.56 to run the attack for a full
month. Precomputing onion service public keys that will
be maintained by at least two adversarial HSDirs in an
upcoming network status is perfectly feasible. An adver-
sary with ten HSDirs in the network requires on average
10.3 minutes to generate the keys for a one-minute at-
tack (52.3 minutes on average for a five-minute attack).
The adversary has at least twelve hours for this precom-
putation before the first time a Tor client uses the new
network status to download descriptors.

We make the following contributions:
– We present a novel, low-cost, fast, and stealthy

guard discovery attack on Tor users. The attack ex-
ploits the unregulated creation of new circuits for
HS_DESC lookups and the distinctive cell pattern of
lookups for non-existing onion addresses.

– Through extensive simulations and experiments on
the live Tor network, we find that the attack suc-
ceeds in identifying a victim’s guard in seconds.

– We evaluate countermeasures: a token bucket per
Tor Browser tab to limit the number of circuits, re-
stricting the choice of second hops with the recent
Vanguards-lite proposal, and a combination of both
approaches. While Vanguards-lite prevents a major-
ity of the attack attempts, over 18% of Tor users
remain vulnerable to our attack. We find the token
bucket defense to be effective against our attack.

2 Background and Related Work
Tor. Tor [9] is an overlay network of volunteer-run
servers (relays) that route user connections over multi-
hop circuits to make them anonymous. While an open,
generic network, Tor is primarily used to privately ac-
cess the web with Tor Browser. This allows users to
hide their IP addresses from web servers, and prevents
linking of their visits by online trackers. When users
visit public-Internet webpages with Tor Browser, their
traffic is onion-encrypted and sent through a sequence
(circuit) of three relays: guard, middle, exit. In order
to limit linkability across different webpage visits, Tor
Browser scopes these public-web circuits to the URL
bar origin (first party isolation) [39]. The same third-
party resource requested as part of visits to two distinct
first-party webpages is sent across two distinct circuits.

The circuit’s relays are chosen by the client accord-
ing to Tor’s routing policy which randomly selects a
fresh middle and exit relay for every circuit. The choice
of relay is weighted by its bandwidth while at the same
time accounting for constraints such as destination fil-
ters on exits, relay family affiliation, and subnet over-
lap. Guards, however, are updated only once every 2–3
months [30] and are used on every circuit during that
period. Guards were introduced to protect users from
adversaries that compromise a subset of Tor relays and
are able to fully deanonymize a circuit when they con-
trol its first and last hop [61]. Without guards, such
adversaries typically have a low probability of compro-
mise for each individual circuit created by a user unless
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they control a very large fraction of the network. How-
ever, every new circuit is a new chance of adversarial
success. If the user creates many circuits, it is only a
matter of time until the adversary obtains the needed
vantage position. The issue is mitigated by fixing the
choice for the first relay (which becomes the guard). If
the user has an honest guard, the adversary will have
no chances to obtain the needed vantage position, no
matter how many circuits are created.

When data is in transit, each hop of a circuit re-
moves or adds one layer of encryption (onion routing),
making input and output connections cryptographically
unlinkable in terms of both cell headers and payloads.
Users learn about all relays and their characteristics
from the consensus document describing the network
state once every hour. The unit of transmission on cir-
cuits is a cell, a single Tor packet with 509 bytes payload.

In addition to providing anonymous web browsing,
Tor also enables services to hide their network iden-
tity (address and location) by running onion services
(previously: hidden services). Onion services accept con-
nections from within the Tor network via circuits of
six hops (instead of three). Two versions of onion ser-
vices currently exist, v2 [54] and v3 [55], with v2 near-
ing end-of-life due to its outdated cryptographic foun-
dations [15, 16]. Onion services are accessed via Tor-
internal domain names derived from the services’ public
keys. Hidden service directories (HSDirs) are Tor relays
that collectively maintain the hidden service descriptors
(HS_DESCs) of the onion services. An HS_DESC contains
the information required by clients to establish private
connections to the service. Each Tor relay carrying the
HSDir flag serves a specific set of HS_DESCs to Tor clients.

HS_DESC lookups take place over dedicated four-hop
circuits—which consist of the user’s guard, two (in-
stead of one) middles, and an HSDir that maintains
the HS_DESC (instead of an exit relay). These HS_DESC
lookup circuits are thus distinct from three-hop circuits
used to browse the public web and from six-hop cir-
cuits used to connect to onion services. A fresh HS_DESC
lookup circuit is created per lookup attempt.

Guard Discovery. Unlike the second and third
hops on a Tor circuit, guards typically know the IP ad-
dresses of their users and remain their guards for a long
time. Thus, discovering a victim’s guard is a stepping
stone towards full deanonymization. An adversary suc-
cessfully mounting a guard discovery attack may be able
to seize [56], subpoena [6, 11], or compromise a non-
cooperating guard. This opens up a wide array of dev-
astating deanonymization attacks on the guard’s users.
The adversary may monitor the guard and employ web-

site fingerprinting techniques to learn which websites
a victim is browsing [37, 44, 57, 58], uncover a vic-
tim’s geolocation [18], or perform full traffic confirma-
tion [25, 36]. Some approaches to guard discovery ex-
ploit side channels. Mittal et al. show that it is possible
to identify the guard(s) of Tor users by fingerprinting
the guard’s throughput [32]. Rochet and Pereira [41]
exploit the public relay load measurements to discover
the guards of onion services.

Other approaches (including ours) rely on forcing
the creation of many circuits, each of which increases the
chances of adversarial compromise. Biryukov et al. [4]
present an attack that discovers the guards of an onion
service by forcing it to open many rendezvous connec-
tions to an adversarial rendezvous point, while a middle
relay fingerprints the established circuits. They iden-
tify several guards in less than an hour. In a follow-
up study, Biryukov et al. [5] propose a similar attack
to deanonymize onion service users. The attack works
by sending a unique traffic signature from adversary-
controlled HSDirs during HS_DESC lookups and expect-
ing the traffic to be routed through the adversary-
controlled guards. Compared to our attack, Biryukov et
al.’s attack can target all users of an onion service, but
their attack misses all targets that do not use the adver-
sarial guards. Their attack can also be easily detected
based on the distinctive signature the HSDir sends and
would not work against v3 onion services. Compared to
guard discovery attacks in prior works, our attack con-
verges much faster and does not require invasive tech-
niques like congesting Tor relays.

Circuit Fingerprinting. Kwon et al. use decision
trees to determine circuit purpose and relay position,
which they use in turn to identify onion service cir-
cuits [29]. Addressing a similar problem, Jansen et al.
instead opt for random forests to improve the robust-
ness of the purpose and position classifier [22]. Through
a series of simulations, Elahi et al. show that short-term
guards make it easier to profile Tor users [12]. Motivated
in part by Elahi et al.’s results, Dingledine et al. propose
using one entry guard for nine months in Tor [10]. These
studies informed the current design of Tor’s guard selec-
tion method, which uses a single guard for 2–3 months
for each user [30].

Attacks Using JavaScript. Evans et al. [13] ex-
ploit the then missing limit on path lengths to build
long circuits (24 hops) to congest Tor relays selectively.
Their attack requires taking latency measurements from
the victim, which is achieved by injecting malicious
JavaScript code on an exit controlled by the adversary.
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Fig. 1. Tor network model including adversarial nodes in red with dashed borders. As one possibility for how the adversary may become
part of the website visited by victims, we show the adversary as a third-party advertiser here.

Evans et al.’s attack requires iterating over all potential
Tor guards to find the ones that belong to the victim.

Abbott et al. present an end-to-end correlation
attack based on injecting a distinctive signal using
JavaScript from a malicious exit [1]. Their attack re-
quires the victim to pick a malicious exit and malicious
guard at the same time, which is made impractical with
Tor’s current guard rotation policy.

3 Guard Discovery Attack
In this section, we describe the resources required by an
adversary to conduct our guard discovery attack. We
provide a step-by-step overview of the attack and inves-
tigate crucial properties of the target cell pattern that
we exploit to identify guards.

3.1 Adversarial Objectives and Capabilities

In order to identify a Tor user’s guard, the adversary
requires three capabilities. First, the adversary has the
ability to run scripts on (or otherwise manipulate) the
target webpage. Second, the adversary operates one or
more HSDirs responding to HS_DESC lookups in the Tor
network. Third, the adversary runs a set of middle relays
in the Tor network. We now detail these capabilities.

Website Manipulation. The adversary needs to
be able to inject subresources on non-existing onion ser-
vices into a webpage visited by the victims using Tor
Browser. Clearly, this is the case if the adversary con-
trols the webpage entirely (first party). However, it suf-
fices for the adversary to have the chance of becoming
a third party on the target website. This might be the
case if the adversary is an advertiser in an advertisement

network that the target webpage uses. We illustrate this
scenario in Figure 1. Other suitable settings include the
adversary being part of a social network or market-
place that allows HTML as part of user-generated con-
tent (e.g., direct messages, posts, adverts). Going for-
ward, we assume the adversary to be a third party with
JavaScript capabilities on the target webpage. However,
our attack also works when Tor Browser users have dis-
abled JavaScript, which we discuss in Section 4.3.

Hidden Service Directories. When victims at-
tempt to download the embedded resources at non-
existing onion services, they first create a circuit to an
HSDir to download the onion service’s HS_DESC. Our
attack relies on the adversary knowing if and when a
specific target HS_DESC is requested. Thus, the adver-
sary needs to operate at least one of the six responsible
HSDirs for each attack onion address. Without HSDirs,
the attack’s success degrades significantly due to the
high rate of false positives (see Section 5.1), as the ad-
versary cannot observe the requested attack address and
use this to distinguish victim lookups from noise.

Any relay is assigned the HSDir flag automatically
if it requests it and meets a set of criteria. Specifically,
the relay needs to be sufficiently reliable (Stable flag),
capable of fast network operation (Fast flag), and have
been running continuously for at least 96 hours [51]. In
Section C in the Appendix, we show that operating the
required relays including the HSDirs can be achieved at
a low cost. Note that the Tor developers are discussing
a change to make it more difficult to obtain the HSDir
flag [46]. If implemented, this change will likely increase
the attack costs for the adversary.

Middle Relays. The adversary needs to run mid-
dle relays that users may choose as second hops when
constructing a new circuit (successors to guards). These
middle relays are crucial for the attack as only middle re-
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Fig. 2. Step-wise overview of our guard discovery attack, where a malicious third-party JavaScript causes the victim’s Tor Browser to
rapidly create a large number of new lookup circuits for non-existing HS_DESCs. Adversarial components in red with dashed borders.

lays are ultimately able to reveal the victims’ guards to
the adversary. As relays are selected according to their
bandwidth share during circuit construction, the adver-
sary may run more middle relays with high bandwidth
to speed up the attack.

Relays that are not intended for first or last hops on
circuits do not require any flags that are hard or slow to
obtain. This benefits the adversary in terms of the time
it takes to position all nodes for the attack, limits the at-
tack’s cost, and incurs less scrutiny compared to relays
in more critical positions (e.g., guards, exits). All adver-
sarial Tor nodes run tor binaries appropriately modified
for the attack, i.e., exposing circuit metadata required
for the adversary to learn the guards. Additionally, all
nodes run a time synchronization protocol, as the attack
requires comparing timestamps across machines.

3.2 Attack Overview

We now provide a step-by-step description of our web-
based guard discovery attack, as shown in Figure 2.

First, a victim requests the target webpage using
Tor Browser (step 1). If this is a webpage in the public
Internet, the request will by default be relayed through
a three-hop circuit to the webserver. We assume the
adversary to be a part of this target webpage in the
form of either a first or a third party. Once the victim
connects to the adversary to download the embedded

JavaScript, the attack can be launched by serving the
malicious script (step 2).

The malicious JavaScript injects into the webpage’s
DOM a number of subresources (e.g., scripts, images,
fonts) located on onion addresses (step 3). Crucially, the
onion services referenced by the injected subresources
do not exist. The adversary intentionally crafts attack
onion addresses so that the requests for the onion ser-
vices’ HS_DESCs are (partly) handled by her HSDirs. The
malicious JavaScript takes care of hiding the injected
non-existing resources visually from the victim (e.g., by
injecting scripts or setting image dimensions to zero) to
evade detection.

For each non-existing onion address on the web-
page, the victim’s Tor Browser sequentially creates six
four-hop circuits to download the HS_DESCs (called vic-
tim lookups), one per responsible HSDir (step 4). Each
newly created circuit represents an opportunity for the
adversary’s middle relays to be selected as the hop suc-
ceeding the victim’s guard. Currently, there is no limit
to the number of circuits a webpage can cause to be
created (a known issue since 2016 [2]). Through live
Tor network measurements (Section 4) we find that the
adversary can cause victims to perform a median of
12.4 HS_DESC lookups per second, while upwards of 23
lookups per second are also possible.

During the attack, adversarial middle relays contin-
uously record cell metadata circuit logs (step 5). This
metadata includes: predecessor and successor on the cir-
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cuit, whether the circuit’s cell pattern matches the tar-
get pattern, and if so, timestamp ts of the cell carrying
the HS_DESC lookup and timestamp tr of the response
cell. We discuss the target cell pattern in Section 3.3.

Adversarial HSDirs also record metadata (in access
logs) when they respond to HS_DESC lookups (step 6).
They keep track of the lookup’s timestamp ta, from
which relay they received it, and whether it requested
one of the specially crafted target addresses. Indepen-
dent of the result of the latter check, malicious HSDirs
always respond according to specification. That means
that they respond with “404 Not Found” to lookups for
which they do not have the descriptors, including to the
ones for the attack addresses. This response always fits
into the payload of a single cell, in contrast to the much
larger responses that carry an HS_DESC for an existing
resource. Upon receiving a negative lookup response, the
victim’s Tor client contacts the other HSDirs responsi-
ble for the address until all have been queried and the
lookup is abandoned.

Our attack exploits the distinctiveness of HS_DESC
lookups for non-existing onion addresses to identify vic-
tim circuits. The adversary compares entries of interest
in the logs of the HSDirs and the middle relays (step 7).
The adversary first selects those circuits from the middle
relays that match the target cell pattern and those from
the HSDir that correspond to the lookup of a target ad-
dress. The adversary then compares the timestamps and
third hops of the selected circuits. Two circuits match
when they share the same third hop and the lookup
timestamp ta falls between ts and tr that the middle
relay recorded. For each matching circuit the adversary
records the identity of the relay at the first hop as can-
didate for being the victim’s guard.

3.3 Characteristics of Target Cell Pattern

In order to determine the feasibility of our guard dis-
covery attack, we investigate whether the cell pattern
of an HS_DESC lookup with a “404 Not Found” response
is deterministic and unique among a large number of
Tor traffic patterns. Our attack relies on this target cell
pattern being deterministic and distinctive enough so
that adversarial middle relays can detect it among other
unrelated Tor traffic. Evaluating the uniqueness of this
pattern on the live Tor network would require record-
ing the traffic of Tor users, which we avoid for ethical
reasons. Instead, we opt for analysis in an isolated test
network using Shadow [20] and TorNetTools [24, 43].

Shadow is a discrete-event network simulator that
directly interfaces with a tor binary via a plugin.
Shadow can run on a single machine of sufficient hard-
ware capabilities and accepts a network model, traffic
patterns among the network’s nodes, and a custom tor
binary. Shadow executes a simulation of the specified
traffic patterns, producing logs for further analysis. Tor-
NetTools allows us to generate a scaled-down, represen-
tative version of the Tor network based on official met-
rics data from the Tor Project.

We conduct two simulations, which we describe in
Section A of the Appendix. In the first simulation, a
single Tor client attempts to connect to a non-existing
onion service multiple times over a minimal Tor network
(Section A.1). From the logs produced by Shadow, we
extract the expected number of the target “Onion Not
Found” cell pattern as seen at the second hop in the
lookup circuit. We find the cell pattern to be determin-
istic and visualize the involved cells and commands in
Figure 9 in the Appendix.

Second, we conduct a much larger experiment where
clients generate a diverse set of traffic patterns that ex-
clude the target cell pattern (Section A.2). We run this
experiment on a 2%-scale Tor network generated with
TorNetTools. We analyze the observed cell patterns to
see if any of them match the target cell pattern, which
would lead to false positives when used in this attack.
However, among 1,866,782 circuits that clients gener-
ate as part of this simulation, we do not find the target
cell pattern once in any circuit position. Based on the
data we collect in these two simulations, we determine
the cell pattern of an HS_DESC lookup for a non-existing
onion address to be deterministic and unique, and thus
usable for the adversary in our attack.

4 Tuning the Attack
The adversary aims to maximize the victim lookup rate
as that speeds up discovery of the victim’s guard. In this
section, we perform two experiments to determine the
parameters that trigger the highest number of victim
lookups across different types of clients and thus opti-
mize the effectiveness of our attack. We also present a
version of the attack that works without JavaScript.
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Injections / s Onion service Median Min Max

1.0 v2 5.216 4.076 5.681
v3 5.267 3.737 5.674

2.0 v2 10.416 3.083 11.225
v3 10.405 4.277 11.221

3.0 v2 14.377 7.790 16.620
v3 14.334 6.877 16.600

4.0 v2 14.298 6.402 21.894
v3 14.180 4.513 21.985

5.0 v2 12.906 0.170 22.091
v3 12.555 6.535 22.607

6.0 v2 11.611 6.070 17.660
v3 10.811 4.868 16.718

Table 1. Median, minimum, and maximum number of victim
lookups per second, grouped by resource injection rate and onion
service version. Experiment described in Section 4.1.

4.1 Attack Parameters

We investigate the impact of three attack parameters
the adversary controls: type of the injected resource,
onion service version of the injected address, and rate
of resource injections per second. In addition, we study
the influence of client machine and network character-
istics. The adversary aims to adjust these parameters
for triggering the highest rate of victim lookups per sec-
ond in a broad range of clients. More lookups mean
more opportunities for creating a circuit that includes
the adversarial middle and HSDir relays and thus less
time needed to compromise the victim.

We set up an attack webpage that we automatically
visit with Tor Browser from victim clients under our
control. We use the tor-browser-selenium [3] Python
library to automate Tor Browser. We experiment with
injecting six different resource types into the attack web-
page: script elements (js), images, CSS stylesheets,
fonts, iframe elements, and making asynchronous re-
quests using JavaScript’s Fetch API. Using stem [26],
a Python library to interact with Tor, we collect Tor
control port logs of victim lookups when visiting the
attack webpage with a victim client. We use a desktop
computer as victim Tor client that is configured to use
a Tor relay we operate as its guard, and run the attack
while varying onion version and injection rate for each
resource type. In total, we obtain data from 242,004
HS_DESC lookups that result in a “404 Not Found” re-
sponse. We find only very minor differences between re-
source types, and thus exclusively embed script ele-
ments going forward.

Injections / s Machine and network setting Median

1.0
Desktop, fiber, wired 5.293
Fast notebook, fiber, wired 5.250
Slow notebook, VDSL, wireless 5.194

2.0
Desktop, fiber, wired 10.520
Fast notebook, fiber, wired 10.495
Slow notebook, VDSL, wireless 10.200

3.0
Desktop, fiber, wired 15.680
Fast notebook, fiber, wired 14.292
Slow notebook, VDSL, wireless 12.763

4.0
Desktop, fiber, wired 19.063
Fast notebook, fiber, wired 14.592
Slow notebook, VDSL, wireless 11.275

5.0
Desktop, fiber, wired 16.342
Fast notebook, fiber, wired 13.030
Slow notebook, VDSL, wireless 9.434

6.0
Desktop, fiber, wired 13.783
Fast notebook, fiber, wired 11.496
Slow notebook, VDSL, wireless 8.585

Table 2. Median number of victim lookups per second, grouped
by resource injection rate and victim setting. Experiment de-
scribed in Section 4.1.

Next, we assess the impact of onion service version
and injection rate on the achieved victim lookup rates
over the live Tor network. To approximate Tor’s distri-
bution of users over guards, we sample 50 relays from all
relays carrying the Guard flag in the most recent consen-
sus, weighted by their respective guard_probability.
For each injection rate in {1.0, 2.0, 3.0, 4.0, 5.0, 6.0} re-
sources per second and onion service version in {v2,v3},
we cycle three times through the guards list with three
different clients and in each instance visit the attack
webpage for 60 seconds.

In total, we collect traces for 3,532,291 victim
lookups. In Table 1, we list the rate of HS_DESC lookups
obtained in the experiments, grouped by resource injec-
tion rate and onion service version. Based on minimal
differences in median values, we consider both the v2
and v3 onion services to be equally vulnerable to our
attack. In the remaining live-network experiments we
use v2 addresses for simplicity.

In our experiments, we use three different client con-
figurations as shown in Table 2. The variance in results
across these three client configurations indicates that
Tor users with faster computers and better network con-
nections are more vulnerable to our attack, as this re-
sults in higher lookup rates. In order to better under-
stand these client-dependent variations and determine
the optimal resource injection rate, we perform a larger
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study taking into account various client machine and
network settings, including a client’s geolocation.

4.2 Maximizing the Victim Lookup Rate

We conduct a third live Tor network measurement to
determine the injection rate that yields the highest rate
of HS_DESC lookups across a diverse set of victim lo-
cations, machines, and network conditions. Based on
results from the preceding experiments, we focus on
covering the most relevant injection rates while fixing
the onion service version to v2 and the embedded re-
source type to script. We define three victim client
hardware and network profiles to represent three dif-
ferent types of Tor users. We deploy this experiment’s
clients across three geographically distributed vantage
points of a public cloud provider in order to factor in
the effects of physical distance along Tor circuits.

Our three victim profiles are characterized as fol-
lows. A weak Tor client has 2 virtual CPU cores,
2GB of memory, and a slow network connection with
10Mbit/s downstream and 1Mbit/s upstream band-
width, latency following a normal distribution with
30ms mean and 100ms variance, and 0.5% packet loss
with 25% correlation with the prior drop decision. A reg-
ular client has 4 vCPUs, 8GB RAM, and a medium con-
nection (50Mbit/s down, 10Mbit/s up, latency follow-
ing N (20, 25), 0.25%packet loss with 25% correlation).
A powerful client has 8 vCPUs, 16GB RAM, and a fast
connection (150Mbit/s down, 50Mbit/s up, latency fol-
lowing N (10, 1), no packet loss). The network speeds,
latency, and packet loss profiles are modeled with some
abstraction after the FCC’s annual consumer broadband
measurements in the U.S. [14]. To also provide a realis-
tic upper limit, we include our Desktop office machine
(8 vCPUs, 64GB RAM) connected with no caps to our
university’s high-speed network in Europe.

We sample a fresh list of 100 relays from all relays
carrying the Guard flag in the most recent consensus,
again weighted by their respective guard_probability.
For each victim client, we visit the attack webpage three
times per relay in the list of 100 guards, each time con-
figuring the relay as the victim’s guard for the duration
of the attack. As before, we use stem to collect metadata
(e.g., lookup start and end times) on 9,751,286 victim
lookups from 17,163 completed out of 18,000 total runs.
Failed runs are mainly due to the guard being unavail-
able during the experiment.

We find that injecting three resources per second
yields the highest median lookup rate (12.4 per sec-

ond) across all victim locations, machine, and network
settings. Thus, three resource injections per second is
the best choice for the adversary to be effective against
the most victim configurations. Note that the adversary
may further optimize the attack by first measuring the
network latency of a victim [45] and adjusting the re-
source injection rate accordingly. We refer to Section B
in the Appendix for further discussion of the impact of
geolocation, machine characteristics, and network con-
ditions on the adversarial injection rate.

4.3 Scriptless Attack

In the attack described so far, the adversary relies on
JavaScript to control the timing and injection rate of
non-existing resources into the webpage viewed by the
victim. While JavaScript is enabled by default in Tor
Browser, users with high security requirements may dis-
able it by setting Tor Browser’s security level to high.
Such users can still be targeted by the scriptless version
of our attack. Instead of relying on JavaScript to in-
ject resources at regular intervals, the scriptless attack
embeds all non-existing resources in a noscript HTML
tag [34]. This causes the resources to be inserted into
the page only if JavaScript is disabled.

The main challenge we have to overcome in this ver-
sion of the attack is to prevent the page being blocked
from loading, which would cause the loading indica-
tor to spin for a long time—potentially raising suspi-
cion. Experimenting with different techniques to de-
lay the loading of DOM elements beyond initial page
load, we find that embedding image elements with the
loading=“lazy” attribute causes Tor Browser to load
images in the background, after the initial page load is
completed. This effectively gives the victim the impres-
sion that the page has loaded successfully.

To test the effectiveness of our attack in this setting,
we modify the attack webpage to include a noscript
tag with 180 image elements having non-existing onions
service domains (src). We pick 180 as it corresponds to
the number of resources injected by a rate of three per
second over 60 seconds. Using this attack webpage, we
repeat the experiment described in Section 4.2 to mea-
sure the rate of victim lookups. We only take measure-
ments using the university desktop and the same sample
of 100 guards used in Section 4.2. We visit the attack
page while having the security slider in Tor Browser au-
tomatically set to high, using tor-browser-selenium.
We repeat the visit three times with each guard, result-
ing in 300 visits—of which one third failed due to offline
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Fig. 3. Lookups for non-existing, non-attack onion addresses
(noise lookups) may result in false positives. Second-hop adver-
sarial relays (e.g., R5, R7) see the target cell pattern, but cannot
distinguish whether it is due to a victim or noise lookup.

guards. Based on the remaining 200 visits to the script-
less attack webpage, we obtain a median rate of 13.6
HS_DESC lookups per second. This shows that the attack
is feasible without JavaScript, albeit slightly slower.

5 Attack Evaluation
We now evaluate how accurately and quickly our attack
identifies the guards of victims. In order to account for
false positives that could impair the accuracy of our
attack, we first establish the rate of background noise
lookups in Tor. We then present simulations to compute
the expected time and accuracy of identifying the vic-
tims’ guards through our attack. Next, we compute the
time it takes to generate a fresh set of attack onion ser-
vice public keys. Finally, we discuss the monetary cost of
the attack, considering various adversarial capabilities.

5.1 Estimating Tor’s Noise Lookup Rate

In Section 3.3, we show that the cell pattern of a victim
lookup is unique among a large sample of other Tor traf-
fic. However, as prior research [31] shows, Tor users still
make HS_DESC requests that result in “404 Not Found”
responses independently from our attack. We call these
noise lookups. Noise lookups occur when Tor users try to
connect to an offline onion service or mistype an onion
address. Noise lookups may cause false positives when
they go through a middle relay controlled by the adver-
sary. Below we discuss in detail how we measure and
address these false positives to prevent them from re-
ducing the efficacy of our attack.

We show in Figure 3 two scenarios where a pattern
match may be due to a false positive. In the first case
(top figure), the victim lookup (blue arrows) uses an

Onion HTTP Message Response Count (%)
service code cells

v2

200 Found multiple 47,331 (5.35)
400 Decoding Failed single 0 (0)
400 Invalid Descriptor single 10 (0)
404 Not Encrypted single* 0 (0)
404 Not Found single 446,826 (50.53)

v3

200 Found multiple 31,564 (3.57)
404 Decoding Failed single 0 (0)
404 Not Found single 358,421 (40.53)
503 Reject Single Hop single* 108 (0.01)

multiple 78,895 (8.92)
single 805,257 (91.07)

Table 3. Counts and percentages of responses to v2 and v3
HS_DESC lookups, observed over 31 days on a single HSDir. Ad-
versarial second-hop relays might mistake single-cell responses
from non-attack HS_DESC lookups as false positives (except for
responses marked with an asterisk).

honest second hop (R3) and the noise lookup (grey ar-
rows) uses an adversarial second hop (R5), while victim
and noise lookups share the same (honest) third hop
(R2). In this case, the adversary may mistakenly iden-
tify the noise lookup guard (G2) as the victim’s guard
(G1). In the second case (lower figure), the adversary
detects two simultaneous attack cell patterns and can
only deduce that one of the two candidate guards (G1,
G2) belongs to the victim, but not which one.

In order to quantify the rate (N) of noise lookups
naturally occurring in the Tor network, we take mea-
surements on the Tor relay that we are running at our
university, which already carries the HSDir flag. We
modify the tor binary (version 0.4.4.5) to count the
number of times our relay responds to HS_DESC lookups
with a specific response (HTTP code and message). We
log these counts binned by hour for 31 days (744 hours)
and we make sure to log nothing else. Prior to data col-
lection, we discussed our plans with the Tor Research
Safety Board and integrated their feedback (with an
overall no objections conclusion from both reviewers).
Data from these measurements are shown in Table 3,
noting additionally whether a particular response re-
quires a single or multiple cells. Responses marked with
an asterisk may not confuse adversarial middle relays,
because they either do not take place over four-hop cir-
cuits or are not encrypted (and thus distinguishable).

Of 884,260 responses over 31 days, more than 91%
were single-cell responses. Of those 805,365 single-cell
responses, almost all are due to lookups that resulted in
“404 Not Found”, which is in line with prior results [31].
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We take the number of single-cell responses (without as-
terisk) that the adversary might mistake for the target
cell pattern as the basis for the noise lookup rate. Ex-
trapolating this number from our single HSDir to all
ca. 3,500 relays carrying the HSDir flag as of the time
of writing, we obtain:

N = 805,257 · 3,500
744 · 60 · 60 = 1,052.27

as an estimate for the rate of background noise lookups
per second across the entire Tor network.

5.2 Experimental Setup

We use simulations to evaluate the efficacy of our attack
taking into account factors such as noise lookups, Tor’s
path selection algorithm, and a varying range of ad-
versarial capabilities. The simulations have three main
components as explained below. In order to realisti-
cally model these components, we use empirical data
collected in the previous sections.

Victim. We simulate a single victim that visits the
attack webpage for 300 seconds. For the first 60 seconds,
we use the actual victim lookup timings that we record
in our live-network experiments (see Section 4.2). Lim-
iting ourselves to experiments with the optimal rate of
three injections per second, we extract the start and
end times of victim lookups from 3,000 experiments
(10 machines × 100 guards × 3 visits), excluding 133
live-network experiments where tor failed to launch. Ex-
tracting the lookup timings allows us to replay the vic-
tim lookups from different client configurations. To pro-
long each 60-second experiment to 300 seconds, we gen-
erate cover victim lookups at the average lookup rate
of the experiment’s last 30 seconds. We use the average
from the last 30 seconds to prevent a potential initial
burst of lookups from skewing the stable-state rate.

We run each experiment 100 times to account for the
variance introduced by Tor’s path selection process. We
simulate a range of adversarial capabilities: adversarial
fraction b = {0.01, 0.02, 0.05} of Tor’s relay bandwidth
and fraction h = { 1

6 , 1
3 , 1} of responsible HSDirs for each

attack address that are adversarial (i.e., either one, two,
or all six responsible HSDirs). For v3 onion services,
h = 1

3 is the attack success lower bound when the ad-
versary spends a few minutes every day (see Section 5.4)
to compute a set of attack onion service keys that each
map to at least two of her HSDirs. Similarly, h = 1

6 is
the attack success lower bound when she uses attack
onion service keys that each map to at least one of her
HSDirs. Setting h = 1 requires future HSDir hashring

placement to be predictable, which is the case for v2
onion services but not v3. As v2 is deprecated and will
soon stop being supported [15, 16], we consider h = 1

3 as
the most representative baseline for the attack impact.

For each victim lookup, we simulate building a four-
hop circuit, taking into account relay weights, adversar-
ial relay bandwidth share, and adversarial fraction of
responsible HSDirs per attack address. First, we assign
the same guard from the live-network experiment to the
victim. Next, to select the second hop, we represent all
adversarial relays as a single logical relay that we select
with probability b. Accordingly, we represent all benign
relays as a single logical relay with selection probabil-
ity 1 − b. This abstraction does not affect the results
of our evaluation, as the adversary is assumed to coor-
dinate among her set of middle relays. Then, we pick a
third hop according to relay probabilities from the same
consensus we used in Section 4.2. Finally, depending on
h, we pick an HSDir as follows: if h = 1, every victim
lookup is sent to the adversary’s HSDirs. If h = 1

3 , two
out of six victim lookups are routed to the adversary’s
HSDirs on average. With h = 1

6 , on average only one of
six victim lookups reaches an adversarial HSDir.

Noise Lookups. A realistic model of the noise
lookups is crucial for our evaluation, as the overwhelm-
ing majority of HS_DESC lookups in the Tor network ex-
hibits the target cell pattern that the adversary’s mid-
dle nodes scan for. Using the measurements from Sec-
tion 4.2, we simulate noise lookups at the rate we extrap-
olate for the Tor network from our HSDir measurements
(Section 5.1, N = 1052.27 noise lookups per second).

We build circuits for noise lookups following a simi-
lar method as for victim lookups. We assume each noise
lookup comes from a different user. Thus, we sample
a new guard for each noise lookup circuit from all re-
lays marked as guards in the consensus obtained during
Section 4.2, weighted by their guard_probability. The
HSDirs for noise lookups are picked randomly from the
ca. 3,500 HSDirs present in the Tor network.

Adversary. The simulated adversary follows the
steps described in Figure 2 to identify the guard of the
victim. The adversary runs middle relays with combined
bandwidth share b and controls fraction h of responsi-
ble HSDirs. As the target cell pattern can be reliably
detected by adversarial middle relays (see Section 3.3),
we assume that the simulated malicious second hop de-
tects all “404 Not Found” lookup circuits that it relays.

The adversary compares the lookup logs from her
HSDirs with pattern matches recorded on her adversar-
ial middle. The adversary sees a match when the HSDir
and the middle are connected to the same third hop, and
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Fig. 4. Probability of identifying the victim’s guard by the attack
time in seconds based on 286,700 simulations per setting. The
probability increases with time spent on the attack webpage, ad-
versarial fraction of responsible HSDirs for attack onion addresses
(h), and adversarial relay bandwidth share (b).

lookup timestamp ta is between ts and tr that the mid-
dle relay recorded (Section 3.2). The adversary keeps
track of the number of observed matches per guard.
Once any of these counters reaches two (double match),
the adversary concludes that the corresponding guard
belongs to the victim.

5.3 Attack Success

We run 100 simulations for each of the 2,867 distinct
experiments and nine different adversarial settings, ob-
taining a total of 2,580,300 simulation instances. To give
an indication of the scale, we generate more than 814.8
billion noise circuits during the simulations, considering
300 seconds of simulation per experiment and 1,052.27
noise lookups per second. For each simulation instance,
we record whether the guard detected by the adversary
is correct or not, the time it takes to make the detection,
and the adversarial parameters used in the simulation.

We use the circuits we constructed as ground truth
to identify false positives in guard detection. We man-
ually verify by checking a sample of false positives
that they indeed correspond to the scenarios presented
in Figure 3. Due to the high background rate of
noise lookups, we observe that false positives for single
matches range from 19.41% to 20.22% for different ad-
versarial settings. While a true positive rate of ca. 80%

is already substantially better than randomly guessing
a victim’s guard from among the ca. 3,600 Tor guards,
the attack’s false positive rate drops almost by factor
100 when requiring a double (instead of a single) match.
With double matching, the attack’s false positive rate
decreases to between 0.08% and 0.37% (Table 4). We
use guard decisions from double matching in attack ac-
curacy and duration results in Table 4 and Figure 4, as
well as other metrics reported throughout the paper.

In some simulation instances the adversary does not
observe enough matches for any guard to determine the
victim’s guard. This occurs more often for adversaries
with a lower share of controlled HSDirs and relay band-
width. Such cases fall under the “No Call” column in
Table 4. The weakest adversary (h = 1

6 , b = 1 %) is un-
able to make a decision 6.82% of the time even after
five minutes of attack. However, the rate of “No Call”
attacks drops to 0.09% when the adversary has b = 5 %
of Tor’s relay bandwidth and generates attack addresses
for which she controls h = 1

3 of the responsible HSDirs.
Due to “No Call” outcomes, some CDF subplots in Fig-
ure 4 do not reach 1.0 within the simulation time.

As shown in Figure 4, the probability of identifying
a victim’s guard increases with 1) the time spent on the
attack page, 2) the adversarial bandwidth share (b), and
3) the fraction of adversarial HSDirs for the attack ad-
dresses (h). We particularly note the effect h has on the
attack’s speed. The adversary may substantially reduce
the attack duration by spending a small amount of time
each day (see Section 5.4) to precompute attack pub-
lic keys that map to two of the six responsible HSDirs
(h = 1

3 ) instead of one (h = 1
6 ).

The strongest adversary in our evaluation (provid-
ing b = 5 % of Tor’s relay bandwidth and controlling
h = 1

3 of the responsible HSDirs per attack address)
needs 8.7 seconds for a quarter of the victims, 12.06
seconds for half of them, and 48.56 seconds for 99% of
the victims (false positive rate: 0.13%). If this adversary
controls only one of the six responsible HSDirs per v3
attack onion address (h = 1

6 ), the attack times increase
to 12.76 (P25), 18.47 (P50), and 112.92 (P99) seconds
(false positive rate: 0.09%). A 1% adversary (h = 1

3 )
needs less than 40 seconds for 50% and 74.32 seconds
for 75% of the victims (false positive rate: 0.15%). Even
the weakest adversary (h = 1

6 , b = 1 %) discovers the
guards of more than 50% of the victims within 90 sec-
onds of the webpage visit (false positive rate: 0.08%).

For v2 onion services, an adversary is able to gen-
erate multiple HSDir relay public keys offline that are
placed in sequence on the HSDir hashring once they ob-
tain the HSDir flag. Through offline precomputation, the
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Setting Attack Duration (Percentiles) Accuracy
(h, b) Min P25 P50 P75 P90 P99 TP FP “No Call”
1
6 , 1% 1.56 45.09 88.62 155.95 254.07 b300.0c 93.10% 0.08% 6.82%
1
6 , 2% 1.23 23.90 39.98 74.29 121.31 b300.0c 98.90% 0.08% 1.02%
1
6 , 5% 0.59 12.76 18.47 27.13 40.03 112.92 99.63% 0.09% 0.28%
1
3 , 1% 1.07 23.75 39.89 74.32 121.15 b300.0c 98.85% 0.15% 1.00%
1
3 , 2% 0.71 14.59 21.69 33.13 52.49 144.84 99.50% 0.14% 0.37%
1
3 , 5% 0.34 8.70 12.06 16.42 22.01 48.56 99.78% 0.13% 0.09%
1, 1% 0.76 11.52 16.37 23.49 33.59 91.49 99.42% 0.37% 0.21%
1, 2% 0.37 7.87 10.90 14.67 19.35 40.20 99.63% 0.30% 0.06%
1, 5% 0.42 4.91 6.71 8.98 11.52 24.07 99.75% 0.24% 0.01%

Table 4. Time in seconds it takes an adversary to identify a victim’s guard (via double matching) based on 286,700 simulations per
setting. For a b = 5 % adversary controlling two of the six responsible HSDirs per v3 attack onion address (h = 1

3 ), the attack takes
8.70 seconds for 25% of the victims and 50 seconds for more than 99% of the victims. Even a moderate b = 1 % adversary (h = 1

3 )
needs less than 40 seconds to discover 50% of the guards. We include h = 1 for the end-of-life v2 onion services where HSDirs could
be placed. The percentiles where our attack does not converge during 300 seconds of simulation (“No Call”) are indicated as b300.0c.

adversary can then obtain v2 attack onion service keys
that map exclusively to her HSDirs (h = 1). As shown
in Figure 4 and Table 4, this leads to extremely short at-
tack times. The strongest v2 adversary (h = 1, b = 5 %),
learns the guards of 50% of the victims in just 6.71 sec-
onds, and in 24.07 seconds for 99% of them. We include
the results on v2 just for the record however, as v2 onion
services are nearing end-of-life [15, 16].

We note that the small notch in some CDF plots
around 60 seconds is an artifact of how we gener-
ate cover lookups to extend 60-second experiments to
300-second simulations. To avoid inflating the victim
lookup rates we start the cover lookups after the 60 sec-
ond mark, but never before. An actual attack deployed
against real Tor users does not experience this issue and
will thus be slightly more advantageous to the adversary.

5.4 Time to Generate Attack Keys

Figure 4 shows that the attack is much faster for h = 1
3 ,

i.e., when the adversary precomputes v3 attack onion
addresses that map to two of her adversarial HSDirs. A
hashring constructed from data about each HSDir in the
network and public parameters determines which HSDir
serves which part of the v3 onion services address space.
To prevent HSDir placement on the hashring from being
predictable too far into the future, the process involves a
shared random value from Tor’s consensus that changes
daily [55]. A relay wanting to become an HSDir needs to
be active in the network for at least 96 hours before that
happens, so that the shared random value has changed
multiple times when the relay joins the hashring.

We implement the algorithm to obtain a set of v3
attack onion service keys that map to at least two ad-
versarial HSDirs for a set of public parameters (shared
random value, current time period) from an actual Tor
network state. We target a set size of 900 keys, which
corresponds to five minutes of attack at three injections
per second (see Section 4.2). We are interested in the av-
erage time it takes an adversary to generate keys that
map to at least two adversarial HSDirs, given that she
controls a number of HSDirs in the network. We detail
the generation process in Section D in the Appendix.

We run the key generation script ten times for each
number of adversarial HSDirs to account for variance in
their selection. We parallelize the script to run across
20 processes (using ten hyper-threaded cores). The av-
erage time to obtain 900 v3 attack onion service keys
that map to at least two adversarial HSDirs is shown in
Figure 5. On average, an adversary running 25 HSDirs
needs between 1.68 minutes (180 keys) and 8.1 minutes
(900 keys). As the adversary has at least twelve hours
between knowing the subsequent shared random value
and this value’s first use by Tor clients, it is easily fea-
sible to precompute attack onion service keys to obtain
h = 1

3 . For an adversary with ten HSDirs, this takes
between 10.3 minutes (180 keys) and 52.3 minutes (900
keys), on average. Thus, the adversary makes a trade-
off between running more HSDirs to minimize the daily
precomputation and running fewer HSDirs that require
longer—but feasible—daily precomputation efforts.
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Fig. 5. Average time in minutes it takes an adversary running 10,
15, 20, or 25 HSDirs to generate a set of up to 900 onion service
public keys that map to at least two adversarial HSDirs. Due to
daily rotation of the responsible HSDirs per v3 onion service, an
adversary needs to regenerate these keys every day. Error bars
mark the 95% confidence interval from ten repetitions.

6 Countermeasures
We evaluate three countermeasures against our guard
discovery attack: a token bucket that rate-limits the
number of lookup circuits created by a Tor Browser tab,
deploying Vanguards-lite [27] to introduce second-hop
guards, and a combination of the two approaches.
The token bucket restricts the number of lookup cir-
cuits a Tor Browser tab can create and thus reduces
the adversary’s chances to observe the lookup pattern.
Vanguards-lite restricts the set of eligible second-hop re-
lays to four per user (called L2 guards) and thus limits
our attack to users with adversarial relays among their
L2 guards. Combining Vanguards-lite with a specially
configured token bucket allows to limit attack success
in the presence of adversarial L2 guards.

We evaluate each countermeasure by integrating it
into our attack simulation from Section 5.3. Each indi-
vidual configuration below is based on 50 simulations
for each of our 2,867 live-network lookup profiles from
Section 4.2, leading to 143,350 simulations per displayed
CDF. We focus on v3 onion services and a b = 5 % adver-
sary, and thus exclude the adversarial settings of h = 1
and b = { 1 %, 2 % }.

Token Bucket. The token bucket regulates the ini-
tial (and burst) number tb_iv of lookup circuits that
each tab in Tor Browser can cause the Tor client to cre-
ate, as well as the rate tb_refill with which tokens
are replenished as long as less than tb_iv are available.
When tb_iv and tb_refill are chosen appropriately,

Fig. 6. Probability of detection for a 5% adversary, considering a
token bucket with tb_iv initial tokens and refill rate tb_refill.

for most scenarios the adversary does not get enough
chances to be selected as second hop before the rate lim-
iting sets in. On the other hand, selecting too low tb_iv
and tb_refill impairs the user experience of benign
websites that embed more onion service resources than
these limits allow. A special case represents a tb_refill
of zero, where tb_iv acts as an upper limit on the total
number of circuits a tab can create.

In order to estimate which tb_ivs do not im-
pair most benign websites, we crawl 115 onion web-
sites from a list of high-profile onion websites [35] with
tor-browser-selenium. Using tor and Tor Button logs,
we find three to be the maximum number of distinct
onion addresses embedded on the crawled websites. We
pick tb_ivs of five, ten, and fifteen to account for onion
websites with a few more embedded onion addresses and
cases where not all lookups are successful on first try.

We evaluate each tb_iv in { 5, 10, 15 } with each
tb_refill rate in { 1/min, 6/min } and show the
time it takes the adversary to compromise a victim’s
guard in Figure 6. Against an h = 1

3 adversary, a re-
fill rate of 6/min still leads to compromise probabil-
ities above 10% after five minutes, independently of
the chosen tb_iv. Thus, we do not further consider
tb_refill=6/min. However, with a refill rate of 1/min,
we see ca. 1% (tb_iv=5), 2% (tb_iv=10), and 4%
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Fig. 7. (Entry) Guard detection probability for a 5% adversary
when at least one of the victim’s four L2 guards is adversarial.

(tb_iv=15) after five minutes against the h = 1
3 adver-

sary. Thus, at tb_refill=1/min, even with tb_iv=15
(five times the observed maximum of three distinct
onion addresses) a victim’s chance of compromise is re-
duced to ca. 2.5% after 60 seconds on the attack web-
page and ca. 4% after 300 seconds.

Vanguards-lite. With the recent Vanguards-
lite [27] proposal enabled, Tor clients and onion ser-
vices sample four relays from the list of all active re-
lays weighted by bandwidth and use them as second-
hop guards (L2 guards) on every onion circuit. Instead
of picking a second hop for a new onion circuit from all
middle relays, this hop is now chosen uniformly at ran-
dom from the four L2 guards. In contrast to the existing
Vanguards Tor add-on [28, 40], Vanguards-lite rotates
L2 guards sooner (average retention: seven days), and
does not write them to disk. Thus, a new set of four
L2 guards is picked when the user restarts tor or re-
quests a new identity [49]. Moreover, unlike Vanguards,
Vanguards-lite does not change the default path lengths
by adding an additional layer of (L3) guards.

Considering four L2 guards and a b = 5 % adversary,
on average about 18.5% of Tor users will have at least
one adversarial L2 guard. As our attack requires the
adversary to control the second and fourth hop of a
victim lookup circuit, Vanguards-lite reduces the share
of vulnerable Tor users, from close to 100% to about
18.5% on average. The alternative of three L2 guards
considered by the proposal authors further reduces the
average share of vulnerable Tor users to about 14.3%.

However, once an adversarial relay is part of a vic-
tim’s L2 guards, our attack needs a much shorter time
to complete. We implement Vanguards-lite in our at-
tack simulation and evaluate the case of a Vanguards-
lite user with at least one adversarial L2 guard against
a b = 5 % adversary with h in { 1

3 , 1
6 }. The simulation

results (Figure 7) show that it takes 21.31 seconds for
an h = 1

3 adversary (or 26.76 seconds for h = 1
6 ) to

discover the entry guards of 99% of the victims. Com-

Fig. 8. Guard detection probability for a 5% adversary when
at least one of the four second-hop guards on onion circuits
(Vanguards-lite) chosen by the victim is adversarial and a token
bucket with tb_iv initial tokens and tb_refill=0 is used.

paring the results to Table 4, the median attack time
drops by more than half: from 12.06 to 5.13 seconds.

Vanguards-lite with Token Bucket. To address
the vulnerability of Vanguards-lite users with an ad-
versarial L2, we combine the two approaches presented
above by applying a token bucket per Tor Browser tab
on top of Vanguards-lite. Due to limited usefulness of
low refill rates yet steadily increasing compromise prob-
abilities over longer attack times, we set tb_refill=0
for this defense. Thus, tb_iv effectively acts as an
upper bound on the total number of lookup circuits
any Tor Browser tab can create. We show a victim’s
guard discovery probability with at least one of four
adversarial L2 guards and a token bucket with tb_iv
in { 5, 10 } in Figure 8. For the stronger adversary
(h = 1

3 ), compromise probability is at 7% (tb_iv=5)
and 22.5% (tb_iv=10), respectively. Combined with
applying to only about 18.5% of Tor users to begin with,
we obtain on average about 1.3% (tb_iv=5) and 4.2%
(tb_iv=10) compromised Tor users after five minutes
of attack, down from almost 100% without any defenses.

Discussion. Based on our simulations, a token
bucket per Tor Browser tab with a relatively high tb_iv
of 15 and a tb_refill of one (or lower) appears to be
a simple and effective countermeasure to limit the risk
from our guard discovery attack. However, it is a specific
defense that only targets HS_DESC lookup circuits from
Tor Browser tabs and may lead to user experience (UX)
issues once a tab has exhausted its tokens. If a web-
page embeds many subresources on non-existing onion
addresses, the token bucket defense blocks all HS_DESC
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lookups once it is empty, preventing the webpage from
loading fully or functioning properly. A challenging UX
decision then is to decide whether and how to communi-
cate the status “no tokens left” to users. On onion web-
sites, Tor Browser displays different icons in the address
bar to warn users about potential security issues such as
“The Onion Service is served with a mixed form over an
insecure URL” [50]. We show the existing set of onion
icons in Section E in the Appendix. We believe adding
a new icon that is displayed when no tokens are left to
be the most effective and least intrusive solution. Fur-
ther, research on token replenishment strategies based
on user actions (e.g., clicks) may be an interesting av-
enue for future work to avoid unwanted token depletion.

Vanguards-lite is a more general-purpose counter-
measure that does not impair website rendering. It is
informed by and benefits from the Tor community’s ex-
perience with the guard concept and is derived from the
already used and tested Vanguards add-on. However, a
substantial number of Tor users will have at least one
adversarial L2 guard (ca. 18.5% for b = 5 %) and thus
remain vulnerable to our attack. Adding a cap on the
number of lookup circuits to Vanguards-lite has a lim-
ited effect: there are only four choices for the second hop,
so it does not take many circuits to select an adversarial
second hop twice, allowing the adversary to succeed.

7 Discussion
Fundamental Problem and Countermeasures.
The fundamental issue that enables our attack is the
same that led Tor to introduce guards in the first place:
a small probability of circuit compromise becomes prob-
lematic if the user can be tricked into creating many
circuits (i.e., taking many fresh chances), as the adver-
sary only needs to get lucky once to succeed. Our at-
tack uncovers a new vector exploitable by adversaries
who target users visiting a certain webpage. Known
countermeasures aim to reduce the chances of compro-
mise, either by capping the number of attempts (e.g., to-
ken bucket) or by reusing previously made choices (e.g.,
Vanguards-lite and guards themselves).

Capping attempts can have a usability impact,
while reusing choices introduces linkability and thus
may be exploitable for deanonymization. We find that
capping circuit creations is a more effective protection in
our attack scenario. Note however, that while a cap on
the number of HS_DESC lookup circuits per Tor Browser
tab is possible with a small impact on user experience,

capping is not a viable solution in other contexts. For
example, the “capping” alternative to reusing the first-
hop relay (entry guard) on circuits would imply limiting
the amount of pages browsed with Tor, completely de-
feating its purpose. The best solution (capping attempts
vs. reusing choices) for each manifestation of the prob-
lem is therefore highly context-dependent.

Recurring attacks against Tor guards show that a
useful future research direction may be to systematize
the concept of guards, including attacks and defenses
against them. Such research may attempt to consolidate
the existing specialized defenses into a framework and
inform future countermeasures about the fundamental
problems and trade-offs.

Attack Impact and Feasibility. Typically, guard
discovery serves as a stepping stone for further attacks
such as traffic confirmation [25], website fingerprint-
ing [37, 57], and selective denial of service [7]. Upon
identifying a victim’s guard, actors with offensive capa-
bilities may go on to compromise, coerce, or subpoena
the server. Past web-based guard discovery attacks [47]
with a similar impact were flagged as high priority by
Tor developers, while being roughly 60× slower than
our attack. Furthermore, our attack only needs a mod-
est budget and can thus be carried out by adversaries
with limited budgets (Section C, Appendix). The Tor
relays that the adversary operates are of the types that
receive the least scrutiny. The biggest constraint for the
adversary is that she needs to run her designated HS-
Dirs at least 96 hours in advance of the attack so that
each obtains the HSDir flag.

By forcing a Tor client to create many circuits in
a short time, our attack enables other attacks that can
be deployed by an adversary with a limited view of the
network (e.g., with a small bandwidth share). For in-
stance, if an adversary deploys our attack while also
running malicious guards, she may fully deanonymize
Tor users instead of just identifying their guards.

Our attack can be deployed by a wide range of ad-
versaries, including website owners and embedded third
parties. If the adversary cannot get access to a website
visited by the target, she may lure the victim into visit-
ing a malicious website via a spear phishing email, text
message, or direct message on an online platform (e.g., a
dark-web marketplace). Moreover, a malicious exit may
inject the attack code into websites visited by Tor users
over unencrypted HTTP connections [59].

Ethical Considerations. We collected data with
the potential to impact other Tor network participants
on two occasions. First, when we performed our geo-
graphically distributed victim crawls (Section 4). Sec-
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ond, when we counted the number of times our HSDir
responded with a specific code to HS_DESC requests (Sec-
tion 5.1). For both experiments, we first discussed our
plans with Tor’s Research Safety Board and modified
details based on the valuable feedback we received. We
took great care of not logging any privacy-sensitive in-
formation about the requests we saw on our HSDir. We
made sure not to overload guards by spreading our ex-
perimental traffic over time.

Limitations. Tor tries to use a single primary
guard across all circuits of a user [30]. However, if for ex-
ample exit and first primary guard are part of the same
relay family or /16 subnetwork, Tor needs to use one of
the other two primary guards as the first hop [38]. In
such unlikely cases, our attack may identify the second
or third instead of the first primary guard of a victim.

Our attack works best when deployed against a sin-
gle victim or small number of victims in a targeted man-
ner. The adversary may rate-limit the attack by serv-
ing the malicious script selectively. When run against
a large number of victims concurrently, our attack will
output the set of guards used by all victims, without
a mapping between an individual victim and its guard.
However, due to the short time it takes to obtain a guard
using our attack, the adversary may run it one-by-one
against a large group of victims in rapid succession.

Our estimate of the Tor-wide noise lookup rate is
extrapolated from data collected on a single HSDir. We
collected the data over 31 days to account for variance
and approximate our numbers to the average HSDir, but
our view of the HS_DESC space was still limited. While
fluctuations in the noise lookup rate may affect the effi-
cacy of our attack, the adversary can use her HSDirs to
continuously monitor the noise lookup rate and adjust
her relay bandwidth share accordingly.

We demonstrate determinism and uniqueness of the
target cell pattern with Shadow simulations. These sim-
ulations make assumptions about the network condi-
tions they work in, which may not account for all pos-
sible traffic patterns occurring on the live Tor network
and thus should be considered an abstraction.

Tor users may detect that they are being targeted
by our attack, e.g., by checking their HTTP requests
with Tor Browser’s Network Monitor [33] and seeing
the suspiciously high number of onion service requests.

Feedback from Tor Developers. We shared our
findings with the Tor developers and have been in dis-
cussion with them about potential ways to address
our attack. We provided them early results from our
countermeasures evaluation, including on the recent
Vanguards-lite proposal [27]. We made sure the evalu-

ation we presented in this paper represents Vanguards-
lite fairly and accurately. In addition, they provided very
useful feedback on the potential side effects of counter-
measures on performance and reliability, as well as their
implementation difficulty. For instance, the current de-
sign of our token bucket defense has benefited from their
feedback that countermeasures that only require client-
side changes are easier to implement than those affect-
ing relays. Concurrent to our work, the Tor developers
integrated Vanguards-lite [27, 48] into Tor 0.4.7.

8 Conclusions
We present a fast, stealthy, and low-cost attack that re-
veals a Tor user’s guard through a web-based attack.
Our attack exploits the fact that webpages can cause
victim Tor clients to create an unlimited number of cir-
cuits to look up onion service descriptors as well as the
distinctiveness of the cell pattern if the lookup is unsuc-
cessful. The attack can be deployed for a few hundred
euros per month by a diverse set of adversaries, includ-
ing third-party script providers, website administrators,
and malicious exits (when unencrypted HTTP is used).
Through extensive simulations and live-network experi-
ments, we evaluate our attack against Tor users with
different geolocations, computer speeds, and network
conditions. We find that a 5% adversary controlling
two HSDirs per attack onion address identifies a vic-
tim’s guard in 12.06 seconds at the median case and
under 50 seconds for 99% of the users. The better a
victim’s network connection and computer, the more ef-
fective is our attack. While our attack works best when
JavaScript is enabled, we develop a scriptless version
that works against Tor users with stricter security set-
tings. We show that a token bucket countermeasure is
effective in mitigating our attack and that the use of
Vanguards-lite can also reduce its impact.
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A Adversarial Cell Pattern
Characteristics with Shadow

For our cell pattern investigations in Section 3.3, we
conduct two experiments that analyze the target “404
Not Found” cell pattern using Shadow [20] and TorNet-
Tools [24, 43]. In all experiments, we run a tor binary
patched at release 0.4.4.5 to export metadata about
routed cells. We log a timestamp, the cell’s channel-
circuit assignment and purpose of the channel, whether
cells are incoming or outgoing of the relay, their direc-
tion (away from or towards the circuit origin), and their
command (CREATE, CREATED, RELAY, and DESTROY cells).
For cells with command RELAY, we additionally extract
the relayed command, if visible to the node.

A.1 Is the Target Cell Pattern
Deterministic?

For our first experiment we construct a minimal Tor
network in Shadow, consisting of five Tor nodes: a client
that connects via a guard, a fixed second-hop relay, and
a fixed third-hop relay to an HSDir. The client uses the
circuit to request the HS_DESC of a non-existing onion
address. We use this simple setup to extract the sec-
ond hop’s view on the cell pattern exhibited by the vic-
tim lookups. As we are interested primarily in the cell
pattern, we configure a low, fixed latency of 10ms per
edge and no packet loss or jitter. We note that this is
an abstraction from network conditions in the live Tor
network that may require adaptations to the matching
routine when deployed on live networks. The experiment
simulates one hour of operation, during which the client
attempts to connect to the non-existing onion address
a fixed number of times (leading to a fixed number of
lookups). Among other things, the long simulation time
allows us to account for cells that are sent due to inac-
tivity and are still part of the target cell pattern.

Analyzing the cell traces and metadata collected for
the second-hop relay in the simulation, we find that the
adversarial cell pattern is indeed deterministic. Figure 9

shows how the pattern is viewed at each circuit hop.
Specifically, we are interested in the circuit’s second-
hop position, which is next to a victim’s guard (relay
“R5” in Figure 9). The pattern always features three
parts, possibly completed by a final closure part. First,
the telescoping circuit setup iterates from guard “G1” to
middle “R5” to middle “R1” and finally “HSDir1”. Next,
the client opens a directory connection and requests the
(non-existing) HS_DESC. Third, the HSDir sends back
confirmation of directory connection establishment, the
“404 Not Found” response, and a cell ending the stream.
We do not depict the circuit teardown behavior after a
certain period has elapsed.

The target cell pattern being deterministic is advan-
tageous for our attack. The adversary is able to distin-
guish whether an adversarial middle is positioned at the
second or third hop of the victim lookup circuit. This al-
lows to exclude all circuits where an adversarial middle
relay has only been chosen into the third circuit position
and does not have visibility over the guard. Further, the
“404 Not Found” response payload is the same across
both onion service versions, v2 and v3, and fits into a
single cell in both scenarios. Finally, a deterministic cell
pattern removes the need for more elaborate classifica-
tion techniques such as machine learning.

A.2 Is the Target Cell Pattern Unique?

In order for the attack to work, the HS_DESC lookup cell
pattern also needs to be unique: in case the cell pattern
is otherwise frequently occurring in all sorts of unrelated
circuits, its observation likely corresponds to a false pos-
itive. We conduct a second experiment using Shadow
to investigate whether the target pattern is spuriously
observed. In contrast to the preceding experiment, here
we generate a larger, diverse, and more realistic network
using TorNetTools.

Based on data published by the Tor Metrics team
for May 2020, we have TorNetTools produce a Tor test
network that is representative of a 2%-scale sampled
version of the live Tor network. Note that downscal-
ing does not have a significant impact on the experi-
ment, since it is concerned with cell patterns that ap-
pear within a circuit, which are insensitive to total net-
work size. The simulated network includes 133 Tor re-
lays, 16 tgen [42] clients instructed to measure download
performance, 158 tgen clients modelled to emulate ac-
tual user behavior, and 16 tgen servers. The entities are
mapped to locations in a network model that aims to
realistically capture geographical distribution and net-
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Fig. 9. Target cell pattern of a victim lookup that the adversarial middle relays (e.g., R5) scan for. Timestamps ts, ta, and tr corre-
spond to columns Sent (R5), Access Time (HSDir1), and Received (R5) in the tables in Figure 2, respectively.

work conditions of the Tor network. Thus, upstream and
downstream bandwidth as well as latency are adjusted
according to the nodes’ geographical locations.

In order to have HS_DESC lookups (of existing ad-
dresses) as part of the results, we configure four of the 16
tgen servers to operate as onion services, two as v2 and
two as v3 onion services. The remaining TorNetTools
parameters stay at their defaults (process_scale =
0.01, server_scale = 0.1, torperf_scale = 0.001,
and load_scale = 1.0). This means that each tgen
client process emulates 100 actual Tor users. The to-
tal simulated time is set to one hour, of which the ini-
tial five minutes are dedicated to bootstrapping. Once
bootstrapping is completed, tgen traffic generation be-
gins and runs until the end of the experiment.

In total, clients construct and use 1,866,782 circuits
over the course of the experiment. For each hop on each
circuit, we check whether any of the observed cell pat-
terns matches the attack cell pattern, as observed by R5
in Figure 9. We do not find a single occurrence of the ad-
versarial pattern. Based on our observations from these

two simulations using Shadow and TorNetTools, we find
the cell pattern of an HS_DESC lookup with a “404 Not
Found” response to be deterministic and unique, and
thus exploitable as part of our attack.

B Establishing the Most Effective
Set of Attack Parameters

Regarding our experiments in Section 4.2 that deter-
mine the most effective attack parameters for the ad-
versary on the live Tor network, we detail how injec-
tion rates and geolocation affect victim lookup rates in
Figure 10. Each boxplot shows the distribution of the
average number of lookups per second over 60 seconds
of attack, per victim setting and configured injection
rate. We observe that geographical distance between
the victim and the region where most Tor relays are
located (Europe) appears to have an effect on lookup
rates. Lookup rates for victims in Frankfurt are highest
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Fig. 10. Victim lookups per second across different rates of injected non-existing resources and victim settings. Experiment and victim
settings described in Section 4.2. The four geographical locations represent: Singapore (SGP), New York City (NYC), Frankfurt (FRA),
and our university (Uni).

in each machine-network class, followed by victims in
New York City, and finally victims in Singapore (excep-
tions are the weakest and slowest clients at four, five,
and six injections per second).

At injection rates higher than three per second, re-
sults begin to diverge for more and less powerful clients.
While more powerful machines generate more lookups
with a higher injection rate, less powerful machines be-
come “saturated” and generate fewer lookups than if
only three resources per second are injected. Our office
Desktop, which we include as an upper limit, reaches
a peak rate of 23.5 lookups per second at five injected
resources per second.

C Monetary Cost of the Attack
We give an exemplary cost calculation of our attack to
demonstrate its affordability using prices from Hetzner,
a low-cost cloud provider [17]. While the adversary’s
expenses may also include the cost of manipulating the
webpage (e.g., as an advertising third party), we focus
on HSDir and relay operation costs, as these likely rep-
resent the bulk of the budget.

According to Tor Metrics [52], the total advertised
relay bandwidth is around 600 Gbit/s. However, Tor
users actually consume only about half of it. Thus, the
adversary may advertise twice as much bandwidth as
officially available with each instance. Hetzner includes
20TB traffic per month per instance, thus we adver-
tise 2 · 160,000

30·24·60·60 ≈ 0.123 Gbit/s per middle relay. To

cumulatively offer 5% of Tor’s relay bandwidth, the ad-
versary needs to advertise 1

19 · 600 ≈ 31.58 Gbit/s and
thus requires 31.58

0.123 < 257 instances. For 2% cumulative
relay bandwidth, she needs to run 12.25

0.123 < 100 instances,
while she only requires 6.06

0.123 < 50 instances for 1%.
Based on the Tor Project’s information on relay

requirements [53], Hetzner’s CX21 instances (2 vCPUs,
4GB RAM, 5.88 €/month) appear adequate. Assuming
ten HSDirs, the adversary needs to spend EUR 1,579.56
(5%), EUR 656.40 (2%), and EUR 362.40 (1%) for one
month of attack. We deem these costs to be affordable
even for adversaries with limited financial resources.

D Attack Key Precomputation
Our attack key precomputation script works as follows.
We load the current shared random value from a Tor
consensus file and calculate a time period involving the
valid-after field. We load the list of identity public
keys of all relays with the HSDir flag in the server de-
scriptors document downloaded with the consensus file
and build the sorted list of each relay’s hash of key infor-
mation and public parameters (i.e., the hashring). For
each number of adversarial HSDirs in { 10, 15, 20, 25 },
we sample this many unique HSDirs uniformly at ran-
dom from the list of all HSDirs as the current set of
adversarial HSDirs. Now we take the time it takes to
generate fresh onion service key pairs, blind them ac-
cording to v3 specification [55], calculate their hashring
indices and respective sets of responsible HSDirs, and
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Fig. 11. The existing set of onion icons used by Tor Browser to
convey the security of an onion website.

select the ones that map to at least two of the sampled
adversarial HSDirs until the list of selected attack onion
service keys has size 900. Reaching intermediate sizes of
multiples of 180 is marked as dedicated timestamps.

E Onion Security Icons
We show the existing set of onion icons used by Tor
Browser in Figure 11.
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