
Proceedings on Privacy Enhancing Technologies ; 2022 (4):705–726

Michal Kepkowski*, Lucjan Hanzlik, Ian Wood, and Mohamed Ali Kaafar

How Not to Handle Keys: Timing Attacks on
FIDO Authenticator Privacy
Abstract: This paper presents a timing attack on the
FIDO2 (Fast IDentity Online) authentication protocol
that allows attackers to link user accounts stored in
vulnerable authenticators, a serious privacy concern.
FIDO2 is a new standard specified by the FIDO indus-
try alliance for secure token online authentication. It
complements the W3C WebAuthn specification by pro-
viding means to use a USB token or other authenticator
(which holds the secret authenticating material and im-
plements FIDO protocols) as a second factor during the
authentication process. From a cryptographic perspec-
tive, the protocol is a simple challenge-response where
the elliptic curve digital signature algorithm is used to
sign challenges. To protect the privacy of the user the
token uses unique key pairs per service. To accommo-
date for small memory, tokens use various techniques
that make use of a special parameter called a key handle
sent by the service to the token with which the token
can securely produce an authentication key (through
generation or decryption). We identify and analyse a
vulnerability in the way the processing of key handles is
implemented that allows attackers to remotely link user
accounts on multiple services. We show that for vulnera-
ble authenticators there is a difference between the time
it takes to process a key handle for a different service but
correct authenticator, and for a different authenticator
but correct service. This difference can be used to per-
form a timing attack allowing an adversary to link user’s
accounts across services. We present several real world
examples of adversaries that are in a position to exe-
cute our attack and can benefit from linking accounts.
We found that two of the eight hardware authenticators
we tested were vulnerable despite FIDO level 1 certifi-
cation, indicating a not insignificant problem. This vul-
nerability cannot be easily mitigated on authenticators
because, for security reasons, they usually do not allow
firmware updates. In addition, we show that due to the
way existing browsers implement the WebAuthn stan-
dard, the attack can be executed remotely. However, we
discuss countermeasures that can be implemented by
browser providers to mitigate the remote form of the
attack.

Keywords: FIDO2, WebAuthn, privacy, timing attack

DOI 10.56553/popets-2022-0129

Received 2022-02-28; revised 2022-06-15; accepted 2022-06-16.

1 Introduction
Password-based authentication methods are in-

famous for their security weaknesses [1, 2], which
led to the adoption of second factor authentica-
tion such as software based approaches like Google
Authenticator (https://g.co/2step) and Duo Security
(https://duo.com), and hardware based tokens like Yu-
bico Yubikey (https://www.yubico.com/) and Hyper-
FIDO (https://www.hypersecu.com/). Authentication
tokens provide a challenge-response based protocol us-
ing a standard specified by the FIDO Alliance [3]
called FIDO2 (Fast Identity Online), as a successor
of UAF (Universal Authentication Framework) [4] and
U2F (Universal 2nd Factor) [5]. The authenticator/-
token holds a secret key that is used to authenticate
against a public key bound to the user’s account dur-
ing registration. FIDO2 with its Client to Authenticator
Protocol (CTAP) [6], combines both and is the state-of-
the-art standard for user-side authentication which is
complemented by the W3C WebAuthn specification [7].

The adoption of FIDO2 is driven by the support
of major service providers on both mobile and desktop
platforms (Android, IOS and Windows [8][9][10]) and
industry implementations (some examples are: US lo-
gin.gov page [11], ID intelligence suite from VISA [12],
NHS enhanced login [13]). The main goal of the FIDO2
protocol is to mitigate known problems with existing
authentication mechanisms. In particular, the challenge-
response design of the protocol protects users against re-
play and credential theft attacks. The protocol is known

*Corresponding Author: Michal Kepkowski: Macquarie
University, E-mail: michal.kepkowski@students.mq.edu.au
Lucjan Hanzlik: CISPA Helmholtz Center for Information
Security, E-mail: hanzlik@cispa.de
Ian Wood: Macquarie University, E-mail:
ian.wood@mq.edu.au
Mohamed Ali Kaafar: Macquarie University, E-mail:
dali.kaafar@mq.edu.au

Timing Attacks on FIDO Authenticator Privacy 706

to be immune to database leaks since the authentica-
tion servers store only the public keys of users [14].
The protocol is also designed to protect the privacy of
users by preventing the linkage of accounts for which the
same authenticator was registered (see "Privacy consid-
erations for authenticators" section of WebAuthn [14]).
While most of the research efforts into FIDO and related
technologies have focused on providing security guar-
antees, in particular with strong and robust end-user
authentication, considerations of privacy have received
less attention from the security community.

The linking of a users’ accounts across internet plat-
forms, our focus here, poses both common risks such
as undesirably targeted recommendations and adver-
tising [15] and other purposes [16–18], as well as more
dangerous risks such as enabling actors with malicious
intent towards an individual such as criminals or un-
friendly state actors. FIDO2 authenticators are one of
the proposed solutions to these problems and are being
actively promoted by security oriented companies. For
example, Microsoft, Yubico and Google run programs to
empower at-risk individuals by ensuring strong and pri-
vacy preserving authentication via FIDO2, and in 2021,
they distributed 35k tokens [19, 20].

In a regular login/password based authentication
scenario, a user can aim at protecting their privacy
across services by creating a service-specific identity,
e.g., by using different e-mail accounts during regis-
tration and different login/password information. Even
though the method is not perfect, it allows some pro-
tection against providers trying to easily link user ac-
counts across different services. Note that a malicious
service can always use other metadata (e.g., tracking
cookies or geolocation) to link user accounts and pro-
tection against such attacks is an orthogonal problem.
Unfortunately, the introduction of any second factor for
authentication increases the privacy threat of linking
identities across services. In particular, binding the same
hardware token with unique public keys to the user’s
accounts connects the identity of the user across the
various services. The FIDO2 protocol seeks to mitigate
this risk through privacy preserving registration and au-
thentication algorithms.

Unlinkability across services together with user au-
thentication is one of the two fundamental properties
of the FIDO2 authentication mechanism [21]. In fact,
the FIDO standard recommends that hardware tokens
generate unique public keys for each service. Unfortu-
nately, in practice this solution does not scale well if
the device has only a limited amount of secure mem-
ory to store secret keys. This issue is addressed by the

consideration of non-resident keys, i.e.: keys for which
the secret key is recomputed during the authentication
process and not stored on-device. A common approach
to implement this is to use the key-wrapping technique
[22]. The idea is for the server to provide the token with
a ciphertext containing the secret key that can be used
for authentication. This secret key is then decrypted
using a master key stored on the device. We show that
wrong processing of key handles can lead to a signif-
icant difference in execution time depending on what
data is used. In particular, for vulnerable authentica-
tors there is a time difference between processing key
handles from a given authenticator and those that are
not. If the attack is performed in the context of a valid
user authentication, this provides the attacker with an
approach to link a candidate key handle (and its asso-
ciated user account) with the key handle and account
to which the user is authenticating. Note that Relying
Parties, the services to which a user authenticates, may
stipulate that a resident key is required, which quickly
consumes the memory of authenticator tokens and thus
reduces their utility, however renders the site immune
to this attack.

We focus on a remote form of the attack in which
malicious software running on the users hardware is not
required, but the attacker must have the capability to
modify FIDO communications and to time FIDO calls
to the authenticator. In practice, the timing must be
done by malicious JavaScript code, so either ownership
of JavaScript related to authentication or the ability
to inject JavaScript is required. Surprisingly, numerous
parties that interact with FIDO flow have these capabil-
ities. We present a list of such actors with correspond-
ing motivations and attack scenarios, including FIDO
service providers, web proxies and adversaries exploit-
ing XSS (Cross Site Scripting) vulnerabilities. Note that
malicious code running on user hardware with a CTAP
API (e.g., malicious apps or compromised browsers on
Linux, Windows and MacOS, a rather stringent require-
ment) can execute silent CTAP authentications to both
probe authenticators to link key handles and actually
authenticate with user services when key handles are
known.

The FIDO2 specification stipulates that an authen-
ticator must perform a user presence check during the
first phase of authentication, adding an indeterminate
delay to the corresponding CTAP call. We propose two
approaches to mitigate this and thus allow the timing
attack to proceed. Our first proposal utilises multiple
key handles in a single CTAP call that requires only a
single user presence check. In this way, the indetermi-

Timing Attacks on FIDO Authenticator Privacy 707

nate nature of the user response can be averaged over
multiple calls rendering the timing difference measur-
able. This attack is close to undetectable but requires
clients (typically browsers) to allow long lists of key han-
dles in a single CTAP call, which is the case for several
major web browsers. Our second proposal uses audio
recording to identify the point in time at which a phys-
ical button on the authenticator is pressed, thus cir-
cumventing restrictions in some clients on the number
of handles in a single CTAP call. We demonstrate that
the button click is easily detectable in a typical home
environment.

We perform experiments with popular FIDO2
clients running on different operating systems and au-
thenticators from various manufacturers. Our analysis
reveals that two of the eight hardware authenticators
we tested are vulnerable to our timing attacks. More-
over, our experiments show that the attacks can be exe-
cuted remotely (for example as an external web service)
through popular web browsers (Chrome, Firefox, Safari
and others). We note that the FIDO security measures
document stipulates in [SM-29]: “No leakage of secret
information to remote entities via variation of operation
execution time” [21]. The vulnerable tokens, which have
both passed a security certification on L1 by the FIDO
Alliance, clearly fail in this respect. Our examination of
the certification procedures revealed that only L3 cer-
tification provides in-depth and on-device testing (i.e.,
empirical tests executed on the authenticator), however
at the time of writing there are no authenticators with
L3 certification.

One might hope that the proposed attacks can be
easily mitigated by providing a firmware update for vul-
nerable authenticators. Unfortunately, to increase secu-
rity most come without an update functionality. As a
partial solution that prevents remote attacks, we pro-
pose and discuss ways for browser providers to mitigate
the attacks. Note that the attack would still be possible
from software running on the users device, hence replac-
ing vulnerable tokens is the only complete solution.

To better understand the extent of the threat, we
developed and ran a web crawler, which gathered infor-
mation about FIDO2 implementations in the wild. We
collected 684 records of FIDO2 in Javascript sources
from high traffic websites. The results showed that the
only the passwordless implementation used by Microsoft
required resident keys and could not be used for de-
ploying the attack. The remaining implementations use
FIDO2 as a second factor with non-resident keys and
are thus in position to break the privacy of vulnerable
FIDO authenticators.

Our approach leverages previously undiscovered
weaknesses in the FIDO2 specifications and the ways
that those specifications are implemented. Drawing on
well-established techniques to exploit side-channel vul-
nerabilities such as improper error handling and execu-
tion time differences, we succeeded in finding a novel
and easy to execute chain of actions that allow an ad-
versary to learn additional information from vulnerable
authenticators. We discuss the consequences of our find-
ings as well as lessons applicable to any authentication
system.

The contributions of this paper can be summarized
as follows:
1. We present a timing attack on the FIDO2 proto-

col that enables attackers to link user accounts, a
serious privacy breach.

2. We demonstrate a remote execution method that
allows the attack to be performed by website
JavaScript code.

3. Two of the eight hardware token authenticators we
tested were vulnerable out of a field of 111, indicat-
ing a substantial public privacy concern.

4. We proposed mitigation measures for FIDO clients
that prevent the remote form of the attack and for
FIDO authenticators. We notified relevant vendors
and we participated in the mitigation design.

5. We surveyed 1 million high traffic web sites and
found 684 FIDO authentication deployments, of
which almost all allow non-resident keys and are
thus exposed to our attack.

1.1 Responsible Disclosure

In accordance with ethical standards we notified the
relevant FIDO authenticator and client vendors about
our findings prior to submission at least 10 weeks
prior to submission and informed them of the ex-
pected minimum date of publication. We sent our re-
port to Chromium (which implements the core engine
for Chrome, Edge and Opera browsers), Firefox, and
Safari teams. We informed Hypersecu and Feitian and
requested that they contact us should there be any con-
cerns. We also reached out to the FIDO Alliance with
details of our findings. Details of our communications
and their responses can be found in Appendix A.

Timing Attacks on FIDO Authenticator Privacy 708

2 FIDO Authentication

2.1 High Level Overview

The process is executed between 3 parties: an authenti-
cator (i.e., the hardware token), a client (i.e., a browser)
and a FIDO server. From a cryptographic perspective, it
is a simple challenge-response protocol where the server
issues a challenge to which the authenticator responds in
form of a digital signature (also called assertion) on the
challenge and other session data including the server’s
origin provided by the client.

The FIDO server is a backend element of the ser-
vice which performs validations of assertions. It might
be an incorporated element of the Relying Party (RP)
or it can be an external service. The user’s platform is
running a client that acts as a proxy between the au-
thenticator and the server. The communication channel
is constructed using two specifications: CTAP [6] and
WebAuthn [14]. The former defines an API to exchange
messages with the authenticator using a low-level pro-
tocol with CBOR encoded messages. The CTAP speci-
fication allows the usage of USB, NFC, and BLE tech-
nologies for the transportation layer. WebAuthn defines
an API that specifies how web-applications should call
client-specific functions. In particular, the API defines
a javascript-specific navigator object that can be used
to issue a request for registration (called credential cre-
ation) or authentication to the client which in turn uses
CTAP to send the request to the authenticator. A sim-

Fig. 1. FIDO2 simplified flow of registration and authentication.

plified flow of the protocol is given in Figure 1, where:
1. RP calls the navigator.credentials.create method.
2. Browser translates Webauthn call to CTAP request.
3. CTAP client calls authenticatorMakeCredential.
4. Authenticator generates key pair and key handle,

the response is returned back to RP.
5. RP initiates by calling navigator.credentials.get

with key handle.
6. Browser translates Webauthn call to CTAP request.

7. Silent authentications to check key handles.
8. CTAP client calls authenticatorGetAssertion.
9. Authenticator verifies key handle, performs required

user checks and signs the assertion which is returned
back to RP.

2.2 FIDO Authentication - Step by Step

In the FIDO specification we distinguish two phases:
registration and authentication. We will now describe
this process for a typical use case where the client is a
browser, the authenticator is a USB hardware token (for
example implementing ECDSA—Elliptic Curve Digital
Signature [23]) and the relying party is a standard web-
server. While we overview the entire process, we focus
on the details that are relevant to the execution of the
timing attack.

2.2.1 Registration

The purpose of this phase is to bind the authenticator to
the user’s account. Similar to the standard login/pass-
word based scenario the user is provided an interface
to send out registration requests to the server. Prior to
receiving such a request the server generates a unique
challenge value and returns it to the browser which
handles the whole registration process using a server-
provided JavaScript based application. The browser
then uses credential management API which internally
executes the CTAP protocol with the authenticator.
The challenge and additional data like the server origin
in form of an application ID are sent to the authentica-
tor using (in our scenario) USB.

After the user presence check, the authenticator in-
ternally generates a key pair for the ECDSA signature
scheme and uses the secret key to create the server’s
challenge. The client’s request specifies whether the se-
cret key should reside on-device or the key pair is of the
non-resident type mentioned before. In the latter case,
additionally to the response, the authenticator also re-
turns something called a key handle. Depending on the
implementation of the non-residents key this can be ei-
ther a random value that is used as input to a KDF (key
derivation function) or the encryption of the secret key
for ECDSA.

Finally, the public key, key handle, assertion, and
optional attestation (of the public key) are sent to the
server. The data is then verified and if accepted the
public key and key handle are added to the database.

Timing Attacks on FIDO Authenticator Privacy 709

2.2.2 Authentication

After successful registration, the user now tries to access
her account and is prompted to enter login information.
This first step allows the server to locate the user’s ac-
count and the devices bound to it. Note that it is com-
monly allowed to register multiple devices with a single
server. A list (also called allowed list) of key handles
corresponding to those devices is sent to the client and
used as input to the navigator.credential.get(...)
API call. Since the list provided by the server contains
key handles for allowed devices the browser tries to find
the right key handle. This is internally done by asking
the hardware token to authenticate giving each element
on the list as input. Note that if those key handles cor-
respond to different devices there will be only one key
handle that will generate a valid assertion. Interestingly
enough this internal verification is performed without
user presence check since otherwise the user would be re-
quired to click a button a couple of times (depending on
the size of the allowed list). After the right key handle is
found the browser issues the last call to the token and re-
quires a user presence check. Finally, the authenticator
creates the assertion which is a standard ECDSA signa-
ture on a message containing among others the server’s
challenge, an authentication counter (to protect against
cloned devices), and the origin. The browser sends the
assertion to the server that provided access to the ser-
vice if the verification was successful.

2.3 FIDO2 Security

The design of the FIDO2 protocol aimed to mitigate
the known vulnerabilities of other authentication mech-
anisms. The FIDO2 core functionality is implemented
using public key cryptography which enables the fol-
lowing key features. Firstly, the RP’s database holds
only public keys which makes FIDO2 resistant against
database leakage. Additionally, the protocol requires the
FIDO server to use a random and unique challenge for
each transaction which protects against replay attacks.

Another important security feature provided by
FIDO2 is phishing resistance. Over the years phishing
has grown in popularity as an easy to execute malicious
activity and has been shown to be the second largest
group of malicious activities [24]. Combined with MITM
attacks, it is a major threat, especially in working from
home environments. Such attacks are not mitigated by
popular second factor mechanisms such as SMS or OTP
codes. FIDO2 addresses this threat by including the

relying party origin parameter into the authentication
process.

The FIDO Alliance places an emphasis on ensuring
the privacy of users is preserved [25, 26]. In FIDO2 this
is possible because for each registration a new credential
is generated that is not linked to the user. There is no
privacy attack on FIDO2 protocol that we know of.

2.4 FIDO Alliance Certification

Verification of security and privacy guarantees of FIDO2
parties is a challenging and demanding process. The
FIDO Alliance introduced an unified and voluntary pro-
gram to certify products against a list of security and
privacy controls. In particular, a dedicated certifica-
tion path was designed for FIDO2 authenticators. At
the time of writing, there are three main levels (L1,
L2 and L3) and recently added "plus" levels (L1+ and
L3+). Levels define a set of required controls and test-
ing methodologies [27]. Security and privacy are checked
on all levels, however, advanced on-device testing tech-
niques such as testing for timing vulnerabilities are only
executed for L3 certification. Verification actors differ
between levels: For L1, evaluations are completed by
the FIDO Security Secretariat, whereas for L2 and L3
they are executed by FIDO Accredited Security Lab-
oratories. Currently, the majority of the certified au-
thenticators reached only L1 (134). L2 is achieved by 9
authenticators and there are no devices with L3.

3 Adversarial Model and Attack
FIDO2 authentication scenarios require a certain level
of flexibility (e.g., allowing users to register multiple au-
thenticators under the same account). The FIDO2 pro-
tocol provides mechanisms for additional functionalities
to support these scenarios. Two of them, which are par-
ticularly useful for our attack, are silent authentication
and the allowCredential list. Implementation flaws of
these functionalities, described below, lead to a remote
channel to measure authenticator execution time. This
capability enables an adversary to detect differences in
key handle processing times. Notably, the most popular
mechanism to store key handles (non-resident keys), if
incorrectly implemented, can allow a timing side chan-
nel to identify key handles that are associated with a
given authenticator. Given that authenticators are typ-
ically used by single individuals, the combination of the

Timing Attacks on FIDO Authenticator Privacy 710

elements mentioned above creates a remote attack vec-
tor that allows an adversary to achieve the goal of link-
ing an individuals FIDO registrations.

In sections below, we provide detailed descriptions
of the features that lead to the attack, then present
an adversarial model and attack algorithm. Finally, we
provide several examples of possible adversaries.

3.1 Remote CTAP Calls and Webauthn
API Implementation

To describe how an adversary can measure execution
time differences without user interaction we first have
to explain two different types of user checks defined by
the FIDO2 specification. The first one is user presence
which requires the authenticator to check if a human ac-
tor is present to proceed with authentication. It is worth
noting that popular implementations known from hard-
ware tokens can be easily simulated (e.g., button click
can be done by machine). The second check is called
user verification and it aims to authorize the accept-
ing party. There exists a variety of available implemen-
tations such as memorized secrets (e.g., PIN code) or
biometric authentication (e.g. fingerprint).

User presence and user verification are configurable
in the CTAP protocol as simple flags. User presence is
always required during registration but the FIDO2 spec-
ification allows the CTAP client to modify both flags
during authentication/assertion. This means that the
CTAP client can trigger assertions without user input
(also called silent authentication). Silent authentication
does not usually trigger any indication on the tokens
themselves. E.g., the LED indicator that usually signals
that the token is waiting for human action remains un-
changed. It is easy to imagine a scenario where malicious
software is probing a hardware token left connected to
the users platform.

Silent authentication is a useful mechanism for
FIDO2 clients, since they can use it to filter key handles
in the allowCredential list provided by the WebAuthn
API. The user is not bothered to provide a user pres-
ence check for each attempt and a CTAP client (e.g., a
browser) can identify which key handle belongs to the
authenticator. After finding the correct key handle the
CTAP client continues with the assertion that requires
user presence or verification. This functionality can be
abused by sending an allowCredential list with key han-
dles to check. In other words, an adversary can remotely
trigger the execution of silent authentications on the to-
ken by creating a proper combination of key handles in

the allowCredential parameter provided by the WebAu-
thn API.

Fig. 2. Data exchanged in a single CTAP silent authentication
captured by intercepting USB traffic using Wireshark software
triggered from Chrome browser

We found that all browsers considered in this study
(Chrome, Brave, Firefox, Opera, Edge and Safari) parse
an allowCredential parameter with multiple key handles
in this way. Analysis of the Chromium browser source
code (used in many commercial browsers, e.g., Chrome,
Opera and Edge) revealed that silent authentication
is executed whenever the allowCredential list contains
more than one element (see [28] line 224-232). We fur-
ther examined the data exchanged with a USB hard-
ware token for the Firefox and Chrome browsers, which
clearly showed silent authentications for each key handle
in the allowCredential list are made until a key handle
successfully authenticates, after which a non-silent au-
thentication with the found key handle was triggered.
The remaining browsers (Brave, Edge and Safari) per-
form a single user presence check when there are mul-
tiple entries in the allowCredential list, indicating that
silent authentications are also used in this way. In Fig-
ure 2 we present data exchanged for a single silent au-
thentication and highlighted the most important parts
of the message.

The last obstacle the adversary needs to overcome
is a user presence check of the correct assertion. The
time of human action is not deterministic and it might
require the user to find her hardware token, plug it in
and execute the required action. An adversary can en-
sure the user is ready by executing the time measure-
ment attack on the second consecutive WebAuthn as-
sertion so that the user is already prepared for a user
presence check. Further, to maximize the measurable
time difference, the adversary can introduce multiple
repetitions of the same key handle in the allowCreden-
tial parameter, spreading the user indeterminacy across
multiple CTAP calls. We outline a second approach in

Timing Attacks on FIDO Authenticator Privacy 711

Section 4.4.2 using the user’s microphone to determine
the point at which the user clicks the token’s button
and hence when key handle processing begins.

3.2 Difference in Key Handle Processing

FIDO authenticators use unique keys per relying party.
This ensures the unlinkability of the user’s accounts,
however also introduces a storage problem since hard-
ware tokens have limited memory and can only store
a small number of on-device keys (also called resident
keys). A common cryptographic technique used as a so-
lution for this problem is key wrapping, i.e. storing an
encrypted version of the secret key outside of the device.

Yubikey hardware tokens (manufactured by Yubico)
are amongst the popular ones that use this technique 1.
Yubico’s approach is to wrap the signing keys together
with the corresponding origin/application ID or its hash
value (to have a constant size plaintext instead of a
variable one). This ensures that the key handle can
only be used with the correct relying party. It also pro-
tects against simple linking attacks where two malicious
relying parties can try sending key handles from the
other party to identify users. To protect the integrity
of the plaintext authenticated encryption (AE) is used.
The standard approach is to use the encrypt-then-mac
approach, i.e. compute a message authentication code
(MAC) on the ciphertext.

Key wrapping is usually done using a constant size
master key. This is to limit the size of the key material
stored which is also one of the goals of key wrapping.
It follows that provided ciphertexts from different RP’s
the token will always correctly decrypt and verify the
MAC. However, depending on the plaintext the actual
execution can differ. In particular, after comparing the
origin in the key handle with the one given as input, the
token can either abort execution (in case of failure) or
create an assertion (if the origin is accepted).

The simplest way one would implement this process
is first to check the validity of the MAC and abort in
case of failure, and then proceed with checking the ori-
gin. The former requires the computation of the hash
value of the input origin. As noted above we have three
cases: 1) abort on MAC verification, 2) abort on ori-
gin verification, and 3) complete execution. If the above

1 See e.g. how keys are stored in case of Yubico:
https://developers.yubico.com/U2F/Protocol_details/Key_
generation.html

implementation is used then there should be a time dif-
ference between cases 1) and 2).

We will now show that this is what probably hap-
pens for the hardware tokens for which we were able to
prove the existence of a timing difference. It is worth
noting, that without the firmware of the vulnerable to-
kens we are unable to pinpoint the actual reason for the
difference.

To give an argument supporting our proposition let
us take a look at the key wrapping decryption process
implemented in Google’s open-source OpenSK FIDO to-
ken implementation [29]. We show the interesting part
of the OpenSK source in Figure 9 (Appendix D). In par-
ticular lines 272 and 295. In the former, the token veri-
fies the MAC for the key handle and aborts in case it is
invalid. In the latter, the token compares the decrypted
id of the relying party with the origin provided as part
of the FIDO authentication data to ensure that the key
handle is only used with the correct relying party. Be-
tween those lines of code (lines 279-294) the token is
doing other computations that, among others include
AES CBC decryption of the key handle. It is easy to
see that depending on the computational capabilities of
the hardware this can lead to a noticeable time differ-
ence.

3.3 Adversarial Model

The goal of the adversary is to link FIDO2 regis-
trations that were executed using the same authentica-
tor. Under the assumption that the same authenticator
is used by the same person, the adversary then has a
connection between that user’s accounts, and effectively
create a user profile.

We assume the adversary has the capability to re-
motely control the flow of FIDO2 authentication, how-
ever the attack does not deviate from the FIDO2 spec-
ifications. Our adversary is an active attacker in the
sense that they control JavaScript code executed on the
victim’s client and manipulate FIDO communications,
however, the attack can only be performed during an
authentication transaction initiated by the victim, and
can only leverage valid modifications of FIDO2 mes-
sages without disrupting the protocol or deviating from
the protocol definitions (workflow, syntax, validations).

To achieve these capabilities, the adversary either
needs to be a trusted authentication provider or have
the ability to inject malicious code and payloads into the
authentication process (see Section 3.5 for examples). In
this work we exclude adversaries that can execute CTAP

https://developers.yubico.com/U2F/Protocol_details/Key_generation.html
https://developers.yubico.com/U2F/Protocol_details/Key_generation.html

Timing Attacks on FIDO Authenticator Privacy 712

calls directly (e.g., a compromised browser or malicious
FIDO client). Adversaries with this stronger capability
can directly execute silent authentications both to de-
termine if key handles are present on the authenticator
(user account linking) and to maliciously authenticate
without user knowledge.

Below, we summarize attacker capabilities.
Adversary can:
– execute and manipulate FIDO2 protocol messages,
– access key handles (owned or stolen) not presented

by the victim,
– measure timing of WebAuthn authentication calls.

Adversary cannot:
– deviate from FIDO2 protocol specifications,
– trigger errors (as these would alert the victim).

3.4 Attack Concept

First, notice that the adversary described above is in
possession of data that includes key handles correspond-
ing to the authenticators of users. For simplicity we fo-
cus on a single attack scenario: an adversary that imple-
ments service A and tries to distinguish if the key han-
dle key_handleB for service B corresponds to the user
authenticating with handle key_handleA. The malicious
queries can be build out of key_handleA, key_handleB
and random handles key_handleR. We use random key
handles as a proxy for key handles generated by dif-
ferent authenticators. The attack is successful assuming
there is a noticeable difference in the time it takes the
authenticator to process key handle key_handleB and
key_handleR when connecting to service A. We show
in Section 4.2 that this assumption is actually true for
some existing hardware tokens and in Section 3.2 we
discuss potential reasons for this time difference.

Fig. 3. During authentication to A, the attacker builds an allow-
Credential list with multiple key_handleB and key_handleA.

The first step of the attack is to find the baseline ex-
ecution time te, which corresponds to the time it takes
for an authenticator to answer a WebAuthn API call
with n random key handles and one valid key handle
for service A plus the time for the non-deterministic
user factor. The key handle list is placed in the allow-
Credential field of the call (see Figure 3). To measure
the time the adversary uses timers to enclose the naviga-
tor.credentials.get call to the browsers WebAuthn API.
The second part of the attack is performed in a simi-
lar manner, however this time n copies of key_handleB
are used in place of random key handles. The resulting
time td is then compared with te. In case of a noticeable
difference the adversary concludes that key_handleB is
also registered in the authenticator, and the user has
an account with service B. Note that once te is know
the adversary can omit the first step of the attack (as-
suming the same user for A is connecting). Algorithm 1
provides an overview of the attack.

The value n (the number of requested silent authen-
tications) is an attack parameter and depends on the
attacked platform. The higher it is the less the non-
deterministic user factor influences the attack, since by
replicating the key handle in question (e.g. key_handleB)
it is divided across all executions.

Algorithm 1 High level attack algorithm
1: V ictim : starts FIDO2 transaction
2: Adversary : prepares allowCredential list with n

random key_handles and key_handleA (can be omit-
ted if te known)

3: Adversary : prepares allowCredential list with n
copies of key_handleB and one key_handleA

4: Adversary : forces FIDO client to perform WebAu-
thn calls with prepared allowCredential lists and
measures times of execution (te and td)

5: V ictim : performs user presence checks
6: Adversary : compares measured times (te and td)
7: Adversary : Links identities if times do not match

3.5 Possible Adversaries

We present five possible adversary types: three that
are providers of FIDO2 authentication, one that is capa-
ble of intercepting and manipulating FIDO2 and client
side JavaScript, and one that uses injected JavaScript
code to trigger the attack.

All adversaries execute the same attack concept,
however details of the attack setup differ. The two al-

Timing Attacks on FIDO Authenticator Privacy 713

Fig. 4. FIDO2 timing attack example diagram. Numbers in green circles correspond to steps in Algorithm 1. More attack examples can
be found in Appendix C.
a) The first diagram illustrates an honest FIDO transaction.
b) The second diagram presents an attack flow triggered by a malicious FIDO server.

lowCredential lists (one containing random key handles,
the other a candidate key handle — Algorithm 1 steps
2,3) may be created on the FIDO server (as shown in
Figure 4) and communicated to the client via WebAu-
thn transactions, may be created in a malicious server
and inserted into WebAuthn transactions, or may be
created by attacker JavaScript code on the client. In all
cases JavaScript code timing the execution of WebAu-
thn calls is then executed on the client (Algorithm 1
step 4), the user performs user presence checks (step
5) and results sent to the attackers server (steps 6,7).
Schematics of these additional attack scenarios are il-
lustrated and described in Appendix C.

The first adversary type provides FIDO services for
a single application where users can benefit from mul-
tiple accounts. An example of this use case is a cryp-
tocurrency exchange (e.g., one of the biggest cryptocur-
rency exchanges, Binance, implements FIDO2 as a sec-
ond factor). Having multiple accounts on the exchange
can reduce the traceability of one’s transactions, hence
keeping them unlinked is of great value for the user.

The second consists of more complex applications
that provide not only core services but can also act as an
identity provider, allowing users to login to third party
applications using their accounts and the login flow of
the identity provider. Examples are services similar to
Google which provide a "Login with XYZ" service. In
this setup, we can imagine users with two Google ac-
counts that do not want associated third party accounts
to be linked.

The next group offer FIDO2 as a service for third
parties. They make it easy to integrate strong authen-
tication but it also means that FIDO2 related data is
kept on their servers and they execute FIDO2 authen-
tication flows. An example provider of such a service is

Duo Security. Such service providers are in possession
of data from different services and hence are capable of
executing cross service linking.

Our last two possible adversaries are not owners
of FIDO2 data, but can obtain either stolen data or
spy on user authentications. First, any service acting
as an SSL termination proxy can intercept and mod-
ify FIDO2 message payloads and modifying FIDO re-
lated javascript, and are thus capable of sending mali-
cious payloads and executing timing code on the client.
A commercial example of such a service is Cloudflare.
Similarly to the FIDO2 as a service case, the proxy can
gather FIDO2 data from a diversity of applications.

Finally, any actor that is able to modify JavaScript
code is in a position to execute our timing attack. Con-
sidering that the JavaScript XSS (Cross Site Scripting)
attack vector has remained in the OWASP TOP 10 list
of vulnerabilities for many years [30], we consider this
variation of the attack as highly probable. Similarly to
the proxy example, FIDO2 data can be gathered from
user authentications in compromised browsers or ob-
tained from data breaches. Note that FIDO2 credentials
cannot be stolen in this way.

We note that in all cases, stolen FIDO2 data (in
the form of key handles) can be utilised by attackers to
broaden the attack scope. Additionally, adversaries can
use context metadata (e.g. account data linked to key
handle) to narrow down the set of potential key handles
to check.

Considering the number of possible adversary types,
we believe that the attack described below has a high
potential to be deployed in the real world and can vio-
late the privacy of users secured with FIDO2.

Timing Attacks on FIDO Authenticator Privacy 714

4 Results
In this section we present the methodology and results
of our tests. FIDO2 with WebAuthn is designed for web
applications and it specifies a well-defined path between
the relying party, browser, and authenticator (as shown
in Figure 1). Our attack faithfully follows the FIDO2
flow, which executes through FIDO clients and authen-
ticators. For this reason we focus our analysis on those
two elements. Our test sessions were recorded and are
available online together with source code2.

4.1 Methodology

The methodology of our test suite includes two parts.
Firstly, we measure silent authentication directly on the
authenticators to identify vulnerable devices. In the sec-
ond part, we executed remote timing measurements on
the WebAuthn API using the vulnerable devices from
the first phase.

In the first phase, our goal was to measure silent
authentication directly on the FIDO2 authenticators.
For the USB hardware authenticators we used the open
source Yubico FIDO2 library to make CTAP calls di-
rectly. Unfortunately, the same is not possible on the
Android platform because the available SDK does not
implement direct access to CTAP and the WebAuthn
API forces a user presence check. In the case of iOS,
access to both WebAuthn and CTAP are unavailable,
and we were unable easily to test for time differences.

We measured the time between request and re-
sponse for multiple independent silent authentication
calls with a single key handle in the allowCredential list.
We used either a random key handle (with the correct
length) or a correct key handle with an incorrect ori-
gin value. When there was an appreciable difference, we
identified the authenticator as vulnerable.

For the second phase we built a Relying Party in
Node.js which serves a test HTML page with WebAu-
thn API executions in JavaScript and measures execu-
tion times. We deployed the software on Amazon AWS
with a public IP address which we accessed via several
web browsing platforms to obtain authentication timing
data.

2 Test recordings: https://osf.io/t7dpa/?view_only=
c8595da6c6d34fadb87f2f6db7e5d626

4.2 FIDO2 Hardware Authenticators

The number of authenticators available on the mar-
ket is constantly growing. Because FIDO2 is an open
source specification, there is no public record of com-
mercial FIDO2 authenticators. However, an estimate
can be made based on FIDO Alliance voluntary cer-
tification, which at the time of this writing holds 140
certified FIDO2 authenticators. The list contains plat-
form, roaming, hardware and software authenticators.
Notably, our attack can be launched against any type of
FIDO authenticator. Due to time restrictions we chose
to evaluate the most secure and numerous (111 certified
devices) FIDO authenticator type: hardware roaming
authenticators.

We selected eight hardware authenticators that are
certified by the FIDO Alliance at level 1 [31] with
an aim to provide a representative view of the avail-
able options. Our selection provides a broad range of
price ranges, vendor sizes, features, and countries. We
picked “Yubico Yubikey 5 FIDO2 USB-A”, “Hyper-
FIDO Titanium Pro”, “Google Titan”, “Token2 T2F2
Bio”, “Feitian K26”, “TrustKey G320H”, “Kensington
Verimark Guard”, and “AuthenTrend ATKey.Pro”.

While examining the Yubikey token, we observed
a defense mechanism: After 10 incorrect attempts a
randomised delay is added, which prevents our attack
from succeeding. Google Titan, Token2 T2F2, TrustKey
G320H, Kensington Verimark Guard, and AuthenTrend
ATKey.Pro authenticatorGetAssertion times were not
distinguishable. We successfully executed timing attacks
on HyperFIDO Titanium Pro (average difference of
10ms per execution) and Feitian K26 token (average
difference of 2ms per execution) — see Table 1 for an
overview and Figure 5, left panes for timing results for
vulnerable tokens (see Appendix B for other tokens).

A simple threshold based classifier correctly iden-
tifies key handles with a 0.1% error (HyperFido) and
6% error (Feitian) if user presence timing is known (for
example, using an audio signal as described in Sec-
tion 4.4.2). We further simulated noise from user pres-
ence checks using results from a small user study (see
Section 4.4.1) by adding a randomly sampled user pres-
ence check timing result to each CTAP timing result.
These adjusted CTAP timing figures (one set of figures
for each subject in the user study) were then used to
determine a threshold as before and to predict whether
each CTAP call contained key handles present on the
token (Figure 5, right panes). In all cases, 70% of the
CTAP timing data was used to determine the threshold
and the remaining 30% to evaluate the resulting classi-

https://osf.io/t7dpa/?view_only=c8595da6c6d34fadb87f2f6db7e5d626
https://osf.io/t7dpa/?view_only=c8595da6c6d34fadb87f2f6db7e5d626

Timing Attacks on FIDO Authenticator Privacy 715

Table 1. Test results indicating hardware tokens vulnerable to timing attack.

Yubikey 5 Hyperfido
Titanium

Pro

Google
Titan

Token2
T2F2-Bio

Feitian
K26

TrustKey
G320H

Authen-
Trend

ATKey.Pro

Kensington
Verimark
Guard

Is vulnerable 7 3(10.07)∗ 7 7 3(2.21)∗ 7 7 7

Is upgradeable 7 7 7 7 7 7 7 7

∗ Average difference (ms) for silent authentication between random and bad origin key handles

fier. Note that an attacker may combine estimates from
multiple user authentication sessions to further mitigate
noise from user presence checks.

4.3 FIDO2 Clients

The second element in the FIDO2 flow that can be
vulnerable to timing measurements of assertions is the
FIDO2 client. The most popular FIDO2 clients are
web browsers. If the WebAuthn API is supported by
the browser, each execution of the WebAuthn API in
JavaScript is translated into CTAP calls to the FIDO2
authenticator.

We tested six popular web browsers (we included
the “Brave” browser as the one that focuses on privacy)
running on 5 widely used operating systems for desktop
and mobile (see Table 2). We did not evaluated Inter-
net Explorer because it does not implement WebAuthn.
We used the latest versions of browsers as of 6th of
April 2021. Four of the six tested browsers are based
on the Chromium engine (only Firefox and Safari have
completely independent source code). We used a Hyper-
FIDO Titanium Pro hardware token because we knew
that it is vulnerable to timing attacks (Section 4.2).

On the Windows platform (Windows 10 Home
19042.867) all supported browsers passed control to the
Windows WebAuthn API. We were unable to execute
the attack with a large number of key handles. The Win-
dows WebAuthn API introduces a limit on how many
requests can be sent to the token. Empirically, using
Wireshark USB logs we confirmed that 20 silent au-
thentication attempts are made before failure.

On MacOS Big Sur (Version 11.2.3 on MacBook
Pro), all tested browsers showed vulnerability for our
timing measurement. We experienced unexpected be-
havior from the Safari browser: Test attempts with 64
or more key handles in the allowCredential list cause
Safari to crash, hence our attack was limited to only 63
key handles. Though this would reduce the efficiency of

our attack, we recognize it as a bug and not a security
feature, thus we conclude that Safari is vulnerable.

The last desktop platform which we tested is
Ubuntu 18.04 (one of the most popular desktop oper-
ating system from the Linux family) for which we were
able to successfully execute timing measurements on all
browsers.

We tested Android 10 as it is the most popular An-
droid OS version at the time of this writing. The test
was executed on five phones: Google Pixel2, Samsung
A2, Mi8, Motorola One Vision and Oppo Reno2 Z. All
tested phones are equipped with a fingerprint scanner.
We found that only Chrome and Opera support We-
bAuthn executions. Similarly to Windows, WebAuthn
control is given to the Android system where the user
can select which token type should be used. We tested
a native Android authenticator secured with fingerprint
(the "Use this device with screen lock" option). We did
not observe a timing difference during our attack.

The iOS platform has the most limited group of
browsers supporting FIDO2 as Apple has not yet re-
leased a native API for WebAuthn. In our tests (exe-
cuted on iOS 14.4.2), only Safari and Brave allowed We-
bAuthn calls. Safari uses iOS native APIs which allow
using iOS authentication mechanisms (e.g., TouchID).
We found that the iOS API works as a client with client-
side storage and because we couldn’t see any difference
in response times, we suspect that the allowCredential
list is filtered with key handles saved on the client-side.
The Brave browser uses a custom implementation to
connect to a hardware FIDO2 token. We were unable
to check our physical tokens on iOS because of the in-
compatibility of the iOS lightning port with our tokens.

4.4 Dealing with User Presence Checks

We have seen that using multiple key handles in a sin-
gle CTAP call can reduce the impact of the indetermi-
nacy of the time taken by the user to perform the user
presence check. In this section we present present two

Timing Attacks on FIDO Authenticator Privacy 716

Fig. 5. Measurements of response times of vulnerable tokens HyperFIDO Titanum PRO and Feitian (left). Right: Error rate for a sim-
ple threshold classifier with user presence noise from the user study.

Table 2. Test results indicating if browsers execute silent authen-
tications for all key handles in allowCredential list, thus allowing
timing attacks when combined with a vulnerable authenticator.

C
hr
om

e

B
ra
ve

Fi
re
fo
x

O
pe

ra

Ed
ge

Sa
fa
ri

Windows 10∗ 7 7 7 7 7 N/A
MacOS 11.2.3 3 3 3 3 3 3

Ubuntu 18.04 3 3 3 3 3 N/A
Android 10 3 N/S N/S 3 N/S N/A
iOS 14.4.2 N/S - † N/S N/S N/S 7‡

3, 7 - Allows / does not allow attack

N/S - FIDO2 not supported
∗ Browsers use native Microsoft WebAuthn API
† Brave browser for iOS has a custom implementation that
uses hardware tokens only
‡ Safari uses native iOS WebAuthn API

additional approaches to reduce it’s impact and a small
pilot study to quantify that indeterminacy.

4.4.1 Priming User Presence Checks

The first strategy to reduce the impact of user presence
checks is to prime the user by requiring them to perform
the check twice: the first time intended for them to find
the token and insert it, the second for timing. The user
would be told that there was a problem with authenti-
cation and that they need to repeat it. Our hypothesis
is that this approach would lead to substantially more
consistent timing for the second check.

To verify this hypothesis we performed a small proof
of concept study among authors that simulated this
sequence of events. We built a simple web page that

Table 3. Timing variation results for FIDO2 authentication time
from user study.

1st authn 2nd (primed) authn
Subject Mean Std. Dev. Mean Std. Dev.

1 5041 ms 943 ms 750 ms 227 ms
2 3980 ms 585 ms 344 ms 116 ms
3 5441 ms 844 ms 707 ms 277 ms

requests FIDO authentication. Our subjects were in-
structed to insert a FIDO2 hardware token once the
browser shows the authentication prompt and take it
out once authentication is successful. We notified them
that authentication might not work first time, and in
that case the token doesn’t need to be removed between
attempts. The authentication was repeated 50 times for
each subject. Each authentication was triggered after
a randomized time interval to limit preparedness and
thus minimise bias. The results show that the second
consecutive authentication takes far less time and has
far less variability as we hypothesised (see Table 3). All
study participants were authors, and thus the study was
exempt from ethics review (confirmed by IRB). We ac-
knowledge that, despite our best intentions and mea-
sures to minimise bias, the study was in the end con-
ducted by authors and bias may remain.

4.4.2 Alternative Time Measurement

In our attack the adversary builds an allowCredential
list with multiple instances of the same key handle to
limit the influence of user action. Some configurations
are resistant to this kind of attack by limiting the num-
ber of allowed entries in the allowCredential list (see
Section 4). To circumvent that limitation we propose

Timing Attacks on FIDO Authenticator Privacy 717

.

Fig. 6. Audio recording of FIDO assertion on HyperFido Titanium Pro. Green: an attempt with a bad origin key handle. Pink: an at-
tempt with a random key handle. The initial silence is truncated to allow comparison.

an alternative method of measuring the execution time
in which the measurement starts immediately after the
user presence check. This way we eliminate the non-
deterministic delay and can use smaller sized allowCre-
dential lists.

The authenticatorGetAssertion WebAuthn API call
implemented by browsers enforces a user presence check
which is not uniformly implemented in different FIDO2
authenticators. This check requirement introduced ad-
ditional elements in the manufacturing process of hard-
ware tokens. The factors that influence the decision on
what kind of interface is selected include not only secu-
rity but also production cost and user experience. For
example, some Yubico tokens use capacitive touch sen-
sors whereas HyperFido tokens use a physical button,
which is one of the most popular solutions. Inspired by
the work in the area of acoustic side-channel attacks
(e.g. Genkin at al. [32]) we observed that physical but-
tons on authenticator tokens emit a characteristic sound
when used. We use this observation in our modified at-
tack described below.

4.4.3 The Modified Attack

In this variation of the attack, the service does not have
to send multiple keys, however it needs to record audio
using the attacked platforms microphone. This can be
achieved using the MediaStream API [33], which allows
the capture of sound directly to a JavaScript object. We
wrapped the execution of navigator.credentials.get with
sound recording code. After the recording is finished, the
sample is sent to the backend part of the attacker/ser-
vice for processing. Figure 6 presents recordings from
two attempts, using a key handle with bad origin and
using a random key handle. The test was performed in
a home environment on a Dell XPS 15 9570 laptop with
HyperFido Titan Pro token. The button click action is

easily distinguishable and the time difference between
attempts simplifies the identification of the key handle
with bad origin.

It is easy to see that this attack requires a strong
adversary that is granted access to the microphone
through the MediaStream API. It also requires that the
time difference between executions of random and bad
origin key handles are high enough to be distinguishable
in the recording, and the token needs to be constructed
with a button that generates noticeable sound. Many
services use the MediaStream API to provide videocon-
ferencing features and once consent is given, the ap-
plication can trigger recordings freely and would be in
position to perform the attack. Interestingly, the micro-
phone usage consent window is presented to the user as
a standard browser dialogue window which appears with
the same location and “look and feel” as WebAuthn dia-
logues, and is shown just before the WebAuthn window,
so it could be easily accepted by mistake, enabling the
attack in other cases.

4.5 User Experience

Our attack has minimal influence on how FIDO2 au-
thentication is perceived from a user perspective. Au-
thentication proceeds as normal due to the correct key
handle at the end of the list, but with a slight delay. The
time difference can be noticeable but it is indistinguish-
able from network or browser slowdown. Therefore, we
claim that it is unlikely for the user to notice any ir-
regularities in the authentication process. Examples of
user experience can be observed in attached recordings.

Timing Attacks on FIDO Authenticator Privacy 718

4.6 FIDO in the Wild

In this section we discuss how FIDO2 is deployed in
publicly available web applications and how this relates
to our proposed attack. In terms of production appli-
cations, security of the solution is not the only aspect
to be considered. For example, introduction of an ad-
ditional factor for authentication brings additional cost
and potential disruption to the business. Perhaps the
most surprising aspect of the FIDO2 environment is user
adoption and experience. From past studies about the
usability of FIDO2 hardware tokens [34][35] we under-
stand that the transition to more secure ways of authen-
tication is facing challenges of a human nature.

Our proposed timing attack is based on a non-
resident key scenario, which we believe covers the major-
ity of publicly available FIDO2 implementations. To the
best of our knowledge there is no previous research that
attempts to quantify FIDO2 in the wild. To better un-
derstand the scale of applicability of our timing attack
on FIDO2 implementations we developed and executed
a web crawler. We checked the 1 million most popular
DNS records from the Cisco Umbrella set for the pres-
ence of WebAuthn protocol executions between 10 De-
cember 2020 and 20 December 2020. Because WebAu-
thn executions can be found in the javascript resources
of web applications we targeted our crawler to check for
the presence of the navigator.credentials.create property
with public-key type. We acknowledge that some appli-
cations have more complex authentication procedures
that do not reveal usage of the WebAuthn protocol
(e.g., WebAuthn is dynamically loaded after completing
first factor of authentication). Fortunately for us, initial
authentication (e.g., username/password) implies that
FIDO2, if used, will be configured as a second factor
without resident keys in these cases.

The results confirmed our belief about FIDO2 usage
in the wild. We gathered 684 records of WebAuthn exe-
cutions from which we extracted following groups. Most
findings (52%) came from applications that reuse open-
source tools (e.g., the discord platform is frequently used
as community forum, nextcloud is used as a file storage
and share service). In those cases FIDO2 is implemented
with non-resident keys (as second factor authentica-
tion). The second identified group (16%) consists of fed-
erated authentication platforms (e.g., wordpress.com,
github.com, microsoft login). In this group only Mi-
crosoft login with passwordless FIDO2 used resident
keys. In the last group, we gathered applications that
use self-implemented FIDO2 authentication, from which

all were configured to use FIDO2 with non-resident keys
(as a second factor).

Our final conclusion from the crawling exercise is
that in the public space FIDO2 is mostly used as a
second factor mechanism with non-resident keys. Pass-
wordless authentication (with resident keys) is in the
early adoption phase and only a few providers give this
option. In terms of our timing attack, this means that
the majority of Relying Parties in the wild are vulner-
able to and have the potential to launch our attack to
link key handles.

5 Related Work
The FIDO2 standard only recently gained increased at-
tention from the research community even though it was
introduced in 2016, perhaps due to the increased adop-
tion and popularity of FIDO2 in recent years.

Barbosa et al. [36] introduced a formal model for
authentication based on WebAuthn and CTAP. They
showed that FIDO2 is secure in the model but also
proposed an improvement that fulfills stronger notions
of security. Guirat et al. [37] performed an analysis of
the WebAuthn protocol, which revealed that formally
some authenticators might leak privacy. Research done
by Feng et al. [38] gave insights on the UAF protocol,
showing its unlinkability property. Lomne et al. [39] suc-
cessfully extracted key material from a Google Titan
token and were able to clone it. A different view was
presented by Alam et al. [40], who address potential se-
curity and privacy issues caused by development flaws.

Klieme et. al. [41] proposed a solution for contin-
uous authentication of the user using silent authenti-
cations and FIDO2 extensions. Chakraborty et al. [42]
proposed the use of a sim card TPM implementation
(simTPM) as a secure and convenient FIDO2 authenti-
cator. Dauterman et al. [43] introduces an enhanced de-
sign for a token, which is resistant to backdoor attacks
and prevents privacy loss by token fingerprinting. Fry-
mann et al. [44] analyzed Yubico’s proposal for backup
tokens including verification of unlinkability of paired
tokens.

Lyastani et al. [34] present extensive results on us-
ability and acceptability of FIDO2. Surprisingly, users’
privacy concerns did not influence the acceptability rate.
Pfeffer et al. [45] shed light on the usability of authen-
ticity checks in the case of physical tokens. Florian et
al. [46] present a usability study of FIDO2 authenti-
cation in a small company. The results revealed that

Timing Attacks on FIDO Authenticator Privacy 719

despite security benefits, hardware tokens face accept-
ability challenges.

6 Discussion
Here, we discuss the features that were key enablers of
the attack presented in this paper. We hope that our
findings will contribute to enhanced security of all cer-
tified FIDO2 tokens.

Firstly, the silent authentication mechanism opens a
path to bypass the human factor in FIDO2 authentica-
tion. We acknowledge that it simplifies the automation
of the pre-authentication processes, nevertheless it in-
troduces threats that, from a privacy perspective, may
outweigh its benefits. We believe that FIDO client’s im-
plementations should introduce additional safeguards
on the silent authentication process (as described in
Section 6.1). Moreover, we observed that rate limiting
techniques (e.g., adding delay after a number of unsuc-
cessful calls) are not popular in FIDO2 authenticators.
This might allow for enumeration, brute-force or as in
our case timing attacks.

Additionally, we want to emphasize the importance
of FIDO Alliance certification. We acknowledge the util-
ity of graded certification levels, however understanding
differences between certification levels requires expert
knowledge not available to a regular user. Our attack
showed that authenticators with L1 certification cannot
guarantee all FIDO2 security and privacy goals. There-
fore, we believe that all authenticators should be eval-
uated against L3 controls, which guarantee on-device
testing.

6.1 Attack Mitigation

The vulnerabilities responsible for our timing attack oc-
cur on two loosely coupled layers of FIDO2 transactions:
FIDO clients and FIDO authenticators. Considering the
number of authenticators and clients available on the
market and already deployed, a complete mitigation so-
lution has to address both layers.

We present four mitigation strategies, two that ap-
ply to authenticators, one that circumvents our attack
(at a cost) via FIDO configuration and one that applies
to FIDO clients (e.g., browsers).

6.1.1 Via Constant Time Execution in Authenticators

The easiest way to protect against our attacks would
be to update the firmware of hardware tokens and im-
plement the execution in a way that there is no time
difference between checking random key handles and
key handles for different origins. In the sub-sections be-
low we show how this can be done using existing tech-
niques already implemented in some hardware tokens.
Unfortunately, this only mitigates the problem in case
of new users that buy a hardware token with updated
firmware, as the majority of hardware tokens do not al-
low firmware updates.

6.1.2 Via Key Derivation Function in Authenticators

An alternative way to generate a keypair is to use a
key derivation function keyed with a master secret and
seeded with data related to the relying party. This pro-
cess requires the authenticator to only store one master
secret key (i.e. AES key) which is then used to pseudo-
randomly derive the signing key for the FIDO authen-
tication process.

This is a well-known technique and has already been
implemented by some tokens. However, due to their
closed firmware, we are unable to verify how many to-
kens implement key generation in that way. A notable
exception is the SoloKey FIDO token which comes with
an open-source firmware [47] for which we show the key
generation function (see Figure 10 Appendix D). The
implementation also uses key handles which in this case
are just random values. During the authentication pro-
cess, this random value is the used as the data argument
for the key generation function (data2 is left empty).

In this approach the key handles are just random
values, hence the authenticator’s processing time for ev-
ery key handle is the same and the authenticator is not
vulnerable to our attack.

6.1.3 Via Resident Keys (FIDO Configuration)

Our attack utilises a weakness in incorrect implementa-
tions of key handling (i.e., handling non-resident keys)
in authenticators. Methods such as key wrapping were
introduced to solve a memory problem on authentica-
tors, which need to store unique signing keys for each
relying party (for privacy reasons). Alternatively, the
FIDO2 protocol can be configured to store keys directly
on the authenticator (residence keys), which eliminates

Timing Attacks on FIDO Authenticator Privacy 720

our attack vector. Even though, the introduction of res-
ident keys on the FIDO server might seem trivial (set-
ting requireResidentKey flag in the registration request),
the consequences for FIDO authenticator users are sig-
nificant. Firstly, not all FIDO authenticators support
resident keys. Moreover, the modification of key storage
technique in an existing authentication system requires
all users to perform the FIDO registration process once
again. Finally, the storage capacity of key handles in
roaming authenticators is limited (e.g., Yubico keys al-
low up to 25 keys), which noticeably reduces their util-
ity. We found only one deployment of FIDO in the wild
that uses resident keys (Microsoft AzureAD password-
less login). All other implementations we found in the
wild (Section 4.6) use non-resident keys.

6.1.4 Via Client Update.

The FIDO client attack vector can be mitigated by
changing the way browsers and other clients implement
the WebAuth API allowCredential parameter. In par-
ticular, we propose the following mechanisms.

1) Deduplication of the allowCredential list before
making CTAP calls, which would remove all repetitions
of bad origin key handles and thus prevent amplification
of the time difference.3

2) Silent authentication errors can be delayed by a
random value that is large enough to render the attack
ineffective due to a high error rates.

3) The size of allowCredential can be limited to e.g.
10 or 20 elements. This should still preserve the func-
tionality since most users will never register more than
10 tokens with a single relying party but users remain
vulnerable to the second (weaker) form of attack using
audio detection of user presence checks. Note that this
is already the case with the Windows 10 WebAuthn im-
plementation, which limits to 20 elements.

Note that these approaches are independent of the
hardware token and users can easily protect themselves
by updating their browser to the latest version.

3 The Chromium team acknowledged our finding as an infor-
mation disclosure vulnerability and suggested deduplication as
a mitigation.

7 Conclusion
In this paper we introduced a conceptual attack against
the privacy of the FIDO authentication process. At first
glance the attack is based on strong assumptions about
the capabilities of the adversary. However, we demon-
strate that the chain of flows in protocol and existing
implementations allows a remote adversary to break the
unlinkability of FIDO2. We built a proof-of-concept and
showed that the attack is possible for many configura-
tions of FIDO clients and authenticators and showed
that the majority of FIDO2 providers in the wild use
non-resident key handles and are thus susceptible to
accounts with them being linked to other services by
malicious actors.

In the course of our research we were not able to
investigate all available authenticators, however, based
on the fact that the vulnerable authenticators we found
are manufactured by major security vendors, we expect
this flaw to be present in other products as well. What is
worse, identifying the vulnerability might not be enough
since most hardware tokens do not support firmware
updates. Fortunately, we proposed a mitigation mecha-
nism that involves the client side (i.e. browsers) and is
independent of the authenticator which prevents remote
attacks via web pages. This approach allows the user to
update their FIDO client (typically a browser) and still
use vulnerable tokens safely for web based authentica-
tion via the browser.

We notified and worked with the affected vendors
to secure the privacy of FIDO2 protocol.

Acknowledgements
This research received no specific grant from any fund-
ing agency in the public, commercial, or not-for-profit
sectors.

References
[1] K. Thomas et al., “Data breaches, phishing, or malware?:

Understanding the risks of stolen credentials,” in Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, 2017, pp. 1421–1434.

[2] S. Karunakaran et al., “Data breaches: User comprehension,
expectations, and concerns with handling exposed data,”
in Fourteenth Symposium on Usable Privacy and Security,
SOUPS 2018, Baltimore, MD, USA, August 12-14, 2018,

Timing Attacks on FIDO Authenticator Privacy 721

2018, pp. 217–234.
[3] C. Brand et al., “Client to authenticator protocol (CTAP),”

2019. [Online]. Available: https://fidoalliance.org/specs/fido-
v2.0-ps-20190130/fido-client-to-authenticator-protocol-
v2.0-ps-20190130.pdf

[4] R. Lindemann and E. Tiffany, “FIDO UAF protocol
specification,” 2020. [Online]. Available: https://fidoalliance.
org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-
v1.2-ps-20201020.pdf

[5] S. Srinivas, D. Balfanz, E. Tiffany, and A. Czeskis,
“Universal 2nd factor (U2F) overview,” 2017. [Online].
Available: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-
20170411/fido-u2f-overview-v1.2-ps-20170411.pdf

[6] (2019, Jan.) Client to authenticator protocol (ctap).
[Online]. Available: https://fidoalliance.org/specs/fido-v2.0-
ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-
20190130.html

[7] A. Kumar et al., “Web authentication: An API for
accessing public key credentials - level 2,” W3C,
W3C Recommendation, Apr. 2021. [Online]. Available:
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/

[8] (2019, Feb.) Android now fido2 certified, accelerating global
migration beyond passwords. [Online]. Available: https:
//fidoalliance.org/android-now-fido2-certified-accelerating-
global-migration-beyond-passwords/

[9] (2019, May) Microsoft achieves fido2 certification for windows
hello. [Online]. Available: https://fidoalliance.org/microsoft-
achieves-fido2-certification-for-windows-hello/

[10] (2020, Jul.) Expanded support for fido authentication in
ios and macos. [Online]. Available: https://fidoalliance.org/
expanded-support-for-fido-authentication-in-ios-and-macos/

[11] (2019, Mar.) U.s. general services administration’s
rollout of fido2 on login.gov. [Online]. Available:
https://fidoalliance.org/u-s-general-services-administrations-
rollout-of-fido2-on-login-gov/

[12] (2019, Jan.) Visa case study. [Online]. Available:
https://fidoalliance.org/visa-case-study/

[13] (2021, Feb.) National health service uses fido authentication
for enhanced login. [Online]. Available: https://fidoalliance.
org/national-health-service-uses-fido-authentication-for-
enhanced-login/

[14] (2021, Feb.) Web authentication: An api for accessing
public key credentials. [Online]. Available: https:
//www.w3.org/TR/webauthn-2/

[15] C. Castelluccia et al., “Betrayed by your ads! reconstructing
user profiles from targeted ads,” in Privacy Enhancing
Technologies, ser. Lecture Notes in Computer Science,
S. Fischer-Hubner and M. Wright, Eds. Springer, 2012.

[16] O. Goga et al., “Exploiting innocuous activity for correlating
users across sites,” in 22nd International World Wide Web
Conference, WWW ’13, 2013, pp. 447–458.

[17] A. Narayanan et al., “On the feasibility of internet-scale author
identification,” in IEEE Symposium on Security and Privacy,
SP 2012, 21-23 May 2012, San Francisco, California, USA.
IEEE Computer Society, 2012, pp. 300–314.

[18] C. J. Riederer et al., “Linking users across domains with
location data: Theory and validation,” in Proceedings of the
25th International Conference on World Wide Web, WWW
2016, 2016, pp. 707–719.

[19] “Yubico announcement,” Mar. 2021. [Online]. Avail-
able: https://www.yubico.com/blog/yubico-donates-
25000-yubikeys-to-microsoft-accountguard-customers-in-
31-countries/

[20] “Google announcement,” Oct. 2021. [Online]. Available:
https://blog.google/technology/safety-security/delivering-
10000-security-keys-high-risk-users/

[21] FIDO Alliance, “FIDO Security Reference,” https:
//fidoalliance.org/specs/fido-v2.0-id-20180227/fido-
security-ref-v2.0-id-20180227.html, 2018, [Online; accessed
2-May-2021].

[22] M. Dworkin, “Recommendation for block cipher modes of
operation: Methods for key wrapping,” 2012-12-13 2012.

[23] D. Johnson et al., “The elliptic curve digital signature
algorithm (ecdsa).” Int. J. Inf. Sec., vol. 1, no. 1, 2001.

[24] B. Z. H. Zhao et al., “A decade of mal-activity reporting: A
retrospective analysis of internet malicious activity blacklists,”
CoRR, vol. abs/1904.10629, 2019.

[25] F. Alliance. (2014, Feb.) Privacy principles whitepaper.
[Online]. Available: https://media.fidoalliance.org/wp-
content/uploads/2014/12/FIDO_Alliance_Whitepaper_
Privacy_Principles.pdf

[26] W3C, “Privacy Considerations,” 2021. [Online]. Avail-
able: https://www.w3.org/TR/webauthn-2/#sctn-privacy-
considerations

[27] (2022, Feb.) Fido authenticator security requirements. [On-
line]. Available: https://fidoalliance.org/specs/fido-security-
requirements/fido-authenticator-security-requirements-v1.5-
fd-20211102.html

[28] Google, “Chromium: implementation of fido2 client.” [Online].
Available: https://chromium.googlesource.com/chromium/
src/+/refs/heads/main/device/fido/get_assertion_task.cc

[29] Google, “Opensk: open-source implementation for
fido u2f and fido 2 security keys.” [Online].
Available: https://github.com/google/OpenSK/blob/
5e682d9e176e936c22fcb963a708ffb0b47a33e6/src/ctap/
mod.rs

[30] (2022, Feb.) Owasp top 10. [Online]. Available:
https://owasp.org/Top10/

[31] FIDO Alliance, “Authenticator Level 1,” 2017. [Online]. Avail-
able: https://fidoalliance.org/certification/authenticator-
certification-levels/authenticator-level-1/

[32] D. Genkin et al., “Synesthesia: Detecting screen content via
remote acoustic side channels,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 853–869.

[33] (2021, Mar.) Media capture and streams. [Online]. Available:
https://www.w3.org/TR/mediacapture-streams/

[34] S. Ghorbani Lyastani et al., “Is fido2 the kingslayer of
user authentication? a comparative usability study of fido2
passwordless authentication,” in 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 268–285.

[35] S. Ciolino et al., “Of two minds about two-factor: Un-
derstanding everyday FIDO u2f usability through device
comparison and experience sampling,” in 15th Symposium
on Usable Privacy and Security (SOUPS 2019). USENIX
Association, Aug. 2019.

[36] M. Barbosa et al., “Provable security analysis of fido2,” in
Advances in Cryptology – CRYPTO 2021. Cham: Springer
International Publishing, 2021, pp. 125–156.

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.pdf
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.pdf
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://fidoalliance.org/android-now-fido2-certified-accelerating-global-migration-beyond-passwords/
https://fidoalliance.org/android-now-fido2-certified-accelerating-global-migration-beyond-passwords/
https://fidoalliance.org/android-now-fido2-certified-accelerating-global-migration-beyond-passwords/
https://fidoalliance.org/microsoft-achieves-fido2-certification-for-windows-hello/
https://fidoalliance.org/microsoft-achieves-fido2-certification-for-windows-hello/
https://fidoalliance.org/expanded-support-for-fido-authentication-in-ios-and-macos/
https://fidoalliance.org/expanded-support-for-fido-authentication-in-ios-and-macos/
https://fidoalliance.org/u-s-general-services-administrations-rollout-of-fido2-on-login-gov/
https://fidoalliance.org/u-s-general-services-administrations-rollout-of-fido2-on-login-gov/
https://fidoalliance.org/visa-case-study/
https://fidoalliance.org/national-health-service-uses-fido-authentication-for-enhanced-login/
https://fidoalliance.org/national-health-service-uses-fido-authentication-for-enhanced-login/
https://fidoalliance.org/national-health-service-uses-fido-authentication-for-enhanced-login/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.yubico.com/blog/yubico-donates-25000-yubikeys-to-microsoft-accountguard-customers-in-31-countries/
https://www.yubico.com/blog/yubico-donates-25000-yubikeys-to-microsoft-accountguard-customers-in-31-countries/
https://www.yubico.com/blog/yubico-donates-25000-yubikeys-to-microsoft-accountguard-customers-in-31-countries/
https://blog.google/technology/safety-security/delivering-10000-security-keys-high-risk-users/
https://blog.google/technology/safety-security/delivering-10000-security-keys-high-risk-users/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://media.fidoalliance.org/wp-content/uploads/2014/12/FIDO_Alliance_Whitepaper_Privacy_Principles.pdf
https://media.fidoalliance.org/wp-content/uploads/2014/12/FIDO_Alliance_Whitepaper_Privacy_Principles.pdf
https://media.fidoalliance.org/wp-content/uploads/2014/12/FIDO_Alliance_Whitepaper_Privacy_Principles.pdf
https://www.w3.org/TR/webauthn-2/#sctn-privacy-considerations
https://www.w3.org/TR/webauthn-2/#sctn-privacy-considerations
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.5-fd-20211102.html
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.5-fd-20211102.html
https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-security-requirements-v1.5-fd-20211102.html
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/device/fido/get_assertion_task.cc
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/device/fido/get_assertion_task.cc
https://github.com/google/OpenSK/blob/5e682d9e176e936c22fcb963a708ffb0b47a33e6/src/ctap/mod.rs
https://github.com/google/OpenSK/blob/5e682d9e176e936c22fcb963a708ffb0b47a33e6/src/ctap/mod.rs
https://github.com/google/OpenSK/blob/5e682d9e176e936c22fcb963a708ffb0b47a33e6/src/ctap/mod.rs
https://owasp.org/Top10/
https://fidoalliance.org/certification/authenticator-certification-levels/authenticator-level-1/
https://fidoalliance.org/certification/authenticator-certification-levels/authenticator-level-1/
https://www.w3.org/TR/mediacapture-streams/

Timing Attacks on FIDO Authenticator Privacy 722

[37] I. B. Guirat and H. Halpin, “Formal verification of the
w3c web authentication protocol,” in Proceedings of the
5th Annual Symposium and Bootcamp on Hot Topics in the
Science of Security, ser. HoTSoS ’18, 2018.

[38] H. Feng, H. Li, X. P. Pan, and Z. Zhao, “A formal analysis
of the fido uaf protocol,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2021.

[39] (2021, Jan.) A side journey to titan side-channel attack
on the google titan security key. [Online]. Available:
https://ninjalab.io/wp-content/uploads/2021/01/a_side_
journey_to_titan.pdf

[40] A. Alam et al., “Poster: Let history not repeat itself (this
time) – tackling webauthn developer issues early on,”
in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19, 2019.

[41] E. Klieme et al., “Fidonuous: A fido2/webauthn extension to
support continuous web authentication,” in 2020 IEEE 19th
International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), 2020.

[42] D. Chakraborty and S. Bugiel, “Simfido: Fido2 user au-
thentication with simtpm,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Se-
curity, ser. CCS ’19. Association for Computing Machinery,
2019, p. 2569–2571.

[43] E. Dauterman et al., “True2f: Backdoor-resistant authen-
tication tokens,” in 2019 IEEE Symposium on Security and
Privacy (SP), 2019, pp. 398–416.

[44] N. Frymann et al., “Asynchronous remote key generation:
An analysis of yubico’s proposal for w3c webauthn,” in Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’20. Association for
Computing Machinery, 2020, p. 939–954.

[45] K. Pfeffer et al., “On the usability of authenticity checks
for hardware security tokens,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association,
Aug. 2021.

[46] F. M. Farke et al., ““you still use the password after all” –
exploring fido2 security keys in a small company,” in Sixteenth
Symposium on Usable Privacy and Security (SOUPS 2020).
USENIX Association, Aug. 2020, pp. 19–35.

[47] SoloKeys, “Solokeys: open-source firmware implementation.”
[Online]. Available: https://github.com/solokeys/solo/blob/
master/fido2/crypto.c

A Responsible Disclosure
The results of our research were sent to the responsi-
ble parties. We notified three vendors of web browsers
(Chromium, Firefox, and Safari), two hardware tokens
vendors (Feitian and Hypersecu) and the FIDO Al-
liance.

For Chromium, we sent the vulnerability report
though the chromium bug tracing platform. After a brief
explanation, the chromium security team acknowledged

the vulnerability. On 14th September 2021, we received
a plan how the mitigation will be implemented:
"I think the mitigation step we should take is to
deduplicate allowedCredentials before making CTAP re-
quests. This should eliminate the amplification, and
then the time it takes the user to touch the key
would hopefully dominate any difference in CTAP
request time. We can also limit the size of that
list explicitly, but we would need to be careful
not to break any weird outlier sites with users
that have lots of enrolled credentials. As for sever-
ity, per https://www.chromium.org/developers/severity-
guidelines I would say the cross-origin user corre-
lation is a type of information disclosure." - mar-
tinkr@google.com
On 5th October 2021 the first implementation which
included a deduplication mechanism combined with a
limitation of the size of the allowCredential list (limit
set to 64 key handles) was provided. We tested the vul-
nerability fix on the canary release of Chrome browser
and confirmed that the attack is mitigated. The vulner-
ability received id CVE-2021-38022.

Similarly, Firefox was notified through their bug
tracing channel. The Firefox team recognized the issue
and assigned internal bug id 1730434. On 15th Septem-
ber 2021, the issue status was changed from unconfirmed
to new. At the time of writing, the implementation of
the mitigation mechanism is in progress.

In case of the Safari browser, we sent an email to
the product security team. On 28th September 2021, we
received a confirmation saying:
"We don’t automatically provide status updates on issues
as we work on them. We will reach out if we have any
questions or need additional details.".
Our report received tracking number 781222840 and is
undergoing an investigation.

We reached out to Feitian through their official con-
tact email. On 14th September, our report was passed
to Feitian’s internal team:
"I forward your report to R&D team. Our developers
are investigating it, we will update you when we came
to conclusion." - lena@ftsafe.com
We explained the issue to the Feitian’s engineering team
and provided the detailed recording of the testing pro-
cedure. The issue is being investigated.

The report to Hypersecu was sent to their offi-
cial contact email. We received their acknowledgment
on 13th September 2021. We provided an exhaustive
description of the problem together with results and
recording of our tests. On 15th October 2021 we re-

https://ninjalab.io/wp-content/uploads/2021/01/a_side_journey_to_titan.pdf
https://ninjalab.io/wp-content/uploads/2021/01/a_side_journey_to_titan.pdf
https://github.com/solokeys/solo/blob/master/fido2/crypto.c
https://github.com/solokeys/solo/blob/master/fido2/crypto.c

Timing Attacks on FIDO Authenticator Privacy 723

ceived a request for additional parameters describing
the vulnerable token:
"Could you please use the following tool to send the Hy-
perFIDO info to us? We want to make sure the version
info of the key you tested. On the other hand, would you
mind letting us know from where you bought the key?
Was it Amazon AU?" - james@hypersecu.com
We provided the requested data. The Hypersecu team
is investigating the problem.

Additionally, we sent our report to the FIDO Al-
liance Security Certification Secretariat. The Fido Al-
liance representative analysed our report and endorsed
our findings:
"After a quick analysis, I’d like to congratulate
you for your successful timing attacks conducted
on multiple certified silent authenticators at L1." -
roland@fidoalliance.org
Moreover, we learned that our contribution will help to
spread awareness of the advantages of the highest certi-
fication levels (L3/L3+), which require deep laboratory
analysis including timing measurements:
"Indeed, L1 certification is not designed to provide as-
surance against such attacks so, there isn’t much here
in terms of actions we could do in addition to notifying
the vendors. However, I think that RPs should be made
aware of such type of attack so they can better under-
stand why L3/L3+ certification makes sense and prob-
ably help in creating incentives in this sense. And that’s
something where FIDO could potentially help based on
your findings." - roland@fidoalliance.org

Timing Attacks on FIDO Authenticator Privacy 724

B Silent Authentication Measurements

(a) Silent authentication times for Feitian K26 (b) Silent authentication times for HyperFIDO Titan Pro

(c) Silent authentication times for Yubikey 5
(samples below 20ms represent initial calls
without triggering the defence mechanism) (d) Silent authentication times for Token2 T2F2 Bio

(e) Silent authentication times for TrustKey G320H (f) Silent authentication times for Google Titan

(g) Silent authentication times for VeriMark Guard Fingerprint (h) Silent authentication times for AuthenTrend ATKey.Pro

Fig. 7. Silent authentication time[ms] measurements

Timing Attacks on FIDO Authenticator Privacy 725

C Attack Scenarios

Fig. 8. FIDO timing attack scenarios

a) An honest FIDO2 authentication. The FIDO Server uses John’s keyhandle (A) to trigger an WebAuthn call in the FIDO Client.

b) A malicious FIDO Server, which is in possession of John’s keyhandle as well as a keyhandle of an anonymous user. The FIDO server
executes the attack to learn if the anonymous user is in fact John. In step 2, two allowCredential lists are generated and sent to the
FIDO client to execute and measure two consecutive WebAuthn calls (step 4). Then the FIDO server decides if times differ (step 6)
and if they do, the identity is linked (step 7).

c) An attack by a malicious proxy. In this configuration, the FIDO Server is honest, however the proxy manipulates messages and
JavaScript calls to learn the timing difference (step 6). The Javascript execution and linking decision is the same as scenario (b).

d) Attack via injection of malicious JavaScript. In this case, an adversary manipulates WebAuthn calls directly from JavaScript (steps 5
and 6). The decision and linking process remain unchanged.

Timing Attacks on FIDO Authenticator Privacy 726

D Open Source Implementations of Key Handling

259 // Decrypts a credential ID and writes the private key into a PublicKeyCredentialSource .
260 // None is returned if the HMAC test fails or the relying party does not match the
261 // decrypted relying party ID hash.
262 pub fn decrypt_credential_source (
263 &self ,
264 credential_id : Vec <u8 >,
265 rp_id_hash : &[u8],
266) -> Result <Option < PublicKeyCredentialSource >, Ctap2StatusCode > {
267 if credential_id .len () != CREDENTIAL_ID_SIZE {
268 return Ok(None);
269 }
270 let master_keys = self. persistent_store . master_keys ()?;
271 let payload_size = credential_id .len () - 32;
272 if !verify_hmac_256 ::< Sha256 >(
273 & master_keys .hmac ,
274 & credential_id [.. payload_size],
275 array_ref! [credential_id , payload_size , 32],
276) {
277 return Ok(None);
278 }
279 let aes_enc_key = crypto :: aes256 :: EncryptionKey :: new (& master_keys . encryption);
280 let aes_dec_key = crypto :: aes256 :: DecryptionKey :: new (& aes_enc_key);
281 let mut iv = [0; 16];
282 iv. copy_from_slice (& credential_id [..16]) ;
283 let mut blocks = [[0 u8; 16]; 4];
284 for i in 0..4 {
285 blocks [i]. copy_from_slice (& credential_id [16 * (i + 1) ..16 * (i + 2)]);
286 }
287 cbc_decrypt (& aes_dec_key , iv , &mut blocks);
288 let mut decrypted_sk = [0; 32];
289 let mut decrypted_rp_id_hash = [0; 32];
290 decrypted_sk [..16]. clone_from_slice (& blocks [0]);
291 decrypted_sk [16..]. clone_from_slice (& blocks [1]);
292 decrypted_rp_id_hash [..16]. clone_from_slice (& blocks [2]);
293 decrypted_rp_id_hash [16..]. clone_from_slice (& blocks [3]);
294 if rp_id_hash != decrypted_rp_id_hash {
295 return Ok(None);
296 }

Fig. 9. Key Decryption Function in OpenSK FIDO Token Implementation [29]

264 void generate_private_key (uint8_t * data , int len , uint8_t * data2 , int len2 , uint8_t * privkey)
265 {
266 crypto_sha256_hmac_init (CRYPTO_MASTER_KEY , 0, privkey);
267 crypto_sha256_update (data , len);
268 crypto_sha256_update (data2 , len2);
269 crypto_sha256_update (master_secret , 32); // TODO AES
270 crypto_sha256_hmac_final (CRYPTO_MASTER_KEY , 0, privkey);
271
272 crypto_aes256_init (master_secret + 32, NULL);
273 crypto_aes256_encrypt (privkey , 32);
274 }

Fig. 10. Pseudorandom Key Generation in SoloKeys Firmware Implementation [47]

	How Not to Handle Keys: Timing Attacks on FIDO Authenticator Privacy
	1 Introduction
	1.1 Responsible Disclosure

	2 FIDO Authentication
	2.1 High Level Overview
	2.2 FIDO Authentication - Step by Step
	2.2.1 Registration
	2.2.2 Authentication

	2.3 FIDO2 Security
	2.4 FIDO Alliance Certification

	3 Adversarial Model and Attack
	3.1 Remote CTAP Calls and Webauthn API Implementation
	3.2 Difference in Key Handle Processing
	3.3 Adversarial Model
	3.4 Attack Concept
	3.5 Possible Adversaries

	4 Results
	4.1 Methodology
	4.2 FIDO2 Hardware Authenticators
	4.3 FIDO2 Clients
	4.4 Dealing with User Presence Checks
	4.4.1 Priming User Presence Checks
	4.4.2 Alternative Time Measurement
	4.4.3 The Modified Attack

	4.5 User Experience
	4.6 FIDO in the Wild

	5 Related Work
	6 Discussion
	6.1 Attack Mitigation
	6.1.1 Via Constant Time Execution in Authenticators
	6.1.2 Via Key Derivation Function in Authenticators
	6.1.3 Via Resident Keys (FIDO Configuration)
	6.1.4 Via Client Update.

	7 Conclusion
	A Responsible Disclosure
	B Silent Authentication Measurements
	C Attack Scenarios
	D Open Source Implementations of Key Handling

