
Proceedings on Privacy Enhancing Technologies ; 2022 (2):407–425

Lukas Prediger*, Niki Loppi, Samuel Kaski, and Antti Honkela

d3p - A Python Package for
Differentially-Private Probabilistic
Programming
Abstract: We present d3p, a software package designed
to help fielding runtime efficient widely-applicable
Bayesian inference under differential privacy guarantees.
d3p achieves general applicability to a wide range of
probabilistic modelling problems by implementing the
differentially private variational inference algorithm, al-
lowing users to fit any parametric probabilistic model
with a differentiable density function. d3p adopts the
probabilistic programming paradigm as a powerful way
for the user to flexibly define such models. We demon-
strate the use of our software on a hierarchical logistic
regression example, showing the expressiveness of the
modelling approach as well as the ease of running the
parameter inference. We also perform an empirical eval-
uation of the runtime of the private inference on a com-
plex model and find a ∼10 fold speed-up compared to
an implementation using TensorFlow Privacy.

Keywords: differential privacy, JAX, NumPyro, proba-
bilistic programming, variational inference

DOI 10.2478/popets-2022-0052
Received 2021-08-31; revised 2021-12-15; accepted 2021-12-16.

1 Introduction
Probabilistic modelling presents a natural way to model
data by describing their (assumed) generative process.
The model is then fit to observations by probabilistic in-
ference algorithms. Probabilistic programming aims to
make the process easy by allowing the user to only spec-
ify the model while the system manages the inference
process. Probabilistic programming frameworks such as
Stan [6], Pyro [3] and PyMC3 [14] have become pop-

*Corresponding Author: Lukas Prediger: Aalto Univer-
sity, Finland. E-mail: lukas.m.prediger@aalto.fi
Niki Loppi: NVIDIA AI Technology Center, Finland
Samuel Kaski: Aalto University, Finland & University of
Manchester, UK
Antti Honkela: University of Helsinki, Finland

ular, but they currently offer no support for privacy-
preserving algorithms, which are needed for learning
from sensitive data.

Differential privacy (DP) [10] provides a rigorous
mathematical framework for addressing privacy con-
cerns and has become the de-facto standard notion
for privacy in machine learning. It essentially assures
that an algorithm’s outputs will not differ significantly
whether a specific individual’s data record is included in
the data set or not. Unfortunately, differentially-private
algorithms are usually more complex than their non-
private counterparts. Software support for easily per-
forming fast differentially-private inference is therefore
a crucial tool to achieve privacy-preserving probabilis-
tic programming. This will greatly simplify applications
such as differentially-private data anonymisation using
a generative probabilistic model to publish a privacy-
preserving synthetic twin of a sensitive data set [19].

Using existing probabilistic programming frame-
works with privacy-preserving inference is a highly non-
trivial task. Practitioners are forced to come up with
their own implementation, either from scratch or by
adapting existing privacy-enabling libraries, which can
be an onerous process and leads to many users hav-
ing to implement the same (or quite similar) wrapper
code. There is therefore a clear need for software solu-
tions that enable privacy-preserving probabilistic pro-
gramming in a convenient and runtime efficient way to
allow for fast prototyping and development involving
probabilistic programming under privacy constraints.

We address this gap and extend the tool set for
growing adoption of DP by introducing an open-source
Python software package called d3p.1 d3p focuses on
providing a reliable high-performance implementation
of differentially-private doubly stochastic variational in-
ference (DP-VI) [18] for tabular data, where each record
corresponds to a single individual. d3p extends the
NumPyro probabilistic programming framework [3, 32],
allowing modellers to express and fit a large class of
probabilistic models under strict privacy guarantees.
Alongside the fundamental DP-VI algorithm, d3p uses

1 Available at: https://github.com/DPBayes/d3p

https://github.com/DPBayes/d3p

d3p 408

a state-of-the-art privacy accounting technique [24] to
compute tight bounds on the privacy parameters, al-
lowing it to achieve higher levels of utility than with
other commonly employed accountants.

Behind the scenes, d3p relies on the JAX framework
[4] to perform computation on GPUs and implements a
GPU-optimised minibatch sampling algorithm to fur-
ther optimise performance. Using d3p we achieve a ∼10
fold speedup for fitting a variational auto-encoder model
[23] compared to a similar implementation using Ten-
sorFlow Privacy [33] on modern GPUs.

d3p addresses a research audience of probabilistic
modelling practitioners working with sensitive data. We
aim to provide a helpful tool for experimental modelling
under privacy constraints. Our main focus in its design
therefore is on usability and runtime performance to
enable fast modelling iterations. Due to this, d3p cur-
rently does not address technical issues arising from im-
plementing idealised differentially private algorithms on
machines with imperfect sources of randomness and fi-
nite precision, discussed further in Sec. 2.5; these could
theoretically be exploited by an adversary if deployed
in a production setting.

In summary, we contribute a versatile and per-
formant off-the-shelf implementation of a privacy-
preserving probabilistic programming framework as a
solid basis for further research. Additionally, we intro-
duce a highly performant subsampling approach based
on a slight modification of the CUDA-Shuffle [29], a
recently introduced GPU-optimised shuffling approach,
and provide a (probabilistic) runtime analysis for it as
a minor contribution in methods.

The remainder of the paper is organised as follows:
Section 2 reviews probabilistic programming and differ-
entially private variational inference. Based on that dis-
cussion we identify software requirements for our soft-
ware package to clearly outline our design considera-
tions in the same section. We then demonstrate use of
our software on a non-trivial hierarchical logistic regres-
sion example, illustrating the expressiveness of the prob-
abilistic programming approach and probabilistic mod-
elling (Section 3). Section 4 highlights some implemen-
tation details that are orthogonal to the private infer-
ence algorithm that forms the core of our framework but
that we consider interesting for the user. This includes
the discussion of and establishing of (probabilistic) run-
time bounds for a special case of the CUDA-Shuffle al-
gorithm which enables GPU-optimised minibatch sam-
pling in our software. Finally, Section 5 presents an
evaluation of the d3p framework, including a runtime
comparison to a TensorFlow-based implementation, a

demonstration of the model introduced in Section 3 and
a replication of an experiment for the DP-VI algorithm
in [18].

2 Differentially Private
Probabilistic Programming

In this section, we review the background and tech-
niques for differentially private probabilistic program-
ming that inform the implementation choices of our
framework. We start with a broad general introduction
of the probabilistic programming paradigm and varia-
tional inference (Sec. 2.1) and the definition of differ-
ential privacy as our main privacy formalism (Sec. 2.2).
Following that we give an outline of the powerful DP-VI
private inference algorithm (Sec. 2.3) and review privacy
accounting tools (Sec. 2.4). Finally we briefly point out
technical difficulties resulting from implementing ide-
alised differentially private algorithms on machines with
imperfect sources of randomness and finite precision
(Sec. 2.5). Each subsection provides an overview of the
topic and allows us to identify major requirements for a
software implementation, which are summarised in Ta-
ble 1. The requirements we identify correspond directly
to our overarching goals of providing software that is
convenient to use and highly performant. Accordingly,
we categorise requirements in Table 1 with the labels us-
ability or performance. We hope that explicitly stating
our design goals here will allow the reader to evaluate
whether our design goals are suitable for their use case
and make an informed decision on whether to use d3p.
We also do so to emphasise that the implementation of
a software package for general use must consider other
factors than a (prototypical) implementation of a newly
devised method for a research paper.

2.1 Probabilistic Programming

Probabilistic programming is a programming paradigm
in which a user programmatically defines a statistical
model of data which often depends on a set of parame-
ters θ. In mathematical terms, such a model determines
a probabilistic density function p(·|θ). A probabilistic
inference algorithm is then used to determine the pos-
terior distribution p(θ|X) of the parameter values given
a training data set X. The posterior is given by Bayes’
formula as p(θ|X) ∝ p(X|θ)p(θ), where, p(X|θ) is the
likelihood of the data under the probabilistic model with

d3p 409

No. Requirement Category Section

I Integrate with an existing popular probabilistic programming framework. usability 2.1
II Provide assistance for the user in finding adequate privacy bounds usability 2.2
III Perform efficient per-instance gradient computation and clipping. performance 2.3
IV Determine DP inference algorithm parameters (C and σ) automatically. usability 2.3
V Perform efficient independent minibatch sampling. performance 2.3
VI Provide state-of-the-art privacy accounting. usability 2.4

Table 1. Requirements for the differentially private probabilistic programming framework with their corresponding category and the
subsection they were discussed in (in order of appearance in the text).

given parameter values. p(θ) is a prior distribution en-
capsulating existing knowledge about plausible param-
eter values.

There exist a number of different probabilistic pro-
gramming languages that use different ways of speci-
fying the model. To enable easy user adoption, a soft-
ware package providing differential privacy for proba-
bilistic programming should not aim to re-define and
re-implement yet another solution but rather integrate
with existing solutions by extending them with support
for differentially private inference (Table 1, Require-
ment I).

Defining an Example Model
To illustrate the concept of probabilistic programming,
we present as an example the implementation of logistic
regression for binary classification in NumPyro.

The simple logistic regression model we consider
first is for a data set X of records xi ∈ RD with corre-
sponding labels yi ∈ {0, 1}. We assume that each such
record and label corresponds to a single individual.

Mathematically the logistic regression model is for-
mulated as

p(yi|xi,w) = Bernoulli (yi; θi) ,
θi = σ(wTxi),

p(w) = N (w;w0,S0),

where σ(x) = 1/(1+exp(−x)) denotes the sigmoid func-
tion and Bernoulli(·; θ) denotes the Bernoulli distribu-
tion with success probability θ. The model uses a weight
vector w ∈ RD to express the relationship between
the records and labels. Bayesian treatment allows us
to formulate a prior on w to express any prior knowl-
edge about plausible parameter values. Here we use a
weakly informative, zero-centered Gaussian prior with
w0 = 0 and S0 = 4I. The mathematical description of
the model equations translates naturally into Python
code for NumPyro model definition in Listing 1.

specifies the model p(ys, w | xs)
def model(xs, ys, N):
 # obtain data dimensions
 batch_size, d = xs.shape

 # the prior for w
 w = sample(’w’, Normal(0, 4),
 sample_shape=(d,))

 # distribution of label y for each record x
 with plate(’batch’, N, batch_size):
 theta = sigmoid(xs.dot(w))
 sample(’ys’, Bernoulli(theta), obs=ys)

Listing 1. Definition of a simple logistic regression model in
NumPyro for d3p.

Doubly Stochastic Variational Inference
At the heart of probabilistic programming lies the in-
ference algorithm that is used to determine the pos-
terior distribution of parameters p(θ|X). For complex
models computing this posterior exactly is typically in-
tractable. Variational inference [20, 40], a class of ap-
proximate inference algorithms, therefore approximates
it with a simpler, tractable distribution q(θ|ψ). The pa-
rameters ψ of q are found by solving the optimisation
problem minψD(q(θ|ψ)||p(θ|X)) where D(·||·) is a diver-
gence measure for probability distributions.

Doubly stochastic variational inference (DSVI) [38]
is a gradient ascent algorithm for non-conjugate models
with differentiable (joint) probability densities p(X, θ)
and a q(θ|ψ) from which values can be easily sampled
algorithmically. While these conditions limit applicabil-
ity somewhat, they still allow for a large class of mod-
els to be fitted. DSVI minimises the KL-divergence by
maximising the so-called evidence lower bound (ELBO),
defined as

L(ψ|X) = Eθ∼q(θ|ψ) [log p(X|θ) + log p(θ)− log q(θ|ψ)] .
(1)

d3p 410

The expectation is approximated stochastically by
sampling θ from q(θ|ψ) and using a minibatch of the
training data for each gradient step. For details we refer
to [38].

2.2 Differential Privacy

We rely on (approximate) differential privacy [9, 10] as
the primary privacy notion for a privacy-preserving vari-
ant of the DSVI algorithm. Following [8, Def. 2.4], it is
defined as:

Definition 1 (Approximate Differential Privacy). A
randomised algorithmM satisfies (ε, δ)-differential pri-
vacy with ε > 0 and 0 ≤ δ ≤ 1 if, for all neighbouring
data sets X ∼ X ′, and for all S ⊂ im(M), we have

Pr(M(X) ∈ S) ≤ eε Pr(M(X ′) ∈ S) + δ. (2)

The two data sets X and X ′ are considered to be neigh-
bours, denoted X ∼ X ′, when we can obtain one from
the other by adding (resp. removing) a single element.
ε and δ are privacy bounds (or privacy parameters) re-
stricting the effect that the presence of any particular
record in the input data set has on the output of the
algorithmM.

Smaller values for these privacy bounds correspond
to stricter privacy, however there is a trade-off between
privacy and utility of the algorithm’s outputs. Larger
values for privacy bounds typically result in higher
utility of the outputs, as they allow more information
to pass through the algorithm. Choosing the privacy
bounds therefore requires careful consideration of this
trade-off. This is difficult because for many users, espe-
cially those inexperienced with DP, it is not clear how
to interpret the privacy bounds in a concrete setting.
The software should therefore assist the user in choos-
ing appropriate privacy bounds which we reflect in Re-
quirement II.

2.3 Differentially Private Doubly
Stochastic Variational Inference

Jälkö et al. introduced a (ε, δ)-DP version of the doubly
stochastic variational inference algorithm in [18]. This
DP-VI algorithm is derived from the influential DP-
SGD [2, 34] and the relevant steps of a single iteration
(out of T many) can be summarised as

1. Sample a random minibatch of size B from the
training data set.

2. Sample a set of parameters θ from q(·|ψ).
3. For each instance in the minibatch:

1. Compute the gradient of the ELBO.
2. Clip the norm of the gradient to a bound C.

4. Aggregate per-instance gradients.
5. Perturb by adding zero-mean Gaussian noise with

variance C2σ2.
6. Update the model parameters ψ with the perturbed

gradient.

The main mechanism by which differential privacy
is achieved is the perturbation of the minibatch gradient
in step 5 via the Gaussian mechanism [8, Thm. 3.22].
The level of noise, characterised by its variance σ2, must
be carefully calibrated to provide the desired level of pri-
vacy. However, the gradient of any data instance could
in theory be arbitrarily large, rendering any fixed noise
level ineffective. To remedy this, the DP-VI algorithm
enforces an upper bound C on the gradient of each data
instance (in step 3.2). The important implication of this
is that an implementation of DP-VI needs an efficient
way of computing and manipulating the per-instance
(often also known as per-example) gradients in a mini-
batch instead of a single gradient over the entire mini-
batch (Requirement III).

Another important observation is that the DP-
VI algorithm has additional hyperparameters C and σ

which govern the privacy vs. accuracy trade-off. Espe-
cially σ depends non-trivially on the clipping bound C,
desired privacy bounds ε and δ, batch size B and the
number of iterations T . The next requirement for the
software package is therefore the ability to (automat-
ically) derive appropriate values for the DP-VI hyper-
parameters from these other hyperparameters (Require-
ment IV).

A final crucial point is that the algorithm is shown
to provide differential privacy only under the assump-
tion that minibatches are independently sampled from
the training set. As this needs to occur in every iter-
ation of the algorithm, this routine must be especially
fast to not slow down the inference as a whole, mak-
ing another performance requirement for our software
(Requirement V).

2.4 Privacy Accounting

As we have seen, the DP-VI algorithm consists of an it-
erative application of the (subsampled) Gaussian mech-

d3p 411

anism on gradients wrt. random minibatches of the
training data. The overall privacy bounds ε and δ of
the DP-VI algorithm then result from the DP compo-
sition. In order to achieve good utility it is crucial to
compute these overall privacy bounds to be as tight as
possible: Looser bounds mean that larger perturbations
are required for a desired level of privacy, reducing the
information extracted from the data and decreasing util-
ity of the inferred model (cf. [11]).

While loose bounds can be computed using general
DP composition theorems in a simple way (cf. [8]), ob-
taining tight bounds typically requires more complex
computation using methods called privacy accountants.
Abadi et al.’s Moments accountant [2] was the first of
these and significantly improved over traditional DP
composition theorems. The tightest privacy bounds are
currently achieved by the Fourier accountant [24].

Privacy accountants are typically of the form
fPA(C, σ,B, T, δ) = ε, i.e., they take in the algorithm’s
parameters as well as a target value for δ and compute
the corresponding upper bound for ε. They are therefore
the primary tool to translate between privacy bounds
and inference hyperparameters and instrumental for ad-
dressing Requirements II and IV.

With these considerations, providing an implemen-
tation of a state-of-the-art privacy accountant is an im-
portant aspect for a differentially private probabilistic
programming framework and becomes Requirement VI.

2.5 Remaining Technical Concerns for the
Practical Implementation

The definition of approximate differential privacy given
in Section 2.2 provides information-theoretic guaran-
tees: It is impossible for the output probabilities of an
algorithm to vary too much no matter what the input
is. These can typically not be achieved by a computer
system which does not have access to perfect sources
of randomness for sampling noise and relys on finite-
precision approximation of real numbers. Both of these
issues have the potential to completely void the privacy
guarantees of DP algorithms in practical implementa-
tions: Predictable randomness can allow an attacker to
remove the perturbations [16] and finite-precision float-
ing point numbers can leak information due to approx-
imation errors [28].

We recognise these issues as generally important
for production systems. However, as we have already
pointed out, we undergo no effort to address these for
the current version of d3p, which is primarily intended

as a research tool. We consider solving these issues for
the DP-VI algorithm as important future work.

2.6 Summary

We have seen in this section that there is a large num-
ber of desiderata for an implementation of a differ-
entially private probabilistic programming framework.
These are summarised in Table 1 and fall into different
categories that make some mostly technical consider-
ations for the implementation (e.g., Requirements III,
V), while others are important aspects in the design of
the user interface (e.g., Requirements II, IV).

In the following sections we first explore how our
software package addresses these requirements from a
user perspective by implementing an example model.
However, some of the technical requirements are not
experienced by the user in the programming interface
directly and cannot be demonstrated in the example:
Whether the implementation is performant (Require-
ments III, V) has almost no effect on the interface seen
by the user but is nevertheless a crucial part of their ex-
perience. We therefore briefly discuss some implemen-
tation details following the examples to illustrate how
the identified requirements were addressed and, follow-
ing that, provide an empirical evaluation of the runtime
performance.

3 d3p Usage Example
We will now demonstrate our d3p software package on
a practical example to show how the previously identi-
fied requirements are addressed from a user’s perspec-
tive. d3p admits non-conjugate models with differen-
tiable probability densities and is designed to provide
differential privacy guarantees for tabular data, where
each individual contributed a single sensitive record
and records are assumed conditionally independent. d3p
uses NumPyro [3, 32] as a modelling language and
JAX [4, 15] as the underlying computation framework,
which offers an API similar to NumPy [17]. We start by
fully implementing the simple logistic regression model
shown in Section 2.1 to demonstrate the basics of prob-
abilistic programming and show how d3p’s DP-VI algo-
rithm is invoked to infer the model’s parameters. We
then highlight the expressiveness of the probabilistic
programming approach by adapting the code to a more
complex model that achieves a better fit to the data.

d3p 412

3.1 Defining a Model

We recall the simple logistic regression model intro-
duced in Sec. 2.1. The model is for a data set X

of records xi ∈ RD with corresponding binary labels
yi ∈ {0, 1}. We assume that each such record and label
corresponds to a single individual.

As before, the model can be formulated mathemat-
ically as

p(yi|xi,w) = Bernoulli (yi; θi) , (3)
θi = σ(wTxi),

p(w) = N (w;w0,S0),

where σ(x) = 1/(1 + exp(−x)) denotes the sigmoid
function and Bernoulli(·; θ) denotes the Bernoulli dis-
tribution with success probability θ. The weight vector
w ∈ RD links the records and labels. For a Bayesian
treatment we place a prior on w to encode existing
knowledge. In this first example we assume that we do
not have strong prior knowledge but want to enforce
some regularisation, and therefore use a weakly infor-
mative, zero-centered Gaussian prior with w0 = 0 and
S0 = 4I. The model is visualised using plate diagram
notation in Figure 1.

Implementation of the Model
The implementation of this model using the NumPyro
probabilistic programming framework is reproduced in
the model function in the top part of Listing 2. The
model is defined as a function taking (a minibatch of)
the data as an input and specifies a sampling process in
an imperative programming style: Values for w are sam-
pled from the specified Gaussian prior with zero mean
and a standard deviation of 4. The values for labels
are sampled from the Bernoulli distribution (cf. Eq. 3).
However, the sample call for y is conditioned to return

yi

xi

N

ww0

S0

Fig. 1. Plate diagram of the simple logistic regression model
p(y,w|x).

import jax.numpy as jnp
specifies the model p(ys, w | xs)
def model(xs, ys, N):
 # obtain data dimensions
 batch_size, d = xs.shape

 # the prior for w
 w = sample(’w’, Normal(0, 4),
 sample_shape=(d,))

 # distribution of label y for each record x
 with plate(’batch’, N, batch_size):
 theta = sigmoid(xs.dot(w))
 sample(’ys’, Bernoulli(theta), obs=ys)

specifies the variational posterior q(w)
def guide(xs, ys, N):
 d = jnp.shape(xs)[1]

 # variational parameters
 w_loc = param(’w_loc’, jnp.zeros((d,)))
 w_scale = jnp.exp(param(’w_scale_log’,
 jnp.zeros((d,))))

 # variational distribution for w
 sample(’w’, Normal(w_loc, w_scale))

Listing 2. Implementation of a simple logistic regression model in
NumPyro for d3p.

the values ys passed into the model function using the
obs keyword. This is the mechanism by which the la-
bels are passed into the inference algorithm despite the
model being specified from a generative perspective.

NumPyro’s plate context manager is used to ex-
press the independence assumption for the individual
data records. Note that this is an important assump-
tion in the d3p package and must be reflected in the
model in this way.2 This requires the additional argu-
ment N to the model, which specifies the total amount
of data records in the training data.

Implementation of the Variational Posterior
For inference of the model’s parameters in our exam-
ple, we use independent Gaussian distributions for every
data dimension j with parameters µw,j and σw,j as the

2 Apart from clearly stating the assumptions made for the data,
this ensures that using minibatches instead of the whole data
set does not affect the amount by which an individual sample
contributes to the ELBO.

d3p 413

variational approximation to the posterior distribution,
i.e.,

q(wj |µw,j , σw,j) = N (µw,j , σ
2
w,j). (4)

The variational parameters µw and σw will be opti-
mised according to the discussion in Section 2.1. The
corresponding NumPyro implementation is shown in
the guide function, following naming conventions of
NumPyro, in the lower portion of Listing 1. We register
µw and σw as parameters w_loc and w_scale for the
inference algorithm and sample w according to Equa-
tion 4 in a vectorised fashion. Note that each σw,j , the
standard deviation of the variational Gaussian, must be
a positive number, so we actually register a parameter
site named w_scale_log that we pass through the ex-
ponential function to obtain w_scale. This allows us to
perform the optimisation in an unconstrained space but
enforces the positivity constraint for w_scale.

3.2 Running the Inference

In the previous section we programmatically specified
the simple logistic regression model using NumPyro.
We now turn to the actual private inference of parame-
ter values using d3p. d3p provides an implementation of
the DP-VI algorithm via the DPSVI class, which offers
the same interface as NumPyro’s implementation of the
DSVI algorithm in the SVI class.3 As discussed in Sec-
tion 2.3, the DP-VI algorithm must be configured for the
desired privacy bounds given the batch size and number
of training iterations for the inference (Req. IV) and use
independent random minibatches (Req. V). The entire
code for running the inference is shown in Listing 3.

We first use d3p’s subsample_batchify_data on the
data set which returns a function that efficiently sam-
ples and returns independent random minibatches. This
function is assigned to get_batch in our example code.
The additional call to batchify_init initialises the in-
ternal state of the minibatch sampler.

To instantiate a DPSVI object, the main driver of the
inference, we need to supply a value for the privacy noise
scale σ. We can obtain a σ appropriate for our desired
privacy bounds and training hyperparameters using the
approximate_sigma function. This function returns an
approximate value for σ that is guaranteed to achieve
the privacy bounds as measured by the Fourier accoun-
tant [24], a state-of-the-art privacy accountant method.

3 We chose DPSVI as the name for implementation of the DP-VI
algorithm in d3p to stay close to NumPyro’s naming convention.

def infer(data, labels, batch_size, num_iter,
epsilon, delta, rng_key):

 # set up minibatch sampling
 batchifier_init, get_batch = \
 subsample_batchify_data((data, labels),
 batch_size)
 _, batchifier_state = \
 batchifier_init(rng_key)

 # set up DP-VI algorithm
 q = batch_size / len(data)
 dp_scale, _, _ = approximate_sigma(
 epsilon, delta, q, num_iter)
 loss = Trace_ELBO()
 optimiser = Adam(1e-3)
 clipping_threshold = 1.
 dpsvi = DPSVI(model, guide, optimiser,
 loss, clipping_threshold,
 dp_scale, N=len(data))
 svi_state = dpsvi.init(
 rng_key,
 *get_batch(0, batchifier_state))

 # run inference
 for i in range(num_iter):
 data_batch, label_batch = \
 get_batch(i, batchifier_state)
 svi_state, loss = dpsvi.update(
 svi_state, data_batch, label_batch)
 return dpsvi.get_params(svi_state)

Listing 3. Running the inference for a NumPyro model using
d3p’s DPSVI class.

We store the result in dp_scale. Note that the separate
computation of σ is a deliberate choice in d3p. While
it would be possible to let the instantiation code of the
DPSVI class handle this internally, the current approach
allows the user easily provide values for σ different from
the ones computed by the approximate_sigma function,
e.g., for research purposes.

After also instantiating implementations of the
ELBO (loss) and an optimiser of our choice
(optimiser) using classes provided by NumPyro, we are
ready to create the DPSVI object (dpsvi). Similar to the
minibatch sampler, the DP-VI algorithm provides an
initialisation function that is called to produce a state
object (svi_state). The state object contains random-
ness state as well as the current values of the parame-
ters and the state of the optimiser. We can now finally
run the inference by repeatedly sampling a batch using

d3p 414

the get_batch function we obtained before and then
calling dpsvi.update. The update method completely
encapsulates a single iteration of the DP-VI algorithm,
including the performant per-instance gradient compu-
tation (Req. III), clipping, perturbation and the update
of current parameter estimates by the optimiser.

Obtaining parameter estimates from the inference
algorithm (and therefore the approximate posterior dis-
tribution q(w) in our example model) completes our ex-
ample at this point. The user can now use standard
NumPyro code to interact with the model and the in-
ferred parameters without additional privacy leakage
due to DP’s invariance to post-processing.

3.3 Switching to a More Complex Model

One of the main benefits of the probabilistic program-
ming approach is the ability to easily tailor the model
complexity to the information needs and the available
prior knowledge and clearly specifying how the respec-
tive components of the model relate to each other. So
far we have looked at a very simple example where our
model makes the implicit assumption that the data are
homogeneous and a single parameter vector w describes
their relation to the labels equally well for all records. In
reality, however, we often face tasks where data comes
from different sources that have different local distribu-
tions for records. For example, data records containing
information about wealth and income of individual per-
sons from different countries are likely to be heavily in-
fluenced by the average level of wealth in the respective
country. To address this case, we can use a hierarchical
logistic regression model like the one considered in [42].

Extending the Model Specification
We now extend the previous model notation by vectors
gl ∈ RK of group characteristics for L groups and, for
each record xi, an indicator li assigning it to one of the
groups. We assume that the records xi and labels yi
are sensitive but the group vectors gl are not. Following
[42] we use a separate weight vector wl to model the
relationship between data record xi and label yi within
each group in the same way we did in the simple logis-
tic regression model. However, we now use a hierarchical
Gaussian prior centered at Mgl for each weight vector
wl. The matrix M ∈ RD×K is a new parameter cap-
turing the relation between group characteristics and
their corresponding weight vector wl. The full model is
visualised in Figure 2 and defined by

p(y(l)
i |x

(l)
i ,wl) = Bernoulli(y(l)

i ; θ(l)
i), (5)

θ
(l)
i = σ(wTl x

(l)
i),

p(wl|gl,M ,Σl) = N (wl;ηl,Σl),
ηl = Mgl,

p(Mk,d) = N (Mk,d;µ0, σ
2
0).

For simplicity, we consider the covariance matrix Σl

for the distribution of the wl a fixed model parameter
of value Σl = I. We assume an independent weakly
informative Gaussian prior for each element of matrix
M with µ0 = 0 and σ0 = 4 as before.

y
(l)
i

x
(l)
i

Nl

wl

gl

Σl

L

Mµ0

σ0

Fig. 2. Plate diagram of the hierarchical logistic regression model
p(y,M |x, gl).

Model Implementation
The required changes to adapt our existing model im-
plementation in function guide are straightforward and
essentially follow one to one from the textual description
above, as shown in Listing 4. First we sample a value for
M according to our prior (M), compute the values for
ηl (etas) and sample the group-specific weight vectors
wl (ws) in a vectorised manner. The remaining code im-
plementing the logistic regression for individual records
is almost identical to the implementation of the simple
model, except that we use the group indicators li pro-
vided in ls to select the entry in ws that corresponds to
the wli of the group each record belongs to.

d3p 415

def model(xs, ys, ls, gs, N):
 batch_size, D = xs.shape
 L, K = gs.shape

 M = sample(’M’, Normal(0, 4),
 sample_shape=(D, K))

 with plate(’group’, L, L):
 etas = gs @ M.T
 ws = sample(
 ’ws’, Normal(etas, 1).to_event(1))

 with plate(’batch’, N, batch_size):
 thetas = sigmoid(jnp.einsum(
 "nd,nd->n", xs, ws[ls]))
 sample(’ys’, Bernoulli(thetas), obs=ys)

def guide(xs, ys, ls, gs, N):
 _, D = xs.shape
 _, K = gs.shape

 M_loc = param(’M_loc’, jnp.zeros((D, K)))
 M_scale = jnp.exp(param(’M_scale_log’,
 jnp.zeros((D, K))))
 sample(’M’, Normal(M_loc, M_scale))

Listing 4. Implementation of a hierarchical logistic regression
model in NumPyro for d3p.

Variational Posterior
For the hierarchical logistic regression model, we are in-
terested in a variational approximation to the posterior
of the matrix M . Again we can use independent Gaus-
sian distributions for each dimension of M :

q(Mk,d|µkd, σkd) = N (Mk,d;µkd, σ2
kd), (6)

where µkd and σkd for all 1 ≤ k ≤ K and 1 ≤ d ≤ D are
the variational parameters.

The implementation of this is shown in the guide
function in Listing 4 and is almost identical to the one
for the simple model. Invocation of the inference algo-
rithm for the new model also does not change compared
to the simple logistic regression model we have looked
at before, except for passing the additional data to the
model and guide functions, making it especially easy
and fast to refine and tweak models.

Note that we do not specify posterior parameters
for the group weight vectors wl. This is because in our
model these are determined by M , the group charac-
teristics gl and the known covariance matrix Σl. If we
are interested in obtaining values for the wl, we can use

NumPyro routines to sample them from the posterior
predictive distribution

q(wl|gl) =
∫
p(wl|Mgl,Σl)q(M |µ,σ)dM (7)

after inference of the variational parameters for M .
In the above we slightly abuse notation to denote by
q(M |µ,σ) =

∏K
k=1

∏D
d=1 q(Mk,d|µkd, σkd) the varia-

tional posterior of the full matrix M for all variational
parameters.

Discussion
As we have seen we were able to expand our model to the
additional structure within our data with a few simple
changes in the implementation. The changes correspond
directly to the textual description of the new hierarchi-
cal model, making it easy for the user to translate theory
into implementation. While the initial simple logistic re-
gression model is quite a common choice and specialised
implementations for this exist in many software pack-
ages, extending the model in a similar fashion to what
we did in this section is often more complicated, if at
all possible, in those.

Note that we still have made a couple of simpli-
fying assumptions here, one of which is the assump-
tion that the covariance Σl of the distribution of group
weight vectors is a known constant. This was merely
for convenience and not because of restrictions of model
expressiveness. We can easily formulate a prior and a
variational posterior for Σl to learn it from the data,
if this assumption does not hold. Another simplifying
modelling assumption is the choice of the prior for M ,
however, we consider selecting more informative pri-
ors outside the scope of this example. NumPyro of-
fers a wide range of distributions from which the user
can choose adequate priors according to their modelling
needs. These two brief notes serve to show that the prob-
abilistic programming paradigm allows the user to make
fine-grained decisions on the model expressiveness they
need by flexibly either excluding details they are not in-
terested in or incorporating detailed prior knowledge in
the model.

4 d3p Implementation Outline
We now discuss some technical details of our d3p pack-
age and how it meets the requirements identified in Sec-
tion 2. In line with our discussion of these requirements,
we hope that this helps the reader decide whether

d3p 416

the choices made in implementing d3p make it suit-
able for their use. We also focus on the GPU-optimised
minibatch sampling algorithm in particular, which we
base on a recent GPU-optimised shuffling method but
slightly modify to better fit our use.

We organise this section by first briefly motivating
the use of NumPyro as the basis for d3p (Section 4.1).
We then turn to the implementation of the DP-VI algo-
rithm for NumPyro (Section 4.2) with a focus on how
it realises its high performance for per-instance gradi-
ent computation (Req. III). As the second major imple-
mentation detail we then discuss our GPU-optimised
i.i.d. minibatch sampling routine (Req. V) which has a
major impact on the overall performance of the infer-
ence and for which we also contribute a runtime analysis
(Section 4.3). Finally we finish the discussion on imple-
mentation by a brief overview of the remaining usability
goals in the implementation (Section 4.4).

4.1 Underlying Framework

To meet Requirement I (Integrate with an existing pop-
ular probabilistic programming framework), we chose
NumPyro as the underlying probabilistic programming
framework for d3p. It is a spin-off of the popular Pyro
[3] framework, providing a very similar API, but relies
on Google’s JAX [4, 15] for the underlying computa-
tional optimisation functionality. The JAX framework
uses tracing mechanisms to compile pure (side-effect
free) functions directly from Python code to efficient
XLA kernels that can be run on either CPU or GPU. Im-
plementations of the DP-SGD algorithm in JAX where
found to be consistently faster than competing imple-
mentations [36], making it a promising backend for for
d3p.

The choice of NumPyro as basis for d3p is therefore
a compromise between fulfilling Requirement I and be-
ing able to provide a high-performance implementation
(Req. III, V). While targeting Pyro instead of NumPyro
would arguably have enabled access to a larger estab-
lished user base, implementing per-instance gradients
in the underlying PyTorch would have decreased per-
formance of d3p.

4.2 Implementation of DP-VI

As we have seen in the examples, d3p centers around the
DPSVI class implementing the DP-VI algorithm. DPSVI
offers the same interface as NumPyro’s non-private im-

plementation in the SVI class and therefore works as
a drop-in replacement for it. This allows for especially
easy adoption of privacy-preserving methods with min-
imal required changes to the code base.

We have identified in Section 2.3 that the DP-VI al-
gorithm requires computation of per-instance gradients.
Unfortunately, these are typically not readily available
in established machine learning frameworks. A naive but
inefficient solution is to set the batch size B to one,
which gives per-instance gradients at the cost of losing
the performance gains resulting from parallel computa-
tion on minibatches that are crucial for efficient machine
learning applications.

As the JAX framework is based on the manipu-
lation of side-effect free functions, it also provides a
range of composable higher order transformations for
these. Crucially, the computation of gradients as well
as vectorising a function for parallel execution are ex-
amples of these higher order transformations. This en-
ables d3p’s implementation in the DPSVI’s class to ef-
ficiently parallelise computation of gradients and the
subsequent clipping over a minibatch using vectorisa-
tion, i.e., single-instruction-multiple-data (SIMD) style
computing. Leveraging the massively parallel process-
ing capabilities of modern GPUs in this way allows us
to negate most of the additional overhead introduced by
the per-instance gradient computation.

This vectorisation approach effectively turns com-
putation on a batch of size B into B parallel computa-
tions on batches of size 1. In order to prevent this from
affecting the relative contributions of prior and varia-
tional posterior of global parameters, models must use
NumPyro’s plate environment to scale likelihood con-
tributions from the batch appropriately to the perceived
batch size. This typically means that each data record’s
contribution to the loss is scaled up. The DPSVI class
therefore performs some crucial bookkeeping to ensure
that the privacy perturbation in each iteration is also
scaled appropriately.

As a convenience feature, the DPSVI class offers
methods to obtain tight privacy bounds for its current
hyperparameter values which are computed using the
Fourier accountant [24].4

4 We rely on the fourier-accountant package, available
at https://pypi.org/project/fourier-accountant/, for the imple-
mentation.

https://pypi.org/project/fourier-accountant/

d3p 417

4.3 Performant GPU Batch Subsampling

We have seen in Section 2.3 that the DP-VI algorithm’s
privacy guarantees rely crucially on minibatches sam-
pled from the data set in a truly i.i.d. fashion (Require-
ment V). This is an important difference to non-private
algorithms that can usually get away with a permute-
and-iterate approach to sample minibatches: Often, the
data set is permuted once in its entirety and minibatches
are then consumed by iterating over the permuted set.
Due to being invoked comparatively rarely, the perfor-
mance of the permutation algorithm does not make a
noticeable difference on the overall runtime. For the
same reason, it can also run on a different device than
the learning algorithm as slow bus transfers are infre-
quent.

The i.i.d. requirement for DP-VI demands that the
minibatch sampling routine is invoked once for each it-
eration, making the cost of a slow sampling routine pro-
hibitive (or at least, much more noticeable). d3p there-
fore ships with a parallel and GPU-optimised minibatch
sampling routine based on a novel shuffling methodol-
ogy (CUDA-Shuffle) proposed in [29, 35].

Conventional shuffling algorithms, such as the
Fisher-Yates shuffle, are ill-suited for GPU-acceleration
as they are sequential. In contrast, the main idea in
the parallel shuffle algorithm is to use a bijective func-
tion fk that for a given key k defines a unique pseudo-
random mapping on sets of indices IB → IX . Assuming
IB = {0, . . . B − 1} to describe indices in a minibatch
and IX = {0, . . . , n − 1} indices in the data set, fk al-
lows sampling a minibatch of elements from the input
set in parallel without collisions. Previously, it has been
proven that a Feistel network [13] with more than two
rounds is a pseudo-random bijective function, provided
that it uses a round function that is pseudo-random and
the set size is a power of two, i.e., n = 2b [27].

In [29] this is generalised for arbitrary n by taking
the smallest bit-length b such that 2b > n, applying the
bijection on the index set of length 2b and then removing
all values larger than n by an efficient GPU compaction
algorithm. The overall runtime of this is in Θ(n).

However, for our application of sampling a mini-
batch, shuffling the entire index set is inefficient. In-
stead, we apply the Feistel network repeatedly on values
from IB until all outputs are a value in IX . Our gen-
eralised Feistel permutation generator can be given as

x
(l)
i =

i , if l = 0
fk(x(l−1)

i) , if x(l−1)
i ≥ n and l > 0

x
(l−1)
i , otherwise,

(8)

where l is the iteration count and i ∈ IB . Sampling
a minibatch then requires lB evaluations of the Feistel
network for some factor l. These evaluations consist only
of independent, parallel bitwise operations, making this
approach very well-suited for GPU acceleration.

The factor l is the number of iterations that are
required to converge Equation 8, for which we will now
establish a probabilistic upper bound. The probability
with which the Feistel network fk returns an output
fk(x) < n, given a bit-length b such that 2b−1 < n < 2b

is
p = Pr[fk(x) < n] = 2b−1 + r

2b
, (9)

where we let r = n − 2b−1, i.e., the non-power-of-two
residue of n.

Now, let Li be the random variable of the iteration
count required to converge xi < n,∀i ∈ IB and Fi = Li−
1 be the penultimate iteration count where some xi ≥
n. Fi follows a negative binomial distribution, Pr[Fi =
f] = (1− p)fp. Its expected value is

E [Fi] = 1− p
p

= 2b−1 − r
2b−1 + r

, (10)

and the cumulative distribution is

Pr[Fi ≤ f] = 1−(1−p)f+1 = 1−
(

2b−1 − r
2b

)f+1

. (11)

In the worst case with r = 1, resulting in the largest gap
to the next power of two, the expected values are

E[Fi] = 2b−1 − 1
2b−1 + 1

, E[Li] = 2b

2b−1 + 1
. (12)

Hence with non-trivial data set sizes with b � 1, the
expected number of iterations required to converge the
permutation is E[Li] ≈ 2, in the worst case. To estimate
the maximum number of iterations for a given percent-
age θ of cases, we can calculate

Pr[Fi ≤ fθ] ≤ θ ⇔ fθ ≤
log(1− θ)

log(2b−1 − r)− log(2b)
− 1.

(13)
Setting θ = 0.99, b � 1 and the worst case r = 1, we
obtain

fθ ≥
log(1− θ)
log(1/2)) − 1 ≈ 5.65 (14)

Therefore, in 99% of cases we will see no more than six
failures, i.e., seven total iterations (and no more than
six in 95% of cases). In practice, as long as the batch
size is sufficiently small, precisely q = B/n < 1/7, our
approach will require less evaluations of the bijection
than the one of [29].

d3p 418

4.4 Privacy Bound and Hyperparameter
Selection

d3p offers an API to compute the perturbation hy-
perparameter σ for the DP-VI algorithm via the
approximate_sigma function to satisfy Requirement IV
(Determine DP inference algorithm parameters auto-
matically.) This is realised by employing standard black-
box optimisation techniques to find a suitable input such
that the Fourier accountant arrives at the desired value
for ε, given all other hyperparameters.

Finally, Requirement II (Provide assistance for the
user in finding adequate privacy bounds) is an impor-
tant piece of guidance for users inexperienced with dif-
ferential privacy. Optimal choice of ε and δ depends on
a delicate balance between the desired utility and the
level of risk of privacy violation that is considered ade-
quate by the user — a choice, therefore, that can only
be made by the user but requires knowledge of how ε, δ

relate to concrete privacy risks. Unfortunately, this rela-
tionship is still an open research question, which makes
it difficult to give detailed guidance to the user. Com-
mon practice is to require that δ < 1

N , where N is the
number of individual records in the data, and ε ≤ 1,
however d3p does not enforce this currently to allow for
free experimentation.

5 Evaluation
To demonstrate the performance and flexibility of our
framework, we explore a few examples in this section.
We first compare d3p’s runtime performance to Ten-
sorFlow on the implementation of a variational auto-
encoder (Sec. 5.1). Afterwards, we show some results
for the hierarchical logistic regression model discussed
in detail in Sec. 3.3 and use that opportunity to high-
light some privacy trade-offs in the regime of small data
sets (Sec. 5.3). Finally, we briefly compare results of d3p
to the original implementation of the DP-VI algorithm
in [18] (Sec. 5.4) on a Gaussian mixture model.5

5.1 Comparison with TensorFlow Privacy

We first compare the performance of our d3p package
to an implementation of an identical model using the
TensorFlow Probability framework [7] with a manual
implementation of the variational inference algorithm

5 All our experiments used the d3p revision of commit f57e6935.

and privacy enabled by the TensorFlow Privacy package
[33]. In our comparison we focus on TensorFlow Privacy
only, but refer the reader to [36] for a more extensive
performance comparison of a JAX-based optimised im-
plementation of the closely related DP-SGD algorithm
with a range of current DP-enabling packages for pop-
ular machine learning frameworks.

We choose a variational auto-encoder (VAE) model
[23] for this purpose. VAEs are generative models that
consist of an encoder function, mapping data to parame-
ters of a distribution on latent representations, and a de-
coder function, converting samples from the latent space
to data samples. Generating data consists of drawing a
sample from the distribution in the latent space and
passing it through the decoder function. These map-
ping functions are represented by neural networks and
therefore typically have a large number of parameters.

VAEs therefore provide an excellent test case for
performance and have been previously used for the
same purpose [3]. We use slight variations of the same
model on different image classification data sets, namely
MNIST [26], Fashion-MNIST [43] and CIFAR-10 [25].
For MNIST and Fashion-MNIST datasets, we use feed-
forward networks with a single hidden layer encoder and
decoder, consisting of 688 884 trainable parameters in
total. For CIFAR-10 dataset, we employ networks of
3 convolutional layers followed by a single dense layer,
consisting of 640 423 parameters in total.

Of particular interest are the respective runtime of
the inference as well as a comparison of the inferred
model to verify that d3p is fast and accurate. Table 2
shows the runtime per epoch as well as the loss on the
held-out test set after 20 epochs, i.e., passes over the
training data set of 60 000 images (50 000 for CIFAR-
10). We use a minibatch size of 128. The reported num-
bers are averages over 20 training processes that were
run using a single NVIDIA Tesla V100 32G GPU. All
runs used the Adam optimiser [22] for parameter up-
dates after computing gradients. For the DP variants
we used σ = 1.5, resulting in ε ≈ 0.5 for δ = 1/60000
(δ = 1/50000 for CIFAR).

From the comparison, we can see that the end losses
with MNIST and Fashion-MNIST data sets are compa-
rable across frameworks, and all cases were observed to
converge well. However, we found the CIFAR-10 data set
to be more challenging to train due to large variation
in samples, relatively modest number of samples per
class and three colour channels. Neither framework was
able to learn good representations of CIFAR-10 with DP
for our choice of hyperparameters. The aforementioned
challenges may also explain the higher discrepancy be-

d3p 419

DP-VI Non-private VI
Data Set Framework Wall Time [s] Final Loss Wall Time [s] Final Loss

MNIST d3p 0.56± 0.00 174.06± 0.59 0.34± 0.00 99.63± 0.30
TF 6.43± 0.17 171.26± 3.67 1.58± 0.05 105.50± 1.84

Fashion d3p 0.55± 0.01 304.74± 0.68 0.33± 0.00 243.99± 0.29
TF 7.19± 0.14 303.14± 8.79 1.70± 0.06 244.40± 7.56

CIFAR d3p 4.22± 0.01 2123.05± 0.25 1.64± 0.01 1903.29± 2.14
TF 49.34± 0.07 2129.20± 0.26 2.23± 0.05 2038.92± 11.06

Table 2. Performance comparison of d3p against TensorFlow probability with TensorFlow Privacy. d3p achieves significant speed-
up over TensorFlow Privacy with similar loss. Values shown in the left half of the table are runtime per epoch as well as the final
loss (negative ELBO, lower is better) value on test set after 20 epochs for the differentially-private VI in both frameworks, using the
Adam optimiser for parameter updates in all cases. The right part of the table shows the same results for non-private inference, where
NumPyro takes the place of d3p.

Data Set Sampler Wall Time [s] Final Loss

MNIST Feistel 0.56± 0.00 174.06± 0.59
Built-in 0.66± 0.01 174.04± 0.61

Fashion Feistel 0.55± 0.01 304.74± 0.68
Built-in 0.65± 0.01 304.75± 0.61

CIFAR Feistel 4.22± 0.01 2123.05± 0.25
Built-in 4.31± 0.01 2123.05± 0.018

Table 3. Performance comparison of the d3p Feistel-based mini-
batch sampler compared to sampling based on JAX default rou-
tines.

tween the non-DP losses. In terms of performance, d3p
consistently outperforms the TensorFlow (TF) imple-
mentation by a factor of ∼10 for all data sets. Addition-
ally, the relative performance loss of DP-VI compared
to non-private inference in the same framework is lower
in d3p (up to ∼ 2.5-fold for CIFAR-10) compared to the
TF implementation (up to ∼ 22-fold).

For d3p, we also compare using the Feistel-based
GPU-optimised minibatch sampler against using JAX’s
built-in jax.random.choice method and summarise the
results in Table 3. We observe that our optimised sam-
pler consistently yields a ∼ 100 ms speed-up (15% on
MNIST) per epoch on all data sets. This similarity is
due to the similar sizes of the data sets resulting in sim-
ilar amounts of total iterations and thus invocations of
the subsampling.

5.2 Effect of Batch Size

While the vectorised implementation of the per-instance
gradient computation and manipulation eliminates
much of the time overhead required in the DP-VI algo-
rithm, it does not remove it completely. This is due to

the additional steps in DP-VI, such as gradient clipping,
summing and perturbing, but may also be an effect of a
larger memory footprint due to holding gradient values
for each data instance intermittently. This necessitates
a larger amount of memory accesses, which can slow
down computation. We therefore investigate the effect
of minibatch size on the runtime of the DP-VI imple-
mentation in d3p for MNIST. In Figure 3 we plot the
average runtime per iteration (over 100 iterations) over
the size of minibatches for DP-VI in d3p and non-private
inference in NumPyro. We see that, as expected, run-
time per iteration increases more steeply for DP-VI than
the non-private case. However, we also observe that DP-
VI runtime increases only linearly with minibatch size,
which is in line with our expectations.

0 200 400 600 800 1000
Minibatch Size

1

2

3

4

R
u

nt
im

e
/

It
er

at
io

n
[m

s]

Runtime per Iteration Over Minibatch Size

DP-VI

Non-private

Fig. 3. Influence of minibatch size on runtime performance with
and without differential privacy. Results are averages over 100
iterations. Error bars and shaded area indicate standard error.

d3p 420

5.3 Hierarchical Logistic Regression and
Small Data

We next evaluate the implementation of the hierarchi-
cal logistic regression model presented in Section 3.3
with small data sets. These are generally problematic in
privacy-preserving inference because every single data
point has a comparatively larger effect on the outcome.
Achieving good model performance therefore requires
looser privacy bounds than in the case with larger data
sets. d3p makes it easy for the user explore the trade-off
between privacy and utility via its fast inference and the
ease of adjusting the algorithm by simply specifying the
privacy parameters from which the perturbation noise
is automatically derived.

In the following experiments we use synthetic train-
ing data sets of varying size N that follow the hierarchi-
cal structure described in Section 3.3. Each data point is
five-dimensional and points are split into L = 3 groups
that are in turn described by K = 3 variables each.
To evaluate the goodness-of-fit of the trained model we
evaluate the area under the ROC curve (AUC) on a
held-out test set of the same size N as the training set.
The ROC curve plots the true positive rate over the false
positive rate and the AUC is thus a summary measure
of the inherent trade-off between those, independent of
the choice of the decision boundary. An AUC of 1 cor-
responds to a perfect classifier and an AUC of 0.5 to
random guessing. A higher AUC therefore indicates a
more robust and powerful classifier, which makes it a
suitable metric for our experiments.

Figure 4 shows the AUC after training on a data
set with N = 500 data points for 100 000 iterations. Re-
sults are shown for different levels of privacy as well as
non-private variational inference for ten runs with differ-
ent random seeds. Privacy bound δ was kept fixed to 1

N .
Each run took less than 15 seconds on a commodity lap-
top without GPU acceleration. The red line is the AUC
for non-privately fitting a simple (non-hierarchical) lo-
gistic regression model using scikit-learn [31]. The trade-
off between privacy and utility is clearly visible: Smaller
values of ε corresponding to stricter privacy constraints
lead to lower AUC on average and a larger spread of
results over different runs. Runs for ε = 4 or larger are
close to the AUC of the non-private model on average
but exhibit larger spread. Runs for ε = 2 fall short of this
but still outperform the simpler baseline. This highlights
a strength of the probabilistic modelling approach par-
ticularly relevant for privacy-preserving machine learn-
ing: By encoding prior knowledge of the generative pro-
cess underlying the data in a principled way, privacy

2.0 4.0 8.0 No DP

ε

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

A
U

C

AUC after training per privacy level

Fig. 4. AUC of the hierarchical logistic regression model after
training on 500 data points. Ten runs of 100 000 iterations each
were performed for each level of privacy and a non-private run,
the resulting distribution of AUC values are shown as box plots.
The red line indicates the AUC of a non-private non-hierarchical
logistic regression model as a simple baseline.

budget does not need to be spent to learn this a-priori
known structure, allowing more capacity to learn the
remaining parameters of the model. Curiously, for ε = 8
we observe on average a higher AUC than for the non-
private model. This appears to not be a random artifact
of the limited number of repetitions in our experiment
as the results are similar for an increased number of 200
repetitions (not shown). We are uncertain why this is
the case, but suspect it could be a regularising effect of
clipping and the small random perturbations of the gra-
dients. Note however that this is just an average result
and any individual run with ε = 8 can still turn out to
be worse than any non-private run, as indicated by the
spread of the corresponding boxplots, which is in line
with expectations.

Figure 5 shows the effect of data set size for the
same privacy levels after training for 100 000 iterations.
The graphs show the spread of one standard deviation
above and below the mean over ten runs for each data
set size and privacy level. Smaller data sets result in
lower average AUC and larger spread. For data sets of
less than 500 records utility deteriorates rapidly.

We finally explore the effects of the number of train-
ing iterations. Since the amount of noise added to per-
turb gradients in the DP-VI algorithm increases with
the number of iterations, one could expect that choos-
ing too large a number of iterations will negatively effect
the learning. Figure 6 shows the evolution of AUC for
N = 500 for different numbers of total training itera-
tions. Note that these are results of separate runs each

d3p 421

200 400 600 800 1000

N

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
U

C
AUC after training per data set size

ε = 2.0

ε = 4.0

ε = 8.0

No DP

Fig. 5. AUC of the hierarchical logistic regression model after
training on data sets of different sizes (100, 200, 500, 1000) for
different privacy levels and non-privately. The model was trained
10 times for 100 000 iterations for each data set size and privacy
bound. The graphs show the area within one standard deviation
above and below the mean of the resulting distribution of AUC
values.

with a different number of iterations and thus different
amounts of perturbation per iteration, not the evolution
of results over a single long training run.

We observe clearly that due to the privacy perturba-
tions of gradients during training, the DP-VI algorithm
takes longer to converge than non-private variational
inference. Stricter privacy bounds move convergence to
higher iteration counts. Contrary to expectation, de-
spite the larger perturbations required for larger iter-
ation counts, we see a general trend in improved utility
for longer training (for N = 100, this trend continues up
to 500 000 iterations). In our experiments we observe no
negative impact of increasing the iteration count on the
final AUC even if the training converges earlier, indi-
cating that the DP-VI algorithm is very robust to the
privacy perturbations.

5.4 Gaussian Mixture Model

We further demonstrate the ease of specifying expres-
sive models in d3p by replicating an experiment on a
Gaussian mixture model from the original DP-VI paper
[18]. They used two-dimensional data generated from 5
clusters of spherical Gaussians and trained the model for
1 000 iterations for different levels of privacy. The eval-
uation is in terms of log-likelihood of a held-out test set
on the learned predictive model.

0 20000 40000 60000 80000 100000

Total training iterations

0.4

0.5

0.6

0.7

0.8

A
U

C

AUC after training over total iteration count

Baseline

ε = 2.0

ε = 4.0

ε = 8.0

No DP

Fig. 6. AUC of the hierarchical logistic regression model after
training on N = 500 data points for different amounts of training
iterations. Plotted as in Figure 5. The additional horizontal line
shows the AUC of the simple non-private non-hierarchical logistic
regression baseline.

The original code6 required model specific imple-
mentation of the DP-VI algorithm due to the absence
of a generic framework for privacy-preserving proba-
bilistic modelling. Using d3p it suffices to simply write
out the model and an implementation of log-probability
calculations and sampling routines for a Gaussian mix-
ture distribution as an implementation of NumPyro’s
Distribution class. These are shown in Appendix A.

Figure 7 shows the resulting log-likelihood (higher
is better) of the test data after training the model using
the d3p implementation and the original code of [18].
Shown are the average with standard error over five
runs in both cases. To keep results comparable we use
the levels of privacy perturbation (parameter σ) from
the original code for d3p. The results from d3p are very
consistent with to slightly better than those from the
original implementation but exhibit much less variabil-
ity due to randomness in the inference algorithm, which
is particularly pronounced for ε = 0.1 in the original
paper code.

6 Related Work
Major popular probabilistic programming frameworks
for the Python programming language are Edward2 [39],
TensorFlow Probability [7], (Num)Pyro [3, 32] , PyMC

6 Available at https://github.com/DPBayes/DPVI-code/

https://github.com/DPBayes/DPVI-code/

d3p 422

10−1 100 101

ε

−7.5

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

L
og

-l
ik

el
ih

oo
d

GMM log-likelihood over ε

d3p

Jälkö et al.

Fig. 7. Log-likelihood for test data of the Gaussian mixture model
implemented with d3p and the DP-VI implementation of Jälkö
et al.[18]. Graphs show average over five runs with error bars and
shaded area indicating standard error (negligible for d3p).

[14], and Stan [6]. Edward2, TensorFlow Probability,
Pyro and PyMC allow the user to declare models and
run the inference from the Python programming lan-
guage and differ mainly in the computation framework
they rely on to run the inference (Edward2 and Tensor-
Flow Probability use TensorFlow [1], Pyro uses PyTorch
[30] and PyMC uses Theano [37]; NumPyro is a direct
port of Pyro to JAX). The Stan framework follows a
different approach and requires models to be specified
in a dedicated domain-specific language, which is then
evaluated using the Stan runtime, which can be invoked
from Python or other major programming languages.
None of these frameworks currently offers support for
privacy-preserving inference.

A number of general implementations for differ-
entially private machine learning exist for the popu-
lar frameworks. Notable are TensorFlow Privacy [33]
for TensorFlow, Opacus [12] and PyVacy [41] for Py-
Torch. These generally provide implementations of the
DP-SGD algorithm as alternative optimisers for the
computational framework. In principle they could be
combined with the dominant probabilistic programming
framework for the respective backend, however this in-
tegration is usually not as seamless as one would de-
sire. These implementations of DP also often suffer from
poor performance in the implementation that can usu-
ally be traced back to inefficient computation of per-
instance gradients [36]. With d3p we aim to provide bet-
ter integration with high performance by directly tar-
geting the NumPyro probabilistic programming frame-
work. We are not aware of any general library of DP-
SGD for the JAX framework that could be used with

NumPyro to achieve the same goal. As far as we are
aware, none of these libraries takes active measures to
address the previously discussed technical issues of im-
plementing differential privacy.

7 Conclusion
We have presented our d3p package which extends the
NumPyro probabilistic programming framework with
runtime efficient differentially private inference. We
demonstrated the use of our framework and the expres-
siveness of the probabilistic programming approach on
an extensive example and highlighted the requirements
and corresponding implementation choices for our soft-
ware. Our goal is to provide a helpful tool that en-
courages use of probabilistic programming as a viable
approach to modelling data for privacy practitioners,
as well as lowers the threshold for adoption of privacy-
preserving methods for probabilistic modelling experts.

For future work our main focus is addressing the re-
maining technical implementation issues of differential
privacy in real computer systems, namely predictable
random number generation and finite-precision number
representation (cf. Sec. 2.5), as the main obstacle for
deployment in production settings. Promising solutions
for this are (1) use of a cryptographically secure ran-
dom number generator (CSPRNG) for DP perturbation
and minibatch sampling and (2) adoption of the discrete
Gaussian mechanism [5, 21].

Acknowledgements
This work was supported by the Academy of Finland
(Flagship programme: Finnish Center for Artificial In-
telligence FCAI, and grants 292334, 319264, 325572 and
325573) and by the Strategic Research Council at the
Academy of Finland (grant 336032). We also acknowl-
edge the computational resources provided by the Aalto
Science-IT Project.

References
[1] Martín Abadi et al. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. URL https:
//www.tensorflow.org/. Software available from tensor-
flow.org.

https://www.tensorflow.org/
https://www.tensorflow.org/

d3p 423

[2] Martin Abadi et al. Deep learning with differential privacy.
In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318,
2016.

[3] Eli Bingham et al. Pyro: Deep Universal Probabilistic Pro-
gramming. arXiv preprint arXiv:1810.09538, 2018.

[4] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. JAX: composable
transformations of Python+NumPy programs. https:
//github.com/google/jax, 2018.

[5] Clément L Canonne, Gautam Kamath, and Thomas
Steinke. The discrete gaussian for differential privacy. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 15676–15688. Curran Associates,
Inc., 2020.

[6] Bob Carpenter et al. Stan: a probabilistic programming
language. Journal of Statistical Software, 76(1), 2017.

[7] Joshua V. Dillon et al. Tensorflow distributions. arXiv
preprint arXiv:1711.10604, 2017.

[8] Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

[9] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry,
Ilya Mironov, and Moni Naor. Our data, ourselves: Privacy
via distributed noise generation. In Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, pages 486–503. Springer, 2006.

[10] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data anal-
ysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

[11] Úlfar Erlingsson, Ilya Mironov, Ananth Raghunathan, and
Shuang Song. That which we call private. arXiv preprint
arXiv:1908.03566, 2019.

[12] Facebook. Opacus. https://opacus.ai/, 2020.
[13] Horst Feistel. Cryptography and computer privacy. Scientific

american, 228(5):15–23, 1973.
[14] Chris Fonnesbeck, Anand Patil, David Huard, and John

Salvatier. PyMC: Bayesian stochastic modelling in python.
Astrophysics Source Code Library, 2015.

[15] Roy Frostig, Matthew James Johnson, and Chris Leary.
Compiling machine learning programs via high-level trac-
ing. Systems for Machine Learning, 2018.

[16] Simson L. Garfinkel and Philip Leclerc. Randomness con-
cerns when deploying differential privacy. In Proceedings
of the 19th Workshop on Privacy in the Electronic Society,
WPES’20, page 73–86, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery. ISBN 9781450380867.
10.1145/3411497.3420211.

[17] Charles R. Harris et al. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020.
10.1038/s41586-020-2649-2.

[18] Joonas Jälkö, Onur Dikmen, and Antti Honkela. Differen-
tially private variational inference for non-conjugate models.
In Uncertainty in Artificial Intelligence 2017 Proceedings of
the 33rd Conference, UAI 2017. The Association for Uncer-
tainty in Artificial Intelligence, 2017.

[19] Joonas Jälkö, Eemil Lagerspetz, Jari Haukka, Sasu
Tarkoma, Antti Honkela, and Samuel Kaski. Privacy-
preserving data sharing via probabilistic modeling.
Patterns, 2(7):100271, 2021. ISSN 2666-3899.
10.1016/j.patter.2021.100271.

[20] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola,
and Lawrence K. Saul. An introduction to variational meth-
ods for graphical models. Machine learning, 37(2):183–233,
1999.

[21] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The dis-
tributed discrete gaussian mechanism for federated learning
with secure aggregation. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 5201–5212. PMLR, 18–24
Jul 2021.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR 2015), 2015.

[23] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational Bayes. In 2nd International Conference on Learning
Representations (ICLR 2014), 2014.

[24] Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing
tight differential privacy guarantees using FFT. In Inter-
national Conference on Artificial Intelligence and Statistics,
pages 2560–2569. PMLR, 2020.

[25] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[27] Michael Luby and Charles Rackoff. How to construct pseu-
dorandom permutations from pseudorandom functions.
SIAM Journal on Computing, 17(2):373–386, 1988.

[28] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil
Vadhan. Computational differential privacy. In Annual In-
ternational Cryptology Conference, pages 126–142. Springer,
2009.

[29] Rory Mitchell, Daniel Stokes, Eibe Frank, and Geoffrey
Holmes. Bandwidth-optimal random shuffling for GPUs.
arXiv preprint arXiv:2106.06161, abs/2106.06161, 2021.

[30] Adam Paszke et al. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Cur-
ran Associates, Inc., 2019.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[32] Du Phan, Neeraj Pradhan, and Martin Jankowiak. Com-
posable effects for flexible and accelerated probabilistic pro-
gramming in NumPyro. arXiv preprint arXiv:1912.11554,
2019.

[33] Carey Radebaugh and Ulfar Erlingsson. Introducing Tensor-
Flow privacy: Learning with differential privacy for training
data. TensorFlow Blog, https://blog.tensorflow.org/2019/
03/introducing-tensorflow-privacy-learning.html, 2019.

https://github.com/google/jax
https://github.com/google/jax
https://opacus.ai/
https://doi.org/10.1145/3411497.3420211
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.patter.2021.100271
https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.html
https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.html

d3p 424

[34] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate.
Stochastic gradient descent with differentially private up-
dates. In 2013 IEEE Global Conference on Signal and Infor-
mation Processing, pages 245–248. IEEE, 2013.

[35] Daniel Stokes and Rory Mitchell. CUDA-Shuffle: GPU shuf-
fle using bijective functions. https://github.com/djns99/
CUDA-Shuffle, 2021.

[36] Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath.
Enabling fast differentially private SGD via just-in-time com-
pilation and vectorization. arXiv preprint arXiv:2010.09063,
2020.

[37] Theano Development Team. Theano: A python framework
for fast computation of mathematical expressions. arXiv
preprint arXiv:1605.02688, 2016.

[38] Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochas-
tic variational Bayes for non-conjugate inference. In Inter-
national conference on machine learning, pages 1971–1979,
2014.

[39] Dustin Tran et al. Simple, distributed, and accelerated
probabilistic programming. In Neural Information Processing
Systems, 2018.

[40] Martin J. Wainwright and Michael Irwin Jordan. Graphical
models, exponential families, and variational inference. Now
Publishers Inc, 2008.

[41] Chris Waites. PyVacy. https://github.com/ChrisWaites/
pyvacy, 2019.

[42] George Y. Wong and William M. Mason. The hierarchical
logistic regression model for multilevel analysis. Journal
of the American Statistical Association, 80(391):513–524,
1985. ISSN 01621459.

[43] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

A Code for the Gaussian Mixture
Model

We present the implement for the Gaussian mixture
model (GMM) used in the experiment in Section 5.4
in Listings 5 and 6.

Mathematically a GMM can be specified as

p(xi|zi) = N (xi;µzi ,Σzi) ,
p(zi) = Categorical (π1, . . . , πK)

where zi ∈ {1, . . . ,K} is a latent variable that indicates
the mixture component that sample xi. Conditioned on
zi, xi follows a regular Normal distribution. The cate-
gorical probabilities πj and the parameters µj , Σj of the
mixture components are the parameters of the GMM.

Sampling from the GMM can therefore be imple-
mented by first sampling zi from the Categorical distri-
bution, then sampling xi from the Normal distribution

indicated by zi. This is presented in the sample function
of the GaussianMixtureModel class in Listing 5.

Subclassing Distribution enables us to provide a
method for computing the log-probability of the Gaus-
sian mixture where we marginalise out the latent vari-
ables to avoid these issues following [18]:

log p(xi) = log
K∑
j=1

(πjN (xi;µj ,Σj)) .

This is implemented for batched data by the
log_prob method in Listing 5 using JAX’s highly per-
formant vectorised mapping capabilities.

Having encapsulated the sampling and log-
probability of the Gaussian mixture model in a
NumPyro Distribution, we can easily make use of
it in our model shown in Listing 6 and only need to
specify the prior distributions for the parameters of the
model. Following [18], we use a Dirichlet distribution for
π1, . . . , πK and zero-centered Normal priors for µj . We
assume that each component is spherical, i.e., Σj = σ2

j I

and use the Inverse Gamma distribution as prior for σj .
The code in Listing 6 reflects this using the same imper-
ative sampling instructions demonstrated in the earlier
examples.

We note that, in principle, it would also have been
possible to implement the sampling steps of the GMM
steps directly in the model function without the need
of subclassing NumPyro’s Distribution class. How-
ever, this would require learning the values of the la-
tent variables zi for each data record during inference,
which presents a problem for private inference [18].
The resulting need for a specific implementation of the
marginalised log-probability is what makes the GMM an
interesting example for the flexibility and expressiveness
of NumPyro-based models for privacy-preserving prob-
abilistic programming in d3p. Note that, compared to
the implementation of the experiment in [18], we did
not have to concern our implementation with effects of
reparametrisation on gradients and other details of DP-
VI but focus on providing a straightforward implemen-
tation of the model.

https://github.com/djns99/CUDA-Shuffle
https://github.com/djns99/CUDA-Shuffle
https://github.com/ChrisWaites/pyvacy
https://github.com/ChrisWaites/pyvacy

d3p 425

class GaussianMixtureModel(Distribution):

 def __init__(self, mixture_probabilities,
mixture_locs, mixture_scales):

 self._pis = mixture_probabilities
 self._locs = mixture_locs
 self._scales = mixture_scales

 batch_shape = ()
 event_shape = self._locs.shape[1:]
 super().__init__(
 batch_shape, event_shape)

 def sample(self, rng_key, sample_shape=()):
 zs_rng, xs_rng = \
 jax.random.split(rng_key)
 zs = CategoricalProbs(self._pis)\
 .sample(zs_rng, sample_shape)
 xs = Normal(
 self._locs[zs], self._scales[zs]
).sample(xs_rng)
 return xs

 def log_prob(self, value):
 per_component_log_prob = jax.vmap(
 lambda loc, scale: Normal(
 loc, scale
).log_prob(value),
 out_axes=-1
)(self._locs, self._scales)

 log_pis = jnp.log(self._pis)

 # sum log-likelihood contributions
 # from event dimensions
 per_component_log_prob =\
 per_component_log_prob.sum(axis=-2)

 # aggregate over components
 loglik = logsumexp(
 per_component_log_prob + log_pis,
 axis=-1
)
 return loglik
}

Listing 5. Implementation of a Gaussian mixture model
distribution in NumPyro with log-likelihood marginalised over
the latent component assignments.

def model(xs, N, k=5, d=2):
 pis = sample(’pis’, Dirichlet(jnp.ones(k)))

 with plate(’component_priors’, k, k):
 mus = sample(’locs’,
 MultivariateNormal(
 jnp.zeros((d,)), jnp.eye(d)
), sample_shape=(k,)
)
 sigmas = sample(’sigmas’,
 InverseGamma(1, 1),
 sample_shape=(k,)
)

 batch_size = xs.shape[0]
 with plate(’batch’, N, batch_size):
 sample(
 ’xs’, GaussianMixtureModel(
 pis, mus, sigmas
),
 obs=xs, sample_shape=(batch_size,)
)

Listing 6. Definition of the model for a Gausian mixture model,
using the GaussianMixtureModel distribution class defined in
Listing 5.

	d3p - A Python Package for Differentially-Private Probabilistic Programming
	1 Introduction
	2 Differentially Private Probabilistic Programming
	2.1 Probabilistic Programming
	2.2 Differential Privacy
	2.3 Differentially Private Doubly Stochastic Variational Inference
	2.4 Privacy Accounting
	2.5 Remaining Technical Concerns for the Practical Implementation
	2.6 Summary

	3 d3p Usage Example
	3.1 Defining a Model
	3.2 Running the Inference
	3.3 Switching to a More Complex Model

	4 d3p Implementation Outline
	4.1 Underlying Framework
	4.2 Implementation of DP-VI
	4.3 Performant GPU Batch Subsampling
	4.4 Privacy Bound and Hyperparameter Selection

	5 Evaluation
	5.1 Comparison with TensorFlow Privacy
	5.2 Effect of Batch Size
	5.3 Hierarchical Logistic Regression and Small Data
	5.4 Gaussian Mixture Model

	6 Related Work
	7 Conclusion
	A Code for the Gaussian Mixture Model

