
Proceedings on Privacy Enhancing Technologies ; 2022 (3):538–557

Christoph Egger, Russell W. F. Lai, Viktoria Ronge, Ivy K. Y. Woo, and Hoover H. F. Yin
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Transactions
Abstract: In a ring-signature-based anonymous cryp-
tocurrency, signers of a transaction are hidden among
a set of potential signers, called a ring, whose size is
much smaller than the number of all users. The ring-
membership relations specified by the sets of transactions
thus induce bipartite transaction graphs, whose distribu-
tion is in turn induced by the ring sampler underlying the
cryptocurrency.
Since efficient graph analysis could be performed on
transaction graphs to potentially deanonymise signers, it
is crucial to understand the resistance of (the transaction
graphs induced by) a ring sampler against graph analy-
sis. Of particular interest is the class of partitioning ring
samplers. Although previous works showed that they
provide almost optimal local anonymity, their resistance
against global, e.g. graph-based, attacks were unclear.
In this work, we analyse transaction graphs induced by
partitioning ring samplers. Specifically, we show (partly
analytically and partly empirically) that, somewhat sur-
prisingly, by setting the ring size to be at least logarithmic
in the number of users, a graph-analysing adversary is no
better than the one that performs random guessing in
deanonymisation up to constant factor of 2.
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1 Introduction
In many anonymous systems, a main cryptographic
component for providing anonymity is a linkable ring
signature (LRS) scheme [8], which is a signature scheme
with a restricted anonymity guarantee. The goal of this
work is to study the resistance of these systems against
graph-based deanonymisation attacks. For concreteness,
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we will use privacy-preserving cryptocurrencies as a
running example of anonymous systems based on LRS
schemes. We emphasise, however, that the techniques in-
troduced in this work are also directly applicable to other
applications of LRS, e.g. anonymous voting [15, 23]1.

1.1 Linkable Ring Signatures

We begin by recalling the basics of LRS schemes. To sign
a message µ, e.g. a transaction in a cryptocurrency, the
signer first samples a ring r, i.e. a set consisting of (the
public keys of) the signer itself and decoys, using an ex-
ternal algorithm known as a ring sampler, then uses the
LRS scheme to produce a signature σ. The tuple (r, µ, σ)
is communicated to the verifiers, e.g. by publishing it
on the blockchain in the context of cryptocurrencies. In
applications, it is common for a human user to own many
pairs of public and secret keys. Nevertheless, to simplify
terminologies, we will refer to a public key as a “user”
and use the notation U to refer to the set of users (pub-
lic keys) where signers belong to and where decoys are
sampled from. Depending on the application, the set U
could grow over time.

An LRS scheme is linkable in the sense that there
exists an efficient public algorithm to determine whether
any two given signatures are generated by the same
signer, i.e. using the same secret key. Applications of
LRS schemes often employ a “single-sign verification
rule” which only accepts new signatures which are not
linked to any previously accepted ones, so that each user
can only perform certain anonymous action once. For
example, such anonymous action could be spending a
coin in a cryptocurrency, casting a vote in an anonymous
voting system, authenticating and redeeming scores in
an anonymous credential system, etc. In general, the
single-sign rule ensures that, at any time, each signer in
the set of users has at most one signature that is accepted
by the verifiers.

1 Although these schemes as described include all legitimate
voters in rings, using smaller rings is more efficient. The analy-
ses provided in this work allow designers to make an informed
decision of how smaller ring sizes could be chosen.
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The anonymity of an LRS scheme guarantees that
the tuple (r, µ, σ) leaks no more information (computa-
tionally) about the signer creating σ than what is leaked
by the ring r sampled by the ring sampler. Typically,
for efficiency reasons, the ring size |r| is much smaller
than the number of users |U |, making it plausible to
deanonymise signers just by observing ring membership
relations implied by the set of published rings, regardless
of how secure the LRS scheme is.2 It is therefore impor-
tant to design ring samplers and choose their parameters
in a way that strikes a balance between efficiency and
anonymity, which is the central topic of this work.

1.2 Transaction Graphs

To understand deanonymisation attacks of the above
kind, we model ring membership relations by transaction
graphs. Specifically, consider an application of LRSwhere,
at some point in time, the tuples {(rj , µj , σj)}rj∈R are
accepted by the verifiers, whereR is some set of rings and,
for all rj ∈ R, members of the ring rj were sampled from
U . The ring membership relations can be represented by
a transaction graph, which is a bipartite graph G with
vertex sets U and R, and ui ∈ U is connected to rj ∈ R if
user ui is a member of ring rj . Figure 1 is a toy example
of a transaction graph consisting of 3 users and 3 rings.

A transaction graph is guaranteed to have a max-
imum matching involving the vertex set R. Indeed, by
the unforgeability of the LRS we can assume that σj was
issued by some signer uj ∈ rj for each rj ∈ R, and by
the linkability of the LRS and the single-sign verification
rule we can assume that all uj ’s are distinct. This means
that the set {(uj , rj)}rj∈R is a maximum matching.

A transaction graph could have many maximum
matchings, each representing a possible assignment of
signatures/rings to signers. The union of all maximum
matchings of G is known as the Dulmage-Mendelsohn
(DM) decomposition [3] or simply the core Core (G) (in
the sense of DM), and can be computed in linear time
given G [20]. If an edge (ui, rj) ∈ G does not belong to
any maximum matching, i.e. (ui, rj) /∈ Core (G), then

2 For example, at the time of writing, Monero mandates a ring
size of |r| = 11 and has a number of public keys |U | ≥ 16× 106.
We note that we are considering anonymity at the key level,
which is a stronger notion than anonymity at the human user
level typically considered for non-anonymous cryptocurrencies
such as Bitcoin. Indeed, even if all spenders in Monero transac-
tions are deanonymised, receivers would still be cryptographically
anonymous due to the “stealth address” mechanism.

user ui cannot have been the signer creating σj . Con-
sequently, the signature-signer assignments represented
by the edges G \ Core (G) can be ruled out given the
knowledge of Core (G). In extreme cases, where a user ui
is connected to only a single ring rj in Core (G), the user
ui is considered completely deanonymised.

u1
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r1

r2

r3

Users
U

Rings
R

Fig. 1. Toy example of transaction graph. Edges correspond to
ring memberships, e.g. (u1, r3) means user 1 is a member of ring
3. The red edges are the only maximum matching.

Referring to the example in Figure 1, upon know-
ing that the only maximum matching is {(uj , rj) : j =
1, 2, 3}, in other words G 6= Core (G) and G \ Core (G) =
{(u1, r3), (u2, r3)}, all three signers can be deanonymised.
Note how user u3 is deanonymised due to the member-
ships of the other two rings, although its ring consists
of three members. We see that the anonymity of a signer
does not only depend on its own ring, but also on the other
rings. A global view on the transaction graph is thus re-
quired to properly assess the anonymity of signers.

Another richer and more realistic example is given
later in Figure 2 (Page 544), which shows a transaction
graph G with 8 users and 7 rings, and all rings consist
of more than one member. On computing Core (G), we
see that 4 out of the 19 potential signature-signer assign-
ments can be ruled out, and one of the signers, namely
user 4, can be completely deanonymised.

1.3 Graph-Based Deanonymisation

Generalising the attack illustrated in Figures 1 and 2, we
consider graph-based deanonymisation attacks, where
an adversary attempts to identify the signer who sam-
pled rj∗ ∈ R, for some j∗ chosen by the adversary, given
only a transaction graph G representing all rings R. In
particular, we consider adversaries which do not attempt
to break the LRS scheme and which do not have knowl-
edge about the signing probabilities of the signers. The
former is easily justified since the LRS scheme is sup-
posedly cryptographically secure. The latter is sensible
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when the signing probabilities are (close to) uniform by
heuristics, e.g. when using a partitioning ring sampler to
be discussed in Section 1.4. Finally, our security model
capturing untargeted attacks is strong, since if an ad-
versary is successful in a targeted attack, then it is also
successful in an untargeted one.

A trivial attack strategy is to choose the smallest ring
rj∗ ∈ R and output one of the ring members uniformly at
random, which has success probability of exactly 1/|rj∗ |.
We therefore want to upper-bound the success proba-
bility of any graph-analysing adversary such that it is
not much greater than that of the trivial strategy. Our
strategy is to show that the success probability of an
adversary is at most Pr [G 6= Core (G)] greater than that
of the trivial strategy mentioned above, where G is a
transaction graph induced by the ring sampler of inter-
est, i.e. the best non-trivial strategy that an adversary
could use is to perform DM decomposition.

Although DM decomposition is a well-known tool in
graph theory, the technique seems to be adopted only
recently to analyse anonymous cryptocurrencies [21],
where it is shown that the analytical deanonymisation
attack on Monero based on DM decomposition is at
least as effective as existing attacks [7, 12, 25] of the
same nature. Indeed, this is as expected since all existing
attacks are graph-based and the signature-signer assign-
ments ruled out by these attacks could also be found by
DM decomposition. However, a broader understanding
of graph-based attack on ring samplers appears to be
lacking. In particular, the previous examples of attack
lead us to the question:How should rings be chosen such
that the success probability of a graph-based attack can
be upper-bounded?

1.4 Partitioning Samplers

Of particular interest are the partitioning samplers [19],
which first publicly partition the set of users into chunks,
randomly choose k decoys from the chunk that the signer
belongs to, and output the set which contains the signer
and the k decoys as the ring. Assuming that for each
chunk the signing probabilities of the signers in the
chunk are close to each other, a partitioning sampler
provides near-optimal local anonymity according to an
entropy-based measure [19], which we discuss further in
both Section 1.7.2 and Appendix A. Furthermore, in the
extreme case that all chunks of the partition are of size
k + 1 – equal to the ring size – then the induced transac-
tion graph G simply consists of disjoint (k + 1)-bicliques
andG = Core (G) trivially. Despite having these features,

little is known about the global anonymity, e.g. the re-
sistance against graph analysis, of partitioning samplers
for general chunk sizes.

1.5 Our Contributions

In this work, we study the resistance of ring samplers
against graph-based deanonymisation attacks. More pre-
cisely, let GSamp be the distribution of transaction graphs
induced by a ring sampler Samp. We derive an upper
bound of PrG←GSamp [G 6= Core (G)] by relating the event
G 6= Core (G) to that of certain digraphs induced by
G being not strongly connected. In case Samp is a par-
titioning sampler, we show that this probability likely
upper-bounds the advantage of any adversary perform-
ing graph-based deanonymisation attacks.

Specifically, assuming two conjectures on certain dis-
tributions of randomdirected graphs (digraphs)whichwe
support by providing empirical evidence, we show that if
the number of decoys k of a partitioning sampler is set to

k ≥ ln(2 · |U |) +
√

2 ln(2 · |U |),

then PrG←GSamp [G 6= Core (G)] ≤ 1
k+1 . In other words, a

graph-analysing attack is at most twice as successful as
a trivial attack does.

Since graph-based attacks threaten all decoy-based
anonymous systems, such as coin-mixing, mix-nets, and
voting, not limited to LRS-based cryptocurrencies, our
result is broadly applicable: It serves as a guideline for
choosing parameters for all such systems to avoid graph-
based deanonymisation attacks.

1.6 Technical Overview

For the ease of reading the technical sections, we provide
a high-level overview below.

1.6.1 Transaction Graphs and Induced Digraphs

The central objects studied in this work are transaction
graphs and their induced digraphs, which are formally
defined in Section 2. As described in Section 1.2, a trans-
action graph is a bipartite graph G with vertex sets
(U,R) and edges E. For any transaction graph G, sup-
pose without loss of generality that M = {(uj , rj)}mj=1
is a maximum matching in G. We can define its induced
digraph id(G) such that (i, j) is an edge in id(G)whenever
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(ui, rj) is an edge in G and i 6= j. We use ~G ∈ Γ to denote
that ~G is strongly connected.

1.6.2 Modelling Graph-Based Deanonymisation

To model the security of ring samplers against graph-
based deanonymisation attacks, in Section 3, we first
formalise the notion of ring-sampler-induced transaction
graphs, then model the security by designing a security
experiment.

For any ring sampler Samp and any number of signa-
turesm ≤ |U | , we define the induced transaction graphs
sampler GSamp which inputs (U, 1m) and outputs a tuple
(G,M) whereG = (U,R,E) with |R| = m is a transaction
graph induced by Samp and M is a maximum matching
in G.

We say that Samp is ε-secure against graph-based
deanonymisation attacks if no adversary, when given
a transaction graph G where (G,M) ← GSamp(U, 1|U |),
could find an edge in M , i.e. a signer-ring assignment,
with probability more than ε. The setting of m = |U | in
GSamp(U, 1|U |) is without loss of generality due to Theo-
rem 5.2, to be explained in Section 1.6.4. While the focus
of this work is on passive adversaries, we also define
a more general notion of security against active adver-
saries who compromise an admissible subset of users. The
generalised notion captures the so-called “black marble
attacks” [10, 13, 22] in the literature.

A trivial strategy of the adversary is to pick the
smallest ring r∗ in G and output a random edge connect-
ing such ring, with success probability 1/|r∗|. Therefore,
a sampler Samp which outputs rings of a fixed size k + 1
cannot be ε-secure for ε < 1

k+1 . Intuitively, the trivial
strategy is also the best strategy for the adversary in case
G = Core (G), which we prove to be the case for parti-
tioning samplers in Section 7. Hence, to upper-bound the
success probability of any adversary against Samp, it suf-
fices to upper-bound the probability that G 6= Core (G)
for transaction graphs G induced by Samp.

1.6.3 Problem Reduction

Our first step for upper-bounding Pr [G 6= Core (G)], car-
ried out in Section 4, is to reduce the problem about
Core (G) of a transaction graph G, a somewhat unwieldy
object, to a simpler problem about the induced digraphs
of the subgraphs of G. Although the results in Section 4
hold for general transaction graphs, they are motivated
by the observation that the transaction graphs induced

by partitioning samplers could be partitioned into sub-
graphs whose induced digraphs follow some simple-to-
describe distributions. The reduction is summarised
by Theorem 4.6, which states that Pr [G 6= Core (G)] is
upper-bounded by a sum of probabilities of some induced
digraphs being not strongly connected.

1.6.4 Regular Partitioning Samplers

In Section 5, we move on to identify the transaction
graphs induced by a partitioning sampler and their in-
duced digraphs. Intuitively, the more information that
is available to an adversary, the better it could perform
in deanonymisation attacks, e.g. through graph analysis.
Indeed, we show in Theorem 5.2 that for any number of
signers m ≤ |U |, the probability of G 6= Core (G) where
G is transaction graph sampled by a ring sampler is
upper-bounded by that when m = |U |. This allows us
to consider simply the latter case, which corresponds to
that all users have signed.

Next, we focus on the partitioning ring samplers pro-
posed in [19], denote by Samp = RegSamp[P, k], which
are parametrised by a partition P of U and a number
of decoys k. The notation RegSamp stands for regular
partitioning sampler, whose naming shall become clear
shortly below. On input a signer s, RegSamp[P, k] locates
the chunk C ∈ P which contains the signer s, samples a
uniformly random (k + 1)-subset r of C conditioning on
s ∈ R, and outputs r as the ring.

A convenient property of a partitioning sampler
RegSamp[P, k] is that its distribution of induced transac-
tion graphs can be naturally partitioned. Going through
the reduction established in Section 4, we observe that
the induced digraphs of each chunk in the partition fol-
lows the uniform distribution over all k-in-degree regular
(hence the notation RegSamp) digraphs with n = |C|
vertices, denoted by ~Greg

k,n. This, however, presents a chal-
lenge to our goal of upper-bounding the probability of
G 6= Core (G), since the distributions ~Greg

k,n do not appear
to be well-studied in random graph theory.

1.6.5 Conjectures and Empirical Evidences

Towards circumventing the above problem, in Section 6,
we turn our attention to the distribution ~Gbin

p,n over di-
graphs with n vertices where each possible edge appears
with probability p, with the intuition that the strong
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connectivity of ~Greg
k,n could be estimated by that of ~Gbin

p,n

for appropriately chosen (k, p).3

To relate the two distributions, in Conjecture 6.1, we
conjecture that

Pr
~G←~Greg

k,n

[
~G /∈ Γ

]
≤ Pr

~G←~Gbin
p,n

[
~G /∈ Γ

]
when p = k

n−1 and therefore the expected in-degree
for ~G ← ~Gbin

p,n is k. This makes sense intuitively when
considering the natures of both digraph models. If the
conjecture holds, it allows us to consider the distribution
~Gbin
p,n, which is better understood.

Based on the result of Palásti [14], the distribution
~Gbin
p,n was studied by Graham and Pike [6], who proved

the limit of Pr ~G←~Gbin
p,n

[
~G /∈ Γ

]
under specific choice of

p. Using this result, in Conjecture 6.4, we propose our
second conjecture, which states that, for p = k

n−1 ,

Pr
~G←~Gbin

p,n

[
~G /∈ Γ

]
≤ 1− e−2eln n−pn

,

where the expression on the right hand side is heuristi-
cally obtained from the result of [6].

Assuming both conjectures and combining all pre-
vious results, we conclude a closed-form upper bound
for Pr [G 6= Core (G)]. Although we are unable to prove
the conjectures, in Section 6.2, we provide empirical ev-
idences that they seem to hold at least for parameters
of interest in the context of cryptocurrencies. In particu-
lar, we sampled 8000 random graphs according to either
distribution in order to estimate the actual probabilities.
We observe that the conjectured inequalities hold for all
tested values of k and n ≥ 16.

1.6.6 Provably Secure Ring Samplers

Putting everything together, in Section 7, we first show
that RegSamp[P, k] is ε-secure for

ε ≤ Pr [G 6= Core (G)] + 1
k + 1

where G is a random transaction graph induced by
RegSamp[P, k]. Together with other established results,
we prove that if

k ≥ ln(2 · |U |) +
√

2 ln(2 · |U |)

3 Similar to how a regular partitioning sampler RegSamp[P, k]
relates to the distribution ~Greg

k,n
, a “binomial partitioning sam-

pler” BinSamp[P, p] could be constructed and be related to the
distribution ~Gbin

p,n. To avoid distraction, we defer a discussion on
this to Appendix B.

then RegSamp[P, k] is ε-secure for ε ≤ 2
k+1 . In other

words, for this parameter choice, no graph-analysing ad-
versary is likely to perform better than random guessing
up to constant factor of 2.

Finally, we conclude our work by discussing the secu-
rity of RegSamp[P, k] against active graph-based attacks.

1.7 Related Work

We conclude the introduction by discussing related works
in the areas of graph-based deanonymisation attacks,
anonymity metrics, and random graph theory.

1.7.1 Graph-Based Attacks

In recent years, numerous works [7, 12, 25] demonstrated
that, by reducing the ring membership relations repre-
sented by the transaction graph of Monero, it is possible
to completely deanonymise signers of certain transac-
tions. These attacks commonly rely on the fact that, in
an early version of Monero, it was not mandatory for a
signer to include decoys in a transaction. If such a signer
A is chosen as a decoy in a ring sampled by another signer
B, the possibility of A being the real signer of the transac-
tion of B can be ruled out easily by the ring membership
relation reduction, thereby reducing the anonymity of
B. This anonymity reduction effect can be propagated
to another signer C if it chooses B as a decoy in its ring,
causing a chain reaction.

Recently, Vijayakumaran [21] proposed to use DM
decomposition for deanonymising Monero signers, and
showed that this is as effective as the prior methods [7,
12, 25]. Indeed, these prior attacks can be seen as find-
ing certain subsets of edges not being in Core (G) for a
transaction graphG, and are therefore subsumed by DM
decomposition which computes the entirety of Core (G).

We remark that the aforementioned works mainly
measure the effectiveness of an attack by counting the
number of completely deanonymised signers, focusing
little on partial deanonymisation. In contrast, the goal
of this work is to upper-bound the probability of any
partial deanonymisation.

1.7.2 Anonymity Metrics

Yu, Au, and Veríssimo [24] measured the anonymity of
a transaction graph using the number of perfect match-
ings, which is unfortunately #P-complete to compute.
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They also evaluated existing attacks and suggested a
partitioning sampler which can be seen as a special case
of those proposed in [19] and discussed below.

Beyond graph analysis, general deanonymisation at-
tacks could take the signing probabilities of different sign-
ers into consideration. In this setting, Ronge et al. [19]
proposed to model the anonymity provided by a ring
sampler by the min-entropy H∞(s|r) of the signer s con-
ditioning on the ring r sampled by the signer s. According
to this anonymity measure, the authors also proved that
(regular) partitioning samplers are close to optimal as-
suming that the distribution of signing probabilities in
each chunk is close to uniform. The formal definition of
this anonymity measure and the corresponding optimal-
ity result on (regular) partitioning samplers are recalled
in Appendix A.

A major shortcoming of the anonymity measure of
Ronge et al. [19], however, is that it only captures the
local anonymity of a single signer given a single ring. In
particular, it does not capture global attacks such as
those based on DM decomposition. Although extensions
to the global setting were discussed, it is unclear whether
the extended measures are efficiently computable.

We remark, however, that although graph analysis
informs us about the anonymity of a ring sampler in the
global sense, it disregards the distribution of signing prob-
abilities. Consequently, a ring sampler (e.g. the uniform
sampler) that behaves well under graph analysis might
achieve low anonymity according to the entropy-based
measure. We therefore view the two approaches as being
complementary with each other.

1.7.3 Random (Di)graph Connectivity

Numerous results have been established for the connec-
tivity problem of random (undirected) graphs. Erdös
and Rényi [4] proved the asymptotic probability of a
uniform random graph4 being connected. Łuczak [9] ex-
tended the result to binomial random graphs. Gilbert
[5] gave both upper and lower bounds of the probability
of a finite binomial random graph being connected. For
k-regular random graphs, it is known that such graphs
are almost surely connected for k ≥ 2 [11] and almost
surely k-connected for k ≥ 3 [1].

4 A uniform random graph is a graph that is uniformly sampled
from the set of all graphs with a fixed vertex set with certain
fixed number of edges. A uniform random digraph is defined
analogously.

The strong connectivity problem of random digraphs
is, however, much worse understood. Among the exist-
ing literature, the majority focuses on infinite graphs.
Palásti [14] and Graham and Pike [6] proved the asymp-
totic probability of strong connectedness for a uniform
random digraph and a binomial random digraph respec-
tively. Some works studied the asymptotic size of the
giant strongly connected component (e.g. [16, 17]). Lit-
tle seems to be known for finite graphs. The problem
of computing (asymptotically) the probability of a k-
in(/out)-degree regular random digraph being strongly
connected was listed in The Scottish Book [11] in 1981,
and in its second edition in 2015 this problem remains
open. The reachability problem, which asks the probabil-
ity that a given node can reach all other nodes in a ran-
dom digraph, though intuitively simpler than the strong
connectivity problem, is proven to be #P-complete [18].

2 Graphs
For n ∈ N, write [n] := {1, 2, . . . , n}. A partition P of
a set U is a set of disjoint subsets of U , called chunks,
satisfying

⋃
C∈P C = U . We often use U to denote the

set of all users, i.e. potential signers.
We assume the general familiarity of the concepts of

bipartite graphs and directed graphs (digraphs). In the
following, we recall and establish some concepts which
are specific to this work.

2.1 Bipartite Graphs

A bipartite graph G = (A,B,E) consists of the ver-
tex sets (A,B) (whose elements are also called nodes)
and a set E ⊆ A × B of edges. Let G = (A,B,E) and
H = (A′, B′, E′) be bipartite graphs. We define the
following basic operations and relations:

– Subgraph: H is a subgraph of G, denoted by H ⊆ G,
if A′ ⊆ A, B′ ⊆ B and E′ ⊆ E.

– Union: G ∪H := (A ∪A′, B ∪B′, E ∪ E′).
– Intersection: G ∩H := (A ∩A′, B ∩B′, E ∩ E′).
– Difference: G \ H := (A−, B−, E−) ⊆ G where
A− = A\A′, B− = B \B′ and E− = E∩ (A−×B−).

– Edge elements: if e ∈ E, we sometimes abuse the
notation and write e ∈ G.

Our analyses are primarily based on the concept of
matchings in bipartite graphs, which we recall below.
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Definition 2.1 (Matching). A matching M ⊆ E in
a bipartite graph G = (A,B,E) is a subset of edges
such that for all edges (a, b), (a′, b′) ∈ M , it holds that
a 6= a′ and b 6= b′. We say M is a maximum matching,
if |M | ≥ |M ′| for any matching M ′ in G.

Definition 2.2 (Core). The core of a bipartite graph
G = (A,B,E), denoted by Core (G) = (A,B,E′), is a
subgraph of G where E′ ⊆ E is the union of all maxi-
mum matchings in G.

The above concept of core is defined in the sense of Dul-
mage andMendelsohn [3]. It should not be confused with
the core defined with respect to graph homomorphisms.
Tassa [20] gave an algorithm for computing Core (G) in
time linear in the number of nodes and edges of G.

A transaction graph is a bipartite graph G =
(U,R,E), where U is a set of users and R is a set of
rings5, such that |R| ≤ |U | and there exists at least one
maximummatching of size |R|. The edges E capture ring
memberships, that is, if user ui belongs to ring rj , then
(ui, rj) ∈ E. The existence of a size-|R|maximum match-
ing captures the assumption that each ring is generated
by a distinct signer.

Definition 2.3 (Transaction Graph). A transaction
graph G = (U,R,E) is a bipartite graph with a maxi-
mum matching M of size |R| ≤ |U |. We say that G is
balanced if |U | = |R|. Otherwise it is imbalanced.

By renaming of nodes, we can write U = {ui}ni=1,
R = {rj }mj=1, and M = {(uj , rj)}mj=1 for some m,n ∈ N
with n ≥ m without loss of generality.

Definition 2.4 (Upper Graph). Let G = (U,R,E) be a
transaction graph, where U = {ui}ni=1 and R = {rj }mj=1,
and M = {(uj , rj)}mj=1 be a maximum matching in G.
The M-upper graph GM = (UM , R,EM ) is a balanced
transaction subgraph of G where UM := {uj }mj=1 and
EM = E ∩ (UM ×R). We use G▵ to denote an M-upper
graph GM for an arbitrary M chosen deterministically
given G.

The left panel of Figure 2 is an example transaction graph
G with a maximum matching M . The upper graph GM

is the subgraph of G in the dotted rectangle.

5 More precisely, R is a set of ring identifiers. This is to handle
cases where different signers sample the same ring.
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Fig. 2. Example of a transaction graph G (U and R being nodes
on left and right respectively) and its induced digraph id(G). The
subgraph in the dotted rectangle is G▵. The yellow, blue and red
edges correspond to edges considered in Lemma 4.1 Item 1 to
Item 3 respectively, the black edges are none of them.

To capture transaction graphs induced by partition-
ing ring samplers, we define the notion of transaction
graph partitioning.

Definition 2.5 (Transaction Graph Partitioning). Let
U be a set of signers and P be a partition of U . Let
G = (U,R,E) and GC = (C,RC , EC) be transaction
graphs for C ∈ P . We say that {GC }C∈P is a partition
of G if {RC }C∈P and {EC }C∈P are partitions of R and
E respectively.

Let G be a distribution of transaction graphs with
vertex sets (U,R). We say that {GC }C∈P is a partition
of G, if GC is a distribution of transaction graphs with
vertex sets (C,RC) for C ∈ P and G =

⋃
C∈P GC , i.e.

sampling from G is equivalent to first independently sam-
pling from GC for all C ∈ P and then taking the union.

Clearly, if {GC }C∈P is a partition of G, then the GC ’s
have disjoint nodes and edges, and

⋃
C∈P GC = G.

2.2 Digraphs

A digraph ~G = (V,E) consists of a vertex set V and a set
E ⊆ V 2 of edges. All digraphs considered in this work
are without self-loop and parallel edge. The definitions of
basic operations and relations for digraphs are analogous
to those for bipartite graphs.
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Definition 2.6 (Edge Reachability). Let ~G = (V,E) be
a digraph. We say that an edge e ∈ E is reachable from
node v ∈ V through ~G, if there exists a directed path
P = {(vi, vi+1)}`i=0 ⊆ E for v0 = v and some ` ∈ N such
that e ∈ P . Generalising, if ~H = (W,F ) ⊆ ~G, we say
that e is reachable from ~H through ~G if e is reachable
from w through ~G for some w ∈W .

The concepts of connectivity and strongly connected
components of digraphs will be repeatedly used, their
definitions are as follows.

Definition 2.7 (Strong and Weak Connectivity). A
digraph ~G = (V,E) is strongly connected, denoted by
~G ∈ Γ, if there exists a directed path from i to j for
all distinct i, j ∈ V . The digraph ~G is weakly connected,
if there exists an (undirected) path from i to j for all
distinct i, j ∈ V when disregarding edge orientations.

Definition 2.8 (Strongly Connected Component). A
strongly connected component (SCC) of a digraph ~G is
a subgraph of ~G that is strongly connected, and is maxi-
mal with this property – that is, no further node or edge
from ~G can be added to it without breaking its strongly
connected property.

To reduce problems about the cores of transaction graphs
to those about digraphs connectivity, we define the no-
tion of induced digraph id(G) of a transaction graph G.

Definition 2.9 (Induced Digraph). Let G = (U,R,E)
be a transaction graph, where U = {ui}ni=1 and
R = {rj }mj=1, and M = {(uj , rj)}mj=1 be a max-
imum matching in G. The M-induced digraph of
G is defined as idM (G) := ([n], F ) where F :={

(i, j) ∈ [n]2 : (ui, rj) ∈ E ∧ i 6= j
}
. We use id(G) to

denote an M-induced digraph idM (G) for an arbitrary
M chosen deterministically given G.

In other words, given a maximum matching M , if we
rename the users and rings so that uj ∈ rj for all rj ∈ R,
the induced digraph is constructed by including an edge
from node i to node j if user ui is a member of ring rj
whenever i 6= j. Figure 2 gives an example of an induced
digraph id(G) of a transaction graph G.

We further introduce two special types of digraphs
which the partitioning samplers will be related to.

Definition 2.10 (k-In-Degree Regular Digraphs). Let
k, n ∈ N with k < n. A k-in-degree regular digraph is
a digraph where all nodes have a fixed in-degree k. We

write ~Greg
k,n for (the uniform distribution over) the set of

all k-in-degree regular digraphs with the vertex set [n].

Definition 2.11 (p-Binomial Digraphs). Let p ∈ [0, 1]
and n ∈ N. We write ~Gbin

p,n for the distribution obtained by
(uniformly) sampling a digraph ~G with the vertex set [n]
such that each of the possible n(n− 1) edges is included
in ~G with probability p independent of any other edges.

3 Ring Samplers
We recall the formal definition of ring samplers [19]
and define distributions of transaction graphs which are
induced by ring samplers.

Definition 3.1 (Ring Samplers [19]). A ring sampler
Samp is a (stateless) PPT algorithm which inputs a set
of users U and a signer s ∈ U and outputs a ring r satis-
fying s ∈ r ⊆ U . Syntactically, we write r ← Samp(U, s)
where Samp is understood to take uniform randomness
which is omitted.

Remark 3.2. In general, a ring sampler Samp could
input a set s = {s1, s2, . . .} ⊆ U of signers and outputs
a ring r with s ⊆ r ⊆ U .

Consider the following thought experiment: Let there be
a set of users U . At each time j, a uniformly random user
sj who has not signed yet decides to issue a ring signa-
ture.6 To do so, user sj samples a ring rj ← Samp(U, sj)
and publishes its ring signature together with the ring
rj . The ring membership relations of the published rings
r1, . . . , rm form a transaction graph, whose distribution
is induced by the randomness used for ring sampling.

Definition 3.3 (Induced Transaction Graphs). An in-
duced transaction graph sampler GSamp is an oracle-
aided PPT algorithm which is given access to a ring
sampler Samp, inputs a set of users U and a number
m ∈ [|U |] (in unary) of signers, and outputs a transac-
tion graph G and a maximum matching M in G. The
procedures of GSamp are as described in Figure 3. When-
ever we are only concerned with the transaction graph
G sampled and not the maximum matching M , we omit
M and write simply G← GSamp(U, 1m).

6 In practice, in case two users publish their signatures simul-
taneously, a public tie-breaking rule is in place to decide which
signature should be verified and accepted first.
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GSamp(U, 1m)

for j ∈ [m] do

sj ← U \{si}j−1
i=1

rj ← Samp(U, sj)

R := (r1, . . . , rm)

E := {(u, r) ∈ U ×R : u ∈ r}

M := {(sj , rj)}j∈[m]

G := (U,R,E)

return (G,M)

Fig. 3. Induced transaction graph sampler.

In the definition of induced transaction graphs, the max-
imummatchingM output by GSamp represents the “true”
signer-ring assignment, i.e. each (sj , rj) ∈ M represents
that the ring rj is sampled by signer sj .

A graph-based deanonymisation attack against (a
system employing) a ring sampler Samp can be mod-
elled by a security experiment involving an adversary
A. We first consider the case with passive adversaries.
The adversary A is given a transaction graph G, where
(G,M)← GSamp(U, 1|U |) is sampled by an induced trans-
action graph sampler, and is asked to find an edge (s∗, r∗)
of G such that (s∗, r∗) ∈M , i.e. to correctly identify that
the ring r∗ is sampled by the signer s∗. For the active
setting, we additionally allow the adversaryA to corrupt
a subset B ⊆ U of users.

Definition 3.4. Let ε > 0 and Samp be a ring sam-
pler. We say that Samp is ε-secure against graph-based
deanonymisation attacks if for any adversary A and any
set of users U ,

Pr
[
ExpA,Samp(U)

]
≤ ε.

Generalising, for any predicate π, we say that Samp
is (π, ε)-secure against graph-based deanonymisation
attacks if for any adversary A and any set of users U ,

Pr
[
ExpA,Samp,π(U)

]
≤ ε.

where the experiments ExpA,Samp and ExpA,Samp,π are
described in Figure 4.

In Definition 3.4, we assume that all users have signed,
i.e. m = |U |. This captures worst case security since the
security experiment for smaller m can be emulated by
the worst case adversary, as we will show in Theorem 5.2.
While ExpA,Samp captures passive attacks, ExpA,Samp,π
further captures active attacks by allowing the adversary
to corrupt a subsetB of users prior to receiving the trans-
action graph with the restriction that (U,B) satisfies the

ExpA,Samp(U) ExpA,Samp,π(U)

B ← A(U)

(G = (U,R,E),M)← GSamp(U, 1|U|)

U ← U \B

E ← E ∩ (U × U)

G = (U,R,E)

(u∗, r∗)← A(G)

return ((u∗, r∗) ∈M) ∧ (π(U,B) = 1)

Fig. 4. Experiments for the security of Samp against graph-based
deanonymisation attacks. The variant incorporating black marble
attacks is in dashed boxes.

predicate π. Setting π to only accept B = ∅, we recover
the passive case.

Note that a trivial strategy for graph-based
deanonymisation is to pick r∗ with the fewest mem-
bers, pick a random member s∗ ← r∗, and output
(s∗, r∗). Clearly, this strategy has success probability
1/|r∗| = 1/(minr∈R |r|). As we will show in Section 7,
conditioned onG = Core (G), this is in fact the best strat-
egy for attacking against partitioning ring samplers.

4 From Cores to Induced Digraphs
In this section we reduce the problem of upper-bounding
Pr [G 6= Core (G)] to a problem concerning the strong
connectivity of digraphs. We first recall a result from
Tassa [20] for general bipartite graphs specialised to the
case of transaction graphs.

Lemma 4.1 (Tassa [20]). Let G = (U,R,E) be a trans-
action graph, where U = {ui}ni=1 and R = {rj }mj=1, and
M = {(uj , rj)}mj=1 be a maximum matching in G. The
core Core (G) = (U,R,E′) is a transaction graph where
E′ is the union of the following sets:
1. The maximum matching M ,
2. {(ui, rj) : (i, j) is in some SCC of idM (G)}, and

3.
{

(ui, rj) : (i, j) is reachable from
idM (G) \ idM (GM ) through idM (G)

}
.

Proof. This is a direct summary of the results in
Tassa [20], specifically Theorem 2.2 and Algorithm 2
for Item 2, and Proposition 2.4, Theorem 2.7 and Algo-
rithm 3 for Item 3. Item 1 is obvious by definition.

In the example given in Figure 2, the edges considered
in Lemma 4.1 Items 1 to 3 are coloured yellow, blue,
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and red respectively. The black edges are those not in
Core (G), corresponding to impossible signer-signature
assignments that can be ruled out.

By Lemma 4.1 Item 3, any edge (ui, rj) of an im-
balanced transaction graph with i > m is maximum-
matchable. Further, note that an edge in a digraph must
either be within an SCC or connecting two SCCs, and
not both. Hence, from Lemma 4.1 Item 2 and Item 3, any
edge (ui, rj) not being in Core (G) implies (ui, rj) is an
edge connecting two SCCs in ~GM .

Using Lemma 4.1, we derive in the following a num-
ber of lemmas on the probability of G 6= Core (G), which
together will lead to Theorem 4.6.

We begin with Lemma 4.2, which states that if G
has a partition P , then the cores Core (H) of the chunks
H ∈ P collectively tell us everything about Core (G).

Lemma 4.2. Let G be a transaction graph and P be a
partition of G. It holds that G = Core (G) if and only if
H = Core (H) for all H ∈ P .

Proof. Recall that G =
⋃
H∈P H. Suppose for the mo-

ment that Core (G) =
⋃
H∈P Core (H), then we can prove

the lemma statement as follows.
Suppose G = Core (G). We have

⋃
H∈P H =⋃

H∈P Core (H). Observe that for distinct H,H ′ ∈ P

we must have H ∩ H ′ = ∅. Therefore H = Core (H) for
all H ∈ P .

Suppose H = Core (H) for all H ∈ P , then
G =

⋃
H∈P H =

⋃
H∈P Core (H) = Core (G).

It remains to show that Core (G) =
⋃
H∈P Core (H).

Let the edge e ∈ Core (G), i.e. ebelongs to amaximum
matching M in G. Since Core (G) ⊆ G, and P is a parti-
tion ofG, we have e ∈ H∗ for someH∗ ∈ P . SinceM∩H∗

is a maximum matching in H∗, we have e ∈ Core (H∗).
This shows that Core (G) ⊆

⋃
H∈P Core (H).

Let the edge e ∈ Core (H) for some H ∈ P , i.e. e
belongs to a maximum matching Y in H. Let M be a
maximum matching in G whose existence is guaranteed
sinceG is a transaction graph. ThenM∗ := (M \H)∪Y is
also a maximum matching in G. Consequently e ∈M∗ ⊆
Core (G), which implies

⋃
H∈P Core (H) ⊆ Core (G).

As an immediate corollary of Lemma 4.2, Corollary 4.3
states a similar relation concerning distributions of trans-
action graphs. In particular, it states that the probability
of G 6= Core (G) is upper-bounded by the probability of
the existence of a chunk GC of G with GC 6= Core (GC),
which can further be upper-bounded by the union bound.

Corollary 4.3. Let G be any distribution of transac-
tion graphs with identical vertex sets and let {GC }C∈P

be a partition of G. Then

Pr
G←G

[G 6= Core (G)] ≤
∑
C∈P

Pr
GC←GC

[GC 6= Core (GC)] .

Proof. By Lemma 4.2, we have

Pr
G←G

[G 6= Core (G)] = Pr
G←G

[∃C ∈ P, GC 6= Core (GC)]

where on the right hand side {GC }C∈P is a partition of
G. We then arrive at the desired conclusion by applying
the union bound.

Next, Lemma 4.4 upper-bounds the probability of
G 6= Core (G) by that of G▵ 6= Core (G▵), where we recall
that G▵ is an arbitrary fixed upper graph of G. Note
that G▵ is balanced by definition. Therefore, Lemma 4.4
in some sense means that balanced transaction graphs
are the worst cases for how likely transaction graphs are
equal to their respective cores.

Lemma 4.4. Let G = (U,R,E) be a transaction graph.
If G▵ = Core (G▵), then G = Core (G). Consequently, let
G be any distribution of transaction graphs, we have

Pr
G←G

[G 6= Core (G)] ≤ Pr
G←G

[G▵ 6= Core (G▵)] .

Proof. Let M be a maximum matching in G such that
G▵ = GM = (UM , R,EM ). It suffices to show that each
chunk in the partition

{
E \ EM , EM \M,M

}
of E is a

subset of the edges in Core (G).
First, we have e ∈ Core (G) for all e ∈M by the defini-

tion of core. Moreover, by Lemma 4.1 Item 3, e ∈ Core (G)
for edge e ∈ E \ EM .

It remains to consider EM \M . Given that GM =
Core

(
GM

)
, all e ∈ EM are in Core

(
GM

)
. Since GM is

balanced, from Lemma 4.1 we have that all e ∈ EM \M
are in some SCC of idM (GM ). By construction, an SCC
in idM (GM ) is also an SCC in idM (G), so by Lemma 4.1
Item 2 all e ∈ EM \M are also in Core (G).

Our last lemma for this section, Lemma 4.5, upper-
bounds the probability of G 6= Core (G) by that of id(G)
being not strongly connected, where we recall that id(G)
is an induced digraph of G with arbitrarily chosen max-
imum matching.

Lemma 4.5. Let G be a transaction graph. If id(G)
is strongly connected, then G = Core (G). Furthermore,
if G is both balanced and connected, then the converse
also holds. Consequently, let G be any distribution of
transaction graphs, we have

Pr
G←G

[G 6= Core (G)] ≤ Pr
G←G

[id(G) /∈ Γ] ,
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and the inequality become equality if G is a distribution
of balanced and connected transaction graphs.

Proof. If id(G) is strongly connected, then by Lemma 4.1
all edges in G are in Core (G), hence G = Core (G).

The second statement is proven by contraposition.
Suppose id(G) is not strongly connected, so it has at least
two SCCs ~C1 and ~C2. If G is connected, then id(G) is by
construction weakly connected, and there exists an edge
(i, j) in id(G), where i is a node of ~C1 and j is a node of
~C2. By Lemma 4.1 we have that (ui, rj), which is an edge
in G, is not in Core (G), hence G 6= Core (G).

Note that by construction, id(G) is strongly connected
only if G is balanced. Therefore the inequality in
Lemma 4.5 becomes trivial if G is imbalanced.

Chaining together the above lemmas, we arrive at
the main theorem of this section, which upper-bounds
the probability of G 6= Core (G) by a sum of probabilities
related to the strong connectivity of the induced digraphs
of the chunks of G.

Theorem 4.6. Let G be any distribution of transaction
graphs and let {GC }C∈P be a partition of G. Then

Pr
G←G

[G 6= Core (G)] ≤
∑
C∈P

Pr
GC←GC

[id(G▵C) /∈ Γ] .

Proof. From Corollary 4.3,

Pr
G←G

[G 6= Core (G)] ≤
∑
C∈P

Pr
GC←GC

[GC 6= Core (GC)] .

From Lemmas 4.4 and 4.5 we have

Pr
GC←GC

[GC 6= Core (GC)] ≤ Pr
GC←GC

[G▵C 6= Core (G▵C)]

≤ Pr
GC←GC

[id(G▵C) /∈ Γ]

for any C ∈ P . Combining the above yields the desired
result.

5 Induced Transaction Graphs
Our goal in this section is to obtain a candidate up-
per bound for Pr [G 6= Core (G)], where G is a random
transaction graph induced by a (regular) partitioning
sampler [19]. For this, we first prove a theorem on the
sufficiency of considering balanced induced transaction
graphs. We then recall the definition of (regular) parti-
tioning samplers [19] and apply the established theorems.
We realise that Pr [G 6= Core (G)] can be upper-bounded
in terms of Pr

[
~G /∈ Γ

]
where ~G is sampled from ~Greg

k,n

(recall Definition 2.10).

5.1 Balanced Transaction Graphs

Intuitively, it is easier for an adversary to deanonymise
signers when more information about them is available,
for example, when more rings sampled by the signers are
given. Following this line of thought, an adversary should
be successful in deanonymising signers with the highest
probability when all users have signed.

To formalise this claim, we first prove a technical
lemma which states that, if H is constructed by adding
ring nodes to a transaction graph G, then G 6= Core (G)
implies H 6= Core (H).

Lemma 5.1. Let G = (U,R,E) and H = (U,R′, E′) be
transaction graphs where R ⊂ R′ and E = E′ ∩ (U ×R),
i.e. H can be constructed from G by adding ring nodes
R′ \R and edges connecting the new ring nodes to some
signer nodes U . If G 6= Core (G), then H 6= Core (H).

Proof. Let U = {ui}ni=1, R = {rj }mj=1, and M =
{(uj , rj)}mj=1 be a maximum matching in G. It suffices
to prove the case |R′| = |R| + 1, and the lemma fol-
lows by induction. We therefore assume from here on
R′ = R ∪{rm+1} where rm+1 /∈ R.

Let M ′ := M ∪ {(um+1, rm+1)} be a maxi-
mum matching in H. Let idM (G) = ([n], F ) and
idM ′(H) = ([n], F ′). Note that F ⊆ F ′ (and hence
idM (G) ⊆ idM ′(H)), with the new edges in F ′ \ F being
of the form (i,m+ 1) where i ∈ [n] \{m+ 1}.

Suppose G 6= Core (G), so there exists an edge
e∗ = (ui∗ , rj∗) in G which is not in Core (G). From
Lemma 4.1 we have i∗ 6= j∗, therefore e∗ ∈ idM (G) ⊆
idM ′(H). We prove in the following that e∗ is not in
any SCC of idM ′(H), and e∗ is not reachable from
idM ′(H) \ idM ′(HM ′) through idM ′(H). Hence, by
Lemma 4.1, e∗ is not in Core (H), and H 6= Core (H).

We first show that e∗ is not in any SCC of idM ′(H).
For this, note that from Lemma 4.1, e∗ is an edge which
connects two SCCs of idM (GM ). Let ~C be an SCC of
idM (GM ) such that i∗ is a node of ~C. Observe that by
construction, ~C is also an SCC of idM (G). Now, since
the vertex set of ~C is subset of [m] (the vertex set of
idM (GM )), there is no edge (i, j) ∈ F ′ \ F with node j
in ~C (since all edges in F ′ \ F are of the form (i,m+ 1)).
Clearly this implies, first, that there is no edge in F ′ \ F
with both ends in ~C, and second, that there is no edge in
F ′ \F which connects from any node v ∈ idM ′(H) \ ~C to
~C. Therefore, ~C remains an SCC in idM ′(H) by definition,
and it follows that e∗ is not in any SCC of idM ′(H).

We next show that e∗ is not reachable from idM ′(H)\
idM ′(HM ′) through idM ′(H).We begin by drawing atten-
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tion to two points. First, by Lemma 4.1, e∗ is not reach-
able from idM (G)\ idM (GM ) through idM (G). Second, e∗

is not reachable from nodem+ 1 through idM ′(H), since
e∗ is not reachable from m + 1 through idM (G) and all
edges in F ′ \ F are of the form (i,m + 1). We proceed
to prove the statement by contradiction. Suppose e∗ is
reachable from idM ′(H) \ idM ′(HM ′) through idM ′(H),
then there exists a directed path P = {(vi−1, vi)}`i=1
in idM ′(H), where v0 is a node of idM ′(H) \ idM ′(HM ′),
(v`−1, v`) = e∗, and node vi ∈ R′ for all i ∈ [`].7 However,
vi 6= m+ 1 for all i ∈ [`], otherwise contradicting that e∗

is not reachable from nodem+1 through idM ′(H). There-
fore vi ∈M for all i ∈ [`]. Since all edges in F ′ \ F are of
the form (i,m+1), we now have that all edges in P belong
to idM (G). In other words, e∗ is reachable from idM ′(H)\
idM ′(HM ′) through idM (G). Finally, since idM ′(H) \
idM ′(HM ′) = ([n] \ (R ∪{m+ 1}), ∅) ⊂ ([n] \R, ∅) =
idM (G)\ idM (GM ), we arrive at that e∗ is reachable from
idM (G) \ idM (GM ) through idM (G), a contradiction.

From Lemma 5.1 we obtain our next theorem, which
states that for any number of signers m ≤ |U |,
Pr [G 6= Core (G)] is upper-bounded by that when
m = |U |, i.e. the case that all users have signed.

Theorem 5.2. For any ring sampler Samp and any
m ≤ |U |, it holds that

Pr
G←GSamp(U,1m)

[G 6= Core (G)]

≤ Pr
H←GSamp(U,1|U|)

[H 6= Core (H)] .

Proof. As Samp is stateless, the distributions of the out-
puts of independent runs of Samp are independent. Hence,
referring to Figure 3, sampling H from GSamp(U, 1|U |) is
equivalent to first running the for-loop in GSamp(U, 1|U |)
only up to j = m to sample G, then running the remain-
ing of the loop to sampleG′, and outputtingH := G∪G′.
From Lemma 5.1, we know that H 6= Core (H) whenever
G 6= Core (G). The claim thus follows immediately.

5.2 Regular Partitioning Samplers

We consider a special case of the partitioning samplers
defined in [19], where there is only one public partition of
U and only one signer per ring. The general case with a

7 The condition on the intermediate nodes can be achieved by
first considering any path P from node v0 ∈ idM′ (H)\idM′ (HM′ )
to e∗ through idM′ (H), and then taking the tail of P such that no
intermediate node in the tail belongs to idM′ (H) \ idM′ (HM′ ).

distribution of partitions andmore than one signer can be
handled with generic techniques [19]. Such partitioning
samplers, which we refer to as the regular partitioning
samplers RegSamp[P, k], are parametrised by the parti-
tion P of U and a number of decoys k ∈ N for each ring,
such that k < |C| for each chunk C ∈ P . We recall its
definition below.

RegSamp[P, k](U, s): Initiate r := {s}. Let C ∈ P be the
unique chunk containing s. Sample a uniformly random
k-subset r′ ⊆ C \{s}. Output r := r ∪ r′.

We observe that a RegSamp[P, k]-induced transaction
graph G takes a special form – it can be partitioned into
independent subgraphs{GC }C∈P , each representing the
induced transaction graph of a chunk in P . Moreover,
if a subgraph GC is balanced, then its induced digraph
id(GC) is a k-in-degree regular digraph. We therefore
arrive immediately at the following lemma.

Lemma 5.3. Let U be a set of users and P be a parti-
tion of U . Let k ∈ N such that k < |C| for each C ∈ P .
Write Samp := RegSamp[P, k]. For any m ≤ |U |,

Pr
G←GSamp(U,1m)

[G 6= Core (G)] ≤
∑
C∈P

Pr
~G←~Greg

k,|C|

[
~G /∈ Γ

]
.

Proof. Pr
G←GSamp(U,1m)

[G 6= Core (G)]

≤ Pr
G←GSamp(U,1|U|)

[G 6= Core (G)]

≤
∑
C∈P

Pr
G←GRegSamp[{C},k](C,1|C|)

[id(G) /∈ Γ]

=
∑
C∈P

Pr
~G←~Greg

k,|C|

[
~G /∈ Γ

]
,

where the first inequality follows from Theorem 5.2, the
second inequality from Theorem 4.6, and the equality
follows from direct inspection.

Lemma 5.3 relates the probability of G 6= Core (G) with
that of ~G /∈ Γ, where G is a transaction graph induced
by a regular partitioning sampler and ~G is a k-in-degree
regular digraph. Unfortunately, the strong connectivity
of random k-in-degree regular digraphs seems to be a
non-trivial problem [11, Problem 38]. While (asymp-
totic) results on the connectivity of random k-regular
(undirected) graphs are established [1], their extensions
to the strong connectivity of random k-in(/out)-degree
regular digraphs remain open. In the next section, we
circumvent this difficulty by estimating the strong con-
nectivity of random k-in-degree regular digraphs by that
of random p-binomial digraphs (recall Definition 2.11)
for appropriate k and p.
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Remark 5.4. To draw connection between partitioning
samplers and random p-binomial digraphs, consider the
following “binomial partitioning samplers” construction
modified from that of regular partitioning samplers: In-
stead of sampling a random k-subset of C \ {s}, the
modified sampler includes each member of C \ {s} into
the ring independently with some fixed probability p.
Correspondingly, a counterpart of Lemma 5.3 for bino-
mial partitioning sampler could be stated. For details,
we refer to Appendix B.

6 Conjectures and Experiments
Towards finding the final piece of the puzzle of upper-
bounding Pr [G 6= Core (G)] forG induced by partitioning
samplers, we put forth two conjectures concerning the
probabilities of random k-in-degree regular digraphs and
random p-binomial digraphs being strongly connected.
To gain confidence in these conjectures, we empirically
estimate the probabilities for parameters which are rea-
sonable in the context of cryptocurrencies.

6.1 Conjectures

Our first conjecture relates the two digraph distributions
~Greg
k,n and ~Gbin

k,n.

Conjecture 6.1. For k, n ∈ N with n ≥ 16 and
p = k

n−1 ≤ 1,

Pr
~G←~Greg

k,n

[
~G /∈ Γ

]
≤ Pr

~G←~Gbin
p,n

[
~G /∈ Γ

]
.

The condition n ≥ 16 stems from our simulation results,
which we detail in Section 6.2. Intuitively Conjecture 6.1
makes sense, since for all digraphs in the support of ~Greg

k,n,
all nodes must be weakly connected to k other nodes,
whereas this is not the case for ~Gbin

p,n with any p < 1.
In search of a closed-form upper bound for

Pr [G 6= Core (G)], we draw on the following result from
Graham and Pike [6], which are developed based on the
work of Palásti [14].

Lemma 6.2 ([6]). Let c ∈ R be a constant and
p(n) := lnn+c

n . It holds that

lim
n→∞

Pr
~G←~Gbin

p(n),n

[
~G /∈ Γ

]
= 1− e−2e−c

.

Remark 6.3. Graham and Pike [6] considered a dif-
ferent model of digraphs where, unlike ours, self-loops

are allowed. Their result however still holds under our
model of digraphs, since self-loops have no effect on the
strong connectivity of a digraph.

Lemma 6.2 moves us closer towards a closed-form upper
bound for Pr [G 6= Core (G)], but unfortunately with two
issues. First, the results of Palásti [14] and Graham and
Pike [6] seem to crucially rely on setting p(n) := lnn+c

n ,
and infer nothing about the case with general p. Second,
their results concern only about infinite digraphs, but
say little about finite digraphs.

To close the gaps, we propose our second conjecture,
which is obtained heuristically byplugging in c = pn−lnn
and p = k

n−1 back to the limit in Lemma 6.2.

Conjecture 6.4. For k, n ∈ N with n ≥ 16 and
p = k

n−1 ≤ 1,

Pr
~G←~Gbin

p,n

[
~G /∈ Γ

]
≤ 1− e−2eln n− k

n−1 n

.

While we are unable to provide analytical proofs, both of
the conjectures hold in our numerical simulations in Sec-
tion 6.2, where (k, n) are chosen to be realistic in the
context of cryptocurrencies.

Finally, taking these two conjectures, we can bridge
the established results and arrive at the concluding state-
ment below.

Corollary 6.5. Let U be a set of users and P be a
partition of U . Let k ∈ N such that k < |C| for each
C ∈ P . Let n := maxC∈P |C| ≥ 16. If Conjectures 6.1
and 6.4 hold, then for any m ≤ |U |,

Pr
G←GRegSamp[P,k](U,1m)

[G 6= Core (G)] ≤ |P |
(

1−e−2eln n−k
)
.

Proof. Pr
G←GRegSamp[P,k](U,1m)

[G 6= Core (G)]

≤
∑
C∈P

Pr
~G←~Greg

k,|C|

[
~G /∈ Γ

]
≤
∑
C∈P

Pr
~G←~Gbin

p(C),|C|

[
~G /∈ Γ

]
≤
∑
C∈P

(
1− e−2e

ln |C|− k
|C|−1 |C|

)
<
∑
C∈P

(
1− e−2eln |C|−k

)
≤|P |

(
1− e−2eln n−k

)
,

where the first inequality follows fromLemma 5.3, the sec-
ond follows from Conjecture 6.1 by setting p(C) = k

|C|−1
for C ∈ P , and the third follows from Conjecture 6.4.
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Fig. 5. Plots of preg
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bin
k,n against k for selected values of n in both linear- and log-scale.

6.2 Experiments

To support our conjectures, we empirically estimated the
probabilities

p
reg
k,n := Pr

~G←~Greg
k,n

[
~G /∈ Γ

]
and

pbin
k,n := Pr

~G←~Gbin
p,n

[
~G /∈ Γ

]
,

where p = k
n−1 , for values of k ranging from 1 to 16 and

values of n from 22 to 212 in exponential steps. In each
case we sampled 8000 graphs, verified whether ~G /∈ Γ,
and compared the average with the upper bound

p̄bin
k,n := 1− e−2eln n− k

n−1 n

in Conjecture 6.4.
In Figure 5, we plotted p

reg
k,n (dot mark, “regular”),

pbin
k,n (plusmark, “binomial”), and p̄bin

k,n (dashed, “bound”)
against k for different values of n in both linear- and log-
scale. In the log-scale plot, values smaller than 10−3 are
omitted for their instability due to the limited sampling
size. Similarly, in Figure 6 we plotted the same values
against n for different values of k.

From Figures 5 and 6, we observe that both conjec-
tured upper bounds appear to hold for all n ≥ 16. More
specifically, the only cases where they fail to hold are
(k, n) = (1, 4) and (1, 8). Upon closer inspection, on the
one hand, we observe that the first bound

p
reg
k,n ≤ p

bin
k,n

becomes tighter as the number of nodes n decreases.
This makes sense since the variance of the in-degree of
the nodes in the graphs sampled from ~Gbin

p,n decreases as n
decreases. On the other hand, we notice that the second
conjectured upper bound

pbin
k,n ≤ p̄bin

k,n

becomes tighter as n increases. This is also expected as
the bound was heuristically derived from the limit of pbin

k,n

as n tends to infinity.

7 Interpretation of Our Results
We conclude our work by stating a ring size for partition-
ing samplers which is sufficient to defeat graph analysis.
We also discuss how our results extend to the setting
with an active adversary, who attempts to deanonymise
honest signers by injecting fake ones in the so-called
“black marble attacks” [10, 13, 22].

7.1 On Defeating Graph Analysis

We discuss what our results mean in the context of
(passive) graph-based deanonymisation attacks. We
begin by showing that, for transaction graphs G in-
duced by k-regular partitioning samplers, conditioned
on G = Core (G), the trivial deanonymisation strategy
described in Section 3 is the best strategy.

Lemma 7.1. Let k ∈ N, U be a set of users, P be
a partition of U where |C| > k for each C ∈ P . Let
Samp = RegSamp[P, k]. For any adversary A,

Pr
[
ExpA,Samp(U)

]
≤ Pr [G 6= Core (G)] + 1

k + 1

where the probabilities are taken over the randomness
of A and (G,M)← GSamp(U, 1|U |).

Proof. Observe that

Pr
[
ExpA,Samp(U)

]
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≤Pr [G 6= Core (G)] + Pr
[
ExpA,Samp(U)

∣∣G = Core (G)
]
,

which is obtained by applying the law of total probability
and upper-bounding two probability terms by 1. Then,
it suffices to show that

Pr
[
ExpA,Samp(U)

∣∣G = Core (G)
]
≤ 1
k + 1 .

Consider the distribution

ĜSamp :=

{
(G,M) :

(G,M)← GSamp(U, 1|U |)
G = Core (G)

}
.

In other words, ĜSamp is the same as GSamp conditioning
onG = Core (G). Let ˆExpA,Samp be the same as ExpA,Samp,
except that the procedure (G,M) ← GSamp is replaced
by (Ĝ, M̂)← ĜSamp. We can rewrite

Pr
[
ExpA,Samp(U)

∣∣G = Core (G)
]

= Pr
[

ˆExpA,Samp(U)
]
.

Since Samp is a partitioning sampler, for any fixed mem-
bers of any fixed ring, the probability of the ring being
sampled by each member is the same. That is, for any
fixed ring r in the support of

⋃
u∈U Samp(U, u), and any

fixed s, s′ ∈ r, it holds that

Pr [r = Samp(s)] = Pr
[
r = Samp(s′)

]
.

Therefore, conditioned on the event E = ((s, r), (s′, r) ∈
Ĝ) for any fixed r, s, s′,

Pr
[
(s, r) ∈ M̂ |E

]
= Pr

[
(s′, r) ∈ M̂ |E

]
with probabilities taken over (Ĝ, M̂) ← ĜSamp. Conse-
quently, for any edge (s∗, r∗) output by A(Ĝ),

Pr
[

ˆExpA,Samp(U)
]

= Pr
[
(s∗, r∗) ∈ M̂

]

= Pr
[
(s∗, r∗) ∈ Ĝ

]
Pr
[
(s∗, r∗) ∈ M̂ |(s∗, r∗) ∈ Ĝ

]
+ Pr

[
(s∗, r∗) /∈ Ĝ

]
Pr
[
(s∗, r∗) ∈ M̂ |(s∗, r∗) /∈ Ĝ

]
= Pr

[
(s∗, r∗) ∈ Ĝ

]
· 1
|r∗|

+ 0 ≤ 1
k + 1 ,

as desired.

From Lemma 7.1, if the parameters P and k are set
such that PrG←GRegSamp[P,k](U,1|U|) [G 6= Core (G)] ≤ 1

k+1 ,
then RegSamp[P, k] is ε-secure against graph-based
deanonymisation attacks for ε = 2

k+1 = O(1/k), which is
optimal up to a constant factor of 2. In the next theorem,
we give a sufficient condition on k with which this holds.

Theorem 7.2. Let k, n ∈ N, U be a set of users, and
P be a partition of U where |C| = n ≥ 16 and n > k for
each C ∈ P . If Conjectures 6.1 and 6.4 hold and

k ≥ ln(2|U |) +
√

2 ln(2|U |),

then RegSamp[P, k] is 2
k+1 -secure against graph-based

deanonymisation attacks.

Proof. By Lemma 7.1, it suffices to show that
PrG←GRegSamp[P,k](U,1|U|) [G 6= Core (G)] ≤ 1

k+1 for the
given parameters. Let k′ := k + 1. If Conjectures 6.1
and 6.4 hold, then by Corollary 6.5 it suffices to set up
parameters such that

|P |
(

1− e−2eln n−k
)
≤ 1
k′

or equivalently

k ≥ ln

 −2n

ln
(

1− 1
|P |k′

)
 ,

where n = maxC∈P |C| is the maximum chunk size. Since
ln
(

1− 1
|P |k′

)
≤ −|P |k′, we have

k ≥ ln
(
2n|P |k′

)
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as a sufficient condition, so it suffices to solve k′ for

k′ − ln k′ ≥ ln(2en|P |),

the solution of which is

k′ ≥ −W−1

(
−1

2en|P |

)
,

where W−1(·) is the Lambert W function of branch −1.
From [2] we know that

−1−
√

2x− x < W−1
(
−e−x−1)

for all x > 0. Substituting x = ln(2n|P |), we conclude
that it suffices to set

k ≥ ln(2n|P |) +
√

2 ln(2n|P |).

In the particular case stated in the theorem statement,
where the set of users is partitioned into chunks of equal
size n, i.e. |U | = n|P |, it suffices to set

k ≥ ln(2|U |) +
√

2 ln(2|U |).

For concreteness, suppose it is believed that the number
of all users |U | will never exceed 264, then Theorem 7.2
suggests that, by setting the number of dummies k to at
least 55, the probability that an adversary identifies a
signer is at most 2

k+1 ≤
1

28 . Suppose that users are com-
fortable with a 1-in-t anonymity for some t ≥ 28, then it
should suffice to set k as such that k+1

2 = t, yielding a
ring size of 2t.

In the example of Monero, its current recommended
ring size of 11 seems far too small under our model. We
note, however, that a “correct” level of anonymity is itself
a subjective matter. If a Monero user is willing to accept
that the anonymity set size will be reduced, say, from
11 to 6 and is comfortable with an anonymity set of size
6, then 11 might still be an acceptable choice. Future
empirical study on the actual reduction in anonymity of
Monero users could offer useful insights in this direction.

We remark that the above recommendation for the
ring size is conservative for several reasons. First, the
upper bound of the adversary’s success probability given
in Lemma 7.1 is loose in the sense that, while we let
Pr
[
ExpA,Samp(U)

∣∣G 6= Core (G)
]
≤ 1 in its derivation,

having G 6= Core (G) does not necessarily mean that the
adversary immediately has a drastic advantage. Rather,
we believe that the anonymity degrades gracefully de-
pending on how close Core (G) is to G. Second, ring
samplers which are secure in our model resist even untar-
geted attacks against individual signatures. In practice,
being able to identify the signer of one random signature

does not seem very useful, especially in the LRS setting
where each signing key is only used once. A more mean-
ingful attack, say in the setting of cryptocurrencies, is to
identify the signers of a chain of ` > 1 transactions. How-
ever, the probability of successfully doing so intuitively
decreases exponentially in `.

7.2 On Black Marble Attacks

A type of active deanonymisation attacks is the so-called
“black marble attacks” [10, 13, 22], where the adversary
actively injects signers, called black marbles, into the
set of users, such that including them in rings do not
contribute towards the anonymity of honest signers. In
the context of cryptocurrencies, injecting black marbles
often incur a monetary cost. It is therefore reasonable to
assume that the adversary is only able to inject a bounded
number of black marbles per some unit of time. Such at-
tacks can be captured by the experiment ExpA,Samp,π
in Definition 3.4.

For simplicity, suppose that each chunk C ∈ P is of
size |C| = n and contains β · n black marbles for some
β ∈ [0, 1]. Then the “effective” number of users (in the
sense of providing anonymity) is given by (1 − β) · |U |.
This is captured by a predicate π which checks that
|B ∩ C| ≤ β · |C| for all C ∈ P .

Suppose that Samp = RegSamp[P, k]. Notice that,
after removing the black marbles, the induced digraphs
of the chunks of the transaction graphs G are no longer
k-in-degree regular, and are tedious to analyse. Fortu-
nately, for the case with binomial partitioning sampler
(detailed in Appendix B), we observe that the induced
digraphs of the chunks of the transaction graphsG follow
the distributions

{
~Gbin
p,(1−β)·n

}
C∈P

. That is, injecting
black marbles only decreases the size parameter of the
p-binomial digraph distribution by a factor of (1 − β).
We can therefore still apply Conjecture 6.4 and obtain
an analogous upper bound for this setting. By replacing
|U | with (1 − β) · |U | in the proof of Theorem 7.2, we
conclude that it suffices to set

p ≥
ln(2 · (1− β) · |U |) +

√
2 ln(2 · (1− β) · |U |)

(1− β)n− 1

to defeat graph analysis. Revisiting the setting of Samp =
RegSamp[P, k], the above heuristically suggests that

k &
ln(2 · (1− β) · |U |) +

√
2 ln(2 · (1− β) · |U |)

1− β

suffices to defeat graph analysis.



On Defeating Graph Analysis of Anonymous Transactions 554

Acknowledgements
This work is supported by Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) as part of
the Research and Training Group 2475 “Cybercrime and
Forensic Computing” (number 393541319/GRK2475/1-
2019) and by the state of Bavaria at the Nuremberg
Campus of Technology (NCT).

References
[1] B. Bollobás and B. Béla. Random graphs. 73. Cam-

bridge university press, 2001.
[2] I. Chatzigeorgiou. “Bounds on the Lambert Func-

tion and Their Application to the Outage Anal-
ysis of User Cooperation.” In: IEEE Commun.
Lett. 17.8 (2013), pp. 1505–1508. doi: 10 .1109/
LCOMM.2013.070113.130972. url: https://doi.
org/10.1109/LCOMM.2013.070113.130972.

[3] A. L. Dulmage and N. S. Mendelsohn. “Cover-
ings of Bipartite Graphs.” In: Canadian Journal
of Mathematics 10 (1958), 517–534. doi: 10.4153/
CJM-1958-052-0.

[4] P. Erdős andA.Rényi. “On random graphs I Publ.”
In: Math. Debrecen 6 (1959), pp. 290–297.

[5] E. N. Gilbert. “Random graphs.” In: The Annals
of Mathematical Statistics 30.4 (1959), pp. 1141–
1144.

[6] A. J.GrahamandD.A.Pike. “Anote on thresholds
and connectivity in random directed graphs.” In:
Atl. Electron. J. Math 3.1 (2008), pp. 1–5.

[7] A. Kumar, C. Fischer, S. Tople, and P. Saxena.
“A Traceability Analysis of Monero’s Blockchain.”
In: ESORICS 2017, Part II. Ed. by S. N. Fo-
ley, D. Gollmann, and E. Snekkenes. Vol. 10493.
LNCS. Springer, Heidelberg, Sept. 2017, pp. 153–
173. doi: 10.1007/978-3-319-66399-9_9.

[8] J. K. Liu, V. K. Wei, and D. S. Wong. “Linkable
Spontaneous Anonymous Group Signature for Ad
Hoc Groups (Extended Abstract).” In: ACISP 04.
Ed. by H.Wang, J. Pieprzyk, and V. Varadharajan.
Vol. 3108. LNCS. Springer, Heidelberg, July 2004,
pp. 325–335. doi: 10 . 1007 / 978 - 3 - 540 - 27800 -
9_28.

[9] T. Łuczak. “On the equivalence of two basic mod-
els of random graphs.” In: Random graphs. Vol. 87.
1987, pp. 151–157.

[10] A.Mackenzie, S.Noether, andM.C.Team. Improv-
ing Obfuscation in the CryptoNote Protocol. Tech.

rep. url: https://ww.getmonero.org/resources/
research-lab/pubs/MRL-0004.pdf.

[11] R. D. Mauldin. The Scottish Book. Vol. 88. 8.
Springer, 1981.

[12] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan,
S. Srivastava, K. Hogan, J. Hennessey, A. Miller, A.
Narayanan, and N. Christin. “An Empirical Anal-
ysis of Traceability in the Monero Blockchain.” In:
PoPETs 2018.3 (July 2018), pp. 143–163. doi: 10.
1515/popets-2018-0025.

[13] S. Noether, S. Noether, and A. Mackenzie. A Note
on Chain Reactions in Traceability in CryptoNote
2.0. Tech. rep. url: https://ww.getmonero.org/
resources/research-lab/pubs/MRL-0001.pdf.

[14] I. Palásti. “On the strong connectedness of directed
random graphs.” In: Studia Sci. Math. Hungar 1
(1966), pp. 205–214.

[15] S. Patachi and C. Schürmann. “Eos a Universal
Verifiable and Coercion Resistant Voting Proto-
col.” In: Electronic Voting - Second International
Joint Conference, E-Vote-ID 2017, Bregenz, Aus-
tria, October 24-27, 2017, Proceedings. Ed. by R.
Krimmer, M. Volkamer, N. B. Binder, N. Kersting,
O. Pereira, and C. Schürmann. Vol. 10615. Lec-
ture Notes in Computer Science. Springer, 2017,
pp. 210–227. doi: 10 . 1007 / 978 - 3 - 319 - 68687 -
5\_13. url: https://doi.org/10.1007/978-3-319-
68687-5\_13.

[16] M. D. Penrose. “The strong giant in a random
digraph.” In: Journal of Applied Probability 53.1
(2016), pp. 57–70.

[17] B. Pittel andD. Poole. “Asymptotic distribution of
the numbers of vertices and arcs of the giant strong
component in sparse random digraphs.” In: Ran-
dom Structures & Algorithms 49.1 (2016), pp. 3–
64.

[18] J. S. Provan and M. O. Ball. “The complexity of
counting cuts and of computing the probability
that a graph is connected.” In: SIAM Journal on
Computing 12.4 (1983), pp. 777–788.

[19] V. Ronge, C. Egger, R. W. F. Lai, D. Schröder,
and H. H. F. Yin. “Foundations of Ring Sampling.”
In: PoPETs 2021.3 (July 2021), pp. 265–288. doi:
10.2478/popets-2021-0047.

[20] T. Tassa. “Finding all maximally-matchable edges
in a bipartite graph.” In:Theoretical Computer Sci-
ence 423 (2012), pp. 50–58. issn: 0304-3975. doi:
https://doi.org/10.1016/j.tcs.2011.12.071. url:
https://www.sciencedirect.com/science/article/
pii/S0304397511010474.

https://doi.org/10.1109/LCOMM.2013.070113.130972
https://doi.org/10.1109/LCOMM.2013.070113.130972
https://doi.org/10.1109/LCOMM.2013.070113.130972
https://doi.org/10.1109/LCOMM.2013.070113.130972
https://doi.org/10.4153/CJM-1958-052-0
https://doi.org/10.4153/CJM-1958-052-0
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://ww.getmonero.org/resources/research-lab/pubs/MRL-0004.pdf
https://ww.getmonero.org/resources/research-lab/pubs/MRL-0004.pdf
https://doi.org/10.1515/popets-2018-0025
https://doi.org/10.1515/popets-2018-0025
https://ww.getmonero.org/resources/research-lab/pubs/MRL-0001.pdf
https://ww.getmonero.org/resources/research-lab/pubs/MRL-0001.pdf
https://doi.org/10.1007/978-3-319-68687-5\_13
https://doi.org/10.1007/978-3-319-68687-5\_13
https://doi.org/10.1007/978-3-319-68687-5\_13
https://doi.org/10.1007/978-3-319-68687-5\_13
https://doi.org/10.2478/popets-2021-0047
https://doi.org/https://doi.org/10.1016/j.tcs.2011.12.071
https://www.sciencedirect.com/science/article/pii/S0304397511010474
https://www.sciencedirect.com/science/article/pii/S0304397511010474


On Defeating Graph Analysis of Anonymous Transactions 555

[21] S. Vijayakumaran. Analysis of CryptoNote Trans-
action Graphs using the Dulmage-Mendelsohn De-
composition. Cryptology ePrint Archive, Report
2021/760. https://ia.cr/2021/760. 2021.

[22] D. A. Wijaya, J. Liu, R. Steinfeld, and D. Liu.
“Monero Ring Attack: Recreating Zero Mixin
Transaction Effect.” In: TrustCom/BigDataSE
2018. IEEE, 2018, pp. 1196–1201. doi: 10.1109/
TrustCom/BigDataSE.2018.00165.

[23] B. Yu, J. K. Liu, A. Sakzad, S. Nepal, R. Ste-
infeld, P. Rimba, and M. H. Au. “Platform-
Independent Secure Blockchain-Based Voting Sys-
tem.” In: ISC 2018. Ed. by L. Chen, M. Manulis,
and S. Schneider. Vol. 11060. LNCS. Springer, Hei-
delberg, Sept. 2018, pp. 369–386. doi: 10.1007/
978-3-319-99136-8_20.

[24] J. Yu, M. H. A. Au, and P. J. E. Veríssimo.
“Re-Thinking Untraceability in the CryptoNote-
Style Blockchain.” In: CSF 2019 Computer Secu-
rity Foundations Symposium. Ed. by S. Delaune
and L. Jia. IEEE Computer Society Press, 2019,
pp. 94–107. doi: 10.1109/CSF.2019.00014.

[25] Z. Yu, M. H. Au, J. Yu, R. Yang, Q. Xu, and
W. F. Lau. “New Empirical Traceability Analysis
of CryptoNote-Style Blockchains.” In:FC 2019. Ed.
by I. Goldberg and T. Moore. Vol. 11598. LNCS.
Springer, Heidelberg, Feb. 2019, pp. 133–149. doi:
10.1007/978-3-030-32101-7_9.

A Entropy-Based Anonymity
Ronge et al. [19] introduced an anonymity measure for
ring samplers based on conditional min-entropy. They
also proved that the regular partitioning sampler achieves
close to optimal anonymity with respect to this measure
under a realistic assumption about the signer distri-
bution. Here we recall the definition of this measure,
and prove that the binomial partitioning sampler also
achieves close to optimal anonymity with respect to this
measure under the same assumption. In this context, a
ring sampler Samp is assumed to always sample a ring for
some signer s from the set of users, for brevity we omit
in the following the input U and write simply Samp(s).

Definition A.1 (Conditional Min-entropy). Let X
and Y be discrete distributions with probability mass
functions pX and pY respectively. Let pX|Y and pY|X be
the corresponding conditional probability mass functions.

The conditional min-entropy of X given Y is defined as

H∞(X|Y) :=− ln

(∑
y

pY(y) ·max
x

pX|Y(x|y)

)

=− ln

(∑
y

max
x

(
pY|X (y|x) · pX (x)

))
.

Definition A.2 (Signer Distributions [19]). A signer
distribution S is a distribution over 2U \ {∅}, i.e. each
sample of S is a non-empty subset of U . If all samples
of S are singletons, i.e. PrS←S [|S| = 1] = 1, we say that
S is a single-signer distribution.

Definition A.3 (Anonymity [19]). The anonymity of
Samp with respect to a signer distribution S is defined as

α[S,Samp] := H∞(S|Samp(U,S)).

Note that the anonymity measure defined in Defini-
tion A.3 captures only “local” anonymity since it disre-
gards information about the signer leaked from the rings
generated by other users. While the anonymity measure
could be generalised to the “global” setting by simply
considering the min-entropy of S conditioned on a se-
quence of rings, analysing ring samplers with respect to
such generalised measure appears to be difficult. Indeed,
all analyses done in [19] were with respect to the local
measure defined in Definition A.3.

Ronge et al. [19] proved that the regular partition-
ing samplers achieve close to optimal anonymity with
respect to the above measure under a mild assumption.

Lemma A.4 ([19, Theorem 6.3]). Let P be a par-
tition of U . Let S be a single-signer distribution
with probability mass function pS . For each C ∈ P ,
let µC be the mean of pS(s) over all s ∈ C, i.e.
µC := |C|−1∑

s∈C pS(s). Suppose that for all C ∈ P ,
all s ∈ C, it holds that |pS(s) − µC | ≤ εC for some
εC ≥ 0. Let εP :=

∑
C∈P |C|εC . Then

α(S,RegSamp[P, k]) > ln k − ln(εP + 1).

B Binomial Partitioning Samplers
Similar to Lemma 5.3 which relates the regular parti-
tioning samplers to the distribution ~Greg

k,n, we can con-
struct a new type of partitioning samplers – the binomial
partitioning samplers – which could be related to the
distribution ~Gbin

p,n.
Loosely speaking, a binomial partitioning sampler

similarly partitions the set of users into chunks, and
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within each chunk the sampler includes each signer as
decoy in a ring with some fixed probability independent
of all other signers. The independence of signers being
chosen as decoys turns out to make the analysis of the
corresponding induced transaction graphs much easier
than that of the regular partitioning samplers.

As in Section 5.2, we consider the case where there
is only one public partition of U and only one signer
per ring. A binomial partitioning sampler BinSamp[P, p],
parametrised by the partition P of U and a decoy prob-
ability p, is defined as follows.

BinSamp[P, p](U, s): Initiate r := {s}. Let C ∈ P be the
unique chunk containing s and, for each d ∈ C \ {s}, run
r := r ∪{d} with probability p. Output r.

In the setting where s is a set of signers instead of a single
one, a ring could be sampled by repeating the above for
each member of s and taking the union.

In case S is a single-signer distribution, |C| = n for
each chunk C ∈ P , and p = k

n−1 , the binomial partition-
ing samplers BinSamp[P, p] are analogous to the regular
partitioning samplers RegSamp[P, k], in the sense that
the former has expected ring size k + 1 while the latter
has fixed size k + 1. Furthermore, the numbers of decoys
in a ring sampled from BinSamp[P, p] follow the binomial
distribution with mean k and variance k(1− p).

Similar to the regular partitioning samplers, the dis-
tribution of transaction graphs induced by a binomial
partitioning sampler is related to some specific distri-
bution. Clearly, the distribution GBinSamp[P,p] can be
partitioned as {GC }C∈P , each GC being independent of
each other and representing the distribution of induced
transaction graphs of a chunk C ∈ P . Furthermore, each
GC can be sampled by setting each of the possible edges
independently with probability p. We therefore arrive at
the following analogy to Lemma 5.3.

Lemma B.1. Let U be a set of users and P be a par-
tition of U . Let p ∈ [0, 1]. Write Samp := BinSamp[P, p].
For any m ≤ |U |,

Pr
G←GSamp(U,1m)

[G 6= Core (G)] ≤
∑
C∈P

Pr
~G←~Gbin

p,|C|

[
~G /∈ Γ

]
.

Proof. Similar to the proof of Lemma 5.3.

Analogous to Lemma 7.1, it is not difficult to show a
similar bound for Samp = BinSamp[P, p]. As the bino-
mial partitioning sampler has variable ring sizes, in the
analysis we need to use a tail bound to argue that, with
overwhelming (in k) probability, all rings produced by

GBinSamp[P,k] have size not far from k + 1. Since the
argument is tedious but straightforward, we omit it.

For the sake of completeness, we analyse the
anonymity of the binomial partitioning samplers ac-
cording to the entropy-based measure. It turns out that
the binomial partitioning samplers have the same near-
optimal level of anonymity as the regular partitioning
samplers do.

Theorem B.2. Let P be a partition of U . Let S be a
single-signer distribution with probability mass function
pS . Let P and k ∈ N be such that p|C| > k for each
C ∈ P . For each C ∈ P , let µC be the mean of pS(s) over
all s ∈ C, i.e. µC := |C|−1∑

s∈C pS(s). Suppose that
for all C ∈ P , all s ∈ C, it holds that |pS(s)− µC | ≤ εC
for some εC ≥ 0. Let εP :=

∑
C∈P |C|εC . Then

α(S,BinSamp[P, p]) > ln k − ln(εP + 1).

Proof. Let Samp = BinSamp[P, p]. For any s ∈ U ,
as the chunk containing s is unique, we know that⋃
C∈P (2C \{∅}) is a superset of the collection of all pos-

sible rings. Write RC := 2C \ {∅} and R :=
⋃
C∈P RC .

Since the ring given by the sampler must contain the
signer, we have for all signer s and for all r ∈ R,

Pr [Samp(U, s) = r ∧ s /∈ r] = 0.

If s ∈ C ∈ P , then each element in C \ {s} has a prob-
ability p to be included in r \ {s}. On the other hand, if
s /∈ C ∈ P , then we must have r /∈ RC . Therefore, for
any s ∈ U , C ∈ P , and r ∈ RC , we have

Pr [Samp(U, s) = r ∧ s ∈ r]

=

{
p|r|−1(1− p)(|C|−1)−(|r|−1) s ∈ C
0 s /∈ C

=

{
p|r|−1(1− p)|C|−|r| s ∈ C
0 s /∈ C.

Now, we analyse the anonymity of the sampler.

2−α[S,Samp] = 2H∞(S|Samp(U,S))

=
∑
r∈R

max
s∈U

(
pSamp(U,S)|S(r|s) · pS(s)

)
≤
∑
C∈P

∑
r∈RC

max
s∈C

(
Pr [Samp(U, s) = r ∧ s ∈ r] · pS(s)

)
=
∑
C∈P

∑
r∈RC

p|r|−1(1− p)|C|−|r|max
s∈C

pS(s)

=
∑
C∈P

1− (1− p)|C|

p
max
s∈C

pS(s)
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≤
∑
C∈P

1− (1− p)|C|

p
(µC + εC)

<
∑
C∈P

|C|
k

(µC + εC)

=εP + 1
k

.
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