
Proceedings on Privacy Enhancing Technologies ; 2022 (2):205–226

Samuel Adams, Chaitali Choudhary, Martine De Cock*, Rafael Dowsley*, David Melanson,
Anderson Nascimento*, Davis Railsback, and Jianwei Shen

Privacy-preserving training of tree ensembles
over continuous data
Abstract: Most existing Secure Multi-Party Computa-
tion (MPC) protocols for privacy-preserving training of
decision trees over distributed data assume that the fea-
tures are categorical. In real-life applications, features
are often numerical. The standard “in the clear” al-
gorithm to grow decision trees on data with contin-
uous values requires sorting of training examples for
each feature in the quest for an optimal cut-point in
the range of feature values in each node. Sorting is an
expensive operation in MPC, hence finding secure pro-
tocols that avoid such an expensive step is a relevant
problem in privacy-preserving machine learning. In this
paper we propose three more efficient alternatives for
secure training of decision tree based models on data
with continuous features, namely: (1) secure discretiza-
tion of the data, followed by secure training of a decision
tree over the discretized data; (2) secure discretization
of the data, followed by secure training of a random for-
est over the discretized data; and (3) secure training of
extremely randomized trees (“extra-trees”) on the orig-
inal data. Approaches (2) and (3) both involve random-
izing feature choices. In addition, in approach (3) cut-
points are chosen randomly as well, thereby alleviating
the need to sort or to discretize the data up front. We
implemented all proposed solutions in the semi-honest
setting with additive secret sharing based MPC. In ad-
dition to mathematically proving that all proposed ap-
proaches are correct and secure, we experimentally eval-
uated and compared them in terms of classification ac-
curacy and runtime. We privately train tree ensembles
over data sets with thousands of instances or features in
a few minutes, with accuracies that are at par with those
obtained in the clear. This makes our solution more ef-
ficient than the existing approaches, which are based on
oblivious sorting.

Keywords: Machine Learning, Privacy, Secure Multi-
Party Computation, Decision Tree Ensembles, Random
Forest, Training

DOI 10.2478/popets-2022-0042

Received 2021-08-31; revised 2021-12-15; accepted 2021-12-16.

1 Introduction
Secure Multi-Party Computation (MPC) is a powerful
tool for achieving Privacy-Preserving Machine Learning
(PPML). For example, instantiating PPML based on
Secure Multi-Party Computation [1] enables multiple
parties to work together to train an ML model over
their combined data, without any of the parties learning
anything about each other’s data.

Recent advances in MPC-based protocols for train-
ing of ML models over distributed data are primarily
focused on secure training of neural network architec-
tures [2–5]. While deep learning is state-of-the-art for
tasks that relate to perception, such as computer vision
and natural language processing, in domains with struc-
tured information, the best results are often obtained
with tree ensemble methods, such as random forests and
boosted decision trees [6]. The latter also have the ad-
vantages of being faster to train and being easier to in-
terpret. Advances on MPC-based training of tree based
classifiers are fairly limited. While there is work on se-
cure inference with pre-trained decision trees and tree
ensembles [7–9], work on secure training itself is lim-
ited to the training of individual decision trees (DTs).
Several authors have proposed a secure version of Quin-
lan’s ID3 algorithm [10] for training DTs with categori-
cal features [11–14]. Existing proposals for training DTs

Samuel Adams, Chaitali Choudhary, David Melanson,
Davis Railsback: University of Washington Tacoma, E-mail:
{sdadams, cc201, mence40, drail}@uw.edu
*Corresponding Author: Martine De Cock: University
of Washington Tacoma, E-mail: mdecock@uw.edu; Ghent Uni-
versity, E-mail: martine.decock@ugent.be
*Corresponding Author: Rafael Dowsley: Monash Uni-
versity, E-mail: rafael.dowsley@monash.edu
*Corresponding Author: Anderson Nascimento: Univer-
sity of Washington Tacoma, E-mail: andclay@uw.edu
Jianwei Shen: University of Arizona, E-mail: sjw-
james@email.arizona.edu

Privacy-preserving training of tree ensembles over continuous data 206

with continuous features [15–18] are based on Quinlan’s
C4.5 algorithm [19], an algorithm that involves sorting,
a time-consuming operation in the MPC setting.

Secure DT learning with MPC is challenging for a
variety of reasons. For algorithms in general to be se-
cure in MPC, measures must be taken to ensure that
the number of executions of instructions is not depen-
dent on specific values of the input, because that in itself
could leak information. In the context of ML algorithms,
where models are trained privately and not revealed to
the parties, this means for instance that one should not
rely on early stopping conditions, or on control flow
logic. Furthermore, for efficiency considerations, depen-
dency on previous multiplication results should be min-
imized, and operations like division, analytic function
evaluation, and integer logic should be avoided where
possible. All of these Achilles’ heels of MPC are inher-
ent requirements of traditional DT training algorithms.
Indeed, trees are grown recursively, which implies sev-
eral layers of dependency on previous results. Further-
more, the “decision” component of a tree indicates a
stopping condition has been met (thereby potentially
revealing information, if one is not careful), and the in-
formation gain metric for greedy selection of splitting
features requires computing division and analytic func-
tions. In this paper, we introduce novel methods to con-
tend with these requirements.

We propose three alternative strategies for secure
training of tree based models over data with continuous
feature values, none of which requires sorting of feature
values. Two of our approaches rely on privacy-preserving
discretization of the range of feature values. After this
step, any of the existing algorithms for secure training
of a DT over categorical data can be used. In our case,
we use the SID3T training algorithm proposed by de
Hoogh et al. [14]. This constitutes our first approach.

Next, we present a novel protocol for secure train-
ing of a random forest (RF) over data with categorical
values, by extending de Hoogh et al.’s secure DT train-
ing algorithm [14] with a protocol for privacy-preserving
random feature selection. Combined with the secure dis-
cretization protocol from approach 1, this allows us to
securely train RFs over data with continuous values,
constituting our second approach.

When growing a tree for data with continuous fea-
tures (e.g. price), the standard “in the clear” C4.5 algo-
rithm sorts the feature values to look for a cut-off point
(e.g. ≤ 100$) that will reduce class label impurity the
most at the next level of the tree. To circumvent expen-
sive secure sorting operations, as our third approach,
we propose secure training of tree ensembles based on

randomized choices for the cut-off points. In the clear,
this idea, combined with randomized feature selection,
is known as extremely randomized trees. Such “extra-
trees classifiers” achieve state-of-the-art accuracy and
are fast to train over data sets with numerical features
[20]. Summarizing, in this paper:
– We propose an MPC-based protocol πDISC for privacy-

preserving discretization of a range of continuous fea-
ture values, in scenarios where the feature values are
distributed across different parties.

– We present the first MPC-based protocol πRF for
training of a random forest (RF).

– We propose the first MPC-based protocol πXT for
training of an extra-trees classifier (XT).

– As a side result, we propose several improvements and
optimizations to important building blocks of privacy-
preserving machine learning protocols such as secure
comparisons.

Combined, these protocols allow to train tree based
models over distributed data with continuous values in
a variety of ways: (1) secure discretization of the data
with πDISC, followed by secure training of a DT over the
discretized data with the πSID3T protocol from de Hoogh
et al. [14]; (2) secure discretization of the data with
πDISC, followed by secure training of a random forest
over the discretized data with πRF; and (3) secure train-
ing of extremely randomized trees on the original data
with πXT. All our approaches accommodate scenarios in
which the trained ML models have to remain private,
i.e. secret shared across the parties, as well as scenar-
ios in which the trained ML models are disclosed at the
end. Furthermore, all our approaches work in scenarios
where the data is horizontally partitioned (each party
has some of the rows or instances), scenarios where the
data is vertically partitioned (each party has some of
the columns or features), and even in scenarios where
each computing party only has secret shares of the data
to begin with.

We compare the accuracy and the runtime of the
proposed approaches on publicly available benchmark
data sets with thousands of instances or features. Our
solutions are simple, and, for the most part, use building
blocks that already exist in the literature. Importantly,
our solutions work. We obtain accuracies that are at par
with those that can be obtained with existing sorting
based MPC protocols for training of tree based models,
while being much faster. Our results show that a full
sort is not necessary for MPC-based training of tree
based models.

Privacy-preserving training of tree ensembles over continuous data 207

Related works. The majority of the existing work on
the training of DTs is for categorical data only [11–14].
In a preliminary attempt to extend MPC-based privacy-
preserving DT training algorithms to continuous vari-
ables, Xiao et al. [15] proposed a straightforward adap-
tation of the C4.5 algorithm with a privacy-preserving
bubble sort algorithm, which is not practical. Moreover,
the authors did not give security proofs for their pro-
posed protocols. Shen et al. [16] extended the result
presented in [15] to vertically partitioned data.

More recently, Abspoel et al. [18] proposed a new
MPC-based adaptation of the C4.5 algorithm, using
sorting networks to obliviously presort the feature val-
ues. Subsequently they consider each feature value as a
candidate cut-off point, and compute the Gini index for
each. They estimate that training one DT of depth 4
on a data set with 8192 instances and 11 features would
take slightly over 8 min when run on three m5d.2xlarge
EC2 instances connected via a LAN. They extrapolate
from this that training an ensemble of 200 such trees,
each over a sample of 8192 instances and 11 features
drawn from a much larger data set of training instances
and features, could be done in less than 28 hours. Their
solution does not include a mechanism for performing
bagging (selection of the instances used in each tree)
and subspace sampling (selection of the features used in
each tree) in a privacy-preserving manner. In this pa-
per, we propose MPC protocols to this end in what is,
to the best of our knowledge, the first end-to-end proto-
col for MPC-based training of random forests. We also
present a working implementation that allows to train
accurate tree ensembles over data sets with thousands
of instances or features in a matter of minutes, i.e. our
solution is much faster than the existing ones. These
improvements in efficiency stem from the fact that we
do not privately sort feature values, and from the fact
that we need to perform far less Gini index computa-
tions, because we perform a much more straightforward
discretization of the data, while maintaining high accu-
racy.

Our work on MPC protocols for privacy-preserving
training of random forests (RFs) and extra-trees classi-
fiers (XTs) was carried out independently from simulta-
neous work on MPC-based training of gradient boosted
decision tree models (XGBoost) [21]. RFs and XTs are
inherently different from XGBoost. Whereas for XG-
Boost an ensemble of trees is trained in sequence by
adding, at each step, the tree with the greatest accu-
racy improvement, for RFs and XTs, many trees are
trained independently on different random subsamples
of the data. RFs, XTs, and XGBoost are all popular

tree ensemble methods in data science that may out-
perform one another in predictive accuracy depending
on the data set and the task at hand.

2 Preliminaries
Security setting. We consider honest-but-curious,
static adversaries, as is common in MPC-based PPML
(see e.g. [14, 22]). An honest-but-curious adversary (also
known as passive or semi-honest adversary) follows the
instructions of the protocol, but tries to gather addi-
tional information. Secure protocols prevent the latter.
A static adversary chooses the parties that he wants
to corrupt before the protocol execution. Our security
model and proofs are in Appendix A.

Fixed point representation. The protocols proposed
in this paper are designed for training of DT based
models on data with continuous feature values. The
training data consists of a set S of training examples
〈(x1, x2, . . . , xf), y〉. The feature values x1, x2, . . . , xf are
real numbers, while the class label y is categorical. The
goal is to learn a function from the data that maps pre-
viously unseen feature values to a corresponding class
label, e.g. to determine whether a patient has a disease
or not based on blood pressure, temperature etc. The
kind of functions that we consider in this paper are DT
based models. Our assumption is that, instead of resid-
ing in one place, the data set S is distributed across
multiple data owners.

During the execution of the protocols however, op-
erations are performed on additive shares in a ring Zq,
for some appropriately chosen integer q. In this work
we mostly use q = 2λ. The feature values x in R first
need to be converted into values Q(x) in Z2λ by the data
owners. To this end we use a fixed point representation
with two’s complement for negative numbers:

Q(x) =

{
2λ − b2a · |x|c if x < 0
b2a · xc if x ≥ 0

(1)

When converting Q(x) into its bit representation, it
consists of λ bits in total. The first a bits from the right
hold the fractional part of x, the next b bits represent the
non-negative integer part of x, and the most significant
bit (MSB) represents the sign (positive or negative). It is
important to choose λ large enough to be able to repre-
sent the largest numbers produced during the protocols.
When multiplying fixed point numbers, the number of
fractional bits doubles and must be truncated to remain

Privacy-preserving training of tree ensembles over continuous data 208

in the proper range. Therefore, λ should be chosen to
be at least 2(a+b). It is also important to choose b large
enough to represent the maximum possible value of the
integer part of all x’s.

After the conversion, each data owner secret shares
the feature values on its end. In general, a number z
in Zq is split in m shares by picking z1, z2, . . . , zm ∈ Zq
uniformly at random subject to the constraint that
z =

∑
i zi mod q. All computations are modulo q and

the modular notation is henceforth omitted for concise-
ness. We denote this secret sharing by [[z]]q, which can
be thought of as a shorthand for (z1, z2, . . . , zm). For
the case of q = 2λ, we simplify the notation to [[z]]. Note
that no information about the secret value z is revealed
by any proper subset of the m shares, but the secret
shared value can be trivially revealed by combining all
shares. The class label of training examples is secret
shared in the same manner as the feature values.

The Trusted initializer setting and adversarial
model. It is well-known that unconditionally secure
computations are impossible in a two-party setting un-
less additional (computational and/or setup) assump-
tions are in place. We work in the commodity-based
cryptographic model, where a trusted initializer (TI)
pre-distributes correlated randomness to the parties
participating in the protocol. For ease of explanation
we will describe our protocols assuming m = 2 comput-
ing parties (plus the TI). We denote these computing
parties by Alice and Bob. In particular, we make exten-
sive use of pre-distributed multiplication triples. This
technique was originally proposed by Beaver [23] and
is regularly used to enable very efficient solutions in
the context of PPML (see e.g. [2, 5, 24, 25]). The TI
additionally generates random values in Zq and delivers
them to Alice so that she can use them to secret share
her inputs. If Alice wants to secret share an input x, she
picks an unused random value r (note that Bob does
not know r), and sends c = x− r to Bob. Her share xA
of x is then set to xA = r, while Bob’s share xB is set
to xB = c. The secret sharing of Bob’s inputs is done
similarly using random values that the TI only delivers
to him. After the setup phase, the TI is not involved
in any other part of the execution and does not learn
any data from the parties. In case a TI is not available
or desirable, Alice and Bob can simulate the role of
the TI, at the cost of additional pre-processing time
and computational assumptions, see [2]. We prove our
protocols secure in the universal composability frame-
work considering honest-but-curious adversaries [26],

see Appendix A.

Operations on secret shared values. Given secret
shared values [[x]]q and [[y]]q, and a constant c, Alice and
Bob can trivially perform the following operations lo-
cally:
– Addition (z = x + y): Alice and Bob just add their

local shares of x and y. This operation will be denoted
by [[z]]q ← [[x]]q + [[y]]q.

– Subtraction (z = x−y): Alice and Bob subtract their
local shares of y from that of x. This operation will
be denoted by [[z]]q ← [[x]]q − [[y]]q.

– Multiplication by a constant (z = cx): Alice and Bob
multiply their local shares of x by c. This operation
will be denoted by [[z]]q ← c[[x]]q.

– Addition of a constant (z = x+c): Alice adds c to her
share x, while Bob keeps the same share of x. This
operation will be denoted by [[z]]q ← [[x]]q + c.
We use the same protocol πDMM for secure (matrix)

multiplication of secret shared values as in [22] and de-
note by πDM the protocol for the special case of multi-
plication of scalars. The notation [[Z]]q ← [[X]]q · [[Y]]q is
used to denote the multiplication of two secret shared
matrices X and Y , and the notation [[v]]q ∗ [[w]]q is used
to denote the element wise product of two secret shared
vectors v and w.

When working with fixed-point representations over
Zq with a fractional bits, every multiplication generates
an extra a bits of unwanted fractional representation.
Having a secure way to “chop off” the extra fractional
bits generated by multiplication is a requirement to ef-
ficiently work with fixed-point secret shares. In the two-
party scenario with shares in Z2λ , it is possible to per-
form this truncation with a local probabilistic protocol
– hereafter, πtrunc– that with overwhelming probability
in the security parameter λ − (a + b) introduces an er-
ror of at most 1 in the least significant bit [2]. Since
all operations to compute πtrunc are local, the perfor-
mance overhead of truncating all multiplication results
with this method is essentially zero. We refer to [2] for
a detailed description of πtrunc.

Often in MPC, there are problems that are best
solved with integer arithmetic performed over Zq (for a
large q), while others (such as secure comparisons) are
best solved over Z2. We work using a combination of
these two techniques. Thus, it is necessary to be able
to convert secret shares from one modulus to the other.
For example, to determine if [[a]]q is equal to [[b]]q, one
would first convert [[a]]q and [[b]]q into bitwise sharings
over Z2 and then confirm that each bit is identical us-
ing binary operations. The result, itself a bit shared over

Privacy-preserving training of tree ensembles over continuous data 209

Z2, needs to be converted back to a sharing over Zq for
use in subsequent computations with integers. A quite
efficient protocol for converting from Z2λ shares to bit-
wise sharings over Z2, denoted πdecomp, can be found in
[4]. πdecomp is not fully described in this paper because
novel methods for computing control flow logic are de-
veloped in the following section that do not require a
full decomposition into Z2 shares.

Regarding the opposite direction, the conversion
from a bit shared over Z2 to a sharing of 0 or 1 over Zq,
hereafter π2toQ [27], is still necessary for our purposes.
The intuition for π2toQ is that for a bit [[b]]2 shared over
Z2 between two parties, there are four possible secret
shares of which three are valid Zq sharings and one is
not. If [[b]]2 = b0 + b1 mod 2 = 1, then (1, 0) and (0, 1)
are the only possible sharings. Similarly, if [[b]]2 = b0 +b1
mod 2 = 0, then (0, 0) and (1, 1) are the only possible
sharings. In the case of secret shares (0, 0), (0, 1), and
(1, 0), it holds automatically that b0+b1 mod 2 = b0+b1
mod q for all q > 2. However, the problematic sharing
(1, 1) – which encodes 0 – sums to 2 when regarded as
a Zq sharing. Hence, the problem of converting from
Z2 to Zq is reduced to mapping a secret sharing of 2 to
a secret sharing of 0 as described in Protocol 1. Each
invocation of π2toQ requires one secure multiplication
over Zq, 2dlog(q)e bits of data transfer, and one round
of communication.

Protocol 1: Secure protocol π2toQ converts a
secret bit from a Z2 sharing to a Zq sharing.

Input : [[b]]2 := (b0, b1)
Output: [[b]]q

1 Alice creates the sharing [[b0]]q = (b0, 0)
2 Bob creates the sharing [[b1]]q = (0, b1)
3 [[b]]q ← [[b0]]q + [[b1]]q − 2 · [[b0]]q · [[b1]]q
4 return [[b]]q

Protocol for secure DT training. Each internal
node in a DT tests the value of a particular feature
and branches out accordingly, while each leaf node con-
tains a class label. In the clear, training of a DT is done
by growing the tree from the root to the leaf nodes in
a recursive manner. For each internal node, the feature
is selected that splits the set of training instances that
have reached that node in subsets that are as homoge-
neous as possible regarding the class label value. MPC
protocols for secure training of DTs commonly use the
Gini impurity to this end (the lower the impurity, the
higher the homogeneity). As a sub-protocol for perform-

ing the secure training of a DT with categorical data we
use protocol πSID3T that is a slightly modified version of
the protocol SID3T of De Hoogh et al. [14]. The differ-
ences are the following:
– De Hoogh et al. [14] used secret shares in a prime field

because their multiplication protocol required the ex-
istence of modular inverses. We instead perform mul-
tiplications using multiplication triples and can work
with shares in Z2λ .

– For stopping criteria, De Hoogh et al. [14] used: (1)
no features remain in the training set in the node
at hand, (2) all remaining instances in the node have
the same class label, and (3) the number of remaining
instances in the node is less than a cutoff threshold.
We use only (2) and (3), and additionally work with a
pre-specified maximum allowed tree depth to prevent
overfitting.

– Their solution grows the DT recursively and leaks the
shape of the tree. Our version grows DT’s iteratively
(by depth, up to a pre-specified maximum depth) and
adds dummy nodes to create full trees of the pre-
specified, limited depth. By adding dummy nodes, we
hide true path lengths and only leak the depth of the
trees. We call the last non-dummy node on each path
a classifying node. We keep track of such nodes by
cascading a secret shared bit representing whether or
not an early stopping condition was already reached
on the path during training.

– For each leaf node, De Hoogh et al. [14]’s protocol re-
turns a secret-shared one-hot-encoded vector denot-
ing the class label. In contrast, for each classifying
node, our algorithm returns secret shared frequencies
of each of the class labels in the subset of training
instances that have reached that node. Such secret
shared frequency values are inexpensive to compute
because additions can be done locally by the com-
puting parties, and the frequencies allow for weighted
aggregation of class label votes of trees in an ensem-
ble, leading to more accurate classifications.

The DT is output as an array of secret shared one-hot-
encodings of the split feature at each node, in addition
to the value(s) to be compared against.

3 Secure comparison protocol
Secure comparison of integers is a well-studied prob-
lem in this domain. Specifically, many solutions exist to
compute the output of non-linear functions of the form

[[x]]q ≥? [[y]]q : [[1]]2 else [[0]]2,

Privacy-preserving training of tree ensembles over continuous data 210

[[x]]q =? [[y]]q : [[1]]2 else [[0]]2.

The most common solutions involve first convert-
ing the inputs to their corresponding bitwise sharings
[[x]]q → [[xλ]]2 · · · [[x1]]2 and [[y]]q → [[yλ]]2 · · · [[y1]]2 for
λ ≥ dlog(q)e such that

∑
xi2i = x and

∑
yi2i = y.

Afterward, a series of bitwise operations are carried out
to determine which of the two bit strings is greater than
or equal to the other. The efficiency of a given proto-
col depends on the constraints of the secure computa-
tional environment for which it is designed. We direct
the reader to [28] for a comprehensive discussion of com-
parison protocol design. For the computational environ-
ment used in this work, (i.e. 2PC, semi-honest security
setting, linear secret sharing modulo 2λ), the most simi-
lar protocol to our work is proposed by Bogdanov et al.
for the Sharemind framework [29], though this frame-
work is designed for 3PC. Our work and that of [29] rely
on observations that hold for two’s complement repre-
sentations in Z2λ , and work for numbers x and y such
that |x− y| < 2λ−1 holds, which can be easily enforced
by only using a sub-range which is less than half of the
available range 2λ − 1. This is a relatively weak limi-
tation because any desired range can be injected into a
larger integer ring. However, it fails for applications that
rely on other MPC protocols for which the existence of
modular inverses must be guaranteed.

The key insight we use to compute x ≥? y securely is
the following: for x, y in two’s complement form where
|x − y| < 2λ−1, we have that y > x ⇐⇒ 0 > x −
y ⇐⇒ MSB(x−y) = 1, where MSB(·) denotes the most
significant bit of a value. Hence x ≥ y ⇐⇒ MSB(x −
y) = 0. Similar logic can be used to derive an equality
check x =? y:

x = y ⇐⇒ (x ≥ y) ∧ (y ≥ x)
⇐⇒ MSB(x− y) = MSB(y − x) = 0

Note that due to the two’s complement format, it is
not possible to have MSB(x− y) = MSB(y − x) = 1.

The above shows that the efficiency of computing
x ≥? y and x =? y is limited only by our ability to ex-
tract the most significant bit of a secret-shared value.
Bogdanov et al. use a recursive carry look-ahead con-
struction to decompose the difference x− y into its bit-
wise sharing. Other solutions designed for sharing over
prime fields use a similar approach but take advantage
of the fact that MSB(x) = LSB(2x mod q) for odd q

[30], where LSB(·) denotes the least significant bit.
In this section, we propose protocols for compari-

son and equality tests over Z2λ – πGEQ and πEQ, respec-
tively – that circumvent a full-blown bit decomposition

by extracting only the most significant bit – causing a
significant reduction to the total data transfer. Our ap-
proach is based on a modification of the optimized bit
decomposition protocol πdecompOPT presented in [4].

Note that when working with a two’s complement
fixed-point representation over Z2λ , all bits outside of an
injected ring Z2a+b , where a is the number of fractional
bits and b is the number of integer bits, are equivalent
to the most significant bit. It follows in this case that
extracting the (a+b+1)-th bit is equivalent to extracting
the most significant bit which further reduces the depth
of the arithmetic circuit.

Protocol 2: Secure protocol πGEQ computes
the integer comparison.

Input : [[x]], [[y]] such that |x− y| < 2λ−1, α := the
lowest bit position guaranteed to be equal to
the MSB.

Output: [[x]] ≥? [[y]] : [[1]]2 else [[0]]2
1 Let [[diff]]← [[x]]− [[y]]
2 Let [[MSB]]2 ← πBTX([[diff]], α)
3 return 1⊕ [[MSB]]2

Protocol 3: Secure protocol πEQ computes
the integer equality test.

Input : [[x]], [[y]] such that |x− y| < 2λ−1, α := the
lowest bit position guaranteed to be equal to
the MSB.

Output: [[x]] =? [[y]] : [[1]]2 else [[0]]2
1 Let [[d1]]← [[x]]− [[y]] and [[d2]]← [[y]]− [[x]]
2 Let [[MSB1]]2 ← πBTX([[d1]], α) and

[[MSB2]]2 ← πBTX([[d2]], α)// run in parallel
3 return 1⊕ [[MSB1]]2 ⊕ [[MSB2]]2

In our protocols, α is always set to be the highest bit
position in the ring. However, in the case that it is pub-
lic knowledge that the ring size is much larger than the
secret data elements are likely to be, α can be decreased
by a user-defined amount to improve performance. Ex-
tracting a lower bit position decreases the number of
required communication rounds.

The two-party protocol πdecompOPT for performing
a full decomposition of a Z2λ -shared secret into bitwise
sharings over Z2 is, to our knowledge, the most efficient
in the literature. It is based on amatrix composition net-
work that computes the difference between each bitwise
sum of two secret shares and the corresponding “actual”
bit of the secret value in Z2λ . See [4] for a complete de-

Privacy-preserving training of tree ensembles over continuous data 211

scription. An important aspect of this approach is that
computing the difference for the α-th bit depends only
on dlog(α−1)e rounds of matrix composition, where each
matrix composition requires 4 bits of data transfer. In
addition, the difference for the α-th bit is independent
of all results for lower order bits.

In Protocols 2 and 3, we make use of a straight-
forward modification of πdecompOPT for extracting the
α-th bit from a Z2λ -shared secret between two parties,
hereafter πBTX (see Appendix B for details). The total
number of communication rounds to extract the α-th
bit is dlog(α−1)e+ 1 with total data transfer of 6α−10
bits. It follows that πGEQ has the same number of rounds
and the same data transfer as πdecompOPT, and πEQ has
the same number of rounds but twice the data transfer
of πdecompOPT.

4 Secure discretization
Discretization or “binning” is a common form of data
preprocessing, aimed at grouping continuous or numer-
ical values into a smaller number of bins (buckets). In a
data set with information about social media users, the
feature age could for instance be discretized into the
bins 0-24, 25-34, 35-49, 50+. The threshold values for
the bins are typically derived from the data in an un-
supervised manner. We use equal-width binning, which
means that the range of feature values is divided into a
predefined number of bins of the same width.

Let D be a vector containing the original feature
values (e.g. the ages of all the users in the data set). The
range of D is bounded by the smallest and the largest
value occurring in D, i.e. min(D) and max(D). To divide
this range into p bins of the same width, thresholds need
to be placed at

hi = min(D) + i · max(D)−min(D)
p

(2)

for i = 1, . . . , p − 1. The challenge is that neither Alice
nor Bob may have direct access to min(D) and max(D)
because they each may only have shares of the values of
D. This means that they need to jointly execute a secure
protocol, hereafter πminmax, for computing the minimum
and the maximum values of D.

To compute secret sharings of min(D) and max(D)
without revealing any information about D, a secure
protocol can be formulated similarly to a naive sequen-
tial search solution in the clear. That is, start by com-
paring the first and second elements of D to determine
an initial estimate of the max and min. Next, iterate

Protocol 4: Secure min/max-finding protocol
πminmax

Input : [[D]], number n of elements in [[D]]
Output: [[dmin]], [[dmax]]

1 Let [[≥?]]← π2toQ(πGEQ([[d2]], [[d1]]))
2 Let [[dmin]]← [[≥?]] · [[d1]] + (1− [[≥?]]) · [[d2]]
3 Let [[dmax]]← [[≥?]] · [[d2]] + (1− [[≥?]]) · [[d1]]
4 for i← 3 to n do
5 [[≥?

min]]← π2toQ(πGEQ([[di]], [[dmin]]))
6 [[≥?

max]]← π2toQ(πGEQ([[di]], [[dmax]]))
7 [[dmin]]← [[≥?

min]] · [[dmin]] + (1− [[≥?
min]]) · [[di]]

8 [[dmax]]← [[≥?
max]] · [[di]] + (1− [[≥?

max]]) · [[dmax]]
9 end

10 return [[dmin]], [[dmax]]

through all remaining elements and adjust the max and
min estimates when a new largest or smallest element is
found. After the n-th element of D is checked, the esti-
mates are guaranteed to be the global min and max. The
only necessary adaptation for this algorithm to act as
an oblivious protocol is to require that the comparisons
between the current estimates and each new element of
D are performed with πGEQ and that the reassignments
are handled with multiplication rather than control flow
logic. For example, the comparison based branch oper-
ation “if a ≥ b then b = a” can be rephrased as

[[c]]← π2toQ(πGEQ([[a]], [[b]]))
[[b]]← [[c]] · [[a]] + (1− [[c]]) · [[b]]

(3)

where c is 1 or 0, depending on the outcome of the
comparison a ≥ b. This form of conditional assignment
does not allow Alice nor Bob to learn anything about
which branch of the control flow sequence was followed
to arrive at the outcome. An additional detail is that
because πGEQ returns secret shares over Z2, the result
must first be converted to a ring representation with
π2toQ before the multiplication can be carried out.

Protocol πminmax has a linear number of communi-
cation rounds when carried out in the naive formula-
tion that is described in Protocol 4. However, it can
be improved straightforwardly with the same optimisa-
tion technique used for securely computing the repeated
product over a vector of values in which pairwise prod-
ucts are taken until only one value remains [22]. The
protocol πminmax is analogous to repeated multiplication
because both multiplication and the max/min functions
are associative. So, the sequence of many repeated ap-
plications can be altered to reduce the total number
of consecutive, mutually dependent applications. The
basic observation is that the global minimum of D is
contained in the set of all pairwise minima of D. More-

Privacy-preserving training of tree ensembles over continuous data 212

Fig. 1. Optimized πminmax: an example circuit to compute πminmax
on an input vector of size n = 4.

over, if the minimum is computed between each pair
of entries, and this process is repeated until only one
pair remains, the result of the final pairwise comparison
is min(D). The same principle extends to finding the
global maximum. See Figure 1 for an illustration.

As a result, πminmax can be computed in a circuit of
depth dlog(n)e, where at each layer there are dlog(a +
b)e + 2 rounds of communication, where a, b are the
number of fractional and integer bits, respectively, used
in the representation. The data transfer complexity is
given by the sum over two invocations of πGEQ and two
invocations of π2toQ indexed by the number of operand
pairs at each level of the circuit. Then, for n integers,
the total number of rounds is dlog(n)e(dlog(a+ b)e+ 2)
with total data transfer of

∑dlog(n)−1e
i=0 2i+1(6(a + b) −

10 + 2dlog(q)e).
At the end of this protocol, Alice and Bob have se-

cret sharings of min(D) and max(D), which they can
then securely combine to compute secret sharings of
each of the hi thresholds in Equation (2). For example,
if min(D) = 0, max(D) = 150, and p = 6, then Alice
and Bob would compute secret shares of the thresholds
25, 50, 75, 100, and 125. We assume that p is publicly
known, i.e. Alice and Bob know how many bins need to
be created. As explained above, they may however not
know the value of min(D) or of max(D) in the clear,
and our discretization protocol does not leak this value.
In Protocol 5, di is the i-th element of D. D is a list of
secret shared fixed point numbers to be discretized.

After they have computed shares of the hi thresh-
olds, Alice and Bob can map each value dj from D

into its correct bin number bin(dj) by executing pro-
tocol πDISC (described in Protocol 5). Note that Alice
and Bob each only have a share of dj , and a share
of each threshold hi. They could run the secure com-
parison protocol πGEQ(dj , hi) for each of the threshold
values hi and count in how many cases the comparison
yielded a “true” response. For example, for value dj = 80

Protocol 5: Secure equal-width discretization
protocol πDISC

Input : [[D]], number n of elements in [[D]], public
number of buckets p

Output: [[D′]]2 := one-hot-encoding of the bucket
membership of each d ∈ D

1 The parties call πminmax on [[D]] and receive [[dmin]],
[[dmax]]

2 [[drange]]← [[dmax]]− [[dmin]]
3 for i← 1 to p− 1 do
4 [[hi]]← [[dmin]] + πtrunc(i

p
· [[drange]])

5 end
6 for i← 1 to n do
7 [[ej]]2 ← πGEQ([[di]], [[hj]]) for j ∈ 1, . . . , p− 1
8 [[d′

i,(0)]]2 ← 1− [[e1]]2
9 [[d′

i,(j)]]2 ← [[ej]]2 · (1− [[ej+1]]2) for j ∈ 1, . . . , p− 2
10 [[d′

i,(p−1)]]2 ← [[ep−1]]2
11 end
12 return [[D′]]2

and thresholds 25, 50, 75, 100, 125, the first 3 comparison
tests with πGEQ would result in secret shares of 1, while
the remaining 2 tests would result in secret shares of 0.
Adding those up securely, Alice and Bob would derive
shares of 3, which is the correct bin number of dj = 80,
assuming that we start counting bins at 0.

However, in order to expedite the process of con-
verting this discretized data into the required format
used by the decision tree learning protocols that fol-
low, we choose to output a one-hot-encoding of bin(dj)
where the bin(dj)-th bit position (with lowest order on
the left) is a secret sharing of 1 and all other bits are
secret sharings of 0. Building from the previous exam-
ple where p = 6 and bin(dj) = 3, πDISC outputs secret
shares of the vector (0, 0, 0, 1, 0, 0).

This conversion to one-hot-encoding is carried out
by noting that any value compared against a set of p−1
increasing thresholds will return 0 ≤ k ≤ p − 1 true
results followed by p − k − 1 false results. The position
of the 1 in the one-hot-encoding vector is determined
by the position of the first false result. In the protocol
that follows, the notation d′i,(j) means the j-th bit of the
one-hot-encoding vector for di.

Protocol πDISC (detailed in Protocol 5) adds only
additional dlog(a+ b)e+ 2 communication rounds after
πminmax, where a, b are the fractional and integer pre-
cision of the injected fixed point subring, respectively.
All calls to πGEQ are mutually independent (Line 7), so
they are computed in a single batch in dlog(a + b)e + 1
rounds. Similarly, all products ej ·(1−ej+1) (Line 9) are
mutually independent and require one round. Comput-

Privacy-preserving training of tree ensembles over continuous data 213

ing the range and thresholds [[hi]] (Line 2-5) is entirely
comprised of local operations as all constants i/p are
public and πtrunc is a local protocol in the 2PC scenario.

5 Secure random forest training
DT ensembles gained much popularity during the 2000s
and have remained state-of-the-art methods for many
classification tasks to date. A DT ensemble consists of
a set of DTs that each infer a class label for a new in-
stance; the final label is determined through (weighted)
majority voting. DT ensembles differ from each other in
the way they are trained. A successful approach, known
as random forest (RF), combines bagging and subspace
sampling to make the DTs in the ensemble sufficiently
different from each other [31].

Bagging refers to the fact that, given a training data
set S with n examples, for each DT a bootstrap replica
of S is created by sampling n times with replacement
from the data set S. In this paper, we present a slight
adaptation of the traditional RF training algorithm in
which we sample only s ≤ n times. Working with a
smaller data set allows to train a RF more efficiently in
case n is very large. Subspace sampling refers to the fact
that for each DT, only k < f randomly selected features
of the original feature set are retained. The resulting RF
training algorithm – in the clear – is presented in Algo-
rithm 6. Note that the use of ID3 [10] on Line 4 indicates
that the feature values are assumed to be categorical;
otherwise one would typically use C4.5 [19] instead.

Our approach for training a RF in a privacy-
preserving manner over data with continuous feature
values is to first discretize the feature values using πDISC.
Next we need techniques for randomly selecting features
and samples in a secure manner, similar to Line 2 and
3 in Algorithm 6. Finally, we train DTs as in Line 4, us-
ing the secure protocol πSID3T adapted from de Hoogh et
al. [14]. πSID3T assumes that the input data is presented
in a one-hot-encoded (OHE) format, because that al-
lows for efficient calculation of the Gini index which is
needed to select split features while training a DT. That
is the reason why we designed πDISC to already output
one-hot-encodings. Note that after a discretization of all
feature values of the data set S, using p bins per feature,
the secret shared data set [[Sdisc]]2 consists of a matrix
Sdisc of size n × f · p containing the one-hot-encodings.
For oblivious selection of k features we use a f ·p×k·p se-
lection matrix FS that is generated by the TI and secret
shared with the parties. In FS, identity submatrices of

Algorithm 6: Algorithm for training a ran-
dom forest classifier.

Input : A set S with n training samples (each
sample has f features and one class label),
the number m of trees in an ensemble, the
number of features k used in each tree, the
number of samples s used in each tree, the
depth d of each tree.

Output: An ensemble of trees T = t1, t2, . . . , tm
1 for j ← 1 to m do
2 Randomly select k of the f features of S.
3 Randomly select with replacement s samples

S′ = i1, i2, . . . , is among all samples of S after
features are selected.

4 Train a decision tree ti of depth d on S′ using ID3.
5 end
6 return T = t1, t2, . . . , tm

Protocol 7: Secure protocol πRF for training
a random forest with continuous data.

Input : A secret shared set [[S]] with n training
samples (each sample has f features), the
number m of trees in an ensemble, the
number of buckets p for each feature, the
number of features k used in each tree, the
number of samples s used in each tree, the
depth d of each tree.

Output: A random forest model
[[RF]] = [[t1]], . . . , [[tm]].

1 (Offline Phase) The TI generates and secret shares m
0/1 valued feature selection matrices
[[FS(1)]]2, . . . , [[FS(m)]]2 of size f · p× k · p, and m
0/1 valued sample selection matrices
[[SS(1)]]2, . . . , [[SS(m)]]2 of size s× n

2 Discretize each feature of [[S]] into p bins using
protocol πDISC to get [[Sdisc]]2

3 for i← 1 to m do
4 [[SFS]]2 ← [[Sdisc]]2 · [[FS(i)]]2.
5 [[SSR]]2 ← [[SS(i)]]2 · [[SFS]]2.
6 Use πSID3T to securely train a decision tree [[ti]] of

depth d with the data set [[SSR]]2.
7 end
8 return [[RF]] = [[t1]], . . . , [[tm]].

size p× p are used to indicate that a feature is selected,
and the remaining positions are filled with p×p subma-
trices of zeroes. Since each feature is selected at most
once, no identity submatrices are aligned horizontally
or vertically. Note that m such matrices are randomly
populated in this manner by the TI, with m the total
number of DTs in the RF. In order to extract the de-
sired features, the secure protocol for random feature
selection calls the secure matrix multiplication protocol
πDMM to multiply the OHE-style data set [[Sdisc]]2 with a

Privacy-preserving training of tree ensembles over continuous data 214

feature selection matrix FS that is secret shared by the
TI. For example, if f = 3, p = 3 and k = 2, the matrix

FS =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


will retain the first 3 and the last 3 columns of Sdisc,
thereby effectively selecting the one-hot-encodings cor-
responding to the first and third features of S.

The procedure used to sample the s instances with
replacement is similarly done by a multiplication with a
s×nmatrix SS that is secret shared by the TI. The only
difference is that a column in SS can contain multiple
ones, as the choice is with replacement.

Protocol πRF for secure training RFs is described in
Protocol 7. The loop in πRF can be executed in paral-
lel. The original ID3 protocol will not grow a tree to
pre-specified depth d if an early termination condition
is satisfied (e.g. all training examples in a branch have
the same class label). We have modified it in πSID3T
such that the secure trees will always grow to depth
d by adding dummy nodes where necessary. If a node
satisfies an early termination condition, then the node
will override the classifications of all of its child nodes
(dummy nodes) in an oblivious manner. This has the se-
curity advantage of not revealing the true depth of each
sub-tree, while concealing which nodes actually classify.

6 Secure extra trees training
Besides the RF training algorithm from the previous
section, several other successful algorithms exist for
training ensembles of decision trees. One of these algo-
rithms, used to train so-called “Extremely Randomized
Trees”, or “extra-trees” (XT) for short, was developed
specifically for data with numerical features [20]. In ad-
dition to randomly selecting subsets of features during
the tree construction process, the XT training algorithm
also randomly selects a threshold αj for each feature aj
to effectively turn the numerical feature aj into a binary
feature, based on whether the feature value is greater
than or equal to αj , or not.

An algorithm for training an XT classifier in the
clear, adapted from [20], is presented in Algorithm 8.

Algorithm 8: Algorithm for training an
extra-trees classifier.

Input : A training set S with continuous data and n
samples (each sample has f features), the
number k of features to consider in each
tree, the number m of trees in the ensemble,
the depth d of each tree.

Output: An ensemble of trees XT = t1, . . . , tm.
1 For each feature j, find its minimum and maximum

values, minj and maxj .
2 for i← 1 to m do
3 Select k random indices j1, . . . , jk ∈ {1, . . . , f}.
4 for `← 1 to k do
5 For a uniformly random r ∈ (0, 1),

α` ← r · (maxj` −minj`) + minj` .
6 for s← 1 to n do
7 if S[s, j`] ≥ α` then
8 S′[s, `]← 1
9 else

10 S′[s, `]← 0
11 end
12 end
13 end
14 Train a decision tree ti of depth d on S′ using ID3.
15 end
16 return XT = t1, . . . , tm.

It constructs an ensemble of m decision trees. As be-
fore, S can be thought of as an n × f matrix in which
the rows correspond to instances and the columns to
features. As in Section 5, each decision tree is trained
over a randomly chosen subset of k of the f available
features. Moreover, each continuous feature aj is bina-
rized by choosing a random threshold αj in the range
of possible values of aj , and replacing the feature value
by 1 if it meets the threshold, and 0 otherwise. Each
such binarization is specific for a particular feature in
a particular tree of the ensemble; for another tree in
the ensemble the same feature aj might be reused with
a different random binarization. Note that all loops in
the algorithm can be executed in parallel. Algorithm 8
differs from the original extremely randomized trees al-
gorithm [20] in the sense that in the latter the random
choices for the features and the random choices for the
cut-off points are made for each node in each decision
tree, whereas in Algorithm 8 they are made once for
each decision tree. We have observed that the difference
between the two approaches can have some detrimental
effect on the accuracy. To remedy this, we can sample
the subspace of S with replacement, potentially choos-
ing multiple splits per feature. So for example, if we
have a data set where f = 30, we can let k = 60, thus
increasing the diversity of the data set. In our tests, this

Privacy-preserving training of tree ensembles over continuous data 215

Protocol 9: Protocol πXT for securely train-
ing an extra-trees classifier.

Input : A secret shared training set [[S]] with
continuous data and n samples (each sample
has f features), the number k of features to
consider in each tree, the number m of trees
in the ensemble, the depth d of each tree.

Output: A secret shared ensemble of trees
[[XT]] = [[t1]], . . . , [[tm]].

1 (Offline Phase) The TI secret shares m random
0/1-valued feature selection matrices
[[FS(1)]], . . . , [[FS(m)]] of size f × k, where each
column contains a single 1, and no rows have more
than a single 1. The TI also distributes k ·m
uniformly random ratios [[r(1)]], . . . , [[r(k·m)]]
∈ [1, 2a − 1] (which approximates r ∈ (0, 1) in R).

2 Compute the vectors [[min]] and [[max]], by using
([[minj]], [[maxj]])← πminmax([[Sj]], n) for each column
Sj (j = 1, . . . , f) of S.

3 for i← 1 to m do
4 [[SFS]]← [[S]] · [[FS(i)]]
5 [[r]]← ([[r((i−1)k+1)]], . . . , [[r(ik)]])
6 [[α]]← πtrunc([[r]] ∗ (([[max]]− [[min]]) · [[FS(i)]]))

+ [[min]] · [[FS(i)]]
7 for `← 1 to k do
8 for p← 1 to n do
9 [[D[p, `, 1]]]2 ← πGEQ([[SFS[p, `]]], [[α[`]]])

10 [[D[p, `, 0]]]2 ← 1− [[D[p, `, 1]]]2
11 end
12 end
13 Let [[ti]] be the decision tree of depth d trained

using πSID3T with the data set [[D]]2.
14 end
15 return [[XT]] = [[t1]], . . . , [[tm]].

approach seems to close the gap in accuracy caused by
discretizing per tree instead of per node.

Our Protocol πXT for securely training an XT clas-
sifier is given in Protocol 9. As with the RF approach
from Section 5, at the start of the secure XT training
protocol, Alice and Bob have secret shares of the train-
ing data set S. At the end of the protocol, they have
secret shares of an XT classifier XT = t1, . . . , tm. Pro-
tocol 9 uses several building blocks that have already
been introduced and explained before.

In the offline phase, the TI generates and secret
shares feature selection matrices FS(1), FS(2), . . . ,
FS(m). The feature selection in Line 4 of Protocol 9
is based upon the secure matrix multiplication protocol
πDMM, in the same way as in Section 5. Note that here
the feature selection matrices are of size f × k (with 1’s
representing the selections), as the features are not rep-
resented using one-hot-encodings at this point. The TI
also generates the equivalent of the r values from Line

5 in Algorithm 8 that are used for random selection of
cut-off points. Note that, while in Algorithm 8, each r

is a real number between 0 and 1, in Line 1 of Protocol
9, the randomly chosen values are integers between 1
and 2a, where a is the number of fractional bits in the
fixed-point representation that we use throughout this
paper (see Section 2).

In Line 2 in Protocol 9, the parties use Protocol 4
(πminmax) to compute the minimum and maximum value
of each feature. In Line 5, we select a subset of the
random ratios of size k which will be used to calculate
the vector [[α]]. This vector is calculated on Line 6, and
will retain secret shared values whose sum is a random
value between the minimum and maximum associated
to all features that are dictated by the feature selection
matrix [[FS(i)]]. Note that on Line 6, α, r are 1 × k

vectors, max and min are 1× f vectors, while FS(i) is
a f × k matrix.

The loop on Line 7-12 creates an one-hot-encoding
of the binarized version of the data set. Each continuous
feature value SFS[p, `] is compared with the threshold
α[`] using the secure comparison protocol πGEQ. The
result, which is the binarized version of the data set
encoded as OHE, is stored in the matrix [[D]]2, which
is secret shared among the parties. Finally, the parties
execute the secure ID3 decision tree training protocol
πSID3T to jointly train a decision tree over [[D]]2. Simi-
larly to Section 5, our version of πSID3T grows each tree
to the same specified depth d, to hide the true structure
of the tree.

The two main differences between πXT and πRF are:
(1) that the πXT uses (a modified version of) all train-
ing examples for each tree, rather than using bootstrap
replicas generated with bagging, and (2) that πXT splits
the range of feature values by randomly selecting a sin-
gle threshold. This reduces the computational complex-
ity with respect to πRF, as πRF trains p-nary trees while
πXT only trains binary trees.

7 Analysis and results

7.1 Complexity analysis

We start by describing the asymptotic computational
and communication complexities of our protocols. We
also provide a comparison with the only work in the
literature that addresses the problem of training tree-
based models based on continuous data with MPC [18].
Let m be the number of features, Sk the attribute sub-

Privacy-preserving training of tree ensembles over continuous data 216

Data set #inst #feat Model Model size as #nodes Accuracy Time
Sklearn Secure (dummy %) Sklearn Secure Secure

BC 569 30 DT 16 626 (28%) 93.1% 90.2% 5.3 sec
RF 954 21,700 (51%) 93.7% 93.2% 18.5 sec
XT 1,351 1,650 (58%) 96.3% 96.5% 35.2 sec

ECG 14,552 140 DT 3 3 (0%) 100.0% 100.0% 5.7 sec
RF 60 60 (0%) 100.0% 100.0% 79.6 sec
XT 60 60 (0%) 100.0% 100.0% 43.6 sec

BACK 310 12 DT 18 626 (25%) 79.0% 70.0% 3.1 sec
RF 1,872 312,600 (47%) 82.3% 68.0% 9.8 sec
XT 2,677 3,250 (77%) 83.4% 81.3% 39.2 sec

IV-GSE 225 12,634 DT 3 3 (0%) 64.9% 59.6% 91.1 sec
RF 60 60 (0%) 63.6% 62.3% 12.6 sec
XT 124 2,970 (71%) 63.4% 63.5% 12.6 sec

Table 1. Accuracy and runtime results for tree based models. All results are obtained with 5-fold cross-validation.

set size, n the number of instances, Sn the instance
subset size, d the desired tree depth, and T the num-
ber of trees per ensemble. Our protocol for training de-
cision trees πSID3T requires O(mn + T2d(S2

k + n)) se-
cure binary multiplications, O(Tn(m + 2dSk)) secure
multiplications over Zq, and O(d log(m)) rounds. Our
protocol for training random forests over continuous
data πRF requires O(T2d(S2

k + Sn) + TnSk(Sn + m))
secure binary multiplications, O(T2dSkSn) multiplica-
tions over Zq, and O(d log(Sk)) rounds. Finally, our
protocol for secure training of extra trees πXT requires
O(mn + T2d(S2

k + n)) secure binary multiplications,
O(Tn(m + 2dSk)) secure multiplications over Zq, and
O(log(n) + d log(Sk)) rounds.

The protocol proposed in [18] (where a sorting based
approach is employed) uses O(dn log2(n)) rounds of
communication and O(mn log(n)(2d + log(n)) Zq mul-
tiplications. When all features are continuous, each of
our algorithms outperforms the protocol in [18] in terms
of communication significantly, except for the patholog-
ical case of data sets with exponentially more features
than instances. This is because we avoid secure sorting.
The comparison between the number of multiplications
required is most straightforward with DT as that case
is similar to the one covered in [18]. Our algorithm de-
creases required multiplications by a multiplicative fac-
tor of log(n). For a small data set with a mere 1k entries
our solutions are 10 times more efficient. The improve-
ment in round complexity is even more dramatic: from
O(d(n log2(n) + log(m))) to O(d log(m)).

7.2 Empirical accuracy results

We implemented the proposed protocols in Rust1 and
performed accuracy and runtime experiments on 4 dif-
ferent data sets, shown in Table 1, namely the Breast
Cancer2 data set (BC), the ECG Heartbeat3 data set
(ECG), the Lower Back Pain Symptoms4 data set
(BACK) and the Track IV-GSE 2034 data set (IV-GSE)
from the iDASH 2019 competition on secure genome
analysis.5 All data sets are for binary classification prob-
lems. As shown in Table 1, the data sets vary in the
number of continuous valued input features, as well as
in the number of instances. The original ECG data set
had several columns that mostly contained a value of 0,
and were unhelpful to train on. We removed every fea-
ture that contained 80% or more values of zero, reducing
the ECG data set from 188 features to 140. All results in
Table 1 are obtained with 5-fold cross-validation, i.e. the
accuracies and runtimes are all averages obtained over
5 folds.

The “Accuracy–Sklearn” column in Table 1 contains
accuracy results obtained by training tree based mod-
els over each data set in the clear, with the well known
Scikit-learn library [32]. This library has state-of-the-art
implementations of non privacy-preserving versions of
the ML algorithms considered in Table 1. We used grid

1 https://bitbucket.org/uwtppml/rustlynx/src/tree_
ensembles/
2 https://www.kaggle.com/uciml/breast-cancer-wisconsin-
data
3 https://www.kaggle.com/shayanfazeli/heartbeat
4 https://www.kaggle.com/sammy123/lower-back-pain-
symptoms-data set
5 http://www.humangenomeprivacy.org/

https://bitbucket.org/uwtppml/rustlynx/src/tree_ensembles/
https://bitbucket.org/uwtppml/rustlynx/src/tree_ensembles/

Privacy-preserving training of tree ensembles over continuous data 217

search to find hyperparameter values that yield good
accuracy results, in line with those reported in the lit-
erature for each of the data sets; see Table 2 and below
for more details. As can be observed in the “Accuracy–
Sklearn” column, for some data sets (e.g. IV-GSE) it is
substantially harder to obtain very high accuracy than
for others (e.g. ECG).

The “Accuracy–Secure” column in Table 1 contains
accuracy results obtained with our MPC protocols for
training tree based models when the data sets are secret
shared among two computing parties. The DT and RF
results were obtained by running πDISC followed by re-
spectively πSID3T and πRF. The XT results were obtained
by running πXT. For the ring Z2λ we used λ = 64, using
a = 10 bits for the fractional part and b = 22 bits for the
integer part in the fixed point representation (see Sec-
tion 2). Computations on fixed point numbers can cause
accuracy loss, particularly when products of small num-
bers are computed in succession. The effect is equivalent
to rounding all intermediate results of a long product to
some number of decimal places instead of rounding the
final result. We contend with this issue by scaling the
data sets by a factor of 1000 before converting it to fixed
point which avoids small values without requiring prior
knowledge of the data. We note that scaling values in
this manner does not have any effect on trees learned
by ID3 in the clear.

During classification, to tally votes amongst the
trees in the RF and XT classifiers trained with our se-
cure protocols, we apply the same soft voting mecha-
nism as what is used in Sklearn (alternative methods
could be used as well, if desired). To this end, as ex-
plained in Section 2, for each classifying node, our deci-
sion tree learning protocol returns secret shared frequen-
cies of each of the class labels in the subset of training
instances that have reached that node. In soft voting
each tree returns a probability distribution of the class
labels as its vote. So for example, if the active classi-
fying node in a tree has 70 positive examples, and 30
negative examples, then it would return a vote for 70%
positive, and 30% negative. These proportions are then
added up amongst all trees, and the class label with the
most votes wins.

As we explained in prior sections, we made a vari-
ety of adaptations to the original tree model training
algorithms (as implemented in Sklearn) to create MPC-
friendly versions. The main high level distinction is that
our protocols for DT, RF, and XT all rely on a round of
discretization that creates a data set for each tree, while
in Sklearn’s implementations such discretization is per-
formed for each node. In our protocols for DT and RF,

our static discretization step is very explicit, as the com-
puting parties first run πDISC to discretize the data with
equal-width binning, and subsequently train a DT or a
RF on the discretized data with πSID3T or πRF. In our
protocol πXT for XT, discretization is performed once
for each tree, by randomly choosing feature thresholds
that remain fixed for the entire tree, while in Sklearn
such thresholds are randomly chosen per node. This ex-
plains most of the differences between the “Sklearn Acc”
and “Secure Acc” column results in Table 1, along with
the fact that the implementations in Sklearn are refined
with some bells and whistles that we did not include
in our secure version. For example, the implementation
of tree learning in Sklearn has an additional stopping
criterion that stops growing a tree branch if the feature
values are constant across the training instances in that
branch. Not including this stopping criterion in our pro-
tocol was a deliberate choice to reduce communication
and memory usage, but it also impacts accuracy. De-
spite these differences, Table 1 convincingly shows that
our protocols are competitive with the in-the-clear al-
gorithms in Sklearn in terms of accuracy.

A notable exception is the BACK data set, on
which πSID3T and πRF clearly under-perform in terms
of accuracy. The cause for this degradation in accuracy
is that in πSID3T and πRF the data is first discretized with
equal-width binning, and then a DT and RF are trained
on the discretized data, respectively. In Sklearn on the
other hand, the models are trained directly on the origi-
nal, undiscretized data, with binning performed dynam-
ically by looking for an optimal split point in each node.
This enables the algorithm to take into account interde-
pendencies between features as well as the class labels of
the training examples, which can be beneficial depend-
ing on the data set and problem [33]. To verify this
hypothesis we manually discretized the BACK data
set with equal-width binning, and re-ran the tests with
Sklearn, which gave us the same level of accuracy as ob-
tained with πRF, and even lower accuracy than πSID3T.
It’s clear that the BACK data set benefits greatly from
dynamic discretization. As explained in Section 6, πXT
offers a way to compensate for this lack of dynamic dis-
cretization by sampling the feature space more exten-
sively and with replacement. The accuracy of πXT on
BACK is nevertheless still somewhat lower than the
algorithms in the clear, but this is likely, as mentioned
above, because the implementation of tree learning in
Sklearn stops growing a branch when all feature values
are constant. This stopping condition is likely to be sat-
isfied for small data sets, and deep tree depths, and our
tests on BACK satisfies both of these conditions (see

Privacy-preserving training of tree ensembles over continuous data 218

Table 2). On BC and IV-GSE, πXT and πRF were able
to classify within ±1.3% of Sklearn, while πSID3T under-
performed. Lastly, on ECG, all protocols were able to
learn the decision boundaries to perfectly separate the
positive from the negative instances.

Finally, Table 1 contains two columns that compare
the size of the models generated with Sklearn and with
our MPC protocols, measured in terms of number of
nodes. For the secure version, we also indicate what per-
centage of nodes are dummy nodes. The model size and
the percentage of dummy nodes vary heavily depending
on the hyperparameter choices (see Table 2). For exam-
ple, the models generated from the ECG data contain
0 dummy nodes because the trees are of depth 1, forc-
ing each node to be used in the classification phase.
In contrast, when generating ensembles using πRF and
πXT on the BACK dataset, we used many trees, all of
which were relatively deep, creating ample opportunity
to reach an early stopping condition. Dummy nodes are
used to hide the true shape of the trees; their presence
or absence has no impact on the accuracy.

Regarding the number of nodes in each model, an
obvious outlier is πRF using BACK. The number of
nodes grows exponentially with respect to the depth,
with the base of the exponent being the number of
bins. It may then seem odd that πRF performs roughly
4 times faster than πXT despite producing nearly 100
times more nodes than πXT when trained on BACK.
This is because despite there being so many more nodes
to generate, it is far easier to generate said nodes using
πRF since we use a small horizontal subset of the original
data (see Table 2), whereas πXT generates its nodes with
the entire dataset in mind. We continue our discussion
of runtime results below.

7.3 Runtime results

All our experiments were run on Microsoft Azure
L48s_v2 machines with 48 vCPUs, 384.0 GiB Mem-
ory. Each of the two computing parties Alice and Bob
ran on a separate machine (connected via Gigabit Eth-
ernet network) which means that the results in the last
column of Table 1 cover communication time in addi-
tion to computation time. The trusted initializer was
implemented on a third machine. All reported runtimes
are for the online phases of the protocols. As can be
seen, our protocols are very fast, even on data sets with
thousands of instances or features.

We repeat the accuracy and runtime results from
Table 1 in Table 2, along with our choices for the hy-

perparameter values. We obtained these hyperparame-
ter values by performing grid search while aiming for
state-of-the-art accuracies on the respective data sets.
The attentive reader will notice that the hyperparame-
ter values differ between the algorithms as implemented
in Sklearn, and our MPC-based protocols. As we explain
in more detail below, the incentive to choose hyperpa-
rameter values differently for the MPC-based protocols
goes hand in hand with the adaptations made to make
the original ML algorithms more MPC-friendly.

For the Sklearn results in Table 2, the hyperparam-
eter sel. feat. denotes how many features were randomly
selected for each tree in the RF and XT classifiers (the
original number of features for each data set is recalled
in the first column of Table 2). Trees and depth denote
how many trees were trained in each ensemble, and to
what depth each tree was to be trained to. The parame-
ter ε denotes what fraction of training instances needed
to remain in a node for that node to branch out further.
For example, if we have a data set of 1000 instances,
and ε = 5%, then if the number of training instances
that have reached a node during tree construction is 50
instances or less, the growing stops in that branch and
the node becomes a classifying node. We used the same
ε values for the secure protocols as for Sklearn (not re-
peated in the table for conciseness).

There are two additional columns of hyperparam-
eters in Table 2 for the secure protocols, namely bins,
which is the number of buckets of equal width that πDISC
generates for DT and RF, and sel. inst., which denotes
how many random instances were selected, per tree and
with replacement, from each discretized set by πRF. For
the Sklearn implementation, we followed the convention
of choosing sel. inst. equal to the total number of in-
stances (which is recalled for each data set in the first
column of Table 2) while for πRF we systematically chose
a smaller value for sel. inst. for efficiency reasons, as ex-
plained in Section 5.

Z2-triples and Zq-triples denote the number of
Beaver triples consumed by the secure protocols at run-
time. Table 2 expresses these values as multiples of
106 rounded to 4 significant digits. For brevity, the
correlated randomness required to compute random
feature selection (Line 4 of πRF and πXT) is omitted
from the total due to its differing structure. πXT in-
curs an additional tensor triple (U, V,W) sampled from
(Zinst x feat
q ,Ztrees x feat x sel.feat

q , Ztrees x inst x sel.feat
q), where

W = U · V contracted over feat. Similarly, πRF requires
a tensor of size (Zinst x feat·bins

2 ,Ztrees x feat·bins x sel.feat
2 ,

Ztrees x inst x sel.feat·bins
2). In addition, πRF incurs an-

other tensor triple of correlated randomness to

Privacy-preserving training of tree ensembles over continuous data 219

Sklearn Results Secure Protocol Results
Data sel.feat. trees depth ε Acc bins sel.feat. sel.inst. trees depth Time Acc Z2-triples Zq-trples
BC DT – 1 4 5% 93.1% 5 – – 1 4 5.3 s 90.2% 13.89 44.16
inst: 569 RF 17 70 4 5% 93.7% 6 30 200 100 3 18.5 s 93.2% 25.79 646.7
feat: 30 XT 19 90 5 5% 96.3% – 128 – 50 5 35.2 s 96.5% 201.7 739.2
ECG DT – 1 1 5% 100.0% 2 – – 1 1 5.7 s 100.0% 677.9 25.37
inst: 14,552 RF 120 20 1 5% 100.0% 2 120 100 20 1 79.6 s 100.0% 939.7 49.69
feat: 140 XT 120 20 1 5% 100.0% – 256 – 20 1 43.6 s 100.0% 3972 549.4
BACK DT – 1 4 1% 79.0% 5 – – 1 4 3.1 s 70.0% 3.122 10.01
inst: 310 RF 8 90 5 1% 82.3% 5 10 30 100 5 9.8 s 68.0% 77.92 550.5
feat: 12 XT 10 120 6 1% 83.4% – 64 – 50 6 39.2 s 81.3% 65.39 411.4
IV-GSE DT – 1 1 5% 64.9% 5 – – 1 1 91.1 s 59.6% 2243 229.1
inst: 225 RF 1000 20 1 1% 63.6% 2 128 20 20 1 12.6 s 62.3% 678.1 14.53
feat: 12,634 XT 112 10 3 1% 63.4% – 128 – 90 5 12.6 s 63.5% 3971 549.4

Table 2. Accuracy, runtime results (in seconds), and number of millions of pre-distributed triples for tree based models, along with
the hyperparameter values that yielded these results. We used the same ε value for the secure protocols as for the Sklearn results. All
results are collected with 5-fold cross-validation.

compute instance selection (Line 5). This triple
is sampled from (Zinst x sel.feat·bins

2 ,Ztrees x inst x sel.inst
2 ,

Ztrees x sel.inst x sel.feat·bins
2). We direct the reader to [2] for

a comprehensive discussion of the generalization of cor-
related randomness for matrix multiplication.

Our runtimes for DT are far shorter than those of
XT and RF on the data sets with a small number of
features, namely BC, ECG, and BACK, and much
longer on data set IV-GSE, which has +12K features.
This is entirely with expectations, as πRF and πXT have a
built-in mechanism for random feature selection, which
can greatly reduce the number of features that need to
be considered per tree without harming the accuracy,
while πSID3T has to consider all features.

On the flip-side, this random feature selection in
πRF and πXT does not come for free, and neither does
the random instance selection in πRF. As explained in
Section 5 and 6, such oblivious extraction of subsets of
the data is realized through secure matrix multiplica-
tion. This matrix multiplication only requires a single
round of communication, but the local complexity is
quite high. Further optimization could be done by off-
loading the work onto a GPU.

Recall from Section 6 that to compensate for the
static discretization per tree, in πXT the parties jointly
select features with replacement, and choose a different
split for each. This explains why sel. feat. for XT in the
secure protocol results columns in Table 2 can exceed
the total amount of features in the data set. This design
choice benefits πXT greatly, making it fast and the most
competitive with Sklearn’s implementation in terms of
accuracy. Given our choice to select a pool of random
features per tree as opposed to per node, we also save
valuable computation time. Take our BC results for XT
as an example. In Sklearn’s implementation, each node

of elements 106 107 108 109

π2toQ 0.1 sec 0.4 sec 3.7 sec 58.1 sec
πGEQ 0.4 sec 2.0 sec 17.0 sec 152.2 sec
πminmax 1.9 sec 7.1 sec 50.1 sec 572.7 sec

Table 3. Runtimes of protocol executions on varying input sizes.
πGEQ compares two vectors of size # elements while π2toQ and
πminmax perform operations on one vector of size # elements.

Instances
Bins 103 104 105

2 2.3 sec 13.6 sec 106.5 sec
3 2.8 sec 19.9 sec 139.6 sec
5 3.3 sec 24.1 sec 199.0 sec
8 9.2 sec 28.8 sec 374.1 sec

Table 4. Runtime of πDISC for a varying number of instances and
bins, and a fixed amount of 1,000 features.

must generate 19 unique features. If each of their trees
are fully grown, as ours must be to protect from side
channel attacks, they would have to generate (25 − 1) ·
19 = 589 total features and cut-off points. In contrast,
we generate a pool of 128 features up-front, saving us
an immense amount of time, without harming accuracy.

Tables 3 and 4 show the time it takes to perform
some sub-protocols for multiple input lengths. Table 3
shows the runtimes of π2toQ, πGEQ, and πminmax up to 109

elements, where π2toQ and πminmax performed their op-
erations on a single vector of that length, and πGEQ per-
formed operations between two vectors of that length.
We stop at 109 because that is the point our virtual
machines run out of RAM. Table 4 shows the runtimes
for πDISC for a varying number of bins and instances,
where the amount of features is fixed at 1,000. These
runtimes are quite fast compared to previous iterations

Privacy-preserving training of tree ensembles over continuous data 220

and are notably sublinear over certain ranges. This is
the result of optimized multithreading and socket-level
parallelization.

To experimentally validate our claim that our dis-
cretization based approach for training DTs over data
with continuous values outperforms existing approaches
based on oblivious sorting, we generated an artificial
data set with 8192 instances and 11 features, i.e. the
same dimensions used in [18]. The runtime to train a
DT of depth 4 and 2 bins is 3.51 sec for the online phase
with our approach, which is implemented in a trusted
initialized model with two computing parties, compared
to the estimated 8.27 min for the combined offline and
online phase in [18], which is implemented using a 3-
party protocol with replicated secret sharing tolerating
one corruption.

8 Hyperparameter tuning
An important question in our work is which values to
choose for the hyperparameters, such as the number of
trees and the number of randomly selected features per
tree. We recommend to use related data sets that are
publicly available for performing such tuning.

To the best of our knowledge, the problem of select-
ing hyperparameters in a privacy-preserving way has
not been addressed before in the literature. For exam-
ple, when privately training neural networks, the net-
work topologies, number of neurons, among other pa-
rameters, are assumed to be known in advance [2].

Interesting directions for future work are direct
adaptations of grid-search by training multiple models
with multiple different hyperparameters jointly amongst
the parties. Then, in conjunction with protocols for
privacy-preserving inference [8, 22], we could perform a
secure comparison of all of the results, obliviously select
the most accurate model with the best hyperparame-
ters, and use that to classify new, unseen instances.

We consider that the proposal and analysis of such
protocols for the selection of parameters in a privacy-
preserving way is an important future research direc-
tion, but outside the scope of our paper.

9 Conclusion
In this paper we have presented several cryptographic
protocols that enable two or more parties to train deci-
sion trees or decision tree ensemble classifiers over their

joint continuous valued data, while keeping the data pri-
vate, i.e. neither of the parties has to show their data to
anyone in the clear. Our results demonstrate that it is
possible to efficiently train tree-based models with good
accuracy while completely avoiding a full private sort-
ing, by performing various forms of discretization in a
privacy-preserving manner instead.

The results of our protocols demonstrate compet-
itive accuracy with their state-of-the-art, in-the-clear
counterparts. Beyond accuracy, each one of our proto-
cols demonstrated high efficiency in terms of runtime,
and is fast enough to be used in practice. Our MPC pro-
tocol for extra-trees classifiers is the clear winner among
our three secure approaches for training tree based mod-
els on continuous valued data, as it is both accurate and
fast. When confronted with the need to securely train
a tree-based model over data that is distributed across
different parties, we therefore recommend protocol πXT
as the method of choice.

The accuracy of machine learning algorithms can
be highly dependent on specific properties of data sets.
Thus, it is important to have a portfolio of privacy-
preserving machine-learning algorithms readily avail-
able for use. The presented protocols fill an important
gap in the literature, presenting the first protocols for
trees and tree ensembles that can handle continuous
data without relying on a full sorting of the data set.

Acknowledgements
Funding support for project activities has been provided
by The University of Washington Tacoma’s Founders
Endowment fund. The authors would like to thank Mi-
crosoft for the donation of cloud computing credits
through the UW Azure Cloud Computing Credits for
Research program.

References
[1] R. Cramer, I. Damgård, and J. B. Nielsen, Secure Multiparty

Computation and Secret Sharing. Cambridge University
Press, 2015.

[2] P. Mohassel and Y. Zhang, “SecureML: A system for scal-
able privacy-preserving machine learning,” in IEEE Sympo-
sium on Security and Privacy (SP), pp. 19–38, 2017.

[3] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party
secure computation for neural network training,” Proc. on
Privacy Enhancing Technologies, no. 3, pp. 26–49, 2019.

Privacy-preserving training of tree ensembles over continuous data 221

[4] M. De Cock, R. Dowsley, A. C. A. Nascimento, D. Rails-
back, J. Shen, and A. Todoki, “High performance logistic
regression for privacy-preserving genome analysis,” BMC
Medical Genomics, vol. 14(23), 2021.

[5] C. Guo, A. Hannun, B. Knott, L. van der Maaten,
M. Tygert, and R. Zhu, “Secure multiparty computations
in floating-point arithmetic,” arXiv:2001.03192, 2020.

[6] T. G. Dietterich, “Ensemble methods in machine learning,”
in International Workshop on Multiple Classifier Systems,
vol. 1857 of LNCS, pp. 1–15, Springer, 2000.

[7] D. J. Wu, T. Feng, M. Naehrig, and K. E. Lauter, “Privately
evaluating decision trees and random forests.,” Proc. on
Privacy Enhancing Technologies, no. 4, pp. 335–355, 2016.

[8] K. Fritchman, K. Saminathan, R. Dowsley, T. Hughes,
M. De Cock, A. Nascimento, and A. Teredesai, “Privacy-
preserving scoring of tree ensembles: A novel framework for
AI in healthcare,” in IEEE Big Data, pp. 2413–2422, 2018.

[9] Á. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schnei-
der, “Sok: Modular and efficient private decision tree eval-
uation,” Proc. on Privacy Enhancing Technologies, no. 2,
p. 187–208, 2019.

[10] J. R. Quinlan, “Induction of decision trees,” Machine learn-
ing, vol. 1, no. 1, pp. 81–106, 1986.

[11] Y. Lindell and B. Pinkas, “Privacy preserving data mining,”
in Annual International Cryptology Conf., pp. 36–54, 2000.

[12] J. Vaidya and C. Clifton, “Privacy-preserving decision trees
over vertically partitioned data,” in IFIP Annual Conf. on
Data and Appl. Security and Privacy, pp. 139–152, 2005.

[13] S. Samet and A. Miri, “Privacy preserving ID3 using Gini
index over horizontally partitioned data,” in 2008 IEEE/ACS
Intern. Conf. on Comp. Syst. and Appl., pp. 645–651, 2008.

[14] S. de Hoogh, B. Schoenmakers, P. Chen, and H. op den
Akker, “Practical secure decision tree learning in a teletreat-
ment application,” in Intern. Conf. on Financial Cryptogra-
phy and Data Security, pp. 179–194, Springer, 2014.

[15] M.-J. Xiao, K. Han, L.-S. Huang, and J.-Y. Li, “Privacy pre-
serving C4.5 algorithm over horizontally partitioned data,”
in Fifth International Conference on Grid and Cooperative
Computing (GCC’06), pp. 78–85, IEEE, 2006.

[16] Y. Shen, H. Shao, and L. Yang, “Privacy preserving C4.5
algorithm over vertically distributed datasets,” in In-
tern. Conf. on Networks Security, Wireless Communications
and Trusted Computing, vol. 2, pp. 446–448, IEEE, 2009.

[17] G. Behera, “Privacy preserving C4.5 using Gini index,” in
2nd National Conference on Emerging Trends and Applica-
tions in Computer Science, pp. 1–4, 2011.

[18] M. Abspoel, D. Escudero, and N. Volgushev, “Secure train-
ing of decision trees with continuous attributes,” in Proc. on
Privacy Enhancing Technologies, no. 1, pp. 167–187, 2021.

[19] J. R. Quinlan, C4.5: programs for machine learning. Elsevier,
2014.

[20] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely random-
ized trees,” Machine Learning, vol. 63, no. 1, pp. 3–42,
2006.

[21] K. Deforth, M. Desgroseilliers, N. Gama, M. Georgieva,
D. Jetchev, and M. Vuille, “XORBoost: Tree boosting in the
multiparty computation setting.” Cryptology ePrint Archive,
Report 2021/432, 2021. https://eprint.iacr.org/2021/432.

[22] M. De Cock, R. Dowsley, C. Horst, R. Katti, A. Nascimento,
W.-S. Poon, and S. Truex, “Efficient and private scoring

of decision trees, support vector machines and logistic re-
gression models based on pre-computation,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 16, no. 2,
pp. 217–230, 2019.

[23] D. Beaver, “Commodity-based cryptography,” in STOC,
vol. 97, pp. 446–455, 1997.

[24] B. David, R. Dowsley, R. Katti, and A. C. Nascimento,
“Efficient unconditionally secure comparison and privacy
preserving machine learning classification protocols,” in In-
ternational Conference on Provable Security, pp. 354–367,
Springer, 2015.

[25] M. De Cock, R. Dowsley, A. C. A. Nascimento, and S. C.
Newman, “Fast, privacy preserving linear regression over
distributed datasets based on pre-distributed data,” in
8th ACM Workshop on Artificial Intelligence and Security
(AISec), pp. 3–14, 2015.

[26] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” in 42nd Annual Sym-
posium on Foundations of Computer Science, pp. 136–145,
IEEE Computer Society, 2001.

[27] D. Reich, A. Todoki, R. Dowsley, M. De Cock, and
A. Nascimento, “Privacy-preserving classification of personal
text messages with secure multi-party computation,” in Ad-
vances in Neural Information Processing Systems (NeurIPS),
pp. 3752–3764, 2019.

[28] N. Attrapadung, G. Hanaoka, S. Kiyomoto, T. Mimoto, and
J. C. N. Schuldt, “A taxonomy of secure two-party compari-
son protocols and efficient constructions,” IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci., vol. 102-A, no. 9,
pp. 1048–1060, 2019.

[29] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A
framework for fast privacy-preserving computations,” in
European Symposium on Research in Computer Security,
pp. 192–206, Springer, 2008.

[30] T. Nishide and K. Ohta, “Multiparty computation for in-
terval, equality, and comparison without bit-decomposition
protocol,” in International Workshop on Public Key Cryptog-
raphy, pp. 343–360, Springer, 2007.

[31] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[33] S. Garcia, J. Luengo, J. A. Sáez, V. Lopez, and F. Herrera,
“A survey of discretization techniques: Taxonomy and em-
pirical analysis in supervised learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 4, pp. 734–
750, 2012.

[34] R. Dowsley, Cryptography Based on Correlated Data: Foun-
dations and Practice. PhD thesis, Karlsruhe Institute of
Technology, Germany, 2016.

https://eprint.iacr.org/2021/432

Privacy-preserving training of tree ensembles over continuous data 222

A Security model and proofs
The security model considered in this work is the Uni-
versal Composability (UC) framework [26], the gold
standard for formally defining and analyzing the se-
curity of cryptographic protocols. Any protocol that
is proven UC-secure, can be arbitrarily composed with
other copies of itself and of other protocols (even with
arbitrarily concurrent executions) while preserving secu-
rity. That is an extremely useful property that allows the
modular design of cryptographic protocols. UC-security
is also a necessity for cryptographic protocols running
in complex environments such as the Internet. This ap-
pendix only gives a short overview of the UC framework
for the specific case of protocols with two participants
(denoted Alice and Bob). See [1] for more details.

In the UC framework the security is analyzed by
comparing a real world with an ideal world. In the real
world Alice and Bob interact between themselves and
with an adversary A and an environment Z. The envi-
ronment Z captures all external activities to the proto-
col instance under consideration, and is responsible for
giving the inputs and getting the outputs from Alice and
Bob. The adversary A can corrupt either Alice or Bob,
in which case he gains the control over that participant.
The network scheduling is assumed to be adversarial
and thus A is responsible for delivering the messages
between Alice and Bob. In the ideal world, there is an
ideal functionality F that captures the perfect specifi-
cation of the desired outcome of the computation. F
receives the inputs directly from Alice and Bob, per-
forms the computations locally following the primitive
specification and delivers the outputs directly to Alice
and Bob. A protocol π executed between Alice and Bob
in the real world UC-realizes the ideal functionality F
if for every adversary A there exists a simulator S such
that no environment Z can distinguish between: (1) an
execution of the protocol π in the real world with par-
ticipants Alice and Bob, and adversary A; (2) and an
ideal execution with dummy parties (that only forward
inputs/outputs), F and S.

We design our protocols in the trusted initializer
(TI) model, which is formalized by the trusted initial-
izer functionality FDTI . The TI pre-distributes correlated
randomness to Alice and Bob, but neither takes part in
any part of the protocol execution nor learns any inputs
or outputs of Alice and Bob.

Functionality FDTI

FDTI is parameterized by algorithm D that sam-
ples correlated randomness. Upon initialization, run
(DA, DB) $← D, and deliver DA to Alice and DB to
Bob.

Simplifications: The messages of ideal functional-
ities are formally public delayed outputs, meaning that
S is first asked whether they should be delivered or not
(this is due to the modeling that the adversary controls
the network scheduling). This detail as well as the ses-
sion identifications are omitted from the description of
our functionalities for the sake of readability.

Our protocols are information-theoretically secure
and the simulation strategy is quite simple: all the mes-
sages look uniformly random from the recipient’s point
of view, except for the messages that open a secret
shared value to a party, but these ones can be easily
simulated using the output of the respective functional-
ities. A simulator S, having the leverage of being able
to simulate the ideal functionalities that capture the
trusted initializer functionality FDTI and the ideal func-
tionalities that are UC-realized by the sub-protocols,
can easily extract the necessary values and perform a
perfect simulation of a real protocol execution; there-
fore making the real and ideal worlds indistinguishable
for any environment Z. The simulation strategy will be
described briefly in our proofs.

The protocol for secure matrix multiplication πDMM
UC-realizes the distributed matrix multiplication func-
tionality FDMM [22, 34] in the trusted initializer model.

Functionality FDMM

FDMM is parameterized by the size q of the ring Zq and
the dimensions (i, j) and (j, k) of the matrices.

Input: Upon receiving a message from Alice/Bob with
its shares of JXKq and JY Kq , verify if the share of X
is in Zi×jq and the share of Y is in Zj×kq . If it is not,
abort. Otherwise, record the shares, ignore any subse-
quent message from that party and inform the other
party about the receipt.

Output: Upon receipt of the shares from both parties,
reconstructX and Y from the shares, compute Z = XY

and create a secret sharing JZKq to distribute to Alice
and Bob: a corrupt party fixes its share of the output
to any chosen matrix and the shares of the uncorrupted
parties are then created by picking uniformly random
values subject to the correctness constraint.

Privacy-preserving training of tree ensembles over continuous data 223

The protocol π2toQ for converting a secret bit from
a Z2 sharing to a Zq sharing UC-realizes the share con-
version functionality F2toQ [27].

Functionality F2toQ

F2toQ is parameterized by the size of the field q.

Input: Upon receiving a message from Alice/Bob with
her/his share of JxK2 , record the share, ignore any sub-
sequent messages from that party and inform the other
party about the receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct x, then create and distribute to Alice and
Bob the secret sharing [[x]]q . Before the deliver of the
output shares, a corrupt party fix its share of the output
to any constant value. In both cases the uncorrupted
parties’ shares are then created by picking uniformly
random values subject to the correctness constraint.

The bit extraction protocol πBTX is a straightfor-
ward simplification of the bit decomposition protocol
πdecompOPT from [4] and UC-realizes the bit extraction
functionality FBTX.

Functionality FBTX

FBTX is parameterized by the bit-length λ of the secret
shared input value x and extracts the α-th bit from the
secret shared value.

Input: Upon receiving a message from Alice or Bob
with its share of [[x]], record the share, ignore any sub-
sequent messages from that party and inform the other
party about the receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct the value x = xλ · · ·x1 from the shares,
and distribute a new secret sharing JxαK2 of the bit xα.
Before the output delivery, the corrupt party fixes its
shares of the output to any desired value. The shares
of the uncorrupted parties are then chosen uniformly at
random subject to the correctness constraints.

The secure comparison πGEQ protocol is trivially
correct. The simulator S internally simulates an execu-
tion of Protocol πGEQ for the adversary A that controls
the corrupted party. Using the fact that he is the one
simulating the trusted initializer in this execution, S
can extract the shares of the inputs x and y that belong
to the corrupted party and forward them to FGEQ. S
can then fix in FGEQ the corrupted party’s share of the
output to the value that matches what A gets in the
simulated execution of πGEQ. The simulation is perfect,
and therefore the environment Z cannot distinguish the
real and ideal worlds, and πGEQ UC-realizes FGEQ.

Functionality FGEQ

FGEQ runs with Alice and Bob and is parameterized by
the bit-length λ of the values x, y to be compared. x
and y are guaranteed to be such that |x− y| < 2λ−1.

Input: Upon receiving a message from Alice or Bob
with its share of [[x]] and [[y]], record the shares, ignore
any subsequent messages from that party and inform
the other party about the receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct the values x and y. If x ≥ y, distribute a
new secret sharing J1K2 ; otherwise a new secret sharing
J0K2 . Before the output deliver, the corrupt party fix its
shares of the output to any desired value. The uncor-
rupted parties’ shares are created by picking uniformly
random values subject to the correctness constraints.

The secure equality πEQ protocol is also trivially
correct and the simulator for FEQ uses a similar strategy
as the one for FGEQ to get a perfect simulation. Thus
πEQ UC-realizes FEQ.

Functionality FEQ

FEQ runs with Alice and Bob and is parameterized by
the bit-length λ of the values x, y to be compared. x
and y are guaranteed to be such that |x− y| < 2λ−1.

Input: Upon receiving a message from Alice or Bob
with its share of [[x]] and [[y]], record the shares, ignore
any subsequent messages from that party and inform
the other party about the receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct the values x and y. If x = y, distribute a
new secret sharing J1K2 ; otherwise a new secret sharing
J0K2 . Before the output deliver, the corrupt party fix its
shares of the output to any desired value. The uncor-
rupted parties’ shares are created by picking uniformly
random values subject to the correctness constraints.

It is trivial to verify that the protocol πminmax cor-
rectly outputs secret sharings corresponding to the mini-
mum and maximum values of the input vector. The sim-
ulator S uses the fact that he is responsible for simulat-
ing FGEQ in the internal simulated execution of πminmax
with A in order to extract the corrupted party’s shares
of d1, . . . , dn. S can then forward those input shares to
Fminmax and adjust the shares of the outputs dmin and
dmax in the functionality to match what A sees in the
simulated execution of πminmax. The simulation is perfect
and πminmax UC-realizes Fminmax.

Functionality Fminmax

Fminmax is parameterized by the size n of the vector.

Privacy-preserving training of tree ensembles over continuous data 224

Input: Upon receiving a message from Alice or Bob
with its shares of [[d1]], . . . , [[dn]], record the shares, ig-
nore any subsequent messages from that party and in-
form the other party about the receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct the values d1, . . . , dn. Compute the min-
imum dmin and maximum dmax values contained in
the vector. Distribute new secret sharings [[dmin]] and
[[dmax]]. Before the output deliver, the corrupt party fix
its shares of the output to any desired value. The uncor-
rupted parties’ shares are created by picking uniformly
random values subject to the correctness constraints.

It is easy to verify that the secure discretization pro-
tocol πDISC correctly computes the bins thresholds and
the one-hot encodings of the bin membership of each
d ∈ D. The simulator S for FDISC internally runs an ex-
ecution of πDISC for A and uses the fact that he simulates
Fminmax in order to extract the corrupted party’s shares
of the values d1, . . . , dn that he needs to forward to
FDISC. It can then trivially adjust the corrupted party’s
output shares in FDISC to matches the ones in the sim-
ulated execution of πDISC. This is a perfect simulation
strategy and πDISC UC-realizes FDISC.

Functionality FDISC

FDISC is parameterized by the number of elements n in
the vector D and the number of bins p.

Input: Upon receiving a message from Alice or Bob
with its shares of [[D]], record the shares, ignore any
subsequent messages from that party and inform the
other party about the receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct the values d1, . . . , dn. Compute the mini-
mum dmin and maximum dmax values contained in the
vector, and the thresholds of the p equal-width bins.
Map the values d ∈ D to the respective bins and create
D′ that contains one-hot-encodings of the bin member-
ship of each d ∈ D. Distribute [[D′]]2. Before the output
deliver, the corrupt party fix its shares of the output to
any desired value. The shares of the uncorrupted parties
are then created by picking uniformly random values
subject to the correctness constraints.

We also use as a building block a protocol πSID3T
that UC-realizes a decision tree training functionality
FSID3T. In particular, we use a slightly modified version
of the protocol by De Hoogh et al. [14].

Functionality FSID3T

FSID3T runs with Alice and Bob to train a decision tree
model with categorical values. It is parameterized by
the number of samples n and of features f in the data

set S, the number p of categories per feature, and the
depth d of each tree. The input data is presented in a
one-hot-encoding (OHE) format and the Gini index is
used to select the split features.

Input: Upon receiving a message from Alice or Bob
with its shares of [[S]]2, record the shares, ignore any
subsequent messages from that party and inform the
other party about the receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct the data set S and locally train a decision
tree t using the same criteria and representation format
as πSID3T. Distribute [[t]]. Before the output deliver, the
corrupt party fix its shares of the output to any desired
value. The shares of the uncorrupted parties are then
created by picking uniformly random values subject to
the correctness constraints.

When we concatenate the protocols πDISC and
πSID3T, they do not leak any information due to the UC-
security of their building blocks. This concatenated pro-
tocol UC-realizes FDISC+DT. The simulator S can easily
extract the corrupted party’s shares of the data set by
using the fact that it simulates FDISC in the internal sim-
ulated execution with the adversary A. S can provide
this information to FDISC+DT and adjust the outputs of
FDISC+DT to match the internal execution with A.

Functionality FDISC+DT

FDISC+DT runs with Alice and Bob and first performs a
discretization of the continuous-valued data set S and
then trains a decision tree on the categorical data. It
is parameterized by the number of samples n and of
features f in the data set S, the number of bins p per
feature and the depth d of each tree.

Input: Upon receiving a message from Alice or Bob
with its shares of [[S]], record the shares, ignore any sub-
sequent messages from that party and inform the other
party about the receipt.

Output: Upon receipt of the inputs from both parties,
compute locally the discretization of S followed by the
secret shared tree [[t]] using the same procedures as πDISC
followed by πSID3T (the necessary correlated randomness
is generated locally). Distribute [[t]]. Before the output
deliver, the corrupt party fix its shares of the output to
any desired value. The shares of the uncorrupted parties
are then created by picking uniformly random values
subject to the correctness constraints.

The protocol πRF for training a random forest on
data that is initially discretized clearly does not leak
any information due to the UC-security of its building
blocks. The simulator S can easily extract the corrupted
party’s shares of the data set by using the fact that it
simulates FDISC in the internal simulated execution of

Privacy-preserving training of tree ensembles over continuous data 225

πRF with the adversary A. S can provide this informa-
tion to FDISC+RF and adjust the outputs of FDISC+RF
to match the internal execution of πRF, thus πRF UC-
realizes FDISC+RF.

Functionality FDISC+RF

FDISC+RF runs with Alice and Bob and first performs a
discretization of the continuous-valued data set S and
then trains a random forest on the categorical data. It
is parameterized by the number of samples n and of
features f in the data set S, the number of bins p per
feature, the number k of features to use in each tree,
the number of samples s used in each tree, the number
m of trees in the ensemble and the trees’ depth d.

Input: Upon receiving a message from Alice or Bob
with its shares of [[S]], record the shares, ignore any sub-
sequent messages from that party and inform the other
party about the receipt.

Output: Upon receipt of the inputs from both parties,
compute locally the discretization of S followed by the
secret shared trees [[t1]], . . . , [[tm]] using the same proce-
dures as πRF (the necessary correlated randomness is
generated locally). Distribute [[RF]] = [[t1]], . . . , [[tm]].
Before the output deliver, the corrupt party fix its
shares of the output to any desired value. The uncor-
rupted parties’ shares are created by picking uniformly
random values subject to the correctness constraints.

The protocol πXT for training an extra-trees model
clearly does not leak any information due to the UC-
security of its building blocks. The simulator S can eas-
ily extract the corrupted party’s shares of the data set
by using the fact that it simulates FDMM in the internal
simulated execution of πXT with the adversary A. S can
provide this information to FXT and adjust the outputs
of FXT to match the internal execution of πXT, therefore
πXT UC-realizes FXT.

Functionality FXT

FXT runs with Alice and Bob to train an extra-trees
model. It is parameterized by the number of samples n
and of features f in the data set S, the number k of
features to use in each tree, the number m of trees in
the ensemble and the depth d of each tree.

Input: Upon receiving a message from Alice or Bob
with its shares of [[S]], record the shares, ignore any sub-
sequent messages from that party and inform the other
party about the receipt.

Output: Upon receipt of the inputs from both par-
ties, compute the secret shared trees [[t1]], . . . , [[tm]] lo-
cally using the same procedures as πXT (the necessary
correlated randomness is generated locally). Distribute
[[XT]] = [[t1]], . . . , [[tm]]. Before the output deliver, the
corrupt party fix its shares of the output to any desired

value. The uncorrupted parties’ shares are chosen uni-
formly at random subject to the correctness constraints.

B Efficient bit extraction
The protocol for secure bit extraction, πBTX, is an of the
matrix composition network approach to bit decomposi-
tion presented in [4] as πdecompOPT. Here, we summarize
the notions used to derive πdecompOPT and then derive
our modification πBTX.

The decomposition of a secret-shared value [[x]]2λ =
a+ b mod 2λ into bitwise shares in Z2 is modeled as an
adder circuit where, beginning with the least significant
bit of a, b, all subsequent bits are computed as a bitwise
sum plus the carry-over from the previous bitwise sum.
Formally, we consider two signals which depend on a, b:
Generate (gi = aibi) generates a carry bit at the i-th
position, and Propagate (pi = ai⊕bi) propagates a carry
bit, if it exists [4]. Then, the i-th bit of the sum is given
by si = pi ⊕ ci−1 where the i-th carry bit is given by
ci = gi + pici−1.

It was noted in [4] that a matrix representing this
formula for the carry bit can be computed efficiently
in the MPC setting with minimal dependency on the
results for previous carry bits. Moreover, all carry bits
can be computed in advance by composing entries of
the matrix representation. Let Mi denote the matrix
that holds the i-th Generate and Propagate bits.[

ci
1

]
=
[
pi gi
0 1

] [
ci−1

1

]
= Mi

[
ci−1

1

]
.

Then, all carry bits ci can be derived by the product
Mi · (ci−1, 1), but they can be equally be computed by
the composition of all matrices MiMi−1 . . .M1 · (0, 1).
Further, by noting that the product

MiMi−1 . . .M1

[
0
1

]
=
[
p′i g′i
0 1

] [
0
1

]
=
[
g′i
1

]
,

the i-th carry bit ci is implicitly the upper right-hand
entry of the composed matrix, g′i. Given that matrix
composition is left-associative, the set of all matrices
needed for the final result can be computed in a log
depth circuit – hereafter ComposeNetλ – by, at the i-
th layer, computing all compositions M1.j that require
fewer than 2i−1 composition operations. The constraint
is added that each M1.j should be the composition of
the “largest” matrix from the previous layer, M1.2i−2 ,

Privacy-preserving training of tree ensembles over continuous data 226

Protocol 10: Secure optimized bit decompo-
sition protocol πdecompOPT.

Input : [[x]]2λ
Output: [[x1]]2...[[xλ]]2

1 Party i regards its share xi as pi,1, . . . , pi,λ s.t.
2 [[pj]]2,= p1,j ⊕ p2,j for j = 1, . . . , λ
3 Party 1 creates the sharing [[g1,j]]2 = (p1,j , 0).
4 Party 2 creates the sharing [[g2,j]]2 = (0, p2,j).
5 [[gj]]2 ← [[g1,j]]2[[g2,j]]2

6 [[Mj]]2 ←
[

[[pj]]2 [[gj]]2
0 1

]
for all j

7 {[[M1.j]]2 | 1 ≤ j < λ} ← ComposeNetλ([[M]]2)
8 [[cj]]2 ← the upper right entry of [[M1.j]]2
9 [[s1]]2 ← [[p1]]2

10 [[sj]]2 ← [[pj]]2 ⊕ [[cj−1]]2 for all j > 1
11 return [[s1]]2...[[sλ]]2

with the remainderM2i−2+1.j . IfM2i−2+1.j doesn’t exist
in the network, it is added recursively [4]. For a ring
element with bit length λ, the depth of ComposeNetλ is
dlog(λ − 1)e. This is because the λ-th sum bit depends
only on cλ−1. An example of ComposeNetλ for λ = 9
is given in Figure 2. The optimized bit decomposition
protocol πdecompOPT of [4] is described in Protocol 10.

A key aspect of ComposeNetλ is that the matrix
composition M1.j , which is used to derive cj , depends
only on dlog(j)e rounds of matrix composition. More-
over, given that M1.j depends on a small subset of
branches in ComposeNetλ, it is possible to reduce the
circuit significantly to extract only one bit. Call the re-
duced circuit that extracts the α-th bit ComposeNetBTX

α .
This circuit can be constructed by removing nodes from
ComposeNetλ that are not parents ofM1.(α−1). In an al-
ternative view, it can be constructed iteratively by, at
each layer, computing the pairwise matrix compositions
of all nodes until the final layer contains only M1.(α−1).

The bit extraction protocol πBTX, described in
Protocol 11, follows exactly the same structure as
πdecompOPT. The only difference is that the reduced
matrix composition network ComposeNetBTX

α is com-
puted in lieu of ComposeNetλ and the depth of the
circuit depends only on dlog(α − 1)e. An example of
ComposeNetBTX

α for α = 9 is given in Figure 2.
Efficiency discussion: Prior to computing

ComposeNetBTX
α , there is one round of communica-

tion required to compute all gj . In total, this step
requires α−1 Z2 multiplications and a total data trans-
fer of 2(α − 1) bits. Computing ComposeNetBTX

α takes
dlog(α− 1)e rounds of communication and, for α− 1 =

2k, requires
log(α−1)−1∑

i=0
2i = α − 2 matrix compositions,

Protocol 11: Secure protocol πBTX extracts
the α-th bit from a secret shared value.

Input : [[x]]2λ , α
Output: [[xα]]2

1 Party i regards the lowest α bits of its share, xi, as
pi,1, . . . , pi,α s.t.

2 [[pj]]2,= p1,j ⊕ p2,j for j = 1, . . . , α
3 Party 1 creates the sharing [[g1,j]]2 = (p1,j , 0).
4 Party 2 creates the sharing [[g2,j]]2 = (0, p2,j).
5 [[gj]]2 ← [[g1,j]]2[[g2,j]]2

6 [[Mj]]2 ←
[

[[pj]]2 [[gj]]2
0 1

]
for j = 1, ..., α− 1

7 [[M1.(α−1)]]2 ← ComposeNetBTX
α ([[M]]2)

8 [[cα−1]]2 ← the upper right entry of [[M1.(α−1)]]2
9 return [[pα]]2 ⊕ [[cα−1]]2

each with 4 bits of data transfer. The complexity differs
by one matrix composition for α − 1 6= 2k. All other
operations are local and thus add virtually nothing to
the overall running time. In short, the round complexity
of πBTX is dlog(α− 1)e+ 1 and it transfers 6α− 10 bits
of data.

Fig. 2. ComposeNetλ for λ = 9, with all matrix compositions
M1,M1.2,M1.3, . . . ,M1.(λ−1) [4]. The red subgraph computes
ComposeNetBTX

α for α = 9; the matrix composition M1.(α−1).

	Privacy-preserving training of tree ensembles over continuous data
	1 Introduction
	2 Preliminaries
	3 Secure comparison protocol
	4 Secure discretization
	5 Secure random forest training
	6 Secure extra trees training
	7 Analysis and results
	7.1 Complexity analysis
	7.2 Empirical accuracy results
	7.3 Runtime results

	8 Hyperparameter tuning
	9 Conclusion
	A Security model and proofs
	B Efficient bit extraction

