
Proceedings on Privacy Enhancing Technologies ; 2022 (4):684–704

Zachary Espiritu*, Evangelia Anna Markatou, and Roberto Tamassia

Time- and Space-Efficient Aggregate
Range Queries over Encrypted Databases
Abstract: We present ARQ, a systematic framework
for creating cryptographic schemes that handle range
aggregate queries (sum, minimum, median, and mode)
over encrypted datasets. Our framework does not rely
on trusted hardware or specialized cryptographic prim-
itives such as property-preserving or homomorphic en-
cryption. Instead, ARQ unifies structures from the
plaintext data management community with existing
structured encryption primitives. We prove how such
combinations yield efficient (and secure) constructions
in the encrypted setting. We also propose a series of do-
main reduction techniques that can improve the space
efficiency of our schemes against sparse datasets at the
cost of small leakage. As part of this work, we designed
and implemented a new, open-source, encrypted search
library called Arca and implemented the ARQ frame-
work using this library in order to evaluate ARQ’s prac-
ticality. Our experiments on real-world datasets demon-
strate the efficiency of the schemes derived from ARQ
in comparison to prior work.

Keywords: structured encryption, encrypted search al-
gorithms, aggregate queries, range queries

DOI 10.56553/popets-2022-0128
Received 2022-02-28; revised 2022-06-15; accepted 2022-06-16.

1 Introduction
Structured encryption (STE) [15, 17] refers to a class of
encrypted search algorithms (ESA) [29, 42] that allow
a client to outsource (and query) an encrypted version
of their data to a semi-honest server. Recent research
in STE has focused on developing specialized structures
that efficiently handle more expressive types of queries,
such as range queries. For example, the BlindSeer con-

*Corresponding Author: Zachary Espiritu: Brown Uni-
versity, E-mail: zesp@brown.edu
Evangelia Anna Markatou: Brown University, E-mail:
markatou@brown.edu
Roberto Tamassia: Brown University, E-mail:
roberto@tamassia.net

struction from [57], the garbled-circuit-based construc-
tion from [10], and the range tree constructions from
[19, 20, 25, 27, 49, 65, 68] are all examples of encrypted
range query structures. In these works, range queries are
effectively a simple filter, applied to a single database
attribute, that returns a set of matching records.

Aggregate Range Queries. Despite the focus on encrypted
range structures in recent years, real-world applications
often do not directly require the records in the queried
range, but rather the result of an aggregate function
folded over a second record attribute in the queried
range. Consider, for instance, the following SQL query
over an employees table, which asks for the median
salary of all employees between the ages 30 and 40:

SELECT MEDIAN(salary) FROM employees

WHERE age BETWEEN 30 AND 40;

We call the attribute the filter is composed over the filter
attribute and the attribute the aggregation function is
composed over the aggregate attribute. In this example,
the filter attribute is age and the aggregate attribute
is salary. To answer this query, the server only needs
to output a single numerical value (the median salary).
Integrating aggregate functions directly into queries in
this way can minimize bandwidth as the server only
needs to send a constant-size value to the client.

Performance Gap for Encrypted Aggregates. Using exist-
ing record-reporting STE schemes to answer aggregate
queries over encrypted data incurs a significant over-
head. In many STE structures, the server cannot com-
pute the aggregate server-side and must return the en-
tire set of records satisfying the filter. This incurs linear-
size bandwidth and requires the client to spend linear re-
sources to decrypt each of the records before computing
the aggregate. Conversely, one may precompute answers
to all possible range queries in an encrypted dictionary.
This achieves constant-size bandwidth and query time,
but prohibitively requires quadratic storage.

Many approaches have been proposed to bridge this
performance gap. Fully homomorphic encryption (FHE)
[30], for example, can allow the server to compute por-
tions of the aggregate before responding to the client.
Unfortunately, state-of-the-art FHE schemes have high
performance costs and are prohibitive for real-world

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 685

applications. As an alternative, additively homomor-
phic encryption (AHE) [56] imposes more acceptable
performance costs and allows the server to sum en-
crypted values prior to sending them to a client. How-
ever, AHE does not allow for non-additive aggregates
(e.g. min/max) and still requires the server to spend
computation time to add AHE ciphertexts.

Alternatively, some encrypted range structures can
be augmented with precomputed sub-aggregates within
the structure. Queries may then be answered by re-
turning a poly-logarithmic set of sub-aggregates which
the user processes to recover a single aggregate. These
schemes can be somewhat more practical for aggregate
queries; however, they may incur higher than necessary
storage overhead, especially when the dataset is sparse.

Aside from performance concerns, “naive” STE ap-
proaches for handling aggregates may incur more leak-
age than necessary. While the ultimate goal of the end
user is to compute a single aggregate value, using stan-
dard record-reporting STE schemes as a building block
for aggregates often results in search pattern leakage
(whether the same query is made multiple times) and
access pattern leakage (whether the same encrypted
record is used to respond to multiple queries) that may
eventually lead to reconstruction attacks [7, 42]. These
performance and security limitations highlight the need
for new constructions for encrypted range aggregates.

Contributions. We take an interdisciplinary approach
and demonstrate how simple combinations of data
structures previously developed in the plaintext data
management community with STE primitives can yield
efficient (and secure) constructions in the encrypted set-
ting. More generally, our work aims to showcase how
cryptographers can leverage prior advances in databases
and data structures to develop secure constructions for
ESAs. Our contributions are summarized as follows:
– We introduce ARQ, a framework for building en-
crypted aggregate range query indexes which prov-
ably captures the leakage of our schemes. We identify
a data-oblivious (DO) security property which guar-
antees that data reconstruction attacks are impos-
sible against DO schemes, provided that query and
data distributions are independent. (§ 3, § 4)

– Using ARQ, we propose novel schemes for encrypted
range minimum, approximate mode, and approxi-
mate median. Denoting withm the domain size (num-
ber of possible values of the filter attribute) and with
n the number of records, our minimum scheme im-
proves the previous best O(m + n logn) storage of
Demertzis et al.’s 2-round protocol [20] to an O(m)

storage 1-round protocol by prohibiting some small
queries. To our knowledge, our approximate mode
and median schemes are the first in the STE liter-
ature and allow for constant time and size queries.
(§ 5, § 6, § 7)

– We propose domain reductions which can be applied
to any ARQ scheme to optimize its storage overhead
over sparse databases in exchange for small perfor-
mance and leakage. Our reductions improve the per-
formance of the sum and minimum constructions by
Demertzis et al. [20] over sparse databases. (§ 8)

– We implement Arca, a new Python library for rapid
prototyping of ESAs using STE schemes. Using Arca,
we provide a reference implementation of the ARQ
framework in Python. Using this implementation,
we conduct an empirical evaluation of our proposed
schemes against real-world datasets. (§ 9)

2 Related Work

Encrypted Aggregate Range Queries in STE. Demertzis et
al. [20] introduced the first study of STE structures for
encrypted range sum and minimum queries with con-
stant client-side storage, bandwidth, and computation
time. They proposed an encrypted range sum scheme
based upon the classic prefix sums technique [9]; it re-
quires O(m) storage, where m is the domain size (num-
ber of possible values of the filter attribute). They also
proposed two schemes for encrypted range minimums
based upon the sparse table technique by Bender et al.
[5]. The first scheme incurs O(m logm) storage in the
size of the domain. The second scheme incurs a smaller
O(m+n logn) storage requirement, where n is the num-
ber of records, at the expense of an additional round
trip. However, even with the storage optimization of the
second scheme, the O(m) factor in the asymptotics still
may be prohibitive for sparse databases.

Encrypted Aggregates via Other Techniques. Many works
have been proposed to support aggregate functions over
encrypted databases via various forms of homomorphic
encryption and property preserving encryption. A no-
table example is CryptDB, the first system to sup-
port standard SQL operations over encrypted data [60].
CryptDB uses specialized encryption schemes such as
order-preserving encryption (OPE) [11] and additively
homomorphic encryption (AHE) [56] to support cer-
tain SQL operations, including aggregates. Many similar
works use AHE to support aggregates [3, 34, 40, 43, 62].

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 686

Table 1. Our contributions compared to Demertzis et al. (DPPDGP) [20]. Storage, query time, and communication bandwidth are
asymptotic (big-O), where m is the domain size, n is the number of records, and 0 < α < 1 is a tunable parameter. Storage and query
time are given separately for the server and the client. We further characterize tradeoffs between the schemes by indicating whether a
scheme is data-oblivious (“DO”) (Definition 3.3) or optimizes storage by taking advantage of sparsity in datasets (“Sparse”).

Schemes
Server Complexity Communication Client Complexity Tradeoff

Storage Query Bandwidth Rounds Storage Query DO Sparse

Sum
DPPDGP-Sum [20] m 1 1 1 1 1 •

Sum+DomainBucket mα + n 1 n 1 n 1 •
Sum+DataBucket mα + n 1 n

mα 1 mα n
mα •

Minimum
DPPDGP-Min1 [20] m logm 1 1 1 1 1 •
DPPDGP-Min2 [20] m+ n logn 1 1 2 1 1 •

LinearMin m 1 1 1 1 1 •

Mode 1/2-ApproxMode m logm 1 1 1 1 d •
1/3-ApproxMode m log logm 1 1 1 1 1 •

Median α-ApproxMedian m
1−α 1 1 1 1 1 •

However, AHE does not support non-additive aggregate
queries, so many of these works do not support opera-
tions such as minimum, median, and mode. Addition-
ally, while OPE may be used for rank-based range ag-
gregates (e.g., median), many works have demonstrated
that OPE leaks enough information to allow for power-
ful, practical data-recovery attacks [6, 21, 38, 53].

Other works rely on trusted hardware. For instance,
Cipherbase supports aggregations using custom, trusted
field-programmable gate arrays (FPGAs) [3] that are
used to compute sum aggregates. It sends encrypted val-
ues to the FPGAs to be decrypted and summed. Then,
the result is reencrypted before releasing it to the un-
trusted environment. Other works use trusted execution
environments such as Intel SGX. However, the security
guarantees of such hardware are complex and often are
memory-limited. We do not rely on specialized hard-
ware or hardware security assumptions in this work.

Leakage-Abuse Attacks. An important property of a
structured encryption scheme is its leakage, or what in-
formation is revealed by the scheme’s operations. Islam
et al. introduced the first study of STE leakage-abuse
attacks [41]; they showed how to perform query-recovery
attacks by exploiting access pattern leakage. Follow-up
work such as Cash et al. [13] and Zhang et al. [67] ex-
ploited access pattern leakage to launch query-recovery
attacks with similar impact under different assumptions.
Recent work has also shown how to combine access and
search pattern leakage to perform query-recovery at-
tacks [55].

The increased expressiveness of range queries may
allow for more severe data-recovery attacks. Many works
have demonstrated powerful one-dimensional attacks
under varying assumptions (see. e.g., [36, 37, 39, 45–

48]), and a recent line of work has yielded reconstruction
attacks in higher dimensions [26, 27, 50]. The impact of
these kinds of attacks can vary when pitted against real-
world datasets and query distributions [42].

3 Preliminaries

Notation. {0, 1}` denotes the set of all binary strings
of length `. {0, 1}∗ denotes the set of all finite binary
strings. ⊥ represents the empty string. x ← A rep-
resents the output x of procedure A. Given a set S,
the cardinality of S is denoted #S. The set of numbers
{0, 1, . . . , x− 1} is denoted [x].

Basic Structures. Our protocols use several basic data
structures whose syntax we define here. A dictionary DX
of size s is a collection of s key-value pairs. vi := DX[`i]
denotes the retrieval of the value vi associated with the
label `i. DX[`i] := v denotes the assignment of value vi
to label `i. A multimap MM of size s is a collection of
s key-tuple pairs. ti := MM[`i] denotes the retrieval of
the tuple ti associated with the label `i. MM[`i] := ti
denotes the assignment of tuple ti to label `i. The length
of each tuple ti may vary within the multimap.

Given a data structure DS, we refer to the act of
retrieving the value associated with a label in DS as
querying DS. We refer to the set of labels that can be
used to query DS as the query space of DS and the set of
possible outputs as the response space of DS. We write
DS : Q → R to denote that Q is DS’s query space and
R is DS’s response space. We denote the number of key-
value pairs in DS, or DS’s size, as |DS|.

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 687

Tables.A table DB is a two-dimensional array where each
row is a record and each column is an attribute. We as-
sume that each attribute has a finite domain of possible
values. Every record r ∈ DB is a tuple indexed by each
of DB’s attributes. In this work, we primarily consider
one-dimensional queries, so we assume that every record
has one filter attribute and one aggregate attribute for
simplicity. Given a domain value xi, we use DB(xi) to
denote the set of records with filter attribute value xi.
We also use DB←(xi) to denote the record with filter at-
tribute value closest or equal to, but not greater than,
xi; similarly, DB→(xi) denotes the record with filter at-
tribute value closest to, but not less than, xi.

Throughout the paper, we use n to refer to the num-
ber of records in DB and m to refer to the domain size
of DB’s filter attribute.

Structured Encryption. A structured encryption (STE)
scheme encrypts a data structure DS so that a client can
outsource it and privately query it using a secret key K.
We exclusively use response-hiding schemes where query
responses are not revealed to the server.

Definition 3.1 (Response-hiding STE [15]). A STE
scheme Σ = (Setup,Token,Query, Resolve) consists of
four polynomial-time algorithms that work as follows:
– (K,EDS)← Setup(1k,DS) is a probablistic algorithm
run by the client. It takes as input a security param-
eter 1k and a plaintext data structure DS. It then
outputs a key K and an encrypted structure EDS.

– tk ← Token(K,Q) is a deterministic algorithm run
by the client when it issues a query. It takes as input
a key K and a query Q and outputs a token tk.

– ct ← Query(EDS, tk) is a deterministic algorithm
run by the server to respond to queries. It takes as
input the encrypted structure EDS and a query token
tk and outputs a response ct (which may be ⊥).

– R← Resolve(K, ct) is a deterministic algorithm that
takes as input the secret key K and a ciphertext ct
and outputs a plaintext response R.

We say Σ is correct if, for all k ∈ N, for all poly(k)-size
structures DS : Q → R, for all poly(k)-size sequences
of queries Q1, . . . , Qs where Qi ∈ Q, for all tki output
by Token(K,Qi), Resolve(K,Query(EDS, tki)) = DS[Qi]
with all but negligible probability.

Definition 3.1 applies to non-interactive STE schemes.
Some STE protocols are interactive, where queries client
involve more than one round of communication.

Definition 3.2 (Interactive STE). A interactive STE
scheme Σ = (Setup,Query) consists of two polynomial-

time algorithms where Setup is the same as it was in
Definition 3.1 and Query is as follows:
– (R,⊥) ← QueryC,S((K,Q),EDS) is a two party
protocol algorithm run between the client and the
server. It takes as input from the client a key K

and a query Q and as input from the server an en-
crypted structure. It outputs a plaintext result R to
the client and nothing to the server.

We say Σ is correct if, for all k ∈ N, for all
poly(k)-size structures DS : Q → R, for all poly(k)-
size sequences of queries Q1, . . . , Qm where Qi ∈ Q,
QueryC,S((K,Qi),EDS) = DS[Qi] with all but negligible
probability.

Security Definitions. To prove security of an STE pro-
tocol Σ, we define leakage functions that capture what
information is revealed by the different operations of Σ:
LS, the setup leakage, or what is leaked by the Setup op-
eration, and LQ, the query leakage, or what is leaked by
the Query algorithm. We then prove that a semi-honest,
adaptive adversary can only distinguish between two ex-
periments with negligible probability: the real world, in
which the actual STE protocol is used against the ad-
versary, and the ideal world, which attempts to simulate
the real world only based on the leakage LS and LQ. We
use the standard definitions for adaptive semantic secu-
rity from [15], which we recap in Appendix A.

3.1 Data-Oblivious STE Schemes

In our work, we find that the reduced expressiveness of
aggregate structures (they do not return the records in
the queried range) means that aggregate structures do
not necessarily suffer from the same types of leakage
as SSE structures (i.e., volume pattern, search pattern,
and access pattern to individual records). As such, we
are interested in precisely capturing when such a scheme
avoids these kinds of data-dependent leakage patterns,
as this would imply that the scheme is secure against
all previously known data-reconstruction attacks.

We call this property data-obliviousness (DO). This
property is similar to the standard definition used in the
data-oblivious algorithm literature (e.g., [8, 32]). How-
ever, our definition differs in that it makes no statement
about the information leaked by different query tran-
scripts. At a high-level, a STE scheme is DO if its setup
leakage LS reveals nothing about the plaintext struc-
ture other than (potentially) the size of the structure
and if its query leakage LQ reveals nothing other than

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 688

(potentially) the size of the structure and information
about the queries themselves.

Definition 3.3 (Data-oblivious STE scheme). Let
Σ = (Setup,Token,Query,Resolve) be an adaptively
(LS,LQ)-semantically secure, response-hiding, struc-
tured encryption scheme for the data structure DS :
Q → R. We say that Σ is data-oblivious (DO) if there
exists functions f and g such that LS(DS) = f(|DS|)
and LQ(DS, Q) = g(|DS| , Q).

The DO definition for interactive STE schemes is iden-
tical to Definition 3.3 except Σ = (Setup,Query). The
DO property guarantees that data reconstruction at-
tacks are impossible if the queries to Σ are independent
of the underlying data distribution (a standard assump-
tion in the reconstruction attacks literature). This is be-
cause the information leaked by Σ is solely a function of
the size of the encrypted data structure and the queries.

4 ARQ: A General Framework
A primary goal of this work is to identify features of
existing plaintext aggregate range query schemes that
make them suitable for the encrypted setting. To do
this, we introduce a general syntax for plaintext aggre-
gate range query schemes. We then show how to derive
a framework for building provably-secure, encrypted ag-
gregate range supporting schemes from this syntax. Our
framework allows us to provably characterize the leak-
age of any aggregate range scheme that falls within our
syntax. Finally, we introduce a data independence defi-
nition that captures a set of plaintext aggregate range
query schemes that may produce a provably DO scheme.

Before presenting our framework, we first define our
syntax for plaintext aggregate range query schemes. All
of the plaintext schemes we consider in this work (and
those from Demertzis et al. [20]) fit into this syntax.

Definition 4.1 (Aggregate range query scheme). An
aggregate range query scheme Π = (S,Q,R) for a
database DB consists of three polynomial-time, deter-
ministic algorithms that work as follows:
– DS← S(DB) takes as input a database DB and out-
puts an index structure DS : U→ S.

– U ← Q(m,Q) takes as input the domain size m and
a query Q. It outputs a initial set of subqueries U ⊆
U to be issued to DS.

– (st′, R, U) ← R(st,m,Q, S) aggregates a set of re-
sponses from DS. It takes as input prior state st
(which may be ⊥), the domain size m, the initial
query Q, and a set of responses S ⊆ S. It then out-
puts new state st′, an aggregate R (which may be
⊥), and a set of additional subqueries to be issued
U (which may be ⊥).

We now describe ARQΣ,S,Q,R, our framework for en-
crypted aggregate range query schemes. ARQΣ,S,Q,R is
a (possibly) interactive STE scheme which is parame-
terized by an aggregate range query scheme (S,Q,R)
and a response-hiding STE scheme Σ on data structure
S(DB). The full ARQ framework is defined in Figure 1.
(For brevity, we refer to ARQΣ,S,Q,R as ARQ in the pa-
per when the parameters are implied from context.) In
ARQ, the client converts their database DB into a ag-
gregate query index DS← S(DB). Then, Σ.Setup is used
to encrypt DS. When the client performs a range query,
they use Q and Σ.Token to determine which search to-
kens to send to the server. Finally, the client decrypts
the responses and passes the responses to R. R may
output another set of subqueries to issue to the server;
otherwise, R outputs the final aggregate to the client.

While the general form of ARQ is written in the
interactive STE syntax in order to support interactive
plaintext schemes, we emphasize that schemes derived
from ARQ do not necessarily require multiple rounds of
communication—in fact, most any of the ARQ schemes
that we derive in this work only require a single round
of communication between the client and server.

Theorem 4.2. If (S,Q,R) is an aggregate range
query scheme, and Σ is an adaptively (LΣ

S ,LΣ
Q)-secure,

response-hiding STE scheme on data structure S(DB),
then ARQΣ,S,Q,R is adaptively (LS,LQ)-secure, where

LS(DB) = LΣ
S (DS), and

LQ(DB, Q) =
(
LΣ

Q(DS, u)
)
u∈Λ

.

Here, Λ is the union of Ui’s, where Ui is the instantia-
tion of U on the ith loop of QueryC,S.

Proof. Let SΣ be the simulator guaranteed to exist by
the adaptive security of Σ and consider the ARQ sim-
ulator S that works as follows. Given LS(DB), S sim-
ulates the encrypted index EDS by computing EDS ←
SΣ(LS(DB)). Given LQ(DB, Q), for each LΣ

Q(DS, u) in
LQ(DB, Q), S outputs SΣ(LΣ

Q(DS, u)).
We now show that, for all ppt adversaries A,

Pr
break

= |Pr[RealARQ,A = 1]− Pr[IdealARQ,A,S = 1]|

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 689

Let Σ = (Setup,Token,Query,Resolve) be a response-hiding
STE scheme, (S,Q,R) be an aggregate range query scheme,
S be a server, and C be a client. Consider the interactive
encrypted aggregate range query scheme ARQΣ,S,Q,R =
(Setup,Query) defined as follows:

– (K,EDS)← Setup(1k,DB):
1. compute DS← S(DB);
2. compute (K,EDS)← Σ.Setup(1k,DS);
3. output (K,EDS);

– R← QueryC,S(K,Q):
1. C sets st← ⊥ and R← ⊥;
2. C computes U ← Q(m,Q);
3. while U 6= ⊥,

(a) for all ui ∈ U ,
i. C computes stki ← Σ.Token(K,ui);
ii. C sends stki to server;

(b) for all stki,
i. S computes cti ← Σ.Query(stki,EDS);
ii. S sends cti to client;

(c) initialize set S;
(d) for all cti,

i. C computes si ← Σ.Resolve(K, cti);
ii. C adds si to S;

(e) C computes and sets (st, R, U)← R(st, Q, S);
4. C outputs R;

Fig. 1. The ARQ framework.

is negligible. The only difference between RealARQ,A
and IdealARQ,A,S is that all applications of Σ.Setup
and Σ.Token have been replaced with invocations of Σ’s
simulator SΣ. Thus, in order for the adaptive semantic
security of Σ to hold, Prbreak must be negligible.

4.1 Data Independence

Motivated by the security guarantees of Definition 3.3,
we now identify properties of aggregate range query
schemes and STE schemes that result in an instantiation
of ARQ that satisfies the DO requirements. We first in-
troduce a notion of data independence over a plaintext
aggregate range query scheme. Intuitively, if (S,Q,R)
is data independent, then the size of all responses to
queries is identical given input databases DB of the same
size and the subqueries generated by Q and R do not
depend on the original table DB passed to S.

Definition 4.3 (Data independence). Let (S,Q,R) be
a plaintext aggregate range query scheme, (DB0,DB1)
be a pair of tables of size m = |DB0| = |DB1|, and T =
Q1, . . . , Qs be a query transcript. Then, for each Q ∈ T ,

let U ← Q(m,Q). Then, for i ∈ {0, 1}, let

DSi ← S(DBi),
Si:0 ← {DSi[u] | u ∈ U}, and

(sti:0, Ri:0, Ui:0)← R(⊥,m,Qi, Si:0).

Then, for j > 0,

(sti:j ,Ri:j , Ui:j)

←

{
R(sti:j−1,m,Qi, Si:j−1) if Ui:j−1 6= ⊥
(⊥, Ri:j−1,⊥) if Ui:j−1 = ⊥

We say that (S,Q,R) is a data independent aggregate
range query scheme if all of these conditions are true:
(C1) |DS0| = |DS1| and
(C2) U0:j = U1:j for all j > 0.

Implications of Data Independence. We first outline one
interesting implication of the data independence defi-
nition that implies that any data independent scheme
requires at most one round of communication.

Corollary 4.4 (sketch). Let Π be an interactive plain-
text aggregate range query scheme. If Π satisfies data in-
dependence, Π may be converted into a non-interactive
scheme with identical functionality.

The formalization of Corollary 4.4 is in Appendix B.
The contrapositive of Corollary 4.4 provides an impor-
tant insight—plaintext aggregate range query schemes
that cannot be converted into a equivalent, non-
interactive scheme will not satisfy data independence.
As we describe later, this observation allows us to prune
our search for plaintext schemes that can produce DO-
satisfying, ARQ-based encrypted schemes.

From a security perspective, our notion of data inde-
pendence captures a class of plaintext aggregate range
query schemes that can be combined with the ARQ
framework and a suitable choice of Σ to produce a en-
crypted aggregate range scheme that satisfies our DO
security property. Specifically, the following theorem
states that, if (S,Q,R) is data independent and Σ is
a DO, response-hiding STE encryption scheme over the
data structure output by S, then ARQΣ,S,Q,R is DO.

Theorem 4.5. Let (S,Q,R) be a data independent ag-
gregate range query scheme where S outputs data struc-
ture DS with query space U and response space S given
some input database DB. Also, let Σ be a DO, response-
hiding STE scheme for data structure DS : U → S.
Then, the interactive STE scheme ARQΣ,S,Q,R is DO.

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 690

Proof. We observe that the DO property of Σ implies
there exist functions f and g such that LΣ

S (DS) =
f(|DS|), LΣ

Q(DS, Q) = g(|DS|, Q), and Σ is (LΣ
S ,LΣ

Q)-
secure. We now show that there exist functions h and
j such that LS(DB) = h(|DB|), LQ(DB, Q) = j(|DB|, Q),
and ARQΣ,S,Q,R is adaptively (LΣ

S ,LΣ
Q)-secure.

– LS: By (C1) of Definition 4.3, we know that ev-
ery database of the same size |DB| results in an
aggregate index structure of the same size |DS|.
Thus, there exists some function f ′ such that |DS| =
f ′(|DB|). By Theorem 4.2, LS(DB) = LΣ

S (DS) =
f(|DS|) = f(f ′(|DB|)). Thus, defining h = f ◦ f ′

gives us LS(DB) = h(|DB|) as desired.
– LQ: By definition of Σ, LQ(DB, Q) =

(g(|DS|, Q))q∈U. We just showed that there ex-
ists some function f ′ such that |DS| = f ′(|DB|), so
we know that LQ(DB, Q) = (g(f ′(|DB|), Q))q∈U.
Also, by (C2) of Definition 4.3, we know that
(S,Q,R) always generates the same subqueries
for the aggregate index DS for a given query
Q regardless of the underlying contents of DB;
in other words, the Λ term of the leakage is a
function of Q and nothing else. Thus, we know
that there must exist a function j such that
LQ(DB, Q) = (g(f ′(|DB|), Q))q∈Λ = j(|DB|, Q).

We now present several plaintext aggregate range query
schemes using our syntax from Definition 4.1, then use
the ARQ framework to instantiate encrypted variants
of those schemes. In Sections 5, 6, and 7, we also prove
the data independence of our chosen plaintext aggre-
gate range query schemes, which shows that the result-
ing ARQ schemes are DO when using a standard STE
scheme, such as Πbas from [14] (Theorem 4.5).

In each section, we also perform a complexity anal-
ysis on concrete instantiations of ARQ. Since ARQ re-
quires a concrete Σ, our analyses assume that Σ requires
storage O(|DS|) and each query requires constant time
and space in the size of DS. An example of such a Σ
that satisfies these assumptions and the leakage profile
constraints in Theorem 4.5 is Πbas from [14]. While we
use Πbas for our analysis, we emphasize that different
choices of Σ may be selected, which may result in dif-
ferent complexity and leakage tradeoffs.

5 Range Minimum Query
We now consider the range minimum query problem.
Solutions to the range minimum query problem can be

used to answer other types of range queries in exchange
for a constant factor increase in time and space. We pro-
vide examples of such query type transformation tech-
niques for encrypted databases in Appendix C in lieu of
considering specialized structures for those types.

Definition 5.1 (Range minimum query). Given an
array A of n numbers and indices i and j where
0 ≤ i ≤ j < n, the range minimum query returns
the smallest element of A in the range [i, j].

Previous Results. Demertzis et al. [20] proposed two
approaches to the RMQ problem which we refer to
as DPPDGP-Min1 and DPPDGP-Min2. DPPDGP-
Min1 is built directly on top of the sparse table (ST)
technique by Bender et al. [5]. Starting from every el-
ement in A, ST precomputes the answer for all queries
whose range length is a power of 2 and stores it in an
two-dimensional array M . This produces O(logm) an-
swers for each of the m elements of A. Thus, the total
space of M is O(m logm). To answer a query for an in-
terval [`, r], ST accessesM for the precomputed answers
for the two overlapping intervals that exactly cover [`, r].
It then returns the minimum of those two answers.

DPPDGP-Min1 encrypts the array generated by
ST to achieve O(m logm) space with constant-size and
time queries. DPPDGP-Min2 is similar to DPPDGP-
Min1, but reduces the overhead on sparse databases to
O(m + n logn) in exchange for an additional round of
communication. It does this by first accessing an addi-
tional encrypted index that maps query domain values
to the identifier of the record nearest to that domain
value. This allows the ST to be built over the record
identifiers, resulting in smaller storage when n < m.

It can be easily shown that DPPDGP-Min1 is DO.
However, DPPDGP-Min2 is not DO—the scheme used
by DPPDGP-Min2 is interactive (and cannot be easily
changed into a non-interactive scheme) and is thus not
data independent as implied by Corollary 4.4.

Existing Plaintext Structures. Several O(m)-space solu-
tions to for range minimums exist in the data manage-
ment literature. However, achieving this storage bound
appears to necessitate the use of various compaction
techniques that make them unsuitable for our secu-
rity goals. For example, some schemes [18, 22] use bit-
packing techniques that condense O(m logm) bits to
O(m) words through the combination of different com-
ponents of the structure into the same word. While these
structures, in theory, could be implemented in the STE
setting, practical symmetric encryption algorithms’ use

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 691

of padding would prevent the use of bit-packing and
thus O(m logm) space would be required.

Similarly, other schemes [4, 5, 28] use a related
lookup table technique. At a high-level, this class of tech-
niques saves space by storing the answers to all possible
queries in a compact lookup table. Then, queries to the
structure return a reference to a part of the lookup ta-
ble, which must be separately queried to retrieve the
actual answer. These kinds of structures are also un-
suitable for our DO security goals for the following rea-
sons: first, Corollary 4.4 implies the multi-round nature
of the lookup table technique makes it impossible for
the plaintext scheme to be data independent, and thus
the resulting ARQ scheme will not be DO. More specif-
ically, if two queries to the structure require the user to
query the same component of the lookup table, then
the access pattern leakage on the lookup table reveals
that both queries had the same answer. Thus, the access
pattern leakage on the lookup table can change when
the contents of the underlying database changes, which
would make the resulting ARQ scheme not DO.

5.1 Our Approach

Modified Fischer-Heun (FH) Algorithm. In light of the
aforementioned concerns, we describe how to adapt the
scheme of Fischer and Heun [28] (FH) in such a way that
the resulting plaintext scheme satisfies the constraints
given by Corollary 4.4 and maintains the O(m) space
and O(1) query time requirements in exchange for the
restriction that clients are not allowed to issue range
queries with length that is less than some small size s.
Our modifications result in a DO scheme.

We first present a slightly simplified version of FH
which will be suitable for the description of our en-
crypted approach. FH works by first partitioning the ta-
ble DB into blocks B1, . . . , Bm/s of size s = logm. Then,
an array A of size m/s = m/ logm = O(m) is generated,
where A[i] = 〈min(Bi), indexof(DB,min(Bi))〉. The ST
technique is then applied over A to produce the sparse
table M of size O(m

logm log m
logm) = O(m). Finally, a

normalization technique is applied to generate a lookup
table of size O(m) that stores the answers to all possi-
ble queries on arrays of size s. (We elide the details of
this part of the scheme, since it does not affect our ap-
proach.) Queries are answered by taking the minimum
of the minima for the following three ranges:

Let SparseTable(A) denote an application of the ST algo-
rithm [5] on array A. Consider the aggregate range query
scheme ΠLinearMin = (S,Q,R) defined as follows:

– DS← S(DB):
1. initialize arrays A, Lleft, and Lright;
2. compute s = logm/4;
3. partition DB into blocks B1, . . . , Bm/s of size s;
4. for i ∈ [m/s], set A[i] := min(Bi);
5. compute M ← SparseTable(A);
6. for i ∈ [m],

(a) compute block index b of index i;
(b) set Lleft[i] := minsb≤k≤i DB[k];
(c) set Lright[i] := mini≤k≤s(b+1)−1 DB[k];

7. output DS← (M,Lleft,Lright);
– U ← Q(m,Q):

1. parse (`, r)← Q;
2. if r − ` < s, abort;
3. compute b` ← d `s e and br ← b

r
s
c;

4. set q1 ← ` and q2 ← r;
5. if br − b` > 1,

(a) compute h← blog(br − b` + 1)c;
(b) compute q3 ← (b`, h) and q4 ← (br−2h+1, b`);
(c) output (q1, q2, q3, q4);

6. else, output U ← (q1, q2);
– (st′, R, U)← R(st,m,Q, S):

1. output (⊥,min(S),⊥);

Fig. 2. The plaintext ΠLinearMin scheme used to instantiate the
encrypted LinearMin scheme.

1. From ` to the end of `’s block using the normaliza-
tion table to find the index of the minimum, then
using A to retrieve the actual minimum.

2. The range spanning all blocks between `’s block and
r’s block using M (does not require accessing A).

3. From the start of r’s block to r using the normal-
ization table, then using A for the actual minimum.

However, directly transforming the FH scheme into an
STE structure results in problematic leakage from the
lookup table invoked in subproblems 1 and 3.

Thus, we now introduce ΠLinearMin, our modified
FH scheme. Figure 2 outlines the algorithm for the
scheme, and Figure 3 provides an example of the
scheme. Our scheme is exactly the same as in the FH al-
gorithm except with the following modifications. First,
the user is prevented from making some queries that
are smaller than s—in particular, those queries that lie
entirely within a block Bi. (For example, a database of
size m = 264 has block size s = log 264 = 64, and so
some queries of size smaller than 64 are not permissi-
ble.) This allows us to avoid using the lookup tables
from the original FH scheme. However, with a simple

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 692

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 1 2 3 3 4 3 1 2 4 5 6 7 0

0 0 0 0

0 1 0 0

0 2 1 0

22

21

20

0 1 2 3

0 0 0 0 2 2 2 2 3 1 1 1 5 5 5 0

0 0 1 1 2 3 3 4 1 1 2 4 0 0 0 0

min(1, 1, 5) = 1

DB

M

Lleft

Lright

Fig. 3. Minimum scheme on database of size m = 16. The high-
lighted regions show how to answer the example minimum query
min(DB, [2, 12]) = min({1, 1, 5}) = 1 using the index.

modification, we can still answer arbitrary queries of
size at least s. To do this, we create two arrays Lleft and
Lright of size m which we use to precompute one-sided
queries within each block Bi. Specifically, given index
i in block index b, we assign Lleft[i] := minsb≤k≤i DB[k]
and Lright[i] := mini≤k≤s(b+1)−1 DB[k]. We can then an-
swer a query [`, r] by retrieving the answers for at most
three of the following subproblems:
1. From ` to the end of `’s block using Lright.
2. The range spanning all blocks between `’s block and

r’s block using M .
3. From the beginning of r’s block to r using Lleft.
Since any query of size s or greater must touch or overlap
at least one block boundary, we may answer any such
query using the structures above. Thus, all queries are
answerable in constant time. Queries that are smaller
than size s also may be answered provided that they
touch or overlap at least one block boundary.

LinearMin: A New Linear-Space Scheme. Combination
of ΠLinearMin = (S,Q,R) with the ARQ framework
results in a provably secure scheme, LinearMin =
ARQΣ,S,Q,R, for the encrypted range minimum prob-
lem with the leakage profile given in Theorem 4.2.

Lemma 5.2. ΠLinearMin is data independent.

Proof (sketch). Given any pair of databases (DB0,DB1),
S always outputs M , Lleft, and Lright with the same re-
spective size regardless of whether or not DB0 or DB1 is
chosen. Thus, |DS0| = |DS1|. Additionally, given a query
Q, Q always outputs the same set of subqueries U0 for
Q (as it is deterministic and has no knowledge of the
underlying DB). This implies that the size of the initial
subresponse set S0 is identical for both databases. Also,

R always outputs ⊥ for Uj for j > 0, so we know that
U0:j = U1:j for all j > 0.

Theorem 5.3. Given ΠLinearMin = (S,Q,R) and a
response-hiding STE scheme Σ on data structure DS
with storage space O(|DS|) and constant query time and
space, the scheme LinearMin = ARQΣ,S,Q,R is DO,
supports queries on ranges of size at least logm, and re-
quires O(m) storage, O(1) query time at both the client
and server, and O(1) bandwidth.

Theorem 5.3 follows by Lemma 5.2 and from [28].

Workarounds for Query Size Limitation. One simple so-
lution to minimize the number of queries of size s that
are blocked by the scheme is to recursively apply the
scheme again within blocks of size s. This maintains
the asymptotics of the construction (at the expense of a
larger coefficient on the storage overhead) and decreases
the threshold where certain queries cannot be answered
from s = logm to s′ = log logm.

Additionally, in practical deployments, the en-
crypted minimum structure may be stored alongside
an record-reporting encrypted range structure (e.g.,
[20, 25, 27]). In such settings, the client may use a split
execution strategy [62] where, when faced with an unan-
swerable query, the client can send a range query to the
encrypted range structure. Then, the client can compute
the minimum by decrypting the returned records client-
side and taking the minimum of the query attribute.
Given that this is required only for some small queries
(of size less than s), the client still may enjoy the perfor-
mance and leakage benefits of the LinearMin scheme
on larger queries while incurring minimal performance
overhead for the small queries.

6 Range Mode Query
In this section, we propose a novel scheme for the en-
crypted approximate range mode query problem, which
asks for the element with the maximum number of oc-
currences in a given range of an array. The current
state-of-the-art storage bound for constant-time range
mode queries over static arrays is O(n2 log logn/ log2 n)
[59]. Given this near-quadratic storage requirement,
we instead consider an approximate version of the
range mode query problem. Similar approximations are
available in several database implementations to im-
prove performance (e.g., the APPROXIMATE_MEDIAN and
APPROXIMATE_MODE functions in Vertica [63]). Intro-

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 693

duced by Bose et al. [12], the approximate range mode
query problem asks us to return an element of the
queried range whose frequency is at least 0 < α < 1
times that of the frequency of the actual mode of A′.

Definition 6.1 (α-approximate mode query). Given
an array A of size n and indices i and j where
0 ≤ i ≤ j < n, let A′ be the multiset of elements
comprised of all elements of A between the indices i and
j (inclusive). We say that an element x ∈ A′ is an α-
approximate mode of A′ if freq(x, [i, j]) ≥ α·freq(x, [i, j])
where freq(x, [i, j]) returns the frequency of x in the
range [i, j] and 0 < α < 1. The α-approximate range
mode query returns an α-approximate mode of A′.

Observe that the accuracy of the approximation in-
creases as α tends to 1.

Other Existing Plaintext Structures. Several solutions
have been proposed that solve the approximate range
mode problem with varying degrees of efficiency. Many
of these schemes use bit-packing techniques that, as ex-
plained previously, we can not directly translate to STE
structures (e.g., [33, 52]) or rely on theoretical data
structures with no practical implementation (e.g., [23]).
Additionally, while some recent schemes achieve lower
storage requirements than our chosen approach, their
query algorithms require non-constant query time (e.g.,
[23]). In all such cases, queries required at least 2 round
trips to the structure and subsequent accesses to the
query structure depended on the result of the initial
access. These features meant that the schemes would
not be data independent as changes to the underlying
database would result in different access patterns; addi-
tionally, as shown by Corollary 4.4, the interactivity of
the scheme makes the schemes non-data-independent.

6.1 Our Approach

The BKMT Scheme. Given the above constraints, we
focus our attention on the structures developed by Bose,
Kranakis, Morin, and Tang (BKMT) [12]. The BKMT
scheme relies on the following technical theorem.

Theorem 6.2 (Mode partition [12]). If {B1, . . . , Bk}
is a k-partition of the range [`, r], then
arg maxp mode(Bp) ≥ mode([`,r])

k , where mode is the
function that returns the mode of the input range on
A. Then, of the k submodes mode(B1), . . . ,mode(Bk),
the submode with the highest frequency is an 1/k-
approximate mode of [`, r].

Consider the aggregate range query scheme
Π1/2-ApproxMode = (S,Q,R) defined as follows:

– DS← S(DB):
1. compute k ← dlogme;
2. for p ∈ [0, k],

(a) for b in [0, dm/2pe],
i. compute s← b · 2p;
ii. compute h← min(s+ 2p−1,m);
iii. for 1 ≤ i ≤ h, compute the (mode, freq)

pair for the range [1, i] and set inM [(p, i)];
iv. for h + 1 ≤ j ≤ m, compute the

(mode, freq) pair for the range [h+1, j] and
set in M [(p, j)];

3. output DS←M ;
– U ← Q(m,Q):

1. parse (`, r)← x;
2. compute level← 1 + blog(`⊕ r)c;
3. output ((level, `), (level, r));

– (st′, R, U)← R(st,m,Q, S):
1. compute (R, f)← arg max(x,fx)∈S fx;
2. output (⊥, R,⊥);

Fig. 4. The plaintext Π1/2-ApproxMode scheme used to instantiate
the encrypted 1/2−ApproxMode scheme.

Yao [66] and Alon and Schieber [2] provide the neces-
sary k-partitioning scheme for Theorem 6.2. We refer
to this technique as the AS technique. AS is similar to
the previously mentioned ST technique except that, in
AS, the k-intervals in a given partition do not overlap.
Here, we describe the AS partitioning algorithm for the
case when k = 2. For k = 2, AS splits the array at point
h = 2blogmc into two blocks. Then, for 1 ≤ i ≤ h, AS
precomputes the answers to all intervals [i, h]. Similarly,
for h + 1 ≤ j ≤ m, AS precomputes the answers to all
intervals [h + 1, j]. These intervals allow us to answer
any query [`, r] that intersects the halfway point h. To
answer queries that fall entirely within one half of the
array (i.e. where r ≤ h or ` ≤ h+1), AS recursively pro-
cesses each half of the array with the same algorithm.
Each level of the resulting table represents m intervals
computed at one of the O(logm) recursive steps.

The BKMT solution follows as a combination of
Theorem 6.2 and the AS technique. At setup time, we
generate a k-interval AS tableM that stores the mode of
each interval and the mode’s frequency. Then, to answer
a query [`, r], we query the k non-overlapping intervals
in M that exactly cover [`, r] to retrieve their modes.
By Theorem 6.2, the mode with the highest frequency
of all k modes is a 1/k-approximate mode of [`, r]. This
scheme is described in Figure 4.

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 694

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 2 3 3 4 3 1 2 4 4 1 4 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1, 3) (1, 3) (1, 2) (3, 2) (3, 2) (3, 2) (3, 1) (4, 1) (3, 1) (3, 1) (3, 1) (3, 1) (4, 2) (1, 2) (4, 3) (4, 3)

(1, 3) (1, 3) (1, 2) (1, 1) (2, 1) (2, 1) (3, 2) (3, 2) (3, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 2) (4, 2)

(0, 1) (0, 1) (1, 1) (1, 2) (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1) (2, 1) (2, 1) (4, 1) (4, 1) (4, 1) (4, 1)

(0, 1) (1, 1) (1, 1) (1, 1) (2, 1) (3, 1) (3, 1) (4, 1) (3, 1) (1, 1) (2, 1) (4, 1) (4, 1) (1, 1) (4, 1) (0, 1)

23

22

21

20

DB

M

Fig. 5. 1/2-approximate mode scheme on database of size
m = 16. Adjacent shaded and non-shaded areas in the same
row of M denote which domain values of DB are used to com-
pute the intervals at that level. The first item of each tuple in M
is a mode (element); the second item of the tuple is the mode’s
frequency. The highlighted regions show which entries are queried
to answer the example query [1, 5]—picking the highlighted tu-
ple with the larger second element gives us (1, 3), and the first
element of the tuple (1) is the 1/2-approximate mode.

1/2-ApproxMode: A New Encrypted Mode Scheme.
Combination of Π1/2-ApproxMode = (S,Q,R) with the
ARQ framework results in a provably secure scheme,
1/2-ApproxMode = ARQΣ,S,Q,R, for the encrypted
range mode problem with the leakage profile given in
Theorem 4.2.

Lemma 6.3. Π1/2-ApproxMode is data independent.

Lemma 6.3 can be proved similarly to Lemma 5.2.

Theorem 6.4. Given Π1/2-ApproxMode = (S,Q,R) and
a response-hiding STE scheme Σ on data structure DS
with storage space O(|DS|) and constant query time and
space, the scheme 1/2-ApproxMode = ARQΣ,S,Q,R is
DO and requires O(m logm) storage, O(1) query time at
both the client and server, and O(1) bandwidth.

Theorem 6.4 follows by Lemma 6.3 and from [12].

1/3-ApproxMode. 1/3-ApproxMode, a scheme for
answering encrypted 1/3-approximate range mode
queries, is equivalent to 1/2-ApproxMode except we
modify Π1/2-ApproxMode to use a 3-interval AS table.
Queries then involve three intervals instead of two. This
improves the storage requirement to O(m log logm) in
exchange for a wider approximation. We omit the full
description of this approach and direct the reader to [2]
for the k-interval partition algorithm for k > 2.

7 Range Median Query
In this section, we propose a novel encrypted scheme for
the encrypted approximate range median query problem.

Like the range mode problem, the exact range me-
dian query problem has near-quadratic storage overhead
for constant-time queries, with the best known solu-
tion requiring O(n2 log(k) n/ logn) storage, where k is an
arbitrary constant and log(k) is the iterated logarithm
function [58]. We thus concentrate on solutions for the
approximate version of the problem introduced by Bose
et al. [12]. Given 0 < α < 1, the α-approximate median
query asks for an element of the queried range whose
rank is within ±α/2 of the rank of the true median.

Definition 7.1 (Approximate median query). Given
an array A of n numbers and indices i and j where
0 ≤ i ≤ j < n, let A′ be the multiset of elements
comprised of all elements of A between the indices i

and j (inclusive). Given 0 < α < 1, we say that an
element x ∈ A′ is an α-approximate median of A′

if the percentile rank of x ∈ A′, denoted rx, satisfies
rx ∈

[1
2 −

1−α
2 , 1

2 + 1−α
2
]
. The α-approximate range

median query returns an α-approximate median of A′.

Note that in the above definition, the accuracy of the
approximation increases as α tends to 1.

Other Existing Plaintext Structures. We know of one
other constant time and bandwidth approximate me-
dian scheme [23]. It uses fusion trees, a theoretical data
structure with no practical implementation, so we do
not consider it in this work.

7.1 Our Approach

We use a scheme based on the α-approximate range
median index from Bose, Kranakis, Morin, and Tang
(BKMT) [12]. In our testing, we found that the origi-
nal BKMT query algorithm sometimes produced queries
to indices that were outside the bounds of the struc-
ture; this was the case whether or not the domain size
matched the paper’s assumption that it was a strict
power of two. However, we found that the setup algo-
rithm from BKMT was correct. The scheme we present
here is identical to the BKMT scheme with a modified
query algorithm that fixes the out-of-bounds issues but
preserves the constant time and size query overhead.

We refer to our modified scheme as Πα-ApproxMedian.
Figure 6 defines the scheme and Figure 7 illustrates an
example. The algorithm relies on the following obser-
vation: given a sufficiently long query interval, the ef-
fects of the elements in a small prefix and suffix of the
interval are minimal on the median and thus can be

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 695

Let BKMTApproxMed(α,DB) denote an application of the
BKMT α-approximate median algorithm over table
DB [5]. Consider the aggregate range query scheme
Πα-ApproxMedian = (S,Q,R) defined as follows:

– DS← S(DB):
1. initialize dictionary DX;
2. compute k ← dlogme and p← d 2·(1+α)

1−α e;
3. for 1 ≤ i ≤ k,

(a) compute b← 2k−i;
(b) for 1 ≤ j ≤ dm

b
e,

i. initialize list medians;
ii. for 1 ≤ x ≤ p,
A. compute s← min((j − 1) · b,m− 1);
B. compute e← min(s+ (x · b),m);
C. compute the median from s to e in DB

and append it to medians;
iii. set DX[(i, j)] := medians;

4. output DS← (DX);
– U ← Q(m,Q):

1. parse (`, r)← x;
2. compute max_blocks← 2 · d 2·α

1−α e;
3. compute k ← dlogme;
4. compute initial_level← k − blog(r − `)c+ 1;
5. compute offset← blog(max_blocks + 2)c − 2
6. compute i← min(initial_level + offset, k);
7. compute b← 2k−i;
8. compute b` ← d `b e+ 1 and br ← b rb c;
9. output U ← (〈i, b`〉);

– (st′, R, U)← R(st,m,Q, S):
1. recompute b` and br using Q;
2. compute x← br − b`;
3. output (⊥, S[x],⊥);

Fig. 6. The plaintext Πα-ApproxMedian scheme used to instantiate
the encrypted α-ApproxMedian scheme.

ignored. Thus, we can avoid precomputing some sub-
medians while still achieving the desired approximation.

Given a table DB with domain size m = 2k for
some k ≥ 1, BKMT creates a hierarchical set of arrays
T1, . . . , Tk as follows. For 1 ≤ i ≤ k, we partition DB
into 2i blocks of size m/2i. Then, Ti contains 2i entries
Ti[j], each of which corresponds to the jth block of size
m/2i, denoted Bi:j . Then, each Ti[j] is a list containing
p = b 2(1+α)

1−α c elements of DB, where, for all 1 ≤ x ≤ p,
Ti[j][x] := median(

⋃
0≤q≤x−1Bi:(j+q)).

Each array Ti contains 2i lists, each containing
b2(1+α)

1−α c elements. Thus, each Ti is of size O(2i(1+α)
1−α).

There are logm arrays, so the total space needed to store
them is

∑logm
i=1 O(2i(1+α)

1−α) = O(m(1+α)
1−α) = O(m

1−α). An-
swering a query [`, r] can be done in O(1) by accessing
a single element in T using the following algorithm:

0 1 2 3 4 5 6 7

0 1 1 1 2 3 3 4
DB

0 1 2 3 4 5 6 7

T1 1, 1,⊥ 3,⊥,⊥

T2 0, 1, 1 1, 1, 2 2, 3,⊥ 3,⊥,⊥

T3 0, 0, 1 1, 1, 1 1, 1, 1 1, 1, 2 2, 2, 3 3, 3, 3 3, 3,⊥ 4,⊥,⊥

Fig. 7. Median scheme on example DB of size m = 16, α = 1
5 .

1. Determine which Ti was generated from blocks that
are as large as possible but still fit within the query
length r − ` (lines 2 through 6 in Figure 7).

2. Given the block size b ← 2k−i used to generate Ti,
compute block indices of ` and r as b` = d `be+1 and
br = b rb c.

3. Output Ti[b`][br − b`] = median(
⋃

0≤q≤br Bi:(b`+q)).

α-ApproxMedian: A New Encrypted Median Scheme.
Combination of Πα-ApproxMedian = (S,Q,R) with the
ARQ framework results in a provably secure scheme,
α-ApproxMedian = ARQΣ,S,Q,R, for the encrypted
range median problem with the leakage profile given
in Theorem 4.2.

Lemma 7.2. Πα-ApproxMedian is data independent.

Lemma 7.2 can be proved similarly to Lemma 5.2.

Theorem 7.3. Given Πα-ApproxMedian = (S,Q,R) and
a response-hiding STE scheme Σ on data structure DS
with storage space O(|DS|) and constant query time and
space, the scheme α-ApproxMedian = ARQΣ,S,Q,R is
DO and requires O(m

1−α) storage, O(1) query time at
both the client and server, and O(1) bandwidth.

Theorem 7.3 follows by Lemma 7.2 and from [12].

8 Exploiting Sparsity
We now present a set of storage optimizations for en-
crypted aggregate range query structures over sparse
databases. We refer to our techniques as domain re-
ductions, as they allow the client to reduce the size of
the domain that the aggregate structure is built over.
Our reductions themselves are plaintext aggregate range
query schemes that convert the query space of an en-
crypted data structure to a smaller domain space, while
still allowing the client to make queries in the original

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 696

Let Π′ = (S′,Q′,R′) be a plaintext aggregate range
query scheme. Consider the aggregate range query scheme
ΠDomainBucket(S′,Q′,R′) = (S,Q,R) defined as follows:

– DS← S(DB):
1. initialize multimap MM;
2. for all 0 ≤ i ≤ m1−α,

(a) compute `← imα and r ← ((i+ 1)mα)− 1;
(b) compute l1 ← DB←(`− 1) and l2 ← DB→(r +

1);
(c) compute bucketi ← {〈j,DB(j)〉 | j ∈ [`, r]} ∪
{l1, l2};

(d) set MM[〈`, r〉] := bucketi;
3. compute DS′ ← S′(DB);
4. output DS← (MM,DS′);

– U ← Q(m,Q):
1. parse (`, r)← Q;
2. compute i` ← b `

m1/α c and ir ← b
r

m1/α c;
3. compute L` ← i`m

α and R` ← ((i` + 1)mα)− 1;
4. compute Lr ← irmα and Rr ← ((ir + 1)mα)− 1;
5. output (〈L`, R`〉, 〈Lr, Rr〉);

– (st′, R, U)← R(st,m,Q, S):
1. if st = ⊥,

(a) parse (B`, Br)← S;
(b) compute the closest element ` to x in bucket

B` in the right direction;
(c) compute the closest element r to x in bucket

Br in the left direction;
(d) compute U ← Q(m, 〈`, r〉);
(e) set st′ ← (〈`, r〉,⊥);
(f) output (st′,⊥, U);

2. otherwise,
(a) parse (〈`, r〉, stR)← st;
(b) compute (st′R, R, U)← R′(stR,m, 〈`, r〉, S);
(c) set st′ ← (〈`, r〉, st′R);
(d) output (st′, R, U);

Fig. 8. The domain reduction ΠDomainBucket(S′,Q′,R′).

query space. In general, our reductions enable the client
to efficiently find the ID of the record whose query at-
tribute is closest to the client’s desired query. Our reduc-
tions significantly reduce storage with different tradeoffs
between query performance and leakage.

Our domain reduction schemes are presented in
terms of the plaintext aggregate range query syntax
from Definition 4.1, though the reductions themselves
are parameterized by a secondary scheme. Defining our
reductions in this way allows us to immediately apply
the ARQ framework to our reductions to derive en-
crypted aggregate range query schemes.

The DomainBucket Reduction. Figure 9 illustrates
the DomainBucket reduction; the algorithm is de-
fined in Figure 8. The reduction takes as input the do-

0→ 7

8→ 15

16→ 23

24→ 31

32→ 39

40→ 47

48→ 55

56→ 63

⊥ (10, A)

⊥ (16, C) (10, A) (12, B)

(12, B) (26, J) (16, C) (18, D) (20, E) (21, H)

(21, H) (44,M) (26, J) (28,K) (29, L)

(29, L) (44,M)

(29, L) ⊥ (44,M) (47, N)

(47, N) ⊥

(47, N) ⊥

MM

Fig. 9. DomainBucket example on a database of size m = 64.
Highlighted cells represent the lookup portion of each bucket.

main size m, the database DB, and a tunable constant
0 < α < 1. We partition the domain of DB into non-
overlapping “buckets” where each bucket has equal size.
More precisely, we instantiate a multimap MM with keys{

[imα, ((i+ 1)mα)− 1]
∣∣ i ∈ [m1−α]

}
, where the ith la-

bel holds tuples corresponding to the all of the records
in the range [imα, ((i+ 1)mα)− 1]. Each tuple has two
elements: the original domain value and the ordered ID
of the record (i.e., the transformed domain).

We also store two additional entries in each bucket
that we call “backwards/forwards lookup” entries. The
first entry corresponds to the record that is closest to
the left endpoint of the bucket, but is not within the
bucket range itself; the second record is for the right
endpoint of the bucket. This allows the client to receive
a valid answer to a query even if their original query
falls in a bucket with no records.

When making a query to the structure, the client
sends a search token corresponding to the bucket con-
taining the domain point. The server responds with the
entire bucket. The client then does a linear pass to find
the record ID of the closest element to x.

Complexity of DomainBucket. DomainBucket re-
quires only a constant-size search token corresponding
to the desired bucket range of size mα. However, the
response bandwidth from the server to the client is po-
tentially linear—consider a database where all of the
records are in a single bucket range, and thus a query
to that range will return O(n) records. Thus, the worst-
case client computation complexity is O(n), as such a
database would require the client to sort through all
O(n) records to recover the nearest populated point.

The DataBucket Reduction. The volume leakage and
the worst-case-linear bandwidth of the DomainBucket
scheme motivates our second domain reduction con-

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 697

0→ 11

12→ 15

16→ 18

19→ 22

23→ 26

27→ 42

43→ 45

46→ 63

0→ 11

12→ 15

16→ 18

19→ 22

23→ 26

27→ 42

43→ 45

46→ 63

⊥ (12, B) (10, A) ⊥

(10, A) (16, C) (12, B) ⊥

(12, B) (20, E) (16, C) (18, D)

(18, D) (26, J) (20, E) (21, H)

(21, H) (28,K) (26, J) ⊥

(26, J) (44,M) (28,K) (29, L)

(29, L) (47, N) (44,M) ⊥

(44,M) ⊥ (47, N) ⊥

MM
stored on
client

Fig. 10. DataBucket example on a database of size m = 64.
Highlighted cells represent the lookup portion of each bucket.

struction, DataBucket (Figure 10). We elide the for-
mal protocol description due to the scheme’s similar-
ities with the DomainBucket scheme. DataBucket
is identical to the DomainBucket scheme except that
each bucket contains the same number of records. Then,
the client maintains O(mα) storage to restore these
buckets in future queries. Buckets are padded with ⊥
to ensure that their volumes are indistinguishable. This
brings the bandwidth in the worst case from O(m) to
O(mα) (i.e. the maximum size of a bucket).

Example: Range Sum Queries. With our domain reduc-
tion schemes in hand, we use this section as an example
of how our domain reductions can be used to derive opti-
mizations to the encrypted range sum scheme presented
by Demertzis et al. [20], which require O(m) storage.

Definition 8.1 (Range sum query). Given an array A
of n numbers and indices i and j where 0 ≤ i ≤ j < n,
the range sum query computes

∑j
k=iA[k], the sum of

all A[k] where i ≤ k ≤ j.

Solutions to the range sum query problem can be used
to answer count, average, and variance queries in ex-
change for a constant factor increase in time and space.
We provide examples of such query type transformation
techniques for encrypted databases in Appendix C in
lieu of considering specialized structures for those types.

Previous Results. Demertzis et al. [20] presented the
first and only encrypted range sum query STE scheme,
DPPDGP-Sum, which was based on the classic prefix
sums technique [9]. This technique allows for constant-
size and constant-time queries in exchange for O(m)
storage. In this technique, an array A of size m is com-
puted such that, for all x ∈ [m], A[x] :=

∑x
i=0 DB(x).

Then, a range sum query [`, r] may be answered in con-
stant time by accessing A[r] and A[`−1], then computing

A[r]−A[`− 1] =
r∑
i=0

DB(x)−
`−2∑
i=0

DB(x) =
r∑

i=`−1

DB(x).

The DPPDGP-Sum scheme translates prefix sums to
the encrypted range sum problem by encrypting A with
an array encryption scheme. (We note that ARQ can
be used to derive this scheme and its leakage.)

Our Derived Schemes. Our reductions may be compiled
directly on top of DPPDGP-Sum to reveal the asymp-
totics detailed in Table 1. To do this, we generate the
prefix sums array A over the n sorted record IDs in DB
as the domain values. (Observe that the “domain” of
this prefix sums array is over the O(n) record IDs of
DB.) Then, we apply our choice of reduction to the ar-
ray A. When the client wants to make a query [`, r],
they make two queries to the reduction structure—one
to find the nearest record ID id` on the left of `, and
another to find the nearest record ID idr on the right of
r. The client then queries A using [id`, idr].

Under our general domain reduction framework, the
added structure normally incurs an additional round of
communication. However, for prefix sums, we may avoid
the additional round of communication due to the fol-
lowing: since every record ID has a one-to-one mapping
with an entry in the prefix sums array, we can replace
every instance of the record ID in the domain reduction
structure with its entry in the prefix sums array. Now,
when the client makes a query to the domain reduction
structure, the structure’s response is the desired sum.

Tradeoffs and Potential Attacks. While our reductions re-
sult in substantially lower storage overhead on sparse
datasets, the leakage changes result in schemes that are
not provably DO. However, the lack of the DO property
does not mean that the schemes are immediately vulner-
able to attacks. To provide more context on this trade-
off, we now describe starting points for attacks against
the domain reductions and what assumptions may be
necessary for such attacks to produce practical impact.

Consider some instantiation of ARQΣ,S,Q,R where
(S,Q,R) is derived from a domain reduction scheme.
Given that the reduction index translates coordinates
in the original query space Q∗ into a new query space
Q and, generally, |Q∗| < |Q|, at least two queries to
the domain reduction index will be transformed into the
same query to the aggregate index structure. In the spe-
cific reductions we propose in this work, this duplication
may reveal information about the density distribution
of the underlying database.

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 698

For example, in DataBucket or the implicit do-
main reduction used in DPPDGP-Min2, if the adver-
sary knows that the client is issuing every original do-
main query exactly once and assuming that Σ has search
pattern leakage, they may count how many queries each
bucket receives. More queries issued to some buckets
imply that the dataset has different density levels, with
the buckets receiving more queries corresponding to a
sparser domain range. We note that we are currently
not aware of any attack that allows the adversary to
order these encrypted buckets, so while the adversary
knows that some areas of the domain are sparser than
others, they may not be able to determine the order-
ing of these densities without more assumptions. At-
tacks that leverage knowledge of the query distribution
(e.g., [47, 55]) can be mitigated using frequency smooth-
ing (e.g., Pancake [35]), leakage suppression frameworks
(e.g., [31, 44]), or wrap-around query buffers [51]. In Ap-
pendix D, we discuss more mitigations and extensions.

9 Empirical Evaluation
We now evaluate how the schemes derived from the
ARQ framework perform in practice.

Arca: A New Structured Encryption Library.As part of this
work, we designed and implemented a new, open-source,
encrypted search library called Arca [24]. (Arca’s code
is available at https://github.com/cloudsecuritygroup/
arca.) Arca is a Python package designed to allow re-
searchers to easily and rapidly prototype systems that
use encrypted search algorithms. It provides simple
cryptographic primitives (which themselves are based
on those provided by the Python cryptography pack-
age [61]) and implementations of various structured en-
cryption schemes. Arca v0.1.0 consists of 1558 lines
of code (excluding 1121 lines of tests) as counted by
CLOC v1.92 [1]. Arca has complete type annotations
and passes all strict type checks provided by MyPy.

We implemented all of the plaintext schemes that
we chose in this work as well as the plaintext schemes
used by Demertzis et al. [20]. Then, using Arca, we
implemented the ARQ framework. Combining our im-
plementation of the ARQ framework and our imple-
mentations of the plaintext schemes produced the Lin-
earMin, 1/2-ApproxMode, α-ApproxMedian, Do-
mainBucket, and DataBucket encrypted schemes as
well as the encrypted schemes from [20]. The plaintext
implementations of these schemes and the ARQ frame-
work are included within the Arca 0.1 library.

Cryptographic Primitives. We used the cryptographic
primitives provided by Arca. For symmetric encryption,
we used AES-256 in CBC mode; for PRFs, we used
SHA512. For each ARQ instantiation, we used Arca’s
implementation of the Πbas scheme from [14] as Σ.

Experimental Setup. We ran our experiments single-
threaded on a Slurm computing cluster consisting
of Intel Xeon E5-2670 and E5-2600 processors. All
experiments were performed in-memory, with each
process allotted 300 GB of RAM. (Our experiment
code is at https://github.com/cloudsecuritygroup/arq-
experiments.)

Datasets. We use two real-world datasets in our evalua-
tion. Gowalla [16] was a location-based social network-
ing website in which users could share their locations.
This dataset contains a total of 6,442,892 check-ins col-
lected from users between February 2009 and October
2010, with 5,561,630 unique records. The date and time
of the check-ins were converted to Unix time integers,
then shifted to domain {0, . . . , 54083068}. These nor-
malized times were used as the query attribute. Using
Gowalla, we demonstrate the effects of increasing the
number of records on the scheme costs by randomly
partitioning Gowalla into 12 sets of 500,000 points.
We ran our schemes on one partition, then formed a
new dataset by adding another partition to the previ-
ous partitions and benchmarked the costs again with
the increased number of records.1 We use this dataset
(and this partitioning scheme) to replicate Demertzis et
al.’s [20] evaluation of their schemes.

Amazon [54] contains 51,311,621 item ratings from
reviews left in the Books section of Amazon between
May 1996 and October 2018. There are 7,837 unique
timestamps in the dataset. We normalized the times-
tamp of the reviews to the domain {0, . . . , 7058880}.

Quantitative Evaluation. Figure 11 demonstrates the ef-
fectiveness of our domain reductions in reducing the in-
dex size, construction time, and server query time of

1 We were unable to run the DPPDGP-Min1 scheme on any
partition set of Gowalla within 8 hours due to the number of
encryptions needed to encrypt the ST. Thus, we instead com-
puted the number of bytes needed to store the encrypted form
of each entry of ST (162 B) and the average time for comput-
ing a hash of each entry’s label and encrypting its value (15356
ns). Then, we computed the # of cells in the ST and extrapo-
lated the index size and runtime of DPPDGP-Min1 using the
previous two metrics. Note that our encryption time estimate is
conservative, as it does not take into account the time it takes
to access elements from the large (plaintext) ST array.

https://github.com/cloudsecuritygroup/arca
https://github.com/cloudsecuritygroup/arca
https://github.com/cloudsecuritygroup/arq-experiments
https://github.com/cloudsecuritygroup/arq-experiments

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 699

1 2 3 4 5 6
·106

0

0.5

1
·104

records

St
or
ag
e
(M

B)

Index size

1 2 3 4 5 6
·106

0

1,000

2,000

3,000

records

T
im

e
(s
)

Construction time

1 2 3 4 5 6
·106

0

2,000

4,000

6,000

records

T
im

e
(n

s)

Query time

1 2 3 4 5 6
·106

0

0.5

1

·105

records

T
im

e
(n

s)

Resolve time

Fig. 11. Scheme costs on the Gowalla dataset with DPPDGP-Sum [20] (), DomainBucket (), and DataBucket ().

1 2 3 4 5 6
·106

0

0.5

1

·105

records

St
or
ag
e
(M

B)

Index size

1 2 3 4 5 6
·106

0

1

2

·104

records

T
im

e
(s
)

Construction time

Fig. 12. Scheme costs on the Gowalla dataset with DPPDGP-
Min1 [20] (), DPPDGP-Min2 [20] (), and Lin-
earMin (). There were no significant changes in Query
time as the number of records increased (average Query times—
DPPDGP-Min1: 1656 ns; DPPDGP-Min2: 2033 ns; Lin-
earMin: 3014 ns). There were no significant changes in Resolve
time as the number of records increased (average Resolve times—
DPPDGP-Min1: 41508 ns; DPPDGP-Min2: 42058 ns; Lin-
earMin: 121939 ns).

DPPDGP-Sum, while only slightly increasing the re-
solve time at the client. In particular, the DataBucket
scheme results in significantly lower storage and con-
struction overhead than DomainBucket—since m and
α are public parameters and each bucket is the same
size, the entire bucket may be encrypted as a single
value which substantially reduces the amount of ex-
tra padding incurred by each encryption operation. The
client-side performance tradeoffs with the reductions are
made evident in the results for Resolve, but the runtime
is minimally greater than that of DPPDGP-Sum.

For the minimum schemes, Figure 12 demon-
strates that our LinearMin scheme (designed for
dense databases) performs significantly better than
DPPDGP-Min1 (its direct dense scheme competitor)
and better than DPPDGP-Min2 (the scheme designed
for “sparse” databases) starting at 2.5 million records
in Gowalla. For the approximate schemes, Table 2
and Table 3 in the Appendix provide baseline perfor-
mance benchmarks for the 1/2-ApproxMode and α-
ApproxMedian schemes for α = 0.5. We can see that

20 40 60 80
0

0.5

1

1.5

·107

% of filled domain points
St
or
ag
e
(B

)

DomainBucket size

20 40 60 80
0

0.5

1

1.5

·107

% of filled domain points

St
or
ag
e
(B

)

DataBucket size

Fig. 13. Density evaluation of DomainBucket (left) and
DataBucket (right) on synthetic datasets (m = 100000) with
α = 0.25 (), α = 0.50 (), and α = 0.75 ().

the storage and build time overhead of both schemes is
comparable to that of DPPDGP-Min1.

In Figure 13, we plot the index size of our Domain-
Bucket and DataBucket schemes under synthetic
databases of different densities, with uniformly dis-
tributed data. We observe that the index size increases
as the sparsity decreases, as expected in both cases. Due
to the data distribution, we observe similar performance
from the DomainBucket and DataBucket schemes.

All in all, our experiments and analysis demonstrate
that our approach’s theoretical constant-size and time
query overhead is very small in practice. In particu-
lar, the overhead will be significantly smaller than the
linear-time overhead of the strategies used in prior work
mentioned in Section 2.

Acknowledgements
Work supported in part by the National Science Foun-
dation, the NetApp University Research Fund, and the
Randy Pausch Undergraduate Summer Research Award
at Brown University. Part of this research was con-
ducted using computational resources of the Center for
Computation and Visualization at Brown University.

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 700

References
[1] AlDanial and other contributors, “AlDanial/cloc: 1.92,”

Zenodo, Dec. 2021. [Online]. Available: https://doi.org/10.
5281/zenodo.5760077

[2] N. Alon and B. Schieber, “Optimal preprocessing for
answering on-line product queries,” The Moise and Frida
Eskenasy Institute of Computer Sciences, Tel-Aviv University,
Tech. Rep. 71/87, 1987.

[3] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan, “Orthogonal Security
with Cipherbase,” in CIDR, 2013.

[4] M. A. Bender and M. Farach-Colton, “The LCA Problem
Revisited,” in LATIN 2000: Theoretical Informatics, G. H.
Gonnet and A. Viola, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 88–94.

[5] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena,
and P. Sumazin, “Lowest common ancestors in trees and
directed acyclic graphs,” Journal of Algorithms, 2005.

[6] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart,
and V. Shmatikov, “The Tao of Inference in Privacy-
Protected Databases,” Proc. VLDB Endow., vol. 11, no. 11,
p. 1715–1728, jul 2018.

[7] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting
Leakage Abuse Attacks,” in 27th Annual Network and
Distributed System Security Symposium (NDSS 2020). The
Internet Society, 2020.

[8] M. Blanton, A. Steele, and M. Alisagari, “Data-Oblivious
Graph Algorithms for Secure Computation and Outsourc-
ing,” in Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security.
Association for Computing Machinery, 2013.

[9] G. Blelloch, “Prefix Sums and Their Applications,” in
Synthesis of Parallel Algorithms, 1st ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1993, ch. 1, pp.
35–60.

[10] T. Boelter, R. Poddar, and R. A. Popa, “A Secure One-
Roundtrip Index for Range Queries,” Cryptology ePrint
Archive, Report 2016/568, 2016, https://eprint.iacr.org/
2016/568.

[11] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-
Preserving Symmetric Encryption,” in Advances in Cryptology
- EUROCRYPT 2009, A. Joux, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 224–241.

[12] P. Bose, E. Kranakis, P. Morin, and Y. Tang, “Approximate
Range Mode and Range Median Queries,” in STACS 2005.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp.
377–388.

[13] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-
Abuse Attacks Against Searchable Encryption,” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. Association for
Computing Machinery, 2015, p. 668–679.

[14] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk,
M. Rosu, and M. Steiner, “Dynamic Searchable Encryption
in Very-Large Databases: Data Structures and Implemen-
tation,” in 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014. The Internet Society, 2014.

[15] M. Chase and S. Kamara, “Structured Encryption and Con-
trolled Disclosure,” in Advances in Cryptology - ASIACRYPT
2010, M. Abe, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 577–594.

[16] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and Mobil-
ity: User Movement in Location-Based Social Networks,” in
Proceedings of the 17th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. Association
for Computing Machinery, 2011.

[17] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky,
“Searchable Symmetric Encryption: Improved Definitions and
Efficient Constructions,” in Proceedings of the 13th ACM
Conference on Computer and Communications Security, ser.
CCS ’06. New York, NY, USA: Association for Computing
Machinery, 2006, p. 79–88.

[18] P. Davoodi, R. Raman, and S. R. Satti, “Succinct Repre-
sentations of Binary Trees for Range Minimum Queries,” in
Computing and Combinatorics, J. Gudmundsson, J. Mestre,
and T. Viglas, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 396–407.

[19] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deli-
giannakis, and M. Garofalakis, “Practical Private Range
Search Revisited,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16.
Association for Computing Machinery, 2016, p. 185–198.

[20] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deli-
giannakis, M. Garofalakis, and C. Papamanthou, “Practical
Private Range Search in Depth,” ACM Trans. Database
Syst., 2018.

[21] F. B. Durak, T. M. DuBuisson, and D. Cash, “What Else
is Revealed by Order-Revealing Encryption?” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing
Machinery, 2016.

[22] S. Durocher and R. Singh, “A simple linear-space data struc-
ture for constant-time range minimum query,” Theoretical
Computer Science, 2019.

[23] H. El-Zein, M. He, J. I. Munro, Y. Nekrich, and B. Sandlund,
“On Approximate Range Mode and Range Selection,” in 30th
International Symposium on Algorithms and Computation
(ISAAC 2019), 2019.

[24] Z. Espiritu, “Arca,” 2022. [Online]. Available: https:
//github.com/cloudsecuritygroup/arca

[25] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and
M. Steiner, “Rich Queries on Encrypted Data: Beyond Exact
Matches,” in Computer Security – ESORICS 2015, 2015.

[26] F. Falzon, E. A. Markatou, Akshima, D. Cash, A. Rivkin,
J. Stern, and R. Tamassia, “Full Database Reconstruction in
Two Dimensions,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security.
Association for Computing Machinery, 2020.

[27] F. Falzon, E. A. Markatou, Z. Espiritu, and R. Tamassia,
“Attacks on Encrypted Range Search Schemes in Multiple
Dimensions,” Cryptology ePrint Archive, Report 2022/090,
2022, https://ia.cr/2022/090.

[28] J. Fischer and V. Heun, “Theoretical and Practical Improve-
ments on the RMQ-Problem, with Applications to LCA and
LCE,” in Combinatorial Pattern Matching, 2006.

[29] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin,
V. N. Gadepally, R. Shay, J. D. Mitchell, and R. K. Cunning-

https://doi.org/10.5281/zenodo.5760077
https://doi.org/10.5281/zenodo.5760077
https://eprint.iacr.org/2016/568
https://eprint.iacr.org/2016/568
https://github.com/cloudsecuritygroup/arca
https://github.com/cloudsecuritygroup/arca
https://ia.cr/2022/090

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 701

ham, “SoK: Cryptographically Protected Database Search,”
2017 IEEE Symposium on Security and Privacy (SP), pp.
172–191, 2017.

[30] C. Gentry, “A Fully Homomorphic Encryption Scheme,”
Ph.D. dissertation, Stanford University, Stanford, CA, USA,
2009.

[31] M. George, S. Kamara, and T. Moataz, “Structured Encryp-
tion and Dynamic Leakage Suppression.” Springer-Verlag,
2021.

[32] M. T. Goodrich, O. Ohrimenko, and R. Tamassia, “Graph
Drawing in the Cloud: Privately Visualizing Relational Data
Using Small Working Storage,” in Graph Drawing, W. Didimo
and M. Patrignani, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 43–54.

[33] M. Greve, A. G. Jørgensen, K. D. Larsen, and J. Truelsen,
“Cell Probe Lower Bounds and Approximations for Range
Mode,” in Automata, Languages and Programming. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 605–616.

[34] P. Grofig, M. Härterich, I. Hang, F. Kerschbaum, M. Kohler,
A. Schaad, A. Schröpfer, and W. Tighzert, “Experiences and
observations on the industrial implementation of a system
to search over outsourced encrypted data,” Lecture Notes
in Informatics (LNI), Proceedings - Series of the Gesellschaft
fur Informatik (GI), 2014.

[35] P. Grubbs, A. Khandelwal, M.-S. Lacharité, L. Brown,
L. Li, R. Agarwal, and T. Ristenpart, “Pancake: Frequency
Smoothing for Encrypted Data Stores,” in 29th USENIX
Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 2451–2468.

[36] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson,
“Pump up the Volume: Practical Database Reconstruction
from Volume Leakage on Range Queries,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing
Machinery, 2018.

[37] ——, “Learning to Reconstruct: Statistical Learning Theory
and Encrypted Database Attacks,” in 2019 IEEE Symposium
on Security and Privacy (SP), 2019.

[38] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and
T. Ristenpart, “Leakage-Abuse Attacks against Order-
Revealing Encryption,” in 2017 IEEE Symposium on Security
and Privacy (SP), 2017.

[39] Z. Gui, O. Johnson, and B. Warinschi, “Encrypted Databases:
New Volume Attacks against Range Queries,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing
Machinery, 2019.

[40] H. Hacıgümüş, B. Iyer, and S. Mehrotra, “Efficient Execution
of Aggregation Queries over Encrypted Relational Databases,”
in Database Systems for Advanced Applications, 2004.

[41] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access Pattern
Disclosure on Searchable Encryption: Ramification, Attack
and Mitigation,” in NDSS, 2012.

[42] S. Kamara, A. Kati, T. Moataz, T. Schneider, A. Treiber,
and M. Yonli, “SoK: Cryptanalysis of encrypted search with
LEAKER - A framework for LEakage AttacK Evaluation on
Real-world data,” in IEEE European Symposium on Security
and Privacy (EuroS&P), 2022.

[43] S. Kamara and T. Moataz, “SQL on Structurally-Encrypted
Databases,” in Advances in Cryptology – ASIACRYPT, 2018.

[44] S. Kamara, T. Moataz, and O. Ohrimenko, “Structured
Encryption and Leakage Suppression,” in Advances in
Cryptology – CRYPTO 2018, H. Shacham and A. Boldyreva,
Eds. Cham: Springer International Publishing, 2018, pp.
339–370.

[45] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic
Attacks on Secure Outsourced Databases,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[46] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia,
“The State of the Uniform: Attacks on Encrypted Databases
Beyond the Uniform Query Distribution,” 2020 IEEE Sympo-
sium on Security and Privacy (SP), 2020.

[47] ——, “Response-Hiding Encrypted Ranges: Revisiting Se-
curity via Parametrized Leakage-Abuse Attacks,” in IEEE
Symp. on Security and Privacy, ser. S&P, 2021.

[48] M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Improved
Reconstruction Attacks on Encrypted Data Using Range
Query Leakage,” in 2018 IEEE Symposium on Security and
Privacy, 2018.

[49] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast
and Scalable Range Query Processing With Strong Privacy
Protection for Cloud Computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 4, pp. 2305–2318, 2016.

[50] E. A. Markatou, F. Falzon, R. Tamassia, and W. Schor,
“Reconstructing with Less: Leakage Abuse Attacks in Two
Dimensions,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, ser.
CCS ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 2243–2261.

[51] E. A. Markatou and R. Tamassia, “Mitigation Techniques
for Attacks on 1-Dimensional Databases That Support
Range Queries,” in Information Security: 22nd International
Conference, ISC 2019, New York City, NY, USA, September
16–18, 2019, Proceedings. Berlin, Heidelberg: Springer-
Verlag, 2019, p. 231–251.

[52] G. Navarro and S. V. Thankachan, “Encodings for Range
Majority Queries,” in Combinatorial Pattern Matching.
Cham: Springer International Publishing, 2014, pp. 262–272.

[53] M. Naveed, S. Kamara, and C. V. Wright, “Inference
Attacks on Property-Preserving Encrypted Databases,”
in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. Association for
Computing Machinery, 2015.

[54] J. Ni, J. Li, and J. McAuley, “Justifying Recommendations us-
ing Distantly-Labeled Reviews and Fine-Grained Aspects,” in
Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and 9th International Joint
Conference on Natural Language Processing. Association
for Computational Linguistics, 2019.

[55] S. Oya and F. Kerschbaum, “Hiding the Access Pattern is
Not Enough: Exploiting Search Pattern Leakage in Searchable
Encryption,” in 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021, pp. 127–142.

[56] P. Paillier, “Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes,” in Advances in Cryptology —
EUROCRYPT ’99, 1999.

[57] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G.
Choi, W. George, A. Keromytis, and S. Bellovin, “Blind Seer:
A Scalable Private DBMS,” in 2014 IEEE Symposium on

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 702

Scheme Index size (MB) Build time (s)
1/2-ApproxMode 219 025.72 20 761.48
α-ApproxMedian 130 459.63 13 603.23

Table 2. Scheme costs on Gowalla, which have effectively con-
stant index size and construction time in the number of records.

Security and Privacy, 2014.
[58] H. Petersen, “Improved Bounds for Range Mode and Range

Median Queries,” in SOFSEM 2008: Theory and Practice
of Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 418–423.

[59] H. Petersen and S. Grabowski, “Range Mode and Range
Median Queries in Constant Time and Sub-Quadratic
Space,” Inf. Process. Lett., vol. 109, no. 4, p. 225–228, Jan.
2009.

[60] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakr-
ishnan, “CryptDB: Protecting Confidentiality with Encrypted
Query Processing,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. Association
for Computing Machinery, 2011.

[61] Python Cryptographic Authority, “pyca/cryptography,” 2018,
version 3.4.7. [Online]. Available: https://cryptography.io/

[62] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich,
“Processing Analytical Queries over Encrypted Data,” Proc.
VLDB Endow., vol. 6, no. 5, p. 289–300, Mar. 2013.

[63] Vertica, 2021. [Online]. Available: https://www.vertica.com
[64] C. Wang, J. Bater, K. Nayak, and A. Machanavajjhala,

“DP-Sync: Hiding Update Patterns in Secure Outsourced
Databases with Differential Privacy,” in Proceedings of the
2021 International Conference on Management of Data, ser.
SIGMOD/PODS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1892–1905.

[65] J. Wang and S. S. M. Chow, “Forward and Backward-Secure
Range-Searchable Symmetric Encryption,” Proceedings on
Privacy Enhancing Technologies, vol. 2022, no. 1, pp. 28–48,
2022.

[66] A. C. Yao, “Space-Time Tradeoff for Answering Range Queries
(Extended Abstract),” in Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, ser.
STOC ’82. Association for Computing Machinery, 1982, p.
128–136.

[67] Y. Zhang, J. Katz, and C. Papamanthou, “All Your Queries
Are Belong to Us: The Power of File-Injection Attacks on
Searchable Encryption,” in 25th USENIX Security Sympo-
sium (USENIX Security ‘16), 2016.

[68] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dy-
namic Searchable Symmetric Encryption Schemes Supporting
Range Queries with Forward (and Backward) Security,” in
Computer Security, 2018.

Scheme Index size (MB) Build time (s)
DPPDGP-Sum 1143.54 258.01
DomainBucket 2.13 1.30
DataBucket 2.01 1.11
DPPDGP-Min1 26 301.39 9345.69
DPPDGP-Min2 1160.04 555.01
LinearMin 3231.74 818.05
1/2-ApproxMode 25 157.85 7384.72
α-ApproxMedian 16 307.45 4711.28

Table 3. Scheme costs on the Amazon dataset.

A Adaptive Semantic Security
Definition A.1 (Adaptive semantic security [15]).
Let Σ = (Setup,Token,Query,Resolve) be a response-
hiding structured encryption scheme for the data struc-
ture DS : Q → R. Also, let A be a stateful adversary,
S be a simulator, LS and LQ be leakage functions, and
z ∈ {0, 1}∗. Given the following probabilistic experi-
ments:
RealΣ,A(k): Given z, A outputs a (plaintext) struc-

ture DS. The challenger executes (K,EDS) ←
Setup(1k,DS) and outputs EDS to A. A then adap-
tively chooses m = poly(k) queries Q1, . . . , Qm.
For each query Qi, the challenger executes tki ←
Token(K,Qi) and outputs token tki to A. Finally,
A returns a bit b that is output by the experiment.

IdealΣ,A,S(k): Given z, A outputs a (plaintext) struc-
ture DS. The challenger outputs z and the setup
leakage LS(DS) to the simulator S. S returns an en-
crypted data structure EDS to A. A then adaptively
chooses m = poly(k) queries Q1, . . . , Qm. For each
query Qi, the challenger gives LQ(DS, Qi) to S, and
S outputs a token tki to A. Finally, A returns a bit
b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-semantically se-
cure if, for all ppt adversaries A, there exists a ppt
simulator S where∣∣Pr[RealΣ,A(k) = 1]− Pr[IdealΣ,A,S(k) = 1]

∣∣ ≤ negl(k).

The definition of adaptive semantic security for in-
teractive STE schemes is identical to Definition A.1
except that in the real experiment, for each query
Qi, the challenger C executes the two-party protocol
QueryC,A((K,Qi),EDS) with A, then outputs ⊥ to A.
Additionally, in the ideal experiment, S may output a
sequence of tokens to A for each query Qi.

https://cryptography.io/
https://www.vertica.com

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 703

B Formalization and Proof of
Corollary 4.4

We first define a technical definition of equivalence be-
tween two plaintext aggregate range query schemes. Our
equivalence definition captures when two plaintext ag-
gregate range query schemes output exactly the same fi-
nal aggregate result when given the same database and
the same query.

Definition B.1 (Equivalence). Let Π1 = (S1,Q1,R1)
and Π2 = (S2,Q2,R2) be two plaintext aggregate range
query schemes. We say that Π1 and Π2 are equiva-
lent plaintext aggregate range query schemes if, for all
k ∈ N, for all poly(k)-size tables DB, for all poly(k)-
size sequences of queries Q1, . . . , Qs, for all queries
Q ∈ Q1, . . . , Qs, given

DSi ← Si(DB),
Ui ← Qi(m,Q),
Si:0 ← {DSi[u] | u ∈ Ui},

(sti:0, Ri:0, Ui:0)← Ri(⊥,m,Q, Si:0),

and, for all j > 0,

(sti:j ,Ri:j , Ui:j)

←

{
R(sti:j−1,m,Q, Si:j−1) if Ui:j−1 6= ⊥
(⊥, Ri:j−1,⊥) if Ui:j−1 = ⊥

then there exists an integer k ≥ 0 where R0:j = R1:j for
j ≥ k.

We can then show that if a plaintext aggregate range
query scheme is data independent, there exists an equiv-
alent plaintext aggregate range query scheme that re-
quires only one round of queries to the aggregate index
structure.

Corollary B.2. Let Π = (S,Q,R) be a plaintext aggre-
gate range query scheme. If Π is data independent, then
there exists a scheme Π′ = (S′,Q′,R′) such that Π is
equivalent to Π′ and R′ always outputs (st, R, U) where
st = ⊥ and U = ⊥.

Due to space restrictions, we defer the full proof of
Corollary B.2 to the full version.

C Query Type Transformations
In this section, we briefly describe how to transform cer-
tain aggregate range query schemes into another scheme
that can answer a different type of aggregate query. Due
to space restrictions, we omit the (S,Q,R) formalization
and analysis of these transformations and defer those
definitions to the full version.

Transformations From Range Sum Query. Aggregate
range query schemes for the encrypted range sum query
problem may be used to answer count, average, and vari-
ance queries with a constant factor increase in storage,
bandwidth, and time.

– Count. We add a “fake” attribute to each record with
value 1, and apply the range sum query technique
over this new attribute.

– Average. The client divides the result of a sum query
over the desired range by the result of a count query
over the same range.

– Variance. We add a new attribute to each record that
holds the square of the desired query attribute, ap-
ply the range sum query technique over this new at-
tribute, and then answer queries by taking the result
of a sum query over the square attribute and sub-
tracting the square of the result of an average query
over the non-squared attribute.

Transformations From Range Minimum Query. Aggregate
range query schemes for the encrypted range mini-
mum query problem may be used to answer maximum,
bottom-k, and top-k queries.

– Maximum. We negate the value in the aggregate at-
tribute and apply the range minimum query tech-
nique over the negated attribute. When receiving the
result of a query, the client negates the returned value
to return it to its original sign.

– Bottom-k. The technique we use is a generalization
of the technique presented by Demertzis et al. [20].
Instead of creating one aggregate structure, we create
k aggregate structures, where the ith structure stores
the element of rank-i (e.g., the first structure stores
the true minimum for each preprocessed range, the
second structure stores the value above the minimum
for each preprocessed range, etc.). Additionally, each
minimum is stored as a tuple, where the first element
is the minimum value and the second element is an
identifier that uniquely identifies the record that this
minimum was associated with. During queries, the
client generates O(k) search tokens for all of the k

Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases 704

structures, and O(k) bandwidth is sent back to the
client in response. The client then sorts the returned
tokens, removes duplicate record IDs, and picks the
lowest k values.

– Top-k. Follows from a combination of the maximum
and bottom-k transformations.

– Range. We use a minimum and maximum structure,
which gives us the difference between the maximum
and minimum.

D Extensions

D.1 Higher Dimensions

The majority of the aggregate query schemes dis-
cussed in this paper easily generalize to d-dimensional
databases of domain size m1 × · · · ×md.

– Sum: For DPPDGP-Sum, a d-dimensional index
can be created by using the d-dimensional prefix
sums technique of [9], where an d-dimensional ar-
ray of size m1 × · · · × md is generated, and the in-
dex (c1, . . . , cd) stores the sum of all of the records
in the d-dimensional hypercube defined by (0, . . . , 0)
and (c1, . . . , cd). This requires the client to access 2d

entries in the structure.
– Minimum and Mode: For DPPDGP-Min1,

DPPDGP-Min2, and LinearMin, we can construct
d indices, one for each dimension, and then construct-
ing a new index where each entry stores the minimum
of the “product” of the ranges represented by each en-
try of the d dimension-specific indices. This requires
the client to access 2d entries in the final structure.
(The same technique applies to the ApproxMode
schemes due to the similarities between the ST and
AS structures.)

These generalizations do not work for the α-
ApproxMedian and domain reduction schemes. The
“bucketing” approach of both the median and the do-
main reduction schemes does not easily extend to higher
dimensions since all such schemes operate by access-
ing a single entry in the encrypted structure. One may
approximate these constructions using a single range
cover-like approach used by Demertzis et al. [20] in their
one-dimensional range search schemes; we leave further
exploration of such extensions to future work.

D.2 Record-Reporting

Applications that desire record-reporting for aggregate
functions (specifically min/max and median) can in-
stead (or additionally) encode the record identifier as-
sociated with the given plaintext value. For example, an
encrypted search engine may be interested in identifying
the top-k documents with the highest word count that
were generated within a particular date range. One can
implement this via a combination of the query transfor-
mations detailed in Section C to reduce the top-k prob-
lem to the minimum scheme; then encoding the record
identifier of the document alongside each precomputed
sub-aggregate in the structure. (To retrieve the actual
record, a separate, O(n)-size index can be stored along-
side the aggregate structure to map the record ID to the
actual record.)

D.3 Updates

We handle updates by combining a client-side update
cache (e.g., [64]) with periodic intermediate Setup and
“rebuild” operations. At a high-level, we initialize the
cache to have a size of δ1 (a tunable parameter). Then,
when the client wants to add or change a record, they
add the change to their client-side cache without propa-
gating it to the server immediately. On subsequent range
queries, the client is responsible for performing a linear
scan of the cache to detect if any of the updates fall
within the queried range and adjusting the computed
aggregate accordingly. Once the cache size reaches δ1,
the client triggers a Setup operation where they gener-
ate a new encrypted structure over only the records in
the cache and then send the new structure to the server,
which accumulates multiple such update structures over
time. The client stores the keys for the new structure
alongside the previously stored keys and empties the
cache. On subsequent queries, the client generates mul-
tiple search tokens for both structures. To avoid a con-
tinual increase in the number of stored structures and
search tokens, the client periodically rebuilds the server-
side structure when the number of update structures
reaches δ2 by constructing a new, single index based off
of queries to the existing structures on the server. The
client then sends the new structure to the server, which
then deletes the previous structures and replaces it with
the new index.

	Time- and Space-Efficient Aggregate Range Queries over Encrypted Databases
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Data-Oblivious STE Schemes

	4 ARQ: A General Framework
	4.1 Data Independence

	5 Range Minimum Query
	5.1 Our Approach

	6 Range Mode Query
	6.1 Our Approach

	7 Range Median Query
	7.1 Our Approach

	8 Exploiting Sparsity
	9 Empirical Evaluation
	A Adaptive Semantic Security
	B Formalization and Proof of Corollary 4.4
	C Query Type Transformations
	D Extensions
	D.1 Higher Dimensions
	D.2 Record-Reporting
	D.3 Updates

