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Abstract: Education technologies (EdTech) are becom-
ing pervasive due to their cost-effectiveness, accessibil-
ity, and scalability. They also experienced accelerated
market growth during the recent pandemic. EdTech col-
lects massive amounts of students’ behavioral and (sen-
sitive) demographic data, often justified by the potential
to help students by personalizing education. Researchers
voiced concerns regarding privacy and data abuses (e.g.,
targeted advertising) in the absence of clearly defined
data collection and sharing policies. However, techni-
cal contributions to alleviating students’ privacy risks
have been scarce. In this paper, we argue against collect-
ing demographic data by showing that gender—a widely
used demographic feature—does not causally affect stu-
dents’ course performance: arguably the most popular
target of predictive models. Then, we show that gender
can be inferred from behavioral data; thus, simply leav-
ing them out does not protect students’ privacy. Com-
bining a feature selection mechanism with an adversar-
ial censoring technique, we propose a novel approach
to create a ‘private’ version of a dataset comprising of
fewer features that predict the target without revealing
the gender, and are interpretive. We conduct compre-
hensive experiments on a public dataset to demonstrate
the robustness and generalizability of our mechanism.
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1 Introduction
Many forms of educational technologies (EdTech for
short)—ranging from simple online portals to sophis-
ticated AI-enabled applications for smart learning, re-
mote tutoring, and proctoring—are now becoming ubiq-
uitous in educational institutes across the world. The
recent pandemic has necessitated inventing new tech-
nologies as well as adapting existing ones to fulfill edu-
cational purposes. Although many of these technologies
were invented as a response to an emergency, they will
remain in use in the post-pandemic world, inspire other
novel technologies in this domain, and further acceler-
ate the growth of EdTech’s worldwide market [53, 72].
According to one estimate, EdTech growth will nearly
double by 2025, with an estimated expenditure of $404
billion [47].

The potential for a huge market has attracted many
technology development companies to develop web-
based interfaces as well as applications for personal com-
puters and mobile platforms [1, 13, 16]. Simultaneously,
tech giants like Google and Facebook are creating cus-
tomized versions of their products and services targeting
educational institutes, teachers, and learners at all lev-
els. Google Classroom [35] has doubled its number of
users since the pandemic began [34, 58]. Facebook has
recently released Facebook for Education [27]—a collec-
tion of courses, tools, and resources for learners in both
K-12 and higher levels of education. EdTech provided
by Google and Facebook are hailed for their usability
and are lucrative to institutional administrations for be-
ing cheaper than other alternatives [4, 58]; consequently,
they are being increasingly integrated into educational
processes and playing a much larger role in learning and
teaching practices than simply being a tool to deliver
education [37].

EdTech does not only provide interfaces to facil-
itate educational processes but also continuously col-
lects multimodal data about students’ interactions with
them. For example, learning management systems (e.g.,
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Canvas1) log students’ actions when they access course
materials using the portal, and remote proctoring sys-
tems (e.g., Proctorio2) continuously collect audio and
video data during remote exams. The availability of such
big data has inspired new research directions, such as
Educational Data Mining (EDM) and Learning Analyt-
ics (LA), and researchers have spent enormous efforts to
harness the power of this data using machine learning
and data mining techniques. Some of the most popu-
lar prediction tasks using educational data include pre-
dicting students’ course performance (e.g., [91]), iden-
tifying students at risk of dropout (e.g., [28], cluster-
ing students in terms of what strategic behaviors they
adopt (e.g, [3]), and detecting cheating behaviors dur-
ing remote exams (e.g., [6]). See recent survey papers
(e.g., [21, 51, 71, 78]) for details on the current state of
the art machine learning models for each prediction task
and what types of data are combined (e.g., demograph-
ics, background, and log data) to train those models.

Not surprisingly, concerns regarding risking stu-
dents’ privacy by collecting and storing such vast
amount of data are growing, particularly fueled by past
data breaches [57], as well as EdTech companies’ data
collection and sharing practices [58, 63, 94]. For exam-
ple, Klose et al. lists several data breaches and hacks in-
volving companies providing EdTech, leading to millions
of students having their identifying and other sensitive
data exposed [57]. The data were sold in the black mar-
ket, used for tax fraud or unlawfully extorting money in
exchange for financial aid, and in one case, the breach
led to a student’s death [57]. Besides data breaches,
EdTech companies’ practices of data collection, stor-
age, and sharing with ‘business partners’ were called
into question by numerous researchers and privacy ac-
tivists [63, 94]. Google faced lawsuits for using students’
data for advertising purposes, even though their terms
of use did not allow such usages [43]. Google class-
room also provides APIs (application programming in-
terfaces) for third-party developers, who can integrate
their applications to Google classroom and may have ac-
cess to students’ data [37]. Facebook for education is in-
tegrated with other products owned by Facebook, such
as Instagram, and Facebook ad for education [26]. Tri-
angulating cross-platform data facilitates identification
of students even if the original data were deidentified,
as well as inferring students’ demographic information
and behavioral patterns, which might be used for pro-

1 https://www.instructure.com/canvas
2 https://proctorio.com

filing based on demographic characteristics, threatening
students’ privacy and autonomy.

While public sharing of students’ (anonymized)
data for research purposes can accelerate scientific
progress, it may also increase privacy risks [15, 95].
This heightened fear of violating students’ privacy, cou-
pled with the instantiating of stricter privacy laws (such
as the General Data Protection Regulations, GDPR,
in Europe), discouraged publicizing learning analytics
datasets [46, 55]. Indeed, in a recent survey of public
MOOC datasets, Lohse, McManus, and Joyner noted
that most research papers on learning analytics experi-
ment on proprietary datasets, and no dataset has been
made public since 2016 [62]. But concerns regarding
data collection and their (improper) uses by EdTech
companies remain. Harvesting as much data as possible,
including demographic information such as gender and
age, is usually justified by the promise of better learn-
ing analytics that may improve the learners’ experience.
Students’ demographic attributes are privacy sensitive
as they can be used to profile students and target them
for surveillance (section 2.2). While such aggressive min-
ing of students’ data has been heavily criticized, techni-
cal contributions from the research community to reduce
the amount of data collected have been inadequate.

In this paper, we make a case against collecting stu-
dents’ demographic attributes that are privacy sensitive
(e.g., gender), and using them to train predictive mod-
els. We also propose technical means to prevent inferring
such attributes from students’ behavioral data while al-
lowing to build learning analytical models. Concretely,
we make the following three contributions:
– Using causal inference methodologies, we demon-

strate that students’ gender—a widely used feature
to train models to predict, e.g., students’ course
performance—does not have any causal effect on
students’ course performance. Our analyses suggest
that gender’s predictive value may be due to spuri-
ous correlations with the outcome(s) and thus not
causally relevant to predictive modeling of students’
performance in educational courses.

– We demonstrate that students’ gender can be in-
ferred based on how they interacted with course ma-
terials. Thus, simply not collecting such attributes
is not enough to prevent profiling students based
on demographic factors. We evaluate an adversar-
ial training-based censoring technique to remove
gender information from students’ behavioral data.
This technique transforms input features (i.e., be-
havioral data) into an intermediate representation.
The adversarial training procedure removes infor-
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mation about gender from the transformed features,
but preserves information about the target (e.g.,
course performance) outcome. Thus, these features
can be used to train new predictive models without
risking students privacy.

– We make methodological contributions in identify-
ing a subset of interpretable features that are enough
to predict students’ course performance with high
accuracy while preventing gender inference. We for-
mulate the feature selection problem as a com-
binatorial optimization problem. The exact solu-
tion of that problem is intractable. We propose a
novel approach to obtain an approximate solution
where we combine the adversarial censoring mech-
anism with a feature selection technique that was
implemented as the input layer of a deep neural
network-based predictive model. We devised a cus-
tom penalty function to apply in the input layer;
the function fulfills dual purposes: i) it constrains
some model parameters in the input layer to take
the on value of zero so that associated features will
be left out, and ii) it constrains the remaining fea-
tures to take on the value of one so that those fea-
tures combine themselves in interpretable ways. Our
method retained a few features, which can predict
performance with high accuracy and do not reveal
gender information. These features are also inter-
pretable: it is easy to review them and how they
combine to gain an intuitive understanding of what
features (or combinations of features) are important
predictors for a given target task. Additionally, ed-
ucational experts may audit the selected features
and examine if they match their expectations re-
garding the association between students’ behaviors
and performance. Finally, since the size of the final
set of features is small (with high predictive power),
our approach permits building simpler models (e.g.,
logistic regression), which are easier to understand
and explain. We make our methods’ implementation
public.3

We employ our methods on a learning analytics dataset
containing students’ interactions with course materials
along with some demographic attributes (see section 3.1
for the details on the dataset). Our findings strengthen
the case for data minimization in this emerging field of
building AI-enabled educational technologies. In partic-
ular, educational institutes may re-evaluate the neces-

3 https://github.com/rakib062/EdTech-PETS

sity to use demographic information (since they may not
have a causal effect on the outcome) and may prohibit
their collection by EdTech companies while initiating
a service contract. Our technical contributions further
help to minimize the amount of data collected for pre-
dictive purposes. Finally, our approach results in an in-
tuitive feature set and simpler models, enhancing the
explainability of predictive models in education tech-
nologies.

2 Literature review

2.1 Educational data mining and learning
analytics

As web-based technologies such as learning management
systems (LMS) were integrated to facilitate educational
processes, they opened the door to huge scale learning
analytics (LA)—collecting and analyzing students’ data
to better understand and optimize the learning pro-
cess and the environment. Education technologies are
increasingly getting AI-enabled, where predictive mod-
els that are trained on students’ data are integrated
with these tools. Some of the most common predictive
tasks include course performance prediction (see recent
research [50, 91] and survey papers [42, 54, 71], pre-
dicting the probability of dropping out from a course
(see [28, 50, 87] and survey papers [65, 76], students’
attention and behavior prediction [54, 73, 97], as well
as detecting students’ cheating behaviors during remote
exams [17, 88].

2.2 Concerns for students’ privacy

Concerns related to students’ privacy and autonomy
have been at the center of the debate on whether EdTech
should be deployed in educational institutions [5, 8, 48,
52, 82]. Students’ data may be shared among multiple
stakeholders including educational institutes and com-
panies providing EdTech [82]. Additionally, third-party
applications are integrated with LMS (such as Can-
vas) for “frictionless” data collection and sharing [64].
Fiebig et al. reported that higher educational institutes
are increasingly relying on third-party vendors to col-
lect and store institutional data [29]. The authors noted
that this over-reliance may have adverse consequences
that go beyond individuals’ privacy. In their recent pa-
per, Marachi and Quill cautioned that educational in-
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stitutions are ill-equipped to protect students from data
harvesting and exploitation [64]. In line with the seminal
work on a taxonomy of privacy violations by Solove [83],
Reidenberg and Schaub identified different short- and
long-term harms that may be caused by mining stu-
dents’ data and then connected them to the taxon-
omy [79]. The harms may be caused by excessive infor-
mation collection, processing, dissemination, and inva-
sion [83], and include students’ identification, profiling,
surveillance, and online harassment [79].

Many educational institutes and EdTech providers
anonymize data before collecting, processing, or pub-
licizing data to protect students’ identities. But
anonymized data from multiple sources can be com-
bined to identify students. Yacobson et al. mined tem-
poral patterns from de-identified student log data and
identified the physical classes and schools with the
help of publicly available school data [95]. Chen et al.
identified 42% of the learners in a dataset on so-
cial media [15]. Students’ demographic data, combined
with other data sources, may reveal students’ iden-
tity [86, 95]. In the T3 project, students’ anonymized
Facebook profile data identified many individuals as
being the only Harvard freshman student from a cer-
tain state or county [57]. Gursoy et al. classified gen-
der and age as quasi-identifiable attributes that can
be combined with other information to identify an in-
dividual, and GPA and enrolled courses as sensitive
data that students do not want to share with third
parties [39]. Many researchers thus advocate not pub-
lishing students’ demographic information and limit-
ing the amount of metadata or additional informa-
tion when publicizing anonymized student data for re-
search [11, 57, 95], i.e., following a data-minimization
principle [60].

2.3 Using demographic data in EDM

While demographic attributes increase students’ risks
to privacy harm, they are frequently used as features in
predictive models. Paquette et al. surveyed 385 research
papers on educational data mining that were published
in the previous five years (2015–2019, inclusive) and
found that 15% of these publications used demographic
variables in EDM [74]. However, the effects of demo-
graphic factors (e.g., students’ gender and age) on out-
come variables (such as course performance and dropout
probability) have been largely minor and sometimes in-
consistent. For example, Leal et al. found a negative
effect of gender (female) on course completion in one

sample of data, but the effect was positive in another
sample [36]. Focusing on the students who completed an
online course, Chen et al. found no difference based on
gender and age in learning behaviors [14]. Demographic
factors’ predictive power may be attributed to spuri-
ous correlations with outcome variables; the correlations
may vary based on the data sample, causing instability
in trained models. Evidence of only spurious correlation
between demographic attributes on outcome variables
(or equivalently, the absence of any causal effects of the
former on the later) strengthen the case against collect-
ing students’ demographic data. Unfortunately, we did
not find any published research investigating these phe-
nomena.

2.4 Privacy preserving learning analytics

Concerns regarding privacy harms and fair/ethical use
of students’ data resulted in several initiatives to cre-
ate or update local and international regulations [46],
which may have attenuated the initial excitement re-
garding learning analytics [23]. Drachsler and Greller
provided an eight-point checklist to follow to facilitate
a trusted implementation of Learning Analytics [23].
Reidenberg and Schaub proposed policy recommenda-
tions for built-in privacy and accountability in learn-
ing technologies [79]. Inspired by methodologies in user-
centered design, Ahn et al. engaged with K-12 educa-
tors to surface how privacy, transparency, and trust in-
terplay in specific settings and how educational tech-
nologies can address these dynamics [2]. Technical con-
tributions to achieve these goals, however, have been
scarce; we could identify very few research contributions
focusing on privacy-preserved learning analytics. Gur-
soy et al. provided a proof-of-concept implementation of
a privacy-preserving interface to access students’ data
records [39]. Bosch et al. proposed a method to auto-
matically redact students’ private information (such as
name, location, and contact number) from forum posts
so that the sanitized data might be released for research
purposes [10]. Recognizing the benefits of sharing stu-
dents’ data for research, Bautista and Inventado pro-
posed publishing synthetic data created by generative
adversarial networks (GANs) that were trained on real
data [9]. Guo et al. proposed to use federated machine
learning to build learning analytics using data from mul-
tiple educational institutes without actually sharing the
data [38].
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2.5 Censored representation learning and
Constrained optimization

Different from the above-mentioned works, we aim to
reduce privacy risks in learning analytics by censoring
feature representations and removing features that are
not essential for the target prediction task. We review
prior works related to the techniques—adversarial train-
ing and constrained optimization—we used to achieve
our goals.

Edwards and Storkey proposed an adversarial train-
ing scheme to transform intermediate feature represen-
tations in a way to remove associations between a (sen-
sitive) attribute and the target variable (i.e., outcome
variable of a model trained on the features) [24]. Later
works used this idea for data with various modalities,
including text [25], image [40], and sensor data [49].
Ganin and Lempitsky used adversarial training to re-
move information about the source from where data
was generated [33]; the goal was to create a domain-
invariant representation of the input features so that
the model generalizes over multiple distributions of in-
put data. The authors implemented the training scheme
as a standalone neural network layer, named "gradient
reversal layer" [33], which we use in our implementation
of adversarial training.

We combined a constrained optimization tech-
nique with adversarial training to binarize our model’s
parameters. Forcing parameters to take only binary
values (e.g., -1 or 1) was first proposed by Cour-
bariaux et al. [19]; they set parameter values deter-
ministically (e.g., using the sign function) or stochas-
tically (e.g., using a probability function of the actual
parameter value). This approach was later extended to
also binarize the output of activation functions [18].
These prior works binarized parameters and activations
to train models more efficiently [18, 19]. In contrast,
we binarize parameters for feature selection. Moreover,
unlike previous works, we used a penalty function to
binarize parameters instead of setting binary values de-
terministically or stochastically.

3 Methods
We apply our methods on a learning analytics dataset
containing students’ demographic information, interac-
tions with course materials, and course performance
(section 3.1). We show that gender lacks a causal ef-
fect on course performance (section 3.3) following a

matching-based causal inference procedure [85]. But
simply leaving out gender information does not protect
students’ privacy: we built machine learning models that
can infer students’ gender from their behavioral patterns
as logged by learning management systems (section 3.4).
To prevent gender inference, we employed an adversar-
ial training procedure that creates an intermediate rep-
resentation of behavioral data by censoring gender in-
formation (section 3.5). Finally, we propose a penalty
function and employ it in a constrained optimization
setting to identify an interpretable feature subset that
best balances privacy-utility trade-offs (section 3.6).

3.1 Dataset description

We used the Open University Learning Analytics
Dataset [59] (OULAD)—one of the most widely used
datasets in Educational Data Mining (EDM) and Learn-
ing Analytics (LA) research (see the paper by Wa-
heed et al. [91] for a list of earlier works based on
this dataset). OULAD was created by Open University,
the largest distance learning institution in the United
Kingdom, and contains information about 32,593 stu-
dents who participated in 22 courses in 2013 and 2014.
Courses typically lasted for approximately nine months,
and students were assessed through several assignments
and one final exam. OULAD contains students’ demo-
graphic data (e.g., gender, age group, and the high-
est level of education), background information (e.g.,
whether a student took a course previously), and inter-
actions with course materials through a virtual learning
environment (VLE). The interactions were recorded as
the number of clicks. Interactions were grouped in 20
categories, such as visiting course home- or sub-pages,
completing quizzes, and participating in forum discus-
sions. Students’ final performance was grouped into four
classes: distinction (3,024), pass (12,361), fail (7,052)
and withdrawn(10,156). For a complete description of
the dataset, please see the original publication [59].

3.2 Preprocessing and feature selection

Since some students participated in multiple courses (or
repeated the same course more than once), we kept their
interaction data for only one (randomly selected) course
and removed data for all other courses. That step re-
tained data from 28,785 students. Next, we removed
students for whom no interaction data was recorded.
Our final dataset contained interaction logs for 25,245
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students, with the following course performance distri-
bution: distinction (2,645), pass (10,883), fail (6,264)
and withdrawn (9,043). We extracted summary statis-
tics from this dataset to use as features to train mod-
els; the feature selection was done following prior works
(based on OULAD and other datasets) as described be-
low and summarized in Table 1.

Following Waheed et al. [91], we computed the total
number of interactions with each type of course mate-
rial. This step yielded 20 features, corresponding to the
20 types of interactions, that may collectively proxy for
students’ ‘engagement’ [36]. OULAD does not contain
information about (study) sessions, which was defined
by Tough [90] as “a period of time devoted to a cluster
or sequence of similar or related activities, which are not
interrupted much by other activities,” and was identi-
fied as an important predictor of learning outcomes [22].
We imitate this idea by treating all interactions with a
certain type of material that happened consecutively in
a single day as belonging to a single ‘session’, indicat-
ing focused period on a single task. Then, we compute
the total number of sessions for each type of material
throughout a semester, resulting in another 20 features.

Persistence, which captures the extent to which a
student continues an activity for a long period, is an-
other long-studied characteristic of students [66]. Stu-
dents’ persistence has been measured in different ways:
Whitehill et al. categorized students as persistent who
interacted with the course at least once a week [92],
while Crues et al. identified three levels of persistence
(low, medium, and high) based on the number of weeks
students worked in the course [20]. We took a more nu-
anced view of persistence by identifying patterns of un-
interrupted interactions with course material. We define
a ‘Block’ as the number of consecutive weeks a student
had at least one session with study material every week,
i.e., there was no ‘break’ in interactions. We counted the
number of such blocks of interactions, the maximum,
minimum, and average length (in weeks) of the blocks,
and the variance of the block lengths.

Features related to course material coverage, e.g.,
the number or percentage of quizzes attempted, were
found to be useful in predicting students’ perfor-
mance [12, 31, 61, 77]. Prior research also reported
that features related to exercises were more predictive
than other click-stream data [67]. Thus, for each type of
course material, we computed what percentage of items
in that category a student interacted with. For exam-
ple, the percentage of external materials reviewed and
the percentage of quizzes submitted. There were 20 such
features; collectively they indicate the coverage of course

material by a student. Combining all types of features,
there were 65 features in total.

3.3 Estimating the causal effect of gender
on course performance

Machine learning-based models that accompany EdTech
are usually evaluated in terms of their predictive accu-
racy. Individual feature’s predictive power is assessed by
its strength of association with the outcome(s) of inter-
est, regardless of its ability to change the outcome (i.e.,
causal effect). This approach is problematic when the
predictors include sensitive demographic information, as
this approach incentivizes collecting such sensitive data
without carefully considering their actual (i.e., causal)
influence on the outcome. In this section, we first esti-
mate how strongly gender associates with course perfor-
mance in the original sample of students. Then, using a
matching-based procedure, we identify pairs of students
with comparable characteristics. Finally, we investigate
whether the previously observed association indicates a
causal effect using the matched sample.

Estimating association between gender and per-
formance. We assessed the association between gen-
der and course performance by conducting Pearson’s
chi-squared test [93] that measures association between
two categorical variables. Both gender and course per-
formance were represented as binary variables (i.e., two
categories). In our sample, 13,374 (52.9%) and 11,871
students self-identified as males and females, respec-
tively, and 13,471 (53.4%) passed the course while
11,774 failed. We found significant association between
gender and course performance: χ2(1) = 79.85, p <

0.00001, indicating that gender might be a useful predic-
tor of course performance. Next, we investigate whether
this association was causal.

Estimating gender’s causal effect. Under the poten-
tial outcome framework of causal effects [81], gender’s
causal effect is the amount of change in the outcome
(i.e., course performance) that will be observed by in-
tervening on (i.e., changing) gender, holding everything
else (i.e., covariates) constant. In other words, if pairs of
students with different genders were ‘similar’ in terms of
covariates (in this case behavioral patterns and engage-
ment with course materials), but performed differently
in the course, then the difference in their performance
may be attributed to their gender. If there is no such
difference, then gender lacks any causal effect on the
course performance. Below, we describe the matching-
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Feature type Description Example Count

Engagement Features indicating the total number of interactions with a cer-
tain course material such as quizzes.

Total number of interactions while
submitting quizzes

20

Focus Features indicating the number of sessions a student spent on a
certain course material throughout the semester.

Number of sessions spent on the
course resource page

20

Persistence Number of ‘blocks’ (i.e., period of continued efforts); and the
minimum, maximum, average, and variance of the blocks’ length.

Visited the course homepage at least
once every week for 4 weeks (i.e.,
block length is 4 weeks)

5

Content coverage The percentage of course material in each of the 20 categories
were covered by a student.

Submitted 80% of the quizzes 20

Table 1. Feature types and their descriptions with examples.

based procedure we followed to find pairs of ‘similar’
students who differ in gender.

Matching. Balancing covariates by matching pairs of
‘similar’ data samples is one of the widely used methods
to make causal inferences from observational data [85].
Similarity between two data points can be estimated
using distance-based or propensity score-based metrics.
We measured similarity between pairs of students based
on their behavioral patterns (i.e., the features computed
from the interaction log). We employed Mahalanobis
distance [85] in the feature space as the similarity mea-
sure (where smaller distance means more similar). Ma-
halanobis distance-based matching attempts to approx-
imate fully blocked randomized experiments [44] and is
preferred to other approaches (such as propensity score-
based matching [56]); but this metric may suffer from
the ‘curse of dimensionality’ if too many covariates (i.e.,
features) are used [85]. Thus, we reduced the dimension-
ality of the feature set to 13 as detailed below.

Reducing feature dimension. Using principal com-
ponent analysis (PCA), we reduced the 65-dimensional
features to 10-dimensional features. While conducting
PCA, initially, we extracted 20 components, and then
plotted the amount of variance explained by each com-
ponent and the cumulative variance explained (i.e., scree
plot [30]). We applied the elbow method [30] on this
plot and retained 10 components. These 10 components
are the new features, which are linear combinations of
the original features and collectively explained 70% of
the total variance in the original data. In addition to
these 10-dimensional interaction features, three other
features related to students’ background and history
were included as covariates in the matching procedure:
the number of credits taken by a student, whether a
student repeated a course, and the highest level of ed-
ucation a student had prior to enrolling in an online
course.

Results of matching. After determining the 13 fea-
tures to use for matching, each student was paired to an-
other student (who differed in gender) based on the Ma-
halanobis distance between them in the 13-dimensional
feature space (i.e., nearest neighbor matching). We used
R package MatchIt [45] with repeated matching en-
abled (i.e., one control subject can be paired with multi-
ple treated subjects) to reduce the aggregated distance
between matched pairs. This procedure matched 5,027
male students to 11,871 female students. We assess the
quality of the matched sample in the following para-
graph.

Assessing the quality of the matched sample.
Matching procedures aim to find pairs with a similar
distribution of covariates, i.e., reduce the difference in
covariate distributions of the two groups being matched.
Thus, the quality of the matched samples can be as-
sessed by examining how similar the covariate distri-
butions of the two groups become after the matching.
Standardized mean differences (SMD) in the covariates
between two groups is a widely used metric for that pur-
pose [98]. Figure 1 shows the SMDs in the behavioral
patterns between male- and female-identifying students,
both before and after matching. For all covariates, the
standardized mean differences in features between the
matched samples are close to zero and much smaller
than the differences between the unmatched samples.
Thus, the matching procedure successfully identified
pairs of ‘similar’ students who differed only in gender.

Estimating the causal effect of gender. In the
matched sample, students who were paired differed only
in their gender. Thus, in this sample, any observed dif-
ferences in course performance across genders could be
attributed to gender (i.e., causal effect of gender). To in-
vestigate if the previously observed difference in course
performance across genders is present in this matched
sample, we again computed the association between
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Fig. 1. Standardized mean differences in covariates across genders
for the initial (unmatched) and matched samples. Note that, after
matching, the standardized differences became much smaller than
before and many of them came close to zero, indicating good
covariate balance in the matched groups.

those two variables. This time, we used McNemar’s test,
since the sample is now paired [7]; and found no sig-
nificant association between gender and course perfor-
mance (χ2(1) = 0.31, p > 0.05). This result suggests
that the previously observed association was not causal.

Conclusions. Based on the above findings, we hypoth-
esize that association without causation is more com-
mon in learning analytics than one might realize. This
is because causal inference methods such as matching,
which are usually employed to show the existence of
a causal effect (e.g., [41]), assume no unobserved con-
founders (i.e., the ignorability assumption [85]). This
assumption may not hold in practice, but the effects
may be accepted as causal if they are not very sensitive
to unseen confounders (e.g., demonstrated through sen-
sitivity analyses [80]). In our case, we demonstrated the
absence of any causal effects of gender under the ignora-
bility assumption. When this assumption does not hold
or the identified effect is weak, it may be too sensitive
to confounders, making association disguised as causa-
tion commonplace. Thus, we strongly argue against col-
lecting demographic data without specifying their pur-
poses (such as prediction) and verifying their (causal)
relevance to those purposes. Additionally, one reason to
build predictive models is to help students by interven-
tions [69]. But, there may be no meaningful way to inter-
vene on a variable that does not have a causal effect on
the outcome (i.e., varying the variable does not change
the outcome), further strengthening the case against de-
mographic data collection.

3.4 Inferring gender from behavioral
features

The previous section demonstrated a null causal effect
of gender on performance, which could be used to ar-
gue against collecting students’ demographic informa-
tion. However, such information might be encoded in
behavioral patterns and inferred from interaction data.
In this section, we demonstrate how machine learning
models can be used to infer students’ gender based on
how they interacted with course material. We demon-
strate gender inference using both simple logistic regres-
sion and neural network-based models.

First, we trained a simple logistic regression model
(using scikit-learn package [75]) with the 65 features
described above, following a 10-fold cross-validation ap-
proach with 80%-20% train-test splits. Across the folds,
the model had an average prediction accuracy of 73.3%
on the test sets.

Next, to investigate if more complex models can pre-
dict gender with a higher accuracy, we trained a neural
network with three hidden layers (with 30, 20, and 10
nodes, respectively). Hidden layer nodes had Rectified
Linear Units (ReLU [70]) as the activation function, and
the final layer had the sigmoid activation function. We
implemented the model using pytorch4 framework, all
(hyper-)parameters (e.g., parameter initialization strat-
egy) were kept in their default values. We used a 10-fold
cross-validation method with 80%-20% train-test splits.
The model was trained for 15 epochs using the same
65 features. Across the folds, the model had an aver-
age prediction accuracy of 76.2% on the test set, which
is comparable to the much simpler logistic regression
model.

Conclusions. The above results confirm that students’
behavioral data can be used to infer their gender with
high accuracy, even by using pretty simple machine
learning models. This could bear potentially serious con-
sequences for students’ privacy and safety. The next sec-
tion explores adversarial censoring as one way to prevent
gender inference.

3.5 Preventing gender inference

Ideally, we would like to train predictive models that
may benefit the students without risking their privacy.
One approach to achieve this goal is creating a new rep-

4 http://pytorch.org/
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resentation of the input features that contains informa-
tion about the target outcome but leaves out gender-
specific information. These transformed features can
then be used to train new models to predict the in-
tended outcome, but not to infer gender. We employ an
adversarial training procedure that censors gender in-
formation from the input features while preserving in-
formation about the outcome. A deep neural network
model is used in this step whose architecture is shown in
Fig. 2. In this network, the feature encoder (the orange
block in the diagram) transforms input features into an
intermediate representation. There are two hidden lay-
ers in the encoder module, consisting of 20 and 10 nodes,
respectively. There are two other modules, ‘performance
predictor’ and ‘gender predictor’; each of them consists
of a 10-node input layer and a single-node output layer.
As before, the output nodes had the Sigmoid function,
while nodes in all other layers had the ReLU [70] func-
tion as activation. The transformed features from the
feature encoder were simultaneously fed to the perfor-
mance predictor and gender predictor. During training,
the goal was to maximize the outcome (i.e., performance
in this case) prediction accuracy while minimizing gen-
der prediction accuracy by optimizing the following loss
function:

L = L1(X,Y, θI , θ1)− λL2(X,G, θI , θ2) (1)

where X represents the feature set, L1 and L2 are the
loss functions for performance prediction (Y ) and gen-
der prediction (G) from X, respectively, θI , θ1, and θ2
are the parameters in the intermediate layers and the
predictive branches, respectively, and λ is a hyperpa-
rameter. Consequently, we want to minimize L1 while
maximizing L2. To achieve these goals, we combined
stochastic gradient descent with reverse gradient up-
date [33] to train the model. Concretely, during back-
propagation, the parameters were updated along the di-
rection of gradient descent for performance prediction,
but gradient ascent for gender prediction. Thus, the
learned parameters in the feature encoder layer would
transform input features in a representation that can
be used to predict students’ performance but not their
gender. In our implementation of the reverse gradient
layer [33], we set λ to 0.3.

One limitation of censoring intermediate represen-
tation of raw features is that the transformed represen-
tation is difficult to interpreted. The representation is
usually high-dimensional, prohibiting their plotting to
gain insights. Additionally, if adversaries own auxiliary
data that follow the same distribution as the training

Fig. 2. Schematic diagram of the proposed model. Parameters
in the intermediate layers are updated along the gradient sent by
the ‘performance predictor,’ but along the opposite direction of
the gradient sent by the ‘gender predictor.’ Thus, gender informa-
tion is censored from the intermediate representation of the input
features.

dataset, in some cases, the transformed features can be
de-censored [84]. In the following section, we describe
our methodologies aimed to eliminate these two limita-
tions.

3.6 Identifying a private and interpretable
feature subset that preserves the
original feature set’s predictive power

The initial features were inspired by prior works and
based on their relevance to the target prediction task.
They are easier to interpret than the transformed (i.e.,
censored) features, but they also reveal gender. This sec-
tion describes our methods to identify a subset of the
initial features that can predict students’ performance
with high accuracy without revealing gender. Ideally,
we also want the features in the final subset to com-
bine in an interpretable manner when they are propa-
gated through the network. To achieve these goals, we
changed the network architecture and training method
as follows.

Identifying a smaller subset of features can be
achieved by forcing some of the input layer’s parame-
ters to be zero. We also want the remaining features to
combine among themselves in interpretable ways as they
propagate to the following layer. To this end, we only
allowed additive combinations of the features by forcing
their corresponding (non-zero) parameters to be one. In
summary, we want the input layer nodes to have binary
parameters (i.e., 0 and 1) and a linear activation func-
tion. This feature selection procedure was formulated as
a combinatorial optimization problem with additional
constraints: from the feature set (X), select a subset
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Fig. 3. Schematic diagram of the revised model. Parameters in
the feature selection (FS) layer are constrained to be binary (ei-
ther 0 or 1).

(X∗ ∈ X ) that optimizes equation 1 ( i.e., minimizes
performance prediction loss and maximizes gender pre-
diction loss), where X is the family of all subsets of X.
Thus, we arrive at the following constrained optimiza-
tion problem:

min
X∈X

min
θI ,θ1,θ2

L1(X,Y, θI , θ1)− λL2(X,G, θI , θ2) (2)

With this problem formulation, we want to simul-
taneously attain three goals: obtain a subset of features
that combine among themselves in an interpretable
manner, as well as maintain high accuracy for perfor-
mance prediction and prevent inferring gender using
the selected feature subset. Iterating over X to identify
the best feature subset is intractable. Thus, we aim for
an approximate solution by introducing a feature selec-
tion (FS) layer to the model described in subsection 3.5.
Fig.3 shows the modified architecture of the model in-
cluding the FS layer consisting of 10 nodes; each node’s
output is a linear combination of its input features and
parameters. FS’s parameters were constrained to be ei-
ther 0 or 1 (i.e., a binary constraint). Thus, this layer
acts as a feature selector since a zero-valued parameter
discards the associated feature. With this formulation,
equation 2 becomes

min
θI ,θ1,θ2,W

L1(WX,Y, θI , θ1)− λL2(WX,G, θI , θ2)

with the constraint wi,j ∈ {0, 1}
(3)

where W is the parameter matrix in the FS layer with
elements wi,j . The binary constraint was realized by reg-
ularizing FS layer’s parameters with a penalty function:∑
i,j |w

2
i,j − wi,j |. The terms under the summation fac-

torize as |(wi,j − 0)(wi,j − 1)|, and penalizes any value of
the parameters other than 0 and 1. Another nice prop-
erty of this function is that the derivatives around 0 and
1 are symmetric and thus do not introduce any bias.

Fig. 4. Plots of the penalty function for different weights (α).

Fig. 4 plots the penalty function with different weights
given to it; higher weights increase penalty for the same
amount of deviation of the parameters from 0 and 1.

Binarizing parameters serves the two purposes men-
tioned above. First, if a parameter becomes zero at
the end of the training, the associated feature gets dis-
carded, facilitating data minimization through feature
selection. Conversely, when a parameter takes the value
of one, the associated feature is taken as a whole. Since
a linear activation function is used in this (i.e. FS) layer,
each node’s output is just a sum of all the ‘survived’ in-
put features. This property of the model may enhance
it’s interpretability, e.g., by observing how features are
combined may hint towards collection of ‘interactions’
that jointly suggest some meaningful behavior.

To compensate for the FS layer’s constraint, later
layers’ parameters may take arbitrarily large absolute
values and render the model unstable. To prevent such
instability, all later layers were penalized with L2 reg-
ularization (with weight β = 0.1). Combining every-
thing, the final objective function becomes

L = α
∑
i,j

|w2
i,j − wi,j |

+ β(||θI ||22 + ||θ1||22 + ||θ2||22)
+ L1(WX,Y, θI , θ1)− λL2(WX,G, θI , θ2)

(4)

The hyperparameter α was initialized to 1 and increased
linearly with training iteration. Thus, as training pro-
cedure progresses, the misclassification cost decreases
while the penalty for non-binary parameters increases,
which forces the network to concentrate more on finding
binary parameter values during the later iterations.
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4 Results

4.1 Preventing gender prediction

As section 3.5 described, we trained a machine learn-
ing model following an adversarial censoring procedure
to convert input data to an intermediate representa-
tion, which can be used to predict students’ performance
with high accuracy but not to infer gender (i.e., informa-
tion about gender was censored). Table 2 presents this
model’s prediction accuracy for performance and gen-
der. The model predicted students’ performance with
89.1% average accuracy across 10-folds5, while predicted
gender with only 53.2% accuracy using the same fea-
tures. For comparison, we trained two baseline models
that predict students’ performance using the original
(i.e., uncensored) feature set: one simple logistic regres-
sion model and one two-layer (with 20 and 10 nodes,
respectively) neural network model. These two models
predicted course performance with 87.4% and 89.2% ac-
curacy, respectively. Thus, the adversarial training pro-
cedure yielded a gender-censored feature representation
that predicted performance with an accuracy compara-
ble to the original features.

The previous section presented high and low pre-
diction accuracy for performance and gender, respec-
tively, when they were predicted simultaneously using
the same model that censored gender information. The
obtained results match our expectations; however, they
could have resulted from the specific model architec-
ture, or the training procedure we adopted, or both. To
further validate our results and demonstrate the wider
applicability of the censoring mechanism, we decoupled
the censoring step from the inference step. That is, we
extracted the censored features from the model and
used them to train two separate models to independently
predict performance and gender, respectively. Since the
transformed features are only 10-dimensional, we used
a logistic regression model in both cases. The two mod-
els predicted performance and gender with 89.3% and
52.5% mean accuracy, respectively. These findings sug-
gest that the censored features may be used to train new
predictive models without risking students’ privacy.

5 we omitted standard deviation because of their small values
(< 0.5% in all cases)

4.2 Obtaining interpretable features

This section reports findings from the model described
in section 3.6: a neural network with a feature selection
layer and a custom penalty function. The model was
trained to identify a feature subset that can predict stu-
dents’ performance but lack gender information. Across
10 train-test splits, the model predicted students’ per-
formance and gender with average accuracy of 85.1%
and 52.9%, respectively.

Thus, the model achieved the first two goals: high
performance prediction accuracy and low gender predic-
tion accuracy. For our third goal, interpretability of the
selected features, we examine the selected features and
their combinations in the FS layer.

By examining FS layer’s parameters, we found that
seven out of the 10 nodes in that layer had all 0 values
(i.e., all input features were discarded). The remaining
three nodes also had 0 values for the parameters corre-
sponding to most of the input features. Following fea-
tures had associated parameters equal to 1 in those three
nodes:
Node 2: number of blocks, number of sessions visit-

ing course homepage, and percentage of submitted
quizzes.

Node 5: number of blocks, number of sessions visit-
ing course homepage, and percentage of submitted
quizzes.

Node 8: number of blocks, number of sessions visit-
ing course homepage, and percentage of submitted
quizzes, percentage of external websites visited, per-
centage of external quizzes submitted, and percent-
age of assignments submitted.

All nodes share the first three features, and only six
unique features ‘survived’ the feature selection process.
Recall that the parameters corresponding to these fea-
tures have values equal to 1, and these nodes had a
linear activation function. Consequently, in each of the
three nodes, the ‘survived’ features are simply summed
and then passed onto the next layer. Each input fea-
ture summarize a particular behavior of students. Thus,
their combinations, when they are only allowed to be
summed together, preserve their interpretive and infor-
mative nature. Educational experts may glean insights
from these combined features, e.g., how a collection of
behaviors impact certain outcomes.
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LR-baseline NN-baseline Joint prediction with censoring Predicting separately with censored features
Performance 87.4% 89.2% 89.1% 89.3%
Gender 73.3% 76.2% 53.2% 52.5%

Table 2. Average prediction accuracy of course performance and gender by different models (10-fold cross validation). The first two
columns provide results from the baseline models described in section 3.4. The third column presents prediction accuracy of perfor-
mance and gender when both were simultaneously predicted by a single model by censoring input features. The fourth column shows
performance and gender prediction accuracy from two different models trained independently using censored features extracted from
the previous model. In both cases, the gender the prediction accuracy drops to the chance level after censoring the feature representa-
tion.

4.3 Training new models with the
interpretable features

As before, to demonstrate our feature selection meth-
ods’ wider applicability, we decoupled feature selection
(with censoring) step and inference step. We trained
two separate models with the six features to predict
students’ performance and gender, respectively. As the
number of features is low, we again preferred simple
logistic regression models. We conducted 10-fold cross
validations with 80%-20% train-test splits in both cases.
We found a mean accuracy of 86.5% for performance
prediction, and a mean accuracy of 63.5% for gender
prediction. Thus, the selected six features can predict
performance with the same accuracy as using all 65 fea-
tures; but unlike the intermediate (censored) features,
these six feature can also be used to predict gender,
albeit with lower accuracy compared to using all 65 fea-
tures.

4.4 Training new models with one
‘combined’ feature

. The FS layer allowed features to only be summed to-
gether. We mimic the process by summing the six fea-
tures to create a ‘combined’ feature. Then, we again
trained two logistic regression models with this ‘com-
bined’ feature to predict performance and gender, re-
spectively. The first model predicted performance with
84.65% accuracy, while the second model predicted gen-
der with only 52.5% accuracy. Thus, the combination of
the six features creates a privacy-preserved version of
the original dataset; it predicts students’ performance
with an accuracy comparable to using all 65 features,
while keeping gender prediction accuracy at the chance
level.

Conclusions. Our findings show that the adversarial
training procedure successfully created a censored rep-
resentation of the input features. These transformed fea-

tures may be stored or shared and used to build new pre-
dictive models, without risking students’ privacy. Fur-
ther, our feature selection methodology enhances inter-
pretability by identifying a small subset of the features
and constraining them to combine linearly, while main-
taining high-performance prediction accuracy and pre-
venting gender inference. Again, the selected features or
their combination may be stored and shared for com-
mercial or research purposes without harming students’
privacy.

4.5 Robustness of our methods

Several sources of randomness (e.g., initializing model
parameters) exist in the process of training machine
learning models. The obtained solution may be unsta-
ble if it depends on the configuration in which it was
found. To investigate the stability of our constrained
optimization method to identify a small set of features
reliably (i.e., robust against randomness), we retrained
the model 100 times. We ensured a different random
initialization of the parameters in every trial and cre-
ated different train-test splits of the data. The test set
accuracy varied by at most 0.2%, and every time the
model identified the same six features. These findings
demonstrate that our methodology to obtain a private
and interpretive feature subset is stable against random
variability.

4.6 Generalizability of our methods

We assessed of our methods’ generalizability by apply-
ing them to two additional prediction tasks. At first, we
kept the target prediction task the same as before (i.e.,
predicting performance), but focused on a different sen-
sitive attribute: students’ age group. Then, we kept the
sensitive attribute the same as before (i.e., gender), but
focused on a different target prediction task, dropout
probability, which is another important task within the
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learning analytics community [65].

Inferring age group. OULAD has three age groups:
less than 35 years old (N=20145), 35–55 years old
(N=8462), and more than 55 years old (N=178). Since
the last group is too small, we merged it with the sec-
ond group, turning the age group inference into a bi-
nary classification problem. To balance the class distri-
butions, we randomly down sampled from the majority
(first) group. The resulting dataset contained records of
15,432 students equally divided into the two age groups.
We repeated the procedure described above to investi-
gate if age group can be predicted from the interaction
data, and adversarial training coupled with constrained
optimization can provide an interpretable subset of the
features that can predict students’ performance while
censoring age related information.

As before, we first trained a neural network model to
predict students’ age group; it achieved a mean accuracy
of 63.4% (26.8% increased accuracy than chance predic-
tion). Using adversarial censoring with constrained op-
timization achieved an accuracy of 85.5% for students’
performance, while reducing age group prediction to
56.1%. The final feature subset contains: i) number of
blocks, ii) number of sessions visiting course homepage,
iii) percentage of external quizzes submitted, iv) per-
centage of quizzes submitted, v) percentage of pages
visited related to site information, and vi) percentage
of external websites visited. Note that five of the six
features were also identified for gender prediction.

Predicting dropout probability. In the original
dataset, 5,995 students dropped out from the courses,
while 19,250 students completed the courses. As before,
we randomly down sampled the majority class, and the
resulting dataset contained 11,990 students, equally di-
vided into the two classes with 54.5% male identifying
students. We applied the same set of procedures as be-
fore with the following results.

Recall that, the baseline neural network to predict
gender achieved an average accuracy of 76.2%. Using ad-
versarial censoring with constrained optimization, our
method achieved an accuracy of 80.9% for dropout pre-
diction (60% improvement compared to chance predic-
tion), while reducing gender prediction to 54.7%. The
final set of features contains the following seven fea-
tures: i) number of blocks, ii) number of sessions visiting
course homepage, iii) percentage of external quizzes sub-
mitted, iv) percentage of quizzes submitted, v) percent-
age of pages visited related to site information, vi) per-
centage of external websites visited, and vii) percentage
of files (e.g., tutorials and lecture notes) visited. Again,

note the overlap with the features identified earlier.

Conclusions. In the above two subsections, we applied
our methodology to censor age information while pre-
dicting course performance, and to censor gender infor-
mation while predicting dropout probability. In both
cases, our approach successfully identified a private-
version of the original dataset consisting of a few (over-
lapping) features that contain sufficient information
about the outcome variable while almost no information
about the sensitive attribute. These results demonstrate
generalizability of our methods.

5 Discussions, limitations, and
future work

Gender does not causally affect course perfor-
mance. No difference in course performance across gen-
ders was observed for students who had a ‘similar’ ed-
ucational history and engagement with the course con-
tent. This result suggests that any observed differences
in course performance between male and female stu-
dents in the original sample may be due to a spurious
association between gender and performance. Our re-
sults hold for international students who participated
in 22 different courses offered under diverse university
programs. Thus, we anticipate similar results (i.e., the
null causal effect of gender, and perhaps of other demo-
graphic attributes) may hold for datasets collected at
other institutes, and recommend against sharing such
data (with EdTech companies or publicly) without first
assessing their effects on target outcomes.

Students’ gender can be inferred from behav-
ioral data. Our models predicted gender from activ-
ity logs with an accuracy high enough to raise privacy
concerns, even though we used basic model architec-
tures for simplicity’s shake. EdTech companies’ access
to much larger and diverse datasets and resources to
train more complex models only amplify our privacy
concerns. Thus, even if demographic information is not
collected directly, EdTech companies may be able to
profile students based on inferred demographic factors,
and target students, e.g., for advertisements or surveil-
lance, which severely undermines students’ privacy and
autonomy.

Privacy-preserved versions of a dataset can be
obtained using adversarial censoring combined
with a feature selection technique. Our novel ap-
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proach that combines adversarial censoring with feature
selection through a penalty function identified a small
subset of the original features that contain sufficient
information about the target outcome and almost no
information about the censored attribute. Educational
institutes may employ our approach to identify an inter-
pretable feature set required for their desired prediction
task(s), and only allow collecting those features by the
EdTechs they deploy. We also demonstrated that new
models trained on the selected feature set had high accu-
racy for target prediction and low accuracy for censored
attribute prediction. Thus, the privacy-preserved ver-
sion obtained through our proposed techniques may be
shared publicly to facilitate progress and reproducibility
in scientific research related to EDM and LA. Addition-
ally, our methods yielded small feature subsets; thus,
after model building, the features’ individual and collec-
tive (since they combine very intuitively) effects on the
outcome variable can be examined easily by educational
experts to understand their potential causal relevance,
which is one of the key goals of LA [68]. Identifying
a small feature subset also facilitates conducting con-
trolled experiments through EdTechs to identify causal
effects [68], since the number of variables to manipulate
becomes much smaller than the full feature set.

Limitations. Empirical evaluations of our technical
contributions are limited to one dataset. Unfortunately,
we did not find any other public dataset containing sim-
ilar features and demographic attributes of students.
Nonetheless, we demonstrated the generalizability of
our approach by applying it to predict a different target
variable (dropout probability), as well as to censor a dif-
ferent demographic attribute (age group). Our approach
is also robust against randomness, as evident from the
results from repeated trials with different initializations
of model parameters and train-test splits.

Future directions. An obvious extension of our work
is to apply the proposed methodologies to other datasets
(both proprietary and as new datasets become public)
to censor different sensitive attributes. In this paper,
we used causal inference mechanisms to demonstrate
that gender lack causal effect on course performance.
This same mechanism can be applied to identify fea-
tures that causally affect a target outcome, and build
predictive models only using those features. Research
in other domains demonstrated that causal models are
more transparent and generalizable, as well as less vul-
nerable to privacy attacks [32, 89, 96]. We hope that
our work will pave the way to causality-based model

building in the growing fields of EDM and LA to reduce
students’ privacy risks.

Another interesting future research direction could
be dealing with attributes that are privacy sensitive
and also causally affects the target outcome(s). Such
causally relevant sensitive attributes could be replaced
by other correlated, non-causal features; future research
could explore methods to find such features. Further-
more, future work could expand our work to jointly cen-
sor multiple sensitive attributes. Adversarial censoring-
based models, such as ours, do not provide guarantees,
as they rely on empirical validations. Conversely, differ-
ential privacy (DP) provides formal guarantees of pri-
vacy protection for a given privacy budget, but is only
applicable to prevent leaking of one’s membership to a
dataset. Obtaining strong guarantees for issues related
to attribute inference remains an open challenge and
interesting future research direction.

6 Conclusion
Educational institutes at all levels are deploying EdTech
at a rapid pace. In addition to delivering education, such
technologies are expanding their roles in other pedagog-
ical and learning practices, such as student assessment.
EdTech collects massive amounts of students’ behav-
ioral and demographic data, often justified by the need
to develop learning analytics to improve the educational
process itself. But these data, particularly demographic
attributes, pose serious privacy threats to the students,
as they can be profiled and, e.g., targeted for adver-
tisement or surveillance based on their demographic
characteristics. As EdTech providers aim for ‘friction-
less’ data access by their different services and third-
party service providers, inadequate policies and regula-
tions to oversee the storage and sharing of these data
have exacerbated the privacy concerns. In this paper,
we show that gender—which is often used as a pre-
dictor of students’ performance and risk of dropout—is
not causally relevant to those outcome variables. While
we oppose collecting demographic attributes by EdTech,
we also show that these attributes can be inferred from
students’ behavioral data with concerningly high accu-
racy. We propose a novel method to obtain a privacy-
preserving version of the original dataset by combining
a feature selection technique with adversarial censoring
techniques. The ‘private’ dataset contains fewer features
that are sufficient to build predictive models for tar-
get outcomes but do not reveal information about the
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sensitive attribute. We demonstrated the efficacy and
generalizability of our approach by applying it to cen-
sor gender and age information while allowing building
models to predict course performance and dropout like-
lihood. Our methodology can be adopted to restrict ed-
ucational technologies to collect only essential features
for a given task that do not reveal sensitive information
about students. Our approach may also facilitate scien-
tific progress and reproducibility by allowing the pub-
lication of a privacy-preserved version of institutional
datasets.
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