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Abstract: In recent years, cryptocurrencies have increas-
ingly been used in cybercrime and have become the key
means of payment in darknet marketplaces, partly due
to their alleged anonymity. Furthermore, the research
attacking the anonymity of even those cryptocurrencies
that claim to offer anonymity by design is growing and
is being applied by law enforcement agencies in the
fight against cybercrime. Their investigative measures
require a certain degree of suspicion and it is unclear
whether findings resulting from attacks on cryptocur-
rencies’ anonymity can indeed establish that required
degree of suspicion. The reason for this is that these
attacks are partly based upon uncertain assumptions
which are often not properly addressed in the corre-
sponding papers. To close this gap, we extract the as-
sumptions in papers that are attacking Bitcoin, Monero
and Zcash, major cryptocurrencies used in darknet mar-
kets which have also received the most attention from
researchers. We develop a taxonomy to capture the dif-
ferent nature of those assumptions in order to help in-
vestigators to better assess whether the required degree
of suspicion for specific investigative measures could be
established. We found that assumptions based on user
behaviour are in general the most unreliable and thus
any findings of attacks based on them might not allow
for intense investigative measures such as pre-trial de-
tention. We hope to raise awareness of the problem so
that in the future there will be fewer unlawful investiga-
tions based upon uncertain assumptions and thus fewer
human rights violations.
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1 Introduction

Over the past few years, the analyses of cryptocur-
rency data have become common investigative measures
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and are now part of the daily business of law enforce-
ment agencies [22]. Such analyses played a key role in
the seizure of the prominent darknet marketplace Wall
Street Market [31]. US law enforcement agencies pay
millions of dollars every year to companies [28] such
as Chainalysis [14], Elliptic [21] and CipherTrace [16]
which claim to be able to deanonymize transactions
in major cryptocurrencies. Using techniques to analyse
cryptocurrency data always carries the risk of resulting
in false positives. In an academic context, this does not
pose a huge problem as false positives have in general
no direct consequences. In contrast, when used by law
enforcement the problem is far more serious. The reason
for this is that investigations based on findings obtained
from anonymity analyses of cryptocurrencies might lead
to severe interferences with human rights. As investiga-
tive measures require a certain degree of suspicion, it is
crucial to know how reliable these findings are. A low
reliability might not establish the required degree of sus-
picion and thus might result in unlawful investigations.
The reliability strongly depends upon the assumptions
underlying the analyses.

There has not been much related work regarding the
reliability of assumptions in the context of cryptocur-
rency attacks. Goldwasser and Kalai identify assump-
tions as being crucial to cryptography as any security
proof is only as good as the underlying assumptions [27].
They notice that there are an increasing number of as-
sumptions that restrict the possibilities of the attacker
or depend heavily upon the construction which is to be
proved secure. To save the value of cryptographic proofs,
Goldwasser and Kalai propose a classification for crypto-
graphic hardness assumptions. While the classification
is highly recommendable for hardness assumptions, it
is not sufficient to deal with all the different assump-
tions underlying cryptocurrency attacks. The reason for
this is that the assumptions underlying cryptocurrency
attacks are extremely diverse and range from computa-
tional hardness assumptions to protocol assumptions to
assumptions about user behaviour. On the other side of
related work, Conti et al. provided a survey on security
and privacy attacks on Bitcoin. In a similar vein, Kus
Khalilov and Levi focus on the anonymity and privacy
of Bitcoin-like cryptocurrencies. However, both surveys
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focus on the attacks and not on their underlying as-
sumptions [17, 39]. Against this background, this SoK

paper

1. illustrates the legal problems with uncertain as-
sumptions and offers recommendations on how to
deal with them (Sections 3 and 5);

2. surveys the underlying assumptions of cryptocur-
rency attack papers and makes them explicit as the
papers often do not mention what those assump-
tions are or how reliable they are (Section 4); and

3. proposes a taxonomy of assumptions for attacks de-
pending upon their reliability, that can be used by
expert witnesses and understood by legal decision-
makers (Sections 4 and 5).

We focus on Bitcoin, Monero and Zcash as Bitcoin
is the most widely used currency and still wrongfully
assumed by some people to be anonymous [40]. Monero
and Zcash are of interest as they are the largest anony-
mous currencies. Moreover, all three currencies are the
ones most studied by academic research and are the
main drivers in darknet marketplaces [23]. In this work,
we describe the proposed attacks as they are discussed
in the cited papers. Thus, it is possible that the attacks
are no longer applicable (see Table 3). Nevertheless, the
assumptions used in these attacks are still of interest as
the attacks were applicable at some point and assump-
tions are often reused in other attacks.

2 Preliminaries

In this section we explain how Bitcoin, Monero and
Zcash work and introduce basic terminology as used
throughout the paper.

2.1 Bitcoin (BTC)

We focus our introduction on Bitcoin [46] as Bitcoin
helps to explain how the other cryptocurrencies work.
Bitcoin is a decentralized transaction ledger that is
maintained in a peer-to-peer network. The transactions
are organized in blocks, which is why the ledger is also
referred to as blockchain. Using a consensus mechanism,
the network agrees on which blocks, i.e. transactions,
should extend the ledger. The network nodes partici-
pating in this consensus mechanism are called miners.
The consensus leader, which is the miner that suggests
the next block, is rewarded for its participation with a
block reward. A block reward consists of newly gener-
ated units of the cryptocurrency and transaction fees.
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Mining Pools In Bitcoin, Monero and Zcash min-
ers usually group their consensus work in so-called min-
ing pools to reduce the variance of their payouts. If a
miner successfully suggests a block, the block reward is
claimed by a mining pool address rather than by one of
the miners. The pool leader(s) distribute(s) the individ-
ual rewards according to certain rules agreed between
the pool and the miners. In general, the transaction that
is used to claim the block reward is called coinbase trans-
action.

Transaction A transaction tx consists of a list of in-
puts and outputs. An output usually states an amount
of Bitcoin and the hash A of a public key pk, which is
also referred to as address. To spend this output, it is
required to provide a public key pk” whose hash equals
hpk and a signature that verifies under pk’. We also re-
fer to outputs as coins and distinguish between unspent
and spent coins. An input is a reference to an output
of another transaction tz’ which is uniquely described
by the hash of that other transaction tz} ., and the
position of the output in the transaction’s list of out-
puts outpos. Usually, transactions have several in- and
outputs. The input amount of transaction tx is the sum
of the amounts in the referenced outputs and is always
consumed entirely. Thus, transaction tz might have a
so-called change output. A change output pays back to
the sender(s) the difference between its input amounts
and the amount that the recipient(s) should receive.

Transaction Privacy Research showed early on that
Bitcoin does not provide anonymity because it is possi-
ble to link addresses [1, 42, 51, 52, 57]. Numerous coun-
termeasures were subsequently developed [41, 53, 54],
and new cryptocurrencies emerged that feature privacy
by design [18, 44, 72]. The most important of those cryp-
tocurrencies are Monero [44] and Zcash [72], which will
be discussed in Section 2.3 and Section 2.2 respectively.
The countermeasure that is significant in the context of
this work is CoinJoin [41]. The central element of Coin-
Join is a CoinJoin transaction whose inputs and outputs
belong to multiple entities by design. The goal of that
design is to break address linkability.

Peer-to-Peer Network The blockchain of a cryp-
tocurrency is usually maintained in a peer-to-peer (P2P)
network. A P2P network is a network without a central
server as is the case in a client-server architecture. All
cryptocurrencies studied throughout this work are per-
missionless, meaning that anyone can join and partici-
pate in the network at any time. In the following, we
explain the basic functioning of a P2P network using
Bitcoin as an example. Since the networks of Monero
and Zcash function in a similar way, we do not present



them separately and only refer to the differences, if nec-
essary.

There are several different nodes participating in the
Bitcoin network. Full nodes hold the entire blockchain
and verify all the data. In contrast, there are also light
clients which are nodes that only hold few data and
therefore rely on communication with full nodes for ver-
ification. All nodes exchange messages via TCP. Every
24 hours, or when initially joining the network, each
node broadcasts its own IP address to its peers using
an addr message. The peers will relay this message to
some of their peers. Messages concerning transactions or
blocks are propagated differently. First, an inv message
is sent to all peers. The peers that actually want the
full data request it via a getdata message. Propagation
works by the receiving peers then broadcasting to their
peers and so on where no peer requests data it already
has [7].

2.2 Zcash (ZEC)

While Zcash is commonly considered to be anonymous,
this is only partly true. In fact, Zcash takes a two-
part approach, where coins are either part of the un-
shielded or the shielded pool. Zcash and Bitcoin have in
common that coins have to be spent entirely which re-
sults in the creation of new coins to retrieve the change.
The unshielded pool behaves like Bitcoin, while the
shielded pool hides senders, recipients and the trans-
ferred amount. The coin of the sender is hidden within
the whole set of coins ever created in the shielded pool.
A zkSNARK [6] is used to prove knowledge of the secret
key of this coin without revealing which one as well as
proving the coin has not been spent before. The sender
also hides the recipient by not putting the recipient’s
public key directly into the transaction (and therefore
on the blockchain) but by using the key to encrypt the
information needed to spend the generated coins later.

Zcash calls recipient keys inside the unshielded pool
t-addresses and inside the shielded pool z-addresses.
This leads to four types of transactions, which are t-
to-t, z-to-z, t-to-z and 2-to-t transaction. Based upon
several attacks (e.g. [4, 34]), especially transactions be-
tween the two different pools seem to be vulnerable to
attacks, as illustrated later in more detail.

2.3 Monero (XMR)

The overall structure of Monero is similar to the shielded
pool in Zcash, i.e. there is no “non-anonymous” part in
Monero. In contrast to Zcash, not all coins within the
shielded pool are used as input, but rather some kind
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of decoy selection from the shielded pool takes place.
These decoys are other coins which are included into the
transaction as dummy inputs to hide the actual input
of the spender. Decoy selection was a promising target
for attacks in the past (e.g. [38, 45, 71]).

Another crucial difference is the choice of the un-
derlying proof system. While Zcash uses zk-SNARKSs
and therefore requires a trusted setup, Monero uses zero-
knowledge proofs without trusted setup, however, at the
cost of larger transactions. Besides that, the two curren-
cies differ in the specific use of recipients’ public keys.
While in Zcash the same key is used, but only a part
of it is re-randomized, in Monero the key is published
in an altered way, i.e. the public key and therefore the
secret key are re-randomized in every transaction but
still accessible by the recipient.

2.4 Attacks

In the context of privacy, we define an attack to be any
attempt to gain additional knowledge about at least one
transaction. This knowledge can refer to the sender(s),
recipient(s) or amount(s) of the transaction(s). Attacks
often use heuristics, i.e. methods that are not guaran-
teed to be optimal, but nevertheless lead to results in
a reasonable time. Heuristics and consequently attacks
often rely on assumptions which decide on the meaning-
fulness of the results, as further discussed in Section 3.

The goal of an attack is deanonymization and/or
re-identification. We use the term “deanonymization” in
line with Kelly et al., who define anonymity as uniden-
tifiability and unlinkability [35]. Consequently, we re-
fer to the following two methods as deanonymization:
1. Clustering: Different addresses, keys or transactions
are linked together/clustered and assumed to be con-
trolled by the same entity. 2. Identification: Identifying
the actual spender/recipient in an anonymity set. In
contrast, re-identification refers to identifying the entity
that controls an address.

In terms of Bitcoin, deanonymization is usually
done by address clustering, while attribution tagging
might directly or indirectly allow to identify the entity
which is controlling the addresses (re-identification). Ad-
dress clustering is linking several addresses that belong
to the same entity. Attribution tagging is tagging ad-
dress clusters with attribution information that is either
personally identifiable information or can be used to re-
trieve such information. An example for the latter are
clusters tagged with exchange information. In that case,
law enforcement agencies might retrieve personally iden-
tifiable information by requesting it from the exchange.



We focus on passive attacks, as elaborated in Sec-
tion 4. In general, passive attacks are characterized by
leaving the data in a system untouched. In terms of
blockchain attacks, a passive attack is one that analy-
ses the blockchain data without altering it. In terms of
network attacks, passive refers to participation in the
network, but without communicating beyond what is
required. This means that such attacks only listen and
all requests from other participants are answered in ac-
cordance with the protocol. Thus, all requests are an-
swered as the standard software of the respective cur-
rency would do, without altering any data.

3 Legal Relevance

Investigations involving cryptocurrency forensics typi-
cally start with a non-blockchain-related event, such
as the seizure of a darknet marketplace or a child-
pornography platform. In many cases to identify poten-
tial offenders, payments conducted via the seized market
or platform are traced. As cryptocurrencies are crimi-
nals’ default payment method on the darknet [23], trac-
ing payments requires cryptocurrency forensics.

The most prominent example where cryptocurrency
forensics were decisive for the success of the investiga-
tions is the seizure of Wall Street Market, one of the
largest darknet marketplaces [19]. Crucial to the in-
vestigation was an analysis of the Bitcoin blockchain
performed by the US Postal Service [63]. In the analy-
sis, the investigators utilized proprietary software of an
undisclosed company and argued that this software had
been found to be reliable through numerous unrelated
investigations [63]. This statement indicates that the in-
vestigators employed the cryptocurrency forensics soft-
ware as a black box. The problem with the black box
usage of software is that the specific methods utilized
cannot be observed and, therefore, the quality of the
results remains unclear. There are several proprietary
cryptocurrency forensics tools, such as Chainalysis [14],
Elliptic [21], and CipherTrace [16]. US law enforcement
agencies pay millions of dollars every year to utilize
those tools [28], which is why it can be assumed that
the forensic methods employed by those tools are rele-
vant in practice. As law enforcement does not publicly
reveal its methods, in order to prevent criminals from de-
veloping and employing anti-forensic measures, publicly
available information must be relied upon to determine
which techniques closed-source proprietary tools utilize.
Besides that, open-source cryptocurrency forensics tools
such as BlockSci [33] or GraphSense [30] can be ana-
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lyzed in order to establish which methods they employ.
WalletExplorer [64] was a tool that was capable of ad-
dress clustering and attribution tagging in Bitcoin. The
address clustering of WalletExporer was based on the
so-called multi-input heuristic, which states that all ad-
dresses in the inputs of a transaction are controlled by
the same person [1, 42, 51, 52]. For attribution tagging,
WalletExplorer’s former operator registered and inter-
acted with several services, such as exchanges. Through
the interaction, he was able to cluster the addresses of
the services and tag the clusters with the name of the
service. According to the former operator, who works at
Chainalysis today, Chainalysis offers the same service
as WalletExplorer but is far more advanced [64]. The
open-source cryptocurrency forensics tool BlockSci per-
forms mainly address clustering and thereby enforces
the multi-input heuristic by design [9]. While Graph-
Sense extends BlockSci, inter alia, with attribution tag-
ging, this tool also focuses on the multi-input heuristic
for address clustering [30]. Against this background, it
can be assumed that at least the multi-input heuristic
is crucial for cryptocurrency investigations in practice.

3.1 Uncertain Assumptions

The widely employed multi-input heuristic is based on
the assumption that all inputs to a transaction are con-
trolled by the same person. This assumption concerns
user behaviour as it excludes behaviour where numerous
persons contribute inputs to a transaction. However, it
is not only possible for multiple persons to contribute in-
puts to a single transaction, but also desirable as in the
case of so-called CoinJoin [41] transactions. In a Coin-
Join transaction, addresses in the in- and outputs are
controlled by multiple persons by design. This design is
intended to prevent address clustering. In specific terms,
this means that the multi-input heuristic applied to a
CoinJoin transaction yields a false positive as it assumes
that the corresponding addresses are controlled by a sin-
gle person. Avoiding such false positives would only be
possible if CoinJoin transactions could be clearly distin-
guished from other transactions. However, the detection
of CoinJoin transactions is also based upon methods of
which their reliability is not known. Apart from Coin-
Join transactions, it is in general difficult to evaluate the
reliability of assumptions that concern user behaviour
as user behaviour is subject to change. Evaluating the
reliability would require ground truth data about user
behaviour at the time the transaction in question was
issued. Such ground truth data, however, is usually un-
available or extremely difficult to obtain [25]. Conse-



quently, some uncertainty remains in the multi-input
assumption which can neither be assessed nor quanti-
fied due to the lack of ground truth data. Uncertainty
in assumptions can cause numerous legal issues as dis-
cussed in the following.

3.2 Legal Issue Underlying Wall Street
Market Investigation

The most practically relevant legal issue caused by
uncertain assumptions is illustrated by the example
of the Wall Street Market (WSM) investigation. The
blockchain analysis performed by the US Postal Ser-
vice can be summarized as identifying wallets, detecting
payments between wallets, “de-mixing” and associating
wallets with darknet marketplaces. Results of the analy-
sis were ultimately used to request personal data about
the sender of a specific transaction from a Bitcoin Pay-
ment Processing Company (BPPC). This specific trans-
action was believed to have originated from a wallet
that was used to pay one of the marketplace’s adminis-
trators. The obtained personal data allowed to associate
the wallet (addresses) with a natural person (entity).
In the following, we analyze the investigation with
regard to the required degrees of suspicion and possi-
ble effects of uncertain assumptions. The legal basis for
the request to the BPPC cannot be ascertained from
the criminal complaint. If the request was conducted
by means of a warrant under the Fourth Amendment,
probable cause would have been the required degree of
suspicion. The probable cause requirement would not
be necessary in the case of a subpoena under the third-
party doctrine. However, any subsequent investigative
measures, such as electronic surveillance or searches of
premises, would require probable cause on the basis of
the Fourth Amendment, which must at least extend to
the linkage of the wallet in question to criminal activ-
ity. The third party doctrine therefore does not preclude
the following explanations. The legally relevant question
is whether the results of the analysis were sufficient to
establish the required degree of suspicion. It is not suf-
ficient that one of the suspected WSM administrators
later confessed, because the suspicion must exist at the
time when the personal data was requested. The same
applies to the argument that the proprietary software
employed in the analysis has always been reliable so far.
It can be assumed that in the WSM blockchain anal-
ysis uncertain assumptions played a role. This follows
from the fact that wallets were identified, which typi-
cally involves address clustering and thus at least the
multi-input heuristic. However, if the heuristic was ap-
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plied to a CoinJoin transaction, for example, addresses
that have nothing to do with the WSM would be incor-
rectly associated with a WSM wallet. The criminal com-
plaint does not indicate that CoinJoin transactions were
excluded and thus false positives were prevented. As a
result, the prosecution’s argumentation would be bro-
ken. Namely, the questionable transaction could not be
believed to have originated from a wallet that was used
to pay one of the marketplace’s administrators. If subse-
quent investigative measures, such as a search, were to
be based solely on the result of the blockchain analysis,
it would be questionable whether the necessary degree
of suspicion could be established and thus whether the
measure was lawful. The blockchain analysis of the Wall
Street Market investigation and the impact of uncertain
assumptions is discussed in detail in Section 5.5. A de-
tailed explanation of the significance of degrees of suspi-
cion in investigations and why the legal problem extends
in principle to all jurisdictions is set out in Appendix A.

3.3 Towards a Solution

Insufficient exclusionary or admission rules as well as
rash trust in IT expert witnesses even in the highest
courts (see Appendix A) demonstrate that there is a
need for action especially against the background of un-
certain assumptions employed by cryptocurrency foren-
sic methods. Even though the common law and the
continental European systems differ greatly in some re-
spects, they have in common that legal decision-makers
need to have a precise understanding of the reliabil-
ity of forensic methods in order to be able to reach a
proper judgment. The first step concerning an uncer-
tain assumption is to create awareness of the problem
by making the assumption and its uncertainty transpar-
ent in research papers. As a result, an expert witness can
present assumptions with their uncertainties in criminal
proceedings. Only in this way can decision-makers take
uncertain assumptions into account and not run the risk
of blindly following an expert witness. Another advan-
tage of transparency is that the defence or prosecution
can challenge the evidential weight of circumstantial ev-
idence. Likewise, in pre-trial stages, investigators can
consider assumptions and their uncertainties when de-
termining whether a required degree of suspicion can be
established.

Transparency can be achieved by stating the nature
of the assumption following the taxonomy presented in
Section 4. In Appendix B we outline how our taxonomy
could be used in practice. The taxonomy enables ar-
gumentation regarding the general uncertainty because,



type assumption usage
Multi-Input [1, 2, 24, 29,
32, 34, 42, 47,
48, 51, 52, 57]
Change-Address [1, 34, 42,
User Behaviour 47, 57]
Cluster-Intersection [20, 26]
No-Proxy [36]
Miner-Payout [3, 34]
Value-Input-Output [4, 34, 50]
Fingerprinting (4]
Protocol Response Time [61]
Wallet Communication [61]
Computational Hardness No Double-Spending [38, 45, 69, 71]

Unique Entry Nodes [5]
and No-Collision

Multi-Output
Newest-Account

Statistical [38]

[38, 45]

Table 1. Overview of assumptions and their usage grouped by their
type in accordance with our taxonomy.

for example, well-established computational-hardness
assumptions are not as uncertain as those on user be-
haviour. While, at first glance, relying on a taxonomy
seems to be imprecise, with respect to legal decision-
making it is not. Using a taxonomy to classify assump-
tions results in a normative statement which naturally
fits the legal decision-making process. Thus, such a tax-
onomy can be the basis of a common comprehensible
language between expert witnesses and legal decision-
makers and also be a first step towards a standard for
the interpretation of any findings, as proposed in the
literature [15].

4 Taxonomy of Assumptions

Different assumptions which underly heuristics target-
ing (anonymous) cryptocurrencies have often been ne-
glected in academic discourse. Consequently, no system
has yet evolved to address different types of assump-
tions, their applicability and their quality. To fill this
gap, we propose a taxonomy for classifying the assump-
tions which consists of four classes. The first of these is
user behaviour, which relies on e. g. patterns that users
follow. The second one is the class of protocol assump-
tions. We understand the term protocol broadly and re-
fer to its meaning in the context of networks, implemen-
tations, etc. The third class are computational hardness
assumptions and the last one statistical assumptions,
which uses statistical arguments.

We classify all assumptions according to our tax-
onomy and explain which heuristics/attacks are based
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upon them. Thereby, we focus on assumptions which are
the basis of passive attacks. The reason for this is, firstly,
that passive attacks make up the majority of the pro-
posed attacks. Second, because active attacks often rely
on protocol specifics which would be so extensive in their
presentation that we can only give a high-level descrip-
tion and third, because the motivation for a taxonomy is
based upon the increasing use of attacks in criminal in-
vestigations. As law enforcement agencies by their very
nature operate in the aftermath of crimes, they will pre-
dominantly use passive attacks. This is also indicated by
the fact that the US spends millions on commercial anal-
ysis software [28] that arguably perform mostly passive
analysis [12].

Most of the time, heuristics or attacks are based
on several assumptions, which is why we locate them
at the main assumption. We understand the main as-
sumption as the one whose uncertainty has the greatest
impact on the probative value of results obtained by the
heuristics/attacks, as discussed in Section 3. By the un-
certainty of an assumption, we refer to the probability
that the assumption is wrong. If this probability is 0%,
the assumption is absolutely reliable. Likewise, if the un-
certainty of an assumption is 100%, this states that the
assumption is wrong and therefore diminishes the pro-
bative value. Depending on the exact definition of an
assumption, its uncertainty is also its false positive rate,
as illustrated by the following example. Let the assump-
tion be that in a Monero transaction, the key with the
smallest hash value always refers to the spender. Then
the uncertainty is the probability that this assumption
is wrong and therefore the key with the smallest hash
is not the spender, i.e. the false positive rate.

An overview of all assumptions and their usage
in the sense of our taxonomy is depicted in Table 3.
Note that whenever it was appropriate, we named the
assumption as the corresponding heuristics/attacks. If
they were not named, we provide a suitable name.

4.1 User Behaviour Assumptions

User behaviour assumptions are based upon common
behavioural patterns of the users of a cryptocurrency.
An example could be that there is a payout transaction
from a mining pool every day at around 8pm. In part,
such behavioural patterns are derived from the standard
implementation or known applications of the cryptocur-
rency in question. It is often assumed that these pat-
terns can be transferred to many other users while it is
unclear in reality how precise this assumption is. User
behaviour changes over time as, for example, new ap-



plications evolve. Kus Khalilov and Levi also categorize
attacks based upon user behaviour but without focusing
on the underlying assumptions [39].

4.1.1 Multi-Input Assumption

The multi-input assumption assumes that all inputs to a
transaction are controlled by the same entity [1, 42, 51, 52].
This directly leads to the multi-input heuristic which
uses this assumption to cluster input addresses. In com-
bination with other clustering heuristics, this enables
the tracking of payment flows through the blockchain.
Address clustering heuristics are part of deanonymiza-
tion attacks. Re-identifying the entity behind an address
cluster requires additional steps (see Section 2.4).

For CoinJoin transactions, the assumption is false
as such transactions combine the inputs of multiple en-
tities by design. Consequently, applying the multi-input
heuristic to CoinJoin transactions would lead to false
positives which is problematic (see Section 3.1).

The multi-input heuristic is used quite often in Bit-
coin and also Zcash analyses [1, 2, 24, 29, 32, 34, 42, 47,
48, 51, 52, 57], although the discussion of how reasonable
the assumption is differs greatly. There are papers that
completely forgo any discussion of whether the assump-
tion is reasonable. This is done by either directly refer-
encing the Bitcoin whitepaper [51] or by saying that the
assumption is safe to make [57]. Other papers recognize
the possibility of false-positive results and therefore take
greater argumentative effort. Ron and Shamir asked sev-
eral members of the Bitcoin community who confirmed
that overestimations of common ownership are very un-
likely [52]. Androulaki et al. argue that Bitcoin client
software does not support that different users partici-
pating in a single transaction [1]. The authors see the
possibility of CoinJoin-like transactions, however they
argue that these are unlikely to become the most com-
mon transactions in the network. Meiklejohn et al. argue
in a similar way by saying that the multi-input heuris-
tic exploits inherent properties of the Bitcoin protocol.
Therefore it is unlikely that several entities spend to-
gether in one transaction as they would need to reveal
their secret keys to each other [42]. In contrast, Koshy,
Koshy, and McDaniel explicitly removed all multi-input
transactions from their analysis as they wanted to be
sure that each transaction was only controlled by a sin-
gle entity. According to the authors, related work would
not acknowledge that a multi-input transaction might
be controlled by several entities [36]. For Zcash, Kap-
pos et al. argue that the assumption is used a lot in
Bitcoin and suggest it might be even better in Zcash as
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they are not aware of any protocols such as CoinJoin
which explicitly contradict the assumption [34].

4.1.2 Change-Address Assumption

Generally, the multi-input heuristic does indeed only al-
low tracking of the payment flow of an entity through-
out the blockchain in combination with other heuristics.
The reason is that the multi-input heuristic is only con-
sidering the inputs of a transaction. In order to create
address clusters covering several transactions, the out-
puts of a transaction also need to be taken into account.’
This is exactly what change-address heuristics [1, 34, 42,
47, 57] are doing. As Bitcoin requires the input values
of a transaction to be spend completely, there could be
change addresses paying back the remainder to the (po-
tential single) entity that created the transaction. The
most basic form of a change-address heuristic works as
follows. For every transaction with two output addresses
ao and apy, if ay never appeared before but ap did, then
ay is considered the change address [1, 57]. In combi-
nation with the multi-input heuristic, this results in an
address cluster consisting of the change address and the
input addresses of a transaction. This heuristic is based
upon the assumption that no transaction spends to two
different users [1, 57].

With the rise in gambling sites and mining pools,
the assumption no longer holds [42]. Mining pools usu-
ally have huge payout transactions rewarding their par-
ticipants with shares of the block reward. This is why
Meiklejohn et al. proposed several refinements [42]. The
refined version states that some output address of a non-
coinbase transaction (see Section 2.1) is the change ad-
dress if it is the only address in the outputs that ap-
peared for the first time and there is no “self-change ad-
dress”, meaning no output address that appeared in the
inputs [42]. According to Meiklejohn et al. this heuris-
tic is not robust as it is based on the “idiom of use”
where the change address is created internally by the
bitcoin client and never reused. The authors acknowl-
edge that the heuristic might need to be discarded if
usage patterns change. In fact, they found false posi-
tives by comparing their cluster results to tags associ-
ated with the respective addresses which they obtained
by employing off-chain information [42]. This lead to
further refinements making the heuristic far more con-
servative than its basic form. Nevertheless, even after
the refinements had been published, the non-refined ba-
sic version of the heuristic has been used and also stated

1 An exception is the reuse of addresses which is however con-
sidered bad practice and therefore prevented by most wallets.



to be conservative [57]. Finally, the change-address as-
sumption in Bitcoin can be seen as two-fold. First, there
is the implicit assumption that there is any change at all,
and, second, that transactions are issued using a Bitcoin
client which generates a fresh change address for every new
transaction.

The first part of the assumption, namely that there
is any change at all, is also found in Zcash. In Zcash
there were so-called vJoinSplit transactions which allow
to have up to two ¢-inputs and t-outputs (as well as
z-inputs and z-outputs). The t-input-output heuristic
states that in a vJoinSplit transaction the ¢-input(s) and
a t-output belong to the same entity if there is exactly
one t-output [34]. The intuition behind this heuristic is
that the t-output is probably the change output when
only some of the input amount is moved to the shielded
pool. Thus, the heuristic is based on the implicit assump-
tion that there is any change at all. However, Kappos et
al. did not use the heuristic in their anonymity analysis
of Zcash as they assumed there might be too many false
positive in case a transaction just spends to an address
in the shielded and one in the unshielded pool [34]. In
other words, they did not use the heuristic because they
considered the assumption that there is any change at
all to be too unreliable.

4.1.3 Cluster-Intersection Assumption

The cluster-intersection attack [26] tries to link address
clusters by intersecting the anonymity sets of CoinJoin
transactions. The attack exploits additional knowledge
about outputs from different CoinJoin transactions be-
ing controlled by the same entity. We illustrate the at-
tack with the following example based upon [26]. Let
Alice be in control of addresses A; and As. Assume
that those addresses are linkable by the multi-input
and/or change-address heuristic, resulting in address
cluster Cp.. where pre means pre-mixing. Now Alice
uses CoinJoin to break this linkability. A; will be input
to CoinJoin transaction ctx; and A will be input to
CoinJoin transaction ctxs. The addresses A1, and Ag,
in the outputs of ctx; and ctxo respectively, should no
longer be linkable as there are multiple other entities
participating in CoinJoin besides Alice. Furthermore,
assume that Alice pays a merchant using A, and at
some point in the future pays the same merchant us-
ing Ass. Now the merchant learns that A1, and As, be-
long together, i. e. belong to address cluster Cpost, Where
post means post-mixing. It is further possible for the
merchant to determine the anonymity sets of ctr; and
ctxo by applying the cluster-intersection attack. Both
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anonymity sets contain the address cluster Cp,. as Al-
ice participated in both CoinJoin transactions. By inter-
secting the anonymity sets, which also contain several
address clusters controlled by different entities, the mer-
chant might learn that Cj,.. is linkable to Cpos¢.

The cluster-intersection assumption assumes that an
entity uses a single wallet where all addresses prior to some
mixing procedure are linkable, i. e. those addresses can be
clustered into a single address cluster (Cpy¢). Thus, the as-
sumption is at least as uncertain as the most uncertain
assumption used in address clustering (to create Cpyre).
As it is unclear which assumption that is, we explicitly
state the cluster-intersection assumption. We deliber-
ately list the assumption under user behaviour as we al-
ready examined the two uncertain address-clustering as-
sumptions (multi-input and change in the previous sec-
tions). Besides that, the part of the assumption stating
that a user uses a single wallet refers to user behaviour.
There is some additional uncertainty beyond the most
uncertain assumption used in address clustering because
addresses of the wallet need to be linkable. In the above
example, A; and As might not have been linkable be-
fore mixing. If another entity Eve also participated in
ctry and ctry with the two linkable addresses A;, and
As_, the attack might link Cp04¢ to those addresses. This
would clearly be a false positive link. Goldfeder et al.
showed the general applicability of the attack in Bit-
coin on simulated data. The authors further acknowl-
edge that, in reality, a users wallet may not be linkable
into a single address cluster [26]. Deuber and Schroder
applied the attack on real transactional data of the cryp-
tocurrency Dash [18]. To cope with the uncertainty in
the assumption, they, inter alia, added a mechanism to
reject obvious false positives [20].

4.1.4 No-Proxy Assumption

The no-proxy assumption states that no proxies have been
used. The assumption is used in an attack by Koshy,
Koshy, and McDaniel. The authors link Bitcoin ad-
dresses and IP addresses by exploiting how transactions
are propagated in Bitcoin’s P2P network [36]. In con-
trast to address-clustering attacks, linking clusters to IP
addresses is a re-identification attack (see Section 2.4).
To link Bitcoin with IP addresses, Koshy, Koshy, and
McDaniel build a custom Bitcoin node that connects
to all peers. Now the custom Bitcoin node can record
the entire transaction propagation history, i. e. the times
when a transaction has been relayed and the IP ad-
dresses of the relaying peers. The authors identified re-
laying patterns, the simplest and most common one be-



ing that a transaction is relayed by several peers, but
only once per peer. By exploiting relaying patterns, it
is possible to link the TP address of the relaying node to
the Bitcoin addresses in the transaction. The no-proxy
assumption is crucial, as the attack might result in false
positives if users are relaying transactions through a
proxy or use TOR [36]. Besides that, the attack also
assumes that there are no false positives due to slow
internet connections [36].

4.1.5 Miner-Payout Assumption

Generally, every transaction requires a fee, which mo-
tivates mining pools to pay all their miners in a single
transaction. This behaviour leads to transactions with
over 100 outputs that sometimes occur regularly at fixed
times. The miner-payout assumptions states that a trans-
action with over 100 outputs is issued by a mining pool.
In Zcash, Biryukov and Feher studied this behaviour
using addresses and won block information published
by mining pools on their websites [3]. This was done
for mining pools that receive the reward on t-addresses
as well as for those that receive it on z-addresses. While
the authors suggest the miner-payout assumption is rea-
sonable, they also admit that it is difficult to find pools
with only a small proportion of the overall mining power.
Additionally to this problem, mining pools can use t-
addresses or z-addresses, where z-addresses make link-
ing harder. Kappos et al. assume as well that transac-
tions with many outputs are issued by mining pools, but
give less specific numbers [34]. In any case, the miner-
payout assumption only helps clustering addresses from
mining pools, but most likely will not deanonymize sin-
gle users.

4.1.6 Value-Input-Output Assumption

The unique structure of Zcash requires transactions be-
tween the shielded and unshielded pool, which reveal
the value of transactions. This reveal is utilized in the
value-input-output assumption which states that if a z-to-
t transaction appears after a t-to-z transaction containing
the same unique value, they are linked. It is argued that
a t-to-z transaction and a subsequent z-to-t transaction
which both contain the same unique value, are very un-
likely to happen by chance [4, 34, 50]. Only Biryukov,
Feher, and Vitto try to provide a false-positive rate by
checking how long the uniqueness of a value is sustained
in the blockchain, while other direct evidence seems to
be hard to obtain at all [4]. The idea was extended to
also account for a number of transactions within the
shielded pool, which would decrease the value of the z-
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to-t transaction by that number multiplied by the trans-
action fee [4, 50]. Kappos et al. only mention the exten-
sion but do not apply it [34]. They proposed a special
variant of the value-input-output assumption caused by
transactions done by the founders, i.e. entities who ob-
tain a share of the mining reward as inventors of Zcash.
The corresponding t-addresses are specified in the pro-
tocol itself.

Kappos et al. observed that the values send from
these t-addresses to the shielded pool are quite unique.
They used the value-input-output assumption to link
withdrawal transactions from the shielded pool con-
taining these specific values to the founders. Thus, be-
sides address clustering, this linkage also allows re-
identification as the founders are known.

In general, however, the attacks using the value-
input-output assumption are address-clustering at-
tacks and additional knowledge is required for re-
identification.

4.1.7 Fingerprinting Assumption

The fingerprinting assumption can be seen as a variant
of the value-input-output assumption in Zcash. How-
ever, it is not about the actual value of a t-to-z trans-
action but rather about the last few digits of the value,
i.e. from 102 to 10~8 ZEC2. Thereby, Biryukov, Feher,
and Vitto say a value has a unique fingerprint if either
the last four digits, i.e. 107° to 1078, are not round
and unique or at least 5 of the last 7 digits, i.e. 1072
to 1078 build a unique pattern [4]. The fingerprinting as-
sumption assumes that if a ¢-to-z transaction and a z-to-t
transaction share a unique fingerprint, they are linked by a
sequence of transactions. Uniqueness is only considered
for a certain time range and the authors assume that fin-
gerprints occur either intentionally by crafted coins or
are the product of mining rewards split by mining pools
[4]. For the second case, the authors provide a model to
estimate the quality of the assumption. Attacks based
on the fingerprinting assumption are address-clustering

assumptions.

4.2 Protocol Assumptions

Protocol assumptions can be seen as distinguished from
the three other ones as they do not depend on be-
haviour or theory behind cryptocurrencies but on prac-
tical means. If there are flaws in the protocol itself, then

2 These values lie beyond the transaction fee and have basically
no economic meaning.



exploiting them does not require any additional “proto-
col” assumption as they simply exist.

One part of protocol assumptions are assumptions
depending on the network topology, e. g. a node directly
connected to a client will propose a transaction. An-
other part are assumptions regarding implementations.
A known problem of implementations are different ex-
ecution paths in the code depending on the validity of
the input. While this problem has been well known for
several decades, it still appears from time to time.

4.2.1 Response-Time Assumption

Trameér, Boneh, and Paterson noticed that depending
on whether a transaction is destined for a certain node
in Zcash, this node responds slower to network requests
sent to it after receiving this particular transaction [61].
The response-time assumption states that it takes longer
for a node in Zcash using the common wallet software to
respond after receiving a transaction destined for this node.
The first step when receiving a transaction in Zcash is
to check whether decryption works, which is only the
case if the node is the actual recipient. If the decryption
succeeds, an additional Pedersen commitment [49] check
is done to check for the well-formedness of the message.
Answering further network requests is delayed until this
additional check is completed. Thus, the time can be
measured and results in the attack described in [61].

4.2.2 Wallet-Communication Assumption

The three major wallet implementations for the Mon-
ero client have in common that by default they connect
to a remote node that is responsible for network com-
munication. The wallet-communication assumption states
that there are different communication patterns between
a remote P2P node and a wallet depending on whether
a previously received transaction belonged to the wallet
or not [61]. The patterns are due to default strategies
of the wallets for requesting transactions. Upon each re-
quest, the wallet requests a list of hashes of transactions
unconfirmed so far. After that, the wallet requests the
bodies of transactions which it has either not processed
so far or where it is the payee. At time of publishing of
[61], the transaction rate of Monero was so low that the
arrival of new transactions unlikely occurred between
two wallet refreshes. An adversary can observe which
transaction bodies are requested several times and thus
belong to the requesting wallet.
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4.3 Computational Hardness Assumption

Computational hardness assumptions are assumptions
about the impossibility of solving computational prob-
lems efficiently, i. e. in polynomial time. For most of the
currently used assumptions in cryptography and related
fields of computer science and mathematics it is not
known how to prove such hardness. Nevertheless, some
of theses assumptions like the Discrete Logarithm as-
sumption enjoy almost complete trust. Thus, if a heuris-
tic is based on such an assumption, the results have a
huge probative value. On the other side, if the assump-
tions turn out to be wrong, it would have tremendous
impact, not only on the probative value, but also on the
security of cryptographic primitives and protocols.

4.3.1 No Double-Spending Assumption

While the prevention of double spending is not a crypto-
graphic primitive itself, it directly depends upon cryp-
tographic assumptions such as the discrete logarithm
assumption. Attacks based upon graph analysis [38, 45,
69, 71] all implicitly use this assumption as they assume
that spenders of different transactions are distinct. The
attacks consider each ring as a set with exactly one true
signer and search for unions of such sets so that the
number of sets in these unions equals the number of
accounts. If double spending is impossible, then each
account within the union already spent. If the account
is part of another set outside the union it can not be
the signer and thus reduces this set’s anonymity. The
extreme case is a union of size one, i.e. a transaction
with only the actual signer as ring, which is called a
zero-mixin transaction. The attacks can be combined
with a black marble attack where the attacker owns sev-
eral coins in the system. If these coins are included as
decoys in Monero, the attacker can rule out all of their
own coins as spender [66, 68, 70].

Another attack vector relying solely on the no
double-spending assumption occurs with hard forks in
Monero. Wijaya et al. observed the issue of key reuse,
where the same key image appears in transactions in
two different forks of Monero [67]. The intersection
of the two rings for such transactions necessarily con-
tains the true spender and therefore is at least partly
deanonymized.

4.4 Statistical Assumptions

Statistical assumptions are assumptions about “how
likely” an event is. Such an event can either be caused
by randomness used in the cryptocurrency on purpose



or caused by outside effects. Examples of the two causes
are probabilities for certain accounts being part of a ring
in Monero (Section 4.4.3) and the set of entry nodes
for a Bitcoin client (Section 4.4.1) respectively. Statisti-
cal assumptions always include some error probability,
which can, however, be dealt with accordingly, as it can
be computed.

4.4.1 Unique Entry-Nodes and No-Collision
Assumption

Biryukov, Khovratovich, and Pustogarov propose a re-
identification attack that links Bitcoin addresses to IP
addresses, similar to the attack proposed by Koshy,
Koshy, and McDaniel discussed in Section 4.1.4. The at-
tack distinguishes two types of nodes in Bitcoin’s P2P
network, namely servers and clients. The goal of an at-
tacker is to learn which transactions a specific client is-
sued. Clients only establish at most eight outgoing con-
nections, whereas servers allow for both outgoing and
incoming connections. Thus, an attacker cannot directly
connect to a targeted client. The basic idea of the attack
as proposed by Biryukov, Khovratovich, and Pustoga-
rov [5] is that the attacker connects to as many servers as
possible and analyses the transactions relayed by these
servers. The attack utilizes the fact that a server that is
directly connected to the targeted client will learn about
the client’s transaction earlier and therefore relay it ear-
lier. The servers to which a client connects directly (via
one of its eight outgoing connections) are called entry
nodes®. The unique entry-nodes assumption assumes that
a client's entry nodes are unique. For any transaction,
the attacker checks whether the first few propagating
servers belong to the targeted client’s entry node set,
which the attacker learned in a previous step. If the
first propagating servers match the targeted client’s en-
try nodes, the attacker can infer that the transaction
originated from that client. The matching relies on the
assumption that there are no collisions, i. e. among the first
ten servers that propagate a client's transaction, there is
no subset of three servers that accidentally belong to some
other client’s entry note set. This assumption essentially
excludes false positives because if something went wrong
with the attack, the attack does not point to a client that
did not issue the transaction. Biryukov, Khovratovich,
and Pustogarov argue that the probability of a collision
is negligible [5].

3 Biryukov, Khovratovich, and Pustogarov show how to learn
the entry node set of a client utilizing address propagation [5].
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4.4.2 Multi-Output Assumption

In Monero, decoy members of the input ring to a trans-
action are sampled randomly according to a gamma dis-
tribution with fixed parameters [43]. Due to this distri-
bution, the likelihood is very low for two outputs of the
same transaction to appear together in different input
rings of another transaction. This is captured by the multi-
output assumption which says that if two outputs of the
same transaction appear together in different input rings of
another transaction, these two outputs belong to the same
entity and are the actual spenders of the other transaction.
Kumar et al. use this assumption in their heuristic of
the same name to deanonymize some senders but are
aware of the possibility of false positives [38].

4.4.3 Newest-Account Assumption

The newest-account assumption states that the newest
account in an input ring of a transaction in Monero is
the actual spender [38, 45]. This assumption was pro-
posed by Kumar et al. and Moéser et al. for older ver-
sions of Monero. In the literature, the heuristic using
the newest-account assumption is sometimes referred
to as “guess-newest heuristic” (e.g. [45]) to emphasise
the guess an adversary would make to deduce the ac-
tual spender. It is shown that the heuristic delivers rea-
sonable results by comparing the results with ground-
truth data gained from the so-called zero-mizin attack
(see Section 4.3.1) [38, 45]. The current version of Mon-
ero uses a gamma distribution [43], which gives prefer-
ence to newer accounts and therefore the false-positive
rate should be increased. Furthermore, the ground-truth
data can no longer be generated as before as Monero
demands a minimum ring size which prevents the zero-
mizin attack.

4.5 Practical Relevance

The assumptions differ in their practical relevance. The
overview in Table 2 indicates how relevant each assump-
tion might be. We consider all assumptions where the
weaknesses exploited by the corresponding attacks have
been fixed as having low relevance. The reason is their
limited effect on current and future blockchain activity.
As there are attacks requiring little effort, we consider
assumptions employed by attacks that require signifi-
cant effort, such as relay-pattern attacks which need ac-
tive engagement in the Bitcoin network, to have low
practical relevance as well. We determined medium rel-
evance as follows. For the Zcash assumptions, Chainal-
ysis stated that they are aware of the corresponding



attacks [13], thus they might be actually used. In the
case of Monero, Internal Revenue Service entered into
two contracts with Chainalysis and Integra FEC for
$625,000 to develop tracing methods for Monero [56],
so there are also potential use-cases for the correspond-
ing attacks and assumptions they rely upon. Finally, the
multi-input and change-address assumption are highly
relevant as it is very likely that they are actually re-
lied upon by law enforcement as discussed for the multi-
input assumption in Section 3.

5 Arguing Reliability

Stating assumptions in terms of our taxonomy can just
be a first step towards more informed legal decision-
making. A further requirement is a general understand-
ing of how reliable an assumption category is and how
reliable categories are compared to each other. To this
purpose we will discuss the general reliability of the four
categories, which leads to a natural relation and par-
tial order between them. Note that this comparison can
only be a guideline of how to deal with different cat-
egories of assumptions in general, as concrete assump-
tions might be studied and understood better or worse.
Furthermore, it is possible that the reliability of a well-
studied assumption deviates from other assumptions in
its category.

An overview of our result is shown in Figure 1.
We identify well-established computational hardness as-
sumptions to be the most reliable ones, as they have
been studied extensively over a longer time period and
independent of cryptocurrencies. Protocol assumptions
might also be very reliable but are probably less reliable
than computational hardness assumptions. The reason
is that they heavily depend on the protocol which, for ex-
ample, can be changed by the integration of new features
or because parts that where shown to be vulnerable to
attacks were removed or fixed. On the other hand, if sev-
eral protocols, e. g. wallet implementations, are allowed
in the same environment, to make attacks using a pro-
tocol assumption reliable in practice it has to be known
which protocol is used. The last assumption in this or-
der are user behaviour assumptions, which appear to be
the most unreliable ones in general, as user behaviour
is subject to change and hard to assess. Statistical as-
sumptions are not part of this order as, in contrast to the
other three, their reliability can be computed due to the
definition of statistical assumptions (see Section 4.4).

While it might seem desirable to order the assump-
tions within a category, this is neither possible nor use-
ful for the application of our taxonomy. To see why it
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Fig. 1. General reliability of assumptions by category from highest
to lowest

is not possible, let there, for example, be two user be-
haviour assumptions. Both of them might rely on the
use of some special (but different) wallet but other-
wise rely on similar ideas. If we do not know anything
about the actual use of the wallets, there is no reason-
able way to rank one assumption as “better” than the
other. It is also not useful because our taxonomy aims to
work for every assumption within one of the categories.
Therefore, even if a kind of ordering within the con-
sidered category could be established, it cannot easily
be extended to new/other assumptions. For this reason,
rather than providing orderings within the categories,
we point out factors which influence the individual qual-
ity of assumptions. Thereby, these factors might both
improve or downgrade the quality. We will discuss, by
way of example, what practical consequences the factors
can have, guided by whether investigative measures are
lawful regarding whether the degree of suspicion neces-
sary for the investigative measures could be established.
However, we point out that our taxonomy should only
be understood as an argumentation tool, which is why
we cannot reach a conclusive assessment. The reason
for this is that the assessment of whether the necessary
degree of suspicion has been reached must be decided
by legal practitioners on a case-by-case basis. The need
for a normative assessment on a case-by-case basis re-
sults from the facts of the case, which can be highly
complex and diverse. In addition, circumstances beyond
blockchain transactions potentially affect the interpreta-
tion of results obtained from blockchain analyses.

5.1 User Behaviour Assumptions

The most unreliable assumptions are in general user be-
haviour assumptions. There are two main reasons for
this. First, they are subject to change as user behaviour
changes. Second, assessing their reliability would require
ground-truth data on user behaviour at (a) specific
point(s) in time which depends on the use case.
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(Main) assumption(s) Affected Type Exploited weakness fixed Relevance
Multi-Input BTC, ZEC User Behaviour NO HIGH
Change-Address BTC, ZEC User Behaviour NO HIGH
No-Proxy BTC User Behaviour NO LOW
Unique Entry-Nodes / No-Collision BTC Statistical NO LOW
Miner-Payout ZEC User Behaviour NO LOW
Value-Input-Output ZEC User Behaviour NO MEDIUM
Fingerprinting ZEC User Behaviour NO MEDIUM
Response-Time ZEC Protocol YES LOW
Wallet-Communication XMR Protocol YES LOW
No Double-Spending XMR Computational Hardness PARTLY MEDIUM
Multi-Output XMR Statistical NO MEDIUM
Newest-Account XMR Statistical YES LOW

Table 2. Overview over the assumptions with indication of their practical relevance and whether the weaknesses exploited by the corre-

sponding attacks have been fixed. A high relevance means that the attack is very likely actually employed by law enforcement; medium

means that it is not known whether the attack is used but we see potential use-cases; low means that we do not see a potential use-case

because the exploited weakness has been fixed or the attack would require too much effort. For a general overview on reliability of the

assumptions see Section 5.

The changing nature of user behaviour assump-
tions can be best seen by the very different treatment
of the multi-input assumption (see Section 4.1.1) and
change-address heuristic (see Section 4.1.2). Although
in the past it could be argued that the multi-input as-
sumption was reasonable, this can no longer be done
against the background of false positives in case heuris-
tics are applied to CoinJoin transactions. In the case
of change-address heuristics, one assumption is always
that change exists at all. On top of that, the open-source
Bitcoin analysis software BlockSci implements ten dif-
ferent change-address heuristics [33] which depend on
the client(s) used. This makes the heuristics heavily de-
pendent upon the assumptions about the usage of the
corresponding clients.

Obtaining the requisite ground-truth data for user
behaviour in cryptocurrencies is hard [25]. The exist-
ing work of user studies [37] or the development of user
mental models [40] does not solve the problem of miss-
ing ground-truth data as they try to answer different
research questions. They do not focus on obtaining any
ground-truth data to assess the reliability of user be-
haviour assumptions in the context of cryptocurrency
anonymity. Thus, their results only permit the drawing
of marginal and very limited conclusions about user be-
haviour in the context of this work. Besides that, the
participant population in user studies might not reflect
the population that is actually targeted by the attacks
surveyed here. It is particularly difficult to find repre-
sentative participant populations that can be trusted
and provide the necessary information to establish a
ground truth. For example, criminals might behave very
differently from users who are willing to participate in

user studies, however criminals are usually the ones tar-
geted by law enforcement investigations. The conclu-
sion is that it is crucial to treat user behaviour assump-
tions with care by making them explicit and discussing
whether they are reasonable every time anew.

Factors: 1) Ground truth: For the quality of user
behaviour assumptions, ground truth is a crucial factor.
We denote with this term insights into actual user be-
haviour, which have to be gained by other means than
using the assumption it is used for. 2) False positive de-
tection: Parallel to ground truth, the detection of false
positives is important, especially if no ground truth data
is available. This can be seen in the example of the
multi-input assumption in Bitcoin. While there is of-
ten no ground truth, a perfect detection of CoinJoin
transactions would remove all false positives produced
by them and therefore improve the quality of attacks
using the multi-input assumption. 3) Additional infor-
mation gained from other sources: If a specific user is
targeted it might be possible to improve the quality by
some additional information gained from, for example,
a forum post where a Bitcoin address is posted together
with a (user)name. Another example would be some in-
formation about whether users exchanged secret keys
offline. 4) Protocol-induced behaviour: It describes user
behaviour that is due to properties of the protocol. An
example of this are change outputs. Change is some-
thing that usually occurs naturally as the input amount
of a transaction is consumed entirely. A characteristic
of protocol-induced behaviour is that it needs active en-
gagement to deviate from, for example, the decision not
to generate change. Thus, assumptions based on pro-
tocol-induced behaviour can in principle be considered



more reliable than those based on non-protocol-induced
behaviour.

Practical Consequences: As long as there is no
ground-truth data, the findings of attacks based on user
behaviour assumptions might only establish the degree
of suspicion which is necessary for less intense inves-
tigative measures such as requesting personal data form
third parties. Without ground truth, other factors are
needed for more intensive measures, such as that the
user behaviour was protocol induced. A prerequisite for
establishing a degree of suspicion at all is that a false
positive control has been performed, which will be ex-
plained using the example of the multi-input heuristic.
If it is known that the multi-input heuristic was applied
to CoinJoin transactions when identifying a wallet, no
degree of suspicion for any investigative measures might
be established solely on the basis of the obtained address
clusters, as false positives will necessarily occur in this
case. Consequently, in order to establish any degree of
suspicion at all, it must be ruled out that the multi-
input heuristic was applied to CoinJoin transactions ac-
cording to the current state of the art. The CoinJoin de-
tection of the open-source cryptocurrency forensic tool
BlockSci [33] is tailored to specific CoinJoin transac-
tions [8]. As a consequence, CoinJoin transactions of re-
cent services such as Wasabi [65] or Samourai [55] will in
general not be detected which might result in false posi-
tives when applying BlockSci’s multi-input heuristic. As
a consequence, BlockSci must be extended by methods
to detect Wasabi and Samourai CoinJoin transactions
such as the ones proposed by Stockinger et al. [58]. Even
with these extensions, it can not be ruled out that Coin-
Join transactions from lesser known or custom services
remain undetected. While this might be unsatisfying,
it still satisfies that false positives have been excluded
as far as possible according to the current state of the
art. Thus, to establish a degree of suspicion at all solely
based on some blockchain analyses, a minimum require-
ment must be to detect false positives according to the
current state of the art. If there is no false positive detec-
tion, there must be other blue (additional) indications
to establish the necessary degree of suspicion, even for
less intensive investigative measures.

5.2 Protocol Assumptions

Protocol assumptions themselves can be seen as very re-
liable as random behaviour within a protocol is usually
very limited. Thus, if a specific protocol, for example,
the implementation of communication between a wallet
and a full node, shows specific behaviour, this behaviour
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can always be found. While protocol assumptions seem
very reliable, it must not be forgotten that, in practice,
they always come with the drawback that they might
become outdated and are only useful for data specifi-
cally produced within the correct time frame. Likewise,
if a currency allows for several protocols to be used, for
example, when an update to a newer encryption is done
over several months, there will always be an accompa-
nying user behaviour assumption. This assumption is
about the concrete use of the protocol and has to be
taken into account when applying an attack. We note
that these types of user behaviour assumptions are at
least sometimes of a more reliable nature as there might
be concrete identifiers of which protocol was used. For
these reasons, we declare protocol assumptions to be
slightly more unreliable than computational hardness
assumptions, however still more reliable than plain user
behaviour assumptions.

Factors: 1) Spread of technology: If, for example,
the assumption relies on the special behaviour of wal-
lets, it is necessary to know about the spread of these
wallets, i.e. if a wallet is “the” standard wallet, the as-
sumption might be very reliable, but for some rarely
used wallets it is not. 2) Delays: In particular for assump-
tions about timing patterns, delays within the network
have to be taken into account as they strongly influence
the patterns observed. 3) Packet loss: Similar to timing
patterns, for communication patterns it is important to
consider how many packets were lost in communication,
as this might, for example, increase the number of com-
munication rounds between node and wallet.

Practical Consequences: Protocol assumptions
have presumably not played a role in blockchain foren-
sics so far, as they have also played a rather subordinate
role in research and the corresponding attacks have been
fixed by software updates (see Table 3). Consequently,
very little can be said about the practical consequences.
Nevertheless, the following considerations are intended
to assist in the event that protocol assumptions become
relevant to investigations in the future. If analyses are
based on implementation details of a certain wallet,
then the circulation of the wallet determines the es-
tablished degree of suspicion. If the circulation is not
known and other popular wallets exist that stand up
to these analyses, then only less intense investigative
measures might be employed. On the other hand, if the
cryptocurrency in question is less widespread and only
one wallet exists, then the corresponding analyses might
be sufficient even for intensive investigative measures.



5.3 Computational Hardness Assumptions

Computational hardness assumptions are the most re-
liable ones as they are quite stable, i.e. not subject to
change as user behaviour or protocol assumptions are.
Besides that, they have usually been well established
and thus studied for a long time. Computational hard-
ness assumptions do not require any ground-truth data.
Finding ground-truth data would mean ascertaining spe-
cific examples where the assumption does not hold and
immediately breaking the security of possibly the entire
system and many other systems which use the same pa-
rameters, groups, etc. If an attack is solely based on
a well-established computational hardness assumption,
the findings might have high probative value and thus
establish the required degree of suspicion even for in-
tense investigative measures.

Factors: Acceptance within the research commu-
nity: To assess the reliability of a hardness assumption,
for example, the discrete logarithm assumption, it has to
be taken into account how well established the assump-
tion is within the community. Thereby, the assumption
can be considered accepted if it has been studied inten-
sively without proving it wrong and/or the assumption
is utilized in many different protocols. In contrast, new
assumptions that are “invented” for a specific protocol
should be handled with great caution as Goldwasser and
Kalai [27] already pointed out.

Practical Consequences: If an analysis solely relies
on well-established hardness assumptions, the degree of
suspicion required for any investigative measures might
be established. On the other hand, if the assumption is
relatively new and cannot be said to be “accepted” by
the community, then only less intensive measures such
as requesting personal data from third parties might be
lawful. However, such new assumptions might not be
sufficient for pre-trial detention.

5.4 Statistical Assumptions

Statistical assumptions differ in two dimensions from
the aforementioned three. First, by the very nature of
statistical assumptions, we can (in theory) asses the re-
liability exactly, as probabilities can be computed. Sec-
ond, the variance in reliability is very high. This might
sound counter-intuitive, but the fact that we can com-
pute something concrete solely means that we can com-
pute how “good” or “bad” an assumption is, which does
not strengthen the assumption itself. For example, the
newest suggestion in Monero for sampling rings favours
recent accounts over older ones by using a gamma dis-
tribution [43]. Doing some computations with condi-
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tional probabilities for a concrete ring provides the exact
probability for the newest-account assumption (see Sec-
tion 4.4.3) to be correct, but with high probability will
tell us that the probability for correctness is very low.
This makes it impossible to put statistical assumptions
into a relation concerning reliability with the other three
assumptions.

Factors: 1) Correct use of protocol: Statistical as-
sumptions can only be made if the protocol specifies
some probability distribution or some behaviour. There-
fore, they have to rely on the correct use of the protocol.
2) Likelihood of preconditions: In addition to the correct
use of protocol, the likelihood of preconditions needs to
be taken into account, i.e. that some events happen at
all and if they happen how likely it is that they are the
desired events. The multi-output assumption in Mon-
ero states that if two different outputs from the same
transaction tx; occur in two different rings of the same
transaction txo (which we call double link for now), then
they are likely to be the real spenders of that transac-
tion as solely being part of the decoy set is very unlikely.
While it is true that it is very unlikely that they are part
of the decoy set, the conclusion that they must be the
real spender is problematic. The probability that a dou-
ble link can be observed is the sum of the probabilities
that it happens by chance and that someone does it on
purpose. The latter probability not only depends on the
behaviour of the owner of these two outputs but also on
the probability that a transaction contains two outputs
actually belonging to the same owner. Thus, the proba-
bility that a double link happens on purpose might still
be smaller than that it happening by chance. Addition-
ally, according to the decoy selection algorithm, such a
double link is more likely to happen for a newer tz; by
chance. These two are thus preconditions that have to
be taken into account when evaluating the quality of
that statistical assumption.

Practical Consequences: The multi-output assump-
tion for Monero states that it is very unlikely that
two outputs of the same transaction appear as inputs
in another transaction by chance. The assumption fur-
ther states that the appearance of two such outputs
would imply that they belong to the same entity. In
probabilities, this would mean the following. Let MO
be the event that a transaction spends to two differ-
ent addresses but the same entity. Let RMI be the
event that two outputs of the same transaction ap-
pear as inputs of another transaction by chance and
PMTI the probability that they are used intentionally
in the same transaction. Note that RMI does not ex-
clude the case that the two outputs actually belong to



the same entity. Let M I be the event that we can ob-
serve two outputs from the same transaction in the in-
put ring of another transaction. The assumption states
that Pr[RMI|MI] < Pr[PMI|MI]. If the assumption
is wrong, it cannot establish a link between the two ad-
dresses. As a consequence, no investigative measures can
be based on such a link. This means that in the end, the
assessment of the probabilities determines whether the
degree of suspicion could be established or not.

5.5 Consequences Using Wall Street
Market as an Example

We show how our taxonomy can be applied to real crim-
inal cases, using the Wall Street Market (WSM) in-
vestigations as an example, and more specifically the
example of one of its alleged administrators called
“Frost” [63]. In the case of Frost, blockchain analyses
were used, at the end of which personal data was re-
quested from a Bitcoin payment processing company
(BPPC). Subsequent investigative measures made possi-
ble by obtaining the personal data, such as a search of
Frost’s premises, would require a degree of suspicion and
we will discuss what reasons there are to believe whether
it was established or not. First, we summarize the anal-
ysis that preceded the request. There were mainly four
wallets reported in the analysis, wallets W1, W2, W4
and W5 (numbering of the wallets based on the one used
in the criminal complaint [63]). Each wallet was detected
by the US Postal Service (USPS) using proprietary soft-
ware [63, p. 20, footnote 2]. Wallets W1, W4 and W5
were found to be origin of payments to various services
via BPPC. Prior to the payments, the corresponding Bit-
coins were supposedly mixed via a commercial mixing
service. However, the USPS stated that they reversed
the mixing (“de-mix”). The request to the BPPC for
personal data on the payments was finally conducted be-
cause the wallets that funded wallets W1, W4 and W5
were associated with WSM. One of these funding wal-
lets was wallet W2. In other words, four analytical steps
were involved in the analysis: identifying wallets, detect-
ing payments between wallets, de-mixing and the asso-
ctation of wallets with darknet marketplaces. All these
steps are based on user behaviour assumptions.

Even though it is unclear how exactly the propri-
etary software utilized by the USPS works, we can at
least assume that it employs the most common tech-
nique, namely address clustering based on the multi-
input heuristic. As there is no meaningful ground truth
data for the multi-input heuristic so far, it is not pos-
sible to argue with ground truth as a factor. Further-
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more, we do not know whether any form of false posi-
tive detection has taken place, for example, whether it
was excluded that the heuristic was applied to CoinJoin
transactions. On the other hand, at least for wallet W2
there might be additional information that confirms the
address clustering, which was obtained in the course of
a seizure of another darknet marketplace [63, p. 28 f.].
This marketplace had already been under independent
investigation before. For the other wallets, no such ad-
ditional information is known. Therefore, it would be
possible that there were only some addresses in wallets
W1, W4 and W5 that could be linked to WSM. The ad-
dresses that could not be linked to WSM could belong
to unsuspicious third parties. As a result, the request
to the BPPC could reveal personal data of an unsus-
picious third party. Only based on the results of the
blockchain analysis, the premises of this party may not
be searched. The reason is that in the case of a search,
the suspicion must be particularized against the person
being searched. In summary, the reliability of clustering
determines the individualization of suspicion, with indi-
vidualization being a prerequisite for the lawfulness of
certain investigative measures.

6 Conclusion

We demonstrated that cryptocurrency forensic methods
based on uncertain assumptions might cause legal issues.
One example is the question whether further investiga-
tive measures are lawful that are based solely on findings
from cryptocurrency analysis using uncertain assump-
tions. To address these issues, we proposed a taxonomy
in which we categorized common assumptions underly-
ing deanonymization attacks found in research papers.
We elaborated that in general assumptions based on
user behaviour are the least reliable, while at the same
time they are amongst those with the highest potential
to be practically relevant. The user behaviour assump-
tions include the multi-input and the change heuristic,
which we believe are currently the most relevant in prac-
tice, as there is strong indication that both are already
relied upon by law enforcement agencies. As the reli-
ability of forensic methods must always be evaluated
on a case-by-case basis, we complement our taxonomy
with factors that serve to argue reliability on that basis.
In the case of the multi-input heuristic, one important
factor is the detection of false positives introduced by
CoinJoin transactions that by design break the heuris-
tic.
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A Generalizability and Scope of
the Legal Issues

Uncertain assumptions underlying forensic methods
might raise legal issues at any stage of the criminal
proceedings and independent of the jurisdiction. In the
pre-trial stages, the uncertainty could be too high to
establish the required degree of suspicion for investiga-
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tive measures. During the actual trial, the uncertainty
could either hinder the scientific evidence from being
admitted or decrease its probative value, which affects
its assessment. These issues are not specific to a particu-
lar jurisdiction but apply generally in both the common
law and the continental European system as elaborated
in the following.
Pre-Trial Stages The most important element in
the pre-trial stages are investigations in order to obtain
evidence. As investigative measures, such as searches
or even arrests, interfere with the fundamental and hu-
man rights of the persons concerned, they require a le-
gal basis. This basis defines the prerequisites that must
be satisfied before investigative measures can be con-
ducted. One of those requirements is always some de-
gree of suspicion [11, 60]. The effects that uncertain as-
sumptions exert on this degree will be illustrated using
the example of a search of a suspect’s premises,* refer-
ring to England and the US for the common law system
and to Germany for the continental European system.
In the US, the Fourth Amendment stipulates that the
requisite degree of suspicion for searches and seizures
is “probable cause”, while in England it is “reasonable
grounds” pursuant to Section 8 (1) Police and Criminal
Evidence Act 1984 (PACE). In Germany, the required
degree of suspicion is “sufficient factual indications” as
enshrined in Section 102 German Code of Criminal Pro-
cedure (Strafprozessordnung; StPO) in conjunction with
Section 152 (2) StPO. These degrees of suspicion have
in common that they must be sufficiently individual-
ized [59]. This means that the mere suspicion that a
criminal offense was committed is not sufficient; rather,
the suspicion must be individualized with respect to the
person whose premises are to be searched. This indi-
vidualization is precisely where uncertain assumptions
become pertinent. Cryptocurrency addresses associated
with a crime could be assigned to a person by means
of address clustering and attribution tagging. If that
person’s premises are to be searched, the uncertainty
in the assumptions determines how much the suspicion
against that person is individualized. With maximum
uncertainty in the assumption, no individualization is
possible, which is why a search in such a case would be
unlawful. As a consequence, any evidence obtained in
the course of an unlawful search might be rendered inad-
missible under exclusionary rules that exist not only in
common law but also in most civil law jurisdictions [62].
In general, despite the different prerequisites regarding

4 For the sake of clarity, the search of non-suspects’ premises is
ignored at this point, although similar considerations apply.
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Attack/Heuristic Used (Main) assumption(s)
Multi-Input [1, 2, 24, 29, Multi-Input

32, 34, 42, 47,

48, 51, 52, 57]
Change-Address [1, 34, 42, 47, Change-Address

57]

Cluster-Intersection [26] depends on the actually
used address-clustering
heuristics

Relay-Pattern Attacks  [5, 36] No-Proxy / Unique Entry-
Nodes / No-Collision

Mining Pool Heuristics [3, 34] Miner-Payout

Value-Input-Output [4, 34, 50] Value-Input-Output

Fingerprinting [4] Fingerprinting

Response-Time [61] Response-Time

Wallet-Communication [61] Wallet-Communication

Zero-Mixin [38, 45, 69, No Double-Spending

71]

Closed-Set [69, 71] No Double-Spending

Multi-Output [38] Multi-Output

Newest-Account [38, 45] Newest-Account

Affected Type Fixed

BTC, ZEC User Behaviour NO: would require to pre-
vent multiple inputs

BTC, ZEC User Behaviour NO: would require to
change the transaction
structure

BTC User Behaviour NO: would at least re-
quire that the restriction
of many mixing services
to a fixed value be re-
moved [20]

BTC User Behaviour/Statistical NO: would require to
change Bitcoin's P2P
network

ZEC User Behaviour NO: would require differ-
ent user behaviour

ZEC User Behaviour Partly fixed: No
founder’'s reward any-
more by design

ZEC User Behaviour NO: would require to
hide the value

ZEC Protocol YES: Software update

XMR Protocol YES: Software update

XMR Computational Hardness ~ YES: Protocol update

XMR Computational Hardness NO: would require to
change user behaviour or
signature generation

XMR Statistical NO: would require differ-
ent user behaviour, un-
clear if fix needed

XMR Statistical YES: Monero suggests a

different distribution

Table 3. Overview over attacks with corresponding assumptions indicating if they have been fixed

the admissibility of evidence, in all jurisdictions there
is at least a real danger of exclusion if there was no
suspicion.
Actual Trial
was whether further investigative measures could be

In the pre-trial stages, the question

based on the findings of cryptocurrency forensics meth-
ods and what the consequences would be if this question
were to be answered in the negative. As further evidence
is often found in the course of such investigations, the
findings themselves play a subordinate role, if any, in the
actual trial. However, it might also occur that the find-
ings of cryptocurrency forensics methods become the
direct subject of main proceedings as scientific evidence.
This may be the case if they are directly employed to
prove a certain element of a crime, for example, in cases
of money laundering or terrorist financing, or if no fur-
ther evidence was obtained during the pre-trial stages.
In this case, the questions of the admissibility of such

evidence and its assessment arise. US law distinguishes
strictly between the admission® and the assessment® of
expert evidence and provides precise rules for the for-
mer. Continental European legal systems, however, fol-
low the principle of freedom of evidence, which means
that, in general, there are no rules of admissibility and
any issues that may arise in this context are addressed
in the assessment of the evidence [15]. A major prob-
lem in jurisdictions where the question of admissibility
is neglected is that there is often a great deal of trust
placed in the expert witness who provides the scientific
evidence [15]. The problem became evident in a recent
decision of the German Federal Court of Justice (Bun-
desgerichtshof; BGH) where an IT expert witness not

5 Admission refers to whether the evidence is allowed for con-
sideration.

6 Assessment refers to the evaluation of the evidence’s probative
value.



only did not have to explain his methodology but also
did not have to justify the conclusions drawn in his ex-
pert testimony [10].

B Utilizing the Taxonomy

Our survey and taxonomy are meant to provide support
in the following three situations, which are at the same
time the major points of this paper.

First, research in the area of cryptocurrency attacks
should treat underlying assumptions with great care and
whenever possible argue how reliable those assumptions
are. This could be done by explicitly stating the em-
ployed assumptions and classifying them according to
our taxonomy. Besides that, factors (see Section 5) that
might play a relevant role in the practical application of
the attacks should be discussed. The cautious handling
of assumptions in research is a basic prerequisite for the
following points.

Second, expert witnesses presenting any findings
based on assumptions should address their reliability
such that legal decision-makers can draw informed con-
clusions. To do this, the experts must explicitly state
the assumptions and argue the reliability thereof in the
light of the factors that played a role in the individual
case. Thus, our taxonomy can be the basis of a common
comprehensible language between expert witnesses and
legal decision-makers and also be a first step towards
future standardization.

Finally, law enforcement agencies should question
whether any results of attacks based on uncertain as-
sumptions really establish the necessary degree of suspi-
cion for more intensive investigative measures. For this
purpose, analysis software must not be used as a black
box or pressure must be built up on the companies de-
veloping such software so that they disclose the methods
employed and, if necessary, argue their reliability.

Even though substantial differences between legal
systems exist, our taxonomy targets their common basis,
which is the necessity to reason. Only if the points listed
are complied with, can legal decision-makers take into
account the uncertainty in the assumptions and reach
decisions that are in accordance with the law.
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