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Abstract: Recent work has shown that cell phone mo-
bility data has the unique potential to create accurate
models for human mobility and consequently the spread
of infected diseases [74]. While prior studies have ex-
clusively relied on a mobile network operator’s sub-
scribers’ aggregated data in modelling disease dynam-
ics, it may be preferable to contemplate aggregated mo-
bility data of infected individuals only. Clearly, naively
linking mobile phone data with health records would
violate privacy by either allowing to track mobility pat-
terns of infected individuals, leak information on who
is infected, or both. This work aims to develop a solu-
tion that reports the aggregated mobile phone location
data of infected individuals while still maintaining com-
pliance with privacy expectations. To achieve privacy,
we use homomorphic encryption, validation techniques
derived from zero-knowledge proofs, and differential pri-
vacy. Our protocol’s open-source implementation can
process eight million subscribers in 70 minutes.
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1 Introduction
Human mobility plays a crucial role in infectious disease
dynamics. It leads to more contact between receptive
and infected individuals and may introduce pathogens
into new geographical regions. Both cases can be re-
sponsible for an increased prevalence or an outbreak of
an infectious disease [72]. In particular, human travel
history has been shown to play a critical role in the
propagation of infectious diseases like influenza [32] or
measles [40]. Therefore, understanding the spatiotem-
poral dynamics of an epidemic is closely tied to under-
standing the movement patterns of infected individuals.

Until a few years ago, researchers had to rely on
general data, such as relative distance and population
distribution, to model human mobility. This model was
then combined with a transmission model of a particular
disease into an epidemiological model, which was then
used to improve the understanding of the geographical
spread of epidemics. Mobile phones and their location
data have the unique potential to improve these epi-
demiological models further. Indeed, recent work [74]
has shown that substituting this inaccurate mobility
data with mobile phone data leads to significantly more
accurate models. Integrating such up-to-date mobility
patterns allowed them to identify hotspots with a higher
risk of contamination, enabling policymakers to apply
focused measures.

While prior studies have exclusively relied on aggre-
gated data of all mobile network operator’s subscribers’
it may be preferable to contemplate aggregated mobil-
ity data of infected individuals only. Indeed, a cholera
study [33] observed that although their model succeeded
in showing that some mass gatherings had major influ-
ences in the course of the epidemic, it performed less
well when the cumulative incidence is low. They specu-
lated that demographic stochasticity could be one rea-
son for the bad performance of their model. In other
words, the infected individuals’ mobility pattern may
not be precisely reflected by the population’s mobility
if the prevalence is low. To mitigate this problem, we
propose the usage of infected individuals’ mobile phone
data, which should lead to an improvement in the pre-
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dictive capabilities of epidemiological models, especially
in highly dynamic situations.

1.1 Privacy Goals

Our system should report a heatmap of aggregated mo-
bile phone location data of infected individuals without
revealing an individual’s location or whether an individ-
ual has been infected. To that end we combine various
state-of-the-art privacy-preserving cryptographic prim-
itives to design a two-party client-server protocol for
which the epidemiological researcher or a health author-
ity inputs patients’ identifiers, and the mobile network
operator (MNO) inputs its subscribers’ location data.

Our solution should, thereby, be able to combine
both datasets without leaking the inputs to the other
party. Furthermore, no party should be able to gain
any information on the other dataset by cheating during
protocol evaluation, e.g., by providing malicious inputs.
Even if both parties follow the protocol honestly, the
resulting heatmap of aggregated location data can still
leak sensitive information about individuals. Thus, our
protocol must also prevent this inherent output leak-
age while still preserving the usefulness of the resulting
heatmap.

1.2 Roadmap

In Section 2, we discuss the relevant related work. Sec-
tion 3 provides the necessary preliminary definitions and
notations. Section 4 first states the problem we want to
solve in this article. It then gradually develops a solution
by introducing privacy protection mechanisms step by
step. In Section 5, we perform a dedicated security and
privacy analysis of our solution. Section 6 elaborates on
the implementation of our solution as well as demon-
strating the performance. Section 7 concludes with a
discussion about legal considerations for an actual roll-
out and how multiple parties can be included. We defer
to the appendix missing proofs of our security analysis
(Appendix A) and additional material regarding differ-
ential privacy (Appendix C).

2 Related Work
Numerous research directions have previously sought to
model the spread of infectious diseases. Most closely re-

lated to this paper is work connecting mobile phone data
to infectious diseases.

2.1 Mobility and Infectious Diseases

Mobile phone data provides an opportunity to model
human travel patterns and thereby enhance understand-
ing of infectious diseases’ transmission [72]. Location
data derived from call detail records (CDRs) – phone
calls and text messages – have been used to under-
stand various infectious diseases’ spatial transmission
better, see Table 1. Each of the studies got their CDRs
from one MNO, which most of the time had the largest
market share and coverage. The common understanding
is that biases such as Multi-SIM activity and different
mobile phone usage across different geographical and
socio-economic groups have a limited effect on general
estimates of human mobility [73].

Table 1. Studies connecting mobile phone data to diseases.

Disease Country Year of dataset Subscribers Period
(millions) (months)

[69] Malaria Tanzania 2008 0.8 3
[74] Malaria Kenya 2008-09 14.8 12
[48] HIV Kenya 2008-09 14.8 12
[75] Rubella Kenya 2008-09 14.8 12
[7] Cholera Haiti 2010 2.9 2
[68] Malaria Namibia 2010-11 1.5 12
[76] Dengue Pakistan 2013 39.8 7
[33] Cholera Senegal 2013 0.1 12

The most common model was to assign an individ-
ual a daily location. More concretely, each subscriber
was assigned to a study area on each day based on the
cell tower with the most CDRs or the last outgoing
CDR. Further, the primary study area ("home") was
computed for each subscriber by taking the study area
where the majority of days were spent.

All of the studies emphasized that preserving indi-
viduals’ privacy is mandatory. In all cases – to the best
of our understanding – the involved MNO anonymized
the CDRs before handing them over to the health au-
thority. In addition, we found that the MNO aggregated
the CDRs in at least two cases. However, none of the
studies discussed privacy definitions or the potential risk
of de-identification, which is exceptionally high for lo-
cation data [51]. Therefore, it is hard to assess if they
achieved their goal of preserving individuals’ privacy.



Privately Connecting Mobility to Infectious Diseases via Applied Cryptography 770

2.2 Exposure Notification

Many technological approaches were developed to help
reduce the spread and impact of the Covid-19 pan-
demic [13, 14, 23, 39, 62, 70, 71]. Most of them focus
on exposure notification, where the main challenges in-
clude privacy-friendliness, scalability, and utility. These
approaches crucially rely on sizable parts of the popu-
lation using smartphones, enabling Bluetooth, and in-
stalling a new app. In contrast, our proposal does not
help with contact tracing, but gives potentially useful
epidemiological information to health authorities with-
out requiring people to carry around smartphones or
installing an app. Indeed, any mobile phone is sufficient.

In subsequent work [45], the authors propose to
use a threshold PIR-SUM protocol to allow perform-
ing privacy-preserving epidemiological modeling on top
of existing contact-tracing information. Their PIR-SUM
protocol is based on a multi-server private information
retrieval protocol, which is not suitable for our use case
where a single entity (e.g., the mobile network operator)
holds all location data. While the threshold PIR-SUM
protocol can in theory be built using a single-server PIR,
these protocols are significantly more expensive than the
multi-server PIR they use. Furthermore, their protocols
require a mix-net [2] to provide unlinkability of their
participants messages, which already requires multiple
servers, and it is not immediatly obvious how to ap-
ply their ad-hoc MPC protocol to verify the validity
of queries to a single-server PIR. For single-server PIR
protocols based on homomorphic encryption, our input
validation procedure from Section 4.3 might be an al-
ternative.

2.3 PSI-CA and PSI-SUM Protocols

Several works attempt to improve contact tracing by
enabling users to query a database, while learning noth-
ing more then the number of intersections using PSI-CA
(Private Set Intersection Cardinality) [24, 26, 70] pro-
tocols, or while learning nothing except the sum of the
associated values of the items in the intersection using
PSI-SUM [47, 57] protocols.

While a PSI-SUM protocol perfectly matches our
use case in theory, an application of these PSI-SUM pro-
tocols in a straightforward fashion for our main scenario
in Section 6.6 – where we want to calculate the sum of
vectors of length k = 215 for a subset of n = 223 identi-
fiers – would result in impractical communication cost
(multiple TB).

In [54], the authors propose a method to build PSI-
SUM from their PIR-with-default primitive. This ap-
proach allows one to greatly reduce the communication
to be linear in the smaller set size (the size of the queried
subset of the population in our scenario). They present
two approaches, where the first one has an expensive
setup phase (multiple GB transferred for our scenario)
and then has very performant queries. However, our sce-
nario’s associated values are temporal location data and
would change for new protocol executions, meaning the
setup phase would have to be repeated each time. Their
second approach does not rely on a setup phase and –
for a database size of n = 225 identifiers and t = 212

queried elements – requires 379 MB of data transfer.
However, this again only calculates the sum of a single
item. A naive k = 215-times repetition of the approach
would again result in impractical communication cost.
One could investigate if the protocol can be further op-
timized for large associated data, since the PSI-part of
the protocol does not need to be repeated.

An additional problem of the protocol in [54] is, that
it cannot ensure that a query does not contain an item
multiple times. Applied to our use case, this leads to
problems in combination with differential privacy [27],
since a larger noise needs to be added for privacy, limit-
ing utility. The protocol in [45] solves the same issue by
executing a separate MPC protocol to ensure that the
queries are valid and do not contain duplicates.

2.4 Generic Multi-Party Computation

Generic Multi-Party Computation (MPC) protocols al-
low several parties to securely evaluate a function with-
out having to disclose their respective inputs. Several
protocols [21, 22, 37, 78] and efficient implementations
for generic MPC exists [1, 49], amongst many others.

We do not use generic MPC since all efficient MPC
protocols exchange data linear in the size of the com-
puted circuit and are therefore not well suited for the
large databases considered in this work. Both, secret
sharing and garbled circuit based MPC, would require
the (secure) transmission of the server’s database (ei-
ther in secret-shared form or embedded in a circuit) to
the client, requiring several GB of communication (e.g.,
223 × 215 matrix of 32bit integers has a size of 1TB).
Furthermore, the most efficient secret sharing schemes,
such as the popular SPDZ [21, 22], require a so-called
Beaver triple (for multiplying values) which has to be
precomputed in an expensive offline phase and can not
be reused. Computing enough triples for our protocol
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(i.e., one triple per database entry) would require 238

triples. This triple generation alone would require > 700
hours and more then 1000TB of communication on our
hardware using the MP-SPDZ library [49].

3 Preliminaries
Here we will first introduce the notations and then de-
scribe homomorphic encryption (HE) and differential
privacy (DP).

We write vectors in bold lower case letters and
matrices in upper case letters. We use xi to access
the i-th element of a vector x. For m ∈ N and x ∈
Z, let xm be defined as the vector of powers of x:
xm = (1, x1, ..., xm−1). We denote by c ◦ d the element-
wise multiplication (Hadamard product) of the vectors
c and d. For a positive integer p, we identify Zp =
Z ∩ [−p/2, p/2). For a real number r, bre denotes the
nearest integer to r.

3.1 Homomorphic Encryption

Homomorphic encryption (HE) [35] allows to operate
on encrypted data and, thus, has the potential to realize
many 2-party protocols in a privacy-preserving manner.
Compared to MPC, protocols using HE usually require
less data communication and only one communication
round, at the cost of more expensive computations.

Modern HE schemes [8, 9, 16, 17, 31] base their se-
curity on the learning with errors [64] hardness assump-
tion and its variant over polynomial rings [56]. They
allow to perform both addition and multiplication on
ciphertexts. During the encryption of a plaintext, ran-
dom noise is introduced into the ciphertext. This noise
grows with each homomorphic operation, negligible for
additions but significantly for homomorphic multiplica-
tions. Once this noise becomes too large and exceeds
a threshold, the ciphertext cannot be decrypted cor-
rectly anymore. We call such a scheme, that allows eval-
uating an arbitrary circuit over encrypted data up to
a certain depth, a somewhat homomorphic encryption
scheme (SHE). The specific depth depends on the choice
of encryption parameters, and choosing parameters for
larger depths comes, in general, with a considerable per-
formance penalty. In this work, we use the BFV [8, 31]
SHE scheme to encrypt the inputs of our protocol.

Besides semantic security, two-party protocols
based on HE additionally either require the notion of

circuit privacy [35], or function [36] (evaluation [3]) pri-
vacy, to hide the function applied on the ciphertexts.
Function privacy is often easier to achieve than circuit
privacy in practice. It requires that the outputs of eval-
uating different circuits homomorphically on the same
encrypted data need to be indistinguishable. In other
words, a party decrypting the final result of a function
private HE scheme can not learn anything about the cir-
cuit applied to the input data. Like many HE schemes,
BFV does not naturally provide function privacy, how-
ever, it can be added by applying noise flooding [35].

3.2 Differential Privacy

Differential privacy (DP) [27] defines a robust, quanti-
tative notion of privacy for individuals. The main idea
is that the outcome of a computation should be as in-
dependent as possible (usually defined by a privacy pa-
rameter ε) from the data of a single input. Applied to
our use case, DP makes the final heatmap independent
to the contribution of any individual, preventing it from
leaking sensitive information.

DP is highly compatible with existing privacy
frameworks and has successfully been applied to several
real-world applications. Recent work [60] showed that
DP satisfies privacy requirements set forth by FERPA1.
Even before this analysis, several businesses were al-
ready using DP. For example, Apple [5] and Google [38]
have applied differential privacy to gather statistics
about their users without intruding on individual’s pri-
vacy. Recently, the U.S. Census 2020 uses differential
privacy as a privacy protection system [11].

The most prevalent technique to achieve DP is to
add noise sampled from a zero-centered Laplace distri-
bution to the outcome of the computation. The distri-
bution is calibrated with a privacy parameter ε and the
global sensitivity ∆q of the computation and has the
following probability density function:

Lap(x|b) = 1
2be
− |x|b , with b = ∆q

ε

To add noise to a protocol operating on integers, we
discretize the Laplace distribution by rounding the sam-
pled value to the nearest integer. For a formal definition
of DP, we refer to Appendix C.

1 Family Educational Rights and Privacy Act of 1974, U.S.
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4 Privacy Preserving Heatmap
Protocol

We first describe our goal and then introduce each pri-
vacy protection mechanism step by step.

4.1 The Desired Functionality

Our aim is to accumulate the location data of infected
individuals to create a heatmap, assisting governments
in managing an epidemic. Two parties controlling two
different datasets are involved: A health authority who
knows which individuals are infected; and an MNO
who knows the location data of their subscribers. More
specifically, the MNO knows how long each of their sub-
scribers is connected to which cell towers (CDRs are a
subset of this information). Based on this mobility data,
our protocol could answer several questions. One in line
with epidemiological literature is to look at the individ-
uals’ mobility data in the incubation period (e.g., 5-7
days for COVID-19). The final heatmap will show areas
with a higher chance of getting infected with the dis-
ease. A natural extension would be to study mobility
patterns after the incubation period but before confir-
mation/quarantine. So our protocol is generic regarding
the time unit or the granularity of location data. When
discussing privacy guarantees that depend on the actual
data, we will explicitly outline the chosen setting.

Protocol Description
If the MNO knows which of its subscribers is infected,
it can do the following to create the desired heatmap:

– Initialize a vector h of k elements with zeros, where
k is the total number of cell towers. Each element
of this vector corresponds to one cell tower.

– For each infected individual, add the amount of time
it spent at each cell tower to the corresponding ele-
ment of the vector h.

– Then the vector h contains the final heatmap, i.e.,
hj contains the accumulated time spent of all in-
fected individuals at cell tower j.

Let us rewrite this process into a single matrix mul-
tiplication. First, we encode all N subscribed individ-
uals into a vector x ∈ ZN2 , with xi ∈ Z2 indicating,
whether the individual i is infected (xi = 1) or not
(xi = 0). Then we encode the location data in a matrix

Z = (z1, z2, . . . ,zk) ∈ ZN×k such that the vector zj

contains all the location data corresponding to the cell
tower identified by j. In other words, the i-th element
of the vector zj contains the amount of time individ-
ual i spent at cell tower j. Now, we can calculate the
heatmap as h = xT · Z.

We depict the basic protocol, involving the health
authority as a client and the MNO as a server, in Fig-
ure 1, assuming the health authority and the MNO al-
ready agreed on identifying all subscribed individuals
by indices i ∈ 1, ..., N .

Client (Health Authority) Server (MNO)

Input: x ∈ ZN
2 Input: Z ∈ ZN×k

Output: h = xT · Z Output: h

Input

x

Data Aggregation

h h← xT · Z

Output h

Fig. 1. Basic protocol without privacy protection.

Remark 1 (Agreeing on database indices). The proto-
col in Figure 1 already assumes that the two parties agree
on the indices of individuals in the database. In practice,
the individuals can be identified using several methods,
such as phone numbers, mail addresses or government
ids. We now give two options to get a mapping from a
phone number to a database index, while noting that any
other identifier can be trivially used instead:
– The MNO and health authority engage in a protocol
for Private Set Intersection (PSI) with associated
data (e.g., [15, 20]). In such a protocol, the health
authority and the MNO input their list of phone
numbers. The health authority gets as the protocol’s
output the phone numbers that are in both sets, as
well as the associated data from the MNO. The as-
sociated data would be the index in the database in
our case.

– The MNO sends a mapping of all phone numbers to
their database index in plain. This approach is ef-
ficient and straightforward, but it discloses all sub-
scribed individuals to the health authority. However,
this is essentially a list of all valid phone numbers
in random order and does not leak anything more
than the validity of that number. Still, this may be
an issue in some scenarios.

While the PSI-based solution has some overhead com-
pared to the plain one, the performance evaluation
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in [20] shows that a protocol execution with 222 MNO
items and 4096 health authority items takes about 1.4
seconds online (excluding a precomputable offline phase
taking 467 seconds) with a total communication of 8.3
MB – a minor increase when looking at the overall pro-
tocol. While PSI-SUM protocols [47, 54, 57] could be
used to calculate the final heatmap without revealing
which identifiers are present in the MNO’s set, their ad-
ditional overhead is not worth the minor privacy gain,
considering that for the type of identifier we are using
(phone numbers), one can often already publicly check
if a phone number is associated with a mobile network
operator2. We therefore relax our setting to allow reveal-
ing which identifiers are present in the MNO’s set to
take advantage of the reduced communication of our ap-
proach compared to the full PSI-SUM approaches men-
tioned above.

Executing the protocol described in Figure 1 would en-
able the MNO to learn about infected individuals, which
is a massive privacy violation. On the other hand, the
health authority could query a single individual’s loca-
tion data by sending a vector x = (1, 0, . . . , 0), violating
privacy. In the following, we describe our techniques to
protect against these violations.

4.2 Adding Encryption

To protect the vector send by the health authority, and
therefore who is infected and who is not, we use a HE
scheme (KGen,Enc,Dec,Eval). Before executing the pro-
tocol, the health authority runs KGen to obtain a secret
key sk and an evaluation key evk. We assume that the
MNO knows evk, which is required to perform opera-
tions on encrypted data, before running the protocol.

In the updated protocol, the health authority now
uses sk to encrypt the input vector x and sends the re-
sulting ciphertext vector c← Encsk(x) to the MNO. The
MNO then uses evk to perform the matrix multiplication
on the encrypted input vector and sends the resulting ci-
phertext vector h∗ ← Evalevk

(
cT · Z

)
back to health au-

thority. The health authority can now use sk to decrypt
the result and get the final heatmap h = Decsk(h∗).

Informally, if the used HE scheme is semantically
secure, then the MNO cannot learn which individuals
are infected by the disease and which are not.

2 as an example, using services such as https://dexatel.com/ca
rrier-lookup/, or often also just calling the number

4.3 Input Validation

In the simple protocol, the health authority could use
a manipulated input vector x to include an individual
multiple times (e.g., setting the corresponding vector
entry to 100 instead of 1). Such an individual could
most likely be filtered out in the final heatmap. Since
the input vector is encrypted, the MNO cannot trivially
check if the vector is malicious or not. Also, comparing
encrypted elements is not trivially possible in most HE
schemes. However, the required check can be encoded,
such that it outputs 0 if everything is correct, and a
random value otherwise. We then can add this value to
the final output as a masking value which randomizes
the MNO’s response if the input vector is malicious. We
describe how to generate this masking below.

Masking Against Non-Binary Query Vector
Note that the HE schemes plaintext space usually is
Zp, i.e., the integers modulo a prime p. Therefore, the
inputs to our protocol – the vector x and the matrix
Z – consist of elements in Zp. As outlined above, it is
crucial to the protocol’s privacy that the input vector
is binary, i.e., only contains 0s and 1s. If this is not
the case, the health authority could arbitrarily modify
a single person’s contribution to the overall aggregated
result. It is essential for DP considerations to bound the
maximum possible contribution of a single individual
(sensitivity).

Since the MNO only receives an encryption of the
input vector, simply checking for binary values is not an
option. However, we can use similar techniques to the
ones used in Bulletproofs [10] to provide assurance that
the query vector x ∈ ZNp contains only binary elements.
First, we will exploit the following general observation.
Let d = x − 1, then x ◦ d is the zero vector iff x is
binary. Note that the MNO can compute an encryption
of d from the encrypted input vector. The result of the
Hadamard product x◦d can be aggregated into a single
value by calculating the inner product 〈x,d〉, which will
again be zero if x is binary. The MNO also multiplies
x with powers of a random integers y to reduce the
probability of the health authority cheating by letting
several entries of x cancel each other out during the
inner product, which gives the mask:

µbin′ = 〈x, (d ◦ yN )〉 , (1)

where yN = (1, y1, ..., yN−1) is y’s vector of powers.
For the generic case of a vector v and a randomly

chosen y, 〈v,yN 〉 = 0 will hold for v 6= 0 only with

https://dexatel.com/carrier-lookup/
https://dexatel.com/carrier-lookup/
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probability N/p [10]. Using a ν bit modulus p (p ≈ 2ν),
translates to a soundness error of ν − log2(N)bits. For
details of this calculation see Appendix A.1. In particu-
lar, if we look at N = 223, ν = 60, parameters sufficient
for small nation-states (see Section 6.6), we get 37-bit
statistical security. Standard literature suggest a statis-
tical security parameter of at least 40-bit; therefore, we
developed a method to enhance the statistical security
without significant overhead.

Boosting Soundness
The high-level idea is that we lower the probability of
cheating successfully by a random linear combination of
separate masks. Intuitively, a malicious health author-
ity would have to guess correctly for every single mask.
Thus, the soundness converges to the underlying field
size in the number of terms of the linear combination.
For our purpose, two terms already suffice for an appro-
priate security level:

µbin = 〈x, (d ◦ yN1 )〉 · r1 + 〈x, (d ◦ yN2 )〉 · r2

where r1, r2
$← Zp \ {0} are two random values. There-

fore, the statistical security level increases to ν − 1 bit
(= 59 bits for ν = 60). We refer to Lemma 2 in Ap-
pendix A.1 for a proof of this statement.

Applying the Mask
Once the µbin is calculated, it gets added to the final
output of the protocol. However, if the masking value is
not zero, we have to make sure that a different random
value is added to each element of the output vector to
prevent leaking the mask if some output vector values
are known beforehand. Therefore, the final mask µ can
be calculated using a random vector r $← (Zp \ {0})k as
follows:

µ = µbin · r (2)
The final mask µ is now equal to 0k if x is a binary
vector, random otherwise.

Remark 2 (PSI-SUM with Indices). So far the proto-
col securely implements a functionality dubbed PSI-SUM
with Indices. For completeness, we included a descrip-
tion and its ideal functionality in Appendix B.

4.4 Adding Differential Privacy

The aggregated location data can still leak information
about the location data of individuals. For example,

the health authority could abuse the heatmap to track
an individual by just querying him or by querying him
alongside individuals from a completely different area.
The location data of the targeted individual would be
visible as an isolated zone in the resulting heatmap. Ap-
plying DP with suitable parameters will protect against
such an attack since the overall goal of DP is to de-
crease the statistical dependence of the final result to
a single database entry. In our use case, therefore, DP
achieves that it is highly unlikely to distinguish between
heatmaps, in which we include a single individual in the
accumulation, and heatmaps, in which we do not.

Choosing proper parameters, however, highly de-
pends on the underlying dataset. On the one hand, the
chosen ε should be small enough to satisfy privacy con-
cerns; on the other hand, it should be big enough not to
overflow the result with noise, creating hotspots on its
own. We discuss one method to choose suitable param-
eters in Section 5.2.

4.5 Final Protocol

Finally, with all measures to protect privacy in place,
we present the final protocol in Figure 2.

5 Security & Privacy Analysis
On the one side, the protocol provides input security
against a malicious MNO, i.e., even if the MNO devi-
ates from the protocol, it cannot determine the patient’s
identifiers (see Section 5.1). On the other side, individu-
als’ location data are protected even against a malicious
health authority, i.e., the health authority cannot track
individuals (see Section 5.2)).

5.1 Security

Two-party protocols are usually proven secure with the
real-ideal world paradigm [12]. Roughly speaking, one
has to prove that the protocol does not leak any addi-
tional information than when computed with the help
of a trusted third party. The trusted third party is mod-
eled as an ideal functionality presented in Figure 3.

Semi-Honest Security
Before we discuss malicious security, we will show that
our protocol achieves semi-honest security.
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Client (Health Authority) Server (MNO)

Input: x ∈ ZN
p Input: Z ∈ ZN×k

p

Output: If x ∈ ZN
2 : h = xT · Z +

(⌊
Lap

(∆q
ε

)⌉)k

∈ Zk
p Output: ⊥

Otherwise: h $← Zk
p

Encryption

c← Encsk(x) c

Data Aggregation

h∗ ← Evalevk
(
cT · Z

)
Compute Mask

d← Evalevk
(
c− 1N

)
r

$← Zk
p ; r1, r2, y1, y2

$← Zp

µbin ← Evalevk
(
〈c, (d ◦ yN

1 )〉r1 + 〈c, (d ◦ yN
2 )〉r2

)
µ← Evalevk (µbin · r)

h∗ ← Evalevk (h∗ + µ)
Differential Privacy

δ
$←
(⌊

Lap

(∆q
ε

)⌉)k

h∗
h∗ ← Evalevk (h∗ + δ)

Decryption

Output h← Decsk(h∗)

Fig. 2. Privacy preserving heatmap protocol.

Lemma 1. Let us assume HE is an IND-CPA secure
homomorphic encryption scheme that provides function
privacy. Then the protocol in Figure 2 securely realizes
FHmap against static semi-honest adversaries.

The high-level idea is two-fold. Firstly, by the definition
of semantic security, the MNO can not learn anything
from encrypted data, hence, we reduce our protocol’s
security against the MNO’s corruption to the seman-
tic security of the underlying HE scheme. Second, func-
tion privacy guarantees that the health authority learns
nothing more about the MNO’s matrix, than what can
be derived from the input x and the output h. The for-
mal proof can be found in Appendix A.

Malicious Security
Achieving simulation-based security against a malicious
MNO would be similar to verified HE. While some the-
oretical constructions exist [52], they are not practical.

Instead, we show input security against a malicious
MNO, also known as one-sided simulation security. This
notion has been first considered in the context of oblivi-
ous transfer [59], was then formalized [44], and recently
used [15] in the realm of PSI. In our protocol, one-sided
simulation guarantees that the patients’ identifiers are
protected even in the presence of a malicious MNO (one

that deviates from the protocol). For a formal definition,
see Appendix A.

Theorem 1. Let us assume HE is an IND-CPA secure
homomorphic encryption scheme that provides function
privacy. Then the protocol in Figure 2 securely realizes
FHmap with one-sided simulation in the presence of a
maliciously controlled MNO.

Proof. From Lemma 1, we already know that the proto-
col is secure against semi-honest adversaries. The only
thing left to show is input privacy of the health author-
ity against a malicious MNO, i.e., the MNO is not able
to learn any information from the health authority’s in-
put (patients’ identifier). Now, due to the fact that the
MNO’s view only includes an encryption of the health
authority’s input, by the semantic security of HE, we
have that the MNO learns nothing about the health au-
thority’s input.

5.2 Privacy

The protocol’s output exposes aggregate information,
namely the amount of time spent by individuals at a
cell tower, to the health authority. In the worst case,
only one individual is present in the aggregation. Even
in this case the health authority should not be able to
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FHmap
Parameters: t,N ∈ N, β ∈ R+. Parties P1 and P2.

1. Upon receiving an input (input, sid, P1, P2,x) from
a party P1, verify that x ∈ ZNp , else ignore input.
Next, record (sid, P1, P2,x). Once x is recorded,
ignore any subsequent inputs of the form
(input, sid, P1, P2, ·) from P1.

2. Upon receiving an input (input, sid, P1, P2, Z) from
party P2, verify that Z ∈ ZN×∗p , else ignore input.
Proceed as follows: If there is a recorded value
(sid, P1, P2,x, w), compute
h← xTZ + (bLap (β)e)k provided that x ∈ ZN2 ,
otherwise h $← Zkp, and send (sid, P1, P2, k) where k
is the number of columns of Z to the adversary.
Then output (result, sid, P1, P2,h) to P1, and
ignore subsequent inputs of the form
(input, sid, P1, P2, ·) from P2.

Fig. 3. Ideal functionality FHmap of the above solution.

single out any individual. To mitigate this threat, we
propose to use differential privacy (DP).

5.2.1 Privacy-Utility Tradeoff

It is a challenge to choose the right amount of noise to
protect individuals’ privacy while still preserving utility.
Ultimately, this tradeoff is not only technical but also
has to take into account normative considerations [60].
Here, we only explore the technical tradeoff and leave
the latter one to policymakers.

There has been limited research specifically address-
ing the technical tradeoff [50, 53, 61]. However, the
methods of [50, 53] are not applicable to our protocol
since they require either input from the individuals [50]
or "knowing the queries to be computed" [53]. Therefore,
we choose to follow [61]’s rigorous method to find real-
world parameters for DP.

5.2.2 Choosing the Right ε

The model in [61] provides a principled approach to
choose ε. It can be split into two major steps resulting
in two constraints that have to be satisfied simultane-
ously. First, one chooses the desired utility by defining
a confidence interval. The parameters of the confidence
interval give the first constraint on the required mini-

mum number w of infected individuals and ε. Note that
if the health authority does not provide the number of
infected individuals w or lies about it, privacy is not
affected. Only utility cannot be guaranteed any more.

Further, the method requires setting a bound on
the expected privacy harm per individual and estimat-
ing the expected cost (baseline cost) of not being part
of the outcome (e.g., database breach). This leads to
the second constraint on ε. Every pair of parameters, ε,
and the number of infected individuals w that simulta-
neously fulfill both constraints, is a reasonable privacy-
utility tradeoff choice.

To illustrate this method, we now provide a possible
set of values for this example. Choosing these values re-
quires a few assumptions. We want to highlight that
our assumptions are, at best, educated guesses. The
real-world values have to be adjusted to the concrete
circumstances and be discussed by a group of privacy,
ethical, legal, epidemiological and policy experts.

First, the time unit is days for consistency with
previous epidemiological studies, see Section 2.1. We
decided to aim for a margin of error of ±5% with a
probability of 0.95 (confidence). In terms of privacy, the
method requires us to estimate the expected base costs
(harm) that arise for an individual by using the MNO’s
services (data breach at the MNO would leak the loca-
tion data), i.e., without even being part of the computa-
tion. We assume that without performing our protocol,
this probability is less than 0.00001. In the case of a leak-
age, we set the monetary harm inflicted to an individual
to an exemplary amount of $1000 per day. This seems
reasonable since most smartphone users divulge exact
location data for far less than that amount to compa-
nies. Now, we can calculate the expected baseline cost
as 0.00001 · $1000 = $0.01 per day of leakage. We think
performing the protocol is justified if the cost of partici-
pating does not exceed $0.02. We arrive at the following
two constraints (see Appendix C.1 for details)

exp
(
−0.05 · wε2

)
≤ 0.05 (utility)

0.01 · (eε − 1) ≤ 0.02, (privacy)

which are illustrated in Figure 4.
If the health authority wants to release a heatmap

to inform the public about hotspots or justify their poli-
cies, it must add additional noise to the map. Otherwise,
the MNO could subtract the noise, which itself added
in the first place, thus removing the protection provided
by DP. The addition of noise by both parties does not
violate privacy because DP enjoys composability [28].
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Fig. 4. Privacy-utility tradeoff: The green area are possible combi-
nation for ε and w (# infected individuals). Above privacy cannot
be guaranteed; below utility is not satisfied.

More concretely, if the heatmap produced by the MNO
is ε1-differentially private and the health authority adds
noise corresponding to ε2 to it, then the final heatmap
is (ε1 +ε2)-differentially private. The same methodology
as above should be applied to choose ε2. It is crucial to
find parameters such that the points (w, ε1), (w, ε2), and
(w, ε1 + ε2) are in the plot’s green area.

To illustrate the trade-off of Figure 4 for a practi-
cal example, we performed experiments on the London
subset of the publically available gowalla dataset [18].
This dataset consists of thousands of check-in’s where
each check-in consists of a user-id, GPS coodinates and
a timestamp. To stay consistent with the methodology
we discuss in the rest of the paper, we mapped all check-
in locations to the locations of the nearest cell towers
in London and treat multiple check-ins from the same
user to the same cell tower as just one check-in. The fi-
nal dataset consists of 4571 people and 9994 cell towers.
Figure 5 depicts a snipped of the original heatmap and
the heatmaps resulting by applying DP, having w = 600
randomly chosen infected people and varying ε. The gen-
erated figures visually confirm our expectations based
on the calculations above: One can observe that the
heatmap without DP (Figure 5a) is very similar to the
heatmap with too little noise (Figure 5d), indicating
that the noise is not enough to guarantee privacy. On
the other hand, the heatmap with too much noise (Fig-
ure 5b) clearly provides no utility due to the noise creat-
ing too many hotspots. In the correctly parameterized
heatmap (Figure 5c), one can observe some difference
to Figure 5a due to noise, however the biggest hotspots
remain the same. In other words, privacy and utility are
preserved. Government officials now can use Figure 5c

to set new policies (e.g., closing public locations in the
hotspot areas) without the possibility to track the loca-
tion of individuals.

Remark 3. Several queries could contain the same in-
dividual. Since the overall movement pattern for the
same individual changes slowly over time, we model this
as an identical database. Therefore the total number of
queries has to be limited to the total privacy budget. For
example, if we follow the values of the analysis above
and the health authority queries once a week for two
months (= 8 queries), the privacy budget suffices to pro-
vide utility as long as the number of infected individuals
w is above 750 per week.

5.3 Summary and Limitations

To summarize, the patients identifiers are encrypted
during the whole protocol, hence, the semantic security
of the HE scheme protects the privacy of the patients
even if the MNO is cheating. The functional privacy of
the HE scheme prevents, that the MNO’s computation
leaks anything about any location data to the health
authority. The binary mask guarantees that each indi-
vidual is only present at most once in the query and
prevents that a cheating health authority can amplify
the contribution of individual’s location data in the fi-
nal heatmap. Differential privacy then prevents that lo-
cation data from individual’s can be singled out from
the resulting heatmap. Consequently, the location data
of individuals is protected even if the health authority is
cheating. Hence, all sensitive information is always kept
private from other parties during the whole protocol.

Even though privacy of input data is guaranteed,
the protocol has some practical limitations. The proto-
col cannot guarantee, that either the health authority,
or the MNO use truthful data in the first place. In other
words, malicious health authorities can randomly mark
individuals as infected and MNO’s can use fake location
data to create the heatmap. The protocol then would
guarantee privacy of these wrong inputs, but the pro-
duced heatmap would be useless. This dependence on
the truthfullness of the input data is, unfortunately, a
generic problem to any computation (plain and privacy
preserving) and can not be prevented by cryptographic
measures. We, therefore, propose that independent offi-
cials perform a yearly audit, e.g., at the end of the year,
of the involved data to expose cheating parties.

Another limitation of our protocol is, that the utility
of the heatmap scales with the prevalence of the disease.
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(a) Original data without noise. (b) ε = 0.05: utility is not satisfied (red area in Fig. 4).

(c) ε = 0.6: utility is satisfied and privacy is
guaranteed (green area in Fig. 4).

(d) ε = 3: privacy is not guaranteed
(above the privacy line in Fig. 4).

Fig. 5. Influence of different ε values on an artificial heatmap created by mapping the gowalla [18] dataset onto Londoner cell towers.
Figure 5a shows the unmodified heatmap providing no privacy. While Figure 5d has too little noise for privacy (practically no difference
compared to Figure 5a), Figure 5b has too much noise for utility. Figure 5c provides both privacy and utility. While the noise clearly
influences the image, the hotspots remain the same.

Concretely, the more people are infected, the smaller
the impact of differential privacy on the final outcome.
Conversely, the less people are infected the larger the
impact of the noise and the utility drops. Thus, for very
small prevalences it might not be possible to achieve
high utility while maintainig privacy with our protocol.

6 Implementation & Performance
The data aggregation of our protocol requires only ho-
momorphic ciphertext-ciphertext addition and homo-
morphic plaintext-ciphertext multiplication; however,
the evaluation of the binary mask additionally requires
homomorphic ciphertext-ciphertext multiplication. For
our implementation we chose to use the BFV [8, 31] SHE
scheme, which fulfills these requirements. More specifi-
cally we use its implementation in the SEAL v3.6 [65]
library, a fast, actively developed open-source library
maintained by Microsoft Research.

The computationally most expensive phase in the
protocol is the Data Aggregation phase, in which the

MNO multiplies a huge matrix to a homomorphically
encrypted input vector. Therefore, the main objective
of our implementation is to perform this huge matrix
multiplication as efficiently as possible.

6.1 Packing

Modern HE schemes (including BFV) allow packing a
vector of n plaintexts into only one ciphertext. Perform-
ing an operation on this ciphertext then is implicitly
applied to each slot of the encrypted vector, similar to
single-instruction-multiple-data (SIMD) instructions on
modern CPUs (e.g., AVX). However, the ciphertext size
does not depend on the exact number (≤ n) of encoded
plaintexts. The HE schemes support various SIMD op-
erations, including slot-wise addition, subtraction and
multiplication, and slot-rotation. However, one can not
directly access a specific slot of the encoded vector. We
can use the SIMD encoding to speed up the matrix mul-
tiplication of our protocol significantly.
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In the BFV scheme (and its implementation SEAL),
the number of available SIMD slots equals the degree
of the cyclotomic reduction polynomial (xn + 1); thus,
it is always a power of two. In the ciphertexts, the n
slots are arranged as matrix of dimensions (2 × n/2). A
ciphertext rotation affects either all rows or all columns
of the matrix simultaneously. Therefore, we can think
of the inner matrix as two rotatable vectors, which can
be swapped.

6.2 Homomorphic Matrix Multiplication

Since SEAL does not provide algorithms for plain-
matrix times encrypted vector multiplication, we im-
plement the baby-step giant-step (BSGS) optimized
matrix-vector multiplication [41–43] on our own and op-
timize it to fully leverage all slots (i.e., both rotatable
vectors) of the homomorphic ciphertexts.

BSGS Matrix Multiplication
The SIMD encoding can be used to efficiently speed
up matrix multiplication by using the diagonal method
introduced by Halevi and Shoup [41], and its optimized
version based on the BSGS algorithm [42, 43]:

Z · x =
m−1∑
i=0

diag(Z, i) ◦ rot(x, i) (3)

=
m2−1∑
k=0

rot

m1−1∑
j=0

diag′(Z, km1 + j) ◦ rot(x, j), km1


where m = m1 · m2 and diag′(Z, i) =
rot (diag(Z, i),−bi/m1c ·m1).3 Note, that rot(x, j)
only has to be computed once for each j < m1, there-
fore, Equation (3) only requires m1 + m2 − 2 rotations
of the vector x in total.

Extension to Bigger Dimensions
In our protocol, we want to homomorphically evaluate
xT · Z = (ZT · x)T , where x ∈ {0, 1}N and Z ∈ ZN×kp ,
for big parameters N and k. As described in Section 6.1,
the inner structure of the BFV ciphertext consists of two
vectors of size n/2 each, and it does not allow a cyclic
rotation over the whole input vector of size n. However,
a rotation over the whole input vector is required by
the BSGS algorithm. Therefore, we only can perform

3 In Equation (3), bi/m1c is equal to k.

a BSGS multiplication with a (n/2 × n/2) matrix using
this packing. Fortunately, we can use the remaining n/2

slots (i.e., the second vector in the inner structure of
the BFV ciphertext) to simultaneously perform a sec-
ond (n/2× n/2) matrix multiplication. Therefore, after a
homomorphic BSGS matrix multiplication, the result is
a ciphertext c, where each of the two inner vectors en-
codes the result of a (1× n/2)× (n/2× n/2) vector-matrix
multiplication. The sum of those two vectors can easily
be obtained by rotating the columns of the ciphertext c
and adding it to the first result:

csum = c+ rotcol(c) (4)

Thus, we can use one (n/2× n/2) BSGS matrix multipli-
cation and Equation (4) to implement a homomorphic
(1×n)×(n×n/2) = (1×n/2) vector-matrix multiplication.

Taking this into account, we split the huge (N × k)
matrix into nv ·no submatrices of size (n×n/2), with nv =⌈
N
n

⌉
and no =

⌈2k
n

⌉
, padding the submatrices with zeros

if necessary. We split the input vector x into nv vectors
of size n (padding the last vector with zeros if necessary)
and encrypt each of these vectors to get nv ciphertexts
ci. The final result of the xT · Z matrix multiplication
can be computed with the following equation:

c̃i =
nv−1∑
j=0

MatMul(SubMat(Z, j, i)T , cj) ∀0 ≤ i < no (5)

where, SubMat(Z, j, i) returns the submatrix of Z with
size (n× n/2), starting at row n · j and column n

2 · i, and
MatMul(Z, c) performs the homomorphic BSGS matrix
multiplication Z · c followed by Equation (4).

Equation (5) produces no ciphertexts c̃i, with the
final results being located in the first n/2 slots of the
ciphertexts. Overall, our algorithm to homomorphically
calculate xT · Z requires nv · no BSGS matrix multipli-
cations and the total multiplicative depth is 1 plaintext-
ciphertext multiplication.

6.3 Homomorphic Evaluation of the Mask

To calculate the binary vector masking value (Equa-
tion (1)), we need to calculate the inner product of
two homomorphically encrypted ciphertexts c and d.
After an initial multiplication c · d, the inner product
requires log2(n/2) rotations and additions, followed by
Equation (4) to produce a ciphertext, where the result
is encoded in each of the n slots. Our implementation
uses rejection sampling and the SHAKE128 algorithm
to cryptographically secure sample all the required ran-
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dom values in Zp. The total multiplicative depth to ho-
momorphically evaluate the final mask (Equation (2)) is
1 ciphertext-ciphertext multiplication and 2 plaintext-
ciphertext multiplications.

6.4 BFV Parameters

In BFV, one can choose three different parameters
which greatly impact the runtime, security, and the
available noise budget (i.e. how much further noise can
be introduced until decryption will fail). These para-
maters are the degree of the reduction polynomial n =
2k, the plaintext modulus p, which needs to be prime
and p ≡ 1 (mod 2 · n) to enable packing, and the ci-
phertext modulus q. We test our implementation for a
computational security level of κ = 128bit for different
plaintext moduli p using the smallest n (and its default
value for q) providing enough noise budget for correct
evaluation of our protocol.

6.5 Function Privacy and Noise Flooding

Function privacy can be achieved by re-randomization
and noise flooding, where the MNO adds an encryp-
tion of zero with a sufficiently large noise [25, 35] to the
protocol’s output. Following the smudging lemma [6],
one needs to add a ciphertext with noise being λFP +
log2(n) + log2(no) bits larger than the upper bound of
our protocol’s original output’s noise to achieve a sta-
tistical distance of 2λFP between different executions.

We implement noise flooding by creating an encryp-
tion of zero (c0) with large noise (in practice, we set
the noise as large as possible while ensuring decryp-
tion is still possible). Adding c0 to the output of our
protocol (c) results in a ciphertext which has λFP =
noisebudget(c)−noisebudget(c0)−log2(n)−log2(no)
statistical function privacy. In our concrete parameter
sets, we ensure that λFP > ν.

However, like most efficient instantiations of func-
tion privacy, noise flooding provides security against
semi-honest adversaries only (see [25] and contained ref-
erences), and so our implementation also only provides
semi-honest security. Still, once available, our imple-
mentation can use efficient maliciously function-private
FHE schemes instead and benefit from security against
a malicious health authority.

6.6 Benchmarks

We benchmark our prototype implementation4 on an
c5.24xlarge AWS EC2 instance (96 vCPU @ 3.6GHz,
192GiB RAM) running Ubuntu Server 20.04 in the Re-
gion Frankfurt with a current price of $4.656 per hour.

In our benchmarks, we focus on evaluating the run-
time of the Data Aggregation phase of our protocol.
Since in our use cases N is much bigger than k, we im-
plemented multithreading, such that the threads split
the number of rows in the matrix (more specifically, the
number of submatrices in the rows nv) equally amongst
all available threads. Therefore, each thread has to per-
form at most

⌈
nv

#threads

⌉
· no MatMul evaluations, which

will be combined at the end by summing up the inter-
mediate results.

The evaluation of the proving mask with its higher
multiplicative depth requires BFV parameters provid-
ing a bigger noise budget, however, its actual evalua-
tion does not impact the overall runtime of the protocol
since we perform it in an extra thread in parallel to the
data aggregation. Furthermore, adding DP, noise flood-
ing, as well as the computations of the health authority
(encryption and decryption), have negligible runtime.

The runtime of our protocol isO(nvno), i.e., it scales
linearly in the number of MatMul evaluations. This can
be seen in Figure 6 in which we summarize the runtime
of the homomorphic matrix multiplication for different
matrix dimensions using only one thread. For real-world
matrix dimensions, some added runtime has to be ex-
pected due to thread synchronization and the accumu-
lation of the intermediate thread results.
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10n× n

2 = 163840× 8192
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n× 20n2 = 16384× 163840
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Fig. 6. Linear dependency of the runtime of the overall matrix
multiplication to the number of MatMul evaluations. BFV param-
eters are: log2(p) = 42, n = 16384, κ = 128.

4 The source code is available at https://github.com/IAIK/Co
ronaHeatMap.

https://github.com/IAIK/CoronaHeatMap
https://github.com/IAIK/CoronaHeatMap
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Real World Matrix Dimensions
In our benchmarks, we want to evaluate our protocol
with parameters suitable for smaller nation states and
set the matrix dimensions to N being larger then the
total population of small countries, and k to be larger
then the total number of cell towers in these countries.
Concretely, we set N = 223 and k = 215, parameters
enough to evaluate our protocol, for example, for Aus-
tria [63, 67], Singapore [34, 77], Kenya [74], New York
City, Paraguay or New Zealand. In Table 2 we list the
runtime for a homomorphic (1× 223)× (223 × 215) ma-
trix multiplication, for different BFV parameters, using
(at most) 96 threads. We also provide the total number
of MatMul evaluations and the (maximum) number of
evaluations per thread. We give performance numbers
for a plaintext prime p of size 42bit, i.e., the small-
est size to achieve ν = 41 bit statistical privacy against
malicious health authorities using our proving mask.
To capture use cases, where a 42bit plaintext modu-
lus is not big enough, we also benchmark our protocol
for a 60bit prime p (the maximum value supported by
SEAL), providing ν = 59bit statistical security. Fur-
ther, we also give the achieved statistical function pri-
vacy λFP in bits for both benchmarks. As Table 2 shows,
the MNO’s computation takes 70 minutes for a 42 bit
plaintext prime and 1 hour 25 minutes for the bigger
60bit prime.

Table 2. Runtime for the MNO’s computations for different pa-
rameters using 96 threads. N = 223, k = 215, κ = 128.

BFV #MatMul Time AWS
log2(p) n λFP total (thread) min price

42 16384 165 2048 (24) 69.33 $5.38
60 16384 96 2048 (24) 83.23 $6.46

Data Transmission
The data sizes which have to be transmitted between
the MNO and the health authority are listed in Ta-
ble 3. Each row corresponds to a different parameter
set from Table 2. The sizes were obtained by storing
each of the described elements on the file system on the
benchmarking platform. The table lists the size of the
ciphertexts (ct), the public key (pk), Galois keys (gk),
and relinearization keys (rk). The public key is required
for noise flooding to achieve function privacy, whereas
Galois keys are required to perform homomorphic ro-

tations. Each rotation index requires one Galois key,
plus an additional key for rotating the columns. When
using the BSGS algorithm, we need a key for the in-
dex 1 to calculate rot(x, j), and a key for the indices
k ·m1, ∀0 < k < m2. Also, for masking, we need the keys
for the power-of-2 indices to calculate the inner product
of two ciphertexts. The relinearization key is required
to linearize the result of a ciphertext-ciphertext multi-
plication. We want to stress that the public key (pk),
Galois keys (gk), and relinearization keys (rk) only need
to be sent once before our protocol’s first evaluation in
a data-independent setup phase. Subsequent uses of the
protocol can reuse these keys and only require transmit-
ting the ciphertexts.

Table 3. Data transmission in MiB for parameters in Table 2.

Health Authority MNO Total
ct pka gka rka Total ct

445.9 1.0 557.5 7.8 1012.2 1.7 1013.9
445.9 1.0 557.5 7.8 1012.2 1.7 1013.9

a One-time transmission (data-independent).

As Table 3 shows, health-authority-to-MNO com-
munication is significantly more extensive than the re-
sponse of the MNO. The main parts of the communica-
tion are the initial ciphertexts and the Galois keys. One
reason for the size difference between the ciphertexts in
the query and the response is that the parameter k is
significantly smaller than N . Another reason is that our
implementation performs a so-called modulus-switch af-
ter the computation, reducing the ciphertext modulus q
to only one of the moduli qi it is composed of. Further
observe, that the plaintext modulus p does not affect
the communication cost.

6.7 Price Estimation for Larger Countries

Here we give an estimate of the costs of evaluating our
protocol to create a COVID-19 heatmap for a larger
country, more specifically, for Germany. About 83 mil-
lion people live in Germany, and a total of 80000 cell
sites are deployed [46]. With the BFV parameters of the
first entry in Table 2, i.e., n = 16384, ν = 41, κ = 128,
this corresponds to nv · no = 5066 · 10 = 50660 MatMul
evaluations.

To get no = 10 MatMul evaluations per thread, we
would have to acquire 53 CPU’s capable of handling 96
threads each. Assuming a runtime of 30min per thread
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(calculated from Table 2), and a price of $4.656/h per
CPU, we estimate the cost of evaluating the homomor-
phic matrix multiplication including the proving mask
in a total time of 30min to $124 using AWS.5 This es-
timate shows that it is likely very feasible to create a
heatmap once a week to gain valuable insight into the
spread of the disease, even for larger countries. We, how-
ever, note that care has to be taken when outsourcing
this computation to cloud providers to ensure user pri-
vacy in accordance to privacy regulations.

7 Considerations and Conclusion
Our solution shows that privacy-preserving health data
analytics is possible even on a national scale. We
achieved this by combining three PETs. Each of them
has their known limitations, but filtering out their
strengths and applying them purposefully lead to a real-
world cryptographic protocol. More broadly, we wanted
to convey the following message: Even in times of crisis
where it is tempting to lower data protection standards
for purposes of big data analytics, there are technical
methods to keep data protection standards high. And
those technical methods are practical and available.

In the following we discuss considerations when in-
stantiating our protocol with multiple health authorities
or MNO’s, as well as a summary of the key takeaways
from a legal case study we conducted. More concretely,
we focused on the EU General Data Protection Regula-
tion (GDPR) [29], which is known to be on of the most
strict privacy framework.

Multiple MNO’s or Health Authorities
Even though it has already been shown that just us-
ing the largest MNO of a country for modelling dis-
ease dynamics is highly effective in practice [74], one
might consider to use data from multiple MNO’s. Our
protocol can easily be extended to this setting by per-
forming the protocol with each MNO individually and
summing up the resulting heatmaps. As long as DP pa-
rameters (Section 5.2.2) are chosen, such that parame-
ters (wi, εi) for the i-th MNO, as well as (

∑
i wi,

∑
i εi),

5 In practice, additional costs for handling the databases, net-
work traffic, key management, human resources, among some
other costs are to be expected.

fulfill the privacy-utility tradeoff, no additional informa-
tion is leaked.

Multiple health authorities (e.g., for different
provinces in a country) can be included using techniques
from [58]. These multiple health authorities can agree on
commen public keys, while keeping the decryption key
hidden from all parties. After each health authority has
agreed on database indices with the MNO (Remark 1),
each authority can encrypt their queries using the com-
mon public key and the MNO can simply sum them up
and proceed with the protocol as usual. After the proto-
col, the authorities proceed with the keyswitch protocol
to output the final heatmap to some specified recipient
(e.g., government officials). This adaptation is equiva-
lent to the inital protocol with the same security and
privacy guarantees, as long as each patient is registered
with only one health authority. Otherwise, the heatmap
will be a random output, due to the binary mask.

Legal Considerations
The health authority has used HE for COVID-19 pos-
itive individuals’ ids, while the MNO has used DP
to protected personal data. The MNO does not enter
into possession of the decryption key of the health au-
thorities data sets. Therefore, the computations per-
formed should be considered carried out on anonymized
data [66], which are data that cannot identify, directly
or indirectly, the data subject. In fact, data encrypted
both by the health authority and the MNO is not acces-
sible by an entity other than the one carrying out the
encryption protocol. Hence, the data should be consid-
ered anonymized data – whose processing falls out of the
scope of application of the GDPR (Article 29 Working
Party) – for all other entities. A similar argument holds
for the aggregated location data, which are protected
from singling out attacks by DP [4, 19]. Nevertheless,
the processing of data by health authorities and MNO
remains bound to GDPR provisions. In particular, the
process to encrypt and make such data inaccessible is
a processing activity under the GDPR. Thus, it should
comply with legal requirements enshrined in the GDPR.
In our use case, a lawful basis for processing personal
data can be found in, e.g., Art. 9 (2) (i) GDPR, which
deals with data processing in a public health context. It
is one reasons why it is likely that there is a legal basis
for our protocol.

Therefore, both MNO and health authority’s pro-
cessing activity protected through state-of-the-art PETs
should be considered in compliance with GDPR provi-
sions. From a legal perspective, the added value of the
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provided solution is represented on the one hand by the
possibility to transform personal data into anonymized
data. On the other hand, the processing activity of
anonymizing data and limiting access to personal data
ensure data subjects respect their fundamental rights as
encoded in the EU privacy and data protection frame-
work.
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A Security Proofs
We now prove security using the real-ideal-
paradigm [30]. In this paradigm a protocol execution is
secure if it behaves the same as when the parties send
their input to a trusted third party (the ideal function-
ality) which does the computation and provides them
with the outputs. More formally, an environment should
not be able to distinguish between an observation of the
protocol with a possible adversary and a simulator in-
teracting with the ideal functionality. More specifically,
most of the time, computational indistinguishability is
required between the ideal and the real world. In con-
trast, we require (κ, ν)-indistinguishability to analyze
the cheating probability more thoroughly.

Definition 1 ((κ, ν)-indistinguishability [55]). Let
X = {X(a, κ, ν)}κ,ν,∈N,a∈{0,1}∗ and Y =
{Y (a, κ, ν)}κ,ν,∈N,a∈{0,1}∗ be probability ensembles, so
that for any κ, ν ∈ N the distribution {X(a, κ, ν)}
(resp. {Y (a, κ, ν)}) ranges over strings of length poly-
nomial in κ + ν. We say that the ensembles are (κ, ν)-
indistinguishable if for every polynomial-time adversary
A, it holds that for every a ∈ {0, 1}∗:

|Pr[A (X = 1)]− Pr[A (Y = 1)]| < 1
p(κ) + 2−O(ν),

for every ν ∈ N, every polynomial p(·), and all large
enough κ ∈ N.

A.1 Binary Mask

Lemma 2. Let p be a integer of bit-length ν ∈ N, and
let N ≤ 2ν/2. Further, let x and µbin be defined as in
Section 4.3, then it holds that

Pr[x not binary ∧ µbin = 0] ≤ 1
2ν−1 .

Proof.

µbin = 〈x, (d ◦ yN1 )〉 · r1︸ ︷︷ ︸
:=α

+ 〈x, (d ◦ yN2 )〉 · r2︸ ︷︷ ︸
:=β

= α+ β

We are now interested in the events when the binary
mask evaluates to zero even though x /∈ ZN2 . This un-
desired behaviour can only happen in two ways, either
α = β = 0 or α = −β. Next, we calculate the probability
of these two cases.

First, since r1, r2 6= 0 and assuming x 6= 0k (x = 0k

is a valid input and should result in a zero mask), we
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have Pr[α = 0] = Pr[β = 0] = N/p [10]. Hence,

Pr[α = β = 0] = N

p
· N
p

= N2

p2 . (6)

Consequently, the probability of α being non-zero is
1 − N/p. Further, the probability of β being −α is 1/p.
Combing these probabilities gives us

Pr[α = −β ] =
(

1− N

p

)
1
p

= 1
p
− N

p2 . (7)

We get the final probability by putting together Equa-
tion (6) and Equation (7)

Pr[α+ β = 0] = N2

p2 + 1
p
− N

p2 <
1
p

+ N2

p2

≤ 1
2ν + 2ν

22ν = 1
2ν−1 , because N ≤ 2ν/2.

A.2 Proof of Lemma 1

πHmap

1. A party P1 on input (input, sid, P1, P2,x) from the
environment verifies that x ∈ ZNp , else ignores
the input. Next, samples a key pair (pk, sk) ←
KGen(1κ), and computes c ← Encpk(x). It records
(sid, P1, P2, sk), and sends (sid, P1, P2, pk, c) to
P2. P1 ignores subsequent inputs of the form
(input, sid, P1, P2, ·) from the environment.

2. On a later input of the form (sid, P1, P2,h
∗) from

P2, P1 computes h ← Decsk(h∗), and outputs
(result, sid, P1, P2,h) to the environment.

3. A party P2 on input (input, sid, P1, P2, Z) from the
environment and (sid, P1, P2, pk, c) from P1 verifies
that Z ∈ ZN×kp , else ignores the input. Next, com-
putes the mask vector µ and the noise δ according to
Figure 2. Then computes h∗ ← Evalpk(cT ·Z+δ+µ).
P2, sends (sid, P1, P2,h

∗) to P1 and ignores all sub-
sequent inputs of the form (input, sid, P1, P2, ·) from
the environment.

Fig. 7. Formalized protocol πHmap

Proof. We use Lemma 2 to prove that to any polynomial
time environment the execution πHmap with a possible
adversary A is (κ, ν)-indistinguishable from a simulator
S interacting with the ideal functionality FHmap. More
concretely, we claim that as long as the event that x is

SHmap

P1, P2 not corrupted: It starts by sampling a key
pair (pk, sk) ← KGen(1κ), and sets x ← 0N . Then it
computes c ← Encpk(x). It then instructs P1 to send
(sid, P1, P2, pk, c) to P2. On later input of the form
(sid, P1, P2, pk, c) from P1 it samples Z ← ZN×kp . Then
it computes h∗ ← Evalpk(cT · Z + δ + µ). It instructs
P2 to send (sid, P1, P2,h

∗) to P1.
P1 not corrupted, P2 corrupted: Similar as before
but it does not have to simulate Z because it learns
the input Z from P2. Then it computes Evalpk(cT ·Z+
δ + µ).

P1 corrupted, P2 not corrupted: It learns the input
x from P1. Then it proceeds as in the first case until it
has to simulate the message to P1. In order to do this
it runs a copy of πHmap internally, where it corrupts
P1. Thereby, it learns xT · Z + δ + µ and sets h∗ ←
Encpk(xT · Z + δ + µ).

P1, P2 corrupted: It learns the inputs x from P1 resp.
Z from P2. It runs the protocol with the inputs, and
outputs (input, sid, P1, P2,x) and (input, sid, P1, P2, Z)
to the ideal functionality, which makes FHmap output
(result, sid, P1, P2,x

T· Z + δ + µ).

Fig. 8. Simulator SHmap.

not binary and at the same time the mask µ = 0k does
not occur, the executions of the ideal and real world are
computational indistinguishable. Once we have proven
this claim, we are done, since we have already shown
that the probability of the above event is exponentially
small in the statistical security parameter. Note that
for the proof, we have rewritten the protocol in a more
formal description πHmap, see Figure 7.

First consider a polynomial time environment which
does not corrupt any of the parties. Any meaningful
environment will interact with πHmap or FHmap in the
following way.

1. It picks a vector x ∈ Znp and inputs
(input, sid, P1, P2,x).

2. It sees (sid, P1, P2, pk, c).
3. It picks a matrix Z ∈ ZN×kp and inputs

(input, sid, P1, P2, Z).
4. It sees (sid, P1, P2, pk,h∗).
5. It sees (result, sid, P1, P2,h).

Let us now assume to the contrary there is such an
environment E that can distinguish the two systems
πHmap◦A and FHmap◦S with non-negligible advantage.
Then we can turn E into a polynomial time system E ′
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which wins in the IND-CPA game with non-negligible
probability:

1. E ′ receives pk.
2. E ′ runs E to see which message (sid, P1, P2,x) gets

recorded.
3. E ′ inputs (x,0N ) to the IND-CPA game and gets

back an encryption c, where c is either an encryp-
tion of x (if b = 0) or an encryption of 0N (if b = 1).

4. E ′ samples Z ← ZNp . It runs E and provides
input (input, sid, P1, P2,x), (input, sid, P1, P2, Z),
(sid, P1, P2, pk, c), (sid, P1, P2,Encpk(cT ·Z+δ+µ))
and (result, sid, P1, P2,x

T · Z + δ + µ).
5. E ′waits untilE outputs its guess b′, thenE ′ outputs b′.

If b = 0, then E observes the interaction it would see
when interacting with the protocol πHmap, and if b = 1,
then E observes the interaction it would see when in-
teracting with the ideal functionality and the simulator
FHmap ◦S. By assumption E can distinguish πHmap ◦A
and FHmap ◦ S with non-negligible advantage. There-
fore, E ′ will guess b with probability significantly better
than 1/2. This is a contradiction to the IND-CPA secu-
rity of HE, as E ′ is polynomial time.

A.3 One-Sided Simulation

To define one-sided simulation security, we have the no-
tion of a protocol execution view. Let V IEWAπ,A(x, y)
denoted the protocol execution view of the adversary
A, i.e., the corrupted parties’ view (input, randomness,
all received messages) after execution of π with input x
resp. y from P1 resp. P2.

Definition 2. Let EXECπ,A,E resp. EXECF,S,E de-
note the random variables describing the output of en-
vironment E when interacting with an adversary A and
parties P1, P2 performing protocol π, resp. when inter-
acting with a simulator S and an ideal functionality F ,
where only P1 receives output. Protocol π securely real-
izes functionality F with one-sided simulation if
1. for any adversary A that controls P2 there exists

a simulator S such that, for any environment E the
distribution of EXECπ,A,E and EXECF,S,E are in-
distinguishable,

2. and for any adversary A controlling P1 the distri-
bution
V IEWAπ,A(x, y) and V IEWAπ,A(x, y′), where |y| =
|y′| are indistinguishable.

B PSI-SUM with Indices
In Figure 9 we give the ideal functionality for a PSI-
SUM with Indices primitive. Such a primitve computes
the sum of the private values associated with the inter-
section elements of two databases and reveals the indices
present in the intersection to one party. This can be seen
as an relaxed version of the Private Intersection-Sum
with Cardinality primitive introduced in [57].

FPSI−Sum
Parameters: t,N ∈ N. Parties P1 and P2.

1. Upon receiving an input (input, sid, P1, P2,x) from
a party P1, verify that x ∈ ZNp , else ignore input.
Next, record (sid, P1, P2,x). Once x is recorded,
ignore any subsequent inputs of the form
(input, sid, P1, P2, ·) from P1.

2. Upon receiving an input (input, sid, P1, P2, Z) from
party P2, verify that Z ∈ ZN×∗p , else ignore input.
Proceed as follows: If there is a recorded value
(sid, P1, P2,x, w), compute h← xTZ provided
that x ∈ ZN2 , otherwise h $← Zkp, and send
(sid, P1, P2, k) where k is the number of columns of
Z to the adversary. Then output
(result, sid, P1, P2,h) to P1, and ignore subsequent
inputs of the form (input, sid, P1, P2, ·) from P2.

Fig. 9. Ideal functionality of PSI-SUM with Indices.

C Differential Privacy
Definition 3 (ε-Differential Privacy [27]). A random-
ized mechanism A gives ε-differential privacy if for any
neighboring datasets D and D′, and any S ∈ Range(A):
Pr[A(D) = S] ≤ eεPr[A(D′) = S].

One can achieve ε-DP by adding noise from a zero-
centered Laplace distribution to the final result of the
computation. The noise is calibrated with the privacy
budget ε and the global sensitivity ∆q of the compu-
tation q: ∆q = max

D,D′
||q(D) − q(D′)|| for all neighboring

D and D′. The global sensitivity, thus, represents the
maximum possible value of each element in the dataset.
The Laplace distribution for a scale factor b is given as
Lap(x|b) = 1

2be
− |x|b , where usually b = ∆q

ε .
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C.1 An Economic Method to Choose ε

We aim to provide a confidence interval for the propor-
tion µ of individuals in the general population (or sub-
population) with a specific property. Assume a database
DN and let g : DN → R be the mechanism computing
the sample mean with sensitivity 1/N. If (for privacy rea-
sons), we add Laplace noise ν to the outcome of g, we
introduce an error source. Modeling each individual as
a random variable with Bernoulli distribution allows us
to bound this error by the tail bound. Hence, we can
define the utility by a confidence interval with accuracy
T ∈ [0, 1], and confidence 1− α for α ∈ [0, 1]

Pr[|g(DN ) + ν(ε)− µ| ≥ T ] ≤ e(−
TNε

2 ) ≤ α.

The idea of DP is that an individual’s expected harm
(cost) of being in the database should be minor. Let
E be the expected cost for an individual for being in
the database (for a formal definition see [61]). Then the
individual’s cost of being in the computation g is

(eε − 1)E.

Let Djw be the j-th column vector of the matrix Z, i.e.,
the location data corresponding to cell tower j. Then,
we define the mechanism as

g(Djw) := # individuals in j
w

,

resulting in sensitivity 1/w. This setup satisfies the as-
sumption that each individual can be modeled as a
Bernoulli experiment. This can be done for every cell
tower, and thus covering the heatmap’s area. The esti-
mations of the expected baseline cost E = $0.01 already
cover the whole heatmap’s area (all cell towers).
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