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Fully Secure PSI via MPC-in-the-Head
Abstract: We design several new protocols for private
set intersection (PSI) with active security: one for the
two party setting, and two protocols for the multi-party
setting. In recent years, the state-of-the-art protocols for
two party PSI have all been built from OT-extension.
This has led to extremely efficient protocols that pro-
vide correct output to one party; seemingly inherent to
the approach, however, is that there is no efficient way
to relay the result to the other party with a provable
correctness guarantee. Furthermore, there is no natu-
ral way to extend this line of works to more parties. We
consider a new instantiation of an older approach. Using
the MPC-in-the-head paradigm of Ishai et al. [IPS08],
we construct a polynomial with roots that encode the in-
tersection, without revealing the inputs. Our reliance on
this paradigm allows us to base our protocol on passively
secure Oblivious Linear Evaluation (OLE) (requiring 4
such amortized calls per input element). Unlike state-of-
the-art prior work, our protocols provide correct output
to all parties. We have implemented our protocols, pro-
viding the first benchmarks for PSI that provides correct
output to all parties. Additionally, we present a variant
of our multi-party protocol that provides output only to
a central server.
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1 Introduction
Secure multi-party computation (MPC) allows two or
more parties to perform some agreed upon compu-
tation on their private input, while revealing noth-
ing beyond the value of the output. General solu-
tions to the problem were first developed in the 1980s
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[Yao86, Gol09], and allow for the computation of ar-
bitrary functions over the input: m participants agree
on m functions, f1, . . . , fm, and each provides an in-
put to the computation. At the end of their interac-
tion, party i learns fi(X1, . . . , Xm), where Xj is the in-
put provided by party j. In the last fifteen years, the
research has shifted towards the study of concrete ef-
ficiency [WRK17, EKR18, BCS19]. While the general
solutions, which support arbitrary computations, have
become quite efficient, for certain particular compu-
tations, tailored protocols can greatly outperform the
generic approach, both asymptotically and concretely
e.g., [HT10, CHI+21]. Private set intersection (PSI) is
an example of such a concrete and well-studied function.

There are many variants of the PSI problem, but,
broadly, two or more parties each hold a private set of
input values, and they all learn the intersection of those
sets: ∀j ∈ {1, . . . ,m} : fj(X1, . . . , Xm) =

⋂
iXi. In re-

ality, it is surprisingly challenging to provide a correct
output to all parties. In fact, all prior works on PSI, in
both the two-party and multi-party settings, provide an
output to only one party: f1 =

⋂
iXi, and, for j > i,

fj = ⊥. While there are generic ways of “compiling”
such protocols to provide output to all parties, e.g., us-
ing zero-knowledge,1 this ruins the efficiency of known
constructions. In this work, we consider both variants
of PSI, referring to protocols that realize the former as
“fully secure”, and those realizing the latter as having
“one-sided output”. Ours is the first construction to of-
fer full security in this sense,2 providing features that
are important in many PSI use cases. (We provide some
examples in Section 1.2.)

As with general-purpose secure computation, the
solution space depends greatly on whether the adversary
is assumed to be semi-honest (aka passive), in which
case corrupted parties always follow the protocol, or ma-

1 In a semi-honest setting, the party receiving output can for-
ward it to the other participants, and, by assumption, it will
do so correctly. In the malicious setting, those parties need a
method of verifying the correctness of this output. This issue is
independent of the issue of fairness which is discussed below.
2 We note that the PSI computation, like any other, can be
compiled into a Boolean circuit, and evaluated using any appro-
priate generic protocol for secure computation. This would also
yield full security, but the asymptotic complexity, and concrete
cost of this approach is worse than custom PSI protocols.
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licious (aka active), in which case the corrupted parties
might deviate arbitrarily from the protocol specifica-
tion. In this work, we only consider active adversaries.
Finally, another important feature in MPC regards fair-
ness: when multiple parties are meant to receive out-
put, a protocol is considered fair if no party can learn
their own output while preventing others from doing the
same. (The question of fairness is irrelevant when the
computation is meant to be one-sided.) When half or
more parties might be malicious, fairness is impossible
to achieve [Cle86], and the standard security definition
[Gol09], called security with abort, ensures only that if
a party receives output, it is guaranteed to be correct.
Throughout our paper we consider the setting where
m − 1 parties might be malicious, including the two-
party setting; we therefore only consider security with
abort.

We construct three new PSI protocols for the ma-
licious model, one in the two-party setting, and two in
the multi-party setting. Specifically, we construct the
first actively secure two-party protocol that provides
output to both parties, or “fully secure”. To our knowl-
edge, the only other PSI protocol that claims to be fully
secure is the two-party protocol by Ghosh and Nilges
[GN19]. However, a recent analysis [AMZ21] has shown
that [GN19] is insecure and is susceptible to various at-
tacks. Mitigating these attacks seems to imply a much
higher complexity than reported.

We then extend our result to the multi-party set-
ting, providing the first fully secure multi-party PSI
construction (MPSI). Finally, we show how to relax se-
curity of this protocol, providing an output to a single
designated party, and improving efficiency. We provide
a comparison with several recent MPSI protocols that
provide this weaker guarantee in Sections 5-6.

We have implemented our protocols, providing the
first benchmarks for fully secure PSI in both the two-
party and multi-party settings. Our constructions rely
heavily on a cryptographic primitive called Oblivious
Linear Evaluation (OLE). In our protocols, the PSI
problem is reduced to oblivious polynomial multiplica-
tion via OLE where correctness is ensured via the use
of a watchlist mechanism that prevents the adversary
from using any malformed input or deviating from the
protocol. Another important feature of our protocols is
in relying on passively secure OLE (while achieving ac-
tive security), requiring only 4 passive OLE executions
per input. When compared with using generic, malicious
secure, 2PC (e.g. Overdrive [KPR18]) to compute a
PSI circuit (e.g. [HEK12]), our protocol is nearly 1000×
faster (assuming trusted key setup for Overdrive).

Since our PSI protocols are the first fully secure
constructions, there is no readily available prior work
to compare with. When providing an output to only
one party, concurrent with our work, Ben-Efraim et
al. [BNOP21] have provided the only other experimen-
tal evaluation of MPSI with active security. We com-
pare our experimental results with theirs as best as we
can in Section 6. Beside [BNOP21], and also concurrent
with our work, Garimella et al. [GPR+21] provide an-
other construction with this weaker output guarantee
(but without any experimental evaluation). As demon-
strated, our protocols are highly competitive despite the
stronger level of security.

1.1 A Brief History of PSI

Before describing our precise contributions, we provide
a brief, and non-exhaustive history of this highly stud-
ied problem. We categorize prior work according to the
technical approach.
PSI From Polynomial Evaluation. One of the ear-
liest PSI protocols, by Freedman et al. [FNP04], pro-
vided an elegant semi-honest solution using additively
homomorphic encryption. Party P1 encodes its input as
the roots of a polynomial, P . It then encrypts the co-
efficients of this polynomial and sends the ciphertexts
to party P2, who evaluates the same polynomial, homo-
morphically, on each of its own inputs. P2 then random-
izes the result of each evaluation as follows, and sends
the randomized encodings to party P1 to determine the
output: for input y, party P2 computes Enc(r ·P (y)+y).
If y is a root of P , this encodes y, while in all other
cases, it encodes a random value. Preventing malicious
behaviour requires using cut-and-choose and the ran-
dom oracle, where only the first party learns the PSI
result. Specifically, Freedman et al. in [FNP04] uses the
random oracle to derandomize the computations of P2,
which can be recomputed by P1 for the elements that
intersect. Over the next years, several results strength-
ened the security guarantees and the performance of this
approach [KS05, DMRY09, HN10, Haz15, HV17].

Recently, Ghosh and Nilges [GN19] provided a mali-
cious fully secure construction. They also extended their
construction to the one-sided multi-party setting. Un-
fortunately, their constructions are flawed [AMZ21]. To
the best of our knowledge, that was the only attempt to
design a PSI construction with this property (excluding
generic protocols for secure computation).
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PSI From Oblivious PRFs. A separate line of works
explores a different approach, using oblivious pseudo-
random functions (OPRFs) [FIPR05, HL08, JL09]. In
this approach, party P1 samples a random PRF key k
for PRF F and computes Fk(x) for every input x in
its set, and finally sends the encoded values to the sec-
ond party. Party P2 then obliviously evaluates the same
PRF F , without knowing k, on each of its own inputs
and computes the intersection on the encoded values. In
the construction from [HL08], the OPRF is constructed
from the number theoretic PRF of Naor and Reingold
[NR97], though later variations would improve upon this
approach (e.g. [JL09]). None of these constructions is
fully secure in the malicious setting.
Generic Solutions. In 2012, Huang et al. [HEK12]
demonstrated that generic protocols for secure compu-
tation, based on Yao’s garbled circuits, had improved
to the point that they were now faster than custom PSI
protocols. The computational complexity of garbled cir-
cuits is dominated by oblivious transfer (OT). OT ex-
tension, introduced by Ishai et al. [IKNP03], allows us
to reduce O(w) OTs to O(κ) public key operations and
O(w) symmetric key operations, where w is the input
size and κ the security parameter. Huang et al. pre-
sented a circuit of size O(w logw) for performing PSI
on two sets of size w, which determines the communi-
cation complexity. While several existing custom pro-
tocols already offered linear communication complexity,
they required O(w) public key operations which over-
come the cost of sending O(w logw) data in “reason-
able" networks. More recently, Pinkas et al. [PSTY19]
showed how to reduce the circuit size to O(w) using
cuckoo hashing, but only in the semi-honest setting.
OT-Based PSI. Since 2013, a long line of works
that is based on OT extension, have outperformed the
generic solutions, providing the best running times3

[DCW13, PSZ14, PSSZ15, KKRT16, RR17, PRTY20].
The most recent constructions of this type are simi-
lar to the earlier protocols that embed oblivious PRFs.
These works rely on OT extension to construct random-
ized, correlated encodings of the input values [KKRT16],
similarly to oblivious PRFs. The earlier results in this
line of works only offered semi-honest security, but with
O(w) communication complexity and very few public
key operations. Rindal and Rosulek provided the first

3 When considering communication cost rather than end-to-end
running time, it is still possible to outperform OT-based solu-
tions, including those based on garbled circuits [CT10, CLR17,
MPR+20], by using a linear number of public key operations.

malicious secure construction from OT extension, re-
quiring O(w logw) communication [RR17]. Pinkas et
al. [PRTY20] introduced the first maliciously secure
PSI protocol from OT extension with linear communi-
cation complexity. Rindal and Schoppmann [RS21] im-
proved on Pinkas et al. [PRTY20] in concrete terms,
though they again required O(w logw) communication.
Building on [RR17], a recent work by Ben-Efraim et
al. [BNOP21] designed and implemented a multi-party
PSI protocol with malicious security and communica-
tion complexity dominated by O(mwκ2) where m is the
number of parties and κ is the security parameter. Their
construction provides an output to one party.

1.2 Our Contributions

Applying MPC-in-the-Head to PSI. We depart
from this successful line of works building PSI from
OT extension, and return instead to methods based
on oblivious polynomial evaluation. We present three
new, maliciously secure PSI protocols, one for the two-
party case, and two different extensions to the multi-
party setting. In a very broad sense, our approach is
similar to the old result by Kissner and Song [KS05], in
that we arrive at the output by computing a polynomial
T (x) = Q(x) ·R(x)+P (x) ·S(x), where the roots of Q(x)
encode the inputs of one party, the roots of P (x) encode
the inputs of the other, and the polynomials S(x) and
R(x), which are not known to either party, serve to hide
the elements that are not in the intersection.

However, while Kissner and Song homomorphically
encrypt the coefficients of these polynomials, our ap-
proach for computing this polynomial is more similar
to the recent protocols proposed by Ghosh and Nilges
[GN19]. Like them, we reduce the problem of comput-
ing this polynomial T to the problem of OLE. However,
we manage to do this while guaranteeing output to all
parties. Additionally, we rely on the MPC-in-the-head
paradigm of Ishai et al. (IPS) [IPS08] to ensure secu-
rity, which provides several benefits: (1) This allows us
to rely only on semi-honest OLE and, (2) it can support
an arbitrary number of parties.

Ishai et al. presented a general compiler for con-
structing maliciously secure MPC in the dishonest set-
ting out of simpler primitives. At a high level, this is
done by combining two protocols: an “outer protocol”
for computing the desired function – in our case, the
polynomial T , and an “inner protocol” for securely simu-
lating the roles of the participants in the outer protocol.
The outer protocol is unconditionally secure against an
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Table 1. A comparison of communication complexity. w is the input size, m is the number of parties, λ, κ are the security parameters,
and t = O(λ). In all protocols, multiples of mw are the dominant terms. All protocols are secure against malicious adversaries.

Protocol Communication complexity Fully secureTotal P0

[HV17] O(mwκ logw +m2κ) O(mwκ logw) NO
[GPR+21] O(mw(κ+ λ+ logw) +m2κ) O(mw(κ+ λ+ logw)) NO
[BNOP21] O(mwκ2 +mwκ log(κw) O(mwκ2 +mwκ log(κw) NO
Ours (P0 receives output) O(mwκ+m2κ+mtκ logw) O(mwκ+mtκ logw) NO
Ours (All receive output) O(mwκ+m2tκ logw) O(mwκ+mt logw) YES

adversary corrupting a minority of parties, while the in-
ner protocol relies on some cryptographic primitive, and
must be secure against a semi-honest adversary corrupt-
ing m − 1 parties. (Often, m = 2.) The parties in the
inner protocol secret share among themselves the state
of the parties in the outer protocol, and securely sim-
ulate each of their executions. Using oblivious transfer,
the members of the inner protocol obliviously establish
“watch channels” through which they can monitor the
behavior of a minority of simulated parties. This allows
them to catch any cheating with very high probability,
without violating privacy.

We describe how our protocol is derived from the
IPS paradigm. For simplicity, we stick to the two party
setting. As in IPS, we view the outer protocol as in-
volving multiple servers, and two clients: the two par-
ties with input play the role of the clients, and begin
by secret sharing their input sets with the servers. This
is done by sampling a random polynomial with roots
at the points corresponding to the clients’ inputs, and
sending a single evaluation of this polynomial to each
server. We denote the polynomials encoding the input
sets as P and Q. The two clients then separately sam-
ple random polynomials to serve as additive shares of
the masking polynomials: R(·) = R1(·) + R2(·), and
S(·) = S1(·)+S2(·). These polynomials are secret shared
with the servers as well. The servers add the shares of
R and S, and perform two polynomial multiplications
by locally multiplying their threshold shares, doubling
the degree of the polynomial. They add the results, each
arriving at a secret share of: T = Q ·R+ P · S.

Our main observation is that this particular outer
protocol lends itself very nicely to the IPS approach. In
the IPS compiler, the state of each server is additively
secret shared by the clients, and the outer protocol is
emulated on these additive shares. This emulation can
be quite expensive, depending on the particular instan-
tiations of these protocols. However, for this particular
inner protocol, arriving at the polynomial encoding of
the input requires only two parallel polynomial mul-

tiplications, and a few additions. After providing the
additive secret sharing (of the polynomial shares), the
clients use the GMW protocol in the OLE hybrid model
to emulate the product of the additively shared points
on the polynomial. This requires just two OLE calls for
each server.

This captures the high-level idea of our construc-
tion, but omits several important details. The two
clients perform a degree check of all polynomials (si-
multaneously) in order to defend against any cheating
in the server emulation. Furthermore, we have neglected
to discuss the implementation of the watch channels,
which is a crucial component of the IPS paradigm, and
allows us to benefit from the efficiency of semi-honest
OLE constructions. All of these details can be found in
the formal protocol description.

Although our protocol relies heavily on the ideas
behind the IPS compiler, we do not in fact rely on their
theorem [IPS08], and instead provide a direct proof of
security for our protocol. The IPS protocol is highly
general, while we are focusing on a very specific prob-
lem. Once the general abstraction has been removed,
the resulting PSI protocol is in fact easier to under-
stand without the added complexity of separating an
outer and inner protocol. We presented the IPS frame-
work in this introduction only to explain how we arrived
at our result, and to provide intuition for why our use
of semi-honest secure OLE suffices for our claim of ma-
licious secure PSI.
Fully Secure PSI. In many applications, it is highly
important that all parties learn the output. Consider,
for example, two competing companies that would both
benefit from identifying their overlapping customers.
They intend to perform this computation on a monthly
basis. If one company aborts the computation unfairly,
the collaboration can be terminated, and little harm has
been done. However, if one party consistently learns the
correct intersection and reports only 25% of the result-
ing set to its competitor, it then receives an unfair ad-
vantage, indefinitely! Other PSI applications would ben-
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efit from fully secure protocols for similar reasons, such
as distrustful governments comparing satellite positions
[HLOI16], or searching for software vulnerabilities.

Constructions from OT extension proceed by pro-
viding a list of random encodings to one party, who
then computes the intersection on these encodings, lo-
cally. There is no simple way to certify this list, so it
is trivial for the adversary to lie about what was recov-
ered. A naive approach to certifying the output would
be to employ a zero-knowledge proof, where the witness
is the input to a random oracle. Instantiating the ran-
dom oracle with an MPC friendly hash function, e.g.,
[AAB+19], implies a circuit for this proof statement
that contains around 29 AND gates. Estimating the pa-
rameters according to Limbo [dSGOT21], a recently de-
signed proof system that also relies on the MPC-in-the-
head paradigm, implies a circuit with 20KB proof size
and around 0.01s running time for the prover. Other
proof systems will achieve different tradeoffs between
the proof size and the prover’s running time. This ap-
proach is not scalable as the input size grows: on input
sets containing 1 million items, this would require close
to 3 hours of computing time. For this reason, all cus-
tom constructions in the literature only provide output
to one party.
Multi-Party PSI (MPSI). Another drawback of the
recent constructions based on OT-extension is that they
do not readily extend to the multi-party setting. In con-
trast, we extend our result to the multi-party setting
and provide two protocol variants. The main protocol
that we present in detail ensures that all parties receive
correct output. As we mentioned previously, ours is the
first construction of this kind. It has communication
complexity of O((m2 logw + mw)κ), where m denotes
the number of parties, w denotes the input set size, and
κ is a security parameter, and it is based on the MPC-in-
the-head paradigm. Applying the IPS compiler directly
will result in a very inefficient protocol, which has the
communication complexity of at least O((m3 +m2w)κ.
That is just the cost to set up the watchlists [LOP11].
In order to achieve better performance, we use a cus-
tomized version the IPS compiler for our multi-party
PSI protocol. We redesign the watchlist mechanism for
the MPSI protocol, basing it on the commit-and-reveal
paradigm. In the context of our MPSI protocol, the new
watchlist mechanism reduces the number of watch chan-
nels from O(mt) to O(t) where t is the number of chan-
nels that each party watches. In Section 4 we discuss in
detail how we implement our new watchlist mechanism.

Our MPSI protocol requires O((m2 logw + mw)κ)
bits of communication for setting up the watchlists
channels, and then only O(mwκ) bits to compute the
polynomial encoding the intersection. We also present
a variant that provides output to a single designated
party. In this construction the communication reduces
to O((m2 + mw)κ). Our MPSI constructions need just
4m passive OLE calls per input item. Recently, Ben-
Efraim et al. [BNOP21] gave a new construction for (one
side) multi-party PSI and provided experimental results
(their code is not currently available). Their construc-
tion is based on Garbled Bloom Filters and requires
communicating O(mwκ2 + mwκ log(κw)) bits. Because
of the κ2 overhead, they quickly run into memory con-
straints and report only on input sizes up to 218, which
is relatively small in this line of work.
Performance. Our two-party protocol only requires 4
passively secure OLE instances for each element in the
set (amortized). For our multi-party PSI, the bottle-
neck of the protocol is with respect to the central party
that is required to perform 4m passive OLE per input
item. To test the performance of our protocols, we im-
plemented a prototype that performs an end-to-end PSI
functionality (see Section 6).
Black-Box Use of OLE. Since our reliance on OLE
is black-box, we can instantiate this functionality with
any OLE construction, and can benefit from future im-
provements, such as new developments in OLE exten-
sion and parallelization. Our implementation currently
instantiates the OLE instances with either OT [Gil99]
or with the packed, additively homomorphic encryption
scheme [BGV12], based on Ring LWE. The latter al-
lows us to pack 212 values into a single instance, which
greatly contributes to the concrete efficiency.

1.3 Related Work

Ghosh and Nilges. These authors made the obser-
vation that the computation of T = Q(R1 + R2) +
P (S1 + S2) can be reduced to computing tj = qj(r1,j +
r2,j) + pj(s1,j + s2,j) where w is the input size, j ∈
{1, . . . , 2w + 1}, and tj , qj , pj , r1,j , r2,j , s1,j , s2,j are the
evaluations of the above polynomials on public points
ηj [GN19]. Ghosh and Nilges attempted to make their
protocol secure against malicious adversaries by using
actively secure OLE to compute tj , where the out-
put polynomial T (·) is verified by checking if T (x) ≡
Q(x)(R1(x) + R2(x)) + P (x)(S1(x) + S2(x)) over two
random points x1 and x2, each chosen by a party (in
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the two-party setting). Unfortunately, these checks do
not catch all the malicious attacks [AMZ21]. Specifi-
cally, their verification step does not ensure that the
evaluations above are well-formed or used consistently
throughout the protocol. An adversary can modify these
shares during the computation, or use the shares, say
r1,j , that are not consistent with a polynomial R1(x) =∑w
i=0 aix

i but some R1(x) =
∑w

i=0
aix

i∑k

i=0
bixi

. These attacks

have shown to violate both privacy and correctness. As
opposed to [GN19], our protocol guarantees that the
shares are consistent and well-formed throughout the
computation via the use of MPC-in-the-head.
Leviosa. Our construction leverages a lot of the tech-
niques of Hazay et al. [HIMV19]. They provide a con-
crete instantiation of the IPS framework, resulting in
a generic two-party secure computation protocol with
security against a malicious adversary.

We note that Leviosa makes no claims about the
multi-party setting, though, IPS does, and one can con-
sider how Leviosa would generalize: it would not scale
well. As we mentioned earlier, the cost of setting up
the watchlist channels alone would be O((m3 +m2w)κ).
When focusing on PSI, we are able to extend this ap-
proach much more efficiently, primarily because the pro-
tocol is amenable to a star topology in the communica-
tion network. Specifically, because we can arrive at the
output encoding, T , through a series of pairwise com-
putations with an (arbitrarily) designated central party,
the “inner protocol” in the IPS framework still only re-
quires pairwise additive secret-sharings of the state of
the outer protocol. This allows us to perform pairwise
OLEs on additively shared values (as in our two-party
protocol), rather than some multi-party execution of the
OLE. Furthermore, when verifying correctness of the
OLE executions, each party only needs to verify the
correctness of the central party; beyond that, they can
rely on the central party to perform the verification of
the other peers. For this reason, only the central party
must send m decommitments, while the other parties
each sends only one. We note that without replacing the
OT-based watchlist channels with commit-and-reveal,
we could not have benefited from this latter advantage
implied by a star topology.

In the two-party setting, Leviosa could be used “off-
the-shelf” in order compile the semi-honest polynomial
multiplication protocol into a malicious-secure protocol.
In our two-party protocol, this would result in roughly
twice the number of OLE calls, as their generic input
encoding does not leverage the fact that PSI input is
already naturally, correctly encoded. Our main contri-

bution in the two-party setting is to recognize the rele-
vance of Leviosa for two-party PSI.

2 Preliminaries

Basic Notations. We denote a security parameter by
κ. We denote by [n] the set of elements {1, . . . , n} for
some n ∈ N. Throughout the paper, we denote by m

the number of parties, w the input size. We assume func-
tions to be represented by an arithmetic circuit C (with
addition and multiplication gates of fan-in 2), and de-
note the size of C by |C|. By default we define the size of
the circuit to include the total number of gates including
input gates.

2.1 Secure Multi-Party Computation

We use a standard stand-alone definition of secure
multi-party computation protocols. In this work, we
only consider static corruptions, i.e. the adversary de-
cides which parties it corrupts before the execution be-
gins. We also only consider security with abort, in which
the one party receives their output first, and, if ma-
licious, may choose to abort before others recover the
output. Note that in the variant of our multi-party pro-
tocol in which only one designated party receives an
output, this ability to abort is irrelevant. Nevertheless,
for simplicity, we use the same security definition. We
use two security parameters in our definition: a compu-
tational security parameter κ, and a statistical security
parameter λ that captures a statistical error of up to
2−λ. We assume that λ ≤ κ. We let F be a multi-party
functionality that maps a set of m inputs to an output
over some field F (w.l.o.g).

Let Π = 〈P1, . . . , Pm〉 denote a multi-party proto-
col, where each party is given an input xi and secu-
rity parameters 1λ and 1κ. We allow honest parties
to be PPT in the entire input length (this is needed
to ensure correctness when no party is corrupted), but
bound adversaries to time poly(κ) (this effectively means
that we only require security when the input length
is bounded by some polynomial in κ). We denote by
realΠ,A(z)(x1, . . . , xm, κ, λ) the output of the honest
parties and the adversary A controlling a subset I ⊂ [m]
of parties in the real execution of Π, where z is the auxil-
iary input, xi is Pi’s initial input, κ is the computational
security parameter, and λ is the statistical security pa-
rameter. We denote by idealF,S(z)(x1, . . . , xm, κ, λ) the
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output of the honest parties and the simulator S in the
ideal model where F is computed by a trusted party.
We stress that in this ideal model, the adversary is
given the output first, and then instructs F whether
to send output to the honest parties, or to abort. We
refer the reader to Goldreich’s textbook for more detail
[Gol09]. In some of our protocols the parties have access
to ideal model implementations of certain cryptographic
primitives such as ideal coin tossing (FCOIN). We denote
such executions by realFCOIN

Π,A(z)(x1, . . . , xm, κ, λ). Due to
Canetti’s stand-alone composition theorem [Can00], it
suffices to prove that this hybrid execution is indistin-
guishable from the ideal execution.

Definition 1. A protocol Π = 〈P1, . . . , Pm〉 is said to
securely compute a functionality F in the presence of
active adversaries if the parties always have the correct
output F(x1, . . . , xm) when neither party is corrupted,
and moreover the following security requirement holds.
For any probabilistic poly(κ)-time adversary A control-
ling a subset I ⊂ [m] of parties in the real world, there
exists a probabilistic poly(κ)-time adversary (simulator)
S controlling I in the ideal model, such that for every
non-uniform poly(κ)-time distinguisher D there exists a
negligible function ν(·) such that the following ensembles
are distinguished by D with at most ν(κ) + 2−λ advan-
tage:
{realΠ,A(z)(x1, . . . , xm, κ, λ)}κ∈N,λ∈N,x1,...,xm,z∈{0,1}∗

and
{idealF,S(z)(x1, . . . , xm, κ, λ)}κ∈N,λ∈N,x1,...,xm,z∈{0,1}∗

2.2 Secret-Sharing

A secret-sharing scheme allows distribution of a secret
among a group of n players, each of whom in a shar-
ing phase receives a share of the secret. In its simplest
form, the goal of secret-sharing is to allow only subsets
of players of size at least t+ 1 to reconstruct the secret.
More formally a (t + 1)-out-of-n secret sharing scheme
comes with a sharing algorithm that on input a secret
s outputs n shares s1, . . . , sn and a reconstruction algo-
rithm that takes as input {i, si}i∈S where |S| > t and
outputs either a secret s′ or ⊥. In this work, we use poly-
nomial encodings to share a set of secrets in F = GF(q).
We only require that the output of the reconstruction
algorithm includes every secret, and it may output a
superset of the secret set. We present the sharing and
reconstruction algorithms below:

Sharing Algorithm Share: For any input set
{x1, . . . , xw} : xi ∈ F \ {1, . . . , n}, pick a random
polynomial p(·) of degree t + w in the polynomial
ring F[x] with the condition that p(xi) = 0. Output
p(1), . . . , p(n).

Reconstruction Algorithm Reconst: For any input
{i, s′i}i∈S , compute a polynomial g(x) such that
g(i) = s′i for every i ∈ S. This is possible using
Lagrange interpolation where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j
i− j

.

Finally the reconstruction algorithm outputs the
roots of g.

A secure secret sharing scheme is required to satisfy
the following properties:

Correctness: For every secret set {x1, . . . , xw}, and
every set of t + w + 1 shares si1 , . . . , sit+w+1 ⊆
Share({x1, . . . , xw}),

Pr
[
{x1, . . . , xw} ⊆ Reconst

(
si1 , . . . , sit+w+1

)]
= 1

Secrecy: For any pair of secret sets x, x′, and ev-
ery two sets of shares si1 , . . . , sit+w ⊆ Share(x)
and s′i1 , . . . , s

′
it+w

⊆ Share(x′), {si1 , . . . , sit} and
{s′i1 , . . . , s

′
it
} are identically distributed.

2.3 Coding Notation

For a code C ⊆ Fn and a vector v ∈ Fn, denote by
d(v, C) the minimal distance of v from C, namely the
number of positions in which v differs from the clos-
est codeword in C, and by ∆(v, C) the set of posi-
tions in which v differs from such a closest codeword
(in case of ties, take the lexicographically first closest
codeword). We further denote by d(V,C) the minimal
distance between a vector set V and a code C, namely
d(V,C) = minv∈V d(v, C).

Definition 2 (Reed-Solomon code.). For positive inte-
gers n, k, finite field F, and a vector η = {η1, · · · , ηn} ∈
Fn of distinct field elements, the code RSF,n,k,η is the
[n, k, n− k+ 1] linear code over F that consists of all n-
tuples (p(η1), ..., p(ηn)) where p is a polynomial of degree
< k over F and d = n− k + 1 is the minimum distance.
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2.4 Commitment Schemes

We use cryptographic commitments in our coin-flipping
functionality. In a commitment scheme, a sender holds
some secret value x ∈ F. It sends a commitment to x to a
receiver, which reveals nothing about x. At a later time,
the sender can send a decommitment, which proves that
x was the value used at the time of commitment.

Committing Algorithm Com: On input x ∈ F, and
security parameter κ, the committing algorithm
outputs a pair of values (c, d).

Decommitting Algorithm Decom: Given a com-
mitment c and a decomittment value d, the decom-
mitment scheme outputs a value x. We note that
the decommitment algorithm might take x as part
of d, and return ⊥ in case x and d are inconsistent.

A secure commitment scheme is required to satisfy
the following properties.

Hiding: For every pair of inputs, x1, x2 ∈ F, and
for every non-uniform, poly(κ) time distinguisher
D, there exists a negligible function ν(·) such that
|Pr[D(Com(x1) = 1]− Pr[D(Com(x2) = 1]| ≤ ν(κ).

Binding: For every non-uniform, poly(κ) time adver-
sary A outputting (c, d1, d2), there exists a neg-
ligible function ν(·) such that Pr[Decom(c, d1) =
Decom(c, d2)] ≤ ν(κ).

Additional preliminaries are found in Appendix A.

3 Fully Secure Active PSI
In this section we present our two-party actively secure
protocol for computing the PSI functionality (cf. Figure
1) where both parties learn the output.

Our protocol follows the basic design of Kissner and
Song [KS05], where the parties generate two polyno-
mials P (·) and Q(·) that correspond to their inputs
(namely, the roots of these polynomials are the in-
put sets). Next, the parties jointly compute T (·) =
P (·)S(·) +Q(·)R(·), where S and R are random polyno-
mials, and all polynomials have the same degree. They
can then extract the intersection from the roots of T .
Specifically, Kissner and Song proved that if S(·) and
R(·) are chosen uniformly at random, and privately,
then T (·) can be represented as T (·) = I(·)W (·) where
I(·) is the polynomial with the roots at the intersec-
tion items, and W (·) is a random polynomial. Intu-

Functionality F2PSI

Setup. Let t, e, w, n be positive integers where w is the
parties’ input size, k = w+ t+e, n > 2k, d = n−k+1,
e < d/3, (1 − e/n)t < 2−λ where λ is the security
parameter.

Functionality. F2PSI communicates with parties P1,
P2, and adversary A.

– Wait for the input X = (x1, ..., xw) and Y =
(y1, ..., yw) from P1 and P2 respectively.

– Wait for the adversary A to add up to (t+e) more
items to the input set of the corrupted party. Let
X̃ and Ỹ be the input sets after this step (only
the corrupt party’s input is modified).

– Send the output X̃ ∩ Ỹ to P2.
– Wait for abort/continue from P2. Upon receiving

abort from P2, the functionality sends ⊥ to P1.
Else, the functionality sends X̃ ∩ Ỹ to P1.

Fig. 1. Fully Secure Two-Party PSI Ideal Functionality.

itively, note that if P (ω) = 0, then P (ω)S(ω) = 0. If
Q(ω)R(ω) = 0, then P (ω)S(ω) + Q(ω)R(ω) = 0, and
ω is a root of T (·). On the other hand, if Q(ω) 6= 0,
then because R(ω) is uniform, T (ω) is uniform, and un-
likely to be 0. Because both S(·) and R(·) are uniform
and unknown, it follows that T (·) is a uniform poly-
nomial, subject to have the intersecting roots. Further-
more, note that if P (·) 6= 0 and Q(·) 6= 0, revealing T (·)
to Pi does not leak any information about the other
party’s input other than the intersection. In order to
guarantee that R(·) and S(·) are sampled uniformly at
random, each party Pi independently samples Ri(·) and
Si(·) uniformly at random. Following that, the parties
compute T (·) = P (·)(S1(·)+S2(·))+Q(·)(R1(·)+R2(·)).
Then as long as one party honestly samples its poly-
nomials shares, R(·) and S(·) will be uniformly random
polynomials and T (·) will be distributed as explained
above.

We use OLE (see Figure 7 for the OLE functional-
ity) to perform the polynomial multiplications, as fol-
lows. All polynomials have degree w, and we fix a set
of n > 2w public indices. Let pi = P (i) denote the
evaluation of P1’s input polynomial at public index i,
and define qi similarly. P1 samples random polynomi-
als R1(·), U1(·) and S1(·) and evaluates them at all n
public indices: let r1,i = R1(i), and we use a similar no-
tation for the remaining random polynomials. P2 does
the same with random polynomial R2(·), U2(·) and S2(·).
P1 submits r1,i to the ith OLE instance, and P2 sub-
mits (qi, u2,i); P1 receives qir1,i + u2,i. Symmetrically,
P2 receives from a parallel OLE instance pis2,i + u1,i.
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Π2PSI MPC-in-the-Head Based Two-Party PSI

Setup: P1 and P2 agree on a common finite field Fq and ω is an nth root of unity of the field (namely, n|(q − 1)).
Let η = {1, ω, ..., ωn−1}, w be the input size and t, e, n be positive integers where k = (w + t + e), 2k < n and
(1− e/n)t ≤ 2−λ.
Inputs: P1 and P2 have inputs X = {x1, ..., xw} and Y = {y1, ..., yw} respectively. (Assume η∩X = ∅, η∩Y = ∅.)
The Protocol:
1. Input Sharing Phase. P1 samples T1(x) and P2 samples T2(x), each a random polynomial of degree t+e. P1

computes P (x) = [Πwj=1(x−xj)] ·T1(x). P2 computes Q(x) = [Πwj=1(x−yj)] ·T2(x). P1 computes pj = P (ωj),
P2 computes qj = Q(ωj) for all j ∈ [1, n].

2. Random Polynomials Sampling.a

– P1 samples random polynomials Z1(·), R1(·), S1(·) and computes the RSFq,n,k,η encodings: z1 = Z1(η),
r1 = R1(η), s1 = S1(η). P2 samples Z2(·), R2(·), S2(·) and computes z2 = Z2(η), r2 = R2(η), s2 = S2(η).
All polynomials have degree at most (w + t+ e) and are chosen over the finite field Fq .

– Pi samples a random polynomial Ui(·) of degree 2k and computes ui = Ui(η).
3. Coin Tossing. The parties call FComCoin twice (Functionality 9), each receiving n random strings and de-

commitments for those strings: ((σi,1, τi,1), . . . , (σi,n, τi,n)), as well as n commitments to the other party’s
randomness: (comi,1, . . . , comi,n). Pi will use σi,j as its randomness for the jth OLE execution.

4. Watchlist Channels Setup via t-out-of-n OT. The parties call Ft:nOT (Functionality 5). P1 receives t tuples
(qj , u2,j , r2,j , s2,j , z2,j , τ2,j) from P2. They repeat the process with reversed roles, where P2 receives t tuples
(pj , u1,j , r1,j , s1,j , z1,j , τ1,j) from P1. Let I1 and I2 be the sets of indices chosen by P1 and P2, respectively,
defined by the receiver’s input to each OT instance

5. Degree Test. The parties perform degree test on Z1, Z2, R1, R2, S1, S2, P,Q to verify that they have a degree
of at most w + t+ e.
– The parties call FCOIN (Functionality 8) to sample random public values {α1, ..., α8}.
– P1 sends a where aj ← α1 · z1,j + α2 · r1,j + α3 · s1,j + α4 · pj to P2, j ∈ [1, n].
– P2 sends b where bj ← α5 · z2,j + α6 · r2,j + α7 · s2,j + α8 · qj to P1, j ∈ [1, n].
– The parties verify that a and b are valid RSFq,n,k,η codewords. They also check the correctness of these

shares against their watched channels.
– P1: ∀j ∈ I1 : bj = α5 · z2,j + α6 · r2,j + α7 · s2,j + α8 · qj .
– P2: ∀j ∈ I2 : aj = α1 · z1,j + α2 · r1,j + α3 · s1,j + α4 · pj

6. OLE. The parties make a sequence of calls to FOLE (Functionality 7):
– P1 provides r1 whereas P2 provides (q,u2) to FOLE. P1 obtains c1 = (c1,1, · · · , c1,n) where c1,j =
qj · r1,j + u2,j .

– P1 provides (p,u1) whereas P2 provides s2 to FOLE. P2 obtains c2 = (c2,1, · · · , c2,n) where c2,j =
pj · s2,j + u1,j .

– Pi verifies that ci is a valid RSFq,n,2k,η codeword.
– P1 verifies against the watchlist that for j ∈ I1 : c1,j = qj · r1,j +u1,j , and that τ2,j is consistent with the

OLE execution for those inputs of P2.
– P2 verifies against the watchlist that for j ∈ I2 : c2,j = pj · s2,j + u2,j , and that τ1,j is consistent with

the OLE execution for those inputs of P1.
7. Output Reconstruction.

(a) P1 computes d1 where d1,j = c1,j + pj · s1,j − u1,j and sends d1 to P2.
(b) P2 computes d2 where d2,j = c2,j + qj · r2,j − u2,j and sends d2 to P1.
(c) The parties verify that di is a valid RSFq,n,2k,η codeword. They also verify against the watchlist that

– For j ∈ I1 : d2,j = c2,j + qj · r2,j − u2,j .
– For j ∈ I2 : d1,j = c1,j + pj · s1,j − u1,j .

(d) Both parties compute tj = d1,j + d2,j = pj(s1,j + s2,j) + qj(r1,j + r2,j).
(e) P1 and P2 obtain T (·) = P (·)S(·) + Q(·)R(·) by interpolating the points (ωj , tj) and evaluate T (·) on

their input.
(f) P1 outputs X ∩ Y = {xj | T (xj) = 0} and P2 outputs X ∩ Y = {yj | T (yj) = 0}.

a The random polynomials Zi(·) are used in the degree test to verify that all shares are valid Reed-Solomon codes.
The random polynomials Ui(·) are used to randomize the output of the OLE.

Fig. 2. Fully Secure Active Two-Party PSI Protocol.
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P2 computes and sends (pis2,i+u1,i)+(qir2,i−u2,i). P1
computes and sends (pis1,i−u1,i) + (qir1,i+u2,i). Sum-
ming these together, they each learn pisi + qiri, where
si = s1,i+s2,i is the evaluation of random, private poly-
nomial S at the ith public index (and ri is similar).

To ensure security, our protocol follows the
blueprint of the two-party protocol designed by Hazay
et al. [HIMV19], which is based on the IPS com-
piler [IPS08], and achieves malicious security using the
“MPC-in-the-head” paradigm. This powerful paradigm
securely realizes an arbitrary functionality F with active
security, while making black-box use of the following
two ingredients: (1) an active MPC protocol which real-
izes F in the honest majority setting, and (2) a passive
MPC protocol in the dishonest majority setting (e.g. a
two-party protocol) that realizes the next-message func-
tions4 for each party in protocol (1). When applied to
our setting, protocol (1) is the point-wise multiplication
and addition of the polynomials previously described,
and protocol (2) is the OLE execution above.

To enforce correct behaviour, Ishai et al. introduced
a novel concept called watchlists: the parties run an
emulation of protocol (1) by securely executing proto-
col (2) for each message. Each party obliviously checks
the other party’s behavior in (2) through OT channels,
and because (1) is secure against a minority of corrup-
tions, privacy is still guaranteed. Namely, the parties
commit to the input and the randomness used in each
OLE execution. Then, each party is allowed to oblivi-
ously open t committed values to be checked against the
messages received in the OLE execution. This oblivious
choice is made via OT instances. With an appropriate
choice of parameters (see Section 5), any attack will be
caught with high probability. In this work, we build on
the concrete analysis of [HIMV19] the honest majority
building block of IPS, for concrete PSI protocols.

We use w denote the size of each user’s input set.
We describe here how we set the degree of the polyno-
mials. Namely, since every party will open and verify t
OLE instances, they will immediately learn t shares of
every polynomial. Furthermore, a malicious party might
cheat in e OLE instances, breaking the privacy of that
execution, and learning an additional e shares of each
polynomial. We therefore use polynomials with degree
greater than w+ t+ e, ensuring that t+ e shares do not
leak anything about the roots of the polynomials. (Note

4 The function computing the next outgoing message, given the
current state of the participating party.

that T has double this degree, due to the polynomials
multiplication.)

Our protocol is black-box in the implementation de-
tails of the underlying OLE and can be instantiated with
any OLE protocol. To verify correctness of the OLE ex-
ecutions, the users begin by executing a secure coin-
flipping protocol that provides randomness for the OLE
execution to one party, and a commitment to that ran-
domness to the other party. The decommitment to the
randomness is sent over the watchlist channels, together
with the OLE inputs. This allows the receiving party to
verify the correctness of all OLE messages in that exe-
cution. To maintain the reliance on black-box OLE, we
treat the OLE executions as ideal function calls; how-
ever, the verification procedure just described will re-
quire knowledge of the particular OLE instantiation.

Overall, it costs only two passive OLE to compute
each T (ηj). Based on the analysis from [HIMV19], the
amortized number of passive OLE needed for each item
is 2n/w = 2(2(w+t+e)+1)/w = 4+(4t+4e+2)/w where
w is the input size and t, e are parameters associated
with w such that (1 − e/n)t < 2−λ. As w increases,
(4t+ 4e+ 2)/w → 0.

The watchlist mechanism used in our protocol also
allows us to prevent the adversary from setting P (·) or
Q(·) to 0 for free. In particular, via the use of a watchlist,
each party can verify the computation of t evaluations
T (ηj). Therefore, if the adversary deliberately sets P (·)
or Q(·) to 0, or even if it sets more than e evaluations
P (ηj) or Q(ηj) to 0, this will be caught immediately
by the honest party since the error probability will be
(1− e/n)t (the concrete parameters are fixed in Section
5). See Figure 2 for our two-party PSI protocol.

Slackness.We note that our approach introduces some
slackness in terms of the input size: while honest parties
will provide an input set of size w, a malicious party
might include an additional t+ e inputs of its choosing
without detection, by embedding the chosen values in
an additional t + e roots.5 This leaks some additional
information about the honest input set.

Rather than attempting to prevent this, we weaken
the functionality to reflect this attack. This weakening
admits a more efficient protocol. In our protocols, the

5 Technically, even in an honest execution, a random polyno-
mial consistent with the honest input may contain some addi-
tional roots. However, if these are random points, the probability
that they end up in the intersection is negligible. In an adversar-
ial setting, the adversary could embed values of interest, based
on some auxiliary information about the honest input.
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slackness is defined as ε = (t+ e)/w. The slackness also
has a negative impact on the efficiency, thus it is desir-
able to keep the slackness as low as possible. Concretely,
for an input size 224, our slackness is 24% of the input
size (See Section 5.1). We stress that input size slackness
exists in many efficient PSI constructions. For example,
the fastest semi-honest protocol [PSTY19] is based on
cuckoo hashing, and has slackness at least 100%.

Theorem 1. Let k, t, e, w, n be positive integers such
that k ≥ t + e + w, e < d/3, and 2k < n,
then protocol Π2PSI (cf. Figure 2) securely computes
functionality F2PSI (cf. Figure 1) with two parties
in the {FComCoin,F t:nOT ,FCOIN,FOLE}-hybrid, tolerating
static adversaries with a statistical error of d/|F|+ (1−
e/n)t+2(w+t+e)/|F| where d = n−k+1 is the distance
of the underlying code.

The proof can be found in Appendix C.

4 Fully Secure Active PSI: The
Multi-Party Extension

Another important benefit of our paradigm is that, in
contrast to most prior two-party approaches, it can be
extended to any number of parties. At the heart of
our multi-party protocol is an extension of the protocol
shown in Section 3. The m parties compute the polyno-
mial T of the form T = Q0

∑m−1
i=0 Ri +

∑m−1
i=1 Qi(Si0 +

Si). Namely, all parties contribute their input polynomi-
als as well as the masking polynomials. Our two-party
PSI functionality is adapted to the multi-party setting
in Figure 3. Throughout this section we highlight in blue
any text related to our modified protocol that provides
output only to P0.

Our protocol uses a hybrid approach between a fully
connected network and a star topology network, where
the parties communicate with a single central party.
That is, our protocol considers both types of networks,
which is similar to the approach proposed by [GPR+21].
Nevertheless, our MPSI protocol is fully secure while
theirs only provides output the central party. We use
watchlists to enforce honest behavior of all the parties.
A fully connected network is needed to set up the watch-
list channels among the parties, then a star topology
is used to compute a masked intersecting polynomial
between P0 and Pi. For each pair (P0, Pi), the central
party P0 learns an RSFq,n,2k,η encoding of the polyno-
mial Ti = Q0·Ri+Qi(Si0+Si)+Vi whereQi is the polyno-

Functionality FMPSI

Setup. Let t, e, w, n be positive integers where w is the
parties’ input size. k = w+ t+e, n > 2k, d = n−k+1,
e < d/3, (1− e/n)t < 2−λ.

Functionality. FMPSI communicates with parties
P0, · · · , Pm−1, and adversary A.

– Wait for the input X(i) = (x(i)
1 , ..., x

(i)
w ) from Pi.

If P0 is one of the corrupted parties, replace all
other corrupted parties’ input with P0’s input.

– Wait for the adversary A to add as many as ((m−
1)t + e) additional items to the input set of the
corrupted parties. Let X̃(i) be the modified input
set of party Pi.

– Send output S ←
m−1⋂
i=0

X̃(i) to P0.

– If all parties are supposed to receive output:
– If P0 is corrupted, wait for abort/continue

from P0. Upon receiving abort, send ⊥ to all
honest parties. Else, send S to all honest par-
ties.

– If P0 is honest, send S to all parties.

Fig. 3. Multi-Party PSI Ideal Functionality.

mial that encodes Pi’s input, Si0 and (Ri, Si) are random
polynomials sampled by P0 and Pi, respectively, and Vi
is the masked polynomial used to hide the intersection
between P0 and Pi. Specifically, the Vi’s are random
polynomials that are sampled such that

∑m−1
i=1 Vi = 0,

allowing P0 to add all Ti together to compute the inter-
section.

After P0 obtains the RSFq,n,2k,η encoding of the
polynomial T = Q0 ·R0+

∑m−1
i=1 Ti. It broadcasts the en-

coding to all other parties who can verify it against their
watchlists. As all parties must commit their inputs dur-
ing the watchlist channel setup steps, P0 cannot drop or
add anything to the intersection without being caught
by the watchlists.
Naive IPS Watchlist Setup. The watchlist channels
setup step proposed in [LOP11] requires O(m3 + m2n)
bits where n = O(w+mt+e). To set up the watch chan-
nels, each party Pi executes the multi-sender t-out-of-n
OT protocol, called Ft:n

mOT (see Figure 6), which allows
Pi to watch all other parties at the same t channels of
its choice. The authors proposed an instantiation for
Ft:n

mOT based on DDH assumption, where each channel
requires O(n) = O(w + mt + e) exponentiations for in-
put length w. It is clear that if the watchlist channels
for our multi-party PSI protocol are set up using their
instantiation, the protocol will be very inefficient.
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Watchlist Channels via the Commit-and-Reveal
Paradigm. We propose a new way to set up our watch-
list channels. We send only O(m2 logn) bits (where
n = O(w + t + e)), and the construction has very low
computational cost. The number of watched channels in
[LOP11] is O(mt), as each party independently chooses t
servers to watch. If (m−1) parties are corrupt, they can
collectively learn (m− 1)t shares from the honest party.
This would force us to pad the input polynomials with
a random polynomial of degree of (m−1)t+e, resulting
in n > 2(w + (m− 1)t+ e). If we could instead arrange
for all parties to watch the same t channels, we could
set n > 2(w + t+ e) instead of n > 2(w + (m− 1)t+ e).
The challenge is that a colluding party will tell P0 which
channels are being watched; the adversary can avoid be-
ing caught when it cheats.

To solve this problem, we replace the OT watchlist
with a commit-and-reveal protocol. Instead of “quietly”
watching a live channel, the parties are asked to commit
to their shares before the computation, and only when
they perform a check, after the messages are sent, do
they agree on a random set of t channels. They decom-
mit those shares, together with any randomness used in
these channels, to all other parties. To reduce the cost of
broadcasting the commitments, the parties commit to
their shares using a Merkle tree [Mer87]. They broad-
cast only the root of each tree, followed by a hash of the
received roots to verify consistency.

The cost for all parties to commit to their shares
is O(m2κ), and the cost to perform one check is
O(m2tκ logn). Note that we need to pick t and e such
that (1 − e/n)t < 2−λ where n > 2(w + t + e). When
the input size w is large, we can choose t = 5λ then
e = n(1 − 5

√
1/2) = 2(1 − 5

√
1/2)(w + t + e) ⇒ e =

0.35w+ 1.76λ. Now t = O(λ) (typically λ = 40) and can
be dropped from our asymptotic cost. The total com-
munication for our watchlist set up and watchlist veri-
fication is O(m2κ logn) if one check is performed. The
computational cost is the cost to generate the Merkle
tree, and to reveal and verify t servers. For our multi-
party PSI protocol, we need just three checks (Figure
4). It is extremely cheap compared to the cost of the
multi-party t-out-of-n OT used in the IPS compiler.
Our MPSI Asymptotic Communication Cost.
Our new watchlist mechanism has communication cost
of O(m2κ logn) bits where n = O(w + t + e), and
t + e � w). Additionally, the pairwise OLE executions
(Step 8) cost O(nmκ) bits. In total, the communication
cost of our protocol is O((m2 logn + mn)κ) bits. Our
protocol is presented in Figure 4.

MPSI With One Party Output. While we have
mainly focused on achieving full security, where every
party receives correct output, it is worth noting that if
we relax security as in [GPR+21], then with a few modi-
fications our communication cost is only O((m2+nm)κ).
First, during the watchlist channels setup step, instead
of requiring Pi 6= P0 to watch all other parties, Pi
only needs to watch P0. As a result, the communica-
tion cost of the watchlist channels setup is now reduced
to O((m2 +nm)κ). Specifically, P0 commit to its shares
via a Merkle tree and broadcasts the tree’s root to ev-
eryone. This costs O(m2κ) bits. The OLE verification
cost is O(tκ logn) for each pair (P0, Pi), which is very
small compared to the cost to compute the OLE. Con-
cretely, our relaxed multi-party PSI has the amortized
cost of 4m passive OLE per input item.

Theorem 2. Let k, t, e, w, n be positive integers such
that k ≥ w + 3t + e, e < d/3, and 2k < n, then
protocol ΠMPSI (cf. Figure 4) securely computes func-
tionality FMPSI (cf. Figure 3) with m parties in the
{FCOIN,FOLE}-hybrid, tolerating static adversaries with
a statistical error of d/|F|+(1−e/n)t+m(w+3t+e)/|F|
where d = n−k+1 is the distance of the underlying code.

The proof can be found in Appendix D.

5 The Efficiency of Our Protocols

5.1 The Two-Party Setting

In this section we will explore the concrete parameters
of our two-party protocol. Let w be the input length,
and let t, e, and F be such that our statistical error
(1 − e/n)t + d/|F| + (w + t + e)/|F| is bound by 2−λ

(where n = 2(w + t + e) + 1) and λ is the security pa-
rameter). Note that for the case of two-party PSI, it
is desirable that t + e is as small as possible, because
the slackness of our protocol is defined by (t + e)/w.
We show that the optimal solution for t + e is bound
by O(

√
λ · w). Fixing e0 =

√
λ ln 2 · (2w), we now look

for t0 such that (1 − e0/n)t0 ≈ exp(−λ ln 2) = 2−λ,
or t0 · log(1 − e0/n) ≈ −λ ln 2. As e0 � w < n,
t0 · log(1− e0/n) can be approximated with t0 · (−e0/n)
using Taylor’s approximation. Thus t0 ≈ λ ln 2 · (2(w +
t0 + e0) + 1)/e0 ≈ e0 + 2λ ln 2 · t0/e0 + 2 · λ ln 2. It is
clear that t0 < 2 · e0. If t and e are optimized, then
t+ e ≤ t0 + e0 < 3 ·

√
λ ln 2 · (2w).
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ΠMPSI MPC-in-the-Head Based MPSI

1. Setup. Parties P0, . . . , Pm−1 agree on a common finite field Fq and ω is an nth root of unity of the field
(namely, n|(q−1)). Let η = {1, ω, . . . , ωn−1}, w the input size and t, e, n be positive integers such that 2k < n,
k = (w + 3t+ e), e < (n− k + 1)/3, and (1− e/n)t ≤ 2−λ.

2. Input Sharing Phase. Each party Pi has an input Xi = {xi1, ..., xiw}. Pi samples a random polynomial Ti(x)
of degree t+ e, computes Qi(x) = Ti(x)Πwj=1(x− xij) and the RSFq,n,k,η encoding qi = Qi(η).

3. Sample Random Masked Polynomials. For each pair (i, j) where 1 ≤ i < j ≤ (m − 1), Pi and Pj call
FCOIN (Functionality 8) to sample a common seed seedij . Let Vij ← PRG(seedij) be a random polynomial
of degree 2k. Pi stores Vij while Pj stores Vji = −Vij . For i ∈ [1,m− 1], Pi sets Vi =

∑
1≤j 6=i≤m−1 Vij and

computes the RSFq,n,2k,η encoding vi = Vi(η).
4. Random Polynomials Sampling.

– P0 samples random polynomials R0(·), Z0(·), and Si0(·) for i ∈ [1,m−1]. Pi samples Zi(·), Ri(·), and Si(·).
All polynomials have degree at most k and are chosen over the finite field Fq . P0 computes the RSFq,n,k,η

encodings: zi
0 = Zi0(η), ri

0 = Ri0(η), and si
0 = Si0(η). Pi zi = Zi(η), ri = Ri(η), and si = Si(η).

– For i ∈ [1,m − 1], Pi samples random seedi and polynomial Ui(·) ← PRG(seedi) of degree 2k. They
compute the encoding ui = Ui(η). Pi broadcasts the Com(seedi) to all other parties.

5. Coin Tossing. Each pair (P0, Pi) call FComCoin twice (Functionality 9), each receiving n random strings and
decommitments for those strings. The random values are used for the OLE invocations.

6. Watchlist Channels Commitment. P0 commits its shares (q0,j , r0,j , z0,j , s1
0,j , . . . , s

m−1
0,j ) to all parties

using Merkle tree. Pi commits its shares (qi,j , ri,j , si,j , zi,j , vi,j , ui,j) to all parties using Merkle tree. For
one-sided output: Pi only sends the commitment to P0.

7. Degree Test (First Check).
– The parties call FCOIN to sample random public values {α1, α2, α3, αi4, ..., α

i
8} together (1 ≤ i ≤ m− 1).

– Pi, 1 ≤ i ≤ m− 1, computes bi where bi,j ← αi5 · zi,j + αi6 · ri,j + αi7 · si,j + αi8 · qi,j , then sends it to P0.
– P0 computes b0 where b0,j ← α1 · z0,j + α2 · r0,j + α3 · q0,j +

∑m−1
i=1 αi4 · si0,j , b =

∑m−1
k=0 bi, then

broadcasts it to all other parties.
– Select watchlist channels for first check. All parties make a call to FCOIN to sample I1 =
{i1,1, . . . , i1,t} and reveals to all other parties their shares and OLE randomness for these indices.

– Verify Qi(·) 6= 0. All parties verify that qi,j 6= 0 for j ∈ I.
– Degree test. All parties verify that b is a valid RSFq,n,k,η code word and for every j ∈ I1:
bj =

∑m

i=1[αi1 · z0,j + αi2 · r0,j + αi3 · si0,j + αi4 · q0,j + αi5 · zi,j + αi6 · ri,j + αi7 · si,j + αi8 · qi,j ]
8. OLE. Each pair (P0, Pi) makes a sequence of calls to FOLE on inputs. P0 provides si0 whereas Pi provides

(qi,ui) to FOLE. P0 obtains ci
0 = (ci0,1, . . . , ci0,n) where ci0,j = qi,j · si0,j + ui,j . P0 provides (q0,ui

0) whereas
Pi provides ri to FOLE. Pi obtains ci = (ci,1, . . . , ci,n) where ci,j = q0,j · ri,j + ui0,j . For one-sided output:
(P0, Pi) executes only one OLE, P0 provides q0, Pi provides (ri,qisi + vi), P0 learns f i

0 = q0ri + qisi + vi.
9. Verify OLE (Second Check).

– Select watchlist channels for OLE verification. All parties make a call to FCOIN to sample a common
random coin, and use that coin to sample t indices I2 = {i2,1, . . . , i2,t}. The parties reveal all the shares
and randomnesses used at these indices to all other parties.

– Verify FOLE. For each pair (P0, Pi)
– P0 verifies that ci

0 is a valid RSFq,n,2k,η code word and for j ∈ I2: ci0,j = qi,j · si0,j + ui,j .
– Pi verifies that ci is a valid RSFq,n,2k,η code word and for j ∈ I2: ci,j = q0,j · ri,j + ui0,j .

For one-sided output: (P0, Pi) verify the execution of only one OLE that computes f i
0.

10. Output Aggregation and Verification.
– P0 computes d0 = q0 · r0 +

∑m−1
i=1 (ci

0 − ui
0) = q0 · r0 +

∑m−1
i=1 qi · si

0 +
∑m−1

i=1 (ui − ui
0).

– Pi computes di = ci + qi · si − ui + vi = q0 · ri + qi · si + vi + (ui
0 − ui).

– Pi sends di to P0. P0 computes t =
∑m−1

i=0 di and broadcasts it to all Pi.
– Select watchlist channels for third check. All parties make a call to FCOIN to sample a common

random coin, and use that coin to sample t indices I3 = {i3,1, . . . , i3,t}. The parties reveal all the shares
used at these indices to all other parties.

– P0 verifies that di,j = q0,j · ri,j + qi,j · si,j + vi,j + (ui0,j − ui,j) for i ∈ [1,m− 1] and j ∈ I3.
Pi verifies that tj = q0,j ·

∑m−1
i=0 ri +

∑m−1
i=1 qi,j(si0,j + si,j) for j ∈ I3.

– Each Pi reconstructs the polynomial T (·) from the points (ωj , tj) and outputs the intersection S = {x ∈
Xi|T (x) = 0}.

For one-sided output: P0 computes t = q0 · r0 +
∑m−1

i=1 f i
0, reconstructs T (·), and computes S.

Fig. 4. Fully Secure Active Multi-Party PSI Protocol.
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Instantiate OLE With OT [Gil99]. To compute the
OLE with input x ∈ Zp from the receiver and a, b ∈ Zp
from the sender, the receiver first decomposes x into
bits (x1, . . . , x|x|) where |x| is the bit length of x. Both
parties execute |x| 1-out-of-2 OT where for the jth OT
the sender provides the messages (bj , 2j−1a + bj) such
that b =

∑
j bj and the receiver has the selection bit

xj . The receiver obtains 2j−1axj + bj . Upon conclud-
ing the OTs, the receiver sums all the values it receives
and gets ax+ b =

∑
j(2

j−1axj + bj). The advantage of
this instantiation is that it is very efficient, computa-
tionally, due to the use of OT extension. However, the
communication cost is high, at O(|x|2) bits per OLE.

Slackness Parameters for Ring-LWE Based OLE.
When the packed additive homomorphic encryption
scheme is instantiated with Ring-LWE, each cipher-
text encodes N plaintexts where N is the degree of the
polynomial used in Ring-LWE scheme. Each random-
ness generated for the OLEs will be used in the batch
setting: the Reed-Solomon shares are partitioned into
groups of N each, each consumes one randomness. The
parameters for MPC-in-the-head are set based on the
number of groups, n′ = n/N . The probability that an
adversary cheats without getting caught when executing
FOLE becomes (1−e/n′)t. LetN = 212 and w = 220, then
n′ = 256 and t+ e ≈ 360. In order to verify one batched
OLE, all N input shares in that batch will be revealed.
As an adversary could learn or corrupt up to (t+e) OLE
executions, we need to multiply a random polynomial of
degree N ·(t+e) with the input polynomials. Our proto-
col slackness is therefore N(t+e)/w×100% = 140%. Our
slackness will be smaller when the input size increases.
Communication Complexity. The overall communi-
cation cost of our two-party PSI protocol is linear in the
inputs sizes:

2 · CCt-out-of-n OT︸ ︷︷ ︸
watchlists setup

+ 2 · n · CCOLE︸ ︷︷ ︸
passive OLE

+ 6n · κ︸ ︷︷ ︸
coin toss

+

10 · n · log |F|︸ ︷︷ ︸
watchlist comm.

+ n · log |F|︸ ︷︷ ︸
degree test

where CCt-out-of-n OT and CCOLE are the communica-
tion complexities of the underlying OT and OLE pro-
tocols, respectively. As n = O(w), the overall communi-
cation complexity is O(w(κ+ log |F|)) bits.

The dominant communication cost of our protocol
is due to computing the OLEs. Each OLE invocation re-
quires the parties to communicate 4 · log(q) bits, where
q > N · |F|2 is the ciphertext modulus and N is the
degree of the polynomial ring used in the underlying

encryption scheme. With a conservative estimation, the
OLE computation incurs at least 50% of the total com-
munication.
Computational Complexity. We measure the com-
putational complexity in terms of number of field mul-
tiplications and the number of local AES operations,
which we use to sample random field elements, primar-
ily when sampling random polynomials. It is clear that
our protocol make O(n) calls to local AES, thus the
number of AES calls is linear in terms of input size.
The number of multiplications in our protocol is

O(n/N · (N · logN))︸ ︷︷ ︸
input encodings

+O(n/N · (N · logN))︸ ︷︷ ︸
passive OLE

+ O(n)︸︷︷︸
degree test

+ O(n · logn))︸ ︷︷ ︸
input sharing

+ O(n)︸︷︷︸
compute t

+ O(w · log2 w))︸ ︷︷ ︸
output reconstruction

Overall, our asymptotic computational complexity
is O(w log2 w) field multiplications (due to the output
reconstruction step that requires polynomial evaluation
on w points) and O(n) local AES calls to sample the
random polynomials. Even though polynomial evalua-
tion has higher asymptotic computational complexity,
the actual running time is dominated by the OLE costs.
Further optimizations can be found in Appendix B.

5.2 The Multi-Party Setting

We implement our fully secure multi-party PSI protocol
(see Table 2). Here, we provide an estimation for the
theoretical communication and computation cost for the
central party and for non-central ones.
Communication Complexity. We distinguish be-
tween the central party and the remaining parties. First,
the cost for the central party is

m · κ︸ ︷︷ ︸
watchlists commit

+ mn · CCOLE︸ ︷︷ ︸
passive OLE

+ 6mn · κ︸ ︷︷ ︸
coin toss

+

mt logn · log |F|︸ ︷︷ ︸
watchlist comm.

+ ·mn · log |F|︸ ︷︷ ︸
degree test

CCOLE is the communication complexities of the under-
lying OLE protocols. Next, the communication cost for
each non-central party is
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Table 2. Fully secure MPSI: Runtime (in seconds) and communication cost (in MB). Input items are represented by elements of a 64-
bit prime field Fp. Our OLE is instantiated with OT for w ∈ {28, 212, 216} and with Ring-LWE for w ∈ {218, 220}.

w = 28 w = 212 w = 216 w = 218 w = 220

Parties Runtime Comm Runtime Comm Runtime Comm Runtime Comm Runtime Comm
2 0.16 4.8 0.83 40.2 8.10 230 12.28 323 26.23 654
4 0.27 14.5 1.55 120 12.56 689 18.29 970 35.42 1963
8 0.19 33.8 3.00 282 20.50 1606 31.43 2261 63.00 4582
16 1.05 72.5 6.40 602 40.53 3442 58.33 4845 117.4 9818
32 2.26 150 12.7 1245 77.16 7114 116.8 10013 - -

m · κ︸ ︷︷ ︸
watchlists commit

+ 2n · CCOLE︸ ︷︷ ︸
passive OLE

+ 6n · κ︸ ︷︷ ︸
coin toss

+

mt logn · log |F|︸ ︷︷ ︸
watchlist comm.

+ n · log |F|︸ ︷︷ ︸
degree test

Computational Complexity. In terms of computa-
tional cost, the central party has to make O(mw) AES
calls to sample the random polynomials and the encryp-
tion randomness, while each non-central party makes
O(w) AES calls. Next, we count the number of field
multiplications that are performed by each party. For
the central party, the number of field multiplications is

O(n/N · (N · logN))︸ ︷︷ ︸
input encodings

+O(m · n/N · (N · logN))︸ ︷︷ ︸
passive OLE

+ O(mn)︸ ︷︷ ︸
degree test

+ O(n · logn))︸ ︷︷ ︸
input sharing

+ O(n)︸︷︷︸
compute t

+ O(w · log2 w))︸ ︷︷ ︸
output reconstruction

For each non-central party, the number of field multi-
plications is

O(n/N · (N · logN))︸ ︷︷ ︸
input encodings

+O(n/N · (N · logN))︸ ︷︷ ︸
passive OLE

+ O(mn)︸ ︷︷ ︸
degree test

+ O(n · logn))︸ ︷︷ ︸
input sharing

+ O(n)︸︷︷︸
compute t

+ O(w · log2 w))︸ ︷︷ ︸
output reconstruction

We can see that the heaviest work is done by the
central party. The actual runtime of the central party
is dominated by the cost to compute the OLE, which is
O(mn logN) field multiplications. Compared with the
two-party PSI, the main extra cost that the central
party has to handle is the cost to perform the OLE
with all the other parties.

6 Implementation Details

Experiments Setting. We implemented our proto-
cols using C++ and the NTL library, and deployed it
over AWS servers. We demonstrate our protocol per-
formances in the LAN network where the AWS in-
stances are located in the same region (Northern Vir-
ginia). We ran our experiments for sets of input sizes
28, 212, 216, 218, and 220 with 2, 4, 8, 16, or 32 parties.
We report the running times of the average over 5 exe-
cutions. For all our experiments, the standard deviation
is at most 4.2% of the average runtime.

In these experiments, two AWS instances of type
c5.24xlarge were used. Each instance has 48 physical
cores supporting 96 threads, CPU clock speed of 3.6
GHz, 192 GB RAM, and its LAN network bandwidth
is 25 Gbps. We deployed the central party P0 on one
instance and parallelize P0’s code with 32 threads. The
second AWS instance hosted the remaining (m−1) par-
ties. When m = 2, we used 32 threads for P1. For m ≥ 4,
all parties P1, . . . , Pm−1 share 96 threads (on average
each party runs with 96/(m− 1) threads).

Our Protocol Is Fully Parallelizable. Number the-
oretic transform is used extensively in our protocol:
computation of Reed-Solomon encodings for input and
random polynomials, Ring-LWE operations, polynomial
multiplication, polynomial division, polynomial evalua-
tion over w points, etc. Fortunately, number theoretic
transform is fully parallelizable and we utilize it as much
as possible in our implementation. The part that is not
fully parallelizable in our protocol is the construction
of the Merkle trees. However, instead of generating one
Merkle tree, we can divide the data into p chunks and
generate p trees in parallel (assume p is the number of
threads used). The commitment is p hash digests instead
of one. This increases the communication cost a bit, but
in return our implementation is fully parallelizable.
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Table 3. One-sided output MPSI: Runtime (in seconds) and communication cost (in MB). Input items are represented by elements of
a 64-bit prime field Fp. Ours uses single thread, while [KMP+17] and [BNOP21] both use multi-threading. [BNOP21] uses 32 threads
on a 32-core machine for their central party, [KMP+17] users (m− 1) threads for all parties where m is the number of parties. In these
experiment, we consider an adversary corrupting at most (m−1) parties. The numbers for [KMP+17] and [BNOP21] are taken directly
from their paper. Our OLE is instantiated with OT for w ∈ {28, 212, 216} and with Ring-LWE for w ∈ {218, 220}. (SH: semi-honest,
M: malicious secure)

w = 28 w = 212 w = 216 w = 218 w = 220

Protocols Parties Runtime Comm Runtime Comm Runtime Comm Runtime Comm Runtime Comm

[KMP+17] (SH) 4 - - 0.34 4.9 3.16 78 - - 52.25 1402
15 - - 1.85 23 20.61 363 - - 304.36 6547

[BNOP21] (M)

4 0.20 - 0.55 - 6.62 - 27.09 - 128.25 -
8 0.25 - 0.66 - 7.62 - 30.82 - 143.20 -
16 0.37 - 0.91 - 13.18 - 57.33 - - - -
32 0.80 - 1.60 - 21.54 - 85.37 - - -

Ours (M)

4 0.15 3.67 0.64 30.5 8.52 416 16.34 684 33.26 1386
8 0.22 8.55 1.10 71.1 14.04 972 24.77 1596 51.59 3234
16 0.37 18.3 2.05 152 24.36 2430 45.41 3420 96.72 6931
32 0.70 37.9 4.24 315 53.33 4305 86.10 7068 - -

Results. Our experiment results are reported in Tables
2 and 3. Table 2 shows the running time and commu-
nication cost for our fully secure PSI protocols, while
Table 3 shows the results for the variant in which only
the central party receives output.

Our efficiency depends partly on the slackness,
which is disproportional to the input size. In our ex-
periments, we instantiate the OLE instances with OT
when the input size is small (i.e., 28, 212, 216) and with
Ring-LWE when w ≥ 218. The reason for that is because
the slackness of the Ring-LWE based OLE is large for
small input sizes, causing the protocol to be less con-
cretely efficient than for the OT-based OLE. For exam-
ple, when w = 216, the slackness of Ring-LWE based
OLE is 1250% whereas that of OT-based OLE is 7%.
On the other hand, the Ring-LWE based OLE has the
asymptotic communication cost of O(p) bits per OLE
while the OT-based has the cost of O(p2), where p is
the bit length of the field.

As there is no other fully secure multi-party PSI to
compare with, we only provide a comparison between
our relaxed one-sided output MPSI with prior simi-
lar protocols. Among them, only PSimple [BNOP21]
and [KMP+17] report experimental results. [BNOP21]
uses at least 36 threads for the central party which
was deployed on a c5.18xlarge machine (36 cores, 3.6
GHz clock speed, and 144 GB RAM) for P0 and one
c5.4xlarge machine (8 cores, 3.6 GHz clock speed, and
32 GB RAM) for each other Pi. Even though we are
somewhat less parallelized than [BNOP21] (in terms of
the number of threads and cores used for P0 and Pi
when there are more than 6 parties), our protocol is
still competitive and outperforms [BNOP21] when the

input size is at least 218. When w = 220 our protocol is
at least 3× faster. (See Table 3). Asymptotically, their
protocol also requires much higher communication com-
plexity than ours, namely, O(mwκ2 +mwκ log(κw)) vs.
O((mw +m2 +mt logw)κ) (see Table 1).

For large input sizes, e.g., n = 220, our protocol is
also very competitive against [KMP+17] which is only
semi-honest secure. [KMP+17] ran their experiments
with all parties deployed on the same machine, a 2×36-
core Intel Xeon with 2.30 GHz CPU and 256 GB of
RAM. Considering 15 parties and 14 threads per party
(in their implementation, each party uses (m−1) threads
where m is the number of parties), [KMP+17] is 3×
slower than ours. Garimella et al. [GPR+21] modifies
the augmented semi-honest version of [KMP+17] and
make it malicious secure with one-sided output. As no
experiment results are provided for [GPR+21], we used
the available results from [KMP+17] for comparison.

7 Conclusions
In this paper, we present two new fully secure PSI con-
structions with active security: a two-party and a multi-
party protocols that provide correct output to all parties
(if they ever receive it). Unlike existing state-of-the-art
prior work that provides output to only one party, ours
are the first practical PSI protocols to provide this fea-
ture. Our protocols are constructed based on the MPC-
in-the-head paradigm and can be instantiated with any
passively secure OLE. Beside the fully secure protocols,
we also provide a more efficient multi-party PSI protocol
when only one party obtains the output.
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A Additional Preliminaries

A.1 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is a fundamental
functionality in secure computation that is engaged be-
tween a sender S and a receiver R where a receiver learns
only one of the sender’s inputs whereas the sender does
not learn anything about the receiver’s input. Here we
consider a generalized version of t-out-of-n OT where
the receiver learns t values and which will be useful in
establishing the watchlist channels; see Figure 5 for its
formal description.

Functionality Ft:nOT

Functionality Ft:nOT communicates with sender S and
receiver R, and adversary A.

1. Upon receiving input (sid, v1, . . . , vn) from S

where vi ∈{0,1}κ for all i ∈ [n], record
(sid, v1, . . . , vn).

2. Upon receiving (sid, u1, . . . , ut) from R where
ui ∈{0,1}logn for all i ∈ [t], send (vu1 , . . . vut )
to R. Otherwise, abort.

Fig. 5. The oblivious transfer functionality.

We also define a variance of t-out-of-n OT where
there are multiple senders. In this setting the receiver
learns t values from each sender. The indices of these
values are the same across all the senders. See Figure 6
for its formal description.
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Functionality Ft:n
mOT

Functionality Ft:nmOT communicates with senders Si
and receiver R, and adversary A.

1. Upon receiving input (sid, vi1, · · · , vin) from Si
where i ∈ [m] and vj ∈ {0, 1}κ for all j ∈ [n],
record (sid, vi1, · · · , vin).

2. Upon receiving (sid, u1, · · · , ut) from R where
ui ∈ {0, 1}logn for all i ∈ [t], send (viu1 , · · · , v

i
ut

)
for all i ∈ [m] to R. Otherwise, abort.

Fig. 6. The multi-sender t-out-of-n OT functionality.

A.2 Oblivious Linear Evaluation

An extension of the oblivious transfer functionality for
larger fields is the OLE functionality. More concretely,
OLE over a field F takes a field element x ∈ F from
the receiver and a pair (a, b) ∈ F2 from the sender and
delivers ax + b to the receiver. Note that in the case of
binary fields, OLE can be realized via a single call to
standard (bit-) 1-out-of-2 OT functionality; see Figure
7 for its formal description.

Functionality FOLE

Functionality FOLE communicates with sender S and
receiver R, and adversary A.

1. Upon receiving the input (sid, (a, b)) from S where
a, b ∈ F, record (sid, (a, b)).

2. Upon receiving (sid, x) from R where x ∈ F, send
a · x+ b to R. Otherwise, abort.

Fig. 7. The oblivious linear evaluation functionality.

A.3 Coin Tossing

We use a standard coin tossing functionality FCOIN for
generating the randomness for the degree test. This
functionality can be implemented using commitments.
We further use functionality FComCoin for generating the
randomness used in the OLE instances.

B Optimizations for Two-Party
PSI

In our two-party PSI protocol, we compute each share
tj = pj(s1,j + s2,j) + qj(r1,j + r2,j) via blackbox access

Functionality FCOIN

Upon receiving (rand, S) from all parties, where S is
any efficiently sampleable set,
– Sample r ← S, send r to A and wait for its input.
– If A inputs ’continue’ then output r to all parties,

otherwise output ⊥.

Fig. 8. Public coin tossing functionality.

Functionality FComCoin

Upon receiving (rand, S) from both parties, where S
is any efficiently sampleable set,
– For i ∈ [n], sample σi ← S, and compute

(comi, τi)← Commit(σi).
– Send (comi) to P1 and wait for its response.
– If P1 inputs ’continue’ then output (σi, τi) to P2,

otherwise output ⊥.

Fig. 9. Committed coin tossing functionality for two parties.
Instead of calling this functionality n times, we describe the func-
tionality as returning n random strings. When realizing this func-
tionality, this allows us to use succinct commitments, e.g. through
the use of Merkle trees.

to FOLE. Our FOLE (the first one) is instantiated with
Ring-LWE as below:

– P1 partitions shares pj into blocks of N , and en-
crypts each block using the public key and the ran-
domness obtained from the coin tossing (Step 3).

– P2 also partitions shares s2,j , u2,j into blocks of N ,
computes Enc(PK, pj ·s2,j+u2,j) for the whole block
using the randomness from the coin tossing step.

– The process is reversed with P2 provides qj and P1
provides r1,j , u1,j and P1 is the receiver.

Instead of making two calls to FOLE to compute tj ,
we just use Ring-LWE in a way that allows us to have
better MPC-in-the-head parameters.

– P1 encrypts pj , r1,j and sends to P2.
– P2 computes Enc(PK, pjs2,j + qjr1,j + qjr2,j) and

sends it back to P1.
– P1 decrypts the ciphertext, adds pjs1,j itself to the

output, and obtains tj . P1 sends tj to P2.

This new way of computing tj also needs just semi-
honest Ring-LWE operations; honest behavior is en-
forced with the use of MPC-in-the-head. The value
pjs2,j + qjr1,j + qjr2,j does not leak any additional in-
formation beyond what was presented in Figure 2, as
P1 can learn pjs2,j + qjr1,j + qjr2,j from tj = pj(s1,j +
s2,j) + qj(r1,j + r2,j) anyway (as it knows pj and s1,j).
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C Proof of Theorem 1
We will consider each corruption case separately. In our
simulations, m̃ is a message generated by the simulator
to simulate the message m in the hybrid protocol.
Simulation for a Corrupted P1.

1. Coin-Tossing. The simulator plays the role of the
trusted party in FComCoin honestly, generating ran-
dom coins and commitments.

2. Watchlists.
q̃I , ũ2,I , z̃2,I , r̃2,I , s̃2,I : The simulator samples ran-
dom polynomials Q̃(·), Z̃2(·), R̃2(·), S̃2(·) of de-
gree w + t + e, and U2(·) of degree 2(w + t + e).
It evaluates the polynomials on the roots of unity
η = (1, ω, . . . , ωn−1) and obtains RSFq,n,k,η encod-
ings q̃, r̃2, s̃2, z̃2, and RSFq,n,2k,η encoding u2. The
simulator sees P1’s choice bits when it submits them
to the ideal functionality F t:nOT in Step 4. If more
than t bits are set to 1, the simulator aborts and out-
puts whatever P1 outputs. Else, the simulator ob-
tains the indices I = {i1, ..., it} where the choice bits
are 1. It hands P1 the values q̃I , ũ2,I , z̃2,I , r̃2,I , s̃2,I
to simulate the messages P1 receives. (Note that the
simulation follows similarly also in the case where
P1 set fewer than t selection bits.)
The simulator extracts {pj , u1,j , r1,j , s1,j , z1,j}j
when P1 sends its input to F t:nOT in Step 4. The simu-
lator reconstructs the polynomials p(·), R1(·), S1(·),
Z1(·) from these values. If any of the polynomials
has a degree greater than w + t + e, the simulator
sets abort0 = 1. Otherwise, abort0 = 0.

3. Degree Test.
α̃1, α̃2, α̃3, α̃4, α̃5, α̃6, α̃7, α̃8, b̃j : The simulator sam-
ples α̃1, . . . , α̃8 uniformly at random and hands
them to P1 to simulate the output of FCOIN. It com-
putes b = (b1, . . . , bn) where b̃j = α5 · z̃2,j+α6 · r̃2j +
α7 · s̃2j + α8 · q̃j and hands b to P1 to simulate the
messages P1 receives in Step 5. If abort0 == 1 the
simulator aborts and outputs whatever P1 outputs.
Input Extraction. If abort0 == 0, the simulator
interpolates the polynomial P̃ (·) from the points
(ωj , pj). If P̃ (·) ≡ 0, the simulator aborts and out-
puts whatever P2 outputs. Else, the simulator ex-
tracts P1’s input X̃ defined by X̃ = {x | P̃ (x) = 0}.
The extracted input must be embedded with the
following slackness: X̃ = X ∪ X ′ where X ′ are the
roots of T1(·) chosen by P1 in Step 1.

Synthesize P2’s Input. The simulator submits X̃
to the ideal functionality and obtains X̃ ∩ Y . It re-
computes Q̃(·) such that Q̃(·) = W (·)

∏
z∈X̃∩Y

(X − z)

such that deg(Q̃) = w+ t+ e, Q̃(ηj) = q̃j for j ∈ I1,
and W (z) 6= 0 for z ∈ X̃/(X̃ ∩ Y ).

4. OLE. c̃1 = (c̃1,1, . . . , c̃1,n): The simulator verifies
the messages sent in all n executions of the pas-
sive OLE in Step 6, verifying correctness against the
decommitted randomness.6 If more than d/3 execu-
tions are inconsistent with the watchlists yet the ad-
versary is not caught, the simulator sets abort1 = 1.
The simulator extracts r1,j when P1 sends its input
to the first FOLE in Step 6. The simulator hands c̃1
where c̃1,j = qj ·r1,j+u2,j to P1 to simulate this step.
The simulator extracts (pj , u1,j) when P1 sends its
input to the second FOLE in Step 6.

5. Output Reconstruction.
– d̃2: The simulator computes d̃2 from c2 and its

shares, and hands it to P1.
– The simulator receives d1 = (d1,1, . . . , d1,n)

from P1. It verifies that d1,j = c1,j + pj · s1,j −
u1,j = qj · r1,j + u2,j + pj · s1,j − u1,j for all
j ∈ [1, n]. If abort1 = 1 or if the check fails for
at least d/3 positions, the simulator aborts and
outputs whatever P1 outputs.

The simulator completes the simulation and outputs
whatever P1 outputs.

We define the event where a malicious P1 deviates
from the protocol.

1. E1: In Step 2, P1 sends at least one invalid
RSFq,n,k,η codeword to F t:nOT where the number of
errors is bounded by d/3.

2. E2: At least d/3 of the OLE instances, or the d1,j
values sent in Step 7 or the degree test values, are
inconsistent with the watchlists.

We prove that the joint distributions in the hybrid
and ideal worlds are computationally indistinguishable
by a sequence of hybrid games.

6 As explained in the second footnote in Figure 2, for simplicity,
in the remainder of the simulation we will treat these OLE exe-
cutions as ideal. However, to verify correctness of the executions,
we have to examine the messages of the particular instantiation
of the ideal primitive. Since this can be done generically, for any
instantiation, we allow ourselves this simplification.
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{
realFComCoin,Ft:n

OT,FCOIN,FOLE
Π2PSI,A(z) (X,Y, κ, s))

}
κ,s,X,Y,z

c≡
{

idealF2PSI,S(z) (X,Y, κ, s))
}
κ,s,X,Y,z

– H0 : This game is a hybrid execution of the protocol.
– H1 : Similar to H0, except that when E1 happens,

the simulator aborts.
– H2 : Similar to H1, except that when E2 happens,

the simulator aborts.
– H3 : Ideal execution of the protocol.

H0 and H1: We prove that H0 and H1 are statistically
close. Note that H0 and H1 can be distinguished if and
only if one of the random polynomials sampled in Step 2
in H0 has a degree greater than w+ t+e, yet the degree
test passes. Whereas in H1, the simulator always knows
if the adversary cheats and aborts when the degree test
is executed, even if it passes.

Recall first that a random polynomial p that is sam-
pled honestly in Step 2, p(η) ≡ (p(1), ..., (ωn−1)) is a
[n, k, n− k + 1] Reed-Solomon codeword. Moreover, the
degree test checks whether a random linear combination
of the codewords generated from those random polyno-
mials belongs to RSFq,n,k,η. When one of these random
polynomials has a degree higher than (w+t+e), in order
to pass the degree test, P1 must come up with a tuple
(a1, ..., an) that is a valid RSFq,n,k,η codeword.

To bound this error, we rely the following Lemma
from Ames et al. [AHIV17] to bound the error probabil-
ity that the degree test passes by d/F. We denote by the
matrix Ui the list of codewords to be proven by party
Pi.

Lemma 3. [AHIV17] Let L = RSFq,n,k,η and e a posi-
tive integer such that e < d/3, where d is the minimum
distance of L. Suppose d(Ui, Lm) > e where Ui is as de-
fined as above. Then, for a random l∗ in the row-span
of Ui, it holds that

Pr[d(l∗, L) ≤ e] ≤ d/|F|.

H1 and H2: We prove that H1 and H2 are statistically
close. Note that H1 and H2 can be distinguished if and
only if in H1 the event E2 happens but it is not caught
by the watchlists. This error probability is bounded by
(1 − e/n)t. Meaning, if the adversary is deviating in at
least e positions overall, it will be caught except with
this probability.

H2 and H3: We prove that the views in H2 and H3 are
statistically close to each other.

Recall that in H3, instead of using the actual P2’s
input to simulate the watchlist messages in Step 4,
the simulator samples a random polynomial Q̃(·) and
generates the messages q̃I1 . Only after the OT, the
simulator extracts P1’s input X̃. The output is deter-
mined based on the extracted input of the adversary.
Once the simulator obtains the output X̃ ∩ Y , the sim-
ulator needs to recalculate the polynomial Q̃(·) used
in the following steps of the simulation. Now Q̃(·) =
Πw+t+e−|X̃∩Y |
i=1 (X − zi)Πyi∈X̃∩Y

(X − yi) · T̃ ′2(·) where
zi /∈ X̃ ∩ Y and T̃ ′2(·) are random polynomials of degree
(t+ e), and chosen such that the new Q̃(·) is consistent
with the shares q̃I1 sent through the watchlist channels.
Denote Ỹ = {zi} ∪ (X̃ ∩ Y ). On the other hand, in H2

we have Q(·) =
w∏
i=1

(X − yi) · T2(·).

Due to the watchlist mechanism, the adversary sees
t evaluations of Q(·) and Q̃(·). However, as Πwi=1(X −
yi) and Πwi=1(X − ỹi) are both masked with random
polynomials of degree t + e, nothing is leaked about yi
or ỹi from observing t evaluations.

In H2, P1 receives the RSFq,n,k,η encoding
(t1, . . . , tn) of a polynomial T = P (S1+S2)+Q(R1+R2).
While in H3, upon extracting P1’s input X̃, the sim-
ulator submits X̃ to the ideal functionality and ob-
tains the output X̃ ∩ Y , so P1 receives (t̃1, . . . , t̃n) of
T̃ = W̃ · Π

zi∈X̃∩Y
(X − zi) where W̃ is a random poly-

nomial of degree 2(w + t + e) − |X̃ ∩ Y | that does not
contain any roots of P1 or of P2. According to Kissner
and Song [KS05] (Lemma 2), whenever R = R1+R2 and
S = S1 + S2 are random polynomials, then the polyno-
mial T = W · Πzi∈X∩Y (X − zi) where W is distributed
as a random polynomial of degree 2(w+ t+e)−|X ∩Y |.
In H3, the simulator obtains the exact X̃ ∩ Y , however,
in H2,W may contain extra roots that are in X̃\(X̃∩Y )
or Y \(X̃ ∩Y ). H2 and H3 will be indistinguishable if W
does not have common roots with the input polynomi-
als of both parties. We claim that the probability that
this happens is bounded by 2(w + t+ e)/|F|.

Lemma 4. The probability that at least one of the val-
ues {x1, . . . , xt} is a root of a uniformly random polyno-
mial P (X) = a0 + · · ·+anX

n over the field F is bounded
by t/|F|.

Proof. It is clear that for any value x and for any com-
binations of (a1, . . . , an), there is only one value a0 that
makes P (x) = 0. So, the probability that x is a root of
the random polynomial P (X) is exactly 1/|F|. Taking
the union bound, the probability that at least one value



Fully Secure PSI via MPC-in-the-Head 312

of the set {x1, . . . , xt} is the root of P (X) is bounded
by t/|F|.

From Lemma 4, the probability thatW (·) has a common
root with P̃ (·) is bounded by (w + t + e)/|F|, and that
W (·) has a common root with Πwi=1(X − yi), where yi
values are P2’s input, is bounded by w/|F|. In overall,
the chance that H2 and H3 are different is bounded by
2(w + t+ e)/|F|.

Furthermore, we claim that the adversary’s input is
well defined. This is because the simulator did not abort
either in the degree test and either due to the watch-
lists checks. This implies that the adversary followed the
degree test correctly and provided polynomials that are
consistent with the values committed via the watchlists.

We conclude that H2 and H3 are statistically close
with an error bounded by 2(w+ t+e)/|F|. Note that H3
is identically distributed to the simulation.

This concludes the proof for the first case.
Simulation for a Corrupted P2. The roles of P1 and
P2 in our two-party PSI protocol are symmetric and
thus the simulation and proof are identical.

D Proof of Theorem 2
We consider two cases. In the first case P0 is corrupt.
In the second case P0 is not corrupt. Let A be the set
of indices of corrupt parties.
Simulation For a Corrupted P0.

1. Merkle Tree Commitment. The simulator acts
on behalf of honest parties Pi, running the protocol
honestly until Step 6 (in Step 2 it uses random input
Q̃i for the honest party Pi). The simulator samples
three random coins, each is used to generate the
set of indices I1, I2, I3 of the watch channels in each
check. Let I = I1 ∪ I2 ∪ I3. It then uses the ran-
dom input and random polynomials to generate the
Merkle tree’s root. It stores all honest Pi’s shares at
these indices (q̃i,j , j ∈ I).

2. Input Extraction. In Step 7, the simulator hands
corrupt parties a random coin, which correspond
to a list of t indices used for the degree test, and
learns t shares. The simulator rewinds the process
until it extracts all the corrupt parties’ input and
randomness used in the protocol.
– P0’s input: (q0,j , r0,j , z0,j , s1

0,j , · · · , s
m−1
0,j ,

u1
0,j , · · · , u

m−1
0,j ) for j ∈ [1, n].

– Pi’s input (i ∈ A\{P0}): (qi,j , ri,j , si,j , zi,j , vi,j ,
ui,j) for j ∈ [1, n].

The simulator reconstructs the corresponding poly-
nomials Q0, R0, Z0, Si0, U i0, and Qi, Ri, Zi, Si, Ui
for i ∈ A \ {P0}. If any of the polynomials Q0, R0,
Z0, Si0, or Qi, Ri, Zi, Si has degree higher than
w+3t+e, the simulator sets abort0 = 1. Else, it sets
abort0 = 0.

3. Synthesize Honest Parties’ Input. If abort0 ==
0, the simulator submits the corrupt parties’ input
to the ideal functionality, receiving X = ∩m−1

i=0 Xi.
For each honest party Pi, the simulator uses X̃i =
X ∪ Zi where each Zi consists of (w − |X|) random
values such thatX∩Zi = ∅. It recomputes Q̃i(·) such
that Q̃i(·) = Π

z∈X̃i
(X − z) · Ti(·), where deg(Ti) =

3t+ e. It sets q̃i,j = Q̃i(ηj) for j ∈ I. This is always
possible as Ti(·) is defined as a random polynomial
of degree 3t + e. There is always a Ti that satisfies
the above conditions.
We note that, whenever the parties need to reveal
the shares to perform the checks, q̃i,j will be opened,
and they are always consistent with the committed
Merkle tree’s root.

4. Degree Test. The simulator runs the degree test
on behalf of honest parties. If abort0 == 1, it aborts
and outputs whatever P0 outputs.

5. OLE. c̃1 = (c̃1,1, · · · , c̃1,n): The simulator monitors
the randomness used in all n executions of the pas-
sive OLE in Step 8, verifying correctness. If more
than d/3 executions are inconsistent with the watch-
lists yet the adversary is not caught, the simulator
sets abort1 = 1. Specifically, the simulator extracts
si

0 when P0 sends its input to the first FOLE in Step
8. The simulator hands c̃i

0 where c̃i0,j = qi,j ·si0,j+ui,j
to P0 to simulate this step.
The simulator extracts (q0,ui

0) when P0 sends its
input to the second FOLE in Step 8. If P0 uses encod-
ings that are not consistent with the watchlist (that
also enforces the use of the same q0 in all FOLE in-
vocations), the simulator aborts. The simulator uses
the extracted input to FOLE to compute ci for the
honest party Pi and stores it.

6. Output Reconstruction.
– d̃i: The simulator computes d̃i from ci and its

shares, and hands it to P0 on behalf of honest
parties Pi.

– The simulator receives t = (t1,1, · · · , t1,n) from
P0. It verifies that tj = q0,j ·

∑m−1
i=0 ri +∑m−1

i=1 qi,j(si0,j + si,j) for j ∈ [1, n]. If abort1 = 1
or if the check fails for at least d/3 positions,
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the simulator aborts and outputs whatever the
adversary outputs.

The simulator completes the simulation and outputs
whatever the adversary outputs.

We define the event where a malicious adversary
(including P0) deviates from the protocol.

1. E1: In Step 4, at least one of the corrupted parties
commits to an invalid RSFq,n,k,η codeword where
the number of errors is bounded by d/3.

2. E2: At least d/3 of the OLE instances or the d1,j
values sent in Step 10, or the degree test values are
inconsistent with the commitments.

In the full version we prove that the joint distribu-
tions in the hybrid and ideal worlds are computationally
indistinguishable via a sequence of hybrid games.
Simulation for Honest P0.

1. Merkle Tree Commitment. The simulator acts
on behalf of honest parties Pi, running the protocol
honestly until Step 6 (in Step 2 it uses random input
Q̃i for the honest party Pi). The simulator samples
three random coins, each is used to generate the
set of indices I1, I2, I3 of the watch channels in each
check. Let I = I1 ∪ I2 ∪ I3. It then uses the ran-
dom input and random polynomials to generate the
Merkle tree’s root. It stores all honest Pi’s shares at
these indices (q̃i,j , j ∈ I).

2. Input Extraction. In Step 7, the simulator hands
corrupt parties a random coin, which correspond
to a list of t indices used for the degree test, and
learns t shares. The simulator rewinds the pro-
cess until it extracts all the corrupt parties’ input
and randomness used in the protocol. For i ∈ A,
the simulator obtains Pi’s input (i ∈ A \ {P0}):
(qi,j , ri,j , si,j , zi,j , vi,j , ui,j) for j ∈ [1, n].
The simulator reconstructs the corresponding poly-
nomials Qi, Ri, Zi, Si, Ui. If any of the polynomials
Qi, Ri, Zi, Si has degree higher than w+ 3t+ e, the
simulator sets abort0 = 1. Else, it sets abort0 = 0.

3. Synthesize Honest Parties’ Input. If abort0 ==
0, the simulator submits the corrupt parties’ input
to the ideal functionality, receiving X = ∩m−1

i=0 Xi.
For each honest party Pi, the simulator uses X̃i =
X ∪ Zi where each Zi consists of (w − |X|) random
values such thatX∩Zi = ∅. It recomputes Q̃i(·) such
that Q̃i(·) = Π

z∈X̃i
(X−z)·Ti(·) such that deg(Ti) =

3t+e, Q̃i(ηj) = q̃i,j for j ∈ I. This is always possible
as Ti(·) is defined as a random polynomial of degree

3t+ e. There is always a Ti that satisfies the above
conditions. Whenever the parties need to reveal the
shares to perform the checks, q̃i,j will be opened,
and they are always consistent with the committed
Merkle tree’s root.

4. Degree Test. The simulator runs the degree test
on behalf of honest parties. If abort0 == 1, it aborts
and outputs whatever the corrupt parties output.

5. OLE. c̃1 = (c̃1,1, · · · , c̃1,n): The simulator monitors
the randomness used in all n executions of the pas-
sive OLE in Step 8, verifying correctness.If more
than d/3 executions are inconsistent with the watch-
lists yet the adversary is not caught, the simulator
sets abort1 = 1.
Specifically, the simulator extracts qi,ui when Pi
sends its input to the first FOLE in Step 8. The sim-
ulator extracts ri when Pi sends its input to the sec-
ond FOLE in Step 8. The simulator hands c̃i where
c̃i,j = q0,j · ri,j + ui0,j to Pi to simulate this step.
If Pi uses encodings that are not consistent with the
watchlist, the simulator aborts. The simulator uses
the extracted input to the FOLE to compute ci

0 and
ci for honest party Pi and stores it.

6. Output Reconstruction d̃: For each honest par-
ties Pi, the simulator computes d̃i from ci and its
shares. For each corrupt party Pi, the simulator re-
ceives d̃i and verifies that di,j = q̃0,jri,j + qi,jsi,j +
vi,j + (ui0,j − ui,j) for i ∈ A and j ∈ [1, n].
If abort1 = 1 or if the check fails for at least d/3
positions, the simulator aborts and outputs what-
ever the adversary outputs. Otherwise, the simula-
tor computes d̃ and sends it to corrupt parties.

The simulator completes the simulation and outputs
whatever the adversary outputs.

The arguments to prove the the joint distributions
in the hybrid and the ideal world is statistically close is
similar to the case of corrupt P0. We omit the proof.
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