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Polaris: Transparent Succinct Zero-Knowledge
Arguments for R1CS with Efficient Verifier
Abstract: We present a new zero-knowledge succinct ar-
gument of knowledge (zkSNARK) scheme for Rank-1
Constraint Satisfaction (RICS), a widely deployed NP-
complete language that generalizes arithmetic circuit
satisfiability. By instantiating with different commit-
ment schemes, we obtain several zkSNARKs where the
verifier’s costs and the proof size range from O(log2 N)
to O(

√
N) depending on the underlying polynomial

commitment schemes when applied to an N -gate arith-
metic circuit. All these schemes do not require a trusted
setup. It is plausibly post-quantum secure when instan-
tiated with a secure collision-resistant hash function. We
report on experiments for evaluating the performance
of our proposed system. For instance, for verifying a
SHA-256 preimage (less than 23k AND gates) in zero-
knowledge with 128 bits security, the proof size is less
than 150kB and the verification time is less than 11ms,
both competitive to existing systems.
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1 Introduction
With a surge in applying blockchain technologies to var-
ious applications and cloud outsource computing, zero-
knowledge proof systems gain a great interests from its
theoretical interests to practical implementations. Zero-
knowledge proof allows a powerful party (the prover) to
convince another weak one (the verifier) that a state-
ment is true without revealing any information beyond
the fact that the statement is true. Since introduced by
Goldwasser et al. in [36] and followed by the generic
constructions proposed in the seminal work of Kilian
[41] and Micali [46] based on probabilistically checkable
proofs (PCPs), there are tremendous works that have
been done to bring zero-knowledge proofs to practical
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systems, and it has become fundamental tools in the de-
sign of real-world systems with strong privacy proper-
ties, such as verifiable outsourced computations, anony-
mous credentials, privacy-preserving cryptocurrencies
and smart contracts.

The fundamental challenge associated with main-
taining transactions privacy in blockchain applications
is that participants must be able to agree on the state of
the network and reject any invalid transactions or un-
fair play while still respecting the external privacy con-
straints endowed by the workflows. Simply, participants
must be able to agree that something is the same with-
out seeing it. Many applications further require that a
transaction consists of a single non-interactive message
that can be verified by anyone; such messages are cheap
to communicate and can be stored for later use (e.g.,
on a public ledger). Constructions that satisfy these
properties are known as zero-knowledge succinct non-
interactive arguments (zkSNARGs) [33], and refer to
the proof constructions where one can prove possession
of certain information, e.g., a secret key, without reveal-
ing that information, and without any interaction be-
tween the prover and verifier. Additionally, if the prover
can convince the verifier not only that the secret exists,
but that he in fact knows such a secret – again, with-
out revealing any information about the secret, we call
such a proof construction zero-knowledge succinct non-
interactive argument of knowledge (zkSNARK).

Currently, there are a large amount of construc-
tions that achieve different tradeoffs between proof size,
proving time, and verification time under different trust
models as well as cryptographic assumptions. Some con-
structions also achieve better efficiency by relying on a
trusted preprocessing model in which a one-time expen-
sive setup procedure is performed in order to generate a
compact verification key for proof, which is later used to
verify proof instances efficiently. Essentially, it needs a
third party to run a probabilistic algorithm to generate
parameters for the argument system, publish its output,
and “forget” the secret randomness used to generate it.
As stated in [16], when using cryptographic proofs in
distributed systems, relying on a central party negates
the benefits of distributed trust and, even though it is
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invoked only once in a system’s life, a party trusted by
all users typically does not exist!

A proof system is called transparent if it does not in-
volve any trusted setup. Recent efforts have thus focused
on designing proof systems with transparent setup. We
continue along this line of research and focus on ob-
taining transparent proof systems with better concrete
efficiency characteristics: succinctness (the proof size is
polylogarithmic in the original computation length N),
prover-scalability (proof generation time scales linearly
or quasi-linearly in N), and verifier-scalability (verifica-
tion time is polylogarithmic in N).

1.1 Our Results
In this paper we propose Polaris, a zkSNARK with
quasi-linear prover time and both polylogarithmic proof
size and verification time in the size of the arithmetic
circuit representing the statement. Inspired by the en-
coding of an R1CS instance as a univariate polyno-
mial in quadratic arithmetic program (QAP) [32] and a
degree-3 multivariate polynomial in Spartan [48], we in-
stantiate the encoding of the R1CS instance as a univari-
ate polynomial by leveraging bivariate interpolations.
Polaris is a combination of the univariate analogue of en-
coding and Aurora’s univariate sumcheck protocol [16].
Polaris also has attractive features: it uses a transparent
setup and can only use lightweight cryptography.

The efficiency features of Polaris stem from an ef-
ficient arithmetic layered circuit that the verifier can
delegate the query computations to the prover, and val-
idate the result using the GKR protocol [35]. Our con-
crete contributions are:
– A query computation circuit. Recall that the uni-

variate sumcheck in Aurora [16] invokes a low degree
test (LDT) protocol on Reed-Solomon (RS) code as
a subroutine to test the sum of a univariate poly-
nomial on a subset. To ensure security, at the end
of the LDT, the verifier needs oracle access to some
points of the polynomials. In both Ligero [7] and Au-
rora [16], the verifier constructs a circuit by itself and
evaluates it locally, which takes linear time. Instead of
evaluating the query computations locally, we design
a (layered) arithmetic circuit to delegate the query
computations to the prover, and validate the results
using the GKR protocol. In this way, we can eliminate
the linear overhead to evaluate these points locally,
making the verification time of the overall protocol
polylogarithmic.

– An encoding of R1CS instances as low degree
univariate polynomials. In QAP [32], the authors
encode an R1CS instance as a degree-N univariate

polynomial. However, this offline encoding step alone
typically costs O(N2 logN) because it involves the
FFT to encode the computation as O(N) degree-N
univariate polynomials. In Spartan [48], the resulting
multivariate polynomial in the offline preprocessing
phase is actually quadratic in the instance size, since
adding the low degree extensions can increase the de-
grees for each variable. Instead, we interpret the en-
coding of the R1CS instance as a univariate polyno-
mial by leveraging bivariate interpolations. The size
of resulting univariate polynomial is equal to the size
of the instance and the encoding cost is O(N logN).
This avoids any asymptotic overhead when we em-
ploy a polynomial commitment scheme.

– Transparent zkSNARK for R1CS. We construct
a new zkSNARK for R1CS with polylogarithmic for
both proof size and verification time. By instantiat-
ing with different polynomial commitment schemes,
we obtain several zkSNARKs where the verifier’s
costs and the proof size range from polylogarithmic
to sublinear depending on the underlying commit-
ment scheme. These schemes do not require a trusted
setup. Our scheme thus provides an alternative choice
for the design of transparent zkSNARKs. Table 1
compares the asymptotic costs of our zkSNARK (in-
stantiated with the polynomial commitment schemes
of FRI [8] or Virgo-VPD [56]) with some known
schemes.

– Evaluation. We implement and evaluate Polaris,
based on our new construction instantiated with the
polynomial commitment scheme of FRI [8]. The im-
plementation is based on the open-source library
libiop [2] and Virgo [6]. Our experimental evalu-
ation demonstrates that Polaris offers a much lower
verification time than Ligero and Aurora for instances
with large sizes as we reduce the complexity from lin-
ear to polylogarithmic.

1.2 Related Work
More recent improvements for QAP/QSP based zk-
SNARK have been proposed in the directions for re-
moving the need for a trusted setup to generate the
argument system parameters and construct transparent
zkSNARK schemes. The scheme of [54], Hyrax, is trans-
parent, and the proof size and verification time are sub-
linear. Virgo’s [56] model of computation is the same
as Hyrax’s, so it achieves sublinear verification costs
only for low-depth, uniform circuits as well. Fractal [29]
achieves sublinear verification costs, but it is a prepro-
cessing zkSNARK for R1CS via establishing a connec-
tion between holography and preprocessing in the ran-

https://github.com/scipr-lab/libiop
https://github.com/sunblaze-ucb/Virgo
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Table 1. Asymptotic comparison of some recent zkSNARKs when applied to an N -gate arithmetic circuit. For Virgo, we assume a
depth-D layered uniform circuit.

scheme setup prover time proof length verifier time computational model
Ligero [7] public O(N log N) O(

√
N) O(N) arithmetic circuit

Ligero++ [20] public O(N log N) O(log2 N) O(N) arithmetic circuit
Aurora [16] public O(N log N) O(log2 N) O(N) R1CS
Fractal [29], SpartanRO [48] public O(N log N) O(log2 N) O(log2 N) R1CS
Virgo [56] public O(N log N) O(D log N) O(D log N) uniform circuit
Stark [9] public O(N log N) O(log2 N) O(log2 N) uniform circuit
SpartanDL [48] public O(N) O(

√
N) O(

√
N) R1CS

Marlin [28] private O(N log N) O(log N) O(log N) R1CS
PolarisRO public O(N log N) O(log2 N) O(log2 N) R1CS

dom oracle model, but it does not offer short proofs.
Marlin [28] also achieves sublinear verification costs in
the holographic setting, but it needs a trusted setup to
generate a linear-size structured reference string (SRS).
Spartan [48] (the DLOG variant) offers the best asymp-
totic cost for the prover for statements expressed in
R1CS through the sumcheck protocol to build low de-
gree multilinear polynomials (LDPs) where it employs a
polynomial commitment scheme as a black box to com-
mit some polynomial evaluations. But the proofs are
O(
√
N) group elements and the verifier must perform

O(
√
N) exponentiations. The variant SpartanRO in the

Spartan family offers a tradeoff between prover costs
and verifier costs. Bulletproof [22] is also along this line,
but it is to iteratively check inner products committed
by DLOG computations, which suffers the heavy cost
for both communication between provers and verifiers,
since it leverages some benefits from MPC.

Based on “(MPC)-in-the-head”, Ames et al. [7]
proposed a zero-knowledge interactive PCPs (IPCPs)
called Ligero. It only uses symmetric key operations and
the prover is fast in practice and the verification time is
linear in the size of the circuit. Later, it is categorized
as interactive oracle proofs (IOPs, a multi-round vari-
ant of IPCPs), and in the same model Ben-Sasson et
al. built Stark [9], a transparent zero-knowledge proof
in the RAM model of computation. Their verification
time is also linear to the description of the RAM pro-
gram, and succinct (logarithmic) in the time required
for program execution. Recently, Ben-Sasson et al. pro-
posed Aurora [16], in the IOP model with a logarithmic
factor reduction of the proof size and prover time com-
pared with Stark. Ligero++ [20] is an optimized variant
of Ligero, which further reduces the proof sizes from
O(
√
N) to polylogarithmic, but it still suffers a linear

verification cost. All these proof systems have the ver-
ifier oracle access to an encoding of the input using a
Reed-Solomon (RS) code, and achieve non-interactivity
through Fiat-Shamir transform [31]. Comparing to our

scheme, we expect the verification in our scheme is more
efficient, as our scheme has a better asymptotic com-
plexity.
Differentiation from some existing schemes.Next,
we compare our new scheme with some existing schemes,
such as Aurora [16], Stark [9] and Marlin [28].
– The main difference between Stark [9] and Polaris

is that the computational models they support are
different. Stark supports only uniform computations
specified by a succinctly represented program and a
time bound. This requires circuits with a sequence of
identical sub-circuits, otherwise it does not achieve
sublinear verification costs. Any circuit can be con-
verted to this form [14], but the verification time
will be linear. In contrast, Polaris can support non-
uniform computations specified by an explicit cir-
cuit (or R1CS), and has a polylogarithmic verifica-
tion time. Both Stark and Polaris have argument size
O(log2 N), but additional costs in Stark (e.g., due to
switching networks [9, 16]) result in Stark proof sizes
much larger than Polaris’ proofs.

– Aurora [16] is a non-holographic protocol for R1CS
with O(N) verification costs: the verifier constructs
an oracle query circuit by itself and evaluates it lo-
cally, which takes linear time. This is the best possible
because just reading the circuit description takes at
least linear time. Polaris inherits a variant of Aurora’s
univariate sumcheck, but the verifier performs it ex-
ponentially faster, in time O(log2 N), by delegating
the oracle query computations to the prover, and val-
idating the results using the GKR protocol. Another
difference is that Aurora encapsulates the entry-wise
product check (univariate rowcheck in [16]) as a low
degree test, while Polaris uses a direct one. Thus,
in Polaris, we can make a black-box use of any effi-
cient extractable polynomial commitment scheme to
check the entry-wise product and obtain a family of
zkSNARKs where each variant employs a different
polynomial commitment scheme.
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– Marlin [28] and Polaris follow different design
paradigms: Marlin requires a trusted setup to gen-
erate the linear-size SRS even though it is universal
and updatable, while our scheme does not need any
trusted setup. Both Marlin and Polaris obtain sub-
linear verifiers in the holographic setting. The main
difference is that we use a GKR protocol to reduce the
verifier’s cost, compared with the approach in Mar-
lin where two additional univariate sumcheck pro-
tocols are used. Naturally, without such additional
univariate sumcheck protocols, the verifier in Po-
laris does not need any oracle access to the low-
degree polynomial extensions (of the row, column and
non-zero entries) that encode the non-zero entries of
the circuit matrices, so Polaris does not need any
offline preprocessing phase to compute them (nine
univariate polynomials in Marlin) which each incurs
O(N logN) time. The only holographic part is within
the GKR protocol, whose verifier runs in sublinear
time when given (multivariate low degree) encodings
of the circuit’s wiring predicates and the circuit’s in-
put (constant-size in Polaris). We design an O(N)-
size circuit to engage the doubly-efficient GKR proto-
col to achieve holography. This immediately leads to a
linear-time prover (time-optimal) in this subroutine,
compared to the approach in Marlin where two ad-
ditional univariate sumcheck protocols are used and
each incurs an O(N logN)-time prover. Another dif-
ference is that we except our building blocks only use
symmetric cryptography, which makes the final ar-
gument plausibly post-quantum secure. In contrast,
the authors in Marlin instantiated an extension of
extractable polynomial commitment whose security
relies on the Strong Diffie–Hellman Assumption in
bilinear groups, which is not post-quantum secure.

2 Preliminaries
For n ∈ N, let [n] = {1, 2, . . . , n}. We denote by Ai,j the
entry lying in the i-th row and the j-th column of matrix
A. We use F to denote a finite field and λ the security
parameter. We denote by negl(n) a negligible function
defined over the integers, meaning that for every poly-
nomial p(·) and all sufficiently large n’s, negl(n) < 1

p(n) .
We use “PPT algorithms” to refer to probabilistic poly-
nomial time algorithms.

2.1 Problem Instances in R1CS
Let R be a binary ordered NP relation and L ⊂ {0, 1}∗

the language corresponding to R. For each instance
x ∈ L, let Rx ⊂ {0, 1}∗ denote the corresponding set
of witnesses for the fact that x ∈ L, i.e., Rx = {w :

(x, w) ∈ R}. Let RL denote the corresponding language
of valid instance-witness pairs, i.e., RL = {(x, w) : x ∈
L and w ∈ Rx}.

As an NP-complete language, we focus on the rank-
1 constraint satisfiability (R1CS). The main reason is
that R1CS is a popular target for compiler toolchains
that accept applications expressed in high-level lan-
guages, and it generalizes circuits by allowing “native”
field arithmetic and having no fan-in/fan-out restric-
tions, but it is simple enough that one can design effi-
cient argument systems for it [16, 48].

Definition 1. (R1CS instance). An R1CS instance x

is a tuple (F, A,B,C, v,m, n), where A, B, C are m×m
matrices over F, v is the vector with entries consisting
of instance’s public input and output, m ≥ 1 + |v| and
there are at most n non-zero entries in each matrix.

Below, we use the notation (x, y, z) to denote the con-
catenation of the three vectors x, y, z in a natural way.
Without loss of generality, we assume that m = O(n).

Definition 2. (R1CS relation RR1CS). An R1CS in-
stance x = (F, A,B,C, v,m, n) is said to be satisfi-
able if there exists a witness w ∈ Fm−|v|−1 such that
(Az) ◦ (Bz) = Cz where z := (1, v, w) and “◦” denotes
the entry-wise product.

Clearly, R1CS relation generalizes the problem of arith-
metic circuit satisfiaility. For example, the matrices A,
B, C represent the circuit’s gates, or more precisely,
the vectors Az, Bz and Cz encode the left input, right
input and output vectors of the gates in the circuit re-
spectively. The witness w consists of the circuit’s private
input and wire values.

2.2 Zero-Knowledge Interactive
Arguments

An interactive proof allows a prover P to convince a
PPT verifier V the validity of some statements through
interaction over some number of rounds. We are inter-
ested in the interactive proof systems where both the
prover and the verifier are efficient with respect to the
size of the instance.

An interactive argument system for an NP re-
lationship R is an interactive proof between a
computationally-bounded prover P and a PPT veri-
fier V. Therefore, in an argument the computational
power of the prover is also restricted to be a PPT
one. Naturally, we require the argument to satisfy a
proof of knowledge property additionally. Intuitively,
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this means that in order to produce a convincing proof
of a statement, the prover must convince the verifier
that it “knows” a witness w for the instance x such
that (x, w) ∈ R. We formalize interactive arguments of
knowledge in the following.

Definition 3. (Public-coin succinct interactive argu-
ment of knowledge). Let (P,V) denote a pair of PPT
interactive algorithms and pp public parameters given
as input the security parameter λ. Then a protocol be-
tween P and V is called a public-coin succinct interactive
argument of knowledge for a language L if:
– Completeness. For every instance-witness pair

(x, w) ∈ RL, and every r ∈ {0, 1}∗,

Pr[〈P(pp, w),V(pp, r)〉(x) = 1] = 1.

– Soundness. For every instance x /∈ L, every PPT
prover P∗, and every w, r ∈ {0, 1}∗,

Pr[〈P∗(pp, w),V(pp, r)〉(x) = 1] ≤ negl(λ).

– Knowledge soundness. For any PPT adversary
A, there exists a PPT extractor E such that for
every instance x and every w, r ∈ {0, 1}∗, if
Pr[〈A(pp, w),V(pp, r)〉(x) = 1] ≥ negl(λ), then

Pr[(x, w′) ∈ RL|w′ ← EA(pp, x)] ≥ negl(λ).

– Succinctness. The running time of V and the to-
tal communication (proof size) between P and V are
sublinear in the size of the instance x.

– Public coin. V’s challenge in each round is indepen-
dent of P’s messages in previous rounds.

Definition 4. (Witness-extended emulation [38]). An
interactive argument system (Setup,P,V) for L has
witness-extended emulation if for all deterministic poly-
nomial time P∗ there exists an expected polynomial time
emulator E such that for all non-uniform polynomial
time adversaries A and all zV ∈ {0, 1}∗, the following
probabilities differ by at most negl(λ):

Pr
[
A(t) = 1 :

pp←Setup(1λ)
(x, zP)←A(pp)
t←tr〈P∗(pp, zP),V(pp, zV)〉(x)

]
and

Pr

[
A(t)=1 and

t accepting ⇒(x,w)∈RL :
pp←Setup(1λ)
(x, zP)←A(pp)
(t,w)←EP

∗(pp, zP )(x)

]
,

where tr denotes the random variable that corresponds
to the transcript of the interaction between P∗ and V.
Here, the oracle called by E permits rewinding the prover
to a specific point and resuming with fresh randomness
for the verifier from this point onwards.

We use Setup to denote the generation phase of the pub-
lic parameters pp. We adapt the following definitions
from [34, 48] for our zero-knowledge notation.

Definition 5. An interactive argument (Setup, P, V)
for L is computational zero-knowledge if for every PPT
interactive machine V∗, there exists a PPT algorithm
S called the simulator, running in time polynomial in
the length of its first input such that for every instance
x ∈ L, w ∈ Rx, and z ∈ {0, 1}∗, the following holds when
the distinguishing gap is considered as a function of |x|:

View(〈P(pp, w),V∗(pp, z)〉(x)) ≈c S(x, z),

where View(〈P(pp, w),V∗(pp, z)〉(x)) denotes the distri-
bution of the transcript of interaction between P and
V∗, and ≈c denotes that two quantities are computa-
tionally indistinguishable. If the simulator is allowed to
abort with probability at most 1/2, but the distribution
of its output conditioned on not aborting is identically
distributed to View(〈P(pp, w),V∗(pp, z)〉(x)), then the in-
teractive argument is called perfect zero-knowledge.

2.3 Commitment Schemes
A commitment scheme is a cryptographic primitive that
allows one to commit to a chosen value while keeping
it hidden to others, with the ability to reveal the com-
mitted value later. In this subsection, we introduce the
following two commitment schemes, polynomial com-
mitment scheme and Merkle tree, which we employ in
our protocol.

A polynomial commitment scheme is a commitment
scheme in which a prover commits to a polynomial f
over F of degree at most d with a message that is much
smaller than sending all the coefficients of f . The prover
can later produce an interactive or non-interactive ar-
gument that f(θ) = η for arbitrary θ, η ∈ F.

We follow the notations from Bünz [23] where they
generalize the definition of Kate et al. [40], to allow
interactive evaluation proofs, and these definitions are
also used in Spartan [48]. In any list of arguments or
returned tuple (a, b, c; d, e), those variables listed before
the semicolon are public and the ones after it are secret.
When there is no secret information, the semicolon is
omitted.

A polynomial commitment scheme is a tuple of four
protocols PC = (Setup,Commit,Open,Eval):
– pp ← Setup(1λ, d): takes as input the degree d of a

polynomial; generates public parameters pp.
– (C,S)← Commit(pp; f): takes as input a secret poly-

nomial f with degree at most d over F; outputs a
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public commitment C and (optional) a secret open-
ing hint S.

– b ∈ {0, 1} ← Open(pp, C, f,S): verifies the opening
of commitment C to the polynomial f provided with
opening hint S; output b.

– b ∈ {0, 1} ← Eval(pp, C, θ, η, d; f,S) is an interactive
public-coin protocol between a PPT prover P and
verifier V. Both P and V hold as input a commit-
ment C, points θ, η ∈ F and a degree d. The prover
P additionally knows the polynomial f(X) ∈ F[X]
with degree at most d and its opening hint S. In the
protocol, the prover attempts to convince the verifier
that f(θ) = η. At the end of the protocol, V outputs
b.
A polynomial commitment scheme is correct if an

honest committer can successfully convince the veri-
fier of any evaluation, and is evaluation binding if no
efficient adversary can convince the verifier that the
committed polynomial f evaluates to different values
η0 6= η1 ∈ F at the same point θ ∈ F. Also, we re-
quire the polynomial commitment scheme to satisfy the
knowledge soundness property. We formally consider the
following definition [48].

Definition 6. A tuple of four protocols PC =
(Setup,Commit, Open,Eval) is a polynomial commitment
scheme for polynomials over F if the following condi-
tions hold.
– Completeness. For every polynomial f(X) ∈ F[X],
and every point θ ∈ F,

Pr

b = 1 :

d←deg(f(X))
pp←Setup(1λ,d)
(C,S)←Commit(pp;f)
η←f(θ)
b←Eval(pp,C,θ,η,d;f,S)

 = 1.

– Binding. For any PPT adversary A, and every de-
gree parameter d ≥ 1,

Pr

[
b0=b1 6=0
and f0 6=f1

:
pp←Setup(1λ,d)
(C,f0,f1,S0,S1)←A(pp)
b0←Open(pp,C,f0,S0)
b1←Open(pp,C,f1,S1)

]
≤ negl(λ).

– Knowledge soundness. Eval is a public-coin inter-
active argument of knowledge with witness-extended
emulation (Definition 4) for the following NP rela-
tion given pp← Setup(1λ, d) on the degree parameter
d ≥ 1:

REval(pp) =

{
((C, θ, η), (f,S)) :

f∈F[X] and deg(f)≤d
and f(θ)=η

and Open(pp,C,f,S)=1

}

Note that in the foregoing definition, we did not give
explicitly the formal definition of evaluation binding.

This is because if the Setup, Commit, and Open parts
of a polynomial scheme PC form a binding commit-
ment scheme (the second condition in Definition 6), then
witness-extended emulation implies evaluation binding
[23].

A Merkle hash tree [45] is a data structure that
allows to commit ` messages (or a vector) by a sin-
gle hash value such that revealing any message re-
quires only O(log `) proof size and verification time.
A Merkle tree is a tuple of four subprotocols MT =
(Setup,Commit,Open,Verify).
– H ← Setup(1λ): picks a hash function from the

collision-resistant hash function family for Merkle
trees.

– rootc ← Commit(c): takes as input a vector c =
(c1, . . . , c`); assigns all entries to the leaves of the tree
and computes internal nodes via applying the under-
lying hash function H on the values assigned to the
children; output the root of the tree.

– (ci, πi) ← Open(c, i): takes as input an index i ≤ `;
output the entry ci together with a proof πi that
consists of all the values assigned to nodes on the
path from the root to ci.

– b ∈ {0, 1} ← Verify(rootc, i, ci, πi): verifies the opening
of ci by recomputing the entire path bottom-up and
comparing final outcome to the commitment rootc;
output b.

The binding property of a Merkle hash tree follows from
the collision-resistant property of the hash function used
to construct the Merkle tree.

2.4 Univariate Sumcheck
Given a subset L of F and an integer k < |L|, the Reed-
Solomon (RS) code, denoted by RS[L, k], is all evalu-
ations over L of univarite polynomials of degree less
than k. We use the notation f |L to denote the vec-
tor of the evaluations (f(a))a∈L. If deg(f) < k, then
f |L ∈ RS[L, k]. Likewise, any vector of size |L| can be
viewed as some univariate polynomial of degree less than
|L| evaluated on L. Thus we use the notations of uni-
variate polynomials over F and their evaluations on L

interchangeable.
We now describe an interactive proof protocol,

called the univariate sumcheck, which was recently pro-
posed by Ben-Sasson et al. in [16]. The univariate sum-
check is an RS-encoded IOPP for testing whether a low-
degree univariate polynomial f sums to a given value on
a subset H ⊆ F. This protocol is a univariate analogue
of the seminal multivariate sumcheck protocol [44, 49].
The underlying idea of the univariate sumcheck protocol
relies on the following lemma.
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Lemma 1 ([16, 24]). Let H be an affine subspace of F,
and let g(X) be a univariate polynomial over F of degree
strictly less than |H|. Then∑

a∈H

g(a) = g|H|−1 · c1 ,

where g|H|−1 is the coefficient of X |H|−1 in g, and c1 is
the coefficient of X in ZH(X) =

∏
a∈H(X − a).

Here c1 6= 0, since ZH(X) has only simple zeros. Lemma
1 suggests the following approach. To test the result
of
∑
a∈H f(a) for f(X) ∈ F[X] with degree less than

d (d ≥ |H|), by the Euclidean algorithm, we can de-
compose f into two polynomials g and h such that
f(X) ≡ g(X) + ZH(X) · h(X) with deg(g) < |H| and
deg(h) < d − |H|. This decomposition is unique for
every f . In particular, f and g agree on H, thus so
do their sums on H. Therefore, if the claimed sum
µ =

∑
a∈H f(a) sent by the prover is correct, then

c1 · f(X) − µ · X |H|−1 − c1 · ZH(X) · h(X) must be a
polynomial of degree less than |H| − 1. To test this, the
prover and the verifier engage in a low degree test (LDT)
protocol on the RS code. The LDT protocol [16] is de-
noted as 〈PLDT(~ρ, p),VLDT(~m,deg(p))〉(L), where ~ρ is a
sequence of polynomials, p is their rational constraint
and ~m is the degrees of the sequence of polynomials.

The protocol of the univariate sumcheck in [16]
works as follows. To prove µ =

∑
a∈H f(a) for f(X) ∈

F[X] with degree less than d, the prover P and the ver-
ifier V pick an affine subspace L of F, where |L| > d and
|L| = O(|H|). Then the prover P decomposes f(X) ≡
g(X)+ZH(X)·h(X) with deg(g) < |H| and deg(h) < d−
|H|, and computes the vectors f |L and h|L. P then com-
mits these two vectors using the Merkle tree and sends
the roots to V. The verifier V outputs a rational con-
straint N(X,Y1, Y2) = c1 ·Y1−µ·X |H|−1−c1 ·ZH(X)·Y2.
Then the prover P and the verifier V engage an LDT to
test that the degree of ((f(X), h(X)), N(X, f(X), h(X)))
is less than ((d, d−|H|), |H|−1). At the end of the LDT,
V needs oracle access to κ (we can set κ = 4 in a binary
field, see [8] for more details) points of f |L and h|L. P
sends these points with their Merkle tree proofs, and V
validates their correctness to complete the low degree
test. A similar variant of the univariate sumcheck pro-
tocol where H and L are multiplication cosets of prime
fields or extension fields, is adopted in [56]. The uni-
variate sumcheck on multiplication cosets is also stated
in [16]. We denote the univariate sumcheck protocol as
〈PSC(f),VSC(r)〉(F, L,H, d, µ).

3 An Encoding of R1CS Instances
as Univariate Polynomials

This section describes an encoding of R1CS instance as
a low degree univariate polynomial. This encoding is
inspired by the encoding of an R1CS instance as a uni-
variate polynomial in Aurora [16] and a degree-3 multi-
variate polynomial recently proposed by Setty [48]. The
encoding presented in this section relies on the bivariate
Lagrange interpolation.

For a given R1CS instance x = (F, A,B,C, v,m, n),
let H be an affine subspace of F such that |H| = m

(padding m to the nearest power of Char(F) if neces-
sary). We can interpret matrices A, B, C ∈ FH×H as
bivariate functions: H × H → F. Specifically, any en-
try in them can be accessed with a 2-entry identifier
(x, y) ∈ H×H. Furthermore, given a purported witness
w ∈ F|H|−1−|v| to x, we also interpret z = (1, v, w) ∈ FH

as a univariate function Z: H → F, so any element of z
can be assessed with an entry in H.

We now define the following function Fw(·) that is
used to encode the vector z which includes the private
witness w,

Fw(X) =

∑
y∈H

A(X, y) · Z(y)

 ·
∑
y∈H

B(X, y) · Z(y)


−

∑
y∈H

C(X, y) · Z(y)

 .

The following lemma easily follows from the defini-
tion of R1CS relation (Definition 2).

Lemma 2. A pair (x, w) is a valid instance-witness
pair, i.e., (x, w) ∈ RR1CS if and only if Fw(x) = 0 for
any x ∈ H.

As our protocol relies on the polynomial arithmetic of
Fw(·), we need its polynomial extension. Let

Ā(X) =
∑
y∈H

A(X, y) · Z(y),

B̄(X) =
∑
y∈H

B(X, y) · Z(y),

C̄(X) =
∑
y∈H

C(X, y) · Z(y).

Thus, to find the coefficients of polynomial extension
Fw(X), it suffices to find the coefficients of Ā(X), B̄(X)
and C̄(X), which each has degree at most |H| − 1.
In turn, Fw(X) can be computed from the coefficients
of Ā(X), B̄(X) and C̄(X) in time O(|H| log |H|) via
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fast polynomial multiplication and subtraction. To find
the coefficients of the latter three polynomials, we can
compute the vectors Az, Bz, Cz and then interpolate
them over H. However, this step alone typically costs at
least quadratic time because it involves computing the
matrix-vector product, say Az, which is quadratic in |H|
and not within our budget of a prover with running cost
O(n logn).

To work around this more efficiently, we define

∆H(X,Y ) := ZH(X)− ZH(Y )
X − Y

,

which is a polynomial of individual degree |H| − 1
because X − Y divides ZH(X) − ZH(Y ). When H is
an affine subspace, there exist coefficients c0, . . . , ck ∈
F, where k := dim(H), such that ZH(X) = Xpk +∑k
i=1 ciX

pi−1 + c0 (c0 = 0 if H is linear). Then
∆H(X,Y ) = (X − Y )pk−1 +

∑k
i=1 ci(X − Y )pi−1−1 for

the case of X 6= Y . If instead X = Y then we use
a different approach: observing that the polynomial
∆H(X,X) is the formal derivative of ZH(X), we com-
pute ∆H(x, x) = dZH

dX

∣∣
X=x, which equals to the (non-

zero) coefficient c1. The bivariate polynomial ∆H(X,Y )
vanishes on the square H×H except for on the diagonal,
where it takes the constant value c1. See [43, Chapter
3.4] and [14, Remark C.8] for how to find the coefficients
c0, . . . , ck in O(log2 |H|) field operations. This trick is
similar to the one used in [15, 28].

To find the coefficients of polynomial M̄(X) forM ∈
{A,B,C}, we can evaluate each of them over H and
then interpolate. Let row, col : [n] → H and val : [n] →
F respectively represent the row index, column index,
and value of the non-zero entries of the matrix M ∈
{A,B,C} in some canonical order. Thus, for every x ∈
H,

M̄(x)

=
∑
y∈H

∑
i∈[n]

∆H(x, row(i))∆H(y, col(i))val(i)
c2

1

 · Z(y)

=
∑
i∈[n]

∆H(x, row(i))
∑
y∈H

∆H(y, col(i))val(i)
c2

1
· Z(y)

=
∑
i∈[n]

∆H(x, row(i)) · val(i)/c1 · Z(col(i))

=
∑

i∈[n] s.t. row(i)=x

val(i) · Z(col(i)).

The leads to the following strategy to find the values
of M̄(X) on H. For R1CS instance x, when receiving
the matrix M ∈ FH×H in a sparse form, the prover

initializes for each x ∈ H a variable for M̄(x) that is ini-
tially set to 0. Then for each i ∈ [n], compute the term
val(i) ·Z(col(i)) and add it to the variable for M̄(row(i)).
The foregoing strategy can be evaluated in time O(n).
Therefore, the coefficients of M̄(X) can be found in
O(n + |H| log |H|). A similar observation was made by
Chiesa et al. [28] in a different context.

Overall the entire encoding can be evaluated in time
O(|H| log |H|), which is inevitable due to the fast multi-
plication of two polynomials with degree |H| − 1. We
remark that, unlike the offline phase in Marlin [28]
where the algebraic holographic proof needs an indexer
to output the nine univariate polynomial extensions of
{rowM , colM , valM}M∈{A,B,C}, our encoding does not
need any such offline preprocessing phase since the ver-
ifier does not need oracle access to these polynomials.

Next, we need to test that the univariate polynomial
Fw(X) is equal to zero everywhere on the affine subspace
H of F, it is equivalent via the factor theorem to test
whether there exists a polynomial G(X) with degree
deg(Fw) − |H| ≤ |H| − 2 such that Fw(X) = ZH(X) ·
G(X). Thus, the prover only needs to compute and send
G(X) to the verifier, who can probabilistically check the
identity at a random point rx of F \H. This introduces
a soundness error, which we quantify below.

Lemma 3. If there exists an x ∈ H such that Fw(x) 6=
0, then

Pr
rx∈F\H

[Fw(rx) = ZH(rx) ·G(rx)] ≤ 2|H| − 2
|F| − |H|

.

The following theorem summarizes our results in this
section, it is a univariate analogue of the multivariate
variant described in Spartan [48].

Theorem 1. For any R1CS instance x =
(F, A,B,C, v, |H|, n), there exist two univariate poly-
nomials Fw and G with degree deg(Fw) ≤ 2|H| − 2 and
deg(G) ≤ |H| − 2 such that Fw(rx) = ZH(rx) · G(rx)
for a random rx ∈ F \ H if and only if thers exists a
witness w ∈ F|H|−1−|v| such that (x, w) ∈ RR1CS (except
for a soundness error that is negligible in λ) under the
assumption that |F| is exponential in λ and |H| = O(λ).

4 A Construction of zkSNARK
for R1CS

In this section, we present our new construction, a zk-
SNARK without a trusted setup. We first construct an
interactive argument that is correct and sound, then ex-
tend it to be zero-knowledge as well as non-interactive
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(using the Fiat-Shamir transform [31]). The main idea
is a combination of the univariate encoding and the uni-
variate sumcheck in Aurora [16] described in Section 2.4.

According to Theorem 1, to verify whether an R1CS
instance x = (F, A,B,C, v, |H|, n) is satisfiable, the veri-
fier V can check if Fw(rx) = ZH(rx) ·G(rx) for a random
rx ∈ F\H. A naive way is just to send the coefficients of
G(·) to V, and check the equality at a random point. In
order to check the equality, the verifier V first needs to
evaluate the polynomialsG(X) and ZH(X) at rx ∈ F\H.
The latter can be evaluated in time O(log2 |H|) locally.
To evaluate G(rx) using Horner’s method, O(|H|) field
operations and O(|H|) coefficients are required for the
verifier. This will incur linear communication and veri-
fication cost.

So our first observation is that to evaluate G(rx)
without incurring O(|H|) communication from P to V
and O(|H|) verification cost, we can employ a polyno-
mial commitment scheme for univariate polynomials.
This allows the verifier V to delegate the computations
of polynomial evaluations to a prover, and validates the
results in time that is sublinear in the size of the poly-
nomial.

In slightly more details, the prover P sends a com-
mitment to G(·) to the verifier V at the beginning of
the protocol using a polynomial commitment scheme
for univariate polynomials. Then the verifier V selects a
random point rx ∈ F\H and sends it to P. The prover P
evaluates G at rx and sends the result to V. Finally, the
prover and the verifier engage in a subprotocol PC.Eval
to test whether the evaluation is correct.

To check Fw(rx) = ZH(rx) · G(rx), V also needs to
evaluate Fw(rx). Recall the definition of Fw,

Fw(rx) =

∑
y∈H

A(rx, y) · Z(y)

 ·
∑
y∈H

B(rx, y) · Z(y)


−

∑
y∈H

C(rx, y) · Z(y)

 .

Thus, the verifier V needs to evaluate A(rx, y), B(rx, y),
C(rx, y) and Z(y) for all y ∈ H. While the evaluations of
Z(y) for all y ∈ H is equal to z = (1, v, w), the commu-
nication from P to V is still at least linear in the size of
witness. We address this issue by applying a univariate
sumcheck protocol.

The method is a combination of two protocols: the
univariate sumcheck protocol and a randomized mini
protocol. Similarly as the multivariate variant in Spar-
tan [48], the structure of the individual terms in Fw(rx)
are also in a form suitable for the application of the

univariate sumcheck protocol. Specifically, we note that
Fw(rx) = Ā(rx) · B̄(rx)− C̄(rx). This immediately sug-
gests the following solution: The prover makes three sep-
arate claims to V, say that Ā(rx) = vA, B̄(rx) = vB , and
C̄(rx) = vC . Then the verifier V can verify

vA · vB − vC = G(rx) · ZH(rx).

Of course, the verifier must still verify three new
claims from the prover P:

Ā(rx) = vA, B̄(rx) = vB , and C̄(rx) = vC .

To do so, P and V could run three independent instances
of the univariate sumcheck protocol to verify these three
claims. But this will result in a 3-fold increase in com-
plexity. However, we can do this much more efficiently.
We adopt a standard technique used in [16, 27, 48, 54] to
combine these three claims into a single claim. The idea
is to have the verifier choose rA, rB , rC ∈ F uniformly
at random and send them to the prover, and then to
test whether

c = rA · Ā(rx) + rB · B̄(rx) + rC · C̄(rx).

We can rewrite c as follows.

c = rA ·
∑
y∈H

A(rx, y) · Z(y) + rB ·
∑
y∈H

B(rx, y) · Z(y)

+ rC ·
∑
y∈H

C(rx, y) · Z(y)

=
∑
y∈H

(
rA ·A(rx, y) + rB ·B(rx, y) + rC · C(rx, y)

)
· Z(y).

Denote

Qrx(Y ) :=(
rA ·A(rx, Y ) + rB ·B(rx, Y ) + rC · C(rx, Y )

)
· Z(Y ).

We state formally the subprotocol as follows.

– V chooses rA, rB , rC ∈ F uniformly at random, sends them
to P, and computes c = rA · vA + rB · vB + rC · vC .

– P and V invoke the univariate sumcheck protocol to verify

c =
∑
y∈H

Qrx (y).

The soundness follows directly from the Schwartz-
Zippel lemma.

Lemma 4 ([48]). Assuming that Ā(rx) 6= vA, or
B̄(rx) 6= vB, or C̄(rx) 6= vC , and let c = rA · vA +
rB · vB + rC · vC . Then

Pr
rA,rB ,rC∈F

[
rA · Ā(rx) + rB · B̄(rx) + rC · C̄(rx) = c

]
≤

1
|F|
.
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The efficiency of this combined verification corresponds
to a single invocation of the univariate sumcheck. The
prover and verifier, in addition to the cost of running
the univariate sumcheck protocol, pay only a constant
cost.

Now we are ready to present the full proto-
col provided that there exists a polynomial commit-
ment scheme for univariate polynomials, PC = (Setup,
Commit, Open, Eval). The full protocol is given in Pro-
tocol 1.

Protocol 1. Given an R1CS instance x = (F, A,B,C, v,m, n),
we fix an affine subspace H ⊆ F such that |H| = m (paddingm
to the nearest power of Char(F) if necessary), and a sufficiently
large affine subspace L ⊆ F such that |L| = O(|H|) > 2|H| and
L ∩H = ∅.
– pp← PC.Setup(1λ,m− 2).
– b← 〈P(pp, w),V(pp, r)〉(x):

1. P computes Fw(X), G(X) = Fw(X)/ZH(X), and
(CG,SG)← PC.Commit(pp;G), then sends CG to V.

2. V samples rx ∈ F \H and sends rx to P.
3. P computes η = G(rx) and sends η to V.
4. be ← 〈PPC.Eval(G,SG),VPC.Eval(r)〉(pp, CG, rx, η,m− 2).
5. V aborts and output b = 0 if be = 0.
6. P computes vA = Ā(rx), vB = B̄(rx), vC = C̄(rx), and

send (vA, vB , vC) to V.
7. V computes γ = ZH(rx), and aborts with output b = 0

if vA · vB − vC 6= η · γ.
8. V samples rA, rB , rC ∈ F, and sends (rA, rB , rC) to P.
9. V computes c = rA · vA + rB · vB + rC · vC .

10. P and V invoke a univariate sumcheck protocol bs ←
〈PSC(Qrx ),VSC(r)〉(F, L,H, 2m− 1, c).

11. V aborts and output b = 0 if bs = 0.
12. V output b = 1.

4.1 Efficiency Analysis
Both parties run the univariate sumcheck as a subrou-
tine. In addition, the prover P has the following costs:
1. O(m logm) cost to compute the encoding Fw(X) as

stated in Section 3;
2. the cost of PC.Commit and PC.Eval for a univariate

polynomial G(·) with degree m− 2;
3. O(m logm) costs to compute the polynomial G(·),

which can be achieved via running a divide-and-
conquer algorithm to obtain the logm coefficients of
ZH(·) in time O(log2 m), and performing the stan-
dard polynomial division of Fw(X) by ZH(X) in
time O((2m− 2) logm);

4. O(m) costs to evaluate G(rx), Ā(rx), B̄(rx), and
C̄(rx).

The verifier V has
1. the cost of PC.Eval for a univariate polynomial G(·)

with degree m− 2;

2. O(log2 m) cost to evaluate ZH(rx), which can be
achieved via running a divide-and-conquer algo-
rithm to obtain the O(logm) coefficients of ZH(X)
in time O(log2 m), and evaluating ZH at a single
point in time O(logm).

The amount of communication mainly consists of the
size of the commitment to G(·), the communication in
PC.Eval for G(rx) and the communication in the uni-
variate sumcheck protocol.

As stated above, the particular choice of polynomial
commitment schemes impacts the costs of our construc-
tion as well as the assumptions, so we list some prior
polynomial commitment schemes (see Appendix B for
more details) without a trusted setup as well as their
comparisons in Table 2.

4.2 Succinct Verification Cost
In this subsection, we reduce the cost of the verifier V in
the univariate sumcheck protocol. As described in Sec-
tion 2.4, at the end of the univariate sumcheck protocol,
due to the low degree test, V needs oracle access to the
evaluations of Qrx(·) at κ points ry ∈ L:

Qrx(ry) =(
rA ·A(rx, ry) + rB ·B(rx, ry) + rC ·C(rx, ry)

)
·Z(ry).

As the only term inQrx(ry) that depends on the prover’s
witness is Z(ry), the prover P can commit to Z|L at
the beginning of the protocol, and opens to points the
verifier queries with their Merkle tree proofs. All the
other terms in the above expression are determined by
the problem instance x, and can be computed locally by
V, which, however, takes at least linear time.

Recall the closed-form expression for the evaluations
of M(·, ·) at (rx, ry) ∈ (F\H)×L where M ∈ {A,B,C}.
We may rewrite it as

M(rx, ry) =
∑
i∈[n]

∆H(rx, row(i)) ·∆H(ry, col(i)) · val(i)
c2

1
.

In Spartan [48], Setty introduced a new cryptographic
compiler, called SPARK, to transform an existing ex-
tractable polynomial commitment scheme for dense
multilinear polynomials to one that can efficiently
handle sparse multilinear polynomials. By composing
SPARK with computation commitments, the verifica-
tion cost is reduced to be sublinear in n. Note that
here M(rx, ry) is in a similar form as that in Spartan
[48]. So the SPARK compiler can be directly applied to
our case, but it requires a modification for our setting
where the multilinear extensions ẽq(i, rx) and ẽq(j, ry)
in SPARK need to be replaced with ∆H(rx, row(i)) and
∆H(ry, col(i)).
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Table 2. A comparison of transparent polynomial commitment schemes

scheme PEval |C| communication VEval assumption
DARK [23] O(d log d) GU O(1)|GU | O(log d) GU O(log d) GU r-strong RSA/adaptive root
FRI [8], Virgo-VPD [56] O(d log d) H O(1)|H| O(log2 d) H O(log2 d) H CRHF
Hyrax-PC [53] O(d) G O(

√
d)|G| O(log d) G O(

√
d)G DLOG

IPP-PC [25] O(d) G1 O(1)|GT | O(log d) GT O(
√

d) G2 SXDH
Dory [42] O(d) G1 O(1)|GT | O(log d) GT O(log d) G2 SXDH

GU is a group of unknown order, G is a group, H is either the size of a hash output, or the time it takes to compute a
hash, G1, G2, GT denote the two source groups and the target group of a pairing P . The communication column refers
to the amount of communication required in the interactive argument for PC.Eval.

Next we propose an alternative approach to re-
duce the cost of the verifier to polylogarithmic for our
construction. Specifically, we note that ZH(row(i)) =
ZH(col(i)) = 0 because row(i), col(i) ∈ H for every
i ∈ [n]. Therefore,

M(rx, ry)

=
∑
i∈[n]

ZH(rx)− ZH(row(i))
rx − row(i)

·
ZH(ry)− ZH(col(i))

ry − col(i)
·

val(i)
c2

1

=
∑
i∈[n]

ZH(rx)
rx − row(i)

·
ZH(ry)
ry − col(i)

·
val(i)
c2

1

=
ZH(rx) · ZH(ry)

c2
1

·
∑
i∈[n]

val(i)
(rx − row(i))(ry − col(i))

.

The first part ZH(rx) · ZH(ry)/c2
1 can be evaluated in

time O(logm) locally by the verifier. Note that the value
of ZH(rx) has been computed in previous steps, so the
verifier only needs to evaluate ZH(ry) here.

Instead of evaluating the second part∑
i∈[n] val(i)/((rx − row(i))(ry − col(i))) locally, which

takes linear time, the verifier can delegate this com-
putation to the prover, and validate the result using
the GKR protocol, as described in Appendix A. In this
way, we can eliminate the overhead to evaluate these
points locally, making the verification time of the over-
all protocol polylogarithmic. To avoid any asymptotic
overhead for the prover and verifier, we design an arith-
metic circuit for the computation mentioned above. The
details of the circuit are presented in Figure 1.

Note that the above circuit is layered: There are
three identical copies of a sub-circuit, where each sub-
circuit firstly computes 2n subtractions (with size O(n)
and depth O(1)), n multiplications (with size O(n) and
depth O(1)) and n divisions (with size O(n) and depth
O(1)); the outputs of Step 3 are then fed into a bi-
nary tree of addition gates with size O(n) and depth
O(logn) to compute the final sums. Furthermore, there
is no sharing of elements across the three data-parallel
units, so it truly data-parallel. Therefore, the whole cir-
cuit is of size O(n) and depth O(logn), with 2 inputs and
3 outputs. By Lemma 5 (see Appendix A for details), the

Input: (rx, ry) ∈ (F \H)× L

Output:
(∑

i∈[n]
valM (i)

(rx−rowM (i))(ry−colM (i))

)
M∈{A,B,C}

1. For i = 1, 2, . . . , n:
Compute rx − rowM (i) and ry − colM (i) for each M ∈
{A,B,C}.

2. For i = 1, 2, . . . , n:
Compute (rx − rowM (i)) · (ry − colM (i)) for each M ∈
{A,B,C}.

3. For i = 1, 2, . . . , n:
Compute valM (i)

(rx−rowM (i))·(ry−colM (i)) for each
M ∈ {A,B,C}.

4. Compute and output the three sums∑
i∈[n]

valM (i)
(rx − rowM (i))(ry − colM (i))


M∈{A,B,C}

Fig. 1. Arithmetic circuit C for computing the evaluations of(∑
i∈[n]

valM (i)
(rx−rowM (i))(ry−colM (i))

)
M∈{A,B,C}

prover time is O(n), the proof size and the verification
time are (log2 n) for the query delegation computation.
Note that the values rowM (i), colM (i), valM (i), i ∈ [n]
are directly hard-coded into the circuit. This needs a
(public) per-circuit preprocessing step for V, leading to
a sublinear verifier in the holographic setting.

Theorem 2. Given a polynomial commitment scheme
for univariate polynomials, Protocol 2 is a public-coin
succinct interactive argument for the R1CS relation
where security holds under the assumptions needed for
the polynomial commitment scheme and assuming |F| is
exponential in λ and exponentially bigger than the size
parameters m,n of R1CS instance.

The proof is given in Appendix C.

4.3 Zero-Knowledge
The interactive protocol from the prior subsections is
not zero-knowledge, so we present the modifications
on the protocol to achieve zero-knowledge. Intuitively,
there are three different building blocks that may reveal



Polaris: Transparent Succinct Zero-Knowledge Arguments for R1CS with Efficient Verifier 555

Protocol 2. Given an R1CS instance x = (F, A,B,C, v,m, n), we fix an affine subspace H ⊆ F such that |H| = m (padding m
to the nearest power of Char(F) if necessary), and a sufficiently large affine subspace L ⊆ F such that |L| = O(|H|) > 2|H| and
L ∩H = ∅.
– (pp,H)← (PC.Setup(1λ,m− 2),MT.Setup(1λ)): generates public parameters pp and picks a hash function from the collision-

resistant hash function family for Merkle trees.
– b← 〈P(pp, w),V(pp, r)〉(x):

1. P finds the unique univariate polynomial Z : F → F such that Z|H = (1, v, w), evaluates Z|L and runs rootZ ←
MT.Commit(Z|L). Then P sends rootZ to V.

2. P computes Fw(X), G1(X) = Fw(X)/ZH(X), and (CG1 ,SG1 )← PC.Commit(pp;G1), then sends CG1 to V.
3. V samples rx ∈ F \H and sends rx to P.
4. P computes η = G1(rx) and sends η to V.
5. be ← 〈PPC.Eval(G1,SG1 ),VPC.Eval(r)〉(pp, CG1 , rx, η,m− 2).
6. V aborts and outputs b = 0 if be = 0.
7. P computes vA = Ā(rx), vB = B̄(rx), vC = C̄(rx), and sends (vA, vB , vC) to V.
8. V computes γ = ZH(rx), and aborts with output b = 0 if vA · vB − vC 6= η · γ.
9. V samples rA, rB , rC ∈ F, and sends (rA, rB , rC) to P.

10. V computes c = rA · vA + rB · vB + rC · vC .
11. P computes Qrx (·) and decomposes uniquely Qrx (Y ) = G2(Y ) + ZH(Y ) · h(Y ) with degG2 < m and deg h < m− 1. P

evaluates h|L and runs rooth ← MT.Commit(h|L). P then sends rooth to V.
12. Let p(Y ) = c1 · Qrx (Y ) − c · Ym−1 − c1 · ZH(Y ) · h(Y ). P and V then invoke a low degree test (LDT):
〈PLDT(((Qrx , h), p)),VLDT(((2m − 1,m − 1),m − 1))〉(L). If the LDT fails, V aborts and outputs b = 0. Otherwise,
at the end of the LDT, V needs oracle access to κ points of Qrx (·), h(·) and p(·) at query indices Q ⊆ L.

13. For each index i ∈ Q, let ai be the corresponding point in L.
(a) P opens (Z(ai), πZi )← MT.Open(i, Z|L) and (h(ai), πhi )← MT.Open(i, h|L) and sends them to V.
(b) V executes MT.Verify(rootZ , i, Z(ai), πZi ) and MT.Verify(rooth, i, h(ai), πhi ) for point ai ∈ L opened by P. If any

verification fails, V aborts and outputs b = 0.
(c) P and V then invoke the GKR protocol: 〈PGKR,VGKR〉(C, (rx, ai)), where the circuit C computes the evaluation and

outputs
(∑

i∈[n] valM (i)/((rx − rowM (i))(ai − colM (i)))
)
M∈{A,B,C}

(denoted by (Γi,A,Γi,B ,Γi,C), see Figure 1).
If the check in GKR fails, V aborts and outputs b = 0.

(d) V computes Qrx (ai) = 1/c2
1 · γ ·ZH(ai) ·

(
rA · Γi,A + rB · Γi,B + rC · Γi,C

)
·Z(ai), together with h(ai), V checks the

constraint p(ai) = N(ai, Qrx (ai), h(ai)) at index i ∈ Q. If the check fails, V aborts and outputs b = 0.
14. V outputs b = 1.

information about the NP witness. First, the prover P
sends evaluations of G1(rx), Ā(rx), B̄(rx) and C̄(rx) to
the verifier and these polynomials are directly defined
by the circuit and the witness w. Second, P and V in-
voke the low degree test on ((Qrx(Y ), h(Y )), p(Y )) and
the proof of LDT reveals information about these poly-
nomials, which are directly related to the witness input
w. Third, at the end of the univariate sumcheck proto-
col, due to the low degree test, the prover P opens some
evaluations of Z(·), which is defined by the witness w.
Therefore, all these types of information give the verifier
partial information about the NP witness.

Fortunately, making the protocol zero-knowledge
only requires introducing small modifications to the con-
structions and analysis. To mitigate the first leakage,
we take the technique proposed by Chiesa et al. [27]. To
ensure zero-knowledge, the prover P masks these poly-
nomials Ā(·), B̄(·) and C̄(·) by random polynomials so
that the evaluations do not leak any information. For
the correctness and soundness purposes, these random
polynomials are committed using the Merkle trees and

opened at random points chosen by the verifier. To miti-
gate leakages of the last two types, we take the standard
approaches proposed in [7, 11, 12, 16]. Specifically, for
the second leakage, the prover samples a random poly-
nomial of the same degree and then runs the univariate
sumcheck protocol on their random linear combination.
For the last leakage, we increase the degree of the RS
code Z|L by κ, such that opening any κ points of the
codeword does not leak any information about the mes-
sage.

Below we describe the modifications required for
each of these leakages.
1. Modification to the polynomial Z(·). To eliminate

the leakage of queries on Z(·), the prover samples a
random polynomial RZ(·) of degree κ, and defines

Z̃(Y ) := Z(Y ) + ZH(Y ) ·RZ(Y ).

Note here that Z̃(y) = Z(y) for all y ∈ H, yet any
κ evaluations of Z̃(·) outside H do not leak any in-
formation about Z(·), as it is masked by a random
polynomial RZ(·), thus the values in witness w.
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2. Modifications to the evaluations of Ā(·), B̄(·) and
C̄(·). The prover selects three random polynomials
RA(·), RB(·) and RC(·) with degree |H| − 1 and de-
fines

Ã(X) :=
∑
y∈H

A(X, y) · Z̃(y) + ZH(X) ·
∑
y∈H

RA(y),

B̃(X) :=
∑
y∈H

B(X, y) · Z̃(y) + ZH(X) ·
∑
y∈H

RB(y),

C̃(X) :=
∑
y∈H

C(X, y) · Z̃(y) + ZH(X) ·
∑
y∈H

RC(y).

As RA(·), RB(·) and RC(·) are randomly selected by
P of degree equal to |H|−1, the sums

∑
y∈H RA(y),∑

y∈H RB(y) and
∑
y∈H RC(y) are also random by

Lemma 1 (because the leading coefficients are ran-
dom). Note here that, for example, Ã(x) = Ā(x) for
all x ∈ H, revealing evaluation of Ã(·) outside H
does not leak any information about Ā(·), thus the
values in witness.

3. Modification to the polynomial Qrx(·). When re-
placed the three evaluations of Ā(·), B̄(·), C̄(·)
and polynomial Z(·) with their corresponding zero-
knowledge versions, the polynomialQrx(·) in the uni-
variate sumcheck now becomes

Q̃rx(Y ) :=(
rA ·A(rx, Y ) + rB ·B(rx, Y ) + rC · C(rx, Y )

)
· Z̃(Y )

+ ZH(rx) ·
(
rA ·RA(Y ) + rB ·RB(Y ) + rC ·RC(Y )

)
.

To make it zero-knowledge, the prover first samples
a random polynomial SQ(·) of the same degree (i.e.,
2|H| + κ − 1) as M̃rx(·), sends s1 =

∑
y∈H SQ(y)

to V. The verifier then replies with a random chal-
lenge element α1 ∈ F. Finally, the prover and verifier
run the univariate sumcheck protocol on their linear
combination:

α1 · c̃+ s1 =
∑
y∈H

(
α1 · Q̃rx(y) + SQ(y)

)
,

where c̃ = rA ·Ã(rx)+rB ·B̃(rx)+rC ·C̃(rx). This en-
sures that both c̃ and s1 can be correctly computed
because of the random linear combination and the
linearity of the univariate sumcheck, while revealing
no information about Q̃rx(·) during the protocol, as
it is masked by an (almost) uniformly random poly-
nomial (RS codeword) [16, 56].
Recall that G1(X) = Fw(X)/ZH(X) in Protocol 2.

Thus, when we replace Ā(·), B̄(·) and C̄(·) with their

corresponding zero-knowledge versions, the closed-form
of G1(·) can be computed as:

Fw(X)/ZH(X)+Ā(X)·
∑
y∈H

RB(y)+B̄(X)·
∑
y∈H

RA(y)

+ ZH(X) ·
∑
y∈H

RA(y) ·
∑
y∈H

RB(y)−
∑
y∈H

RC(y).

Even though the sums
∑
y∈H RA(y),

∑
y∈H RB(y) and∑

y∈H RC(y) are random, we cannot efficiently simu-
late the PC.Eval prover with this polynomial G1(·). To
solve this problem, we can apply a zero-knowledge Eval
protocol. The idea is a simple blinding of the poly-
nomial as the modification in the second type above.
To do this, instead, the prover commits to a random
polynomial SG(X) of the same degree (i.e., |H|), and
sends s2 = SG(rx) to V. The verifier then replies with
a random challenge α2 ∈ F. The prover and verifier
can then use the standard Eval protocol to evaluate
α2 · G1(X) + SG(X) at rx. A similar observation was
made by Chiesa et al. in [27] and Bünz et al. in DARK
[23].

To obtain the final zero-knowledge version, we re-
place the three aforementioned ingredients of Protocol 2
with their corresponding zero-knowledge versions. In ad-
dition, for the correctness and soundness purposes, these
random polynomials RA(·), RB(·), RC(·) and SQ(·) also
need to be committed using the Merkle trees at the be-
ginning of the protocol and opened at κ points chosen
by the verifier.

We have the same advantage in our construction as
stated in [56], namely the GKR protocol used in Pro-
tocol 2 remains unchanged in the final zero-knowledge
version. This is because evaluations of rA ·A(·, ·) + rB ·
B(·, ·) + rC · C(·, ·) is independent of the witness in-
put. Therefore, we can apply the plain version of the
GKR protocol without zero-knowledge, avoiding any ex-
pensive cryptographic primitives. We present the full
zero-knowledge protocol, combining all the previous dis-
cusses, in Protocol 3.

Theorem 3. Given a polynomial commitment scheme
for univariate polynomials, Protocol 3 is a public-coin
zero-knowledge succinct interactive argument for the
R1CS relation where security holds under the assump-
tions needed for the polynomial commitment scheme and
assuming |F| is exponential in λ and exponentially big-
ger than the size parameters m,n of R1CS instance.

The proof is given in Appendix D.
Efficiency. The running time of MT.Commit is
O(n logn). The circuit described in Figure 1 is a regu-
lar circuit with size O(n), depth O(logn) and input and
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Protocol 3. (Zero-knowledge argument for R1CS) Given an R1CS instance x = (F, A,B,C, v,m, n), we fix an affine subspace
H ⊆ F such that |H| = m (padding m to the nearest power of Char(F) if necessary), and a sufficiently large affine subspace L ⊆ F

such that |L| = O(|H|) > 2|H| and L ∩H = ∅.
– (pp,H) ← (PC.Setup(1λ, 2m + κ − 1),MT.Setup(1λ)): generates public parameters pp and picks a hash function from the

collision-resistant hash function family for Merkle tree.
– b← 〈P(pp, w),V(pp, r)〉(x):

1. P finds the unique univariate polynomial Z : F→ F such that Z|H = (1, v, w). P samples a polynomial RZ(Y ) of degree κ
with random coefficients and sets Z̃(Y ) = Z(Y ) + ZH(Y ) ·RZ(Y ). P evaluates Z̃|L and runs root

Z̃
← MT.Commit(Z̃|L).

Then P sends root
Z̃

to V.
2. P samples three polynomials RA(Y ), RB(Y ) and RC(Y ) of degree m − 1 with random coefficients. P evaluates RA|L,

RB |L, RC |L, and runs rootRA ← MT.Commit(RA|L), rootRB ← MT.Commit(RB |L), rootRC ← MT.Commit(RC |L).
Then P sends rootRA , rootRB and rootRC to V.

3. P computes F̃w(X) = Ã(X)·B̃(X)−C̃(X), and G1(X) = F̃w(X)/ZH(X). Then P runs (CG1 ,SG1 )← PC.Commit(pp;G1),
and sends CG1 to V.

4. V samples rx ∈ F \H and sends rx to P.
5. P computes η = G1(rx) and sends η to V.
6. be ← 〈PPC.Eval(G1,SG1 ),VPC.Eval(r)〉(pp, CG1 , rx, η,m).
7. V aborts and outputs b = 0 if be = 0.
8. P computes vA = Ã(rx), vB = B̃(rx), vC = C̃(rx), and sends (vA, vB , vC) to V.
9. V computes γ = ZH(rx), and aborts with output b = 0 if vA · vB − vC 6= η · γ.

10. V samples rA, rB , rC ∈ F, and sends (rA, rB , rC) to P.
11. V computes c̃ = rA · vA + rB · vB + rC · vC .
12. P samples a polynomial SQ(Y ) of degree 2m + κ − 1 with random coefficients and computes s1 =

∑
y∈H SQ(y). P

evaluates SQ|L and runs rootSQ ← MT.Commit(SQ|L). Then P sends s1 and rootSQ to V.
13. V samples α ∈ F randomly, and sends α to P.
14. P computes α · Q̃rx (Y ) +SQ(Y ) and decomposes uniquely as G2(Y ) + ZH(Y ) ·h(Y ) with degG2 < m and deg h < m+κ.
P evaluates h|L and runs rooth ← MT.Commit(h|L). P then sends rooth to V.

15. Let p(Y ) = c1 · (α · Q̃rx (Y ) + SQ(Y )) − (α · c̃ + s1) · Ym−1 − c1 · ZH(Y ) · h(Y ). P and V then invoke a low degree test
(LDT): 〈PLDT((Q̃rx , SQ, h), p),VLDT((2m+ κ, 2m+ κ,m+ κ),m− 1)〉(L). If the LDT fails, V aborts and outputs b = 0.
Otherwise, at the end of the LDT, V needs oracle access to κ points of Q̃rx (·), SQ(·) h(·) and p(·) at query indices Q ⊆ L.

16. For each index i ∈ Q, let ai be the corresponding point in L.
(a) P opens

(Z̃(ai), πZ̃i )← MT.Open(i, Z̃|L), (RA(ai), πRAi )← MT.Open(i, RA|L)

(RB(ai), πRBi )← MT.Open(i, RB |L), (RC(ai), πRCi )← MT.Open(i, RC |L)

(SQ(ai), π
SQ
i )← MT.Open(i, SQ|L), (h(ai), πhi )← MT.Open(i, h|L),

and sends them to V.
(b) V executes

MT.Verify(root
Z̃
, i, Z̃(ai), πZ̃i ), MT.Verify(rootRA , i, RA(ai), πRAi ), MT.Verify(rootRB , i, RB(ai), πRBi ),

MT.Verify(rootRC , i, RC(ai), πRCi ), MT.Verify(rootSQ , i, SQ(ai), π
SQ
i ), MT.Verify(rooth, i, h(ai), πhi ),

for point ai ∈ L opened by P. If any verification fails, V aborts and outputs b = 0.
(c) P and V then invoke the GKR protocol: 〈PGKR,VGKR〉(C, (rx, ai)), where the circuit C computes the evaluation and

outputs
(∑

i∈[n] valM (i)/((rx − rowM (i))(ai − colM (i)))
)
M∈{A,B,C}

(denoted by (Γi,A,Γi,B ,Γi,C), see Figure 1).
If the check in GKR fails, V aborts and outputs b = 0.

(d) V computes Q̃rx (ai) = 1/c2
1·γ·ZH(ai)·

(
rA·Γi,A+rB ·Γi,B+rC ·Γi,C

)
·Z̃(ai)+γ·

(
rA·RA(ai)+rB ·RB(ai)+rC ·RC(ai)

)
,

together with SQ(ai), h(ai), V checks the constraint p(ai) = N(ai, α · Q̃rx (ai) +SQ(ai), h(ai)) at index i ∈ Q. If the
check fails, V aborts and outputs b = 0.

17. V outputs b = 1.

output sizes O(1). Other than the cost of invoking PC,
the prover time is O(n logn), and both the total commu-
nication and the verification time are O(log2 n). We list
the costs of our construction instantiated with differ-
ent polynomial commitment schemes in Table 3. In all

other four candidate constructions for polynomial com-
mitment schemes except Hyrax-PC [53] and IPP-PC
[25], the communication costs between the prover and
verifier and the verification times are polylogarithmic.
Furthermore, the constructions instantiated with FRI
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[8] and Virgo-VPD [56] are plausibly post-quantum re-
sistant because the underlying polynomial commitment
schemes rely only on symmetric cryptography, whereas
others are not due to their reliance on groups of either
unknown order or a pairing. Note that all these candi-
date constructions do not require a trusted setup.
Knowledge soundness. Our zero-knowledge proto-
col is also a proof of knowledge in the random oracle
model. Informally speaking, given the root and suffi-
ciently many authentication paths, there exists a PPT
extractor that reconstructs the leaves with high prob-
ability. Additionally, in our protocol the leaves are RS
encoding of the witness vector, which can be efficiently
decoded by the extractor. The proof is similar to Virgo
[56] and that in [17, 51], and we omit the details here.

Finally, the interactive argument constructed in
prior subsections is public coin, so it can be made non-
interactive in the random oracle model using the Fiat-
Shamir transform [31].

5 Evaluation
In this section, we present some experimental results of
our new zero-knowledge argument system. The system
is implemented in C++ based on the open-source imple-
mentation of Aurora [16]. We use the open-source im-
plementations of the univariate sumcheck protocol and
(heuristic) FRI in libiop [2]. To implement the GKR
protocol for the query computations, we modify the im-
plementation in Virgo [6]. The compiler to generate the
statements of zero-knowledge proofs as R1CS instances
is taken from libsnark [3]. For efficient computation of
the linear coefficient of the affine subspace polynomial
ZH , we consider our implementation over the binary
field F2256 at the standard security level of 128 bits. All
the experiments were run on a machine with an Intel
Core i7-9800X processor and 128GB of RAM.

Virgo [56] is specialized to layered circuits over Fp2

where p = 261 − 1, so it is not sufficient to provide 128
bits security. The implementation of Virgo does not sup-
port natively a larger Mersenne prime 2127− 1. Modify-
ing and switching to such a field incurs a moderate slow
down, which is at least 17× slower than Spartan [48], so
we do not include it as a baseline here.

For Ligero, Aurora and Fractal, we use their open-
source implementations from libiop with the same bi-
nary field F2256 . The implementations of Aurora and
Fractal support two sets of parameters: proven and non-
proven (also known as heuristic). We use the default one,
i.e., heuristic, which relies on non-standard conjectures

related to RS codes. Note that very recent work makes
progress toward proving some of these heuristic [10].

For Marlin, we use its open-source implementation
from [4], which uses BLS12-381 for efficient curve arith-
metic. Actually, it is a little unfair to compare Polaris
with Marlin, as they are under different trust models.
In particular, Marlin achieves a constant-size argument
(880 bytes over BLS12-381 reported in [28]) by relying
on a trusted setup to generate a linear-size SRS. In con-
trast, our construction achieves polylogarithmic argu-
ment size but without any trusted setup.

For SpartanDL, we use its open-source im-
plementation (Spartansnark) from [5], which uses
curve25519-dalek [1] for efficient curve arithmetic.
Note that one of the variants in Spartan’s family is the
SpartanRO, which has a better asymptotics in verifier’s
costs than SpartanDL. However, the open-source imple-
mentation does not provide such an alternative. In addi-
tion, for SpartanRO, the verifier will incur some hidden
computation costs in order to realize efficiently compu-
tation commitments for query computation, and it adds
additional memory cost on storing metadata at the veri-
fier side. For example, the verifier reported in SpartanDL
[48] requires about 15.1s to preprocess an R1CS instance
at 220 constraints. In contrast, PolarisRO does not re-
quire any such preprocessing. Although we cannot give
a concrete advantage in performance than SpartanRO,
we expect the verifier in our scheme is faster.
Prover running time. Table 4 shows the prover’s run-
ning times under Polaris and its baselines. Polaris is a
little faster than Fractal and a little slower than Au-
rora. As shown in the table, Polaris is also a little faster
than Marlin, despite sharing the same asymptotics. Re-
call that Polaris employs an O(logN)-depth, O(N)-size
circuit (see Figure 1) for the oracle access computa-
tions, which yields a much faster prover (linear in the
GKR protocol) than Marlin’s two additional univari-
ate sumcheck protocols (O(N logN)). Spartan beats all
other systems since it offers a linear-time (time-optimal)
prover among all. Ligero is also competitive to other sys-
tems because its proof system is actually an IPCP and
has a constant round complexity.
Argument size. Table 5 shows argument sizes of Po-
laris and other four schemes. Polaris offers a smaller
argument size than Fractal, despite sharing the same
asymptotics. Note that it seems that Spartan offers
much shorter arguments, which is competitive with Po-
laris concretely, although the latter has a better asymp-
totics. One reason is that for relatively small number of
constraints,

√
N is smaller than log2 N . Some additional

experiments show that Polaris (237KBs) will overtake
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Table 3. Costs of our construction instantiated with different polynomial commitment schemes

PC scheme in Polaris prover time communication verifier time assumption
PolarisCL DARK [23] O(n log n) O(log2 n) O(log2 n) r-strong RSA/adaptive root
PolarisRO FRI [8], Virgo-VPD [56] O(n log n) O(log2 n) O(log2 n) CRHF
PolarisDL Hyrax-PC [53] O(n log n) O(

√
n) O(

√
n) DLOG

PolarisDH Dory-PC [42] O(n log n) O(log2 n) O(log2 n) SXDH

Table 4. Prover’s performance (in seconds) for various R1CS
instance sizes.

Ligero Aurora Fractal Marlin Spartan PolarisRO
210 0.10 0.24 0.30 0.71 0.04 0.27
211 0.16 0.45 0.59 1.22 0.08 0.50
212 0.29 0.89 1.19 2.18 0.13 0.99
213 0.58 1.84 2.43 3.92 0.22 2.15
214 1.11 3.89 5.00 7.26 0.53 4.64
215 1.38 7.95 10.22 13.35 0.85 9.71
216 2.65 16.68 21.15 25.38 1.75 20.02
217 5.45 34.34 43.81 47.86 3.22 40.33
218 11.12 70.54 89.76 92.38 6.01 81.10
219 22.84 145.53 185.80 181.15 12.02 163.32
220 45.00 304.77 378.73 365.11 21.74 329.71

Spartan (356KBs) when the number of constraints is
223 and beyond.

Table 5. Argument sizes (in KBs) for various R1CS instance
sizes.

Ligero Aurora Fractal Spartan PolarisRO
210 554 74 130 32 97
211 629 84 143 37 108
212 1066 94 155 42 119
213 1178 103 162 48 127
214 2075 115 175 54 137
215 3195 126 193 63 151
216 5907 135 202 72 160
217 5671 146 218 85 172
218 10562 160 233 98 181
219 10703 171 239 120 190
220 20025 186 255 142 204

Verifier running time. Table 6 shows the verifier’s
running times under Polaris and its baselines. As we can
see, Polaris offers a verifier that is faster than Ligero,
Aurara and Spartan, both concretely and asymptoti-
cally. Moreover, when verifying a SHA-256 preimage
(less than 23k AND gates [26]), our verification time
(10.4ms) is about 1.7× faster than Spartan (18.2ms),
25× faster than Aurora (262ms), 78× faster than Ligero
(814.3ms). Marlin offers the fastest verifier as the num-
ber of constraints increases since it incurs O(logN) veri-
fication costs. This should come as no surprise: the main
feature of the trusted-setup approach is that proofs can
be very short (a few hundred bytes) and very cheap

to verify (a few milliseconds), such as [37]. Our scheme
offers a tradeoff compared to Marlin: a slightly faster
prover, at the cost of slightly larger verification time.
With a smaller size circuit, we expect Polaris can offer
a more efficient prover and verifier than Marlin.

Table 6. Verifier’s performance (in milliseconds) for various R1CS
instance sizes.

Ligero Aurora Fractal Marlin Spartan PolarisRO
210 43.6 29.7 7.8 10.7 9.7 8.1
211 80.4 22.3 8.3 10.8 10.2 8.5
212 149.1 37.7 8.4 10.6 11.1 8.8
213 289.8 70.3 9.0 10.8 13.4 9.5
214 560.2 136.4 9.3 10.5 17.3 9.7
215 814.3 262.0 10.0 10.8 18.2 10.4
216 1570.9 511.4 10.1 10.5 29.4 10.9
217 3076.5 1025.1 10.5 9.7 35.9 11.5
218 6144.8 2050.3 10.9 10.0 47.8 12.0
219 12829 4097.5 11.3 8.3 54.7 12.7
220 25609 8288.4 11.6 7.6 83.1 13.3

6 Concluding Remarks
Polaris, a new zkSNARK scheme has improved ver-
ifier’s performance compared with Ligero/Ligero++,
Aurora for R1CS circuits, without a trusted setup, and
with plausible post-quantum security, since the underly-
ing cryptographic schemes involved are only symmetric
cryptography, i.e., collision-resistant hash functions for
Merkle tree commitments.

For blockchain privacy, a zkSNARK scheme de-
ployed in the real-world systems is the QAP/QSP-based
zkSNARK [32] in 2013. An earlier implemented version
of the zkSNARK in Zcash [13] used the method from
[18]. However, a vulnerability has been found [47] in
2019. Currently Zcash advised not to use that imple-
mentation, and it is currently updated to the version [39]
using the method in [37]. Contrastively, the approaches
listed in Table 1 (i.e., Ligero/Ligero++, Aurora, Frac-
tal, Virgo, Spartan and our Polaris) do not need any
trusted setup and perform heavy pairing cryptographic
operations, and possess plausible post-quantum secu-
rity, which can eliminate vulnerabilities in implementa-
tions of those heavy pairing operations as well as mem-
ory attacks on single point failure for accessing CRSs.
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A GKR Protocol
We first review a seminal protocol that has various ap-
plications in the literature of interactive proof, called
the sumcheck protocol [44, 49]. In a sumcheck proto-
col, a (not necessarily efficient) prover takes as input a
τ -variate polynomial f : Fτ → F of degree ≤ d in each
variable (think of d as significantly smaller than |F|).
His goal is to convince a verifier that∑

x1,...,xτ∈{0,1}

f(x1, . . . , xτ ) = β,

for some constant β ∈ F. The verifier only has oracle
access to f , and is given the constant β ∈ F. Directly
computing the sum requires exponential time in τ , as
there are 2τ combinations. Lund et al. [44] proposed a
sumcheck protocol that is efficient in both its running
time and its number of oracle queries and allows a veri-
fier V to delegate the computation to a computationally
unbounded prover P, who can convince V that β is the
correct sum. In the protocol, V interacts with P over a
sequence of τ rounds. At the end of this interaction, V
needs an oracle access to the evaluation of f at a random
point θ ∈ Fτ and outputs accept or reject.

Using the sumcheck protocol as a building block,
Goldwasser et al. [35] proposed an efficient general-
purpose interactive proof protocol for layered arithmetic
circuits, allowing the verifier to validate the circuit eval-
uation in logarithmic time with a logarithmic-size proof.
We refer it to the GKR protocol and present it in more
details below.

Let C be a layered arithmetic circuit of fan-in 2 over
F, meaning that the circuit can be decomposed into lay-
ers, and wires only connect gates in adjacent layers (if
C is not layered it can easily be transformed into a lay-
ered circuit C with a small blowup in size by a factor of
O(D) where D is the depth of the circuit C). We now
number the layers from 0 to D with layer D referring
to the input layer, and layer 0 referring to the output
layer, thus each gate in the i-th layer takes inputs from
two gates in the (i+ 1)-th layer. In the first message, P
tells V the (claimed) output(s) of the circuit. The pro-
tocol then works its way in iterations towards the input
layer, with one iteration devoted to each layer. In the
first round, V and P run the sumcheck protocol to re-
duce the claim about the output to a claim about the
values in layer 1. In the i-th round, both parties reduce
a claim about layer i−1 to a claim about layer i through
the sumcheck protocol. Finally, the protocol terminates
with a claim about the input layer D, which can be
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checked directly by V, or is given as an oracle access. If
the check passes, V accepts the claimed output.

More concretely, let Si denote the number of gates
at layer i of the circuit C. Assume Si is a power of 2
and let Si = 2si . Number the gates at layer i from 0
to Si − 1, and let Vi : {0, 1}si → F denote the func-
tion that takes as input a binary gate label, and out-
puts the corresponding gate’s value at layer i. With this
definition, V0 corresponds to the output of the circuit,
and VD corresponds to the input layer. Unfortunately,
Vi(·) is not a polynomial, so it cannot be directly used
in the sumcheck protocol. We consider its multilinear
extension, the unique polynomial Ṽi : Fsi → F such
that Ṽi(x1, . . . , xsi) = Vi(x1, . . . , xsi) for all x1, . . . , xsi ∈
{0, 1}.

With these definitions and the approach in [27], we
can express the evaluation of Ṽi as a summation of the
evaluations of Ṽi+1 :

αiṼi(u(i))+βiṼi(v(i)) =
∑

x,y∈{0,1}si+1

fi(Ṽi+1(x), Ṽi+1(y)),

(1)
where u(i), v(i) ∈ Fsi are random vectors and αi, βi ∈ F

are random values. Here fi depends on αi, βi, u(i), and
v(i).

With Equation 1, the GKR protocol proceeds as
follows. The prover P first sends the claimed output of
the circuit to V. From the claimed output, V defines a
polynomial Ṽ0 and computes Ṽ0(u(0)) and Ṽ0(v(0)) for
random u(0), v(0) ∈ Fs0 . V selects α0, β0 ∈ F randomly
and computes α0Ṽ0(u(0))+β0Ṽ0(v(0)). V and P then ex-
ecute the sumcheck protocol on Equation 1 for i = 0. As
described before, at the end of the sumcheck, V needs
an oracle access to the evaluation of f0(u(1), v(1)), where
u(1), v(1) are randomly selected in Fs1 . To compute
f0(u(1), v(1)), V asks P to send Ṽ1(u(1)) and Ṽ1(v(1)).
As f0 only depends on α0, β0, u

(0), v(0) and the gates
and wiring in layer 0, which are all known to V and can
be computed by V directly. In this way, V and P reduce
a claim about the output to two claims about values in
layer 1. V and P then repeat the protocol recursively
layer by layer to reduce a claim on layer i to one claim
on layer i + 1. Eventually, V receives two claimed eval-
uations ṼD(u(D)) and ṼD(v(D)). V then checks the cor-
rectness of these two claims directly by evaluating ṼD,
which is defined by the input of the circuit C. Let PGKR
and VGKR be the algorithms for the GKR prover and
verifier, we state the properties of the GKR protocol in
the following lemma.

Lemma 5 ([30, 35, 50, 55, 56]). Let C : Fn → F be a
depth-D layered arithmetic circuit. 〈PGKR,VGKR〉(C, x) is

an interactive proof for the function computed by C with
soundness O(D log |C|/|F|). The total communication is
O(D log |C|) and the running time of the prover P is
O(|C|). When C has regular wiring pattern, the running
time of the verifier V is O(n+D log |C|).

B Polynomial Commitment
Schemes in Table 2

In particular, Supersonic [23] makes use of groups of
unknown order to construct Diophantine ARguments of
Knowledge (DARK) proofs for polynomial evaluations
over the field. Virgo-VPD refers to the verifiable poly-
nomial delegation scheme in [56]. As a core component
Virgo relies on an inner product argument which can
also be used as a univariate polynomial commitment.
Hyrax-PC refers to the polynomial commitment scheme
used in [53] and is based on the work of Bootle et al.
[21]. This approach is also followed in Bünz et al. [25] for
univariate and bivariate polynomials and in Dory [42]
as well. The FRI protocol [8] is an efficient interactive
oracle proof (IOP) for which a committed oracle is close
to a Reed-Solomon codeword, meaning that the prover
commits to a large sequence of field elements and the
verifier queries only a few specific elements rather than
reading the entire sequence. In order to be used as a
polynomial commitment scheme, the protocol requires
to query the polynomial values outside of the evalua-
tion set. DEEP-FRI [19] shows that this is possible and
a recent note by Vlasov and Panarin [52] makes the con-
nection explicitly by building a polynomial commitment
scheme from FRI.

C Proof of Theorem 2
Proof. Completeness. If c =

∑
y∈H Qrx(y), then

by the definitions of G2, h and Lemma 1, c =∑
y∈H G2(y) = G

(m−1)
2 · c1, where G

(m−1)
2 is the co-

efficient of Ym−1 in G2(·). Therefore, p(Y ) = c1 ·
Qrx(Y ) − G

(m−1)
2 · c1 · Ym−1 − c1 · ZH(Y ) · h(Y ) =

c1 ·
(
G2(Y )−G(m−1)

2 · Ym−1
)
, which is in RS[L,m−1].

The rest follows from the completeness of the commit-
ment schemes, the LDT and GKR protocols.
Soundness. Let εPC, εMT, εLDT and εGKR be the sound-
ness errors of the polynomial commitment, Merkle tree,
LDT and GKR protocols, respectively. We argue the
soundness by combining the soundness errors in the fol-
lowing cases.
Case 1: @Z∗ ∈ RS[L,m] such that com =
MT.Commit(Z∗|L), i.e., com is not a valid commitment.
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– If com is not a valid Merkle tree root, the verification
passes with probability less than εMT in Step 13(b).

– If ∃Z∗∗ 6∈ RS[L,m] such that com ←
MT.Commit(Z∗∗|L), and the points opened by P
satisfy η∗i 6= Z∗∗(ai) for some i ∈ Q in Step 13(a),
the verification passes with probability less than εMT.

– If the value η∗ returned by P in Step 4 satisfies η∗ 6=
G∗1(rx), the verification passes with probability less
than εPC.

– If the values v∗A, v∗B and v∗C returned by P in Step
7 satisfy v∗A · v∗B − vC 6= η∗ · γ, or v∗A 6= Ā∗(rx), or
v∗B 6= B̄∗(rx), or v∗C 6= C̄∗(rx) , then by Lemmas 3
and 4, the verification passes with probability less
than (2m− 2)/(|F| −m) + 1/|F|.

– If the output (Γ∗i,A,Γ∗i,B ,Γ∗i,C) returned by P in
Step 13(c) satisfies Γ∗i,M 6=

(∑
i∈[n] valM (i)/((rx −

rowM (i))(ai−colM (i)))
)
for some M ∈ {A,B,C} and

i ∈ Q, the verification passes with probability less
than εGKR.

– Otherwise, as Qrx 6∈ RS[L, 2m−1], by the LDT proto-
col, the verification in Step 12 passes with probability
less than εLDT.

Case 2: ∃Z∗ ∈ RS[L,m] such that
com = MT.Commit(Z∗|L). Let Q∗rx(Y ) =
(rA ·A(rx, Y ) + rB ·B(rx, Y ) + rC · C(rx, Y )) · Z∗(Y ).
Suppose that c∗ 6=

∑
y∈H Q∗rx(y), then by Lemma 1, for

all h ∈ RS[L,m− 1], p∗ = c1 ·Q∗rx(Y )− c∗ · Ym−1 − c1 ·
ZH(Y ) · h(Y ) 6∈ RS[L,m− 1]. Therefore,
– If the commitment in Step 11 is not a valid Merkle

tree root, or the points opened by P in Step 13(a)
are inconsistent with Z∗ or h, the verification passes
with probability less than εMT.

– If Qrx ∈ RS[L, 2m − 1], then either h 6∈ RS[L,m − 1]
or p 6∈ RS[L,m− 1]. Thus, by the LDT protocol, the
verification passes with probability less than εLDT.

– Other cases are similar to Case 1, the verification
passes with probability less than εPC + εGKR + (2m−
2)/(|F| −m) + 1/|F|.

By the union bound, the soundness is no more than
O(εMT +εPC +εLDT +εGKR +(2m−2)/(|F|−m)+1/|F|) ≤
negl(λ).

D Proof of Theorem 3
Proof. Completeness. It follows from the complete-
ness of Protocol 2 and the modifications to achieve zero-
knowledge.
Soundness. It follows from the soundness of Protocol
2 and the zero-knowledge modifications. In particular,
if ∃ Z̃∗′ ∈ RS[L,m + κ + 1], it can always be uniquely
decomposed as Z̃∗(Y ) = Z̃∗

′(Y ) − ZH(Y ) · R∗Z(Y ) such

that Z̃∗(y) = Z̃∗
′(y) for all y ∈ H. If F̃ ∗w(X) 6= F̃w(X),

using the fact that F̃ ∗w and F̃w are of degree at most
2m, we have that the number of rx ∈ F \ H for which
F̃ ∗w(rx) = F̃w(rx) is at most 2m. This happens with
probability at most 2m/(|F| −m). In addition, suppose
that c̃ 6= c̃∗ =

∑
y∈H Q̃∗rx(y) and let s∗1 =

∑
y∈H S∗Q(y),

where S∗Q(y) is committed by P in Step 12. Then∑
y∈H

(
α · Q̃∗rx(y) + S∗Q(y)

)
= α · c̃∗ + s∗1 = α · c̃ + s1

if and only if α = s1−s∗1
c̃∗−c̃

, which happens with probabil-
ity 1/|F|. The probabilities of other cases are the same
as the proof of Theorem 2, and we omit the details here.
Zero-knowledge. We describe a simulator S in Figure
2 that simulates V∗’s view in the protocol, where SPC.Eval
and SLDT are the simulators of the PC.Eval and LDT
protocols, respectively. In particular, the simulator SLDT
generates psim ∈ RS[L, 1 + deg p] and can simulate the
view of any sequence of random polynomials that are
subject to the constraint and their evaluations at points
indexed by Q are consistent with the oracle access of
psim.

In the simulator S, Steps 11 and 16(c) are the
same as the real protocol, and no message is sent
in Steps 4, 7, 9–11, 13, 16(b), 16(d) and 17. In
Steps 1–3, 5, 12 and 16(a), both polynomials in each
pair of (Z̃sim, Z̃), (Rsim

A , RA), (Rsim
B , RB), (Rsim

C , RC),
(Gsim

1 , G1) and (Ssim
Q , SQ) are sampled randomly, thus

their commitments and evaluations are indistinguish-
able. In Step 8, as ηsim is independent with vsim

A , vsim
B

and randomly distributed, so is vsim
C . Thus, they are in-

distinguishable from (vA, vB , vC) in the real protocol.
The view of Steps 14 and 15 simulated by SLDT and
the view of Step 6 simulated by SPC.Eval are indistin-
guishable from (Q̃rx , SQ, h) and G1 in the real protocol,
respectively.
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S(x, r):
1. Sample Z̃sim ∈ RS[L,m+ κ+ 1] uniformly at random and send root

Z̃sim
← MT.Commit(Z̃sim|L) to V∗.

2. Sample Rsim
A , Rsim

B , Rsim
C ∈ RS[L,m] uniformly at random and send rootRsim

A
← MT.Commit(Rsim

A |L), rootRsim
B
←

MT.Commit(Rsim
B |L) and rootRsim

C
← MT.Commit(Rsim

C |L) to V∗.
3. Sample a degreem polynomial Gsim

1 uniformly at random, compute (CGsim
1

,SGsim
1

)← PC.Commit(pp, Gsim
1 ), and sends CGsim

1
to V∗.

4. Receive rsim
x ∈ F \H from V∗.

5. Evaluate ηsim = Gsim
1 (rsim

x ) and send ηsim to V∗.
6. Call SPC.Eval to simulate the view of the evaluation protocol SPC.Eval(pp, CGsim

1
, rsim
x , ηsim,m, r).

7. Wait V∗ for validation.
8. Sample two random elements vsim

A , vsim
B ∈ F, compute vsim

C = vsim
A · vsim

B − ηsim ·ZH(rsim
x ), and send (vsim

A , vsim
B , vsim

C ) to V∗.
9. Wait V∗ for validation.

10. Receive rsim
A , rsim

B , rsim
C ∈ F from V∗.

11. Let c̃sim = rsim
A · vsim

A + rsim
B · vsim

B + rsim
C · vsim

C .
12. Sample Ssim

Q ∈ RS[L, 2m+ κ] uniformly at random and send ssim
1 =

∑
y∈H Ssim

Q (y) and rootSsim
Q
← MT.Commit(Ssim

Q |L) to
V∗.

13. Receive αsim ∈ F from V∗.
14. Given the random challenges Qsim of V∗, call SLDT to generate psim ∈ RS[L,m − 1]. For each query point ai ∈ Qsim,

compute hsim
i such that psim(ai) = c1 · (αsim · Q̃sim

rx
(ai) + Ssim

Q (ai))− (αsim · csim + ssim
1 ) · an−1

i − c1 · ZH(ai) · hsim
i . Sample

hsim ∈ RS[L,m+ κ] uniformly at random such that hsim(ai) = hsim
i , and send roothsim ← MT.Commit(hsim|L) to V∗.

15. Call SLDT to simulate the view of the LDT protocol SLDT(L, ((2m+ κ, 2m+ κ,m+ κ),m− 1)).
16. For each index i ∈ Qsim, let ai be the corresponding point in L.

(a) Open

(Z̃sim(ai), πZ̃sim
i )← MT.Open(i, Z̃sim|L), (Rsim

A (ai), π
Rsim
A

i )← MT.Open(i, Rsim
A |L)

(Rsim
B (ai), π

Rsim
B

i )← MT.Open(i, Rsim
B |L), (Rsim

C (ai), π
Rsim
C

i )← MT.Open(i, Rsim
C |L)

(Ssim
Q (ai), π

Ssim
Q

i )← MT.Open(i, Ssim
Q |L), (hsim(ai), πhsim

i )← MT.Open(i, hsim|L),
and sends them to V∗.

(b) Wait V∗ to validate the points.
(c) Run the GKR protocol 〈PGKR,VGKR〉(C, (rsim

x , ai)) with V∗, where the circuit C computes the evaluation and outputs(∑
i∈[n] valM (i)/((rsim

x − rowM (i))(ai − colM (i)))
)
M∈{A,B,C}

(see Figure 1).
(d) Wait V∗ for validation.

17. Wait V∗ for validation.

Fig. 2. The simulator S of the final zero-knowledge protocol
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