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In Search of Lost Utility: Private Location Data
Abstract: The unavailability of training data is a per-
manent source of much frustration in research, espe-
cially when it is due to privacy concerns. This is partic-
ularly true for location data since previous techniques
all suffer from the inherent sparseness and high dimen-
sionality of location trajectories which render most tech-
niques impractical, resulting in unrealistic traces and
non-scalable methods. Moreover, time information of
location visits is usually dropped, or its resolution is
drastically reduced. In this paper we present a novel
technique for privately releasing a composite generative
model and whole high-dimensional location datasets
with detailed time information. To generate high-fidelity
synthetic data, we leverage several peculiarities of ve-
hicular mobility such as its language-like characteris-
tics (“you should know a location by the company it
keeps”) or how humans plan their trips from one point
to the other. We model the generator distribution of the
dataset by first constructing a variational autoencoder
to generate the source and destination locations, and the
corresponding timing of trajectories. Next, we compute
transition probabilities between locations with a feed
forward network, and build a transition graph from the
output of this model, which approximates the distribu-
tion of all paths between the source and destination (at
a given time). Finally, a path is sampled from this dis-
tribution with a Markov Chain Monte Carlo method.
The generated synthetic dataset is highly realistic, scal-
able, provides good utility and, nonetheless, provably
private. We evaluate our model against two state-of-the-
art methods and three real-life datasets demonstrating
the benefits of our approach.
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1 Introduction
Analyzing human mobility patterns has been in the fo-
cus of both researchers and practitioners in the last
decades [22] [6] [12]. Having created an already $12 bil-
lion market, the location data industry is steadily ex-
panding with companies that harvest, sell, or trade in
location data. Many of these firms claim that privacy
has utmost importance in their businesses and that they
never sell personal data.1

However, collecting and mining location data come
inherently with their own strong privacy and other
ethical concerns [5]. Several studies have shown that
pseudonymization and quasi-standard de-identification
are not sufficient to prevent users from being re-
identified in location datasets [11] [37]. This significantly
hinders location data sharing and use by researchers,
developers and humanitarian workers alike2.

Although a plethora of different anonymization
techniques have been proposed for location data (for
a very thorough survey see [19]), they all suffer from
either weak utility, or weak privacy guarantees, or they
are not scalable to large datasets. Indeed, location data
are inherently high-dimensional and often sparse, which
makes an individual’s location trajectory unique even
in very large populations3. This has a detrimental ef-
fect on privacy, and also on utility due to the curse
of dimensionality. Note that aggregation per se does
not necessarily prevent such re-identification in practice
[31, 36]. The brittleness of privacy guarantees ignited
research towards location anonymization with provable
privacy guarantees. So far, only a handful of prior works
[7, 10, 24, 25] have addressed the off-line anonymization
of complete location trajectories with formal privacy
guarantees. Most of these approaches use some form of
Differential Privacy [16], which has become the de facto
privacy model recent years [2, 18, 33].

1 https://themarkup.org/privacy/2021/09/30/theres-a-
multibillion-dollar-market-for-your-phones-location-data
2 https://www.economist.com/leaders/2014/10/23/call-for-
help
3 Four data points—approximate places and times where an
individual was present—have been demonstrated to be enough
to uniquely re-identify 95% of the users in a dataset of 1.5 million
users [11]

https://themarkup.org/privacy/2021/09/30/theres-a-multibillion-dollar-market-for-your-phones-location-data
https://themarkup.org/privacy/2021/09/30/theres-a-multibillion-dollar-market-for-your-phones-location-data
https://www.economist.com/leaders/2014/10/23/call-for-help
https://www.economist.com/leaders/2014/10/23/call-for-help
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Unfortunately, off-line location anonymization with
Differential Privacy often implies serious accuracy
degradation which can make anonymized data useless
in practice. In particular, most schemes follow the com-
mon three-steps approach to generate privacy preserv-
ing synthetic location traces: (1) finding a faithful gen-
erative model of the underlying data generating distri-
bution, (2) adding noise to the training of this model
in order to provide Differential Privacy, (3) generating
synthetic location trajectories from the noisy genera-
tive model. Generally, inaccuracy stems from either us-
ing a sub-optimal generative model, or a model which
is not sufficiently robust against the additional noise
needed for Differential Privacy. Although a more com-
plex model is capable of faithfully capturing the pecu-
liarities of location data, it also requires larger pertur-
bation for privacy owing to the increased number of its
parameters. Moreover, complex models very often are
not scalable to larger datasets with several hundreds
of thousands of location trajectories [7, 25]. Finally, to
the best of our knowledge, none of these differentially
private anonymization approaches release the valuable
fine-grained temporal characteristics of location visits.

In this paper, we propose a novel off-line anonymiza-
tion scheme called DP-Loc for location data with strong
Differential Privacy guarantees. Unlike prior works, we
tackle high dimensional data modeling with genera-
tive neural networks (GNN) which have shown great
promise recently. GNNs have the potential to automat-
ically learn the general features of a location dataset
including complex regularities such as the subtle and
valuable correlation among different location visits as
a function of time. The key of our approach is a novel
decomposition of the generator model into a sequence
of smaller models and a post-processing step, which are
robust against perturbation needed for Differential Pri-
vacy, and therefore can be used to generate high-fidelity
synthetic location trajectories. In particular, we first
project all trajectories to a smaller set of frequent loca-
tions thereby reducing the dimensionality of the data.
Then, a synthetic trace is created by first generating its
source and destination along with time information, and
then finding a path on a transition graph between these
endpoints. Both the endpoint and graph generation are
modelled by distinct neural networks scalable for being
trained with differentially private gradient descent [1].

DP-Loc has several advantages. First, projecting
traces to a smaller set of locations helps generaliza-
tion and also increases robustness against the added
noise. Second, separating endpoint from path genera-
tion preserves the length of trajectories more accurately

compared to related work. Third, recently proposed ad-
vanced composition theorems of Differential Privacy [1]
enable us to use differentially private neural networks
with better utility instead of simple Markovian models
[10, 24], and quantify the privacy guarantee of DP-Loc
more accurately. Finally, neural networks are sufficiently
flexible to model transition probabilities depending on
the destination and time, which facilitates the genera-
tion of more realistic location traces. Figure 2 illustrates
the power of DP-Loc, where the density of complete
synthetic location trajectories produced by DP-Loc are
compared to the original data and a state-of-the-art so-
lution from [24].
Our specific contributions are as follows:
1. We propose a novel generative model, DP-Loc to

generate realistic location trajectories with time in-
formation. A Variational Auto-Encoder (VAE) is
used to generate the source and destination of a
trace along with a single timestamp of the trace.
Then, a feed-forward neural network is built to com-
pute the transition probabilities between any two
locations depending on the destination and time,
which implicitly defines the distribution of all paths
between the source and the destination at a given
time. Finally, a realistic path is generated by sam-
pling from this distribution with a Markov Chain
Monte Carlo (MCMC) method.

2. Our composite generative model can be trained with
differentially private gradient descent [1] on sensi-
tive location data, and, therefore, can be used to
synthesize the training data with formally proven
privacy guarantees. Such synthetic training data can
be shared for any purposes without violating indi-
viduals’ privacy.

3. We evaluate our model on three real-life public mo-
bility datasets, and demonstrate that the generated
private synthetic data has higher utility compared
to previous works.

2 Related Work
A prominent line of anonymization research uses the
notion of Differential Privacy [14] which gives a pri-
vacy guarantee based on rigorous mathematical proofs.
Some proposals based on synthetic data generation via
machine learning, i.e., modeling the dataset through
the underlying distributions of generating variables,
do apply Differential Privacy specifically for location
data [10, 25], but with significant shortcomings. He et
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al.[25] (DPT) discretize raw GPS trajectories using hi-
erarchical reference systems to capture individual move-
ments at different speeds. They then propose an adap-
tive mechanism to select a small set of reference sys-
tems to construct prefix tree counts. Lastly, a direction-
weighted sampling is applied to improve utility.

Chen et al. designed Ngram [10], a variable-length
n-gram model that makes use of an exploration tree
structure and Markovian assumptions, with Differen-
tial Privacy. Gursoy et al. [24] designed AdaTrace, a
generative model with a four-phase synthesis process
consisting of feature extraction, synopsis learning, dif-
ferentially private noise injection and synthetic trace
generation. Additionally, they provided defense against
three ad-hoc privacy attacks. Bindschaedler and Shokri
[7] (SGLT) enforce plausible deniability to generate
privacy-preserving synthetic traces. SGLT first recom-
mends trace similarity and intersection functions that
map a synthetic trace to an original one under similar-
ity and intersection constraints. Then, it generates one
synthetic trace using one real trace as its seed. If the syn-
thetic trace satisfies plausible deniability, i.e., there exist
k other real traces that can be mapped to the synthetic
trace, then it preserves the privacy of the seed trace.
DPT and Ngram generate synthetic traces as random
walks that do not incorporate destinations. However, a
realistic trajectory heavily depends on the destination,
and humans rarely visit a location following a “let’s go
to a place where people usually go from here” policy.
In addition, a random walk can possibly generate syn-
thetic traces with unrealistic length (see details in Sec-
tion 5). Moreover, time-of-day is also left out from the
models (Ngram, DPT, AdaTrace); clearly, this reduces
the descriptive power of the generative model as human
mobility does show strong time-of-day patterns [22]. In
fact, time-of-day even influences trip destinations. (Just
consider how your destination varies from 8am to 8pm.)
Simply dropping the timestamps averages out the visit
frequencies between night and day, morning and after-
noon etc. SGLT applies large bins in order to incor-
porate time (morning, afternoon, evening and night).
However, SGLT is mainly designed for CDR (Call De-
tail Record) datasets, and it utilizes the peculiarities of
the implied mobility patterns, such as semantic similar-
ity (SGLT) between locations. This approach can hardly
generate valuable synthetic data when it comes to short
term, dense movements, such as GPS trajectories of ve-
hicles between start and end locations. Borrowing the
example from [7], consider Alice and Bob spending all
day at their respective work locations wA and wB , and
all night at their respective home locations hA and hB .

Obviously, their mobility models are semantically very
similar, although it might be the case that hA 6= hB
and wA 6= wB . In this example, the best semantic map-
ping between locations will be wA ↔ wB and hA ↔ hB .
This example clearly introduces the type of mobility
traces generated by this model. In our experiments, we
applied datasets of vehicle trajectories where the above
illustrated semantic similarity is not applicable at all
times. Furthermore, in CDR-like data, we can mostly
observe the locations where people reside for longer pe-
riods (such as work and home), while DP-Loc models
individuals’ movements from one of these locations to
another, where the turns and stops depend on the hour
of the day (e.g., owing to traffic jams). For example, of-
tentimes we take a different route from home to work de-
pending on the traffic conditions. More formally, in the
case of CDR (or similar) datasets, the transition proba-
bilities between locations are closer to uniform; however,
when we increase the sampling rate of locations along a
route, this does not hold anymore (particularly when we
also condition on time and destination), thus allowing
us to build better models. Our model is best suited for
trips that have a start and destination that can be fit in
the same time-slot. For different datasets different time
granularity can be used based on the underlying appli-
cation. However, for CDR-like data, we suggest two pos-
sible alterations: (1) setting one time-slot to one day, or
(2) remove all time information. The evaluation of these
scenarios go beyond the scope of this paper, hence we
leave them for future research.

Ngram, DPT and AdaTrace apply the Laplace
mechanism to preserve Differential Privacy, where the
noise is added to the Markovian probabilities. In con-
trast to these, we apply the Moments Accountant [1]
method with the Gaussian mechanism that utilizes an
advanced composition theorem by taking into account
the exact noise distribution. Finally, SGLT has been
shown [24] to be very slow, while DPT requires large
computational power (256GB RAM and 48 cores for
50, 000 traces, whereas we generate 400, 000 traces), thus
these models are not scalable for large datasets.

Most privacy-preserving training algorithms for
neural networks are based on modifying the gradient in-
formation generated during backpropagation. The mod-
ification involves clipping the gradients (to bound the
influence of any single record on the released model pa-
rameters) and adding calibrated random noise [1, 8].
Some works propose to use generative adversarial net-
works (GANs) [29] or mixture models [3] to directly gen-
erate privacy-preserving synthetic data. Differentially
Private GAN [34, 35, 38] has been applied to gener-
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ate image and Electronic Health Record data. The ap-
proach in [20] aims to generate time series with LSTM
(Long-Short Term Memory Networks) and GAN (Gen-
erative Adversarial Networks) with DP guarantees, as
well as multi-variate tabular data. GS-WGAN [9] uses
gradient-sanitized Wasserstein GAN to generate syn-
thetic data and has also been demonstrated on image
data. Another DP-GAN architecture was proposed in
[4] to release patient-level clinical trial data with Dif-
ferential Privacy. All these techniques use some vari-
ant of DP-SGD (Differentially Private Stochastic Gra-
dient Descent) [1] for training the discriminator of GAN.
By contrast, PATE-GAN [26] was proposed to generate
synthetic multi-variate tabular data using PATE [28].
Nonetheless, none of these generative models are spe-
cific to location data generation.

3 Preliminaries

3.1 Location Data

In general, location data is geographical information
about a specific object’s whereabouts associated to a
time identifier. Formally, let L = {L1, L2, . . . , L|L|} be
the universe of locations, where |L| is the size of the uni-
verse. We assume that the whole universe is represented
as a grid, and each location corresponds to a cell in the
grid. Each record in a location database is a sequence
of timestamped location visits drawn from the universe.
Specifically, a sequence S of length |S| is an ordered list
of items S = (L`1 , t1) → (L`2 , t2) → . . . → (L`|S| , t|S|),
where ∀1 ≤ i ≤ |S|, L`i ∈ L. A location may occur
multiple times in S. A location database D is composed
of a multiset of sequences D = {S1, S2, . . . , S|D|}, where
|D| = N denotes the number of traces in D.

3.2 Differential Privacy

Differential Privacy [16] (DP) ensures that the outcome
of any computation on a database is insensitive to the
change of a single record. It follows that any information
that can be learned from the database with a record can
also be learned from the one without that particular
record. In our case, DP guarantees that our generative
model is not affected by any single original trajectory
beyond the privacy budget measured by ε and δ, which
can be computed as follows.

Definition 3.1 ((ε, δ)-Differential Privacy [15]). A
privacy mechanism M gives (ε, δ)-Differential Privacy
if for any database D1 and D2 differing on at most one
record and for any subset of outputs S ⊆ Range(M):

Pr[M(D1) ∈ S] ≤ eε Pr[M(D2) ∈ S] + δ

Intuitively, a privacy mechanism M satisfying Defini-
tion 3.1 does not release any information that is specific
to any single record in dataset D up to ε and δ, where
δ is preferably smaller than 1/|D| [15].

A fundamental concept for achieving Differential
Privacy is the global sensitivity of a function [16]:

Definition 3.2 (Global Lp-Sensitivity [17]). For
any function f : D → Rd , the Lp-sensitivity of f
is ∆f = maxD1,D2 ||f(D1) − f(D2)||p for all D1, D2
differing in at most one record, where || · ||p denotes the
Lp-norm.

Differential Privacy maintains composition; the privacy
guarantee of the k-fold adaptive composition of any
mechanism can be computed using the moments ac-
countant method [1]. The moments accountant gener-
alizes the regular approach of keeping track of (ε, δ) us-
ing an advanced composition theorem by taking into
account the exact noise distribution.

Definition 3.3 (Privacy Loss [1]). Let M be a pri-
vacy mechanism which assigns a value O ∈ Range(M)
to a dataset D. The privacy loss of M with datasets
D1 and D2 and auxiliary input aux at output O is a
random variable:

L(O;D1, D2,M, aux) = log P [M(D1, aux) = O]
P [M(D2, aux) = O]

Definition 3.4. (Log of the Moment Gen-
erating Function) For a given mechanism
M, the log of the moment generating func-
tion evaluated at λ is: αM(λ; aux,D1, D2) =
log EO∼M(D1,aux)[exp(λL(O;D1, D2,M, aux))].

Theorem 3.1. (Moments Accountant [1]) Let
αM(λ) = maxaux,D1,D2 αM(λ; aux,D1, D2) be defined
as above. LetM1:k be the k-fold adaptive composition
ofM1, . . . ,Mk. Then:
1. Composability: αM1:k(λ) ≤

∑k
i=1 αMi

(λ)
2. Tail bound: For any ε > 0, the mecha-

nism M1:k is (ε, δ)-differentially private for δ =
minλ exp(αM1:k(λ)− λε).
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The Gaussian Mechanism [17] consists of adding Gaus-
sian noise to the true output of a function. In par-
ticular, for any function f : D → Rn, the Gaussian
mechanism is defined as adding i.i.d. Gaussian noise
with variance (∆2f · σ) and zero mean to each coor-
dinate value of f(D). In fact, the Gaussian mechanism
draws vector values from a multivariate isotropic Gaus-
sian distribution which is described by random variable
G(f(D),∆2f · σIn).

4 Model

4.1 Overview

Our goal is to generate private synthetic location traces.
In particular, having a location dataset D with a mul-
tiset of trajectories, our goal is to build a generative
model which approximates the true generator distribu-
tion of D, where every trajectory in D is a sample from
this distribution. The model is built using the privacy-
sensitive data D, and, hence, the training process of
this model must guarantee Differential Privacy for any
user/trajectory in D. Due to the large complexity of this
model, we decompose it into four main parts as follows:
- Dimensionality Reduction: We identify the K
most frequently visited cells on the map and work
only with these locations afterwards by projecting
all trajectories to these cells.

- Trajectory Initialization: A generative model,
called Trajectory Initializer (TI), learns the under-
lying joint distribution of the starting and ending
locations and time variable of all trajectories, i.e.,
their very first (source) and very last (destination)
location visits along with the single timestamp of
the whole trace.

- Transition Probability Generation: A classifi-
cation model, called Transition Probability Genera-
tor (TPG), learns the transition probability distri-
bution between any two consecutive locations, i.e.,
it outputs the probability distribution for the next
hop in a trace, conditioned on the current location,
the destination and time. Both of these models are
trained with Differential Privacy guarantees on a
potentially sensitive training dataset.

- Trace Generation: Sampling a source Lsrc and
destination Ldst along with the time t from the
output distribution of TI, and using the tran-
sition probabilities between any locations gener-
ated by TPG, the trace generator (TG) non-

Algorithm 1: Differentially Private Synthetic
Trace Generator (DP-Loc)

Input: Private Dataset D
1 Dimensionality Reduction:
2 Choose K most frequent locations TOP-K:

L`1 , ...L`K , ∀L`i ∈ L with Gaussian Mechanism
3 Project each trace p ∈ D to TOP-K
4 Model Construction:
5 Train the Trace Initialization Model TIθ1 on D with

DP-SGD [1]
6 Train the Transition Probability Generation Model

TPGθ2 on D with DP-SGD [1]
7 Trajectory Reconstruction:
8 for i ∈ [1, . . . , |D|] do
9 Sample (Lsrc, Ldst, t) ∼ TIθ1

10 Build a routing graph G(V,E), where V = L and
weight((Lx, Ly)) = − log TPGθ2 [Ly |t, Lx, Ldst],
where (Lx, Ly) ∈ E

11 Find the path p between Lsrc and Ldst with the
minimal total weight in G

12 for m ∈ [1, . . . , 10] do
13 Run Metropolis-Hastings on p: p = MH(p)

14 Generate repetitions in the sampled path
s = (L`1 , . . . , L`n ):

15 for L`j ∈ s do
16 η ∼ Geom(1− TPGθ2 [L`j |t, L`j−1 , L`n ])
17 s′ =

(L`1 , . . . , L`j−1 , L`j , . . . , L`j︸ ︷︷ ︸
η times

, L`j+1 , . . . , L`n )

18 D′ = D′ ∪ {(s′, t)}
Output: Synthetic dataset D′

deterministically reconstructs a trajectory between
source Lsrc and destination Ldst at time t com-
bining Dijkstra’s shortest path and the Metropolis-
Hastings algorithm. As this process only uses the
output of TI and TPG, and some public informa-
tion about locations, the whole generation process
becomes differentially private as the first two are
already differentially private.

Assumptions: Time is divided into equally sized slots
which are sufficiently large to include whole trajectories.
Each trajectory is assigned to a single time slot t, and
all location visits of a trajectory take place within this
slot t.

4.2 Model Description

In the remainder of this section, we describe our ap-
proach called DP-Loc (Differentially Private Synthetic
Trace Generator) in more details that is also summa-
rized in Alg. 1.
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4.2.1 Dimensionality Reduction

We project all locations of every trajectory to the K
most frequently visited locations (cells) on the map
called as TOP-K locations. In particular, each location
is mapped to the closest TOP-K location if there is any
within a distance of 1000 meters. Otherwise, the whole
trace is dropped. The value K refers to the number of
most frequently visited cells where 95% of all visits oc-
cur; thus, it differs among datasets, and must be chosen
in a differentially private fashion (see Section 5.6 and
Section 4.3). (We made an exception and lowered the
threshold percentage in case of GeoLife-250 dataset to
80% because of the low amount of datapoints in many
cells. The same preprocessing was done for Ngram and
AdaTrace as well.) The purpose of this dimensionality
reduction is to increase model accuracy and also the
speed of training. Indeed, if there are many cells on
the map, the number of visits per cell typically has a
power-law distribution: most cells are never or rarely
visited. Using all grid cells would largely increase model
complexity and hence training time. Moreover, it also
degrades model quality due to the larger perturbation
needed by DP (see Section 4.3). On the other hand, di-
mensionality reduction helps the model preserve large-
scale mobility patterns more accurately (with high sup-
port) at the expense of losing fine-grained patterns (with
low support). This trade-off can be dynamically chosen
per application; we believe that retaining 95% of all vis-
its provides reasonably high fidelity.

4.2.2 Trajectory Initialization (TI)

In order to sample a starting location Lsrc ∈ L, a des-
tination Ldst ∈ L and time t ∈ T for a synthetic tra-
jectory, we build a differentially private Variational Au-
toencoder (VAE) (see Figure 3a in Appendix A for il-
lustration) that is capable of approximating the joint
probability distribution Pr(Lsrc, Ldst, t). The model pa-
rameters θ1 are learnt from a sensitive location dataset
D, and hence training is performed with DP-SGD [1]
(see Section 4.3 for details).

The output of TIθ1 is a 3-dimensional vector
[Lsrc, Ldst, t] (recall that each trace has a single times-
tamp in our model). Notice that learning this distribu-
tion privately is challenging due to its high dimension-
ality; the domain of the joint probability distribution is
|L| × |L| × |T|, where |T| is the number of all possible
time slots.

We one-hot encode the input, thus it has a dimen-
sion of 2×|L|+ 24, where the size of |L| depends on the
coarseness of the grid, and 24 is the number of hours in a
day. Our encoder has two hidden dense layers (100, 100)
with ReLU and linear activation functions, respectively.
The encoder outputs the parameters of the learned nor-
mal distribution N (µ, σ); values drawn from this dis-
tribution by the decoder comprise the latent vectors of
size 50. The decoder has to transform this latent vari-
able to an actual sample. The decoder has only 1 hidden
layer with size 100 and with ReLU activation. Finally,
there are three parallel output layers with softmax ac-
tivation, corresponding to a single output variable (lo-
cation, destination, time). VAEs have their own specific
loss functions; we applied the original one from [13].

4.2.3 Transition Probability Generation (TPG)

Our classifier TPGθ2 is a feed forward network (FFN)
endowed with word embedding. It is illustrated in Fig-
ure 3b in the Appendix. It approximates the true tran-
sition distribution Pr[Lx → Ly|t, Ldst] for any frequent
(see details below) location Lx and Ly for every possible
time slot t ∈ T and destination Ldst ∈ L. That is, the
probability that an individual at location Lx moves to
location Ly towards destination Ldst at time t.

The input is (Lc, Ldst, t) (current location, destina-
tion, time), and the output is the probability distri-
bution on the next hop. The two location coordinates
of the input vector are fed into an embedding layer
where they are embedded separately into the same 50-
dimensional vector space4. Next, we concatenate these
vectors with the time coordinate, resulting in a 101-
dimensional vector. The next dense layer has a size of
200 with ReLU activation, and the output layer has soft-
max. We trained the network with sparse categorical
cross-entropy and the SGD optimizer. As only the K
most frequently visited cells are considered, the num-
ber of output classes is also K. We use DP-SGD [1] to
train TPG and therefore the released model parameters
θ2 are differentially private (see Section 4.3 for details).
Besides the current time and destination, the prediction
of the next location depends only on the current loca-
tion and not on the earlier location visits. That is, when
the next location is predicted, we do not take into ac-
count how the current location is reached. This is not

4 The embedding layer is part of the network, thus trained to-
gether with the rest of the layers.
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a far-fetched simplification; several studies have shown
that 1 or at most 2-order Markov chains provide a suf-
ficiently accurate estimation of the next location visit
[21].

4.2.4 Remarks

The choice of an embedding layer, and an FFN instead
of a recurrent neural network (such as LSTM) deserves
more explanation. As locations exhibit similar charac-
teristics to words, we can rely on the distributional hy-
pothesis5. In case of locations, this means that if they
follow each other in a given trajectory, then they are also
close in the geographical space, and, therefore, will have
similar representations in the embedded space. This im-
plies that the model can automatically learn which lo-
cations are geographically close to each other.

Although LSTM has an implicit capability to handle
temporal and sequential data, its differentially private
training with SGD takes approximately 6-8 times longer
than without Differential Privacy. However, training
simple feed forward networks is considerably faster, al-
most as fast as the non-private model. Furthermore, our
FFN has less parameters than the simplest but still well-
performing LSTM, and having less parameters results in
lower noise injection, and thus, higher utility. Our so-
lution has an accuracy only 1-2% less than the LSTM
layer on the considered datasets.

4.2.5 Trace Generation (TG)

When a trajectory is generated, we first sample a pair
of source Lsrc and destination Ldst locations along with
the time slot t from the output distribution of TIθ1 .
Then, a weighted directed routing graph G(V,E) is
built, where the edge weights are the transition prob-
abilities between any two location points generated by
TPGθ2 (i.e., V is composed of locations in TOP-K, and
weight((Lx, Ly)) = − logPr[Lx → Ly|t, Ldst] for any
(Lx, Ly) ∈ E, that is the negative logarithm of the tran-
sition probability from Lx to Ly conditioned on destina-
tion D and time t). Note that G is complete and specific
to a given destination Ldst and time slot t, hence differ-
ent graphs are constructed for trajectories differing in
their destination or time. The routing graph defines a

5 Words that co-occur in the same contexts tend to have similar
meanings

distribution of paths between any location and destina-
tion Ldst at time t, and our task is to draw a path from
this distribution in order to generate a trajectory.

To do so, the most probable trajectory is first con-
structed from graph G by applying Dijkstra’s short-
est path algorithm, and then the Metropolis-Hastings
MCMC algorithm to the resulting shortest path, thus
we generate one of the most probable paths between
Lsrc and Ldst. As − log TPGθ2 [Ly|t, Lx, Ldst] is always
non-negative, Dijsktra’s shortest path algorithm finds
the path with the minimum total weight between two
vertices, which is equivalent to the most probable path
between Lsrc and Ldst at time t in our case. Indeed, let
P denote the set of all paths between Lsrc and Ldst.
Then, the most probable path between Lsrc and Ldst is

min
p∈P

∑
(Lx→Ly)∈p

− log(TPGθ2 [Ly |t, Lx, Ldst])

= min
p∈P
− log(

∏
(Lx→Ly)∈p

TPGθ2 [Ly |t, Lx, Ldst])

≈ min
p∈P
− log(

∏
(Lx→Ly)∈p

Pr[Lx → Ly |t, Ldst])

= max
p∈P

∏
(Lx→Ly)∈p

Pr[Lx → Ly |t, Ldst]

due to the monotonicity property of the logarithm.
This path finding algorithm is deterministic on

its own, however this would not account for real life
scenarios. Two vehicles can take different routes be-
tween identical starting and ending locations (depend-
ing on random environmental factors such as traffic,
weather, road blocks, etc.). Therefore, we introduce
randomness into our trace generation by applying the
Metropolis–Hastings algorithm (MH) to the shortest
path. Specifically, we have a target stationary distri-
bution over all paths, where the probability of a path
is computed as above from the routing graph. Sampling
directly from this distribution is hard due to its finite
but exponentially large domain, therefore, we rely on
MCMC methods. Our MH algorithm applied to short-
est paths is described in Algorithm 2. Markov chain
theory says that we need multiple state transitions to
have a “good enough” sample (that comes from a dis-
tribution close enough to the target), we perform 10
transitions. We set this value based on our Route Dis-
tribution metric (see Section 5.3.5) that measures the
distance between original and synthetic routes taken be-
tween source-destination pairs. Our experiments in Sec-
tion 5 show that 10 iterations are sufficient for larger
datasets, however, smaller databases benefit from 100
and even 150 iterations.

The final step in our TG algorithm is looping, where
we aim to approximate the time a vehicle stays in one



In Search of Lost Utility: Private Location Data 361

Algorithm 2: Metropolis-Hastings Algo-
rithm for TG

Input: Most probable path
p = (Lsrc = L`1 , L`2 , . . . L`n = Ldst)

1 Choose uniformly random node
L`i ∼ U(p \ {L`1 , L`n})

2 Choose uniformly random neighbor Ln`i of L`i
3 Candidate path

pc = (L`1 , . . . L`i−1 , L
n
`i
, L`i+1 , . . . L`n )

4 Let γ =

∏
(Lx→Ly)∈pc

TPGθ2 [Ly|t,Lx,Ldst]∏
(Lx→Ly)∈p

TPGθ2 [Ly|t,Lx,Ldst]

5 p =
{
pc with probabilitymin(1, γ)
p otherwise

Output: p

cell, that is, the number of repetitions of a single lo-
cation in a trajectory. Looping allows to capture some
traffic patterns more faithfully such as rush hours or
traffic jams. We model this by generating the repeti-
tion number η of a location Lx from a geometric dis-
tribution η ∼ Geom(1 − TPGθ2 [Lx|t, Lx, Ldst]), where
TPGθ2 [Lx|t, Lx, Ldst] is the probability output of TPG
for staying at location Lx.

4.2.6 Remarks

Feeding the destination and time as an input to our
transition probability generator enhances model accu-
racy by a large margin (in certain cases with more than
20%). The rationale behind this is that the probabil-
ity of the next-hop location is heavily influenced by
the direction of movement, i.e., the specific destination
where the individual is heading for. Similarly, time also
impacts the direction of movement towards a specific
destination, especially in vehicular transport, where the
route of a vehicle is largely influenced by the traffic, i.e.,
ultimately time dependent. This is in sharp contrast to
earlier works [10] which solely used the last visited lo-
cations to predict the next location of a trajectory.

4.3 Privacy Analysis

In this section, we quantify the privacy guarantee of
DP-Loc by using the moments accountant described in
Section 3.2. Recall that we use the Gaussian Mechanism
to provide DP for the dimensionality reduction (Section
4.2.1), and DP-SGD [1] for TI (Section 4.2.2) and TPG
(Section 4.2.3). DP-Loc is the adaptive composition of

these three mechanisms plus the trace generation (TG)
described in Section 4.2.5.
Dimensionality Reduction: To select the most fre-
quent K (top-K) cells, we employ the Gaussian mech-
anism (see Section 3.2) and add i.i.d Gaussian noise
G(LmaxσK) to the visit counts of all cells, where Lmax
is an upper bound on the trace length, and return the
cells as top-K which have the K largest noisy counts.
Both K and L are chosen based on the threshold where
95% of the visits is included in our calculations.
TI and TPG Models: To train the TI and the TPG
models, we use the Differentially Private Stochastic
Gradient Descent (DP-SGD) by Abadi et al. [1]. This
method is independent of the chosen loss function and
model, and it adds noise to the clipped gradients. In par-
ticular, the gradients of all model parameters in every
model update are clipped to have a bounded L2-norm
with value C, and then Gaussian noise with variance
C2
TIσ

2
TI (for TI) and C2

TPGσ
2
TPG (for TPG) is added to

the clipped gradients before updating the parameters.
The output of DP-SGD are the parameters θ1 and θ2 of
TI and TPG, respectively. The sampling probability q in
DP-SGD is calculated as follows. Our aim is to provide
user-level (or in our case trajectory-level) Differential
Privacy. However, recall that trajectories have different
lengths, and we divided them into 1-grams: thus there
are variable number of training examples belonging to a
single trajectory for TPG. In the case of our TI model,
we only have one sample per trajectory, thus the sam-
pling probability of a single trajectory here is at most
|B|/|D|, where |D| is the total number of trajectories
and |B| is the size of batch B. However, for TPG, a
single trajectory can have multiple samples, therefore,
we sample batches differently. We first sample a trajec-
tory from the dataset uniformly at random, and then a
2-gram out of this trajectory also uniformly at random.
We repeat this experiment until a batch B of grams
(training samples for TPG) is collected. This sampling
mechanism ensures that any trajectory is equally prob-
able to participate in an update (batch), and hence the
sampling probability becomes q = |B|

|D| .
Trace Generation (TG): The trace generation uses
only the differentially private models TIθ1 and TPGθ2

as input, and does not access private data. Therefore,
the generated traces are also differentially private due
to the post-processing property of DP.

Let η0(x|ξ) = pdfG(0,ξ)(x) and η1(x|ξ) = (1 −
q)pdfG(0,ξ)(x) + qpdfG(1,ξ)(x) where q is the sampling
probability of a single trace in a single round. Let



In Search of Lost Utility: Private Location Data 362

αK(λ) = (λ2 + λ)/4σ2
K (1)

αTI(λ) = log max(E1(λ, σTI), E2(λ, σTI)) (2)

αTG(λ) = log max(E1(λ, σTPG), E2(λ, σTPG)) (3)

where E1(λ, ξ) =
∫
R η0(x|ξ) ·

(
η0(x|ξ)
η1(x|ξ)

)λ
dx, E2(λ, ξ) =∫

R η1(x|ξ) ·
(
η1(x|ξ)
η0(x|ξ)

)λ
dx, and αK(λ), αTI(λ), αTG(λ)

are the log moments (see Definition 3.4) of the TOP-
K identification, TI, and TPG, respectively. αK(λ) in
Eq. (1) follows from Lemma 1 in [3].

Theorem 4.1 (Privacy of DP-Loc). Let eTI
and eTG denote the number of epochs for TI
and TPG, and |B|/|D| is the number of SGD it-
erations per epoch. DP-Loc is (ε, δ)-DP, where
ε = minλ 1

λ

(
αK(λ) + |B|

|D|eTIαTI(λ) + |B|
|D|eTGαTG(λ)− log(δ)

)
Proof. Let αDPLoc(λ)(λ) denote the log moment DP-
Loc in Alg. 1. It follows from the second part of Theo-
rem 3.1 that ε = minλ 1

λ (αDPLoc(λ) − log δ). Since di-
mensionality reduction is only applied once at the very
beginning of DP-Loc, and there are |B||D|eTI SGD itera-
tions in TI and |B||D|eTG SGD iterations in TG in total,
it also follows from the first part of Theorem 3.1 that
αDPLoc(λ) ≤ αK(λ) + |B|

|D|eTIαTI(λ) + |B|
|D|eTGαTG(λ)

which concludes the proof.

Given a fixed value of δ, ε is computed numerically as
in [1].

5 Experimental Evaluation
In this section, we empirically evaluate DP-Loc on three
publicly available datasets, where two contain the GPS
trajectories of different taxi trips from San Francisco
[30] and Porto [27], and one has miscellaneous trajec-
tories (e.g. walking, driving, public transport, cycling)
(mostly) from Beijing, China (GeoLife dataset [39–41]).
We show that the synthetic trajectories generated by
our model are close to the original trajectories according
to four different utility metrics, and apply a fifth utility
metric to demonstrate the usefulness of the Metropolis-
Hastings algorithm. The architecture described in Sec-
tion 4.2 is fixed for all datasets. Although it has been
shown that the optimization of hyperparameters (in-
cluding the architecture of DP-Loc) is possible with DP
guarantees [1, 23], yet this requires a larger privacy bud-
get. For simplicity and owing to the similarity of the
three datasets evaluated, we do not apply this technique
here.

5.1 Data

San Francisco Taxi: The original San Francisco
(SF) taxi dataset contains a set of GPS trajectories
with timestamps recorded by 536 taxis. They were col-
lected over 30 days in the San Francisco Bay Area of
the USA in 2009. The trajectories cover the region of
San Francisco within the bounding box of (37.6017N,
122.5158W) and (37.8112N, 122.3527W) – approxi-
mately 340 km2. The original sampling rate of these
trajectories is roughly 1 per minute. We used all the
276744 trajectories from the SF dataset.
Porto Taxi: The original Porto dataset contains 1.7
million GPS trajectories with timestamps of 441 taxis.
This dataset was acquired in the metropolitan area of
Porto, Portugal, over a period of nine months in 2012.
The sampling rate varies, but it is approximately 1
per 15 seconds. We considered taxi trips only within a
bounding box of (41.00456N, -8.7368W) and (41.2728N,
-8.4412W) around the city, with a size of approximately
600 km2. We used a random sub-sample containing
450000 trips for our evaluation.
GeoLife: The original GeoLife dataset is a collection
of 17, 621 daily trajectories by 182 users in a period of
over five years (from April 2007 to August 2012). 91.5%
of the trajectories are logged in a dense representation,
e.g., every 1-5 seconds or every 5-10 meters per point.
The GeoLife dataset includes a wide range of outdoor
user movements, including commuting, entertainment
and sports activities, such as shopping, sightseeing, din-
ing, hiking, and cycling. The majority of the data was
generated in Beijing, China, where we set our bounding
box of (39.75N, 116.2W) and (40.1N, 116.55W) of ap-
proximately 580 km2, and considered the traces within
this region only. Note that Porto and GeoLife cover
approximately the same area size, however, the Porto
bounding box also contains its uptown area while Geo-
Life does not. In other words, the whole Beijing area is
populated uniformly almost everywhere with approxi-
mately one seventh in available data points of the Porto
dataset. Moreover, since the dataset contains continuous
recordings of people’s daily traces with multiple station-
ary locations, we cut these traces along their stationary
locations and replace the original trace with its sub-
traces in the dataset. More precisely, if an individual
stayed at one location for a long time (more than 15
minutes), then the location is regarded as stationary and
we terminated the given trace and initialized a new one
with the current cell as new starting point. The justifi-
cation behind such slicing is twofold. First, we intend to
model and release only the mobility patterns of people
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which is the main focus of most practical applications
(such as traffic optimization). Second, the original Ge-
oLife dataset is small in terms of both individuals and
traces; with the help of trace slicing we obtained 59, 907
traces. Note that (strictly speaking) DP-Loc provides
DP guarantees only to individual sub-traces in this case;
however, we embrace this limitation on two accounts:
i) we could not obtain a larger suitable third dataset,
ii) the limited number of users in the original GeoLife
dataset would result in a low utility irrespective of the
actual DP-based privacy-preserving mechanism applied.

Regarding the taxi datasets our objective is to pre-
serve the privacy of passengers and not taxi drivers, and
hence a trace (sequence) is composed of the recorded lo-
cation visits of a single taxi trip.

5.2 Data Preprocessing

We consider two grids with different cell size. The
smaller grid consists of cells with size of 250 × 250m2,
and the larger one with cells of size 500 × 500m2. We
have found that these two sizes are small enough to
capture the movement of an individual, and also large
enough to enable neural networks to learn the underly-
ing distribution with sufficient accuracy and low com-
putational cost (see Appendix A the complexity analy-
sis). Although, in a real-life scenario, a given application
can change these sizes, we believe that most practical
use-cases would not divert very much from these values.
Each GPS location point is assigned to its covering cell.
Therefore, every trace (taxi trip) is composed of the se-
quence of location visits, each containing a pair of cell
and the time of the visit. All traces with velocity larger
than 150 km/h (calculated between two GPS points) or
being out of the bounding box are dropped. Since the
sampling rate was not constant in the database, we ap-
plied two transformations to make it more regular; (1)
cell visits are aggregated in time by 60 seconds keeping
the cell that was the most frequent in the trace during
this time frame, and (2) when there were gaps shorter
than 5 minutes without any location visits, these miss-
ing visits are approximated by linear interpolation. We
select the K cells that contain at least 95% of all visits
in a privacy-preserving manner and we map each point
to the closest top-K cell, if there is any within 1000m.
We drop traces with locations that cannot be assigned
to a top-K cell. Finally, if the resulting trace had only
a single visit, it is dropped. All traces are truncated to
length Lmax. Since DP adds noise to the cell counts, the
values of K and L can change between runs; however,

larger datasets are not prone to this instability. To illus-
trate this, we generated the values of K and L 5 times
and included their average in Table 1. The standard de-
viation for Porto and SF were 0, however, for GeoLife it
was 20 for the K values; the L values were stable in all
cases. The data loss caused by top-K filtering was 3−5%
for all datasets. Less than 1% of traces were dropped by
the other filters.

After cleaning and smoothing the data, the times-
tamps are further aggregated by assigning only the hour
of the day, when the dominant part of the taxi trace was
present, to all visits of a single trace. For example, if a
trace started at 17:58, and ended at 18:10 with 12 vis-
its altogether, we assigned the 18th hour of the day to
every cell visit of the trace (including those which hap-
pened before 18:00). As our aim is only to demonstrate
the feasibility of our approach, this simplification is in-
troduced in order to decrease the size of the input and
output space making training faster and the models less
complex. Finally, we created 2-grams from the traces,
i.e., we grouped every two consecutive data points to-
gether to create a single training sample for our TPG
model, where the first and second parts served as in-
put and output for the model during training. The first
part of every gram is augmented with the destination
cell of the trace where the gram comes from, and the
second gram contains only the cell identifier of the next
location (without timestamp).

Table 1 shows the descriptive statistics of the
datasets.

5.3 Evaluation Metrics

Choosing a truly representative metric is always chal-
lenging and, to a large extent, application-dependent.
We focused on some commonly used characteristics of
PoIs, heatmaps, popular start and destination places,
rush hours, traffic jams, trip lengths, etc. As a result, we
consider four different utility metrics which are mainly
borrowed from previous works [10, 24]. Each of them is
evaluated both on the synthetic and the original dataset,
and the difference is measured according to different dis-
tance metrics.

5.3.1 Trip Size Distribution

The Jensen-Shannon divergence (JSD) is computed be-
tween the distribution of the trip lengths in the syn-
thetic and the original datasets in each hour of the day
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Dataset |D| topK max |t| avg|t| std.dev|t| mode|t|
SF-250 431,222 550 19 10.54 6.67 7
SF-500 431,222 179 19 10.46 6.17 7
Porto-250 450,000 490 24 11.63 7.53 9
Porto-500 450,000 211 24 11.52 8.64 9
GeoLife-250 59,907 406 14 13.91 11.38 10
GeoLife-500 59,907 503 22 13.86 11.38 10

Table 1. The preprocessed datasets used in our experiments: SF-250, Porto-250, GeoLife-250 (with a cell size of 250m2) and SF-500,
Porto-500, GeoLife-500 (with a cell size of 500m2). Trace length |t| is for traces t ∈ D .

(the trip length is the number of cells of a trip). Note
that, unlike the Kullback-Leibler (KL) divergence, JSD
is symmetric and has a finite value. In our case, JSD is
bounded between 0 (identical distributions) and 1 (least
similar distributions).

5.3.2 Frequent Patterns

The top-N most frequent patterns (i.e., subsequences
of locations) are computed both in the original D and
synthetic dataset D′, which are denoted by FN (D)
and FN (D′), respectively. The true positive ratio
|FN (D)∩FN (D′)|

N is reported for N = 10, 20, 50, 100.

5.3.3 Spatio-temporal Distribution Of Location Visits

The spatio-temporal density in a given hour of the day
is the number of visits in each cell of the considered re-
gion. This histogram, where each bin corresponds to a
cell, is computed from both the synthetic and the origi-
nal traces individually, and the spatio-temporal density
of the original dataset as well as the synthetic datasets
are obtained from these histograms after normalization.
The Earth Mover’s Distance [32] is reported between
these distributions, which measures their difference in
terms of geographical distance (meters) and is a met-
ric for probability distributions. Specifically, EMD mea-
sures the “amount of energy” (or cost) needed to trans-
form one distribution to another where the ground dis-
tance is the geographical distance between the centers
of cells. The EMD between the spatial densities of the
original and synthetic data are reported for cells that
include at least 80% of the data, but no more than 2000
cells for every hour, and also over all hours of the day.

5.3.4 Spatio-temporal Distribution Of Source and
Destination Pairs

The joint distribution of the source and destination
locations is computed from the original and synthetic
datasets individually, and their EMD is reported for ev-
ery hour, and over all hours of the day. In particular,
we count the relative frequency of every possible pair of
source and destination locations in both datasets, and
compute the EMD between these two distributions as
above (the distance between a pair of location points is
the sum of their individual distances). As the domain
of this joint distribution has a size of |L| × |L| (in ev-
ery hour, not over all hours), the computation of EMD
can be very costly. We used the same approximation as
for EMD density described above. Note that besides re-
porting the hourly EMD, we also calculated the EMD
averaged over all hours in order to compare with prior
works.

5.3.5 Route Distribution

We calculate the histograms of cell visits for the inner
points of a trace conditioned on the source and destina-
tion pairs, i.e. the histogram shows the distribution of
cells that were visited between a given source and des-
tination. The route distribution is calculated for both
original and synthetic datasets, then their EMD is mea-
sured for each source-destination. Due to the high num-
ber of such pairs, we report the average of their EMD
values. Intuitively, this metric measures how “realistic”
a synthetic trajectory is. Due to the very high number
of source and destination pairs we used the same ap-
proximation described above.

5.4 Baselines

As comparison to DP-Loc, we evaluate the Ngram
model from [10] (Ngram), and the AdaTrace model
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from [24]. We chose AdaTrace because it is the state-of-
the art technique and outperforms several other mod-
els (Ngram, DPT, SGLT) as stated in [24]. Ngram is
chosen because it performs very well regarding frequent
patterns and is a more general solution for any sequen-
tial data (unlike AdaTrace). For the reasons explained
in Section 2, we do not compare DP-Loc to SGLT [7],
since it is incompatible with the mobility patterns repre-
sented by our datasets. Moreover, our goal is to generate
large synthetic datasets, and SGLT was shown [24] not
to scale well in this regard6.

Since AdaTrace uses a dynamic grid configuration
we had to align our grid in order to reach a fair compar-
ison. First, we transformed the GPS coordinates with
Mercator projection and applied all our preprocessing
steps to the records (even top-K selection). Next, we
generated synthetic traces with AdaTrace, where the
output is also in the Cartesian space. For the evaluation
with our metrics, we assigned the output coordinates to
our non-dynamic grid cells.

As AdaTrace and Ngram apply the Laplace mecha-
nism, for fair comparison, we changed it for the Gaus-
sian mechanism and calculated the values of ε by the
moments accountant method. For both models, given
the value of δ = 1/|D| and ε = [0.5, 1, 2, 5], we analyti-
cally calculated the variance of the noise using Theorem
3.1. The L2 sensitivity of the Adatrace can be shown to
be ∆2 = 1 based on [24]. As for Ngram, we bounded the
L2 sensitivity with the L1 for the same reason as in our
top-K selection (see Section 4.3 for details).

5.5 Experiment Setup

We experimentally evaluate the performance of our so-
lution in terms of the above four utility metrics on the
datasets described in Table 1. We also present the re-
sults of Ngram and AdaTrace on the same datasets, and
compare these to our work using the four metrics. As
neither Ngram nor AdaTrace releases time information,
we dropped all timestamps in all datasets, and synthe-
sized the resulting datasets with the two models (by
contrast, DP-Loc was always executed on the original
datasets with temporal information, and its results are
reported in Figure 1 and 4). We obtained the implemen-
tation from the respective authors. Experiments were
conducted using Tensorflow 2.0 and Python 3.6.9 on a
single Linux server with 98GB RAM and 16 cores.

6 We also tried to run DPT, but even for 100.000 traces it ran
out of 100GB of memory.

We have carried out our training in 24 different set-
tings, combining ε = 0.5, 1, 2, 5 with two grid resolu-
tions (250 and 500), and three datasets (for statistics
see Table 1). For the TI model, we set the L2-norm
clipping threshold CTI to 1.00, the batch size |B| to
200, and ran the training over eTI = 15 epochs (re-
call that C2

TIσ
2
TI is the variance of the Gaussian noise

added to the gradients in order to provide DP). With
ε = 1 and σTI = 1.5, the learning rate was set to 0.2;
with ε = 2 and σTI = 1.00, the learning rate was set
to 0.5; and with ε = 5 and σTI = 0.7, the learning rate
was 0.5. Unless otherwise noted, we use δ = 1/|D| in the
rest of the paper, and ε is the overall privacy budget of
DP-Loc. For the TPG model, we set the L2-norm clip-
ping threshold CTPG = 3.0, the batch size to 200, and
trained the model over eTPG = 15 epochs. With ε = 1
and σTPG = 1.6, the learning rate was set to 0.1; with
ε = 2 and σTPG = 1.00, the learning rate was 0.15; and
with ε = 5 and σTPG = 0.6, the learning rate was 0.15.
In dimensionality reduction, we add Gaussian noise to
the counts of all location visits (when choosing the top-
K locations, see Section 4.3) with ε = 1, σK = 3.8; ε = 2,
σK = 1.9; and ε = 5, σK = 1.6. The total ε of DP-Loc is
computed according to Theorem 4.1 over 15 epochs for
each of the TI and TPG models (eTI = eTPG = 15).

5.6 Results

In Figure 1 and 4, we report the hourly JSD and two
EMD values between the original and the synthetic data
generated by DP-Loc for ε = [0.5, 1, 2, 5]. Figure 1 (and 4
in Appendix) show how the granularity of the grid influ-
ences the impact of the noise. Comparing the first and
second lines of Figure 1 and 4, one can see that a larger
grid size results in less error, though with coarsened
data. (Coarsening the granularity eventually results in
zero error of EMD, since all points end up in the same
cell.) For comparison, we report the overall JSD, EMD-
SD, EMD-Density and Frequent Patterns results of our
synthetic traces and that of Ngram and AdaTrace in Ta-
ble 5. GeoLife follows the same trends, thus we included
the more comparative results in Table 5.
Trip Sizes: In Figure 1 and 4, JSD shows the same
trend and takes up very similar values for ε = 1, 2, 5.
However, this is not true for ε = 0.5, since, to ensure
such a low ε value, the algorithm requires considerably
more noise. The San Francisco dataset shows the same
tendency for JSD values (see Appendix A for additional
results). In the ε = 0.5 case, JSD values are much larger
when the cell size is 250m, also we can see that the
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(a) JSD, cell size: 250 m (b) EMD-SD (VAE), cell size: 250 m (c) EMD-Density, cell size: 250 m

(d) JSD, cell size: 500 m (e) EMD-SD (VAE), cell size: 500 m (f) EMD-Density, cell size: 500 m

Fig. 1. Performance of our approach on Porto dataset depending on the time (δ = 4 · 10−6).

EMD-SD values are also high. The TI model produced
cells that were too close to each other, that caused very
short traces (4.8 in average) in return. Table 5 shows
that a larger grid generally results in larger JSD, but
smaller EMD values for DP-Loc and AdaTrace, but
larger for Ngram. Recall that Ngram and AdaTrace do
not include time information, thus we only report one
value for each setting in Table 5. To ease readability,
we colored the best values at each metric among the
three models in red. DP-Loc’s JSD results are clearly
much lower (i.e., closer to the original distribution) than
that of the other two models. The MH iterations and
looping extension play a large part in these low results,
but also by leaving out these steps we still get much
lower JSD values than Ngram and AdaTrace (experi-
ments show that such a JSD results in approximately a
value of 0.5 JSD). Ngram generates traces without des-
tination, and it does not select the globally most likely
trajectory. In contrast to this, DP-Loc is more realis-
tic. Although AdaTrace does include the destination, it
still performs much worse than DP-Loc regarding trip
sizes. We hypothesize that the high JSD values for Ada-
Trace could be due to the dynamic construction of the
grid. AdaTrace works in two layers only and it is prob-
able that many areas are not optimally divided, and
our uniform grid with top-K selection performs better.
Moreover, for Ngram and AdaTrace, the average gener-
ated trace length was approximately 3 (in all settings);
both the mode and standard deviation were 2. In con-

trast to these, DP-Loc generates traces with an average
length of 12, mode of 8 and standard deviation of 5,
which are almost identical to the statistics in Table 1.
Ngram represents the dataset with a prefix tree which
contains the set of all grams occurring in the dataset
along with their occurrence counts, i.e. Ngram adds
noise to these counts and prunes the noisy tree by
removing grams with too small noisy count in or-
der to improve accuracy. In particular, Ngram keeps
grams only with sufficiently large occurrence counts,
and shorter grams have larger counts which tend to
survive sanitization unlike longer grams [10] with gen-
erally smaller counts. As a result, stronger privacy re-
quirement (smaller ε) results in a set of shorter grams
and eventually a smaller sanitized prefix tree. Although
shorter sanitized grams can be combined into longer
grams in Ngram, the number of possible extensions was
not high in our datasets. The finally released grams coin-
cide with the set of most frequently visited places hence
Ngram preserves the statistics of most frequent patterns
accurately. The same holds for AdaTrace, because it also
follows the Markov assumption to generate traces.
EMD-SD: In Figure 1b, 1e, 4b and 4e, EMD is reported
between the spatial distribution of the source and desti-
nation pairs depending on the time of the day. In Figure
1b and 1e, EMD values stay steadily between 900 and
2000 meters except in Figure 1b, where the trend for
ε = 0.5 is similar but the values exceed 2500m. The
results for the four different values of ε are almost the
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(a) Original,cell size: 250 m (b) DP-Loc, cell size: 250 m (c) AdaTrace, cell size: 250 m (d) Ngram, cell size: 250 m

Fig. 2. Heatmaps of the synthetic and original databases.

Table 2. Result of our DP-Loc algorithm without Differential Privacy and with 10 MH iterations

Dataset FP-10 FP-20 FP-50 FP-100 JSD len avg len std. dev. len EMD src-dst EMD density
SF-250 0.54 0.60 0.78 0.78 0.362 13 5.6 1572 602
SF-500 0.80 0.80 0.88 0.88 0.322 14 6.1 1669 629
Porto-250 0.70 0.90 0.90 0.92 0.296 13 5.3 1113 345
Porto-500 0.77 0.80 0.85 0.87 0.360 15 6.3 1201 367
GeoLife-250 0.90 0.90 0.90 0.90 0.408 10 3 4211 1201
GeoLife-500 1.00 1.00 1.00 1.00 0.480 10 3.5 4746 1116

Table 3. Result measured on a downtown area in Porto. ε = 1, and 10 MH iterations

Dataset FP-10 FP-20 FP-50 FP-100 JSD len EMD-src-dst EMD-Density
Ngram 0.90 0.90 0.84 0.98 0.878 1766 74
AdaTrace 0.40 0.50 0.64 0.58 0.709 1488 336
DP-Loc 0.90 0.85 0.95 0.90 0.278 1018 311

Table 4. Results of route EMD for different MH iterations for ε = 1 (measured in meters)

0 1 5 10 25 50 100 150
SF-500 1335 1252 1177 1154 1171 1177 1180 1179
Porto-500 1347 1229 1137 1116 1119 1126 1134 1135
GeoLife-500 1907 1693 1918 1794 1361 1150 1121 1119

same if the larger cell size is used, and keep a steady
distance in the 250m case. Table 5 shows that DP-Loc
outperforms Ngram and AdaTrace, and generates more
realistic endpoints for the traces. This demonstrates the
generative power of the applied VAE network. The San
Francisco dataset shows slightly different results. The
EMD values in Figure 4 are almost the same for differ-
ent values of ε, except for ε = 0.5 in Figure 4b where
EMD values are higher. We can also see that around 2
pm there is a peak in the two EMD values. We hypoth-
esize that this is due to insufficient quality and quantity
of data at that time period, which is not present in the
Porto dataset. Nonetheless, DP-Loc still gives outstand-
ing result in most cases. Note that smaller values are
better, and EMD sums up all costs over the whole dis-
tribution. The distance between two neighboring cells
is 250/500 m (center-to-center); if, e.g., EMD equals to
1000m, it is the size of 2/4 cells over the distribution.

EMD-Density: In Figure 1c, 1f, 4c and 4f, EMD is
reported between the distribution of location visits for
every hour of the day. Values show a trend similar to
EMD-SD, but remain below 1000m in most cases, and
≈ 6−700m on average. The values for ε = 0.5 again keep
a distance from the other results with a peak just below
2000m for the smaller cell size. Ngram outperforms DP-
Loc and Adatrace (except on Porto-500 where DP-Loc
is the best). However, Ngram was originally designed to
focus on the accurate release of the most frequent sub-
sequences, and reconstructs traces from these. There-
fore, as long as the number of visits per cell follows a
power-law distribution, Ngram is expected to remain
superior. Nevertheless, Table 5 also shows that DP-Loc
significantly outperforms AdaTrace in all cases. Figure
2 shows the San Francisco heatmaps of the synthetic
datasets generated by all three models compared to the
original one in Figure 2a. Note that the scale of Ada-
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Trace is lower than that of the rest (using the same scale
would render AdaTrace’s patterns almost invisible). We
can see that the original (left) image is more detailed
than any other image, but DP-Loc and Ngram imitate
it closely. The original image contains less highly popu-
lated areas (deep red), and Ngram has the densest cell
of all (ruby red) in downtown SF.
Frequent Patterns: Table 5 reports the overall results
of the Frequent Patterns metric, that is, the true pos-
itive ratio of the top-N location subsets between the
original and the private synthetic databases. For all
datasets, DP-Loc and Ngram perform similarly; from
all 120 cases DP-Loc outperforms Ngram 40 times, and
underperforms 51 times, but in most cases the margin
is very small. In all cases the performance of DP-Loc is
higher than that of AdaTrace. The low FP values of DP-
Loc regarding the GeoLife dataset show that the dataset
size was insufficient for the neural networks to learn the
underlying distribution. Beijing is approximately twice
as big as Porto, however, the data available in the Geo-
Life dataset was only 1/8th of that. Comparing Figure 2
along with the FP results to the JSD results, we can see
why there is not a single universal metric for fair com-
parison. Ngram shows very good results when it comes
to density (and frequent patterns), but the generated
traces are highly unrealistic. DP-Loc might not perform
as outstanding as Ngram regarding density metrics, but
it produces realistic timestamped trajectories.
DP-Loc On Smaller Bounding-box: The San Fran-
cisco and Porto datasets contain the whole urban area
with their airports included on the map. For fair com-
parison we have run DP-Loc on the downtown area of
Porto, similarly to [24]. The results are shown in Table
3; we only evaluated the downtown area in one scenario
where the cell size is 500m and ε = 1. It is visible that
the performance of AdaTrace is better than on a larger
grid, however, the ratio among the best results is the
same as measured with a larger bounding-box.
DP-Loc Without DP: We also evaluated DP-Loc
without Differential Privacy, i.e. no noise was added to
the model at any stage. Table 2 shows the results for the
non-privacy preserving generated datasets. We can see
that the numbers are almost identical to the ones in Ta-
ble 5. The JSD and FP values are similar, and the two
EMD values are lower than their private counterpart.
Justification for MH: We applied the Metropolis-
Hastings algorithm to the shortest paths in order to ob-
tain convergence to a target stationary distribution over
all paths, where the probability of a path is computed
from the routing graph. In Table 4 we report the results
of the route EMD metric, i.e., the EMD distance (in

meters) between the original and the synthetic routes
(cells) taken between source and destination pairs. Re-
sults show that for large datasets 10 iterations of MH
results in the most realistic traces. However, for smaller
dataset, where the added noise has a higher influence
on the generated traces, 100 and 150 iterations of MH
show sufficient improvement. Consequently, after 10 or
100 iterations we could also observe a small drop in the
EMD-Density values as well.

6 Conclusions
We proposed a novel approach to release location data
with strong privacy guarantees. In contrast to prior
works, DP-Loc is capable to release time information
along with location visits without suffering significant
utility loss. Our framework consists of generating the
source and destination pairs of every trace, computing
the transition probabilities between neighboring loca-
tions, then generating synthetic trajectories between the
source and destination using a Monte Carlo algorithm.
The transition probability depends on the time and des-
tination, and is computed between the most frequent
locations. We evaluated our proposal on three public lo-
cation datasets and designed neural networks to model
the distribution of trajectories. These networks are sim-
ple and hence fast to train even with DP guarantees.
Results show that the provided utility is meaningful.
Therefore, our technique can be a compelling new ap-
proach to the privacy-preserving release of complete lo-
cation trajectories with time information. Importantly,
we produce synthetic datasets that preserve many dif-
ferent statistics of the original dataset. Undoubtedly,
releasing only a few targeted statistics with or without
Differential Privacy, instead of the complete synthesized
dataset, is a different approach which should always re-
sult in greater accuracy but only with respect to the
released statistics. The proposed framework is general
and finding the best generative models to a given type
of data is difficult and requires domain expertise. We
believe that our general approach may be applicable to
other types of sequential data than location trajectories
such as different time series.
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Table 5. Summary of results with 10 MH iterations. AdaTrace and Ngram ignores the time of trips, hence we report the the overall
JSD and EMD values over the whole period for our approach. Best values are in red.
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A Additional Results
Trace Generation Complexity: We compute the
number of generation steps of a single synthetic tra-
jectory for each scheme as follows. Let us assume that
all generative models are precalculated and saved. For a
trace t with length |t|, DP-Loc takes ZTI +ZTPG(K) +
K2 logK+2 · |t| steps, where ZTI and ZTPG(K) are the
respective steps of the TI and TPG models, K2 logK
comes from Dijkstra‘s algorithm, 2 · |t| from the MH
and looping parts of the model, and K is the number
of top-K locations. As the graphs generated by TPI are
precalculated, ZTPG(K) is ignored in he rest of the anal-
ysis. Since |t| = O(K), the number of DP-Loc’s genera-
tive steps is dominated by Dijkstra‘s algorithm, thus its
complexity is O(K2 logK).

AdaTrace’s generation steps depend on two random
walks started from the start and destination points. The
total number of generation steps accumulates into 2·m·l,
where m is the size of the grid, and l is the maximal
size of the generated trace (l is drawn from a distribu-
tion calculated from the original lengths). Since l ≤ m,
AdaTrace’s complexity is O(m2). If the grid is an order
of magnitude larger than the number of top-K locations
in DP-Loc, the empirical number of steps of AdaTrace
can be larger than K2 logK +ZTI + 2 · |t|, e.g. m = K2.

The expected number of steps in Ngram depends on
the underlying data distribution. Evaluating Ngram on
the taxi datasets, the average length of the generated
traces are 3 steps only.

Experiments were conducted using Tensorflow 2.0
and Python 3.6.9 on a single Linux server with 98GB
RAM and 16 cores. Running time is heavily dependent
on the size of the input dataset. For the largest, the SF
dataset the generation time for Ngram is on average 1
minute, for AdaTrace is 20 second. In case of DP-Loc the
trainings of the neural networks take up a lot of time.
The overall running time of DP-Loc is approximately 3
hours. However, due to the fact that we are considering
offline models, it only has to be done once.
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Fig. 3. The neural network architectures used in DP-Loc

(a) JSD, cell size: 250 m (b) EMD-SD (VAE), cell size: 250 m (c) EMD-Density, cell size: 250 m

(d) JSD, cell size: 500 m (e) EMD-SD (VAE), cell size: 500 m (f) EMD-Density, cell size: 500 m

Fig. 4. Performance of our approach on San Francisco dataset depending on the time (δ = 4 · 10−6).
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