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Flexible and scalable privacy assessment for
very large datasets, with an application to
official governmental microdata
Abstract: We present a systematic refactoring of the
conventional treatment of privacy analyses, basing it on
mathematical concepts from the framework of Quantita-
tive Information Flow (QIF). The approach we suggest
brings three principal advantages: it is flexible, allow-
ing for precise quantification and comparison of privacy
risks for attacks both known and novel; it can be compu-
tationally tractable for very large, longitudinal datasets;
and its results are explainable both to politicians and
to the general public. We apply our approach to a very
large case study: the Educational Censuses of Brazil, cu-
rated by the governmental agency inep, which comprise
over 90 attributes of approximately 50 million individu-
als released longitudinally every year since 2007. These
datasets have only very recently (2018–2021) attracted
legislation to regulate their privacy — while at the same
time continuing to maintain the openness that had been
sought in Brazilian society. inep’s reaction to that leg-
islation was the genesis of our project with them. In our
conclusions here we share the scientific, technical, and
communication lessons we learned in the process.
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1 Introduction
Privacy preservation in the release of governmental data
about individuals has led recently to legislation in many
contexts. Notable examples include the European Gen-
eral Data Protection Regulation (gdpr) [57], the United
States’ Confidential Information Protection and Statis-
tical Efficiency Act (cipsea) [29], and the Australian
review of its Privacy Act [25]. There are, however, three
principal problems concerning this kind of legislation.

One problem is that legislation usually addresses
known privacy issues (since they are what brought the
issues to the public eye), but when new ways of vio-
lating privacy are found (which can happen overnight),
the original legislation must still apply (since changing
legislation is difficult and time-consuming). A second
problem is that, since such legislation is formulated at
the level of governments or higher, the data affected can
be huge and longitudinal. And thirdly, the legislation
must be couched in terms that politicians and the pub-
lic understand, even though achieving compliance to it
is (eventually) a question of mathematics and computer
code. It is crucial, therefore, to have a link between those
two worlds, one that identifies meaningful threats while
minimizing possible waste of resources on non-threats.

In this paper we consider all three issues, ground-
ing our approach on decision- and information-theoretic
principles of Quantitative Information Flow (QIF) [4, 9,
36, 54]. QIF has been successfully applied to a variety of
privacy and security analyses, including searchable en-
cryption [31], intersection and linkage attacks against k-
anonymity [19], and differential privacy [7]. In the con-
text of the present work, we name the three challenges
introduced above flexibility, scalability, and explainabil-
ity, and now consider each one in turn. We then put our
approach to a real-world test: a thorough formal analy-
sis of privacy issues in the official Educational Censuses
of Brazil, the very large inep 1 datasets.

1 The Anísio Teixeira National Institute of Educational Studies
and Research: https://www.gov.br/INEP

https://www.gov.br/INEP
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1.1 The challenge of flexibility

The first challenge is to ensure that all meaning-
ful threats are recognised, whilst minimizing resources
wasted on non-threats. And the problem here is that
current attack practices are either ad hoc or constrained
to particular scenarios (as discussed ahead in Sec. 2.2).

The impact of focussing on known scenarios is il-
lustrated by the very comprehensive ARX tool [44–47]:
it supports the analysis of re-identification risk under
El Emam’s “prosecutor”, “journalist”, and “marketer”
attack models [17, 18, 44]. ARX has been remarkably
successful in many applications – including e.g. in the
MIRACUM network in Germany with data of about 3
million patients with 70 million facts [48], and in a Nor-
wegian re-identification analysis of medical data with
over 5 million records [59]. However, ARX could not
manage inep’s censuses: the tool is limited to datasets
of at most 231−1 cells, 2 that is ∼23 million records of
92 attributes each. That is smaller than inep’s dataset
even for a single year. Furthermore, ARX provided only
a fixed selection of privacy degradation measures, all of
them related to re-identification and not e.g. support-
ing direct assessment of attribute-inference risks. But,
more importantly, ARX was not designed to support
the full expressiveness of QIF analyses, including rea-
soning about longitudinal attacks in which the adver-
sary has uncertainty about the linkage of a particular
individual’s records across datasets, and so it could not
be naturally extended to encompass attack models other
than those hard-coded in the tool already. Other popu-
lar tools face similar issues (as discussed in Sec. 8).

1.2 The challenge of scalability

Our concrete example –and the motivation for this
work– was inep’s longitudinal collection of official
educational-statistics datasets for the whole of Brazil.
Updated yearly since 2007, those contain microdata
(i.e. for individuals) for (nearly) every student in the
country, and at all levels (from elementary to gradu-
ate schools). Once processed, the data are released to
the Internet where they are freely available. Even just
one year’s data contain about 90 attributes for approx-
imately 50 million students — around 25% of the en-
tire Brazilian population. This collection of official lon-

2 Noting this limitation, our team contacted ARX ’s curators
and discussed an update to overcome it [24]. The fix has been
submitted and is now under evaluation.

gitudinal microdata is conspicuously huge (even on the
world stage). It is used for governmental planning, espe-
cially in the allocation of the budget of the Ministry of
Education’s National Fund of Educational Resources,3

and by civil society both in Brazil and abroad in many
ways, including in demographic research [6, 13], and
policy-making and -monitoring [10, 35, 51, 52].

However, a new privacy law [28] inspired by the Eu-
ropean gdpr came into effect in Brazil in 2021, and inep
was suddenly forced to perform a thorough exploration
of possible vulnerabilities in their datasets. Although
previous analyses had provided anecdotal examples of
re-identification risks [49], still there had been no sys-
tematic analysis of how widespread these risks actually
were in the full dataset collection. This demands the
consideration of the adversary’s confidence in the ac-
curacy of her linkage of records across the datasets in
the longitudinal collection, which directly affects also
the accuracy of her inferences and, consequently, leak-
age. This task is relatively easy if individuals’ identifiers
are persistent across datasets, but becomes significantly
more challenging otherwise. Originally, inep intended
to consider the latter case. Thus the challenge of scale
was to analyse all the data, including its longitudinal
aspects. That is why we were contacted by inep.

1.3 The challenge of explainability

The third challenge is that the university scientists who
discover a vulnerability 4 in mathematical terms must
be able to explain the threat it actually poses to those
affected, and to do that in everyday terms they un-
derstand. “There is a potential decrease of conditional
Shannon Entropy”, for example, may not convince gov-
ernment ministers that “something must be done” —
but “This inference attack might cost the data curator
$N” could concentrate their minds wonderfully.

Our QIF approach has two conspicuous features ad-
dressing that kind of explainability. First (Sec. 3), QIF
analyses relate directly to specific adversarial attacks:
what is observed, what it might cost (the adversary) to
attempt those observations, and what she might gain
if she succeeds. If, e.g., government data scientists are
concerned about re-identification, inQIF terms that can

3 Fundeb: https://www.fnde.gov.br/financiamento/fundeb
4 Note that the term “vulnerability” used throughout refers to
the “risk” (to the secret); this is the terminology which has been
adopted in the QIF literature [4].

https://www.fnde.gov.br/financiamento/fundeb
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be expressed as an adversary whose intent is to identify
anyone at all. That is in contrast to threat measures
that are based on traditional information theory (e.g.
Shannon) and whose definitions were designed for quite
different purposes (i.e. efficiency of encodings).

Second (Sec. 6.1), once preliminary results are de-
livered, the government might then be able to clarify
their concerns, to make them more precise based on
what they have just learned: having seen the general
risk posed by re-identification, they might then be able
to see that the concern is not just an adversary who
could identify “anyone” but, rather, that it is a specific
minority group that is now possibly at risk. The modu-
lar way in which QIF describes threats allows computer
programs built on QIF principles to be re-run immedi-
ately with different parameters, instead of having to be
re-coded, re-tested and only then re-deployed: for QIF -
structured tools a single change in the “intent param-
eter” might be enough, and the response to the more
specific question could be very quickly given. Quick re-
sponses to new questions suggested by earlier answers
is a key factor in the explainability of anything.

1.4 Overview of the INEP case-study

Here we look briefly at the genesis of our project [5, 30].
More technical detail is given in Sec. 5.1.

In Brazil, the issues of transparency and of privacy
in the governmental release of data about individuals
are regulated through two complementary laws, further
detailed in Appendix A, but whose essence is as fol-
lows. On the one hand, a transparency law from 2011,
known as lai [27], adopts a philosophy of “transparency
by default” and requires that information be publicly
available on the Internet: any exceptions must be prop-
erly justified. On the other hand, a new privacy law,
lgpd [28], restricts the release of data on individuals,
prescribing sanctions in the case of non-compliance.

In this context, we were contacted by inep to search
for privacy vulnerabilities in their already published
datasets: a longitudinal collection of ∼50 million records
per year, each with ∼90 attributes. Their current mea-
sures had focussed only on de-identification, a known
problem, but the legislation itself did not limit the kind
of leaks that might be exploited in the future. And here
is where the issues of flexibility and scalability arise.

For example, it was known from the literature that
when non-unique attributes are released unaltered (e.g.
date of birth, city of residency, gender), then those at-
tributes can act as quasi-identifiers (QIDs), that is, in

combination they can effect a de-anonymization [12, 39,
53, 55]. As mentioned, anecdotal evidence of such risks
had already been identified in inep’s datasets [49], but
they were unquantified and narrow in scope.

More significantly, though, was the possibility of
other attacks not considered by inep even anecdotally,
e.g. attribute attacks where knowing an individual’s city
of residence could be used to infer ethnicity. The legisla-
tion was broad enough to target those as well — and of
course possibly other attacks that no-one had invented
yet. inep was thus forced to be prepared to look for
breaches they had not yet considered, and across the
longitudinal collection. That is, whatever we provided
to inep had to be flexible enough, and longitudinally
scalable, to handle and quantify future risks too.

The issue of explainability was also formidable in
two ways. First, we had to be able to convince inep
that they were at risk even in cases they thought they
were not. That meant putting into everyday terms –and
quickly– a quantified risk that anyone could understand
(and care about): “Do you know that with 80% proba-
bility we can from the existing data identify who your
children are, and where they go to school?” But this
had to come from a rigorous mathematical analysis.

The second part of this challenge was that what-
ever changes inep was convinced (eventually) to make
would likely face strong resistance from the public
and lead suddenly to different, new questions — and
so, again, properly justifying and communicating any
change would have to be done carefully and quickly. As
a high-profile example, the US Census Bureau has faced
serious resistance from stakeholders when discussing
changes on the current balance between transparency
and privacy in their data-publishing methods [22, 38].

1.5 Our principal contributions

The main contributions of this paper are the items be-
low, addressing the challenges we have identified:

1. We re-factorize attacks along three orthogonal
axes: (i) the information sought by the adver-
sary (membership-inference, re-identification, or
attribute-inference); (ii) the adversary’s target
(fixed-individuals, or collective targets); and (iii)
the adversary’s access to datasets (single datasets,
or longitudinal collections). As well as comprehen-
sively covering the relevant operational scenarios
from the literature, this re-factorization identifies
some new ones (Sec. 2.2).
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2. We use the re-factorization above within a coher-
ent formal framework grounded on QIF . We de-
vise a non-traditional instantiation of the role of
the adversary’s prior knowledge and the channel in
the QIF model that allows, at the same time, for:
(i) a realistic capture of inep’s scenario – in which
datasets were already of public knowledge even be-
fore any attack was performed; and (ii) tractable
computations of analyses (Sec. 3).

3. We illustrate the flexibility and scalability of our
approach with extensive experimental evaluations
of both re-identification and attribute-inference at-
tacks in inep’s extremely large longitudinal collec-
tion of Educational Censuses datasets (Sec. 4 and
5). To the best of our knowledge, these analyses
are the largest and most thorough in scope ever
performed on publicly available governmental mi-
crodata, and they reveal several insights about the
privacy issues of such large releases.

Additionally, we provide a free, optimized tool of our
attacks and privacy analyses (Sec. 4.3).

Ethics considerations. All results in this pa-
per were obtained in a formal cooperation with inep,
at their request, and fully communicated to them.
The agreement permits publication of all vulnerabili-
ties found, including all those identified in this paper.
Following Brazil’s transparency law, the datasets and
all results found are freely available to any citizen.

Plan of the paper. Sec. 2 explains our re-
factorization of privacy attack models; Sec. 3 intro-
duces the QIF framework and shows how it enables the
re-factorization; Sec. 4 describes our case study with
inep’s datasets; Sec. 5 explains the vulnerabilities dis-
covered; Sec. 6 presents lessons learned; Sec. 7 considers
prospects; and Sec. 8 discusses further related work.

2 Rationalizing the landscape of
privacy attack models

There are currently many different approaches to the
classification of privacy attacks: according to the adver-
sary’s goals (e.g. membership, identity, or attribute dis-
closures) [20, 23, 46]; according to her target and prior
knowledge (e.g. the prosecutor, journalist, and mar-
keter models) [17, 18, 44] etc. They have been adopted
in practice by the popular ARX data-anonymization
tool [46], among others. However, their motivation

comes from a small number of concrete scenarios, rather
than being organized systematically along indepen-
dent dimensions and, as a result, the identified attacks
might fail to cover the threat landscape. (For example,
attribute-inference attacks on longitudinal collections).

And so this section rationalizes existing attack mod-
els into a unified classification which not only covers var-
ious attack models already known, but identifies some
new ones. We begin by visiting the existing models.

2.1 An empirical classification of models

Some works focus on re-identification of individuals in a
microdata release [17, 18, 44]. Re-identification attacks
are (considered to be) of three types depending on the
adversary’s prior knowledge and target: 5

– The Prosecutor attack model: the adversary tries to
re-identify a specific individual (target) whose data
is known to be in the dataset of interest.

– The Journalist attack model: the adversary tries to
re-identify a specific individual whose data is not
necessarily known to be in the dataset of interest.

– The Marketer attack model: the adversary tries to
re-identify as many individuals as possible in the
dataset of interest.

Yet there are other works that classify according to the
type of information sought [20, 23, 46]:
– TheMembership-inference model: the goal is only to

infer whether individuals’ data appear in a dataset.
– The Re-identification model: the goal is to link data

records to the individuals to whom they refer.
– The Attribute-inference model: the goal is to infer

the value of a sensitive attribute for individuals, re-
gardless of whether they were re-identified.

Because the scenarios above pertain to 3 main adversar-
ial features – her prior knowledge, her targets, and the
information she wishes to obtain – we are now able to
suggest a unified classification of attack models.

2.2 An orthogonal classification of models

We re-factorize attacks along three orthogonal axes:

5 These are described in [18] as “risks”, but here we use the
term “models”.
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Single-dataset (S) Longitudinal (L)
Ind. (I) Col. (C) Ind. (I) Col. (C)

Memb. (M) [IMS] CMS IML CML
Re-id. (R) [IRS] [CRS] IRL CRL
Attr. (A) IAS CAS IAL CAL

Table 1. Re-factorization of attack models and their acronyms.

– Axis I: The information sought by the adver-
sary. We consider (M) membership-inference, (R)
re-identification, and (A) attribute-inference.

– Axis II: The adversary’s target.We consider (I)
individual-targets, where her goal is to obtain sen-
sitive information on a specific individual; and (C)
collective-targets, where her goal is to obtain sensi-
tive information on as many individuals as possible,
no matter who they might be.

– Axis III: The adversary’s access to datasets.
We consider (S) single-dataset access, of a single
dataset corresponding to a specific point in time;
and (L) longitudinal-dataset access, where several
versions are accessible, each for a different time.

The above axes yield 3×2×2 = 12 possible combina-
tions of attack models, given acronyms in Tbl. 1. Thus
the prosecutor model corresponds to IRS, the journal-
ist model to IMS, and the marketer model to CRS (all
bracketed in the table). But our re-factorization cov-
ers many other relevant scenarios as well, such as e.g.
attribute-inference attacks on longitudinal collections
(CAL and IAL, underlined in the table).

In the next section we show how the above adver-
sarial features are naturally represented in the threat
model provided by the QIF framework.

3 Quantitative information flow:
what it is, and how it induces
rationalization

Sec. 2 just above surveyed traditional threats to privacy,
and in particular their extensive nomenclature (pros-
ecutor, journalist, marketer, etc.). Quantitative Infor-
mation Flow (QIF) provides a mathematical model in
which those varying points of view can almost all be
seen as aspects of the same thing, thus streamlining the
conceptual approach required: we can therefore focus
on the small number of technical elements that cause
the threats, and treat them in a unified way. QIF can

streamline the computations as well, as we see below,
and that helps with scalability.

The philosophy of QIF. The QIF framework’s fo-
cus is to capture the adversary’s knowledge, goals, and
capabilities, and from that quantify the leakage of infor-
mation caused by a corresponding optimal inference at-
tack. The framework is grounded on sound information–
and decision-theoretic principles enabling the rigorous
assessment of how much information leakage a system
allows in principle, and independently from the adver-
sary’s computational power [4]. Hence, QIF guarantees
hold no matter the particular tactic or algorithm the
adversary employs to execute the attack, as what is
measured is exactly how much sensitive information is
leaked by the best possible such tactic or algorithm.

Overview of privacy models in QIF. QIF (we
will see) separates (1) the adversary’s knowledge from
(2) the description of the “leak” she is trying to exploit,
and that leak description is again separated from (3)
her intentions and capabilities. The first (1) is modeled
as a probabilistic “prior”; the second (2) is modeled by
Bayesian reasoning to produce a “hyper-distribution”;
and the third (3) is modeled as a “gain function” that
gives what could almost be regarded as monetary values.
We introduce those in turn.

A prior (1) is a probability distribution over un-
known (but sought after) data, and it models the adver-
sary’s knowledge about that data even before any leak
occurs: how likely is it that this person is unmarried?
How likely is it that this row of the dataset describes
Warren Buffett? A gain function (3) for an adversary
gives a numerical (expected) valuation of the benefit to
her of learning that information: the gain function of an
adversary seeking a partner would be high in the first
case, but low in the second; but if she wants to raid a
bank account, it would be the opposite. Varying the gain
function is how we formalize the attacks from Tbl. 1.

A hyper-distribution (2) summarizes mathemati-
cally how an adversary uses Bayesian reasoning to ex-
ploit an information leak: we write “hyper” for short.
The specifics of the information leak are described by
a channel: for each possible secret that the adversary
wants to learn there is some probability that a particular
output (coming from the leak) is observed by the adver-
sary. Combining the channel probabilities with the prior
enables posterior reasoning using Bayes’ rule so that the
adversary is able to revise her knowledge about the po-
tential value of the secret, and better align her intent
with what she has just learned. The hyper organizes
this reasoning as a marginal probability over observa-



Flexible and scalable privacy assessment for very large datasets 383

id lang. gend. age
1 English M >30
2 Port. M ≤30
3 German F ≤30
4 German M ≤30

(a) Original dataset.

language prior

English 1/4

Port. 1/4

German 1/2
(b) Prior on language, the adver-
sary’s knowledge before the leak.

outers I 1/2 1/4 1/4 0

gender, age I
M
≤

30

M
>

30

F
≤

30

F
>

30

language H

English 0 1 0 0
Portuguese 1/2 0 0 0

German 1/2 0 1 0
(c) Hyper-distribution over language given gender and age, modeling the
adversary’s knowledge after the leak – the outers constitute the probabili-
ties for each observation and the posterior probability distributions in each
column summarize what the adversary has learned about the language.

Table 2. Summary of the QIF analysis for leaking information
about native language from a table of microdata.

tions and, for each observation, a posterior probability
distribution over the secret values.

To be concrete for a moment, we mention that a
popular gain function is the “Bayes Vulnerability” which
rewards a correct guess of a secret’s value with 1 if the
guess is correct and 0 otherwise. It (and other functions
like it) was just what was needed by inep to provide
the Brazilian government with hard scientific evidence
to estimate the vulnerability of re-identification such as
“There is an 80% chance that a randomly selected in-
dividual can be re-identified in the currently published
microdata.” A further benefit of this approach is that
these QIF -categorized concepts, which can be distilled
and explained in terms that inep care about, can be
computed at scale if carefully worked out and optimized.

The components of a QIF model, with an ex-
ample. We now return to the more technical aspects of
the QIF model and how it relates to datasets, how a
secret is a value of some type X , and a secret (data)
release, which in QIF is called a channel, is a (proba-
bilistic) function from X to some set of observations Y,
and how an adversary is abstracted to a (gain) function
that can be applied to the hyper, induced by a channel,
to determine the advantage accruing to the adversary
from using that channel.

In Tbl. 2a we have a 4-row dataset giving for
each individual the native language spoken (English,
Portuguese, German), the gender (M, F) and the age
(≤, >30). The adversary is trying to guess the native
language of the person she is about to meet (but has not
yet seen), and she assumes the person selected is equally
(i.e. uniformly) likely to be any one of the four in the

dataset. We describe her with a gain function yielding
$4 if she guesses right, and $0 if she guesses wrong. The
adversary’s prior on language (i.e. her knowledge about
the sought secret even before meeting the person) is
shown in Tbl. 2b, and clearly she will guess German
(the most likely language): an expected gain of $2.

The full procedure for converting the dataset in
Tbl. 2a into a hyper as shown in Tbl. 2c is given in
Appendix B and used in detail in Sec. 4.2 with a more
realistic example. We continue with the small example
here to illustrate the systematization that QIF allows.

If now our adversary sees the person before guess-
ing, the gender and age are leaked. We illustrate the QIF
approach by showing that her expected gain increases
to $3. From Fig . 2c she sees a “young” man with prob-
ability 1/2 and the posterior probabilities for language
become 1/2 for both Portuguese and German: so she will
guess one of those. If however she sees an old man, with
probability 1/4, she will guess (definitely) English; and if
she sees a young woman, she will guess German. (There
are no old women in the dataset.) Her expected gain is
now $4× (1/2×1/2 + 1/4×1 + 1/4×1) = $3. Therefore, the
leak has the effect of increasing our particular adver-
sary’s expected gain from $2 to $3.

The example illustrates further orthogonal decom-
position (beyond Sec. 2.2) that QIF enables:

1. The dataset(s) and their structure are separated
from the attacks that might be mounted: they are
simply “there”. The datasets used in a particular
longitudinal attack are aggregated by some method:
if there is a persistent unique identifier for all indi-
viduals across all datasets, the aggregation can be
done with a simple left outer join keyed on that at-
tribute. (In Sec. 7 we discuss general alternatives for
when such an attribute is not available.)

2. The “selection prior” (on records, often uniform, as
above), is separated from the actual prior (induced
by the attack, here that the language spoken is twice
as likely to be German as either of the other two).

3. The selections of “what attribute(s) are sought” and
“what attributes are leaked” are separated from
the adversary’s other characteristics: they deter-
mine only what become the rows and columns of
the synthesized channel matrix.

4. The posterior inferences the leaks might enable
(revised-belief distributions over the secret) are sep-
arated from their worth to the adversary (i.e. are
captured independently in the gain function).

5. Indeed the worth to the adversary of the informa-
tion a leak delivers (gain function) is completely in-
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dependent of all other factors, in particular of the
prior, and of how many datasets were involved.

The flexiblity of the QIF framework. QIF models
are flexible by design: once a data release is modeled
as a channel, it is easy to switch between various at-
tack scenarios by changing the probability distribution
modeling the adversary’s prior knowledge, and the gain
function modeling her goals and capabilities. Moreover,
even in scenarios where the adversary’s prior knowl-
edge, goals, and/or capabilities are not fully known, the
framework provides quantified worst-case estimates of
damage based on the theory of “channel capacities” [1].

Computing leakage with a QIF model. QIF is
a way of modeling attacks, not an implemented tool in
itself. Existing general-purpose implementations of the
QIF framework make leakage computation tractable in
a range of small to medium-sized scenarios, without the
need to write new code for new attack models: it suffices
to simply change some parameters.6 Alternatively, QIF
concepts could be implemented in existing anonymiza-
tion tools such as ARX. However, not all QIF features
are native to these tools, and capturing all attack mod-
els allowed by QIF in them may become a challenge (e.g.
dealing with non-uniform priors on records, or adopting
information measures not hard-coded into the tools).7

As is typical of information– and decision-theoretic
frameworks, scalability to very large scenarios is a chal-
lenge in QIF. In such cases it may be necessary to write
and optimize specialized code, as we had to do for inep’s
scenario (see Sec. 4.3 ahead). This is in itself a contribu-
tion of this work: to show that QIF can, indeed, scale.

4 Application of QIF to a
large-scale privacy problem:
INEP’s datasets

In this section we apply the rationalization of privacy
analyses in the QIF framework, discussed in the pre-
vious sections, to the large-scale scenario of inep’s Ed-
ucational Censuses. We start with the fundamentals of

6 An example is LibQIF : https://github.com/chatziko/libqif/
7 It has been proven that every model of inference attack (in-
cluding worst-case attacks [7]) is captured in the QIF frame-
work [2, 3]. The primary limitation of QIF is computational
tractability rather than generality.

Privacy degradation

Auxiliary information:
Remaining datasets in longitudinal 

collection and QID values for individuals

Posterior 
knowledge:

Bayes inference on 
merged long. col. 
and QID values

Attack:
Adversary 

merges long. col. 
and crosses it 

with QID values

Prior 
knowledge:
Focal dataset

Fig. 1. General schema of an attribute-inference attack on a lon-
gitudinal collection, which generalizes all attacks in Tbl. 1.

our attack models in QIF , and then provide concrete in-
stantiations on a running example. The results obtained
by the application of these models to the full extent of
inep’s scenarios are reserved to Sec. 5.

4.1 Instantiating QIF to INEP’s scenario

The QIF framework can be used to model the attacks
from Sec. 3. First, we can unify single-dataset and lon-
gitudinal attacks into a single model by aggregating all
available datasets along a common axis. We can also
unify both re-identification and membership attacks
with attribute-inference attacks by considering the sen-
sitive attribute to infer to be, respectively, each individ-
uals’ unique identifier or a special attribute indicating
the individual’s presence/absence in the dataset. Hence
all such attacks can be seen as instances of attribute-
inference attacks on a longitudinal collection.

Using QIF we model an adversary using a prior
π:DX over secret valuesX, representing her prior knowl-
edge. (We use DX for the set of distributions over the
set X .) We assume there is a channel C:X→DY which
leaks information about secrets X via observations Y .
We can then represent an adversary’s prior and pos-
terior information about the secret (i.e. before and af-
ter an observation from C) using vulnerabilityfunctions,
which consider the adversary’s prior π and gain function
g modeling her capabilities and preferences. The overall
privacy degradation is then computed by comparing the
vulnerability of the secret before and after the attack.

Fig. 1 schematizes our attack models in QIF . To
accurately capture the scenario of inep’s Educational
Censuses from Sec. 1 –thereby constructing an appro-
priate prior, channel, and vulnerability measure for the
QIF model–, we formalize assumptions A1–A4 below.

A1: Published census data. A1-A: There is
a longitudinal collection LD={D1, D2, . . . , DI} of I

datasets of interest. Each dataset Di, with 1≤i≤I, is

https://github.com/chatziko/libqif/
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defined over a (finite) attribute set Ai. A1-B: There is
an attribute of unique identification aid common to all
datasets in LD, and each individual of interest holds a
persistent value for this attribute across all datasets.

A2: Adversary’s prior knowledge. A2-A: In or-
der to apply Bayesian reasoning we need to attribute a
prior over secrets to the adversary. In this situation, the
adversary has access to the focal dataset D1∈LD from
which she wishes to re-identify individuals. We can use
the distribution of secrets in this dataset as her prior
knowledge –her guess– about which secret might belong
to any particular individual. We denote by X⊂A1 the
set of secret attributes to infer, and the prior distribu-
tion by π:DX . A2-B: The adversary assumes that each
individual of interest holds exactly one record in D1,
and at most one record in each other dataset in LD. 8

A3: Channel representing the adversary’s ac-
quisition of auxiliary information in attack exe-
cution. A3-A: The adversary combines the remaining
datasets D2, D3, . . . , DI , called auxiliary datasets, with
the focal dataset D1 to produce an aggregated dataset
D in which the records of individuals across all datasets
are linked (see for example Tbl. 3). 9 A3-B: In order to
find unique mappings between named individuals and
other quasi-identifiers (QIDs) in the dataset, we assume
that the adversary mines auxiliary information derived
from e.g. other public datasets. 10 The set of QIDs is
defined Y⊆(∪iAi)\X (so we denote the domain of pos-
sible QID values by Y). A3-C: The aggregated dataset
D can be rewritten as a channel C:X→DY where each
entry Cx,y is the ratio between the count of individuals
with QID values y∈Y and secret value x∈X , and the
total count of individuals with secret value x∈X .

A4: The attack and its privacy degradation.
A4-A: The attack consists in the adversary combining
her prior knowledge π:DX with the channel C:X→DY,
and then applying Bayesian inference to produce poste-
rior (conditional) distributions on secret values for each
possible observed value of QID (i.e. a hyper giving a
probability of inferring x∈X for each y∈Y, together with
the probability of y itself occurring). Combined with
the adversary’s mined knowledge from A3-B, this pos-
terior knowledge can be used to guess the secret val-

8 The enforcement of assumption A2-B is discussed in Sec. 5.1.
9 In the inep Censuses analyzed, there exists a persistent unique
identifier for every individual across all considered datasets,
which makes the aggregation straightforward. In Sec. 7 we dis-
cuss how theQIF framework can capture more general scenarios.
10 Uniqueness is not necessary for the QIF model, but is used
here to simplify the presentation of results.

ues corresponding to named individuals. A4-B: In a
deterministic attack, the threat is quantified consider-
ing the proportion of individuals whose secret values
can be inferred with probability 1 using the adversary’s
knowledge. A4-C: In a probabilistic attack, the threat
can be quantified using the Bayes vulnerability func-
tion [4, 54], which gives an optimal adversary’s proba-
bility of correctly inferring the secret value in one try.
A4-D: The leakage of information caused by the attack
can be quantified using either the ratio or the difference
between the adversary’s prior and posterior information
about the secret (be it probabilistic or deterministic).

4.2 Concrete example: collective-target
attribute-inference attack on a
longitudinal collection (CAL)

We now illustrate the instantiation of our general QIF
model to a concrete CAL attack. Other attacks (as in
Tbl. 1) can be modeled as special cases; Appendix C
exemplifies a CRL attack. We consider the following sce-
nario, under assumptions A1–A4 above.

Example 1 (Running example based on Tbl. 3).
Consider a longitudinal collection of two datasets
LD = {D1, D2}. The focal dataset, D1, is defined on the
set of attributes A1={id, age, gender, grade, disability}
and is represented in Tbl. 3a. The auxiliary dataset, D2,
is defined on the set of attributes A2={id, age, grade}
and is represented in Tbl. 3b. The adversary merges the
datasets in LD, via a left outer join keyed on the per-
sistent attribute of unique identification id, to produce
the aggregated dataset D=D1 onD2 in Tbl. 3c.

Recall that in a collective-target attribute-inference at-
tack on a longitudinal collection (CAL), the adversary’s
goal is to infer the value of a sensitive attribute for as
many individuals as possible in the focal dataset D1, no
matter who they might be. Assume that in our running
example the adversary wants to infer the value of the
sensitive attribute X={disability}.

Attack execution. Before the attack the adver-
sary only has access to the focal dataset D1, and
her prior knowledge about disability is determined by
this attribute’s distribution in this dataset. Since (from
Tbl. 3a) disability is distributed uniformly (50% “no”
and 50% “yes”), the adversary’s prior is uniform. Now
consider that during the attack the adversary gains ac-
cess to the auxiliary dataset D2 and merges it with D1
to obtain the aggregated dataset D (as in Tbl. 3c). Fur-
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id age gend. grd. dis.
1 25 F A no
2 25 F A yes
3 25 F C yes
4 25 M B yes
5 25 M B no
6 49 F C yes
7 49 F C yes
8 49 F E no
9 49 M D no
10 60 M D no

(a) Focal dataset D1.

id age grd.
1 26 B
2 26 A
3 26 C
4 26 B
5 26 B
6 50 D
7 50 C
8 50 E
9 50 D
11 19 A

(b) Aux. dataset D2.

(id, 1) (age,1) (gend.,1) (grd.,1) (dis.,1) (age,2) (grd.,2)
1 25 F A no 26 B
2 25 F A yes 26 A
3 25 F C yes 26 C
4 25 M B yes 26 B
5 25 M B no 26 B
6 49 F C yes 50 D
7 49 F C yes 50 C
8 49 F E no 50 E
9 49 M D no 50 D
10 60 M D no − −

(c) Aggregated dataset D=D1 onD2, with each attribute tagged with its origin.

Table 3. Example of longitudinal collection of datasets LD={D1, D2} and their aggregation D. Note that the record with id 10 is
only present in D1, so attributes (age, 2) and (grade, 2) have null values in the aggregated dataset D, whereas the record with id 11 is
only present in D2 and hence is absent from D.

thermore, we assume that she obtains as auxiliary in-
formation (e.g. via other public datasets) the values of
the QIDs Y={gender, grade} for all individuals in D.
Using this auxiliary information, she performs Bayesian
reasoning and updates her knowledge about the secret
value from the prior to a set of revised conditional dis-
tributions (given the learned value of each individual’s
QIDs) on disability s.t. each of these posterior distri-
butions has its own probability of occurring — i.e. she
updates her knowledge to a hyper on the secret value.

This whole process is modeled in QIF as in Tbl. 4.
First the adversary extracts from D all co-occurrences
of values for the secret and for QIDs (Tbl. 4a), and from
that she derives a joint probability distribution on these
values (Tbl. 4b). By marginalizing the joint distribu-
tion, we get the adversary’s prior π on the secret value
disability, and by conditioning the joint distribution on
the prior we get the channel representing the adver-
sary’s information-gathering process during the attack
(Tbl. 4c). The adversary’s posterior knowledge is then
represented by the hyper in Tbl. 4d. Finally, the overall
degradation of privacy can be computed as follows.

Deterministic degradation of privacy. Recall
that deterministic success is concerned with the propor-
tion of individuals whose value for the sensitive attribute
can be inferred with absolute certainty. In this example,
the adversary’s deterministic prior success is 0%, since
before the attack no individual’s disability status can
be inferred with certainty. After the attack, however,
the adversary’s knowledge is updated to the hyper in
Tbl. 4d. Note that in that hyper the posteriors contain-
ing only 1 and 0 values –i.e. all columns but the one la-
beled as (M,B,B)– have unique QIDs and therefore allow
the adversary to infer with probability 1 the disability
status of the corresponding individuals. The adversary’s
deterministic posterior success is the fraction of indi-

viduals whose attribute is inferred in this way, which is
exactly 80%, or 8 out of 10 (note that some posteriors
in the hyper represent more than one individual, which
is reflected by the posterior’s weight). We describe the
overall deterministic degradation of privacy additively,
as 80%−0% = 80%, meaning that the execution of the
attack increases the proportion of individuals with in-
ferrable disability status by an absolute value of 80%.

Probabilistic degradation of privacy. Recall
that probabilistic success is concerned with the chance
that randomly selected individuals can have their sen-
sitive attributes inferred, even if without certainty. In
this example, the prior vulnerability of the dataset is
50%, since before the attack the adversary’s prior on
disability is uniform and therefore 50% is the maximum
chance with which she can guess the secret value for an
individual. After executing the attack and updating her
knowledge to the hyper from Tbl. 4d, the adversary’s
posterior success is measured as the expected value of
Bayes vulnerability (which, recall, is the probability of
guessing the secret correctly in one try) taken over all
posteriors distributions. Indeed, since 7 of the posteri-
ors allow the adversary to guess the secret with prob-
ability 1 –and 6 of these posteriors occur themselves
with probability 1/10, whereas 1 occurs with probabil-
ity 1/5–, and 1 of the posteriors allows a correct guess
with probability 1/2 –and this posterior occurs itself with
probability 1/10–, the overall posterior Bayes vulnerabil-
ity is 6·1/10·1+1·1/5·1+1·1/10·1/2=90%. We describe the
overall probabilistic degradation caused by the attack
multiplicatively, as 90%/50%=1.8, meaning that the ad-
versary’s chance of inferring a randomly selected indi-
vidual’s disability status in the focal dataset increases
by a factor of 1.8 – so the completion of the CAL attacks
almost doubles the adversary’s success in inferring the
sensitive information.
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(a) Co-occurrence of values for secret X={(disability, 1)} and for ob-
servable QIDs Y={(gender, 1), (grade, 1), (grade, 2)}, derived from the
aggregated dataset D from Tbl. 3c. E.g. exactly one record has disability
status “no” and at the same time is a female with grade A in the focal
dataset D1, and grade B in the auxiliary dataset D2.
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(b) Joint distribution of values for secret X={(disability, 1)} and for ob-
servable QIDs Y={(gender, 1), (grade, 1), (grade, 2)}, derived from the
co-occurrence matrix from Tbl. 4a, and assuming a uniform distribution
on the records in D. E.g. there is a probability 1/10 that an individual
does not present a disability and has QID vaues (F,A,B).
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(c) Prior distribution π on the values for secret X=(disability, 1), and
the channel for the CAL attack, each derived from the joint distribu-
tion from Tbl. 4b by marginalization and conditioning, respectively. E.g.
the prior indicates that before the attack (i.e. without learning any QID
value) the adversary believes that the probability of any individual having
a disability is 1/2. On the other hand, the channel indicates that during
the attack the adversary can use the fact that if an individual without a
disability is the owner of a record, then the probability that that record
has QID values (F,A,B) is 1/5.
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(d) Hyper-distribution (with column labels added for clarity) represent-
ing the adversary’s knowledge after completing the CAL attack. The top
row (“outers”) gives the probability of each possible combination of QID
values being revealed, and each column gives the posterior probability dis-
tribution on secret values given that the corresponding QID values were
revealed. E.g. after the attack, the adversary has a probability 1/10 of
learning that an individual’s QID values are (F, A, B), and in this case she
assigns probability 1 to the corresponding individual having no disability.

Table 4. Step-by-step derivation of prior, channel, and hyper-distribution for CAL attack on the longitudinal collection LD from
Tbl. 3, considering secret X = {disability} and observable QIDs Y = {gender, grade}.

4.3 Outline of the developed software

As explained in Sec. 1.1, no existing tool met the needs
for the scope of our analyses: either they did not sup-
port all attack models we consider (especially attribute-
inference), did not support longitudinal analysis, or sim-
ply could not run analyses on data as large as inep’s.
Hence, we implemented and optimized our own tool.

Our software is implemented on Python 3.9.10 using
numpy 1.22.2 and pandas 1.4.1 to streamline some oper-
ations. To optimize the use of hardware, we employ the
Python multiprocessing standard library to simulta-
neously analyze different sets of QIDs –up to the num-
ber of available CPU threads. Instead of relying on the
pandas built-in functions to partition a dataset based on
QIDs, we perform our own sorting of the records accord-
ing to a given set of QIDs and compute all the values
related to that attack on a single pass through the whole
dataset. The re-identification and sensitive attribute in-
ference attacks are carried out simultaneously for each
selection of QIDs and of sensitive attributes.

Under these optimizations and using 20 threads
from two Intel Xeon E5-2620 v2 processors with 96 GB
DDR3-1866 RDIMM, all 2,047 single-dataset attacks
performed on the School Census of 2018 were conducted
in 40 hours. Due to our choice of only one set of QIDs
for the longitudinal attacks, all the 4 analyses were per-
formed in less than one hour. We describe the results of
such analyses in the next section.

5 Privacy analyses of the INEP
datasets

We now summarize the main results of employing the
attack models from Sec. 4 to extensive experimental pri-
vacy analyses on inep’s Educational Censuses. These re-
sults were critical information for inep’s decision mak-
ing, and we discuss their implications in Sec. 6.

5.1 Overall synopsis

As mentioned, inep’s Educational Censuses datasets
contain microdata for every student at all levels of edu-
cation in Brazil, including elementary, middle, high, pro-
fessional, and college education. The datasets have been
published yearly since 2007, and the only privacy pro-
tection techniques employed are de-identification (i.e.
the removal of obvious personal identifiers, such as name
or governmental-issued ID numbers) and pseudonymiza-
tion (i.e. the substitution of such obvious personal iden-
tifiers for artificially-created ones).

Our experimental analyses focused on the School
Census. These datasets are the largest published by
inep, concerning all students in the country enrolled
at all levels of education other than college. Each yearly
dataset contains microdata for approximately 50 million
students, with about 90 attributes per student. For this
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Year
# of records # of Attacks

Original Treated attrib. performed

2014 56, 064, 675 49, 491, 319 85 CRL /CAL
2015 54, 851, 222 48, 536, 347 93 CRL /CAL
2016 52, 356, 383 48, 561, 221 92 CRL /CAL
2017 53, 900, 669 48, 377, 987 92 CRL /CAL
2018 51, 829, 413 48, 176, 423 92 CRS /CAS

Table 5. School Census datasets used in our experiments.

study we selected the 5 most recent datasets at the time
of the analyses, as presented in Tbl. 5. We now describe
the fundamentals of these analyses.

Treatment of the datasets. Since these datasets
may contain duplicated entries for the same student,
we treated them to meet the uniqueness Assump-
tion A2-B from Sec. 4. For that, we randomly selected
only one record for each student with a same unique
pseudonymization code in each dataset [41]. Notice that
this treatment can only underestimate privacy risks, so
our analyses provide a lower bound on the real risks.

Selection of attributes. For computational
tractability, we restricted our experimental analyses to
the attributes listed in Tbl. 6, which were selected ac-
cording to the criteria below. 11

– Selection of QIDs. For both re-identification and
attribute-inference attacks on single-datasets (CRS
and CAS, respectively), performed on the Census
of 2018, we considered all possible 2,047 non-empty
combinations of QIDs from a set of 11 attributes
which we presume to be easily obtainable by an ad-
versary as auxiliary information. For the longitudi-
nal attacks (CRL and CAL), on the Censuses from
2014 to 2017, we employed a fixed set of 3 QIDs that
are expected to vary over the years (since attributes
that tend to remain constant tend not to be partic-
ularly useful in longitudinal attacks). Tbl. 6a lists
the QIDs selected for each attack.

– Selection of sensitive attributes. For attribute-
inference attacks on both single-datasets and on lon-
gitudinal collections (CAS and CAL, respectively),
we considered as sensitive: (i) the flag indicating
whether the student has any disability, and (ii)
the flag indicating whether the student uses pub-

11 Notice that our goal is not to define whether an attribute
should be considered as a QID or sensitive. Instead, our results
just illustrate privacy risks of possible real-life circumstances,
and they can be reproduced for any other choice of attributes.

Attribute CRS / CAS CRL / CAL
Day of birth yes –

Month of birth yes –
Year of birth yes –

Gender yes –
Ethnicity yes –

Nationality yes –
Country of birth yes –

City of birth yes –
City of residency yes yes

School id code yes yes
School type

(public, private, ...)
yes –

Education level
(middle, high, ...)

– yes

(a) Attributes selected as QIDs in each attack.

Attribute Domain
Disability status yes, no

Uses public school transportation yes, no, n/a
(b) Attributes selected as sensitive in attribute-inference attacks.

Table 6. Attributes selected for the attacks.

lic school transport (which may indicate economic
status). These attributes are listed in Tbl. 6b.

Experimental analyses of single-dataset attacks.
Collective-target re-identification (CRS) and collective-
target attribute-inference (CAS) attacks on a single-
dataset were performed on the dataset of the School
Census of 2018, described in Tbl. 5. Fig. 2 depicts both
the deterministic and the probabilistic degradation of
privacy in each of the 2,047 distinct scenarios consid-
ered for each attack, every one of them corresponding to
an adversary obtaining as auxiliary knowledge a differ-
ent non-empty subset of the 11 possible QID attributes
listed in Tbl. 6a. Additionally, Tbl. 7 provides detailed
numbers for some of the 2,047 scenarios from Fig. 2.

Experimental analyses of longitudinal at-
tacks. Collective-target re-identification (CRL) and
collective-target attribute-inference (CAL) attacks on
longitudinal collections were applied to the collection of
School Census datasets from 2014 to 2017, described in
Tbl. 5. In all attacks the dataset of 2014 was considered
the focal one, and the 2015–2017 datasets were used as
auxiliary information. In order to track the evolution
of risks as the longitudinal collection grows, in each sce-
nario we assumed that the adversary begins with knowl-
edge of just the focal dataset, and then performs a new
attack as each new dataset is released through the years
from 2015 to 2017. In each case, the adversary performs
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(a) Deterministic success in CRS attacks. (b) Det. success in CAS attacks (disability). (c) Det. success in CAS attacks (transportation).

(d) Probabilistic success in CRS attacks. (e) Prob. success in CAS attacks (disability). (f) Prob. success in CAS attacks (transport.).

Fig. 2. Adversary’s success in re-identification (CRS) and attribute-inference (CAS) attacks on the School Census of 2018. In each
graph, the horizontal axis indicates the number of QIDs used by the adversary, and the vertical axis indicates the adversary’s success.
Each dot is the posterior success of a distinct adversary having as auxiliary knowledge one of the 2,047 possible combinations of QIDs.
The horizontal “a priori” line represents the adversary’s success before the attack.

QIDs: DoB,
Gender, CoR

QIDs: DoB,
Gender, CoR, SC

CRS 26.63%
(∼12.8 million)

90.43%
(∼43.6 million)

CAS
(disability)

65.54%
(∼31.6 million)

99.67%
(∼48.0 million)

CAS
(transportation)

54.54%
(∼26.3 million)

98.77%
(∼47.6 million)

Table 7. Deterministic degradation of privacy in re-identification
(CRS) and attribute-inference (CAS) attacks on the School Cen-
sus of 2018 for some of the 2,047 scenarios from Fig. 2. DoB is
day, month, and year of birth, CoR is city of residency, and SC
is school code. Percentages are the fraction of students whose
sensitive attribute is inferrable with certainty after the attack.

an aggregation of the focal and the auxiliary datasets by
linking the unique, permanent pseudonymization code
provided by inep in all datasets considered. Finally,
we selected the attributes City of residency, School
code, and Educational stage as QIDs for both exper-
iments, as specified in Tbl. 6a. We then measured both
the deterministic and the probabilistic degradation of
privacy for the set composed of those three attributes,
as summarized in Tbl. 8.

5.2 Vulnerabilities identified

Next we highlight key risks uncovered by our analyses.
An extensive list of all results is provided in [40, 43].

A vast number of the approximately 50 mil-
lion students in each of INEP’s datasets are
at considerable risk even against modest adver-
saries. As an example, in the School Census of 2018, an
adversary starting with prior knowledge of only the re-
leased dataset itself would not achieve absolute certainty
in any of the re-identification or attribute-inference at-
tacks considered. However, after acquiring as auxiliary
information only 3 QIDs –day and month of birth, and
school code– the adversary becomes able to re-identify
up to 30.92% of the records (∼14.9 million students) and
infer the disability status and transportation method of
95.35% (∼45.9 million students) and 85.63% (∼41.3 mil-
lion students), respectively. By adding year of birth as
a fourth QID, those numbers increase to 81.13% (∼39.1
million students), 99.31% (∼47.8 million students), and
97.42% (∼46.9 million students), respectively. As for
probabilistic attacks, the adversary’s expected prior suc-
cess in re-identifying any individual is only 0.000002%,
but with the use of the same four QIDs as before, the
posterior expected success increases to 89.93%. On the
other hand, the expected success in inferring a random
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CRL CAL (disability) CAL (transportation)
Datasets in the prior success: 0.00% prior success: 0.00% prior success: 0.00%
long. collection posterior success posterior success posterior success

2014 1.44% (∼0.7 million) 57.17% (∼28.3 million) 58.07% (∼28.7 million)
2014 to 2015 12.88% (∼6.4 million) 79.21% (∼39.2 million) 68.60% (∼34.0 million)
2014 to 2016 25.26% (∼12.5 million) 87.59% (∼43.4 million) 75.32% (∼37.3 million)
2014 to 2017 36.31% (∼18.0 million) 91.28% (∼45.2 million) 79.92% (∼39.6 million)

(a) Deterministic measure of privacy degradation (i.e. proportion of students whose sensitive attribute is inferred with certainty).

CRL CAL (disability) CAL (transportation)
Datasets in the prior success: 0.000002% prior success: 98.21% prior success: 82.50%
long. collection posterior success posterior success posterior success

2014 4.25% 98.71% 91.64%
2014 to 2015 20.08% 99.03% 93.03%
2014 to 2016 34.37% 99.30% 94.17%
2014 to 2017 45.60% 99.49% 95.07%

(b) Probabilistic measure of privacy degradation (i.e. probability of successful inference of the sensitive attribute in one try).

Table 8. Privacy degradation in re-identification (CRL) and attribute-inference (CAL) attacks on the longitudinal collection containing
the School Census datasets from 2014 to 2017. In all attacks the focal dataset is that of 2014 (and all others are used as auxiliary
datasets), and the QIDs employed are City of residency, School code, and Educational stage.

individual’s disability or transportation method is al-
ready very high even a priori, due to the highly skewed
distribution of such attributes in the population: 97.56%
and 81.75%, respectively. By using again the same four
QIDs, the adversary’s posterior expected success in-
creases to 99.69% and 98.82%, respectively.

There are plenty of unexpectedly powerful
combinations of QIDs. The use of just city of birth
and city of residency as QIDs, for instance, allows for
the unique re-identification of approximately 430,000
students. The addition of ethnicity to that combina-
tion increases that number to around 800,000 uniquely
re-identifiable students. Another remarkable example is
the use of School Code alone (which is a unique iden-
tifier for each school in the country) as a QID in the
School Census of 2018. This attribute alone allows the
adversary to re-identify with absolute certainty 99 stu-
dents. 12 Perhaps even more impressively, the use of the

12 More precisely, 57 of these 99 students were already uniquely
re-identifiable in the original, pre-treated dataset (i.e. before the
removal of duplicate entries for each student), and the other 42
students became uniquely re-identifiable only after such treat-
ment. On the other hand, 26 students that were unique based on
School Code in the original dataset had those records removed
by the treatment. In any case, it is remarkable that there are
dozens of such unique students, even in a dataset as large as the
one analyzed. Interestingly, our analysis shows that the majority
of these unique school codes refer to institutes in rural, indige-
nous, or “quilombola” (i.e. traditional communities formed by

same School Code on its own allows for the inference,
with absolute certainty, of the disability status of 5.9
million students in the same dataset.

Even modest longitudinal attacks can be
highly damaging. As an example, an adversary start-
ing with prior knowledge of only the released School
Census of 2014 would not achieve certainty either in
re-identifying or in inferring any individual’s disability
status or transportation method. However, by know-
ing only some seemingly innocuous QIDs –city of resi-
dency, school, and educational stage–, and having access
to three auxiliary datasets, from years 2015–2017, the
adversary can re-identify with certainty up to 36.31%
of the records (∼18.0 million students), and infer the
disability status and transportation method of, respec-
tively, 91.28% (∼45.2 million students) and 79.92%
(∼39.6 million students). When considering probabilis-
tic measures, again with prior knowledge of only the
School Census of 2014, the adversary’s probability of re-
identifying a randomly selected individual is 0.000002%,
whereas the probability of inferring that random indi-
vidual’s disability status or transportation method is,
respectively, 98.21% and 82.50%. After acquiring ac-
cess to the same three QIDs and the same 3 auxil-

descendants of slaves who escaped captivity) areas of the coun-
try, or to institutes of specialized education. This suggests that,
although such re-identification cases may be relatively rare in
the country, they disproportionately affect protected minorities.
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iary datasets, the adversary’s probability of correctly
re-identifying a random individual increases to 45.60%,
whereas those of inferring disability status or trans-
portation method increase to 99.49% and 95.07%, re-
spectively.

6 Lessons learned
The rigorous evaluation of privacy in inep’s Educational
Censuses raised challenges in various fronts: scientific,
technical, and of communication. Here we discuss the
main lessons learned while overcoming these challenges.

6.1 Communication and social aspects

The main communication challenge in our project was to
identify –and even develop– ways to effectively transmit
the results of our formal analyses to inep’s agents acting
at the technical, managerial, and political levels. For
as mathematically sound and experimentally thorough
any formal analysis might have been, it could only foster
real change if it persuaded inep’s agents that the results
applied specifically to their datasets so that they could
report these findings to the people empowered to make
decisions. Next we summarize some additional lessons
not yet covered in this paper.

Results from the academic literature needed
to be specifically interpreted and reproduced in
the INEP setting. As academics, one of the impor-
tant inputs to a research effort is to learn from the find-
ings of other researchers working on similar problems.
However, in our early interactions with inep’s staff it
became clear that, despite the abundant evidence in
the literature pointing to the contrary, some influen-
tial (although not all) agents remained skeptical that
the literature could be relevant to inep’s own dataset.
Indeed, these few skeptical agents hewed firmly to their
belief that the large number of individuals in each data-
release under scrutiny would automatically ensure some
reasonable level of privacy — and remained unmoved
even when presented with our comprehensive literature
review pointing out vulnerabilities in other datasets to-
gether with some anecdotal examples of relatives of
members of our research team that could be easily re-
identified in the Censuses. In fact some of inep’s agents
reaffirmed their belief in an intuition of “safety in a
crowd,” and brushed off our initial findings as a fluke.

As well as convincing inep’s agents of the need for
change we also had to anticipate the possible impact of
any modification in their current data-release policies
on the civil society’s perception of the agency’s com-
mitment to transparency.

For these reasons we found that it was not enough
to expect all of our inep counterparts to be able to rec-
ognize how well-known privacy issues described in the
literature could apply to their own datasets, even if, as
researchers, we were able to explain the underlying prin-
ciples. We had to reproduce those attacks and demon-
strate specifically the potential for future harm. This
turned out to be the only way to convince both the
agency (and public) of the relevance of prior research.

As described, the production of this concrete evi-
dence posed a serious challenge; but it turned out to
be critical in convincing the agency –and, hopefully, in
the near future, also a public accustomed to having ac-
cess to highly useful data releases– of the necessity of
changes in inep’s management of finding the right bal-
ance between transparency and privacy.

Irrational adversaries and unrealistic but
simple scenarios acted as a stepping stone to ex-
plaining how realistic privacy risks in the INEP
datasets could potentially harm many citizens.
As described in Sec. 5, great effort went into analyzing
“deterministic vulnerabilities” in spite of the sometimes
misleading impression of security that they imply [2].
Such measures, for example, do not distinguish between
an adversary who is 99.99% accurate in her ability to
identify individuals and one who is only 0.01% accu-
rate. In a deterministic assessment neither adversary is
regarded as a threat because they cannot identify indi-
viduals with absolute certainty. However early on in our
discussions, the deterministic measures turned out to be
the most understandable for our inep counterparts; but
we wanted to alert them to the potential harm that
highly accurate, albeit imperfect adversaries could pose
to a large number of citizens. As well as computing the
level of risk exposure, we also explained the results using
scenarios such as the following.

A job agency is considering two candidates for a
position. However, the way that inep currently releases
data allows the company to use additional information
provided in the candidates’ resumés to determine that
the first candidate has a 30% chance of having a disabil-
ity, whereas the second candidate has only a 5% chance.
Of course now the agency has a choice whether to dis-
criminate against the first candidate and offer the job
to the second — this would be a decision made using a
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probabilistic inference but causing definite harm that,
if done at scale, could reach a large number of citizens.

When these risks were explained, the inep team re-
ported that their perception of privacy changed signifi-
cantly and that there were many more threats than just
being able to identify individuals precisely. This also
led them to re-evaluate the simple mitigation techniques
that they had been considering.

6.2 Technical and scientific aspects

The main technical challenge in our endeavor consisted
of adapting QIF attack models –which are information-
theoretic and, hence, provide exact, rather than approx-
imate, results– to enable effective computational anal-
yses at the large scale of inep’s scenario: the datasets
to be analyzed covered a period of 13 years, with each
year’s data containing approximately 50 million records,
each with up to around 90 attributes (see Tbl. 5). In
particular, for each attack it was necessary to identify
instantiations of the adversary’s prior knowledge and of
vulnerability measures that were not only meaningful
and persuasive to the decision makers at inep, but also
computationally tractable. Here we describe the main
lessons learned while overcoming these challenges.

Applying academic research to real-world
privacy problems requires consolidation and ex-
plainability. One of our main scientific contributions
outlined in Sec. 2 was to consolidate and systematize the
body of knowledge on privacy threats. Unfortunately,
as it turns out we were unable to apply those findings
directly to the inep datasets without a laborious consol-
idation step. This was because our task was to provide
a comprehensive assessment of known privacy risks; but
whilst the literature provided an important input, each
of the documented vulnerabilities were often performed
by different teams on different datasets with their own
special features and unique experimental set up. Not
only were their overarching lessons not accessible to the
inep agents, but it was not clear which experiments were
essentially doing the same thing and which were related
to a genuinely different adversarial setting.

Our systematic treatment (Sec. 2) together with its
implementation inQIF terms (Sections 3 and 4) ensured
the broad coverage required for us to be confident in the
advice we provided to inep.

Engagement with real-world problems ben-
efits basic scientific research. The main scien-
tific challenge consisted of rigorously formalizing both
known and novel attacks to obtain a comprehensive

evaluation of privacy vulnerabilities in a real-world
setting: our coherent QIF framework enables rigorous
quantification and comparison of privacy risks.

One of the outcomes of our project with inep was to
discover new ways to use our QIF framework, and a new
understanding of its agility for representing and explain-
ing complex scenarios, and that the hyper-distribution
approach is not only useful as an abstract concept but
leads to a compact representation important for scala-
bility. As a positive side effect, we identified many ways
in which our framework can be used to model further,
more sophisticated threats; we discuss these prospects
in the next section.

7 Conclusions and prospects
In this work we rationalized a myriad of known and
novel attack models in the rigorous framework of Quan-
titative Information Flow, showing how it can express
concrete attacks and quantify privacy risks at very large
scale using as an example the case of inep’s Educa-
tional Censuses datasets. To the best of our knowledge,
this is the largest privacy analysis ever performed on of-
ficial governmental microdata –with rich records (over
90 attributes) from around 50 million individuals across
many years. Our results were crucial in enabling inep
to reach well-informed decisions on the balance between
privacy and transparency, which directly impacts the
25% of the Brazilian population represented in these
data. Indeed, the agency is currently considering our
suggestions for coping with the problem, including the
publication of only aggregated data protected by some
form of differential privacy or its variants, and allowing
access to microdata only via safe rooms. But, beyond
inep’s context, we hope that the lessons learned in our
endeavor can help other practitioners to communicate
more effectively with decision makers and the public.

We now consider some meaningful extensions of the
analyses performed on inep’s scenario.

Scalability in general longitudinal collections.
In the analyzed inep Censuses, there exists a persistent
identifier for every individual across all datasets, which
renders dataset aggregation straightforward. Without
such an identifier, an adversary may rely on QID values
and prior knowledge about the population of interest to
try to match the same individual’s records across differ-
ent datasets. For instance, she may link a record for a
student aged “12” in one year with one aged “13” in the
following year, and with the same nationality over both
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years. However, the aggregated dataset so obtained will
present some inherent uncertainty (e.g. because some
people indeed do change nationality from one year to
the other, which may lead to a wrong record-linkage),
and any leakage analysis performed on such a dataset
needs to account for that uncertainty. This effect can
be naturally accounted for in the QIF framework with
appropriate models of an adversary’s prior knowledge
about the population of interest, guaranteeing an accu-
rate overall leakage assessment. Indeed, starting from
2018 inep has discontinued the use of a unique individ-
ual identifier across datasets, and we intend to perform
a formal privacy analysis on the agency’s new policy.

Robust analysis of privacy risks using capac-
ity. Our analyses considered reasonable –and modest–
adversaries, and showed that even those posed signif-
icant privacy risks to data owners in inep’s datasets.
More precisely, such adversaries had limited prior
knowledge, and their intention was mostly to guess the
secret value correctly in one try. The QIF framework
allows for many more adversarial models, and, in a pre-
cise mathematical sense, it can cover all “reasonable”
adversarial models according to a set of fundamental
information-theoretic axioms [2, 3]. Furthermore, we
can use a theory of channel capacity [1] to estimate the
maximum risk inep’s data publishing can cause over all
these reasonable adversarial models, providing a robust
upper bound on the corresponding privacy risks.

Analyses of publications other than unmod-
ified microdata. We performed our attacks on the
unmodified microdata released by inep, and protected
only by de-identification and pseudonymization. As al-
ready mentioned, the institute is now considering ap-
plying mitigation techniques that will change the pub-
lished data’s format (e.g. to sanitized microdata, or to
aggregated data protected by some form of differential
privacy [16]). Because our QIF model is agnostic to the
particular form of published data (since the adversary’s
posterior knowledge is represented by a hyper), it can
be easily extended to analyze these scenarios, whereas
other tools (such as ARX) cannot. As an example, Ap-
pendix D shows how the QIF framework can be used to
assess privacy under the popular syntactic anonymiza-
tion techniques of k-anonimity and t-closeness.

Availability. The software developed for this work,
together with our privacy analyses, is available at
nunesgh/bvm-lib [40]. The repository includes a demo
with ProPublica’s data from the COMPAS tool. 13

13 https://github.com/propublica/compas-analysis

8 Further related work
Dalenius initiated a rigorous approach to statistical dis-
closure control in 1977 [11]. De-identification was al-
ready known to be an insufficient measure [12], and sev-
eral disclosure control methods have been proposed con-
sidering various attack models [15, 16, 32, 33, 50, 53].
Fung et al. [20] and Divanis et al. [23] provide a thorough
review of available methods. Notable re-identification
attacks include Sweeney’s seminal analysis of the US
1990 Census [55] and Narayanan and Shmatikov’s at-
tacks on the Netflix dataset [39]. Our work, however,
covers significantly larger datasets and is, to the best of
our knowledge, the most comprehensive on longitudinal
governmental microdata. More specifically, Sweeney’s
results were limited to estimates of how many people
could be re-identified with certainty in the US 1990
Census, using only a few combinations of QIDs as aux-
iliary knowledge, whilst we considered both probabilis-
tic and deterministic measures of success under thou-
sands of combinations of QIDs, and also included longi-
tudinal collections. On the other hand, Narayanan and
Shmatikov’s attacks on the Netflix dataset did not in-
volve governmental data being limited to the Netflix
Prize dataset and publicly available data from the In-
ternet Movie Database (IMDb), used as auxiliary infor-
mation. The US Census Bureau has identified that their
published tables are vulnerable to database reconstruc-
tion attacks [14], but they do not publish their results
because of legal reasons [21, 58]. Alternative tools to
ARX (discussed in Sec. 1.1) include the open source
and continuously supported sdcMicro package [37, 56]
for the R programming language. This package focuses
on measuring the disclosure risk in microdata and pro-
vides some well-known anonymization methods, but it
suffers from similar lack of flexibility as ARX. QIF was
pioneered by Clark, Hunt, and Malacaria [9], followed
by a growing community (see e.g. [8, 34, 54]), and its
principles have been organized in [4].
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A Overview of Brazilian privacy
and transparency laws

Article 5 of the Brazilian Constitution from 1988 [26] es-
tablishes guiding principles on the right to both privacy
(for individuals) and transparency (on matters of pub-
lic concern). However, the Constitution does not provide
guidance on how to balance those two principles; these
are detailed in the following pieces of legislation.

The transparency law – this is Law 12 527 of
2011, known as lai (Lei de Acesso à Informação, or Ac-
cess to Information Act). It requires that public authori-
ties guarantee broad access to information, particularly
that considered to be of collective or general interest,
which must be made available via the Internet (Arti-
cles 6 and 8) or otherwise (Article 7) except where such
information is considered confidential (Article 22). Re-
garding the treatment of personal information, Article
31 establishes that it must be done in a transparent
manner and with respect to individual freedoms and
guarantees; however, provisions on the handling of per-
sonal information are open to subsequent regulation.

The privacy law – this is Law 13 709 of 2018,
known as lgpd [28] (Lei Geral de Proteção de Dados
Pessoais, or General Data Protection Act), which is
based on the European General Data Protection Regu-
lation (gdpr). The law aims to protect the fundamental
rights of freedom and privacy (Article 1). It determines
that the processing of sensitive personal data is per-
mitted with consent of the data subject or their legal
guardian (Articles 7, 11). In its Article 5, lgpd defines
sensitive personal data as “personal data on racial or
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ethnic origin, religious belief, political opinion, union
membership or affiliation to organizations of a religious,
philosophical, or political nature, data relating to health
or sexual life, genetic or biometric data, when linked to
a natural person”; and anonymous data as “data re-
lating to an unidentifiable holder, considering the use
of reasonable technical means available at the time of
processing.” Article 12 defines that “anonymous data”
is not to be considered personal data, except when
the anonymization process can be reversed with rea-
sonable efforts. Therefore, objective factors such as the
cost and time needed to reverse the anonymization pro-
cess should be considered given the available technolo-
gies and disregarding the use of third party means. But
again, the proper definition of what would be consid-
ered a reasonable effort, or which anonymization meth-
ods should be used, were left to subsequent regulation.
Finally, lgpd is to be regulated by the National Data
Protection Authority (Autoridade Nacional de Proteção
de Dados, or ANPD), which is expected to face several
challenges in harmonizing lai with lgpd.

B Full procedure for Ex. in Sec. 3
Here we present the full QIF procedure to obtain the
hyper-distribution (Tbl. 2c) from the original dataset
(Tbl. 2a) in the example from Sec. 3. Recall that when
meeting a randomly selected individual, the adversary
is able to identify this person’s age and gender. She
then performs Bayesian reasoning on the collected infor-
mation and updates her knowledge about the language
from the prior to a hyper on the secret value.

This whole process occurs as in Tbl. 9. First the
adversary extracts from the original dataset all co-
occurrences of values for language, gender, and age
(Tbl. 9a), and from that she derives a joint probability
distribution on these values (Tbl. 9b). By marginaliz-
ing the joint distribution, we get the adversary’s prior
on language, and by conditioning the joint distribution
on the prior we get the channel representing the adver-
sary’s information-gathering process during the attack
(Tbl. 9c). The adversary’s posterior knowledge is then
represented by the hyper in Tbl. 9d, which is exactly
the same as that in Tbl. 2c.

C Collective-target
re-identification attack on a
longitudinal collection (CRL)

Here we revisit our claim from Sec. 4.2 that CAL attacks
can be seen as generalizations of all others (as in Tbl. 1).

The key idea is that in the QIF framework we can
consider that the secret (i.e. the values the adversary is
trying to make inferences about) consists in the whole
collection of real, un-sanitized records for all individuals
of interest, some of which may be treated and published,
and some of which may not be published at all. In this
model, each real record contains the accurate value for
all attributes of an individual, including: (i) those which
are typically removed in any private microdata release,
such as personal identifiers like name or, in our case,
a uniquely identifying id attribute; (ii) those which are
published in a possibly sanitized form, such as QIDs or
sensitive attributes; and (iii) a special membership at-
tribute indicating whether or not the record in question
is published at all in the data release.

In QIF, the adversary’s goals and capabilities in
an attack are modeled as a gain function selecting the
part of the secret she is interested in. In an attribute-
inference attack, such as that from Sec. 4.2, the gain
function represents the adversary’s goal of inferring the
mapping from individuals’ unique ids to their sensitive
attribute. Note that, in that example, all individuals of
interest were known to be represented in the published
dataset, but that is not required in general. Indeed, QIF
allows for the assessment of leakage of information even
about individuals not present in the data release.

Now, notice that re-identifying individuals is the
same as finding a mapping from published records to the
real ids of their owners. Hence, a re-identification attack
is just an instance of attribute-inference attacks in which
the attribute to be inferred is the unique id of individ-
uals associated with published records. Notice that, al-
though the id values to be inferred are not present in
the published dataset, they are part of the secret collec-
tion of real records, and QIF allows us to measure the
information leaked about them. Similarly, we can model
a membership attack as an attribute-inference attack in
which the attribute to be inferred is the attribute in the
complete, secret collection of records indicating which
individuals are part of the published data.

Now we provide a concrete example of how to model
a collective-target re-identification attack on a longitu-
dinal collection (CRL) attack as an instance of a CAL
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gender, age I

M
≤

30

M
>

30

F
≤

30

F
>

30

language H

English 0 1 0 0
Portuguese 1 0 0 0

German 1 0 1 0
(a) Co-occurrence of values for language, gender, and age, derived from
the original dataset from Tbl. 2a. E.g. exactly one record (that of id 1)
represents an English-speaking male over 30.

gender, age I

M
≤

30

M
>

30

F
≤

30

F
>

30

language H

English 0 1/4 0 0
Portuguese 1/4 0 0 0

German 1/4 0 1/4 0
(b) Joint distribution for language, gender, and age, derived from the co-
occurrence matrix from Tbl. 9a, and assuming a uniform distribution on
the records in the original dataset. E.g. the probability that an individual
is an English-speaking male over 30 is 1/4.

prior
1/4
1/4
1/2

gender, age I
M
≤

30

M
>

30

F
≤

30

F
>

30

language H

English 0 1 0 0
Portuguese 1 0 0 0

German 1/2 0 1/2 0
(c) Adversary’s prior knowledge about a randomly selected individual’s
language, and the channel that probabilistically maps language, gen-
der, and age, each derived from the joint distribution from Tbl. 9b by
marginalization and conditioning, respectively.

outers I 1/2 1/4 1/4 0

gender, age I

M
≤

30

M
>

30

F
≤

30

F
>

30

language H

English 0 1 0 0
Portuguese 1/2 0 0 0

German 1/2 0 1 0
(d) Hyper-distribution (with column labels added for clarity) representing
the adversary’s knowledge about language after meeting the person and
learning gender and age. This is identical to the final result of Tbl. 2c.

Table 9. Step-by-step derivation of prior, channel, and hyper-distribution for the native-language example from Tbl. 2.

attack. Recall in such an attack, the adversary’s goal is
to re-identify as many individuals as possible in the focal
datasetD1, no matter who they might be. Hence we con-
sider a CAL attack in which the attribute to be inferred
is the individual’s identification itself, so X = {id}.

Attack execution. In the absence of further prior
knowledge, before the attack the adversary considers
that all individuals of interest have the same probabil-
ity of being the owner of any record in the focal dataset
D1, meaning that her prior π on id is uniform. Consider
again that during the attack the adversary obtains the
values of the QIDs Y={gender, grade} for every individ-
ual in D as auxiliary information. She then performs
Bayesian reasoning to update her knowledge about the
secret value from the prior π to a hyper. This whole
process is analogous to that presented for the CAL at-
tack, and is modeled in QIF as presented in Tbl. 10.
The degradation of privacy can be computed as follows.

Deterministic degradation of privacy. The de-
terministic prior vulnerability of the dataset is 0%, since
before the attack no individual can be re-identified with
certainty. After the attack, the adversary’s posterior
knowledge is given by the hyper of Tbl. 10d. Note that
in that hyper posteriors containing only 1 and 0 values
– i.e. records with ids 1, 2, 6, 8, 9, and 10 – have unique
QIDs and can therefore be re-identified with certainty.
The adversary’s posterior success is the proportion of
individuals identified in this way, which is exactly 6 out
of 10, i.e. 1/10·6=60%. The overall deterministic degra-
dation of privacy is 60%−0%=60%, meaning that the

execution of the attack increases the proportion of re-
identifiable individuals by an absolute value of 60%.

Probabilistic degradation of privacy. The prior
vulnerability of the dataset is given by its Bayes vulner-
ability (i.e. the maximum probability of guessing any
secret value), which is 1/10=10% (given the prior is uni-
form). After the attack, the adversary’s knowledge is
given by the hyper in Tbl. 10d. The posterior Bayes
vulnerability is the expected maximum probability of
success over all posteriors. More precisely, since in 6 of
the posteriors the probability of a correct guess is 1 –and
each of these posteriors occur themselves with proba-
bility 1/10–, and in 2 of the posteriors the probability
of success is 1/2 –and each of them occurs with prob-
ability 1/5–, the overall posterior Bayes vulnerability is
6·1/10·1+2·1/5·1/2=80%. The overall probabilistic degra-
dation of privacy caused by the attack is 80%/10%=8,
meaning that the adversary’s chance of re-identifying
a randomly selected record in the focal dataset D1 in-
creases by a factor of eight after the CRL attack.

D Using the QIF framework in
other large-scale scenarios

We now exemplify how the QIF framework, which
grounded the inep privacy analyses, can be generalized
to other other large-scale scenarios. More precisely, we
show how the QIF framework can be used to assess pri-
vacy under popular syntactic anonymization techniques.
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QIDs I

(F
,A
,B
)

(F
,A
,A
)

(F
,C
,C
)

(M
,B
,B
)

(F
,C
,D
)

(F
,E
,E
)

(M
,D
,D
)

(M
,D
,-)

id H
1 1 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 0 0 1 0 0 0 0
5 0 0 0 1 0 0 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 0
8 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 1

(a) Co-occurrence of values for secret X={(id, 1)} and for observable
QIDs Y={(gender, 1), (grade, 1), (grade, 2)}, derived from the aggre-
gated dataset D from Tbl. 3c. E.g. exactly one record has id 1 and at the
same time is a female with grade A in the focal dataset D1, and grade B
in the auxiliary dataset D2.

QIDs I

(F
,A
,B
)

(F
,A
,A
)

(F
,C
,C
)

(M
,B
,B
)

(F
,C
,D
)

(F
,E
,E
)

(M
,D
,D
)

(M
,D
,-)

id H
1 1/10 0 0 0 0 0 0 0
2 0 1/10 0 0 0 0 0 0
3 0 0 1/10 0 0 0 0 0
4 0 0 0 1/10 0 0 0 0
5 0 0 0 1/10 0 0 0 0
6 0 0 0 0 1/10 0 0 0
7 0 0 1/10 0 0 0 0 0
8 0 0 0 0 0 1/10 0 0
9 0 0 0 0 0 0 1/10 0
10 0 0 0 0 0 0 0 1/10

(b) Joint distribution of values for secret X={(disability, 1)} and for ob-
servable QIDs Y={(gender, 1), (grade, 1), (grade, 2)}, derived from the
co-occurrence matrix from Tbl. 4a, and assuming a uniform distribution
on the records in D. E.g. there is a probability 1/10 that an individual has
id 1 and has QID values (F,A,B).

π
1/10
1/10
1/10
1/10
1/10
1/10
1/10
1/10
1/10
1/10

QIDs I

(F
,A
,B
)

(F
,A
,A
)

(F
,C
,C
)

(M
,B
,B
)

(F
,C
,D
)

(F
,E
,E
)

(M
,D
,D
)

(M
,D
,-)

id H
1 1 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 0 0 1 0 0 0 0
5 0 0 0 1 0 0 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 0
8 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 1

(c) Prior distribution π on the values for secret X=(id, 1), and the chan-
nel for the CRL attack, each derived from the joint distribution from
Tbl. 4b by marginalization and conditioning, respectively.

outers I 1/10 1/10 1/5 1/5 1/10 1/10 1/10 1/10

QIDs I

(F
,A
,B
)

(F
,A
,A
)

(F
,C
,C
)

(M
,B
,B
)

(F
,C
,D
)

(F
,E
,E
)

(M
,D
,D
)

(M
,D
,-)

id H
1 1 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0
3 0 0 1/2 0 0 0 0 0
4 0 0 0 1/2 0 0 0 0
5 0 0 0 1/2 0 0 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1/2 0 0 0 0 0
8 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 1

(d) Hyper-distribution (with column labels added for clarity) representing
the adversary’s knowledge after completing the CRL attack.

Table 10. Step-by-step derivation of prior, channel, and hyper-distribution for CRL attack on the longitudinal collection LD from
Tbl. 3, considering secret X = {disability} and observable QIDs Y = {gender, grade}.

The techniques considered partition the set of
records into blocks of records with the same values for
QIDs, and then perform generalization, suppression, or
swapping. Here we considered as QIDs the 11 attributes
in Tbl. 6a, and as sensitive the attribute disability. We
then employed the ARX tool (extended with our update
to treat datasets larger than 231−1 cells) to anonymize
the School Census of 2018 (see Tbl. 5), using the fol-
lowing techniques [42].14 First, k-anonymity [53], which
ensures that each block with the same values for QIDs
has at least k records. Second, t-closeness [32], which
ensures that the distance (according to some suitable
metric, e.g. Earth Mover’s Distance) between the dis-

14 We also initially considered `-diversity [33], which ensures
that each block with the same values for QIDs has “well-
represented” values for the sensitive attribute according to some
suitable metric and threshold `. However, due to the skewness
of the distribution, all solutions found by ARX suppressed all
QID values, and we discarded them from our experiments.

tribution on the sensitive attribute in each block with
the same QID values and the overall distribution on the
sensitive attribute is bounded by a threshold t.

On each anonymized dataset we then performed
the same privacy analyses of deterministic and prob-
abilistic privacy degradation for both collective-target
re-identification (CRS) and collective-target attribute-
inference attacks (CAS) on disability. Tbl. 11 summa-
rizes our results, and confirms the intuitions that larger
values of k and smaller values of t lead to more private
data releases (at a usually increasing cost on utility). 15

15 We have used ARX in a standard configuration (which
looks for an optimal solution to the k-anonymity or t-closeness
problem wrt. the tool’s default utility metric) to compute
anonymized datasets for varying values of the parameters. Be-
cause ARX does not keep the same anonymity groupings across
different values of the parameters, the resulting privacy guaran-
tees (in terms of inferences) do not necessarily increase mono-
tonically. For instance, note on Tbl. 11a the CAS values for k=4
and k=12, and on Tbl. 11b the CRS values for k=4 and k=12
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CRS CAS (disability)

Dataset
prior success:

0.000000%
prior success:

0.000000%
posterior success posterior success

Original 96.342560%
(∼46.4 mi.)

99.890918%
(∼48.1 mi.)

k=4 0.000000% (0) 0.048254% (∼23,200)
k=12 0.000000% (0) 0.079773% (∼38,400)
k=20 0.000000% (0) 0.008977% (∼4,300)
t=0.1 0.000000% (0) 0.008977% (∼4,300)
t=0.3 0.000023% (∼11) 0.013258% (∼6,300)
t=0.5 0.000166% (∼79) 0.041118% (∼19,800)

(a) Deterministic measure of privacy degradation (i.e. proportion of stu-
dents whose sensitive attribute is inferred with certainty).

CRS CAS (disability)

Dataset
prior success:

0.000002%
prior success:
97.556444%

posterior success posterior success

Original 98.138799% 99.946785%

k=4 0.008369% 97.556444%
k=12 0.029857% 97.556444%
k=20 0.002790% 97.556444%
t=0.1 0.002790% 97.556444%
t=0.3 0.002750% 97.556444%
t=0.5 0.006615% 97.556444%

(b) Probabilistic measure of privacy degradation (i.e. probability of suc-
cessful inference of the sensitive attribute in one try).

Table 11. Comparison of privacy degradation in re-identification (CRS) and attribute-inference (CAS) attacks on the School Census
of 2018 before and after sanitization by k-anonymity and by t-closeness. In all of the attacks, the QIDs employed are the 11 listed on
Table 6a for CRS / CAS attacks.

and for t=0.1 and t=0.3. This is a strength of our QIF anal-
ysis, as it uncovers unexpected consequences of anonymization
techniques not tailored towards inference attacks.
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