

Fingerprinting Internet of Things Devices 579

spatially distant datasets? Does the data collec-

tion methodology itself impact fingerprinting ac-

curacy? We evaluate to what extent classifiers are gen-

eralizable across various datasets collected from differ-

ent locations at different timestamps. In other words,

how well a classifier performs when trained and tested

on different datasets. RQ3: How well do the clas-

sifiers perform in an open-world setting? We also

analyze if our approach can effectively operate under

an open-world setting when many of the devices remain

unseen to the classifiers.

To answer these questions, we first collect seven

datasets containing network traffic from a total of 188

IoT devices (of which 120 are unique make-and-model

devices). Two of the datasets are public, while four

datasets were collected by contacting the authors of ex-

isting literature. We also collect our own data. Next,

we build our own device fingerprinting technique us-

ing well-known features, where we achieve similar, if

not better, accuracy even for 3–7 times more devices

than existing works. We then evaluate the robustness of

our classifier under different settings, like analyzing the

extent to which temporal, spatial and data-collection-

methodology differences impact fingerprinting accuracy.

We also perform open-world evaluations of our classifier.

In summary, we make the following contributions:

– To the best of our knowledge, we perform fingerprint-

ing analysis on the largest number of IoT devices (188

devices) to date. Our dataset covers not only different

device types but also multiple instances of the same

make-and-model device. Moreover, our analysis show-

cases fingerprinting accuracy at different granularities

(§4).

– We evaluate various factors that can potentially im-

pact accuracy, such as training and testing on dif-

ferent datasets to gauge the generalizability of our

approach (i.e., determine features that are more gen-

eralizable across independent datasets). We analyze

the impact of time, location and data-collection-

methodology on fingerprinting accuracy (§5).

– We also perform a comprehensive analysis of finger-

printing IoT devices under open-world settings. We

identify setups that can potentially boost an adver-

sary’s capability in inferring additional information

about unseen devices. We conduct end-to-end evalu-

ation under this setting (§6).

The remainder of this paper proceeds as follows.

Section 2 describes related work. Section 3 character-

izes the different datasets we use for our evaluations.

Section 4 investigates scalability of our fingerprinting

approach (RQ1). Section 5 investigates generalizability

of our approach across different datasets (RQ2). Sec-

tion 6 looks at open-world evaluations (RQ3). Section 7

summarizes our findings and lists the limitations of our

approach. We conclude in Section 8. Our source code

and datasets are open-sourced 1.

2 Background and Related Work

Device fingerprinting is the process of collecting appli-

cation and/or hardware-level information from a remote

computing device for the purpose of identification. De-

vice fingerprinting is typically used for anomaly detec-

tion and digital rights management. However, device fin-

gerprinting has also been used to track users online.

Inference through Network Traffic. There is a

large body of work that exploits network traffic to fin-

gerprint different websites that a given user visits [4, 10–

12, 18, 21, 22, 28, 28, 29, 37, 38, 52, 56, 60]. Others have

tried to infer contents from encrypted VOIP [57, 58],

and video-streaming traffic [43, 47]. Researchers have

also shown that it is possible to reduce the search space

for guessing passwords in SSHv1 by exploiting the tim-

ing delays between subsequent IP packets [51].

Network Monitoring. For Internet-connected hosts,

researchers have exploited TCP timestamps to esti-

mate the clock skew of a device and consequently used

the unique clock skews to detect devices [26, 33] re-

motely. Researchers have also analyzed wireless traffic to

uniquely fingerprint wireless devices [17, 19, 27, 34, 39].

Furthermore, there is a rich literature on utilizing net-

work traffic to detect anomalous activities [23, 25, 35,

50] and malware [6, 41].

Identifying IoT Devices. With the rapid adoption of

IoT devices and their sensitive nature, researchers have

recently explored the possibility of fingerprinting not

only IoT devices but also device-level activities. Most

IoT devices connect to the Internet either through a

WiFi access point or through a hub/bridge (e.g., de-

vices that use Zigbee/Zwave protocols), thus making it

easy for an ISP to observe and potentially infer sensitive

information from network traffic. Ren et al. [44] perform

a comprehensive study on event-level traffic generated

by various IoT devices from both the US and UK. They

1 https://github.com/dilawer11/iot-device-fingerprinting

Fingerprinting Internet of Things Devices 580

identify the various Internet destinations for the traffic

and determine how frequently communications are pro-

tected by encryption. Lastly, for traffic originating in

the US and UK, they contrast regional differences be-

tween these results. Researchers have used DNS queries

to infer IoT devices [8, 42]. They also model traffic char-

acteristics to infer device-level activities. Furthermore,

they propose traffic padding techniques to mitigate vol-

ume and timing-based inference attacks. Sivanathan et

al. [48, 49] also leverage network traffic and build a

multi-layer model to fingerprint IoT devices uniquely.

OConnor et al. [36] and Trimananda et al. [54] both use

packet direction and size to infer device-level activity.

Others have utilized data from different layers of the

network stack to identify IoT devices [31, 32].

Some have focused on specific types of devices

and protocols. For example, Copos et al. [14] investi-

gate network traffic to infer device-level activities from

only Nest Thermostat and Nest Protect. Others fo-

cus on Zigbee/Z-Wave devices and leverage specialized

Zigbee/Z-Wave sniffers [3, 62]. Alrawi et al. perform a

systematic security analysis of IoT devices, where they

assign scores to devices based on various security at-

tributes, e.g., if proper encryption is used in different

communications [5].

Countermeasures against Network Traffic Anal-

ysis. Wright et al. [59] suggest the use of traffic morph-

ing to mitigate the risk of packet length-based inference

techniques. Apthorpe et al. [7, 9] also evaluate VPN-

based traffic shaping techniques to thwart traffic rate

and volume-based attacks. Trimananda et al. [54] sug-

gest a packet padding technique to prevent packet size-

based inference attacks. However, Dyer et al. [18] show

that traffic padding and morphing is still not effective

in hiding critical information.

Distinction from Prior Work. Our work is inspired

by the aforementioned work on fingerprinting IoT de-

vices. However, our primary and differentiating goal is

to evaluate the feasibility and robustness of fingerprint-

ing a larger number of IoT devices (the largest eval-

uation to the best of our knowledge) across multiple

datasets — collected across different settings to shed

light on how well models generalize across different set-

tings. Furthermore, existing literature has mainly per-

formed closed-world evaluations and has suggested high

success rates. We perform open-world evaluations to

showcase the limitations under real-world settings. How-

ever, we also show that an attacker might be able to infer

a coarser level of information for previously unseen de-

vices. Table 21 in Appendix J shows an in-depth com-

parison with existing works in terms of features used,

evaluation settings, detection granularity and datasets

used.

3 Dataset and Methodology

In this section, we describe the setup of our analysis,

along with the various datasets used and the data pre-

processing steps involved in analyzing network traffic.

We also discuss the features, machine-learning models

and metrics used in our evaluations.

3.1 Threat Model

In this paper, we assume a passive network adversary

who can observe and record all wide-area network traffic

(i.e., encrypted traffic), including traffic coming in and

going out from home gateway routers. The adversary,

however, cannot view any local-area network traffic be-

tween devices behind the gateway router. The adversary

also does not manipulate network traffic. Furthermore,

the adversary does not rely on packet content but in-

stead on traffic metadata extracted from TCP/IP head-

ers and send/receive rates. Lastly, we assume the adver-

sary can collect and analyze IoT traffic by deploying its

own setup. This setup can temporally, geographically

and otherwise be similar or different from the target.

The adversary can also utilize existing publicly avail-

able datasets.

3.2 Datasets

We use seven different datasets in our experiments; two

of them are publicly available, and four were made avail-

able upon request. The remaining one dataset is our

own, where we collect data from IoT devices available

in our lab. The collection setup is similar to existing

approaches, where all of our IoT devices communicate

through a WiFi router running OpenWRT [2] (we used

a Linksys WRT1900ACS router with OpenWRT version

18.06.2). We captured and dumped traffic through the

router in PCAP format on a connected host machine

(using port mirroring). Following is a brief description

of the different datasets used in our evaluations (Table 1

summarizes their traffic-level characteristics).

YourThings Dataset [5]. This dataset is one of the

largest publicly available datasets. It contains continu-

Fingerprinting Internet of Things Devices 581

Table 1. Characteristics of datasets used. In total we have 120 unique IoT device types and 188 IoT device instances (some device

types are present multiple times in the same dataset or across different datasets). Some also contain non-IoT devices.

Dataset Acronym
Country Capture

Capture Unique Total Total
Unique

Total Fraction Burst Size Burst Time

Type⋄

(State/city) Period
Duration IoT IoT Non-IoT

Destinations
Download/ of IoT Download/ Download/

(∼days) Devices Devices * Devices Upload Traffic Upload Upload

YourThings [5] YT US (GA) Early 2018 11 45 45 3 † 5672 21.7/233.1 GB 0.98 0.7/1.6 KB 0.6/8.3 s C

HomeSnitch [36] HS US (FL) Early 2020 12 24 28 0 5600 3.4/47.2 GB 1.0 0.4/1.9 KB 1.4/7.2 s C

PingPong [54] PP US (CA) Late 2019 51 17 18 0 1434 0.24/1.65 GB 1.0 0.2/0.8 KB 2.2/24.4 s E

Mon(IoT)r_US [44] NE_US US (MA) Early 2019 14 41 41 0 1506 0.38/1.93 GB 1.0 0.6/1.9 KB 1.4/1.2 s E

Mon(IoT)r_UK [44] NE_UK UK (London) Early 2019 17 29 29 0 1514 0.33/2.18 GB 1.0 0.5/2.1 KB 1.8/1.2 s E

UNSW [48] SW AU (Sydney) Late 2016 21 19 19 7 ‡ 5357 9.5/1.7 GB 0.18 0.5/0.4 KB 4.4/9.1 s C

Our Our US (NC) Early 2020 11 8 8 3 ♣ 3743 7.4/2.6 GB 0.89 0.7/1.6 KB 3.1/28.9 s C

Combined dataset 120 188 13

∗: The numbers may vary slightly from original source as we only consider devices with enough traffic to generate at least 10 samples. ⋄ C: continuous and E: event-based
†: iPad, iPhone, Android tablet; ‡: Android tablet, Printer, MacBook, iPhone, Android phone, Laptop; ♣: Laptop, Desktop, Android Phone

ous traffic generated over a period of 11 days. While the

exact device-level interactions are not explicitly listed,

it covers traffic generated by device autonomously and

through human interaction in a continuous manner.

UNSW Dataset [48]. This is another publicly avail-

able dataset from UNSW Sydney, Australia. The data

contains continuous traffic traces in PCAP format us-

ing tcpdump. Data replicates a real living smart envi-

ronment that covers data resulting from human inter-

action, e.g., smart bulb turning on by detecting motion

and data that is not affected by human interaction, e.g.,

periodic status updates, DNS, or NTP.

Mon(IoT)r Dataset [44]. This dataset consists of

data collected from two labs, one located in the US and

another in the UK. We treat this dataset as two sep-

arate datasets and refer to the dataset from their US

Lab as NE_US and the dataset from their UK Lab as

NE_UK. The data is primarily traffic generated from

specific device-level events such as asking Alexa to turn

on the light. Each event or activity is separated into a

separately labeled PCAP file.

PingPong Dataset [54]. This dataset consists of only

event-based traffic similar to Mon(IoT)r dataset. Their

dataset also includes internal traffic generated by the

devices, but since we only focus on traffic from the point

of view of an ISP, we ignore such traffic and only focus

on Phone-to-Cloud and Device-to-Cloud traffic.

HomeSnitch Dataset [36]. This dataset continu-

ously collects data from IoT devices where some traffic

result from direct human interactions while some occur

because of periodic updates.

Our Dataset. Our dataset was collected from our

lab setting, which emulates a smart living room. Our

dataset consists of traffic generated through both hu-

man interactions like turning on/off lights through voice

assistants and idle traffic (i.e., no user interaction). For

our dataset, we triggered normal operations (e.g., turn-

ing ON/OFF light/plug, TV or activating motion sensor

and live camera feed) 3–4 times daily.

Table 1 summarizes the different traffic-level char-

acteristics of all the datasets used in our evalua-

tions. Across the datasets, we observed increased ac-

tivity/traffic from 11 am to 3 pm (typical for lab set-

tings). Specific activity depends on the mode of inter-

action, e.g., remote operation or in-person activation.

More fine-grained details on exact activities performed

are not provided by the data publishers. We can also

see that some datasets contain more unique destinations

(i.e., flows) and download/upload more data than oth-

ers. For three datasets (i.e., PP, NE_US and NE_UK),

data is collected in shorter intervals representing device-

level operations like activating lights or voice assistants.

We term these datasets as event-based datasets. The

other four datasets collect data in a more continuous

manner and are termed as continuous.

3.3 Data Pre-processing

We only extract header information from PCAP files.

Such information includes IP addresses, ports, proto-

col number, timestamp and packet size. Next, we filter

out any traffic that does not use any IP-based protocol,

e.g., ARP. We also remove any internal traffic (traffic

only visible to devices connected to the same local net-

work) and consider only traffic visible to an external

passive adversary (e.g., an ISP). In order to train ma-

chine learning models, we label devices using the device

information provided by the different datasets. Some

datasets also contain traditional non-IoT traffic gener-

ated by computers, printers, laptops, tablets and smart-

phones (see Table 1 for more details).

Fingerprinting Internet of Things Devices 582

Table 2. List of different types of features used. Some features are single-valued summary statistics, whereas others are derived from

the top most frequent elements in a given distribution (termed as multi-valued feature). The last three columns represent the accuracy,

precision and recall of using each individual feature group derived from the combined dataset. 95% CI is provided in parentheses. All

these features are extracted based on the 5-minute window.

Feature Group Description Single/Multi valued Accuracy Precision Recall

Unique Packet Length Distribution of unique packet sizes Single-valued 95.63 (0.01) 95.05 (0.2) 94.15 (0.15)

Packet Delay Distribution of inter packet delays Single-valued 93.04 (0.02) 91.18 (0.17) 87.63 (0.15)

Protocols Percentage of packets using different protocols Single-valued 87.97 (0.01) 88.95 (0.24) 84.26 (0.16)

Burst Bytes Total bytes transferred in a burst of packets Single-valued 87.4 (0.01) 92.79 (0.24) 85.63 (0.11)

Packet Size List List of most frequent packet sizes Multi-valued 82.37 (0.02) 91.21 (0.12) 82.64 (0.08)

Total Packets Total number of packets transferred Single-valued 78.97 (0.02) 66.75 (0.12) 65.35 (0.1)

Burst Delay Distribution of inter burst delay Single-valued 76.44 (0.01) 86.04 (0.07) 73.03 (0.08)

Burst Time Distribution of burst duration Single-valued 72.98 (0.05) 87.39 (0.16) 71.58 (0.13)

IP List List of unique IPs (first three octets) Multi-valued 66.21 (0.03) 71.25 (0.32) 57.54 (0.1)

Burst Packets Distribution of number of packets in a burst Single-valued 65.86 (0.01) 75.84 (0.15) 62.3 (0.1)

Request-Reply Pair List List of Request-Reply packet sizes Multi-valued 64.12 (0.14) 72.35 (0.22) 58.08 (0.12)

TCP Flags Percentages of TCP Flags in TCP Packets Single-valued 62.22 (0.02) 72.11 (0.16) 56.28 (0.05)

Protocol List List of protocols used in a window Multi-valued 59.28 (0.01) 61.46 (0.25) 46.39 (0.07)

Traffic In and Out Ratio Ratio of incoming vs. outgoing traffic Single-valued 54.75 (0.03) 50.62 (0.14) 43.5 (0.14)

External Port List List of external ports contacted Multi-valued 49.8 (0.01) 51.19 (0.29) 42.81 (0.08)

HTTP(S) Traffic Traffic to and from port 80 and 443 Single-valued 46.46 (0.02) 54.67 (0.25) 39.22 (0.09)

Hostname List List of host names (TLD+1) contacted Multi-valued 40.6 (0.01) 49.21 (0.36) 30.99 (0.04)

Unique IPs Number of unique IPs contacted Single-valued 39.97 (0.02) 35.93 (0.16) 33.42 (0.1)

Unique Ports Number of unique ports contacted Single-valued 32.27 (0.02) 30.38 (0.14) 26.12 (0.1)

Total Bytes Total bytes transferred in a window Single-valued 29.85 (0.05) 52.28 (0.41) 29.18 (0.12)

3.4 Feature Extraction

Using the pre-processed data, we extract features using

a 5-minute window for each device-specific traffic. We

determine device-specific flows using the egress IP ad-

dress/port number, destination IP address/port number

and the protocol in use. We tested three traffic window

sizes: 2, 5, and 10-minute windows. The corresponding

classification accuracies on the combined dataset were

97.79%, 97.81% and 98.19%, respectively. Given that

most of the device-level activities were captured in short

bursts (≤ 5 minutes), we chose a 5-minute window for

our evaluations. Table 2 shows the various types of fea-

tures extracted from a 5-minute window (Table 20 in

Appendix I lists all the features used). All evaluation

metrics are thus computed based on features extracted

from a 5-minute window.

The types of features we extract can broadly be cat-

egorized into single-valued and multi-valued features.

Single-valued features contain various statistical sum-

maries (e.g., total, min, max, median, 25-th percentile,

75-th percentile, 90-th percentile, and standard devia-

tion) computed over a 5-minute window, e.g., the to-

tal number of outgoing packets or the average delay

between TCP outgoing packets. Multi-valued features

are key-value pair objects that count different observed

values or events, e.g., the number of times each do-

main is contacted or the number of times different ports

are used. This is similar to the bag-of-words repre-

sentation used by Sivanathan et al. [48]. For training

and testing machine learning models, we only use at

most the top N frequently observed values (we empir-

ically set N = 500 and N = 1000 for protocol-specific

and protocol-independent multi-valued features, respec-

tively). Multi-valued features are transformed to nu-

meric one-hot encoding for training and testing.

To understand how effective the features are in dis-

tinguishing devices, we generate a scatter plot consider-

ing samples from some of the same make-and-model de-

vices as well as different make-and-model devices (using

the combined dataset). We use t-Distributed Stochastic

Neighbor Embedding (t-SNE) technique [30] to reduce

the dimensionality of our feature vector. Figure 6 in

Appendix B highlights our findings. We can see that,

in general, samples from a given device are clustered

together, irrespective of whether they are of the same

make and model or not. However, the samples overlap

significantly for some devices manufactured by the same

vendor, like Google Home and Google Home Mini (this

may result from using a similar software stack).

3.5 ML-Model and Metrics Used

In terms of machine learning models, we found Random

Forests [40] to be most effective (we also tested SVM

Fingerprinting Internet of Things Devices 583

and decision trees). We set the number of trees in the

forest to 100 (i.e., n_estimators=100). We did not use

deep-learning techniques for better explainability, like

understanding why certain features rank at the top. We

also use forward feature selection (FFS) [20, 61] mech-

anism to identify more generalizable features. To eval-

uate the effectiveness of our model, we use well-known

metrics, like accuracy, precision and recall. We perform

5-fold cross-validation to account for the randomness in-

herent in the training data and repeat the whole process

10 times to account for any randomness inherent to the

Random Forest model. We report the mean and 95%

confidence interval (CI) over 10 runs unless mentioned

otherwise.

4 Fingerprinting Devices

In this section, we study the effectiveness of fingerprint-

ing IoT devices at different granularity using multiple

datasets. First, we evaluate the effectiveness of our ap-

proach on each dataset separately. Next, we analyze the

scalability of our approach against not only a larger

number of devices compared to existing works but also

devices that include multiple instances of the same make

and model.

4.1 Effectiveness Across Datasets

As previously mentioned, we conducted our experiments

using seven different datasets. We, therefore, first evalu-

ate how well our proposed approach can fingerprint IoT

devices on individual datasets (i.e., per-dataset basis).

Table 3 summarizes our findings. We can see that, on av-

erage, we have close to 99% accuracy across all datasets

(average precision and recall is close to 98%). Compared

to existing literature, we observed similar performance.

For example, Sivanathan et al. [48] report 99% accuracy

in fingerprinting devices in their dataset. We obtain sim-

ilar results as shown in Table 3 (these numbers can be

considered as a baseline comparison for the remaining

analyses to follow). Table 3 results suggest that IoT de-

vices can be fingerprinted with high accuracy. However,

given the relatively small number of devices available in

each dataset, it still remains unclear whether such an

approach can scale well with higher numbers of devices.

We explore this question in the next section.

Table 3. Fingerprinting accuracy across individual datasets (95%

CI is provided in parenthesis).

Dataset Accuracy Precision Recall Devices

UNSW 99.9 (0.0) 99.94 (0.0) 99.0 (0.16) 19

HomeSnitch 99.85 (0.0) 99.8 (0.01) 99.8 (0.01) 28

YourThings 97.91 (0.03) 97.89 (0.03) 97.82 (0.03) 45

NE_UK 97.39 (0.12) 96.94 (0.15) 96.52 (0.25) 29

NE_US 98.16 (0.14) 98.25 (0.21) 96.68 (0.35) 41

PingPong 99.58 (0.02) 93.83 (0.02) 93.92 (0.03) 18

Our 99.79 (0.01) 99.83 (0.0) 99.62 (0.01) 8

Average 98.94 98.07 97.62

4.2 Scalability

In this section, we aim to measure how the classifier’s

performance varies as the number of devices increases.

For this purpose, we merge all the datasets into one con-

solidated dataset (i.e., combined dataset). We consider

three different settings. In the first case, we only con-

sider one instance of a device, i.e., if two datasets have

the same make-and-model device, we only choose one,

picked randomly on each run of the experiment. This

results in a total of 120 devices (also depicted in Ta-

ble 1). We start with 10 devices chosen randomly and

incrementally increase the number of devices in steps of

10 and perform 5-fold cross-validation over 10 runs per

increment. Figure 1a shows how the accuracy, precision

and recall varies as we increase the number of devices.

We can see that there is a slight decay in the average

metrics. However, even with 120 devices, we can achieve

an average accuracy close to 99%.

In the second case, we want to distinguish between

only the same make-and-model devices, i.e., the same

devices that potentially have different firmware or oper-

ate under different conditions. For this purpose, we first

determined the number of instances per make and model

of an IoT device. Figure 5 (in Appendix A) shows the

distribution of the number of devices with one or more

instances. Most of the devices (80) have only one in-

stance, and the remaining 40 devices have more than one

instance (Table 19 in Appendix H list all unique device

types). In this setting, we only consider the devices with

more than one instance (where each instance gets its

own unique label). We then perform a similar incremen-

tal step with increments of 5 devices and perform 5-fold

cross-validation with 10 runs per increment. Figure 1b

shows the trends observed. Again we see that the av-

erage accuracy decreases slightly, but even with devices

with multiple instances, we can achieve around 98% ac-

curacy. To better understand why the same make-and-

model devices are easily distinguishable, we look at the

Fingerprinting Internet of Things Devices 585

ure 12 in Appendix F for ‘general-device category’. We

can see that we obtain near-perfect scores for all the

device categories except for the device category ‘mo-

tion sensors’. Further analysis revealed that the classi-

fier wrongly predicted ‘Belkin motion sensors’ traces as

‘Belkin switches’. This could be an artifact of products

manufactured by the same vendor contacting the same

backend infrastructure [45]. To explore this further, we

performed another experiment in which we grouped all

devices from the same company. Table 4 shows that we

achieve almost perfect accuracy in such a case suggest-

ing that devices from the same vendor possibly have

similar fingerprints in terms of traffic they generate.

Takeaway. The general takeaway from this section is

that our classification approach achieves as good as, if

not better, results compared to existing IoT device fin-

gerprinting approaches. Our classifier also scales well

when the number of devices increases to well above what

an average smart home or even a small to medium-sized

office environment might have. Furthermore, we show-

case that our approach can distinguish devices at vari-

ous granularities, including devices manufactured by the

same vendor and even similar functioning devices.

5 Fingerprinting Generalizability

Existing work on fingerprinting IoT devices lacks analy-

sis of generalizability across different real-world factors.

To determine to what extent classifiers are generalizable

across different factors, we first explore whether top-

ranked features are consistent across different datasets.

We use forward feature selection (FFS) [20, 61] to rank

the features for each dataset using accuracy as the per-

formance metric. Figure 7 in Appendix C highlights the

top 20 features across each individual dataset. As we can

see from the figure, very few features are common across

all the datasets. Features such as the maximum incom-

ing packet length (max_in_len) and the maximum out-

going packet length (max_out_len) are common across

all datasets, indicating that packet length may be one

of the more useful features. Table 2 also shows similar

results, where we report the accuracy of classifying 120

unique IoT devices (from the combined dataset) using

only one feature group at a time. The lack of overlap

among the top 20 features across different datasets sug-

gests that a classifier tuned for one dataset will likely

not be equally effective on other datasets. In this pa-

per, we analyze the impact of the following factors on

generalizability: 1) temporality, 2) locality and 3) data

collection methodology. Our analysis sheds light on po-

tentially more robust features across different varying

conditions.

5.1 Temporal Impact

We, first, investigate if the fingerprints change tempo-

rally, as a software update, version upgrade, or evolving

backend infrastructure might change the fingerprints.

To evaluate this, we collected another round of data

from our lab in January 2021, and we also obtained an-

other round of data from the HomeSnitch team [36] in

May 2021. We next compare our new datasets to the

old datasets. We trained our model on the 2020 version

of the datasets and tested it on the 2021 version of the

datasets. We found the average accuracy, precision and

recall to be 94.72%, 85.01%, 89.83%, respectively, for

Our dataset and 87.76%, 85.31%, 85.53%, respectively

in the case of the HomeSnitch dataset. This suggests

that the classifier generalizes relatively well even with

possible firmware/software upgrades to the devices. Fig-

ure 8 (in Appendix D) shows the confusion matrix in

this setting for Our dataset. As we can see, inaccuracies

arise from devices from similar companies (e.g., both

Ring and Echo Look are Amazon products) or devices

with similar functionality (e.g., LG TV has a voice assis-

tant built-in). Figure 9 in Appendix D shows the confu-

sion matrix for the HomeSnitch dataset. Upon further

investigation in the inaccuracies, we found that these

were due to drastic changes in traffic patterns compared

to the previous year and/or similar traffic to another de-

vice in the latest version of the dataset. For example, Ul-

traloq Lock Bridge and Lockly Lock Hub had different

patterns in 2020 traffic capture, whereas in 2021, Ul-

traloq Lock Bridge had almost identical traffic patterns

for Lockly Lock Hub; e.g., in/out ratios, packet lengths,

burst times were similar. Similarly, Nightowl Doorbell

had a 40:60 in/out ratio in 2021, while in 2020, it was

14:86. It also contacted 768 unique ports in 2020, while

in 2021, it only contacted 71, which was closer to Geeni

Camera. Samsung SmartThings Camera also had a dif-

ferent pattern compared to last year, and in 2021 in/out

ratio and bytes sent per burst were similar to Arlo Base

Station. In 2020 it also had 590 unique packet lengths

per window, while in 2021, it only had 101, which was

closer to Arlo Base Station than its older version.

Next, we perform forward feature selection to deter-

mine features that generalize well temporally, and the

results are summarized in Table 6. As we can see, the

optimal set of features can still achieve an accuracy up

to 99% for Our dataset and 94% for the HomeSnitch

Fingerprinting Internet of Things Devices 586

Table 5. Effectiveness of classifier when training and testing on

temporally distant datasets with similar setup.

Train Test Accuracy Precision Recall Devices

Our (2020) Our (2021) 94.72 (0.82) 85.01 (1.13) 89.83 (1.14) 8

HS (2020) HS (2021) 82.61 (3.45) 83.96 (1.27) 82.34 (2.51) 15

Table 6. Top feature groups that achieve the best performance

under temporally generalized settings. Features bolded comprise

the optimal feature set.

Rank Feature Cum. Acc. Rank Feature Cum. Acc.

1 Hostname List 95.53 11 Unique Ports 98.17

2 Unique IPs 96.43 12 Burst Time 97.82

3 External Ports List 98.36 13 Packet In and Out Ratio 97.62

4 HTTP(S) Traffic 96.57 14 Protocols 96.97

5 Packet Sizes List 98.55 15 Unique Packet Lengths 97.05

6 Request-Reply Pkt Sizes 98.72 16 Total Packets 95.76

7 IP List 98.95 17 Packet Delay 96.2

8 TCP Flags 98.87 18 Burst Delay 96.1

9 Protocol List 98.68 19 Burst Packets 95.3

10 Total Bytes 98.35 20 Burst Bytes 93.28

Table 7. Effectiveness of classifier when training and testing on

temporally distant datasets with similar setup using only the opti-

mal features.

Train Test Accuracy Precision Recall Devices

Our (2020) Our (2021) 98.94 (0.16) 93.95 (2.44) 95.7 (0.55) 8

HS (2020) HS (2021) 94.24 (0.28) 89.36 (0.33) 92.88 (0.35) 15

dataset. Delay and burst-based features seem less reli-

able, whereas unique hosts/IPs and packet sizes remain

stable.

5.2 Spatial Impact

Next, we analyze the impact of training and testing

on datasets collected from different geographic regions.

This analysis is important as it will inform the adver-

sary to what extent the training data needs to emulate

a target’s location and highlight more generalizable fea-

tures across different geolocations. This becomes rele-

vant if the adversary is towards the weaker end of the

spectrum and is unable to collect data in the same ge-

ographical location as the target. For this analysis, we

need to select datasets collected around the same time

using a similar setup across two different geographic re-

gions. The NE_US and NE_UK datasets are ideal for

this evaluation. Ren et al. [44] state that their devices

were procured from the corresponding countries (US,

UK) where they performed data collection. 46 devices

were purchased from US stores (US devices) and de-

ployed in the US testbed; 35 were purchased from UK

stores (UK devices) and deployed in the UK testbed.

There were 26 common devices (note that we removed 5

devices because of a low number of data samples) across

the two labs. We use the common devices to analyze the

impact of fingerprinting devices across different geoloca-

tions. Some devices may have variants based on region,

but the authors do not explicitly confirm or deny this.

Table 8 shows the accuracy when trained and tested

on geographically distant datasets. We can see that the

average accuracy drops to around 80%. Interestingly, we

see better results when trained on NE_UK and tested

on NE_US. Ren et al. [44] have shown in their study

that a majority of their IoT device traffic terminated in

the US for both the US and UK labs due to reliance on

infrastructure with limited geodiversity. Thus, while de-

vices from the UK contacted the major US-based cloud

infrastructures, they also contacted some EU infrastruc-

tures. As a result, NE_UK is in some sense a superset

of NE_US. However, the diversity in the infrastructure

can still cause errors. Figure 10 and 11 (in Appendix E)

show the confusion matrix when the classifier is trained

on one location and tested on the other. The majority

of the errors resulted from imbalanced data across the

two datasets, e.g., Sousvide device was extensively be-

ing mislabelled when trained on NE_US and tested on

NE_UK but not so much when trained on NE_UK and

tested on NE_US. Sousvide device in the UK contacted

AWS 27660 times throughout the data collection period,

whereas it contacted the same service only 92 times in

the US.

To understand which features are more stable across

geographically distant datasets, we also rank the fea-

tures using FFS. For each round of FFS we rank

the feature based on average accuracy across different

train/test combinations. For example, suppose training

on NE_US and testing on NE_UK gives 90% accuracy

for a feature and training on NE_UK and testing on

NE_US gives 92% accuracy. In that case, we consider

the average accuracy to be around 91%. This gives pref-

erence to features that generalize well for different set-

tings instead of a single train/test set. We select the set

of features that return the best accuracy as our opti-

mal feature set. Table 9 shows a ranking of the features.

We can see that most features except for traffic bursts

are more suitable for this setting. To further validate our

feature selection process, we reevaluate the performance

metrics only using the top features (i.e., ones that are

bolded in Table 9). We found the accuracy, precision and

recall to increase to 94.76%, 93.38% and 92.68%, respec-

tively, when trained on NE_UK and tested on NE_US.

Similarly, the accuracy, precision and recall improved to

77.71%, 81.85% and 77.65%, respectively, when trained

on NE_US and tested on NE_UK. Thus, in both cases

Fingerprinting Internet of Things Devices 587

Table 8. Effectiveness of classifier when training and testing on

geographically distant datasets with similar setup.

Train Test Accuracy Precision Recall Devices

NE_UK NE_US 89.4 (1.14) 89.31 (1.09) 85.25 (1.83) 21

NE_US NE_UK 69.6 (1.03) 73.46 (2.08) 69.58 (1.08) 21

Table 9. Top feature groups that achieve the best performance

under geographically generalized settings. Features bolded com-

prise the optimal feature set.

Rank Feature Cum. Acc. Rank Feature Cum. Acc.

1 Request-Reply Pkt Sizes 63.88 11 Unique IPs 80.72

2 Protocol List 70.59 12 Total Packets 81.01

3 Hostname List 73.43 13 Packet In and Out Ratio 80.36

4 Unique Packet Lengths 77.66 14 Burst Packets 79.03

5 HTTP(S) Traffic 78.89 15 Protocols 78.0

6 IP List 79.88 16 Packet Delay 77.49

7 External Ports List 80.35 17 Burst Time 76.43

8 TCP Flags 81.02 18 Burst Delay 75.25

9 Total Bytes 80.75 19 Burst Bytes 75.2

10 Unique Ports 80.9 20 Packet Sizes List 74.81

where we only use optimal features, we see performance

improvement compared to using all features.

5.3 Impact of Data Collection Approach

We now analyze if the data collection methodology it-

self impacts performance. For this, we train and test

on datasets that have different collection characteris-

tics (e.g., event-based compared to continuous and vice

versa). We selected NE_US and YourThings as our can-

didates for the event-based and continuous dataset, re-

spectively, as they provide the largest number of device

overlap (also both located on the east coast of the US).

While the datasets were collected at a different point in

time, we have already showcased that temporal changes

have minimal impact on our fingerprinting technique in

Section 5.1. We next train and test on datasets that have

different collection characteristics. Table 10 highlights

the fingerprinting accuracy when trained and tested on

different datasets. We see that, on average data collec-

tion method impacts accuracy significantly, leading to

poor classifier performance. Next, we perform forward

feature selection to determine features that generalize

well, and the results are summarized in Table 11. As we

can see, the top set of features can still achieve an ac-

curacy close to 80%. Packet size, hostnames and ports

seem more useful in this setting. To verify that these fea-

tures really boost performance, we reevaluated the re-

sults of Table 10, but this time only using the features

identified in Table 11 (i.e., bolded features). Table 12

highlights our findings. We can see that when training

on YourThings and testing on NE_US we get slightly

Table 10. Effectiveness of classifier when training and testing on

datasets with different collection characteristics.

Train Test Accuracy Precision Recall Devices

NE_US YT 28.32 (0.87) 53.79 (2.56) 31.92 (0.79) 13

YT NE_US 28.89 (2.0) 58.45 (2.99) 42.51 (2.04) 13

Table 11. Top feature groups that achieve the best performance

for datasets with different collection characteristics. Features

bolded comprise the optimal feature set.

Rank Feature Cum. Acc. Rank Feature Cum. Acc.

1 Packet Sizes List 71.05 11 Total Bytes 76.71

2 Unique Ports 77.09 12 Burst Packets 74.12

3 HTTP(S) Traffic 78.38 13 TCP Flags 70.53

4 Packet Delay 79.06 14 Burst Time 71.17

5 Packet In and Out Ratio 78.71 15 Unique Packet Lengths 65.64

6 Hostname List 78.49 16 Burst Bytes 62.4

7 External Ports List 79.49 17 Burst Delay 59.65

8 Total Packets 79.37 18 Unique IPs 59.3

9 IP List 77.44 19 Protocol List 51.73

10 Request-Reply Pkt Sizes 76.96 20 Protocols 41.92

Table 12. Effectiveness of classifier when training and testing on

datasets with different collection characteristics, but using only

the robust features from Table 11.

Train Test Accuracy Precision Recall Devices

NE_US YT 54.87 (2.15) 53.68 (1.36) 55.06 (1.84) 13

YT NE_US 50.29 (2.61) 60.25 (0.89) 57.38 (1.7) 13

better results compared to the opposite setting. Similar

results were observed when training on other continu-

ous datasets and testing on the event-based datasets.

This indicates that, in general, training on continuous

datasets is advantageous for an adversary as it contains

not only event-specific traffic information but also peri-

odic or idle traffic characteristics.

Takeaway. To the best of our knowledge, we are the

first to study how well IoT device fingerprinting gener-

alizes across different datasets. Our analysis shows that

temporality, locality and data collection method have

varying effects on the generalizability of fingerprinting.

We show that while temporality does not significantly

impact performance, data collection method and local-

ity do to some extent. However, when data collection

methodology, locality and temporality match between

datasets, we can see almost perfect accuracy. For exam-

ple, both our dataset and HS dataset are continuous in

nature and were collected in the US (east coast) during

early 2020. The accuracy, precision and recall across the

two datasets (i.e., even reversing the training and test

sets) is around 98-99% (Table 15 in Appendix E shows

more details). On the other hand, when two or more

of these properties change, the model does not general-

Fingerprinting Internet of Things Devices 589

Next, we look at how changing the base rate (i.e.,

the fraction of known devices) impacts AUC and the op-

timal threshold. For this purpose, we vary the fraction of

known and unknown devices (e.g., the fraction of known

devices from 1% to 99%) and compute AUC and the

optimal threshold under such settings. We also analyze

how accuracy, precision and recall vary with the base

rate. Figure 2b highlights our findings. We can see that

AUC remains more or less stable for a varying number

of unknown IoT devices. However, the optimal threshold

(in terms of classification probability) increases as we in-

crease the number of unknown devices, which intuitively

makes sense as the classifier only focuses on a very small

number of devices (i.e., less diversity). In terms of per-

formance metrics, we see that recall slowly increases,

while precision starts to descend as we increase the frac-

tion of unknown devices. They both crossover at the

50% base rate, indicating the importance of balanced

samples for the open-world setting. Both precision and

recall suffer when the fraction of known devices is 1%.

However, an attacker can potentially focus on popular

devices, thereby increasing their chance of boosting the

known device portion.

Strategic Setting. We consider the case where in-

stead of randomly splitting the devices, the adversary

adopts a more strategic split with the goal to maximize

their chance of inferring more meaningful information

about unknown samples. In this setting, the adversary

attempts to cover at least one company-specific device

type, e.g., including one of Amazon’s voice assistants,

among many (like Echo Dot, Echo Plus, Echo Look), in

the known set. In this way, the adversary can maximize

their odds of covering a similar functional device in the

training set. Again devices of similar type are randomly

split between the known and unknown set. For an odd

number of devices belonging to a given category, we as-

sign the extra device to the known and unknown set

alternatively, thus favoring the adversary to cover more

devices in the case of an uneven number of categories

containing an odd number of devices.

Now, such a setting is likely going to adversely im-

pact the classifier’s performance as for each device type

in the known set, there will be a similar device present

in the unknown set (e.g., Google Home is in the known

set and Google Home Mini is in the unknown set). As

a result, unknown samples can be classified as known.

This would also result in a higher optimal threshold for

the binary classifier. We perform a similar open-world

evaluation to test how the strategic setting impacts the

various performance metrics. Around 50% of the de-

vices are known and unknown, even under this setting.2

Figure 2c highlights the ROC curve under this setting.

We can see that the average AUC is 97%. The optimal

threshold for the binary classifier changes from 0.80 to

0.88 as we alter from the basic to the strategic setting.

AUC changes from 0.98 to 0.97. In the following section,

we describe how the strategic setting can help an adver-

sary gain more insights about the unknown samples.

6.2 End-to-end Open-world classifier

In this section, we present an end-to-end system that

first determines whether a device sample is an IoT de-

vice or not. Once the adversary knows the device is an

IoT device, it can then predict if it is a known or un-

known device. If known, they try to predict the actual

device model name. If unknown, they try to infer mean-

ingful information about the unknown test sample from

the predicted labels. We consider two possible outcomes

in this setting: 1) predict the company-specific device

label for the unknown sample (e.g., Amazon voice assis-

tant), and 2) predict the general-device category for the

unknown sample (e.g., voice assistant). Thus, this pro-

cess combines two binary classifiers (i.e., IoT vs. Non-

IoT and known vs. unknown) followed by two multi-

class classifiers, where one predicts the exact device la-

bel if the device is predicted to be known and the other

predicts the company-specific or general-device category

if the device is predicted to be unknown. The latter is

trained using the company-specific/general-device cate-

gory labeling from the training set. Figure 3 highlights

the overall end-to-end process for inferring details on

unknown samples under the open-world setting.

For these experiments, we only consider devices

listed in Table 17 3 and Table 18 4 of Appendix H, i.e.,

devices that can be grouped with at least one other sim-

ilar functioning device. Next, we strategically split de-

vices into known and unknown sets, where the known set

contains at least one device per company-specific cate-

gory or general-device category (i.e., we consider these

two possible settings). For non-IoT devices, we adopt a

similar approach, where we randomly assign one device

type per category to the known and unknown set (e.g.,

iPhone to known and Android phone to unknown set).

2 This was possible as we had an even number of device cate-

gories.

3 36 devices for which we found at least another similar func-

tional device from the same company

4 118 devices categorized into 12 different functionalities

Fingerprinting Internet of Things Devices 592

Table 14. Effectiveness of classifier under targeted device settings

Group Accuracy Precision Recall

Geeni Cameras 98.03 (0.44) 89.39 (4.61) 69.26 (10.09)

Google Home Devices 99.74 (0.12) 99.66 (0.64) 88.98 (5.5)

Roku TV 98.6 (0.38) 91.37 (4.98) 61.42 (12.62)

Ring Doorbells 98.46 (0.47) 99.94 (0.05) 65.9 (10.45)

Amazon Echo Devices 97.78 (0.53) 88.47 (3.9) 69.72 (9.59)

Belkin WeMo Devices 99.73 (0.21) 99.68 (0.37) 96.9 (2.48)

Smart Switches 95.29 (0.59) 77.24 (4.86) 60.67 (6.34)

lar device vulnerability. Hence, we analyze different pos-

sible groups to demonstrate the performance improve-

ment from previous sections where the adversary is not

focusing on specific devices. For this, we first select a

target group of devices and label all the samples from

these devices as the target and, consequently, all other

samples from all other devices (IoT or non-IoT) as non-

target. Then we do a standard 80:20 train test split

to test the effectiveness of the classifier. For training,

we randomly select half of the devices from the target

and non-target sets. For example, if we have Google

Home devices as the selected target group, then we se-

lect either Google Home or Google Home Mini (since

this group only has two devices) to train the classifier,

and the other device is unseen during the training phase.

Similarly, from other non-target devices, we do an even

half split, and the classifier does not see half of the de-

vices during the training phase. Finally, we test using

the test dataset and compute the metrics. We have eval-

uated this attack on different groups, including similar

category (i.e., functionality), same company (vendor),

same company-category, and same make-and-model to

illustrate different settings possible under this attack.

Table 14 shows the results.

The accuracy is high across the board. Precision is

on the higher side compared to recall. For certain de-

vices, we see that the recall is comparatively low. These

cases occur for target devices that are spuriously clas-

sified as other devices. For example, from Figure 11 we

can see that Roku TV is mislabelled as other devices

(e.g., as Nest Thermostat). Similarly, Amazon Echo de-

vices are labeled as Samsung SmartThings Hub. Over-

all, however, the results show that an adversary can get

better results when compared to previous approaches

when targeting devices, even when devices are unknown.

Takeaway. Our open-world analysis showcases that an

adversary is able to improve inference by 5–7 times than

a random guess. Alternatively, an adversary can focus

on detecting the presence of a specific device (e.g., with

some known vulnerability) and build device-specific bi-

nary classifiers (i.e., a test sample is either a target

device or not). In general, we see that an adversary

benefits when the training set contains at least one de-

vice type per company, enabling them to predict the

company-specific device category.

7 Discussion

Summary. We analyze the feasibility of fingerprinting

IoT devices under many real-world settings. This work

advances the state-of-the-art by providing the follow-

ing insights: (1) it is possible to fingerprint IoT devices

with high accuracy at different granularities, even with

multiple instances of the same make-and-model devices;

(2) temporality, locality and data collection method af-

fect the generalizability of fingerprinting; however, some

features are more resistant to varying datasets; (3) an

adversary can increase their odds of inferring mean-

ingful information about unseen devices by training a

model on at least one IoT device from each company-

specific category or general-device category. We have

open-sourced our datasets and code 7.

Potential Countermeasures. We also emulated

how packet padding and traffic morphing (i.e., control-

ling traffic delay and volume through dummy packets)

would impact our device fingerprinting approach. We

emulate the impact of such countermeasures by dis-

abling/dropping features that can be impacted by the

corresponding countermeasure(s) — assuming counter-

measures fully hide a subset of the features. We consider

a closed-world setting to obtain an upper bound suc-

cess rate in the presence of countermeasures. We found

that even when dropping any features related to packet

size, burst or delay, we can still uniquely identify IoT

devices with 96% accuracy when considering the close-

world setting on the combined dataset. When looking at

the remaining features that enabled such high accuracy,

we found that simply using the list of IPs, protocols and

external ports were sufficient to detect devices uniquely.

Thus, a VPN/proxy based approach may be useful in

hiding the remaining useful features. A VPN service

tunnels traffic through an encrypted connection and

routes all traffic from the gateway router to the VPN

service. As a result, an adversary intercepting traffic be-

tween the gateway router and the VPN service will only

see the same set of IPs, protocols, ports and hostnames

for all traffic generated by different IoT devices. How-

7 https://github.com/dilawer11/iot-device-fingerprinting.

Fingerprinting Internet of Things Devices 593

ever, full-fledged analysis of the existing countermeasure

may still reveal sensitive information, as demonstrated

by Dyer et al. [18]. We leave such analysis as future

work.

Potential Sources of Errors. In both the open-world

and generalization settings, we observe more false pos-

itives and false negatives when compared to the simple

closed-world approach. Upon further investigation, we

found that these errors arise from a couple of factors,

including but not limited to similar devices (e.g., Google

Home and Google Home Mini, Amazon Echo family),

devices from the same company (e.g., Belkin WeMo de-

vices) and devices from a different company but with

similar functionalities (e.g., Google Home and Amazon

Echo). These errors will always be present, especially in

open-world settings.

Some special cases may create further confusion. For

example, the Alexa app running on a smartphone can be

confused with an Alexa device. However, we found that

their network fingerprints are very different (features

such as packet length, burst vary highly between the

two) even when Alexa is performing the same task, and

hence we could easily distinguish between them with

over 99% accuracy.

Comparison with Website Fingerprinting. Juarez

et al. [24] state that website fingerprinting is prone to

decaying accuracy over time since the content of the

webpage changes very rapidly. According to their paper,

the accuracy falls under 50% in just ten days. However,

in our experiments on IoT devices, we do not observe

a decay or drift for IoT devices because most changes

come from firmware updates that primarily fix small

bugs and do not introduce significant protocol/packet-

level changes, as evident from the traces. We saw that

most devices still had similar delays and packet sizes;

e.g., Smart WiFi Plug had an average packet size of

110.42 previously (in 2020), and in the new dataset (in

2021), it was 110.08. Similarly, the Amazon Echo Plus

previously had an average packet size of 274, and in the

newer dataset, it was 281. In terms of unique destina-

tions contacted, we also saw similar trends where most

devices contacted similar numbers of endpoints, e.g.,

Geeni Camera previously had contacted 5.55 unique

destinations on average in each window, whereas in the

new dataset, it has 5.04. Our analysis on temporal im-

pact showcased that the fingerprints do not change dras-

tically over time, thus allowing an adversary to period-

ically retrain the model (maybe every once a year) and

maintain high accuracy. However, specific categories of

devices may receive more updates over any given span of

time, potentially impacting fingerprint stability. How-

ever, a motivated and resourceful adversary can fre-

quently retrain the model using updated data (whenever

feasible).

Limitations. There are a few limitations to our work.

First, we manually categorized devices into different

groups based on their functionality, but some devices

have dual functionality, and we had to choose one us-

ing our best judgment. Second, since six of the datasets

were collected from external sources, there is the pos-

sibility that some of the devices are wrongly labeled.

However, looking at the high fingerprinting accuracy on

the combined dataset (Table 4) this is likely negligible.

Thirdly, multiple devices of the same make but differ-

ent models/versions may be labeled as the same device.

This can result in poor generalized accuracy and poor

open-world results in some cases. However, with better

labeling, classification results will likely improve. We

also have a limited number of non-IoT devices in our

dataset, whereas non-IoT traffic is expected to be much

higher in the wild.

8 Conclusion

In this paper, we analyze the feasibility of fingerprint-

ing IoT devices across several diverse datasets. We show

that it is possible to uniquely fingerprint many IoT

devices (188 devices in total) and do so when there

are multiple devices of the same make and model. We

also explore the possibility of predicting devices at dif-

ferent levels of granularity. We, next, analyze the ex-

tent to which temporality, locality and data-collection-

methodology impact classification. Our analysis sheds

light on potentially more robust features across vary-

ing conditions. Lastly, we showcase how an adversary

can design an open-world classifier to obtain additional

insights about unseen devices. We find that an adver-

sary can guess the proper company category seven times

more accurately than a random guess by exploiting the

metadata of encrypted network traffic.

Acknowledgement

We thank our anonymous reviewers for their valuable

feedback. This material is based upon work supported

in parts by the National Science Foundation under grant

number CNS-1849997 and the Center for Accelerated

Fingerprinting Internet of Things Devices 594

Real Time Analytics (CARTA) - NCSU Research Site.

Any opinions, findings, and conclusions, or recommen-

dations expressed in this material are those of the au-

thors and do not necessarily reflect the views of the

National Science Foundation.

References

[1] Smarthomedb. https://www.smarthomedb.com/. Accessed:

2021-12-02.

[2] OpenWrt Project, 2020. https://openwrt.org/.

[3] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Mi-

ettinen, H. Aksu, M. Conti, A. Sadeghi, and A. S. Ulua-

gac. Peek-a-boo: I see your smart home activities, even

encrypted! CoRR, abs/1808.02741, 2018.

[4] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,

F. Piessens, and B. Preneel. Fpdetective: dusting the

web for fingerprinters. In Proceedings of the 20th ACM

SIGSAC conference on Computer and Communications Se-

curity (CCS), pages 1129–1140, 2013.

[5] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Sok:

Security evaluation of home-based IoT deployments. In

Proceedings of the 40th IEEE Symposium on Security and

Privacy (SP), pages 1362–1380, 2019.

[6] B. Anderson and D. McGrew. Identifying encrypted malware

traffic with contextual flow data. In Proceedings of the

2016 ACM Workshop on Artificial Intelligence and Security

(AISec), pages 35–46, 2016.

[7] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan,

and N. Feamster. Keeping the smart home private with

smart(er) IoT traffic shaping. Proceedings on Privacy En-

hancing Technologies, 2019(3):128–148, 2019.

[8] N. Apthorpe, D. Reisman, and N. Feamster. A smart home

is no castle: Privacy vulnerabilities of encrypted IoT traffic.

CoRR, abs/1705.06805, 2017.

[9] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan,

and N. Feamster. Spying on the smart home: Privacy

attacks and defenses on encrypted IoT traffic. CoRR,

abs/1708.05044, 2017.

[10] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine.

Privacy vulnerabilities in encrypted http streams. In Pro-

ceedings of the 5th International Conference on Privacy

Enhancing Technologies (PETS), pages 1–11, 2005.

[11] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching

from a distance: Website fingerprinting attacks and defenses.

In Proceedings of the 19th ACM Conference on Computer

and Communications Security (CCS), pages 605–616, 2012.

[12] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel

leaks in web applications: A reality today, a challenge to-

morrow. In Proceedings of the 31st IEEE Symposium on

Security and Privacy (SP), pages 191–206, 2010.

[13] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde. Can’t

you hear me knocking: Identification of user actions on an-

droid apps via traffic analysis. In Proceedings of the 5th

ACM Conference on Data and Application Security and Pri-

vacy (CODASPY), pages 297–304, 2015.

[14] B. Copos, K. Levitt, M. Bishop, and J. Rowe. Is anybody

home? inferring activity from smart home network traffic. In

IEEE Security and Privacy Workshops (SPW), pages 245–

251. IEEE, 2016.

[15] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song.

Networkprofiler: Towards automatic fingerprinting of android

apps. In Proceedings of the 32nd IEEE INFOCOM, pages

809–817, 2013.

[16] A. Das, N. Borisov, and E. Chou. Every move you make:

Exploring practical issues in smartphone motion sensor fin-

gerprinting and countermeasures. Proceedings on Privacy

Enhancing Technologies, 2018(1):88–108, 2018.

[17] L. C. C. Desmond, C. C. Yuan, T. C. Pheng, and R. S. Lee.

Identifying unique devices through wireless fingerprinting. In

Proceedings of the 1st ACM conference on Wireless Network

Security, pages 46–55, 2008.

[18] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton.

Peek-a-boo, i still see you: Why efficient traffic analysis

countermeasures fail. In Proceedings of the 33rd IEEE Sym-

posium on Security and Privacy (SP), pages 332–346. IEEE,

2012.

[19] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Rand-

wyk, and D. Sicker. Passive data link layer 802.11 wireless

device driver fingerprinting. In Proceedings of the 15th Con-

ference on USENIX Security Symposium (USENIX Security),

volume 3, pages 16–89, 2006.

[20] I. Guyon and A. Elisseeff. An introduction to variable and

feature selection. The Journal of Machine Learning Re-

search, 3:1157–1182, Mar. 2003.

[21] J. Hayes and G. Danezis. k-fingerprinting: A robust scalable

website fingerprinting technique. In Proceedings of the 25th

USENIX Security Symposium (USENIX Security), pages

1187–1203, 2016.

[22] D. Herrmann, R. Wendolsky, and H. Federrath. Website

fingerprinting: attacking popular privacy enhancing tech-

nologies with the multinomial naïve-bayes classifier. In Pro-

ceedings of the 2009 ACM workshop on Cloud Computing

Security, pages 31–42, 2009.

[23] Y. Jin, E. Sharafuddin, and Z.-L. Zhang. Unveiling core

network-wide communication patterns through application

traffic activity graph decomposition. In Proceedings of the

11th International Joint Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), pages 49–

60, 2009.

[24] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt.

A critical evaluation of website fingerprinting attacks. In

Proceedings of the 21st ACM Conference on Computer and

Communications Security (CCS), page 263–274, 2014.

[25] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc:

Multilevel traffic classification in the dark. In Proceedings

of the 2005 Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communications

(SIGCOMM), page 229–240, 2005.

[26] T. Kohno, A. Broido, and K. C. Claffy. Remote physical

device fingerprinting. IEEE Transactions on Dependable and

Secure Computing, 2(2):93–108, 2005.

[27] Z. Li, W. Xu, R. Miller, and W. Trappe. Securing wireless

systems via lower layer enforcements. In Proceedings of

the 5th ACM workshop on Wireless Security (WiSec), pages

33–42, 2006.

Fingerprinting Internet of Things Devices 595

[28] M. Liberatore and B. N. Levine. Inferring the source of

encrypted http connections. In Proceedings of the 13th

ACM conference on Computer and Communications Security

(CCS), pages 255–263, 2006.

[29] L. Lu, E.-C. Chang, and M. C. Chan. Website fingerprinting

and identification using ordered feature sequences. In Pro-

ceedings of the 15th European Symposium on Research in

Computer Security (ESORICS), pages 199–214, 2010.

[30] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(Nov):2579–2605,

2008.

[31] S. Marchal, M. Miettinen, T. D. Nguyen, A. Sadeghi, and

N. Asokan. Audi: Toward autonomous IoT device-type

identification using periodic communication. IEEE Journal

on Selected Areas in Communications, 37(6):1402–1412,

2019.

[32] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi,

and S. Tarkoma. IoT SENTINEL: Automated device-type

identification for security enforcement in iot. In Proceedings

of the 37th IEEE International Conference on Distributed

Computing Systems (ICDCS), pages 2177–2184, 2017.

[33] S. B. Moon, P. Skelly, and D. Towsley. Estimation and

removal of clock skew from network delay measurements.

In Proceedings of the 18th IEEE Conference on Computer

Communications (INFOCOM), volume 1, pages 227–234,

1999.

[34] N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng. Device

fingerprinting to enhance wireless security using nonpara-

metric bayesian method. In Proceedings of the 30th IEEE

INFOCOM, pages 1404–1412. IEEE, 2011.

[35] T. T. T. Nguyen and G. Armitage. A survey of techniques

for internet traffic classification using machine learning.

IEEE Communications Surveys Tutorials, 10(4):56–76, 2008.

[36] T. OConnor, R. Mohamed, M. Miettinen, W. Enck,

B. Reaves, and A.-R. Sadeghi. Homesnitch: behavior trans-

parency and control for smart home IoT devices. In Pro-

ceedings of the 12th Conference on Security and Privacy

in Wireless and Mobile Networks (WiSec), pages 128–138,

2019.

[37] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zin-

nen, M. Henze, and K. Wehrle. Website fingerprinting at

internet scale. In Proceedings of the 23rd Annual Network

and Distributed System Security Symposium (NDSS), 2016.

[38] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Web-

site fingerprinting in onion routing based anonymization

networks. In Proceedings of the 10th Annual ACM Work-

shop on Privacy in the Electronic Society (WPES), pages

103–114, 2011.

[39] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and

D. Wetherall. 802.11 user fingerprinting. In Proceedings

of the 13th Annual ACM International Conference on Mo-

bile Computing and Networking (MobiCom), pages 99–110,

2007.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning

Research, 12:2825–2830, 2011.

[41] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering

of http-based malware and signature generation using ma-

licious network traces. In Proceedings of the 7th USENIX

Conference on Networked Systems Design and Implementa-

tion (NSDI), page 26, 2010.

[42] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Anton-

akakis. Iotfinder: Efficient large-scale identification of iot

devices via passive dns traffic analysis. In Proceedings of

the 5th IEEE European Symposium on Security and Privacy

(EuroS&P), 2020.

[43] A. Reed and M. Kranch. Identifying https-protected netflix

videos in real-time. In Proceedings of the 7th ACM on

Conference on Data and Application Security and Privacy,

pages 361–368, 2017.

[44] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kol-

cun, and H. Haddadi. Information exposure from consumer

IoT devices: A multidimensional, network-informed mea-

surement approach. In Proceedings of the 19th Internet

Measurement Conference (IMC), pages 267–279, 2019.

[45] S. J. Saidi, A. M. Mandalari, R. Kolcun, D. J. D.

Hamed Haddadi, D. Choffnes, G. Smaragdakis, and A. Feld-

mann. A haystack full of needles: Scalable detection of IoT

devices in the wild. In Proceedings of the 20th Internet

Measurement Conference (IMC), 2020.

[46] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon,

Q. Zhang, X. Zhang, D. Xu, and J. Qian. Eavesdropping on

fine-grained user activities within smartphone apps over en-

crypted network traffic. In Proceedings of the 10th USENIX

Conference on Offensive Technologies (WOOT), pages 69–

78, 2016.

[47] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, T. Kohno,

et al. Devices that tell on you: Privacy trends in consumer

ubiquitous computing. In Proceedings of the 16th USENIX

Security Symposium (USENIX Security), pages 55–70, 2007.

[48] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wi-

jenayake, A. Vishwanath, and V. Sivaraman. Classifying

IoT devices in smart environments using network traffic

characteristics. IEEE Transactions on Mobile Computing,

18(8):1745–1759, 2018.

[49] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford,

C. Wijenayake, A. Vishwanath, and V. Sivaraman. Charac-

terizing and classifying IoT traffic in smart cities and cam-

puses. In IEEE Conference on Computer Communications

Workshops, pages 559–564, 2017.

[50] R. Sommer and V. Paxson. Outside the closed world: On

using machine learning for network intrusion detection. In

Proceedings of the 30th IEEE Symposium on Security and

Privacy (SP), pages 305–316, 2010.

[51] D. Song. Timing analysis of keystrokes and ssh timing at-

tacks. In Proceedings of the 10th USENIX Security Sympo-

sium (USENIX Security), 2001.

[52] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Pad-

manabhan, and L. Qiu. Statistical identification of encrypted

web browsing traffic. In Proceedings of the 23rd IEEE Sym-

posium on Security and Privacy, pages 19–30, 2002.

[53] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. App-

scanner: Automatic fingerprinting of smartphone apps from

encrypted network traffic. In Proceedings of the 1st IEEE

European Symposium on Security and Privacy (EuroS&P),

pages 439–454, 2016.

Fingerprinting Internet of Things Devices 599

Table 18. Distribution of IoT devices into general device cate-

gories where each categories has at least two devices. We use

these devices for predicting general-device category labels under

open-world setting.

Smart TV Switches Light

LG Smart TV, TP-Link WiFi Plug, Bulb 1, Koogeek Lightbulb,

Amazon Fire TV, Belkin WeMo Link, D-Link Plug, TP-Link Smart WiFi LED Bulb,

Apple TV, Roku TV, Belkin WeMo Switch, LIFX Virtual Bulb, Sengled Bulb,

Roku 4, nVidia Shield, Belking WeMo Insight, Magichome Strip,Xiaomi Strip

Samsung SmartTV Amazon Plug, Smart WiFi Plug Philips Hue Bulb

Cleaning Health Motion Sensors

Xiaomi Cleaner, Withings Smart scale, Belkin WeMo Motion Sensor,

Roomba, Withings Aura smart sleep sensor, Chamberlain myQ Garage Opener,

D-Link Motion Sensor,

General Safety Indoor Comfort Sensor Cooking

Ring Security System, Ecobee Thermostat, Smarter Coffee Machine,

Nest Guard, Nest Thermostat, Belkin WeMo Crockpot,

Schlage Lock, Netatmo weather station, iKettle,

D-Link Alarm, Nest Protect smoke alarm, Brewer, Fridge,

Honeywell Thermostat, Sousvide, Microwave

Voice Assistants (VA) Smart Hubs Cameras

Allure Speaker, Sengled Hub, Belkin Netcam, Cloudcam,

Apple HomePod, Blink Security Hub, Chinese Webcam, Yi Camera,

Sonos, Insteon Hub, Luohe Spycam, Zmodo Doorbell,

Google Home, Wink 2 Hub, Blink Camera, Lefun Cam,

Google Home Mini, Logitech Harmony Hub, TP-Link Day Night Camera,

Canary, Philips Hue Hub, Netatmo Welcome, Nest Cam IQ,

Amazon Echo, Caseta Wireless Hub, Dropcam, Nest Cam, Piper NV,

Amazon Echo Dot, Samsung SmartThings Hub, Withings Smart Baby Monitor,

Amazon Dot Kids, Google OnHub, Amcrest Cam, Withings Home,

Bose SoundTouch 10, August Lock Hub, D-Link Camera, Insteon Camera,

Amazon Echo Plus, MiCasaVerde VeraLite, Wansview Cam, Charger Camera,

Amazon Echo Show, Lightify Hub, Samsung SmartThings Camera,

Amazon Echo Spot, Xiaomi Hub, Night Owl Doorbell Camera,

Amazon Echo Look, Arlo Base Station, Bosiwo Camera, Xiaomi Camera 2,

iHome, Ultraloq Lock Bridge, Ring Doorbell Chime, Netgear Arlo Cam,

Harmon Kardon Invoke, Lockly Lock Hub, TP-Link Kasa Cam, Nest Hello Doorbell,

Triby Speaker, Sifely Lock Hub, August Doorbell Cam,

Ring Base Station, Logitech Logi Circle, Geeni Camera,

Philips Hue Bridge, Ring Doorbell, Ring Doorbell Pro,

Blink Security Hub, Geeni Doorbell Cam, Microseven Cam,

Table 19. All unique make and model devices grouped into

general-device categories.

Cameras Smart Hubs Voice Assistants

Belkin Netcam, Cloudcam Sengled Hub, Insteon Hub Allure Speaker, Sonos

Chinese Webcam, Blink Camera Blink Security Hub Apple HomePod

Yi Camera, Lefun Cam Philips Hue Bridge Triby Speaker, Google Home

Luohe Spycam, Zmodo Doorbell Wink 2 Hub, Lightify Hub Bose SoundTouch 10

TP-Link Kasa Camera Logitech Harmony Hub Google Home Mini, Canary

Ring Doorbell Chime Philips Hue Hub iHome, Harmon Kardon Invoke

TP-Link Day Night Cloud camera Caseta Wireless Hub Amazon Echo

Netatmo Welcome, Ring Doorbell Samsung SmartThings Hub Amazon Echo Dot

Nest Cam IQ, Dropcam Google OnHub, Xiaomi Hub Amazon Dot Kids

Nest Cam, Piper NV MiCasaVerde VeraLite Amazon Echo Plus

D-Link Camera, Insteon Camera Ring Base Station Amazon Echo Show

Netgear Arlo Camera Sifely Lock Hub Amazon Echo Spot

Bosiwo Camera, Charger Camera Arlo Base Station Amazon Echo Look

Logitech Logi Circle Ultraloq Lock Bridge Health

Samsung SmartThings Camera August Lock Hub Withings Smart scale

Ring Doorbell Pro Lockly Lock Hub Withings Aura smart sleep sensor

Amcrest Cam, Withings Home Indoor Comfort Sensor Cleaning

Withings Smart Baby Monitor Nest Thermostat Xiaomi Cleaning, Roomba

August Doorbell Cam Netatmo weather station Light

Wansview Cam, Geeni Camera NEST Protect smoke alarm Magichome Strip, Sengled Bulb

Microseven Camera Ecobee Thermostat Xiaomi Strip, Philips Hue Bulb

Geeni Doorbell Camera Honeywell Thermostat Bulb 1, Koogeek Lightbulb

Xiaomi Camera 2 Smart TV TP-Link Smart WiFi LED Bulb

Nest Hello Doorbell Apple TV, Roku TV LIFX Virtual Bulb

Night Owl Doorbell Camera Samsung SmartTV Motion Sensors

Smart Router nVidia Shield Belkin WeMo Motion Sensor

Securifi Almond LG Smart TV, Roku 4 Chamberlain myQ Garage Opener

Switches Amazon Fire TV D-Link Motion Sensor

Smart WiFi Plug Photo Frames Garden

Amazon Plug Pix-Star Photo Frame Rachio Sprinkler

D-Link Plug Cooking General Safety

TP-Link WiFi Plug Belkin WeMo Crockpot Nest Guard

Belkin WeMo Link iKettle, Sousvide, Brewer Schlage Lock

Belkin WeMo Switch Microwave, Fridge D-Link Alarm

Belkin WeMo Insight Smarter Coffee Machine Ring Security System

I Full Feature List

Table 20. List of all features grouped based on different at-

tributes.

Burst Time Burst Bytes Burst Packets

out_mean_bursttime out_mean_burstbytes out_mean_burstnumpkts

in_mean_bursttime in_mean_burstbytes in_mean_burstnumpkts

out_median_bursttime out_median_burstbytes out_median_burstnumpkts

in_median_bursttime in_median_burstbytes in_median_burstnumpkts

out_25per_bursttime out_25per_burstbytes out_25per_burstnumpkts

in_25per_bursttime in_25per_burstbytes in_25per_burstnumpkts

out_75per_bursttime out_75per_burstbytes out_75per_burstnumpkts

in_75per_bursttime in_75per_burstbytes in_75per_burstnumpkts

out_90per_bursttime out_90per_burstbytes out_90per_burstnumpkts

in_90per_bursttime in_90per_burstbytes in_90per_burstnumpkts

out_std_bursttime out_std_burstbytes out_std_burstnumpkts

in_std_bursttime in_std_burstbytes in_std_burstnumpkts

out_max_bursttime out_max_burstbytes out_max_burstnumpkts

in_max_bursttime in_max_burstbytes in_max_burstnumpkts

out_min_bursttime out_min_burstbytes out_min_burstnumpkts

in_min_bursttime in_min_burstbytes in_min_burstnumpkts

Burst Delay Packet Delay Unique Packet Length

out_mean_interburstdelay mean_interpktdelay mean_out_uniquelen

in_mean_interburstdelay median_interpktdelay mean_in_uniquelen

out_median_interburstdelay 25per_interpktdelay median_out_uniquelen

in_median_interburstdelay 75per_interpktdelay median_in_uniquelen

out_25per_interburstdelay 90per_interpktdelay 25per_out_uniquelen

in_25per_interburstdelay std_interpktdelay 25per_in_uniquelen

out_75per_interburstdelay max_interpktdelay 75per_out_uniquelen

in_75per_interburstdelay min_interpktdelay 75per_in_uniquelen

out_90per_interburstdelay External Port List 90per_out_uniquelen

in_90per_interburstdelay External Port List 90per_in_uniquelen

out_std_interburstdelay External Port TLSTCP len_out_uniquelen

in_std_interburstdelay External Port DNS len_in_uniquelen

out_max_interburstdelay External Port UDP max_out_len

in_max_interburstdelay External Port NTP max_in_len

out_min_interburstdelay Protocol List min_out_len

in_min_interburstdelay Protocol List min_in_len

Protocols Total Packets Total Bytes

out_tls1pkts_percentage out_totalpkts out_totalbytes

in_tls1pkts_percentage in_totalpkts in_totalbytes

out_tls12pkts_percentage Hostname List IP List

in_tls12pkts_percentage Hostname List IP List

out_tcppkts_percentage Hostname TLSTCP IP TLSTCP

in_tcppkts_percentage Hostname DNS IP DNS

out_udppkts_percentage Hostname UDP IP UDP

in_udppkts_percentage Hostname NTP IP NTP

out_dnspkts_percentage Packet Size List Request-Reply Pair List

in_dnspkts_percentage Packet Sizes TLSTCP Req-Reply Pair TLSTCP

out_ssdppkts_percentage Packet Sizes DNS Req-Reply Pair DNS

in_ssdppkts_percentage Packet Sizes UDP Req-Reply Pair UDP

out_sslpkts_percentage Packet Sizes NTP Req-Reply Pair NTP

in_sslpkts_percentage Packet In/Out Ratio HTTP(S) Traffic

out_icmppkts_percentage out_percentage pkts_80_443_percentage

in_icmppkts_percentage in_percentage bytes_per_pkt_80_443

out_ntppkts_percentage Unique IPs Unique Ports

in_ntppkts_percentage num_unique_ip in_numuniquesrcport

out_numuniqueprotocol num_unique_ip_3_octet out_numuniquedstport

in_numuniqueprotocol num_unique_hostname

TCP Flags

out_tcpack_percentage

out_tcpsyn_percentage

out_tcpfin_percentage

out_tcprst_percentage

out_tcppsh_percentage

out_tcpurg_percentage

in_tcpack_percentage

in_tcpsyn_percentage

in_tcpfin_percentage

in_tcprst_percentage

in_tcppsh_percentage

in_tcpurg_percentage

Fingerprinting Internet of Things Devices 600

J Comparison with Related Work

Table 21. Comparison with existing work on IoT device fingerprinting. Symbols convey the following meanings – #: not analyzed, G#:

partially analyzed, : analyzed.

Apthorpe et al. [9] Ren et al. [44] Sivanathan et al. [48] Copos et al. [14] HomeSnitch [36] PINGPONG [54] Our work

Features used

Packet timing # G# # #

Packet sizes # # #

Traffic direction # # #

Burst timing # # # # #

Burst sizes # # # # #

Flow timing # # # #

Flow sizes # # #

External ports # # # # #

External IPs # # # # #

External domains # # # # #

Protocols # # # # # #

DNS queries # # # #

NTP queries # # # #

MAC Addresses # # # # # #

Evaluation Closed-world

settings Open-world # # # # # G#

Granularity

Device-activity ⋆ # #

of detection

Device make-and-model ∗ # #

Company-specific ⋄ # # # # # #

General-device † # # # # # #

Datasets used (geographic origin) 1 (US) 2 (US, UK) 1 (AU) 1 (US) 2 (US) 3 (US, AU) 7 (US, UK, AU)

Number of unique device types 7 55 28 2 20 19 120

⋆ Inferring individual device-level activity; ∗ Individual devices (different make and model); ⋄ Devices from the same vendor with similar functionality, e.g., Google Home

and Google Home Mini are grouped together; † Company agnostic device category, e.g., Amazon Echo and Google Home are smart voice assistants;

	Analyzing the Feasibility and Generalizability of Fingerprinting Internet of Things Devices
	1 Introduction
	2 Background and Related Work
	3 Dataset and Methodology
	3.1 Threat Model
	3.2 Datasets
	3.3 Data Pre-processing
	3.4 Feature Extraction
	3.5 ML-Model and Metrics Used

	4 Fingerprinting Devices
	4.1 Effectiveness Across Datasets
	4.2 Scalability
	4.3 Fingerprinting Granularity

	5 Fingerprinting Generalizability
	5.1 Temporal Impact
	5.2 Spatial Impact
	5.3 Impact of Data Collection Approach

	6 Open-World Evaluations
	6.1 Distinguishing Known from Unknown
	6.2 End-to-end Open-world classifier
	6.3 Targeted Attacks

	7 Discussion
	8 Conclusion
	A Distribution of Device Instance
	B Example of Device Clusters
	C Top Ranked Features
	D Temporal Generalizability
	E Spatial Generalizability
	F Confusion Matrix under General-device Category
	G IoT vs. Non-IoT Classifier
	H Distribution of IoT Devices
	I Full Feature List
	J Comparison with Related Work

