
TWo-IN-one-SSE: Fast, Scalable and Storage-Efficient Searchable
Symmetric Encryption for Conjunctive and Disjunctive Boolean

Queries
Arnab Bag

Indian Institute of Technology
Kharagpur, West Bengal, India

arnabbag@iitkgp.ac.in

Debadrita Talapatra
Indian Institute of Technology
Kharagpur, West Bengal, India

debadritat.fg2219@kgpian.iitkgp.ac.in

Ayushi Rastogi
Indian Institute of Technology
Kharagpur, West Bengal, India
rayushi835@kgpian.iitkgp.ac.in

Sikhar Patranabis∗
IBM Research India

Bengaluru, Karnataka, India
sikhar.patranabis@ibm.com

Debdeep Mukhopadhyay
Indian Institute of Technology
Kharagpur, West Bengal, India

debdeep@cse.iitkgp.ac.in

ABSTRACT

Searchable Symmetric Encryption (SSE) supports efficient yet se-
cure query processing over outsourced symmetrically encrypted
databases without the need for decryption. A longstanding open
question has been the following: can we design a fast, scalable,
linear storage and low-leakage SSE scheme that efficiently sup-
ports arbitrary Boolean queries over encrypted databases? In this
paper, we present the design, analysis and prototype implementa-
tion of the first SSE scheme that efficiently supports conjunctive,
disjunctive and more general Boolean queries (in both the con-
junctive and disjunctive normal forms) while scaling smoothly to
extremely large encrypted databases, and while incurring linear

storage overheads and supporting extremely fast query processing
in practice. We quantify the leakage of our proposal via a rigorous
cryptographic analysis and argue that it achieves security against
a well-known class of leakage-abuse and volume analysis attacks.
Finally, we demonstrate the storage-efficiency and scalability of our
proposed scheme by presenting experimental results of a prototype
implementation of our scheme over large real-world databases.

KEYWORDS

Searchable Encryption, Database Encryption, Encrypted Search,
Boolean Queries, Conjunctive and Disjunctive Queries.

1 INTRODUCTION

The advent of cloud computing potentially allows individuals and
organizations to outsource storage and processing of large volumes
of data to third party servers. However, this leads to concerns
surrounding the confidentiality of the data stored on the third party
cloud servers and outsourced access for processing.

Consider, for instance, a client that offloads an encrypted data-
base of (potentially sensitive) emails to an untrusted cloud server.
∗Also with ETH Zürich, Switzerland and Visa Research USA (part of the work was
done while the author was affiliated with these institutions).

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(1), 115–139

© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0008

At a later point of time, the client might want to issue a query
of the form: retrieve all emails received from xyz@foobar.org or

abc@foobar.org and with “research” in the subject field. Ideally, the
client should be able to perform this task without revealing any sen-
sitive information to the server, such as the sources and contents of
the emails, the keywords underlying a given query, the distribution
of keywords across emails, etc. Unfortunately, existing techniques
such as Fully Homomorphic Encryption (FHE) [14] and Oblivious
RAM (ORAM) [16], that potentially support such an “ideal” no-
tion of privacy, are currently unsuitable for wide-scale practical
deployment due to high performance and storage overheads.

Searchable Symmetric Encryption. Searchable Symmetric En-
cryption (SSE) [3, 4, 6–13, 15, 19, 21–23, 29, 30] is the study of
provisioning symmetric-key encryption schemes with search ca-
pabilities. The goal of SSE is two-fold: (a) to allow a (potentially
untrusted) server to execute keyword search queries directly on a
collection of a client’s encrypted documents in an efficient manner,
and (b) to ensure client privacy by minimising the amount of in-
formation “leakage” to the server in the process. Some examples
of leakage include the database size, query pattern (which queries
correspond to the same keyword) and the access pattern (the set of
file identifiers matching a given query).

SSE for Boolean Queries. The example query over an email data-
base that we outlined above is an instance of what we call a Boolean
query, in the sense that it can be viewed as a Boolean formula in-
volving certain equality predicates over keywords, connected by
AND and OR operators. In this paper, we broadly investigate the
following question:

Can we design a fast, scalable, storage-efficient and low-leakage SSE

scheme for general Boolean queries?

This seemingly natural question has, somewhat surprisingly, also
been a longstanding open question. In particular, while significant
progress has been made in designing efficient SSE schemes for
simpler sub-classes of Boolean queries (such as atomic equality
predicates and conjunctions of keywords), the handful of existing
SSE schemes supporting disjunctive and general Boolean queries
incur extremely large encrypted storage overheads (quadratic in
the size of the plain database), which makes them impractical for
real-world deployment. We briefly summarise the state-of-the-art

115

https://orcid.org/0000-0003-1182-493X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0008

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

on both conjunctive and disjunctive SSE below followed by main
contributions of this work.

1.1 Background and Related Work

Initial constructions of SSE focused on single keyword search and
their related extensions. Recent SSE algorithms now support multi-
keyword search. We briefly go over the current status of multi-
keyword SSE constructions below.
SSE for Conjunctions. In a seminal work [7], Cash et al. proposed
Oblivious Cross Tags (OXT) - an efficient, highly scalable and low-
leakage (not leaking more than benign information) SSE schemes
supporting conjunctive keyword queries over encrypted document
collections. Since then, a number of SSE schemes supporting con-
junctive keyword queries with a variety of leakage vs efficiency
trade-offs have been proposed in different settings [6, 23, 29]. Un-
fortunately, these schemes are neither efficient nor low-leakage
when processing disjunctive or general Boolean queries. For exam-
ple, when processing a disjunctive query over (w1, . . . ,wn), these
solutions leak the set of documents matching each wi individu-

ally, which can be devastating in the face of existing leakage-abuse
attacks [2, 5, 25, 32].
SSE for Disjunctions.While SSE for single and conjunctive key-
word queries has been studied quite extensively, SSE for disjunctive
queries has received much less attention. To the best of our knowl-
edge, only IEX-2Lev and IEX-ZMF due to Kamara and Moataz [19]
support reasonably efficient query processing without incurring
potentially devastating leakage.

The IEX family of schemes [19, 26] has a few disadvantages that
we outline here. First, its performance for conjunctive queries over
real-world databases is significantly worse as compared to OXT.
Secondly, it is incompatible with OXT and its follow-up schemes [6,
23, 29]; so it does not lead to a common solution that supports
both conjunctive and disjunctive queries efficiently. Finally, the
IEX family of schemes incurs a (worst-case) storage overhead that
grows quadratically with the number of keywords in the database.
This makes it impractical for deployment over real-world databases.

1.2 Our Contributions

In this paper, we present the design, analysis and prototype imple-
mentation of the first SSE scheme that efficiently supports conjunc-
tive, disjunctive andmore general (and complex) Boolean queries (in
both the conjunctive and disjunctive normal forms) while scaling
smoothly to extremely large encrypted databases, and while incur-
ring linear storage overheads and little query processing overheads
in practice. Our scheme is named TWo-IN-one-SSE, or TWINSSE
in short. We expand on our contributions and techniques below.
Supporting Conjunctive “and” Disjunctive Queries. Our core
technical contribution is a novel mechanism for designing SSE
schemes that support both conjunctive and disjunctive keyword
searches in a fully compatible manner. At a high level, we achieve
this as follows. Given any conjunctive SSE scheme (i.e., any generic
SSE scheme that only supports conjunctive queries), we present a
generic black-box transformation that yields an SSE scheme sup-
porting conjunctive, disjunctive and general Boolean queries in the
conjunctive normal form (CNF) and disjunctive normal form (DNF).
Our transformation does not rely on any special properties of the

underlying conjunctive SSE scheme. This allows it to be instanti-
ated from any existing conjunctive SSE scheme, including OXT [7].
To the best of our knowledge, such a generic transformation from a
conjunctive SSE scheme to an SSE scheme for general and complex
Boolean queries has not been studied before in the SSE literature1.
A Naïve Approach. The naïve approach for supporting disjunc-
tive queries in a generic way using a system that only supports
conjunctive queries is to allow for “negative searches”, wherein
given a keyword, we can efficiently retrieve the set of documents
that do not contain the keyword. Then, given a disjunctive query of
the form q = (w1 ∨ . . .wn), we can transform q into the following
conjunctive query q = (w1 ∧ . . .wn), where for each i ,wi denotes
the “negated keyword” that (hypothetically) occurs in every docu-
ment that does not contain wi ; consequently, q can be viewed as
the negated counterpart to the original query q.

This approach has two major disadvantages. First, it requires
us to design data structures that support efficiently retrieving, for
each keyword, not only the set of documents it occurs in, but also
the set of documents that it does not occur in, while maintaining
data and query privacy. This is likely to lead to massive blowup
in storage. Secondly, and most crucially, for disjunctive queries
involving less frequent keywords (which is what we expect from
a very large proportion of the queries), the overall computational
and communication complexity suffers a huge blowup, since it is
now proportional to the result set for the negated query, which
would be almost the entire set of documents. Our aim is to design
a generic transformation mechanism that is significantly more
efficient. To this end, we introduce and use a novel concept called
meta-keywords.
Using Meta-Keywords. The technical centrepiece of our generic
transformation is the concept ofmeta-keywords, whichwe introduce
in this paper. At a high level, a meta-keywordmkwi is a disjunction
of certain carefully chosen keywords of the form mkwi = (wi1 ∨

wi2∨. . .∨wiℓ), that we pre-process and store at setup in an inverted
search index2.

Our core technical observation is the following: given a data-
base with N keywords, there exists an O(N)-sized set S of meta-
keywords such that for any disjunctive query of the form q =
(w1 ∨ . . .wn) for n ≤ N , there exists a meta-query which is a con-
junction over meta-keywords of the form q′ = (mkw1∧ . . .∧mkwn)

such that mkw1, . . . ,mkwn ∈ S, and such that Result-Set(q) ⊆
Result-Set(q′).

The non-triviality of our approach lies in addressing the follow-
ing challenges simultaneously:
• Coverage: Designing an O(N)-sized meta-keyword set that
“covers” an O(2N)-sized space of all possible disjunctive
queries.
• Efficiency: Minimizing the overheads due to filtering of
“spurious” documents in the result “meta-set” (i.e. ensuring
that Result-Set(q′) is as close to Result-Set(q) as possible).

1We note here that OXT does support Boolean queries beyond simple conjunctions,
albeit where the query must be in a restricted searchable normal form (SNF) [7]; our
transformation is significantly more general in the sense that it extends to any CNF or
DNF formula over keywords, well beyond the scope of SNF queries.
2An inverted search index is a data structure popularly used by essentially all SSE
schemes that is indexed by the keywords, and stores, for each keyword, the set of
documents it contains, albeit in encrypted form.

116

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

• Security: Minimizing leakage by ensuring that the meta-
keywords reveal as little information as possible about the
underlying keywords being actually queried.

While achieving these requirements simultaneously appears
challenging at first sight, we develop a systematic and formal ap-
proach that allows us to achieve them for any database; more for-
mally, given a database, we show how to convert the same into a
meta-database equipped with a linearly-sized set of meta-keywords
that meets all of the aforementioned requirements. We formalise
these properties in Sections 3 and 4.
TWINSSE.We use the aforementioned transformation to design
our overall solution, that we call TWo-IN-one-SSE, or TWINSSE
in short. As the astute reader might have already guessed, given a
conjunctive SSE scheme, our design of TWINSSE uses the following
two-step approach:
• Step-1: Given any database DB, convert it into the corre-
sponding meta-database D̂B, where D̂B can be viewed as a
database equipped with two kinds of keywords – the original
keywords and the meta-keywords.
• Step-2: Apply the conjunctive SSE scheme to encrypt and
query the database D̂B.

Note that conjunctive query processing over D̂B proceeds exactly
as it would over DB, and requires no additional query planning
on the part of the client. Disjunctive query processing is more
involved because it requires the client to plan the meta-query. In
Section 4, we formally describe how this can be done using O(n)
computation (which is the information-theoretic minimum for any
n-word disjunctive query). Finally, in Appendix G, we describe
a hybrid query planning approach that allows handling general
Boolean queries in CNF and DNF expressions in an efficient manner.
We note here that the ability to efficiently handle CNF and DNF
queries effectively allows TWINSSE to handle complex Boolean
queries (involving both conjunctive and disjunctive clauses) by
casting them into either CNF or DNF formulae over keywords.

We then present a concrete instantiation of TWINSSE from OXT
as the baseline conjunctive SSE scheme. We denote this version of
OXT as TWINSSEOXT. Details of TWINSSEOXT and, in particular,
its handling of disjunctive queries, are presented in Section 4.3. Ad-
ditionally, we present an elaborate discussion on executing complex
Boolean queries using TWINSSEOXT in Appendix G.
Leakage Analysis. We formally detail the leakage profile of
TWINSSEOXT in Appendix D. In order to analyse the impact of
this leakage on the security of TWINSSEOXT, we perform a de-
tailed cryptanalysis of TWINSSEOXT in Appendix F. In particu-
lar, we show that known leakage-abuse attacks [5, 32], volume
analysis-based attacks [2], and the state-of-the-art SAP attack [25]
fail against TWINSSEOXT in practical adversarial settings.
Experimental Evaluation. We present a C++ implementation of
TWINSSEOXT along with performance figures in Section 5. We ex-
perimented over the Enron email corpus34 for compatibility with
previous SSE literature. The data set contains around 170K key-
words, 500K documents and 20 million unique keyword-document

3https://www.cs.cmu.edu/~enron/
4https://www.kaggle.com/wcukierski/enron-email-dataset

pairs. Our experiments validate that TWINSSEOXT supports ex-
tremely fast conjunctive, disjunctive and more complex Boolean
queries (in CNF/DNF expression), and substantially outperforms
the IEX family of schemes on two counts: (a) storage requirements
for the encrypted database, and (b) practical search performance
for conjunctive queries, while also achieving comparable practical
search performance for disjunctive queries.

2 PRELIMINARIES AND BACKGROUND

In this section we introduce the notations used in the rest of the
paper, as well as preliminary background material on SSE.

2.1 Notations

We write x
R
←− χ to represent that an element x is sampled uni-

formly at random from a set/distribution X. The output x of a
deterministic algorithm A is denoted by x = A and the output x ′
of a randomized algorithmA ′ is denoted by x ′ ← A ′. For a,b ∈ Z
such that a,b ≥ 0, we denote by [a] and [a,b] the set of integers
lying between 1 and a (both inclusive), and the set of integers lying
between a and b (both inclusive), respectively.

Databases. Let ∆ = {w1, . . . ,wN } be a dictionary of keywords,
and let F = { f1, . . . , fD } be a collection of documents, such that
each document fi is associated with a unique identifier idi and
contains keywords from ∆. We assume that standard set operations
including union and intersection are allowed over ∆. We denote by
DB a database of identifier-keyword pairs, such that (id,w) ∈ DB
if and only if the document with identifier id contains the keyword
w. We denote by DB(w) the set of all identifiers corresponding to
documents containing w. We denote by |∆| the number of distinct
keywords in DB, by |DB| the number of distinct id−w pairs in DB,
and by |DB(w)| the number of documents containing w.

Conjunctive and Disjunctive Queries. We represent a conjunc-
tive query overn distinct keywordsw1, . . . ,wn as q = w1∧ . . .∧wn
and define the set DB(q) as DB(q) = ∩ni=1DB(wi). Similarly, we
represent a disjunctive query over n distinct keywords w1, . . . ,wn
as q = (w1 ∨ . . . ∨ wn) and define the set DB(q) as
DB(q) = ∪ni=1DB(wi).

Throughout the paper, we use the notation Rq = DB(q) to
represent the result of searching a query q (irrespective of the
query type), unless otherwise specified.

2.2 Searchable Symmetric Encryption

Any SSE scheme [7, 11] consists of a polynomial-time algorithm
Setup executed by the client, and an interactive protocol Search
executed jointly by the client and the server:

• Setup(1λ,DB): Takes as input the security parameter λ and
a database DB, and outputs the tuple (sk, st,EDB), where sk
is the client’s secret-key, st is the client’s internal state, and
EDB is the encrypted database.
• Search(sk, st,q;EDB): The client takes as input the secret-
key sk, its state st and a query q, while the server takes as

117

https://www.cs.cmu.edu/~enron/
https://www.kaggle.com/wcukierski/enron-email-dataset

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

input the encrypted databaseEDB. At the end of the protocol,
the client outputs DB(q)5.

Correctness. An SSE scheme is said to be correct if for every data-
base DB and for every query q, the output of the Search protocol
contains DB(q) with overwhelming probability.
Security.We refer to [7, 11] for the standard simulation security
definition of SSE against semi-honest adversaries in the real world-
ideal world paradigm.

3 TWINSSE: SIMPLIFIED VERSION

In this section, we introduce TWINSSE. For ease of representa-
tion, we first present a simplified version, which we refer to as
TWINSSEBasic.

3.1 The Core Tool: Meta-Keywords

We begin by describing the core technical tool for our construction,
which we refer to as meta-keywords. Let ∆ = {w1, . . . ,wN } be a
dictionary of keywords (N is total number of keywords in DB),
and assume (without loss of generality) that these keywords are
arranged in increasing order of frequency, i.e.,

|DB(w1)| ≤ |DB(w2)| ≤ · · · ≤ |DB(wN)|.

Super-Keyword.We begin by defining a super-keyword, which is
simply a disjunction of some subset of the keywords in ∆. Formally,
a super-keyword w is represented by a bit-string of the form w =
(b1,b2, . . . ,bN) ∈ {0, 1}N , such that

DB(w) =
⋃

ℓ∈[N] s.t. bℓ=1
DB(wℓ).

Note that one could equivalently represent w using the actual con-
stituent keywords; we use the bit-string representation because
it makes the description of our strategy easier to follow, and also
more efficiently implementable.
Meta-Keyword.We now define a meta-keyword. At a high level, a
meta-keyword is a “special” super-keyword with a single contiguous
stretch of 0-entries in its Boolean representation. Formally, a meta-
keyword is defined as follows.

Definition 3.1 (Meta-Keyword). A meta-keyword mkwi , j is

a super-keyword indexed by (i, j) ∈ [N] × [N] such that i ≤ j,
represented as bit-stringmkwi , j = (b1,b2, . . . ,bN) ∈ {0, 1}N , where

for each ℓ ∈ [N], we have

bℓ =

{
0 if ℓ ∈ [i, j],
1 otherwise.

In other words, for the meta-keyword mkwi , j , we have

DB(mkwi , j) =
⋃

ℓ∈[N]\[i , j]

DB(wℓ).

Informally, one can view a meta-keyword mkwi , j as a disjunction
over ∆ = {w1, . . . ,wN } excluding a contiguous sequence of key-
words (wi ,wi+1, . . . ,wj).

We also let mkw∗ = 1N denote the special “all-ones" meta-
keyword. Finally, let Smkw,∆ = {mkwi , j }i≤j ∪ {mkw∗} be the set
5We also make the implicit assumption that upon obtaining the set of document
identifiers corresponding to a query, the client performs an additional interaction with
the server to actually retrieve the documents with these identifiers.

of all meta-keywords over the dictionary ∆. It is easy to see that
for |∆| = N , we have |Smkw,∆ | = O(N

2).
Using a Meta-Keyword. A reader might wonder why we choose
the above definition of a meta-keyword. To begin with, note that
while pre-processing and storing an inverted search index consist-
ing of all super-keywords along with the original keywords allows
us to trivially answer conjunctive, disjunctive, and more general
Boolean queries in a fully compatible manner. However, this would
require exponential storage, and therefore is not practically feasible.

Hence, our approach is to look for a poly-sized subset of the set
of all possible super-keywords that, if pre-processed and stored as
part of the inverted search index, would allow us to “cover” any
disjunctive query. It turns that the set of meta-keywords is indeed
this set. We make this explicit by stating the following (informal)
claim. We subsequently make this claim more formal and prove it.

Claim 3.1 (Informal). For any disjunctive query of the form

q = (wℓ1 ∨ . . .wℓn) (where n ≤ N), there exists a meta-query which

is a conjunction over meta-keywords of the form

qmkw = (mkwi1, j1 ∧ . . . ∧mkwin , jn),

such that mkwi1, j1 , . . . ,mkwin , jn ∈ Smkw,∆, and such that

DB(q) =
⋃
k ∈[n]

DB(wℓk) ⊆
⋂
k ∈[n] DB(mkwik , jk)

= DB(qmkw).

Using Claim 3.1 (Overview). As an astute reader might have al-
ready observed, this claim allows us to convert any disjunctive
query over the original set of keywords into a conjunctive query
over the set of meta-keywords. Consequently, given a database DB
over a dictionary ∆, suppose we pre-process DB at setup to con-
struct the set of meta-keywords Smkw,∆, and build an augmented
meta-database D̂B over themeta-dictionary ∆̂ =

(
∆ ∪ Smkw,∆

)
(con-

sisting of both the original keywords and the meta-keywords). We
can then use this augmented (plaintext) database together with any

conjunctive SSE scheme in a black-box manner to build an SSE
scheme that supports both conjunctive and disjunctive queries. The
only price we pay is the O(N 2) storage overhead; we subsequently
show how to reduce this to O(N).

3.2 Meta-Keywords as “Covering” Set

We now formalize and prove Claim 3.1. Before detailing the formal
proof, we illustrate why this claim is true via a simple toy-example.
Toy-Example. Consider a database DB with 10 documents (in-
dexed as {id1, . . . , id10}) over a four-keyword dictionary

∆ = {w1,w2,w3,w4},

such that

DB(w1) = {id5, id10},

DB(w2) = {id2, id5, id8, id9},

DB(w3) = {id1, id2, id4, id7, id9},

DB(w4) = {id1, id2, id3, id4, id5, id6, id8, id10}.

Now consider the following example disjunctive queries q and the
corresponding meta-queries qmkw.

118

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

Example-1. Let q = (w1 ∨ w2 ∨ w3), and qmkw = mkw4,4, where
mkw4,4 = (1, 1, 1, 0).

DB(mkw4,4) =
⋃
ℓ,4

DB(wℓ)

= {id1, id2, id4, id5, id7, . . . , id10},

DB(qmkw) = DB(mkw4,4).

Now, we have

DB(q) = {id1, id2, id4, id5, id7, . . . , id10} = DB(qmkw).

Example-2. Alternatively, suppose that q = (w2 ∨ w3) and qmkw =

(mkw1,1 ∧ mkw4,4), where mkw1,1 = (0, 1, 1, 1) and mkw4,4 =
(1, 1, 1, 0).

DB(mkw1,1) =
⋃
ℓ,1

DB(wℓ) = {id1, . . . , id10},

DB(qmkw) = DB(mkw1,1) ∩ DB(mkw4,4)

= {id1, id2, id4, id5, id7, . . . , id10}.

Now, we have

DB(q) = {id1, id2, id4, id5, id7, id8, id9} ⊆ DB(qmkw).

Formal Statement. We now state the following formal version of
Claim 3.1.

Lemma 3.1. Let q = (wℓ1 ∨ . . .wℓn) for some n ≤ N , where

ℓ1 ≤ . . . ≤ ℓn , and let

qmkw = (mkwi0, j0 ∧mkwi1, j1 ∧ . . . ∧mkwin , jn),

where for each k ∈ [0,n − 1], we have

mkwik , jk =

{
mkwℓk+1,ℓk+1−1 if ℓk+1 > ℓk + 1,
ϕ otherwise,

where we define ℓ0 := 0 and ϕ denotes an “empty" meta-keyword, and

mkwin , jn =

{
mkwℓn+1,n if ℓn < n,

mkw∗ otherwise.

Then we have

DB(q) =
⋃
k ∈[n]

DB(wℓk) ⊆ DB(qmkw).

Observe that for the specific examples stated above, the conjunctive
meta-query qmkw exactly follows the generic conjunctive meta-
query laid out in the above lemma. Here, ℓk denotes the index of
k’th query keyword in ∆, whereas (ik ,jk) denote the start and end
indices of the absent keywords stretch in each mkw. Following
the above mkw formulation, we see that mkw∗ occurs only if all
keywords in ∆ are present in the query q - when the value of n
(number of keywords in q) is same as the number of keywords in ∆.
In this case, the index of the last query keyword in ∆ (or ℓk) is equal
to the number of query keywords n, and only mkw∗ is selected.
This is a rather unusual case that rarely occurs in real applications.

Note that, at a high level, to prove this lemma it suffices that
to prove that for each keyword wℓk in the queried disjunction q,
we have DB(wℓk) ⊆ DB(q). In more detail, we would like to prove
that for each keyword wℓk in the queried disjunction q, we have
DB(wℓk) ⊆ DB(mkwik , jk) for each k ∈ [0,n]. The proof follows
from the fact that for each k ∈ [n], the following must be true:

w1 w12

q

mkw2,2

mkw4,5

mkw7,9

mkw11,11

Increasing Frequency

Figure 1: Expressing disjunctive query q in terms of mkw-s
with a single stretch of 0s. In this example, ∆ = {w1, . . . ,w12},
and q = w1 ∨ w3 ∨ w6 ∨ w10 ∨ w12 (where ℓ1 = 1, ℓ2 = 3, ℓ3 = 6,
ℓ4 = 10, ℓ5 = 12 andn = 5). Note that, eachmkw hasws present
at the same places where a w is present in q. The stretches

of 0s (absence of ws) ensure that when the mkws are ANDed
together (searched in a conjunctive manner), only ws in the

original query q remain. (Gray and white cells represent 1

and 0, respectively.)

• The index corresponding to the keywordwℓk has a 1-entry in
every non-empty meta-keyword in the set {mkwik , jk }k<k .
This is because the “stretch” of 0-entries in each such meta-
keyword ends before the index ℓk .
• The index corresponding to the keywordwℓk has a 1-entry in
every non-empty meta-keyword in the set {mkwik , jk }k≥k .
This is because the “stretch” of 0-entries in each such meta-
keyword starts after the index ℓk .
• Finally, the index corresponding to the keyword wℓk has, by
default, a 1-entry in mkw∗ – the “all-ones” meta-keyword.

Combining these observations, we get that for each keyword wℓk
in the queried disjunction q, we have DB(wℓk) ⊆ DB(mkwik , jk)

for each k ∈ [0,n], as desired. Figure 1 captures the aforementioned
intuition pictorially. We defer the formal proof of Lemma 3.1 to
Appendix A due to space constraints.

3.3 TWINSSEBasic
Wenowput everything together in our basic schemeTWINSSEBasic.
Let CSSE = (CSSE.Setup,CSSE.Search) be any generic conjunc-
tive SSE scheme. Given CSSE, we construct

TWINSSEBasic =
{

TWINSSEBasic.Setup
TWINSSEBasic.Search

as described subsequently. Our description here is slightly infor-
mal due to space constraint, but captures the overall idea of our
approach. More details are available with the final construction
in Section 4. We also present brief details of processing purely
conjunctive or purely disjunctive; we defer the discussion on our
treatment of general Boolean formulae to Appendix G.

TWINSSEBasic.Setup(1λ,DB): Given a database DB over a dictio-
nary ∆, construct the set of meta-keywords Smkw,∆ as described

119

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

above. Let D̂B denote themeta-database over ∆̂ =
(
∆ ∪ Smkw,∆

)
(con-

sisting of both the original keywords and the meta-keywords). Out-
put

(sk, st,�EDB) ← CSSE.Setup(1λ, D̂B).

TWINSSEBasic.Search(sk, st,q; �EDB): Given a query q, proceed as
follows:
• If q is a purely conjunctive query, output

DB(q) = CSSE.Search(sk, st,q; �EDB).
• If q is a purely disjunctive query, construct the conjunctive
meta-query qmkw as described in Lemma 3.1, which allows
the client to recover

DB(qmkw) = CSSE.Search(sk, st,q; �EDB),
and locally filter DB(q) ⊆ DB(qmkw).

Correctness. Correctness is immediate from Lemma 3.1 (see Sec-
tion A) and correctness of the CSSE scheme. However, this includes
the trivial case of returning entire database upon searching a dis-
junctive query. To avoid such trivial inclusions, we bound the re-
turned result set size close to the actual result set via a precision
parameter. We define precision η by the following ratio.

η =
|DB(q)|

|DB(qmkw)|

At a high level, this precision parameter η is a measure of the
fraction of spurious ids present in the obtained result set compared
to the actual result set. Thus, the correctness can now be defined
by the following statement.
For a functionally correct and exact

6
conjunctive SSE scheme CSSE,

a plaintext database DB, and a disjunctive query q with the corre-

sponding transformed meta-query qmkw, TWINSSE is functionally

correct if the following expressions hold.

sk, st; �EDB← TWINSSEBasic.Setup(1λ,DB)

R̄q = TWINSSEBasic.Search(sk, st,q; �EDB)
where Rq ⊆ R̄q and |R̄q | ≤

1
η · |Rq | (0.85 < η ≤ 1) given that R̄q

is returned by TWINSSEBasic (or DB(qmkw)) and Rq = DB(q).
Note that, the lower bound of η is obtained empirically from

experiments over real databases. We present such experimental de-
tails in Section 5. The lower bound can be adjusted to accommodate
larger R̄q for different databases if required.
StorageOverhead. TWINSSEBasic incursO(N 2) storage overhead
to store the meta-keywords, where N is the number of keywords
in the original plaintext database. This follows immediately from
the fact that the number of meta-keywords is O(N 2). This is unde-
sirable in practice as it affects the scalability of the construction for
large real databases. Currently, the schemes designed for disjunc-
tive queries (such as IEX) require quadratic storage often leading to
storage blow-up for large databases. Our final construction in Sec-
tion 4 reduces O(N 2) storage overhead to O(N) - a necessary and
significant reduction to use large real databases for deployment.
Search Overhead. The disjunctive search uses a meta-keyword
as the least-frequent term for searching with the CSSE search rou-
tine. Since each mkw is an “union” of constituent ws, on average
6An exact solution returns only the documents belonging to the actual query result.

the frequency of the least-frequent mkw is smaller compared to a
conjunctive query constituting the same ws. As a result, this basic
method potentially can result to worst-case linear search over-
head, which would be highly undesirable. However, we avoid such
overheads by choosing an underlying CSSE scheme that ensures
sub-linear search complexity.

4 TWINSSE: FINAL VERSION

In this section, we present our final scheme – TWINSSE, which
improves uponTWINSSEBasic with respect to storage requirements
as well as search overheads. At the core of both these improvements
lies an additional technique that we describe next – “frequency-
based bucketization” of keywords. We note that similar techniques
have been used in the SSE literature [17], albeit almost entirely
for frequency padding and leakage-reduction. To the best of our
knowledge, we are the first to show that bucketization can also be
used to reduce storage and search overheads in SSE schemes.

4.1 Keyword Bucketization at Setup

We now describe our strategy for frequency-based keyword bucke-
tization and intra-bucket meta-keyword generation at setup. We
then use this updated meta-keyword generation strategy to for-
mally describe the new setup algorithm – TWINSSE.Setup.
Bucketization. Let ∆ = {w1, . . . ,wN } be a dictionary of key-
words, and assume that these keywords are arranged in increasing
order of frequency. Also, let n′ = O(1) be any arbitrarily chosen
constant. We partition the keyword space into nB = N /n′ “buckets”
of size n′ each (nB = ⌈Nn ⌉, if N is not a multiple of n), where the
kth bucket is defined formally as the keyword subset

∆k = {w(k−1)n′+1, . . . ,wkn′}.

Note that since all keywords are arranged in increasing order of
frequency, each bucket from ∆1 through ∆nB progressively consists
of keywords with increasing frequency ranges. We note that this is
similar to the bucketization strategy employed in [17].
Intra-Bucket Meta-Keyword Generation. Having partitioned
the keyword space into frequency-based buckets, we now proceed
as follows:
• For each bucket∆k , we generate an intra-bucketmeta-keyword
set Smkw,k of sizeO(|∆k |2) = O

(
(n′)2

)
. This is done exactly

as in TWINSSEBasic, i.e., following the meta-keyword gen-
eration strategy in Lemma 3.1.
• We then define the overall set of meta-keywords as the col-
lection of intra-bucket meta-keywords from all buckets, i.e.,

Smkw,∆ :=
⋃

k ∈[nB]

Smkw,k .

Observe that

|Smkw,∆ | =
∑

k ∈[nB]

|Smkw,k | = O
(
nB(n

′)2
)
= O(Nn′).

However, n′ = O(1) is a constant, and hence, unlike in the basic
solution described in Section 3, now |Smkw,∆ | = O(N). In other
words, we now have a linear-sized meta-keyword set, which forms
the key stepping stone towards avoiding a quadratic storage over-
head. We design our proposed TWINSSE to work for any choice

120

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

Algorithm 1 TWINSSE.Setup

Input: DB, 1λ,n′,nB
Output: sk, st,�EDB
1: function TWINSSE.Setup(1λ,n′,DB)
2: D̂B = GenMetaDB(DB,n′,nB)
3: sk, st,�EDB← CSSE.Setup(λ, D̂B)
4: return �EDB, sk, st
5: Server receives �EDB
6: Client keeps (sk, st,nB)

of n′ (ideally, n′ should be a small constant to avoid high storage
overheads); we use n′ = 10 for our prototype implementation and
experimentation over real-world databases in Section 5. We present
brief discussion and empirical evaluations on the Enron dataset in
Section 5 to select a suitable value for n′.
TWINSSE.Setup: We now put these ideas together to formally
describe TWINSSE.Setup in Algorithm 1, which in turn again uses
any generic conjunctive SSE scheme

CSSE = (CSSE.Setup,CSSE.Search)

in a black-box way. The key changes from the basic scheme in
Section 3 are highlighted in red for ease of exposition (in fact,
TWINSSEBasic Setup can be viewed as a special case of TWINSSE
Setupwhere all keywords are placed in the same bucket, i.e.,nB = 1
and n′ = N).

Note that Algorithm 1 uses as a sub-routine Algorithm 2, which
formally describes the meta-database generation based on the key-
word bucketization and intra-bucket meta-keyword generation pro-
cedures described earlier. Overall, the working of Algorithm 1 can
be divided into two steps: (a) generate the meta-database with the
intra-bucket meta-keywords using Algorithm 2, and (b) generate
the client state and the encrypted meta-database using CSSE.Setup
in a black-box way (note that this second step is the same as in
TWINSSEBasic; the only alteration is in the generation of the meta-
database, which now uses linearly many meta-keywords).

4.2 Updated Query Planning

We now describe the updated query planning strategy that takes
into account the above mentioned meta-keyword generation pro-
cess. We use this updated query planning strategy to build
TWINSSE.Search routine (the query planning for conjunctive
queries remains same as in TWINSSEBasic).

At a high level, we partition a disjunctive query into “regions”,
where each region consists of the keywords in the query that belong
to the same bucket. Formally, given a query q = (wℓ1 ∨ . . . ∨ wℓn),
let Q = (wℓ1 , . . . ,wℓn) and, for each k ∈ [nB], let Qk = ∆k ∩ Q. In
other words, Qk consists of all the keywords in the disjunction q

that belong to the kth bucket. It is easy to see that we can re-write
q as a disjunction over sub-queries as follows:

q =
∨

k ∈[nB]

©«
∨

w∈Qk

wª®¬ :=
∨

k ∈[nB]

qk .

w1 w12

q

mkw(1)2,2

mkw(1)4,4

mkw(2)3,4

mkw(2)1,1

mkw(3)3,3

mkw(3)1,1

Increasing Frequency

Bucket 1 Bucket 2 Bucket 3
n′ ws n′ ws n′ ws

O(n′2) mkws O(n′2) mkws O(n′2) mkws

Figure 2: Expressing disjunctive query q in terms ofmkws in
the improved O(N) construction. We use the same database

parameters from Figure 1. The sub-mkws (smaller mkws in
each bucket) are padded to realise a full mkw and stored in

D̂B. Here, the bucket size n′ is four. The k in mkw(k)i , j repre-
sents the bucket index themkwi , j belongs to. Note that, ANDing
mkws within a bucket retains only thews in theq (covered by
that bucket). Note that expressing each meta-keyword as a

bit-string allows efficient an transformation from the orig-

inal disjunctive query into the corresponding conjunction

of meta-keywords through simple bit-wise set/clear opera-

tions. This transformation incurs only negligible additional

computational overhead in practice.

Note that for some k , Qk could be an empty set; in this case, the
sub-query qk is also empty. Based on the above representation, the
query planning strategy in TWINSSE works as follows:
• Step-1: Partition q into sub-queries {qk }k ∈[nB] as described
above.
• Step-2: For each sub-queryqk , construct a conjunctive (sub-)
meta-query qmkw,k as described in Section 3, using the intra-
bucket meta-keywords corresponding to the kth bucket, i.e.,
the intra-bucket meta-keywords in Smkw,k .
• Step-3: Finally, we define the overall meta-query qmkw as
qmkw =

∨
k ∈[nB] qmkw,k , and re-construct DB(qmkw) as

DB(qmkw) =
⋃

k ∈[nB]

DB(qmkw,k),

where the recovery of eachDB(qmkw,k) happens via an inde-
pendent (and parallel) execution of the same search protocol
as in TWINSSEBasic.

The above query planning strategy is summarized pictorially
in Figure 2 (note that the superscript k in mkw(k)i , j represents the
bucket index for the meta-keyword mkwi , j). In comparison with

121

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

Algorithm 2 GenMetaDB

Input: DB,n′,nB
Output: D̂B

1: function GenMetaDB(DB,n′,nB)
2: Extract ∆ from DB and sort ws in ∆ in increasing order of

frequency
3: Partition ∆ as {∆1, · · · ,∆nB } such that ∆i =

{w(i−1)n′+1, · · · ,win′} ▷ The last bin may not contain n′

ws. Keep only as many are left.

4: Initialise a bucket index k ← 1
5: for ∆k ∈ {∆1, · · · ,∆nB } do

6: Set ℓ ← |∆k |
7: Parse ∆k as {wk

1 , · · · ,w
k
ℓ
}

8: for i ← 1 to ℓ do
9: for j ← 0 to ℓ − i do
10: mkw(k)i ,i+j ← ∆k \ {w

k
i , . . . ,w

k
i+j }

11: for w ∈ mkw(k)i ,i+j do

12: D̂B(mkw(k)i ,i+j) ← D̂B(mkw(k)i ,i+j) ∪ DB(w)
13: k ← k + 1
14: return D̂B

Algorithm 3 TWINSSE.Search (for disjunctive queries)

Input: q, sk, st,�EDB,n′,nB
Output: Result set DB(q)
1: function TWINSSE.Search(q, sk, st,�EDB.)
2: Client

3: Generate qmkw = (∨k ∈[nB]qmkw,k) =

GenMQuery(q,n′,nB,∆).
4: For each non-empty qk (in uniformly random order), the

client and server engage in the search protocol as below.
5: Client+Server

6: for each non-empty qmkw,k (in random order) do
7: DB(qmkw,k) ←

CSSE.Search(sk, st,qmkw,k ; �EDB).
8: At the end of the protocol, client receives DB(qmkw,k).
9: Client

10: Initialize DB(qmkw) ← EMPTY-SET.
11: for each DB(qmkw,k) from search protocol do
12: DB(qmkw) ← DB(qmkw) ∪ DB(qmkw,k).
13: The client locally filters DB(q) ⊆ DB(qmkw).

the example figure (Figure 1) in Section 3, we note that the meta-
keywords are now chosen from a smaller set of size ≈ (4× 12) = 48,
as compared to a set of size ≈ 122 = 144 in Figure 1.
TWINSSE.Search: We now put these ideas together to formally
describe TWINSSE.Search in Algorithm 3, which in turn uses Al-
gorithm 4 as a sub-routine (we only summarize the processing of
disjunctive queries since conjunctive queries are processed as in
TWINSSEBasic). The key changes from the basic scheme in Sec-
tion 3 are highlighted in red for ease of exposition (again,
TWINSSEBasic.Search can be viewed as a special case of
TWINSSE.Searchwhere all keywords are placed in the same bucket,
i.e., nB = 1 and n′ = N).

Algorithm 4 GenMQuery

Input: q = {wi1 ∨ wi2 ∨ . . . ∨ wil },n
′,nB,∆

Output: Meta-Query qmkw
1: function GenMQuery(q,n′,nB,∆)
2: Parse ∆ as {∆1, . . . ,∆nB }

3: Sort ws in q in increasing order of frequency
4: Partition query q into set of sub-queries Pq as q1 | | · · · | |qnB ,

such that qk contains ws only from ∆k for k = 1, · · · ,nB
5: for qk ∈ Pq do

6: Parse qk as {wk
i1
, · · · ,wk

il ′
}

7: for j ← 1 to l ′ do
8: mkw(k)i j−1+1,i j−1 ← ∆k \ {w

k
i j−1+1, . . . ,w

k
i j−1}

▷ Recall that mkwik , jk ← ϕ if ik > jk , i0 = 0 and

wk
1 is the first keyword in ∆k

9: mkw(k)il ′+1,n′ ← ∆k \ {w
k
il ′+1, . . . ,w

k
n′}

10: qmkw,k ← mkw(k)1,i1−1 ∧ . . . ∧mkw(k)il ′+1,n′
11: qmkw ← qmkw ∨ qmkw,k
12: return qmkw

Algorithm 4 formally captures the updated disjunctive query
planning strategy based on query partitioning and intra-bucket
meta-keywords, as described earlier. Note that in Algorithm 3, each
conjunctive sub-meta-query qk is executed in parallel using the
search algorithm CSSE.Search of the underlying conjunctive SSE
scheme CSSE, and the final result-set corresponding to the overall
meta-query is constructed locally at the client by taking the union
over the result-sets corresponding to each conjunctive sub-meta-
query.
Correctness.We state the following theorem for the correctness
of TWINSSE.

Theorem 4.1 (Correctness of TWINSSE). Assuming that CSSE
satisfies correctness of search for conjunctive queries and Lemma 3.1

holds, TWINSSE satisfies correctness for both conjunctive and dis-

junctive queries.

The proof essentially follows from the same arguments as the proof
of correctness for TWINSSEBasic in Section 3 and is presented in
Appendix B.

4.3 Instantiation from the OXT Protocol and

Complexity Analysis

In its most general form, our proposed TWINSSE scheme can be
concretely instantiated using any conjunctive SSE scheme. In this
section, we analyze a concrete instance of TWINSSE based on
the OXT protocol [7], which we call TWINSSEOXT. We analyze
TWINSSEOXT asymptotically in terms of storage requirements and
search overheads. Our analysis does not require understanding the
internal details of OXT beyond what is already stated in this sec-
tion; the reader may refer to [7] for more details. Finally, we refer
the reader to Section 5 for experimental validation of the analysis
presented here over the Enron email corpus.
StorageRequirements (Server).The (worst-case) server-side stor-
age requirement for TWINSSEOXT isO(n′ |DB|), where |DB| is the
number of distinct identifier-keyword pairs in DB, and n′ = O(1)

122

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

denotes the (constant) size of each keyword bucket used. This lin-
earization process through keyword bucketization process incurs an
O(n′)-fold increase in storage overhead overOXT (where n′ = O(1)
is a constant). We view this as a necessary trade-off for the addi-
tional ability to support disjunctive queries efficiently yet securely.
In comparison, the IEX family of schemes incur (worst-case) qua-
dratic storage overheads, more precisely, O(|∆| |DB|), where |∆|
denotes the number of keywords in DB.

However, n′ (or the number of buckets) needs to be chosen care-
fully to bound the storage overhead to linear (which also keeps
the leakage from multiple buckets at minimum). A high value of
n′ would incur a higher storage overhead with lesser leakage from
small number of buckets (as outlined in Section 4.1). Whereas a
small value of n′ would result in a higher number of buckets lead-
ing to lesser storage but increased leakage from more number of
buckets. We selected n′ in the range 10-15 based on empirical eval-
uations over real data sets that allows to retain a linear storage
overhead. These experimental results are provided in Section 5.
Storage Requirements (Client). The client-side storage require-
ment for TWINSSEOXT is O(n′ |∆| log |DB|). This again represents
an O(n′)-fold increase in storage overhead over the original OXT
scheme (where n′ = O(1) is a constant), which has a client-side
storage requirement of O(|∆| log |DB|).

We also note here that TWINSSEOXT requires O(1) storage for
the secret key(s) at the client-end (this is a purely client-side over-
head, not associated with the server-side storage). In contrast, the
IEX family of schemes requireO(|∆|) secure storage for secret keys
(one key per keyword due to individual multi-map structure re-
quired for each keyword index), which is likely to be costly for
extremely large databases. We emphasise that this requirement is
only for secure storage to store secret keys on the client-side. The
client-side storage overhead mentioned in the previous paragraph
accounts for storing only auxiliary information required during
query processing, and this does not require secure storage.
Search Complexity. We now present an asymptotic analysis of
the search complexity (more concretely, the computational and
communication requirements during search query processing) of
TWINSSEOXT. We divide our analysis into two parts – conjunctive
queries and disjunctive queries:
Conjunctive queries. Let q = (w1 ∧ . . .∧wn) be a conjunctive query,
where w1 is the least frequent keyword. When processing q using
TWINSSEOXT, the computational costs (at both the client and the
server) as well as the communication requirements between the
client and the server scale linearly as O(n |DB(w1)|). This is exactly
the same as in OXT, and is hence worst case sub-linear.
Disjunctive queries. Let q = (w1 ∨ . . . ∨ wn) be a disjunctive query.
Also, let qmkw = ∨k ∈[nB]qmkw,k be the corresponding meta-query,
and assume without loss of generality that mkw(k)ik , jk

is the least
frequent meta-keyword within qmkw,k for each k ∈ [nB] (such that
qmkw,k is non-empty). When processing q using TWINSSEOXT, the
computational costs (at both the client and the server) as well as
the communication requirements between the client and the server
scale linearly as O(γ), where

γ =
∑

k ∈[nB]

|qk | |DB(mkw(k)ik , jk
)|,

where |qk | denotes the number of meta-keywords in the con-
junctive sub-meta-query qk (|qk | = 0 when qk is empty). Note that
this is essentially a generalization of the analysis of search query
overheads for TWINSSEBasic in Section 3, where all keywords be-
long to the same bucket (i.e., nB = 1). We provide a comparative
summary of storage and search overhead for TWINSSE and IEX in
Table 1 for quick reference.

Table 1: Comparative summary of storage overhead and

search complexity of TWINSSE and IEX.

Scheme Storage

Overhead

Search Time
7

Conjunctive Disjunctive
TWINSSEOXT O(n′ |DB|) O(n |DB(w1)|)

∑
k ∈[nB] |qk | |DB(mkw(k)ik , jk

)|

IEX-2Lev O(|∆| |DB|) O(n2(|DB(wu
M)| + t |DB(δu)|)) O(n2 |DB(wM)|)

Spurious document identifiers. It turns out that keyword bucketiza-
tion also significantly reduces the search overheads (both computa-
tional and communication) due to spurious document identifiers
in DB(qmkw). In particular, recall our observation with respect to
TWINSSEBasic from Section 3: the fraction of spurious identifiers
retrieved is directly proportional to the average number of common

documents over every keyword-pair in the database. However, in our
improved solution, the database is partitioned into buckets, and all
keywords within the same bucket have essentially similar frequency
ranges. This means, in particular, that an overwhelmingly large
fraction of buckets either contain all low-frequency keywords (in
which case, the spurious document-set is essentially null, since such
keywords almost never co-occur across documents [7]), or very
high-frequency keywords (in which case, such keywords occur in
almost all documents, and the proportion of spurious documents is
low by default).

We generalise the aforementioned observations into the follow-
ing (informal) claim about the search complexity incurred by
TWINSSEOXT, which is essentially an extension of our claim for
TWINSSEBasic.

Claim 4.1 (Informal). TWINSSEOXT incurs (average-case) sub-

linear search complexity (in terms of both computational costs and

communication overheads) for both conjunctive and disjunctive queries.

We validate this claim with experimental results over the Enron
email corpus in Section 5. We also extend the analysis and experi-
mental evaluations to more general/complicated Boolean queries
(CNF or DNF formulae) in Appendix G. Our experiments show
that searches in TWINSSEOXT incur at most 15% overhead due
to spurious identifiers in the result set. In order to filter out the
set of spurious documents from the final result set, we can resort
to the same strategies as used by state-of-the-art volume hiding
SSE constructions (e.g. SSE schemes obtained naturally from the
encrypted multi-map constructions proposed in [20, 28], where the
client obtains a mixture of real and “fake” identifiers at the end of
the query phase to hide the true query response volume from the
server).

7w1 is the least frequent keyword in the conjunctive query,wu
M is the most frequent

keyword in the CNF clause δu with most number of ws in CNF expression of the
conjunctive query.wM is the most frequent keyword in the disjunctive query.

123

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

Note that, TWINSSE uses separate mkw∗ for each bucket where
mkw∗i denotes the mkw∗ for the i-th bucket. Following the defi-
nition of mkw∗, mkw∗i represents the disjunction of all ws in the
i-th bucket. Using a separate mkw∗ per bucket allows TWINSSE to
support non-SNF queries more efficiently than OXT. OXT uses a
single mkw∗ for any non-SNF query into an SNF query. In this pro-
cess, OXT incurs a worst-case linear search overhead. In contrast,
TWINSSE uses mkw∗i if and only if a query involves all keywords
from the i-th bucket (in this case, it is the only optimal choice).
These specific queries can be considered as corner cases which
rarely occur in realistic searches. Consequently, TWINSSE incurs
spurious ids, which is typically only 15 − 20% on average for real-
istic non-SNF queries. Additionally, this process in TWINSSEOXT
also allows for parallel execution of independent sub-queries over
different buckets. Adopting a similar approach with OXT for paral-
lel execution would incur more leakage from each queried bucket
due to the exact result set which reveals the volume pattern. Since
TWINSSEOXT produces noisy result set due to the spurious ids, the
volume pattern leakage is less compared to OXT.

4.4 Security of TWINSSE
We present an informal discussion on the security of our construc-
tion here. Detailed formal security discussion and leakage analysis
(including experimental evaluations) are available in Appendix C,
D, E and F. Security of TWINSSE is modelled in the semi-honest
adversarial setting where the server is assumed to be a honest-
but-curious entity (that means, the server follows the algorithmic
specifications exactly, but can record information for later analysis).

Informally, TWINSSE inherits security properties and leakage
profile from the underlying CSSE construction. We assume that
the underlying CSSE construction is an adaptively secure sublinear
conjunctive SSE algorithm which is secure against a semi-honest
adversaryA and the leakage of CSSE is characterised by the leakage
function LCSSE. The leakage function LCSSE is an ensemble of the
leakage functions for Setup and Search individually, expressed in
the following way.

LCSSE = {L
Setup
CSSE ,L

Search
CSSE }

Given the above CSSE leakage functions, security of TWINSSE
can be analysed using TWINSSE leakage function LTWINSSE in the
same adaptive semi-honest adversarial model. Similar to LCSSE,
LTWINSSE is composed of two separate leakage functions for Setup
and Search, as expressed below, that capture the leakage from
TWINSSE execution in the meta-keyword setting.

LTWINSSE = {L
Setup
TWINSSE,L

Search
TWINSSE}

Concretely,LTWINSSE is identical to theLCSSE withnB (the num-
ber of buckets) as an additional benign component. In other words,
we show that LTWINSSE is equal to L̄CSSE where L̄CSSE is LCSSE
in the context of meta-keywords and nB. At a high level, LSetup

TWINSSE
incorporates D̂B instead of DB generated by the GenMetaDB dur-
ing setup. Similarly, the search leakage encapsulates leakages from
both conjunctive and disjunctive queries. We quantify these sep-
arately through two individual leakage function instances - one
for conjunctive queries, and one for disjunctive queries from meta-
keywords, where meta-keywords are generated using GenMQuery
routine. We show that the leakage for the conjunctive case is exactly

the same as of the CSSE construction, and for disjunctive queries it
incorporates the similar leakage profile, but from meta-keywords.
We provide detailed formal analysis of LTWINSSE in Appendix D.
Security of TWINSSEOXT. The security analysis of TWINSSEOXT
follows from the security notions of generic TWINSSE, as infor-
mally discussed above (formally in Appendix D and Appendix E).
Due to lack of space, we move this discussion (including proofs) to
the Appendix D. We also present a leakage-based cryptanalysis of
the TWINSSEOXT scheme via experiments over the Enron email
corpus in Appendix F.
Comparison with IEX. At a high level, TWINSSEOXT avoids two
kinds of leakages that the IEX family of schemes incurs for any
query. To begin with, IEX leaks to the server the exact size of the
result set pertaining to a query (also referred to as the size pattern
leakage). As already mentioned, due to the presence of spurious doc-
ument identifiers in the result set, TWINSSEOXT inherently hides
the size pattern from the server. More crucially, IEX incurs signifi-
cant sub-query leakage. For example, given a disjunctive query of
the form q = (w1 ∨w2), where w1 is the more frequent keyword, it
leaks to the server: (a) the frequency of the more frequent keyword,
i.e., |DB(w1)|, and (b) the number of documents that containw2 but
not w1, i.e., |DB(w2) \DB(w1)|. Whereas, TWINSSEOXT only leaks
the frequency of the least frequent meta-keyword (in this example,
the meta-keyword corresponding to w1), and no information about
the other meta-keywords in the conjunction (in this example, no
information about w2). In other words, TWINSSEOXT incurs less
leakage as compared to the IEX family of schemes during search
queries.

5 EXPERIMENTAL RESULTS

We describe a prototype implementation of TWINSSEOXT and eval-
uate its performance over real-world databases. We present exper-
imental results comparing the storage requirements and search
performance of TWINSSEOXT with that of IEX-2Lev [19].
Data Set andPlatform.Weused the Enron email data set89 for our
experiments. The Enron email data set contained 517,401 documents
(emails) and 20million keyword-document pairs, with a total size 1.9
GB. The complete TWINSSEOXT implementation was done using
C++ (with GCC9 compiler) with native multi-threading support,
and we used Redis as the database backend. We ran the experiments
on a single node with Intel Xeon E5-2690 v4 2.6 GHz CPU with 128
GB RAM and 512 GB SSD storage.
Implementation Details.We created the meta-keyword database
(or the transformed database)MDB from the parsed Enron database
DB. The plain Enron database DB contains w-s and id-s in inverted
index form. The transformed databaseMDB also contains themkws
and the associated id-s in inverted index layout. Since there are
a large number of w-s in DB, length of each binary string mkw
is large. Hence, we hash those strings prior to writing to MDB.
This MDB is further encrypted using the underlying OXT setup to
generate the encrypted meta-keyword database �EDB.

We report the actual size of �EDB in Figure 3 which is offloaded
to the server. The query translation process first generates these

8https://www.cs.cmu.edu/~enron/
9https://www.kaggle.com/wcukierski/enron-email-dataset

124

https://www.cs.cmu.edu/~enron/
https://www.kaggle.com/wcukierski/enron-email-dataset

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

6000 10000 20000 40000 100000
150

103

104

105

106

Total number of ws in DB (|∆|)

St
or
ag
e
(M

B)

TWINSSEOXT
IEX-2Lev

Figure 3: Server storage overhead with database size (|DB|)

for the Enron database.

250 500 1000 2000 4000

1

10

100

103

Frequency of the variable term (|v|)

En
d-
to
-e
nd

qu
er
y
tim

e
(s
)

v ∧ a TWINSSEOXT
a ∧ v TWINSSEOXT

v ∧ a OXT
a ∧ v OXT

v ∧ a IEX-2Lev
a ∧ v IEX-2Lev

Figure 4: Comparison of end-to-end search latency vs fre-

quency of the variable term (|v|). Observe that, for conjunc-

tive queries TWINSSEOXT closely follows OXT in practice,

and the latency is significantly less than IEX-2Lev. We note

here that a fundamental difference between IEX-2Lev and

TWINSSEOXT is that the search frequency of IEX-2Lev scales

(by design) with the frequency of the most frequent con-

junct, while that of TWINSSEOXT scales with the frequency

of the least frequent conjunct; this is the main reason why

TWINSSEOXT outperforms IEX-2Lev by a significant margin

for conjunctive queries.

mkws in binary string format and we hash those prior to search
over the encrypted meta-keyword database �EDB.
Evaluation of Storage Overhead. One of the fundamental as-
pects of our implementation is that TWINSSEOXT improves upon
the quadratic storage overhead of IEX-2Lev and scales linearly with
the size of plaintext database. IEX-2Lev exploits the low size of mu-
tual intersections for all pairs of keywords in DB and its storage
overhead scales with the size of the intersection. In a sparse data
set, the size of these intersections for most of the pairs of keywords
is very low. However, if the database is not sparse, this results in
large intersections for pairs of w-s and the overhead becomes truly
quadratic for IEX-2Lev.

Figure 3 compares the storage overhead of TWINSSEOXT and
IEX-2Lev on Enron database (sparse database). It is evident that
the storage size scales linearly with the number of keywords in DB

5 10 15 20
0.5

1

2

4
6
10
15

30
50

100

Bucket size n′ (#)

St
or
ag
e
(G
B)

|∆| = 13.4 × 104 (Enron)
|∆| = 4.9 × 104 (Enron)
|∆| = 12 × 104 (Wikimedia)

Figure 5: Variation of storage overhead for different choices

of the bucket size (n′).

for TWINSSEOXT whereas IEX-2Lev becomes quadratic leading to
storage blow-up. The storage overhead of IEX-2Lev is 60× more
than TWINSSEOXT. Despite the additional storage required for
the meta-keywords, TWINSSEOXT has better storage overhead in
worst-case distribution of DB as compared to IEX-2Lev.
Effect of linearization. As discussed in Section 4.3, the choice of n′
greatly influences the storage overhead. Since the distribution of
ws and ids varies across different databases (for example, a medical
database’s distribution differs from a tax record database), it is quite
challenging (and inefficient) to obtain an analytic expression for n′
that works for multiple databases. We rely on an empirically chosen
value of n′ that suitably works for different databases without
blowing up the storage. We present experimental results in Figure 5
to illustrate the effect of varying n′. We fix n′ at 10 for our final
experiments from this evaluation.
Evaluation of End-to-End Search Latency. Figure 4 and 6 com-
pare the end-to-end search latency of TWINSSEOXT with that of
IEX-2Lev for conjunctive and disjunctive queries, respectively.
Conjunctive queries. Search performance of TWINSSEOXT is inher-
ited from OXT and is therefore identical to OXT as shown in Fig-
ure 4. To validate this, we consider a two-keyword query of the
form q = a∧ v, where a and v are two keywords from DB. Without
loss of generality, we consider the first term of q (or a here) to be
the least frequent keyword. We vary the frequency of v (referred to
as the variable term) with different queries where as the frequency
of a is kept constant (constant term). The plot shows constant time
overhead for conjunctive queries of this form with TWINSSEOXT,
which is identical with OXT. In the same figure, IEX-2Lev conjunc-
tive search time is also plotted which depicts that TWINSSEOXT is
around 10× faster on average.
Disjunctive queries. The plots in Figure 6 compare the end-to-end
query time with final result size for disjunctive queries of different
hamming weights. Observe that, the query time increases with
increasing number of id-s in R̄q (the obtained result set, inclusive
of the spurious id-s for a disjunctive query) due to the increased
frequency of least-frequent mkws in these queries.

As discussed in the main text, frequency of the least-frequent
mkw is independent of the frequency of the least-frequent w in a
query. Hence, we consider plotting with overall result size that rep-
resents the computation overhead. In disjunctive queries, union of

125

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

20 50 100 150 200 500 1000 2000
0

5

10

15

20

Size of final result set (|R̄q |)

En
d-
to
-e
nd

qu
er
y
tim

e
(s
)

|q | = 3
|q | = 5
|q | = 7
|q | = 9

Figure 6: End-to-end search latency vs final result size for

disjunctive queries of different number of ws in q (|q |).

20 50 100 150 200 500

0

5

10

15

Size of final result set (|R̄q |)

En
d-
to
-e
nd

qu
er
y
tim

e
(s
)

TWINSSEOXT
IEX-2Lev

Figure 7: Comparison of end-to-end search latency vs final

result size for disjunctive queries of the form q = w1 ∨ w2
over Enron data set.

the id-s grows with more number of keywords present in the query.
Therefore, plotting with the result size provides an accurate mea-
sure of computation cost for disjunctive queries. Nonetheless, the
OXT sublinear search complexity is maintained, which we verified
in our experiments.

The average query time increases with the number ofws in actual
disjunctive query q. This increased time attributes to more number
ofmkws for each query, and the underlyingOXT that scales linearly
with number of keywords (in this case mkws) in the conjunctive
query. The end-to-end disjunctive search latency for TWINSSEOXT
is few hundred milliseconds over the Enron database for queries
with moderate result size.

We provide an end-to-end query performance comparison of
TWINSSEOXT with IEX-2Lev in Figure 7. For queries with smaller
result sizes, TWINSSEOXT achieves almost identical end-to-end
query latency as IEX-2Lev. For queries with larger result sizes,
IEX-2Lev performs slightly better. This is primarily because of the
usage of relatively costly elliptic-curve cryptography-based opera-
tions in TWINSSEOXT (a consequence of using OXT as a black-box,
which uses such operations); IEX-2Lev, on the other hand, uses
purely symmetric-key crypto-primitives. We view this as an effi-
ciency trade-off; note that TWINSSEOXT outperforms IEX-2Lev sig-
nificantly both in terms of storage requirements (as demonstrated
in Figure 3) and end-to-end latency for conjunctive queries (as

2 4 6 8 10 12 14
0.8

0.85

0.9

0.95

Number of ws in query (|q |)

Av
er
ag
e
pr
ec
is
io
n
va
lu
e
η

Enron-I
Enron-II
Enron

Figure 8: Average precision value vs number of keywords in

query for databases of different size.

demonstrated in Figure 4). Hence, from the point of view of practi-
cal performance across a wide class of Boolean queries generally
encountered in practice and scalability to extremely large databases,
TWINSSEOXT outperforms IEX-2Lev.
Experiments on the Wiki database. We also present experimental
results for performance and storage overhead evaluation over the
Wikimedia dataset10 in Appendix H. We observed similar results
with theWikimedia dataset as of the Enron dataset presented above.
Evaluation of Result Precision. In context of information re-
trieval precision (denoted by η in Section 3.3) is the fraction of
relevant documents among the retrieved documents. We compare
the average precision values of R̄q for disjunctive queries (q) with
different number of keywords in Figure 8. Observe that the average
precision values for most of the cases is above 85%, which implies
that at least 85% documents returned by R̄q is relevant to the dis-
junctive query q (or belongs to the actual result set Rq without
spurious id-s). The plot also illustrates that scaling the database
does not affect the average precision of the retrieved documents.
Hence, the query result of TWINSSEOXT does not degrade even for
huge databases which is crucial for practical applications.

Note that, IEX is an exact solution that has 100% result precision
- it returns the exact result set without spurious ids11. However, IEX
incurs extremely high storage overhead that makes it impossible
to deploy with large real datasets. In contrast, TWINSSE incurs
less than 100% result precision (85%-90%, as shown in Figure 8),
but TWINSSE outweighs the loss in precision with storage savings
(10×-50× less than IEX, as shown in Figure 3).
Complex Boolean Queries.We defer the elaborate discussion on
processing complex Boolean queries (as CNF and DNF formulae)
using TWINSSEOXT to Appendix G due to lack of space. We present
here the corresponding experiments to evaluate the performance
of our prototype implementation of TWINSSEOXT when process-
ing such queries over the Enron dataset (on the same computing
platform as discussed in Section 5).
DNF queries. We considered multiple queries with two clauses and
three clauses with each clause having two keywords. The end-
to-end query time is plotted in Figure 15, where the blue curve
10https://dumps.wikimedia.org/enwiki/latest/
11State-of-art SSE schemes like OXT[7], HXT[23], ODXT[29] or IEX[19] are exact
solutions. Hence, this precision parameter is defined exclusively for TWINSSE only
which produces result set with spurious ids

126

https://dumps.wikimedia.org/enwiki/latest/

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

20 35 50 100 150 200 650

0.5

1

2

3

5
7

10

Size of final result set (|Rq |)

En
d-
to
-e
nd

qu
er
y
tim

e
(s
)

(w1 ∧w2) ∨ (w3 ∧w4) ∨ (w4 ∧w6)

(w1 ∧w2) ∨ (w3 ∧w4)

Figure 9: TWINSSEOXT performance with result set size on

Enron data set for DNF queries.

represents the query time for two clause queries and the red curve
represents the query time for three clause queries. Observe that
the query time for both two and three clause queries increase with
more number of id-s in the final result set. This increment can be
attributed to large result size of the individual conjunctive clauses.
Also note that the query time increases for three-clause queries due
to more conjunctive clauses and follows the same trend of increased
query time with the final result size.
CNF queries. For experimenting with CNF queries, we considered
two-clause queries with two and three keywords per clause. Since
the Enron data set is relatively sparse in nature, it often results
in small or empty intersection with higher number of clauses in
query. We plotted end-to-end query time in Figure 16 for both cases
– two keyword clauses and three keyword clauses with the size
of the final result set. The blue curve represents the end-to-end
query time for the queries with two keywords per clause. Similarly,
the red curve represents the end-to-end query time for queries
with three-keyword clauses. Observe that, in CNF queries also, the
end-to-end query time increases with the final result size, due to
the increased size of the initial result set retrieved. For the three-
keyword clauses, the query time is higher than the two-keyword
clauses due to the larger size of the initial result set retrieved for
the disjunctive clauses.

Normally, CNF and DNF expressions in generic form involve the
negation of terms. TWINSSE avoids negations for plain disjunctive
and DNF queries. This is purposefully done to avoid quadratic stor-
age due to negated keywords, as discussed in Section 1.2. However,
TWINSSEOXT supports negations in CNF by utilising the XSet data
structure as a part of the underlying OXT construction. In partic-
ular, TWINSSEOXT can process keyword negation for any clause
in a CNF query, except for the least-frequent one (which is used to
retrieve encrypted ids), by evaluating the formula directly over the
XSet structure. Since the retrieval is done using the least frequent
clause, TWINSSEOXT avoids the inherent linear search overhead
incurred by this kind of queries in OXT.

The authors of OXT [7] described a way to process CNF/DNF
queries using a special keyword (similar to mkw∗ in TWINSSE) as
the s-term (special term or the keyword with minimum frequency
in the query). This process essentially retrieves all entries from the
database due to this special keyword and filters according to the
query. Naturally, this approach has linear complexity that leads

1 2 3 4 5 9 12
0.3

0.4

0.5

0.7

1

1.3

2

Size of final result set (|R̄q |)

En
d-
to
-e
nd

qu
er
y
tim

e
(s
)

(w1 ∨w2 ∨w3) ∧ (w4 ∨w5 ∨w6)

(w1 ∨w2) ∧ (w3 ∨w4)

Figure 10: TWINSSEOXT performance with result set size on

Enron data set for CNF queries.

to poor performance and high leakage (a very high number of ids
are retrieved, which do not belong to the final result). In contrast,
TWINSSEOXT still offers a sublinear search for complex queries.
The all-1 mkw∗ is defined per-bucket in TWINSSEOXT scheme,
which avoids such costly retrieval as only specific buckets are ac-
cessed and, consequently, leaks much less compared to OXT.

StorageOverhead for DenseDatabases. Finally, we compare the
server-side storage overheads of TWINSSEOXT and IEX-2Lev for a
special class of “dense databases” where for any pair of keywords,
the number of documents containing both keywords is large (see
Appendix I for an example of dense database and elaborate discus-
sion). We use a synthetic dense database that follows Zipf’s law [24].
Our experimental results in Appendix I (Figure 20) show that IEX-
2Lev incurs 70× higher storage overhead than TWINSSEOXT for
this dense database, clearly indicating that TWINSSEOXT offers
significantly greater scalability for such databases in practice.

6 SUPPORTING DYNAMIC DATABASES

In this paper, we described TWINSSEOXT for static databases. This
leaves open the question of extending TWINSSEOXT to dynamic
databases, and supporting updates efficiently yet securely over
these. We note here that for dynamic databases where the set of
keywords across all documents remains fixed (or, more generally,
undergoes updates infrequently), the set of meta-keywords also
does not change (frequently) over time. In this setting, it is possible
achieve an extension of TWINSSEOXT to the setting of dynamic
databases by simply substituting the underlying OXT scheme with
a dynamic conjunctive SSE scheme with desirable efficiency and
security guarantees (e.g.ODXT from [29]). However, such an exten-
sion becomes challenging for dynamic databases where the set of
keywords (and hence, the set of meta-keywords) also gets updated
frequently. We leave it as an interesting future question to extend
TWINSSEOXT to dynamic databases.

ACKNOWLEDGMENTS

The authors would like to thank the grant “Design and Implemen-
tation of Efficient and Secure Searchable Encryption” sponsored
by MHRD-STARS (Scheme for Transformational and Advanced

127

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

Research in Sciences), India and Centre on Hardware Security En-
trepreneurship Research & Development, Meity India for partially
supporting the work.

REFERENCES

[1] Ghous Amjad, Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2021.
Dynamic Volume-Hiding Encrypted Multi-Maps with Applications to Searchable
Encryption. IACR Cryptol. ePrint Arch. (2021), 765.

[2] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage
Abuse Attacks. In NDSS 2020.

[3] Raphael Bost. 2016.
∑
oφoς : Forward Secure Searchable Encryption. In ACM

CCS 2016. 1143–1154.
[4] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and Backward

Private Searchable Encryption from Constrained Cryptographic Primitives. In
ACM CCS 2017. 1465–1482.

[5] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
Abuse Attacks Against Searchable Encryption. In ACM CCS 2015. 668–679.

[6] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption
in Very-Large Databases: Data Structures and Implementation. In NDSS 2014.

[7] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-
tion with Support for Boolean Queries. In CRYPTO 2013. 353–373.

[8] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,
and Rasool Jalili. 2018. New Constructions for Forward and Backward Private
Symmetric Searchable Encryption. In ACM CCS 2018. 1038–1055.

[9] Yan-Cheng Chang andMichael Mitzenmacher. 2005. Privacy Preserving Keyword
Searches on Remote Encrypted Data. In ACNS 2005. 442–455.

[10] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled
Disclosure. In ASIACRYPT 2010. 577–594.

[11] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-
able symmetric encryption: improved definitions and efficient constructions. In
ACM CCS 2006. 79–88.

[12] Mohammad Etemad, Alptekin Küpçü, Charalampos Papamanthou, and David
Evans. 2018. Efficient Dynamic Searchable Encryption with Forward Privacy.
PoPETs 2018, 1 (2018), 5–20.

[13] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin
Rosu, and Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact
Matches. In ESORICS 2015. 123–145.

[14] C. Gentry. 2009. Fully homomorphic encryption using ideal lattices. In ACM

STOC’09. 169–178.
[15] Eu-Jin Goh. 2003. Secure Indexes. IACR Cryptology ePrint Archive 2003 (2003),

216.
[16] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM 43, 3 (1996), 431–473.
[17] Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, and BogdanWarinschi. 2020.

SWiSSSE: System-Wide Security for Searchable Symmetric Encryption. IACR
Cryptol. ePrint Arch. (2020), 1328.

[18] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.
In NDSS 2012.

[19] Seny Kamara and Tarik Moataz. 2017. Boolean Searchable Symmetric Encryption
with Worst-Case Sub-linear Complexity. In EUROCRYPT 2017. 94–124.

[20] Seny Kamara and Tarik Moataz. 2019. Computationally Volume-Hiding Struc-
tured Encryption. In EUROCRYPT 2019. 183–213.

[21] Seny Kamara and Charalampos Papamanthou. 2013. Parallel and Dynamic
Searchable Symmetric Encryption. In FC 2013. 258–274.

[22] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic
searchable symmetric encryption. In ACM CCS 2012. 965–976.

[23] Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep Mukhopad-
hyay, Ron Steinfeld, Shifeng Sun, Dongxi Liu, and Cong Zuo. 2018. Result Pattern
Hiding Searchable Encryption for Conjunctive Queries. In ACM CCS 2018. 745–
762.

[24] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. 2010. Intro-
duction to information retrieval. Natural Language Engineering 16, 1 (2010),
100–103.

[25] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not
Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In USENIX

Security 2021. 127–142.
[26] Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo. 2021. Efficient

Boolean Search over Encrypted Data with Reduced Leakage. In Advances in

Cryptology - ASIACRYPT 2021 (Lecture Notes in Computer Science, Vol. 13092),
Mehdi Tibouchi and Huaxiong Wang (Eds.). Springer, 577–607. https://doi.org/
10.1007/978-3-030-92078-4_20

[27] Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo. 2021. Efficient
Boolean Search over Encrypted Data with Reduced Leakage. IACR Cryptol. ePrint

Arch. (2021), 1227.
[28] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating

Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps
via Hashing. In ACMCCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz (Eds.). ACM, 79–93.

[29] Sikhar Patranabis and Debdeep Mukhopadhyay. 2021. Forward and Backward
Private Conjunctive Searchable Symmetric Encryption. In NDSS 2021.

[30] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. 2000. Practical
Techniques for Searches on Encrypted Data. In IEEE S&P 2000. 44–55.

[31] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet Vo,
and Surya Nepal. 2018. Practical Backward-Secure Searchable Encryption from
Symmetric Puncturable Encryption. In ACM CCS 2018. 763–780.

[32] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your
Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable
Encryption. In USENIX Security Symposium 2016. 707–720.

A PROOF OF LEMMA 3.1

Proof of Lemma 3.1. We show in the formal proof of Lemma 3.1
that each mkw constructed following the description of Lemma 3.1
covers each w in q (DB(q) part). Other ws that are not in q are
filtered out (due to the intersection in Lemma 3.1).

We start with the following conjunctive meta-keyword expres-
sion of qmkw for a particular query q as given in the Lemma 3.1.

DB(qmkw) = DB(mkwi0, j0 ∧ . . . ∧mkwin , jn) (1)

=

n⋂
k=0

DB(mkwik , jk)

By the definition of meta-keywords (Definition 3.1), the following
relation holds.

DB(mkwik , jk) =
⋃

l ∈[N]\[ik , jk]

DB(wl)

We rewrite Equation (1) in the following way.

DB(qmkw) =

n⋂
k=0

DB(mkwik , jk)

=

n⋂
k=0

(⋃
l∈[N]\[ik , jk]

DB(wl)

)
=

n⋂
k=0

(⋃
r ∈[n]

DB(wℓr) ∪
⋃
l∈[n]\
({[ik , jk]}
∪{ℓr :r ∈[n]})

DB(wl)

)

=
⋃
r ∈[n]

DB(wℓr) ∪

n⋂
k=0

(⋃
l∈[N]

\({[ik , jk]}
∪{ℓr :r ∈[n]})

DB(wl)

)

= DB(q) ∪
(n⋂
k=0

(⋃
l∈[N]

\({[ik , jk]}
∪{ℓr :r ∈[n]})

DB(wl)

))

Observe that, the union inside the right hand expression in the
above expression keeps all ws except a stretch of ws (from index
ik to jk) for each value of k , inside the outer intersection of n + 1
terms. Since the intersection of these unions reduces to a small but

128

https://doi.org/10.1007/978-3-030-92078-4_20
https://doi.org/10.1007/978-3-030-92078-4_20

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

finite set of id-s, the following relation holds,

DB(q) ⊆ DB(qmkw)

which is exactly what Lemma 3.1 states. □

B PROOF OF THEOREM 4.1 (CORRECTNESS

OF TWINSSEBasic AND TWINSSE)
The proof of correctness for TWINSSEBasic (and TWINSSE as well)
follows from the correctness of CSSE. The correctness of CSSE
ensures that a conjunctive queryq = w1∧· · ·∧wn over an encrypted
database satisfies the following relations.

EDB = CSSE.Setup(DB))

DB(w1) ∩ · · · ∩ DB(wn) = CSSE.Search(q,EDB))
We state the proof for TWINSSEBasic first. Then we show that

this can be simply extended to main TWINSSE scheme (the final
bucketized version).
Proof for TWINSSEBasic. Proof of the TWINSSEBasic directly fol-
lows from the proof of Lemma 3.1. Consider a disjunctive query q
as stated below.

q = w1 ∨ · · · ∨ wn

The equivalent conjunctive expression of meta-keywords can be
expressed as below.

qmkw = mkwi0, j0 ∧mkwi1, j1 ∧ . . . ∧mkwin , jn

We write the following relation from Lemma 3.1.

DB(qmkw) = DB(q) ∪
(n⋂
k=0

(⋃
l ∈[N]\({[ik , jk]}
∪{ℓr :r ∈[n]})

DB(wl)
))

It easy to notice from the above equation thatDB(q) ⊆ DB(qmkw).
Hence, all ids of the actual result set of disjunctive query q is in-
cluded in the result set obtained from the query using
TWINSSEBasic.Search, which proves the correctness of the
TWINSSEBasic.
Proof of TWINSSE. Recall from Section 4, that in TWINSSE all
ws from ∆ are partitioned into nB buckets of uniform size, and
we execute the basic meta-keyword generation method developed
in TWINSSEBasic over each partition independently. Only those
partitions with query meta-keywords are accessed during search.

Assume that the dictionary of ws - ∆ is partitioned in the follow-
ing way,

∆ = ∆1 ∪ ∆2 ∪ · · · ∪ ∆nB

where nB is the number of buckets and each bucket ∆u can be
expressed in the following way.

∆u = {w(u−1)n′+1,w(u−1)n′+2, · · · ,wun′}

The number of ws in each bucket is denoted by n′. The set of
mkws in each bucket ∆k are represented by the Smkw,k . The
TWINSSEBasic is executed over each of these bucket individually
to generate the encrypted database.

The query expression follows from the TWINSSE construction
with the above structure (discussed in Section 4).

DB(qmkw) =
⋃

u ∈[nB]

DB(qmkw,u)

and the actual query q can be partitioned in the following way.

q =
∨

u ∈[nB]

qu

We expand the above expression to individual buckets.

DB(qmkw) =
⋃

u ∈[nB]

DB(qmkw,u)

=
⋃

u ∈[nB]

(
DB(qu) ∪

(|qu |⋂
k=0

(⋃
ł∈[|∆u |]\
({[ik , jk]}

∪{ℓr :r ∈[|qu |]})

DB(wl)
)))

=
⋃

u ∈[nB]

DB(qu) ∪
⋃

u ∈[nB]

(|qu |⋂
k=0

(⋃
l ∈[|∆u |]\
({[ik , jk]}

∪{ℓr :r ∈[|qu |]})

DB(wl)
))

= DB(q) ∪
⋃

u ∈[nB]

(|qu |⋂
k=0

(⋃
l ∈[|∆u |]\
({[ik , jk]}

∪{ℓr :r ∈[|qu |]})

DB(wl)
))

Clearly, from the above expression DB(q) ⊆ DB(qmkw), where
|DB(q)| = η · |DB(qmkw)| (recall from Section 3.3 that η is the
precision parameter), which proves the correctness of result for
TWINSSE.

C ADAPTIVE SECURITY OF SSE

The adaptive security of any SSE scheme is parameterized by a
leakage function

L =
(
LSetup,LSearch

)
,

where LSetup encapsulates the leakage to an adversarial server
during the setup phase, and LSearch encapsulates the leakage to
an adversarial server during each execution of the search protocol.

Algorithm 5 Experiment RealSSE(λ,Q)

1: function Real
SSE(λ,Q)

2: N ← Adv(λ)
3: (sk, st0,EDB0) ← Setup(λ,N)
4: for k ← 1toQ do

5: Let qk ← Adv(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (stk ,EDBk ,DB(qk)) ←

Search(sk, stk−1,qk ;EDBk−1)
7: Let τk denote the view of the adversary after

the kth query
8: b ← Adv(λ,EDBQ , τ1, . . . , τQ)
9: return b

Informally, an SSE scheme is adaptively secure with respect to a
leakage functionL if the adversarial server provably learns nomore
information aboutDB other than that encapsulated by L. Formally,

129

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

Algorithm 6 Experiment IdealSSE(λ,Q,L)

1: function Ideal
SSE(λ,Q,L)

2: Parse the leakage function L as:
L =

(
LSetup,LSearch

)
.

3: (stSim,EDB0) ← SimSetup(LSetup(λ,N))
4: for k ← 1 to Q do

5: Let qk ← Adv(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (stSim,EDBk , τk) ← SimSearch

(stSim,LSearch(qk);EDBk−1)
7: Let τk denote the view of the adversary after

the kth query
8: b ← Adv(λ,EDBQ , τ1, . . . , τQ)
9: return b

an SSE scheme is said to be adaptively secure with respect to a leak-
age function L if for any stateful PPT adversary Adv that issues a
maximum of Q = poly(λ) queries, there exists a stateful probabilis-
tic polynomial-time simulator Sim = (SimSetup, SimSearch) such
that the following holds:���Pr [RealSSEAdv(λ,Q) = 1

]
− Pr

[
Ideal

SSE
Adv,Sim(λ,Q) = 1

] ��� ≤ negl(λ),

where the “real" experiment RealSSE and the “ideal" experiment
Ideal

SSE are as described in Algorithm 5 and Algorithm 6.

D DETAILED ANALYSIS AND DISCUSSION ON

THE LEAKAGE OF TWINSSEOXT
In Section 4.4, we informally described the leakage profile for
TWINSSE built in a black-box way from any generic conjunctive
SSE scheme CSSE. In this section, we formally detail the leakage
profile for the specific instantiation of TWINSSE based on the OXT
scheme, namely TWINSSEOXT. We then present a discussion on
the leakage profiles for both TWINSSE and TWINSSEOXT.

D.1 Security of TWINSSE
We present a formal description of the security guarantees of our
generic construction TWINSSE. Concretely, we state the following
theorem.

Theorem D.1 (Security of TWINSSE). Assuming that CSSE is

an (adaptively) secure SSE scheme with respect to the leakage func-

tion LCSSE = (L
Setup
CSSE ,L

Search
CSSE), TWINSSE is an (adaptively) se-

cure SSE scheme with respect to the leakage function LTWINSSE =
(LSetup

TWINSSE,L
Search
TWINSSE), where for any plaintext database DB, any

search query q, and any pair of bucketization parameters (n′,nB), we
have

LSetup
TWINSSE(DB) =

(
LSetup
CSSE (D̂B),n

′,nB

)
,

where D̂B = GenMetaDB(DB,n′,nB), and

LSearch
TWINSSE(q) =

{
LSearch
CSSE (q) if q is conjunctive,{
LSearch
CSSE (qmkw,k)

}
k ∈[nB]

if q is disjunctive,

where

qmkw =
∨

k ∈[nB]

qmkw,k = GenMQuery(q,n′,nB).

Proof.We defer the formal proof of this theorem to Appendix E.

D.2 Leakage Profile of TWINSSEOXT
In this section, we describe the leakage profile of TWINSSEOXT. We
begin by recalling from [7] the leakage profile of the original OXT
scheme. We then build upon it to describe the leakage profile of
TWINSSEOXT, which is actually very similar in spirit to the leakage
profile of OXT.
Setup Leakage. The setup leakage in the OXT scheme consists of
the size of the database DB, which is nothing but the total number
of keyword-document pairs in the database DB, formally defined
as

|DB| =
∑
w∈∆

|DB(w)|,

where ∆ = {w1, . . . ,wN } is the dictionary over which the database
DB is defined.
Search Leakages. Next, we summarize the leakages incurred by
OXT during conjunctive keyword search queries.
Result Pattern Leakage: The server learns the final set of document
identifiers matching the query. Formally, for a conjunctive query q,
the result pattern leakage RP is defined as

RP(q) = DB(q).

Size Pattern Leakage. The server learns the frequency of the s-term
(where s-term again refers to the least frequent keyword in the
conjunction). Formally, for a conjunctive query q = (w1∧ . . .∧wn),
where w1 is the least frequent keyword in the conjunction, the size
pattern SP is defined as

SP(q) = |DB(w1)|.

Equality Pattern Leakage. The server learns if two (or more) con-
junctive queries have the same s-term (where s-term again refers to
the least frequent keyword in the conjunction). Formally, for a se-
quence of conjunctive queries (q1, . . . ,qM), where for each i ∈ [M],
we have

qi = (wi ,1 ∧ . . . ∧ wi ,ni),

where wi ,1 is the least frequent keyword in the conjunction, the
equality pattern leakage EP is defined as anM ×M matrix where
for each i, j ∈ [M], we have

EP[i, j] =

{
1 if wi ,1 = wj ,1,

0 otherwise.

Conditional Intersection Pattern Leakage. The server learns if two (or
more) conjunctive queries have one or more x-terms in common
(where x-term refers any keyword other than the least frequent
keyword in the conjunction); more concretely, if two (or more)
conjunctive queries have one or more x-terms in common, then the
server learns the intersection of the set of documents containing
the corresponding s-terms. Formally, for a sequence of conjunctive
queries (q1, . . . ,qM), where for each i ∈ [M], we have

qi = (wi ,1 ∧ . . . ∧ wi ,ni),

130

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

where wi ,1 is the least frequent keyword in the conjunction, the
conditional intersection pattern leakage IP is defined as anM ×M
matrix of lists, where for each i, j ∈ [M], we have

IP[i, j] =

{
DB(wi ,1) ∩ DB(wj ,1) if IP[i, j] = 1,
ϕ if IP[i, j] = 0,

where IP[i, j] = 1 if and only if there exists at least one pair (ℓi , ℓj) ∈
[ni] × [nj] such that wi ,ℓi = wj ,ℓj ; otherwise, we have IP[i, j] = 0.
Security of TWINSSEOXT. We now formalize the security of
TWINSSEOXT in terms of the leakage profiles described above. We
do this using a formal theorem, which may be viewed as a spe-
cialization of Theorem D.1 to a specific instantiation of TWINSSE
based on OXT. Once again, this theorem is based on the (adap-
tive) simulation-security definition of SSE in the real world-ideal
world paradigm, described in Appendix C.

Theorem D.2 (Security of TWINSSEOXT). TWINSSEOXT is an

(adaptively) secure SSE scheme with respect to the leakage function

LTWINSSEOXT = (L
Setup
TWINSSEOXT ,L

Search
TWINSSEOXT), where for any plain-

text database DB, any sequence of conjunctive queries

Q0 = (q1,0, . . . ,qM ,0) and any sequence of disjunctive queries

Q1 = (q1,1, . . . ,qM ′,1), and any pair of bucketization parameters

(n′,nB), we have

LSetup
TWINSSEOXT (DB) = (|D̂B|,n

′,nB),

where D̂B = GenMetaDB(DB,n′,nB), and

LSearch
TWINSSEOXT (Q0,Q1) = [RP, SP, EP, IP](Q0,Qmkw,1),

where Qmkw,1 is a sequence of (sub-)meta-queries of the form

Qmkw,1 = {qmkw,k ,ℓ}k ∈[nB],ℓ∈[M ′],

where for each ℓ ∈ [M ′], we have

qmkw,ℓ =
©«

∨
k ∈[nB]

qmkw,k ,ℓ
ª®¬ = GenMQuery(qℓ,1,n

′,nB).

Proof. We defer the formal proof of this theorem to Appendix E.

D.3 Discussion on the Leakage Profile of

TWINSSEOXT
In this subsection, we present a more in-depth analysis of the leak-
age profile for TWINSSEOXT during conjunctive and disjunctive
search queries, and its implications.
Output Leakage. We begin by noting that the output leakage (al-
ternatively, the result pattern leakage) is incurred by nearly all
existing SSE schemes, including static and dynamic schemes, in
the setting of both single and conjunctive keyword searches (such
as in [4, 7, 8, 11, 23, 31]). This is usually considered acceptable
in the SSE literature; indeed the few known data/query recovery
attacks that manage to exploit this leakage ([2, 5, 18, 32]) assume ex-
tremely strong adversarial models where the adversary has partial
knowledge of the plaintext database/queries.
s-Term Leakages. We focus next on the leakages related to the
s-term, namely the size and equality pattern leakages. We begin
by noting that these leakages are somewhat inherent to the design
paradigm of OXT, which we base our instantiation of TWINSSE on.
Even in the simpler setting of single keyword search, most existing

schemes [3, 4, 6, 8, 10, 11, 31] also incur size and equality pattern
leakages; the only constructions not to incur such leakages seem
to rely on the use of ORAM-style data structures [4, 8]. Fortifying
TWINSSEOXT with such data structures in an attempt to prevent
this leakage is an interesting open challenge, although this would
probably have to trade-off with some degradation in search perfor-
mance (mostly in terms of communication complexity and number
of rounds of communication during searches).

It is also possible (and perhaps conceptually simpler) to mask this
leakage by using volume-hiding techniques such as padding and
encrypted multi-maps (EMMs) [1, 11, 20, 27, 28]. This would incur
a degradation in search performance, and it is up to the designer to
decide on a suitable trade-off between performance and leakage.

However, we would like to point out that there are no known
data/query recovery attacks on SSE schemes that specially exploit
leakages related to the s-term. So we believe that even without

the aforementioned fortifications, it appears that our TWINSSEOXT
scheme is not vulnerable to any known attacks due to the leakages
related to the s-term, in realistic/practical adversarial settings.

x-Term Leakages. Next, we focus on the x-term leakages. We
again note that these leakages are somewhat inherent to the design
paradigm ofOXT, which we base our instantiation of TWINSSE on..
The only known attack on conjunctive SSE schemes that exploits
a form of x-term leakages is the file injection attack proposed by
Zhang et al. in [32]. More concretely, the adversarial server must
be able to compute |DB(w1) ∩DB(wi)| when processing the search
query.

We note however that for file injection attacks to work efficiently,
the adversarial server must recover, for every x-term wi , the result
size corresponding to each sub-query of the form w1 ∩ wi . How-
ever, the x-term leakage profile of TWINSSEOXT is not sufficient to
compute this term, since the set of xtoken values sent to the server
is randomly permuted inside the underlying OXT instantiation
precisely to mask such inference-style attacks. Further, one could
also instantiate our generic construction of TWINSSE from other
conjunctive SSE schemes such asHXT [23] that improve uponOXT
in terms of provable security against leakage-based cryptanalysis
and file-injection attacks.

Finally, fortifying implementations of TWINSSEOXT by using
either ORAM-style data structures or adopting volume-hiding tech-
niques such as padding/EMMs may be useful in masking this leak-
age even further; however, even without such additional fortifica-
tions, it appears that our TWINSSEOXT scheme is not vulnerable
to file injection attacks, or any other known attacks for that mat-
ter, due to the leakages related to the s-term, in realistic/practical
adversarial settings.

LeakageCryptanalysis. Looking ahead, in Appendix F, we present
a leakage-based cryptanalysis of the TWINSSEOXT scheme via ex-
periments over the Enron email corpus. Our experiments help sub-
stantiate that the leakages incurred by the disjunctive search proto-
col in TWINSSEOXT are reasonably benign in practice and are quite
resistant to even the most powerful leakage-based cryptanalysis
techniques in the SSE literature over real-world databases, such
as those in [5, 32]. We leave it as an open question to extend the
analysis using the more advanced leakage cryptanalysis techniques,
such as those proposed in [2, 25].

131

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

E SECURITY PROOFS FOR TWINSSE AND

TWINSSEOXT
In this section, we formally prove the security of TWINSSE and
TWINSSEOXT with respect to the generic and specific leakage pro-
files described in Theorems D.1 and D.2, respectively.

E.1 Proof of Theorem D.1 (Security Analysis of

TWINSSE)
We provide a simulation-based proof approach for TWINSSE. We
assumed that the underlying adaptively secure CSSE has the fol-
lowing leakage profile.

LCSSE = (L
Setup
CSSE ,L

Search
CSSE)

We express the leakage of TWINSSE as,

LTWINSSE = (L
Setup
TWINSSE,L

Search
TWINSSE)

where,
LSetup
TWINSSE(DB) = L

Setup
CSSE (D̂B)

and, D̂B = GenMetaDB(DB,n′,nB), and

LSearch
TWINSSE(q) =

{
LSearch
CSSE (q) if q is conjunctive,
{LSearch

CSSE (qmkw,k)}k ∈[nB] if q is disjunctive,

where

qmkw =
©«

∨
k ∈[nB]

qmkw,k
ª®¬ = GenMQuery(q,n′,nB).

We show that TWINSSE is secure against an adaptive semi-
honest adversary A, which has access to leakages from TWINSSE.
We build a simulator SIM �EDB generation by TWINSSE.Setup,
and transcripts for queries over �EDB. The simulator simulates
the transcripts τi for each query qi . The simulator has the inputs
from the leakage function LTWINSSE only, with the setup leakage
LSetup
TWINSSE and the search leakage LSearch

TWINSSE.
Simulating TWINSSE.Setup: The following public parameters are
available to SIMCSSE as a part of LSetup

TWINSSE.

{DB,n′,nB}

The simulator outputs the its version of �EDB according to the
simulation process of CSSE (we assumed that CSSE is provably
simulation secure).

ct�EDB = SIMSetup
TWINSSE(DB)

= SIMSetup
CSSE (D̂B)

= SIMSetup
CSSE (DB,n

′,nB)

Since, CSSE is proven simulation secure, if follows from the sim-
ulation security guarantee of CSSE that ct�EDB is indistinguishable
from the one generated in the real experiment.
Simulating TWINSSE.Search: For conjunctive queries the adver-
sary does not have any advantage from LSearch

TWINSSE compared to
LSearch
CSSE , which exactly same as CSSE. For disjunctive queries we

consider the effect of querying using qmkw.
For disjunctive queries, we argue that the adversary A does not

gain any information about the original disjunctive query with

this simulation experiment. The distribution of D̂B (hence, also for�EDB) is abstracted from DB by the meta-keywords. The search
leakages of CSSE is characterised by the LCSSE, provided from
CSSE construction. Since, CSSE in TWINSSE executes over meta-
keyword only, this leakage is expressed in the context of meta-
keywords as below.

L′CSSE = LCSSE(meta − keywords)

With this leakage information of CSSE, the search leakage of
TWINSSE can be expressed as below.

LSearch
TWINSSE(q) = L

Search
TWINSSE(qmkw,k)k ∈[nB]

= {L′CSSE,nB,n
′}

The parameters nB and n′ are derived from N (number of key-
words), which is available during setup. Therefore, the search leak-
age of TWINSSE same as the underlying CSSE, which can be sum-
marised as below.

LSearch
TWINSSE(q) = L

Search
TWINSSE(qmkw,k)k ∈[nB]

= {L′CSSE}

This same leakage profile for search inTWINSSE andCSSE in the
context of meta-keywords ensures that no additional information
is leaked beyond CSSE leakage.

E.2 Proof of Theorem D.2 (Security Analysis of

TWINSSEOXT)
We resort to a simulation-based security analysis for TWINSSEOXT.
We assume a semi-honest adversary A which has access to the
leakage from standard SSE leakages in an adaptive model. Security
analysis of TWINSSE relies upon the semantic security notions pro-
vided by CSSE. TWINSSE inherits these notions through the core
OXT (in case of TWINSSEOXT, the OXT) instance. We assume the
following properties of OXT achieves with efficient performance.

(1) Primitives used in construction of OXT hold the standard
security assumptions.

(2) OXT is non-adaptively and adaptively secure with the above
assumptions.

We consider the following leakage profile for OXT.

LOXT = {L
Setup
OXT ,L

Search
OXT }

Here, LSetup
OXT captures the leakage from the OXT.Setup, and

LSearch
OXT encapsulates the leakage from OXT.Search. More pre-

cisely, these can be expressed as,

LSetup
OXT (DB) = {|DB|}

and

LSearch
OXT (EDB, {qk }qk ∈Q0) = {RP, SP, EP, IP}

where, Q0 is a set of conjunctive queries. The leakages RP , SP ,
EP , and IP are the pattern leakages from OXT (see Appendix D.3).

We define the leakage profile of TWINSSEOXT with respect to
these above definitions and assumptions as below.

LTWINSSEOXT = {L
Setup
TWINSSEOXT ,L

Search
TWINSSEOXT }

The leakage functions above can be expressed as

LSetup
TWINSSEOXT (DB) = {|D̂B|,n

′,nB}

and
132

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

LSearch
TWINSSEOXT (

�EDB,Q0,Q1) = [RP, SP, EP, IP](Q0,Qmkw,1).

For conjunctive queries,

LSearch
TWINSSEOXT (

�EDB, {qk }qk ∈Q0) = [R̂P, ŜP, ÊP, ÎP].

Here, {R̂P, ŜP, ÊP, ÎP} are the {RP, SP, EP, IP} leakages in the
context of meta-keywords. For conjunctive queries, it is exactly the
same as OXT.

Since, OXT is simulation secure against these leakages, simula-
tion security of TWINSSEOXT for conjunctive queries is straight-
forwardly implied from OXT.

In disjunctive queries, the query transformation process is car-
ried out locally by the client, and the actual search is completed
using OXT.Search protocol, we can write TWINSSEOXT.Search
leakage as

LSearch
TWINSSEOXT (

�EDB, {qmkw ,1,k }k ∈[Q1]) = {R̂P, ŜP, ÊP, ÎP}.

We build a simulator SIM to simulate the �EDB generation by
TWINSSEOXT fromDB, and transcripts for query search over �EDB.
The simulator simulates the transcripts τi for each query qi ∈ Q.
The simulator has the inputs from the leakage functionLTWINSSEOXT
only, with the setup leakage LSetup

TWINSSEOXT and the search leakage
LSearch
TWINSSEOXT .

Simulating Setup: The following public parameters are available
to SIMOXT as a part of LSetup

TWINSSEOXT .

{|EDB|, |∆̂|}

The simulator outputs the its version of �EDB according to the
simulation process of OXT (we assumed that OXT is provably sim-
ulation secure).

ct�EDB = SIMOXT.Setup(|MDB|, |∆̂|)

It follows from the simulation security guarantee of OXT that
ct�EDB is indistinguishable from the one generated in the real ex-
periment.
Simulating Search: For the conjunctive queries, the leakage
LSearch
TWINSSEOXT is exactly the same as LSearch

OXT . Hence, we can write
the following.

LSearch
TWINSSEOXT (

�EDB, {qk }k ∈[|Q |]) = LSearch
OXT (EDB, {qk }k ∈[|Q |])

By the simulation security guarantee of OXT, TWINSSEOXT
secure against these leakages.

For disjunctive queries, we argue that the adversary A does not
gain any information about the original disjunctive query except
|q |. The distribution ofMDB (encrypted to �EDB) is abstracted from
DB through the meta-keywords. We resort to a more conservative
analysis for this proof, as keywords do not have direct inference
frommeta-keywords, especially that is applicable over any database
in general. The position of each w in an mkw is fixed according to
the frequency of w, which is unique for a DB. The lemmas below
relate worst cases where an inference can be established between
the query keywords and the corresponding meta-keywords without
any additional knowledge of the plain database.

Lemma E.1, Lemma E.2, and Lemma E.3 relates the disjunctive q
with wi ∈ ∆ to the conjunctive q with mkwi ∈ ∆̂.

Lemma E.1. Consider two disjunctive queries of the same length t

q0 = w1,q0 ∨ w2,q0 ∨ . . . ∨ wt ,q0 , wi ,q0

q1 = w1,q1 ∨ w2,q1 ∨ . . . ∨ wt ,q1 , wi ,q1

have the following expressions using mkws,

q0 = q0,mkw = mkw1,q0 ∧mkw2,q0 ∧ . . . ∧mkwt+1,q0

q1 = q1,mkw = mkw1,q1 ∧mkw2,q1 ∧ . . . ∧mkwt+1,q1

both of length t + 1, and the mkws are placed in the increasing order

of the starting index of the 0s stretch in each mkw. If the mkws at
index k in q0 and q1 are the same, then wk−1,q0 = wk−1,q1 and

wk ,q0 = wk ,q1 .

Proof. The proof of Lemma E.1 is given in Section E.3.1. □

Lemma E.2. Consider two disjunctive queries q0 and q1, of the
same length t have the mkw expressions as defined in Lemma E.1 -

both of length t + 1. If the mkws at indices k0 in q0, and k1 in q1 are

the same, then xk0−1,q0 = wk1−1,q1 and wk0,q0 = wk1,q1 .

Proof. The proof of Lemma E.2 is given in Section E.3.2. □

Lemma E.3. Consider two disjunctive queries of different length t0
and t1 -

q0 = w1,q0 ∨ w2,q0 ∨ . . . ∨ wt0,q0 , wi ,q0 ∈ ∆

q1 = w1,q1 ∨ w2,q1 ∨ . . . ∨ wt1,q1 , wi ,q1 ∈ ∆

have following expressions in the mkws

q0 = q0,mkw = mkw1,q0 ∧mkw2,q0 ∧ . . . ∧mkwt0+1,q0

q1 = q1,mkw = mkw1,q1 ∧mkw2,q1 ∧ . . . ∧mkwt1+1,q1

which are of lengths t0 + 1 and t1 + 1 respectively. If the mkws at
indices k0 in q0, and k1 in q1 are the same, then wk0−1,q0 = wk1−1,q1
and wk0,q0 = wk1,q1 .

Proof. The proof of Lemma E.3 is given in Section E.3.3. □

Recall that, the query transformation is executed by the client
locally. The search is executed as a two-party protocol between
the client and the server using the meta-keywords. The server
learns |q | trivially from qmkw through of meta-keywords. From
Lemma E.1, E.2, and E.3, an adversary can infer the position of the
same ws in two queries of same length or different lengths if both
queries have a common mkw in them.

However, the server can only infer if the least-frequentmkws in
qmkw are identical or not inmkw expressions of twoqs from ŜP . The
mkw expressions in each of the three lemmas require to placemkws
in increasing order of the starting index of the 0’s stretch. Whereas,
the actual query expression for OXT has the least-frequent mkw
first. No direct inference can be conjectured for the least-frequent
mkw and the query expressions in the lemmas. Hence, an adversary
A can not distinguish between the common meta-keyword and a
distinct meta-keyword.

In the case, where the least-frequent of mkws is the first one
in the query expression of the lemmas too, the first keyword is
also the same for both ws. This is equivalent to the case of two
conjunctive queries in keywords having the least-frequent w same.

133

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

Therefore, the leakage from TWINSSESearch can be limited to
the OXT pattern leakages only, as expressed below.

LSearch
TWINSSEOXT (

�EDB, {qk }k ∈[|Q |]) = {L′OXT, |qk |k ∈[|Q |]}
Since, OXT is proven simulation secure, if follows from the sim-

ulation security guarantee thatA no additional advantage over the
real experiment.

E.3 Proofs of the Lemmas

Wepresent the proofs of the lemmas presented earlier in this section.
We follow the notations and conventions as used in the main body
of the paper.

E.3.1 Proof of Lemma E.1.

Proof. By construction, each meta-keywordmkwi has the orig-
inal keywords appearing in sorted order in the binary string repre-
sentation (increasing order of frequency from left to right). Assume,
the k’th meta-keyword mkwk is same for both the queries q0 and
q1. Without loss of generality, a meta-keyword in the basic O(N 2)
(TWINSSEBasic) method can be formed as

{b1,b2, . . . ,br ,br+1, . . . ,bs ,bs+1, . . . ,bn }, bi ∈ {0, 1}

where 1 ≤ r < s ≤ n, and bi = 0 for r < i < s .
To have an mkw of this form, q must have two keywords at

indices r and s , and none in between (for q0 and q1 both). Since the
mkws are constructed using ws in sorted order, if both queries q0
and q1 have the same r and same s (as one mkw is the same), the
keywords wr and ws in both q0 and q1 are also the same. Hence,
we have wk−1,q0 = wk−1,q1 and wk ,q0 = wk ,q1 . □

E.3.2 Proof of Lemma E.2.

Proof. We assume the common mkw of q0 and q1 can be ex-
pressed as

{b1,b2, . . . ,br ,br+1, . . . ,bs ,bs+1, . . . ,bn }, bi ∈ {0, 1}

where 1 ≤ r < s ≤ n, and bi = 0 for r < i < s . The mkw appears at
indices k0 in q0 and at k1 in q1. Since the indices of ws in the mkw
strings are in sorted order (increasing frequency) and remains fixed
for allmkws, the ws at index r and index s are the same for both q0
and q1. However, as the index of mkw is different in q0 and q1, the
number of preceding ws before index r in q0 and q1 are different,
equal to k0 − 2 and k1 − 2 respectively. Hence, for q0, r is equal to
k0 − 1, and equal to k1 − 1 in q1. Following the above argument, we
have wk0−1,q0 = wk1−1,q1 and wk0,q0 = wk1,q1 . □

E.3.3 Proof of Lemma E.3.

Proof. The proof of LemmaE.3 follows from the proof of Lemma
E.2. Essentially, Lemma E.3 is the extension of Lemma E.2 for two
different lengths of queries. Intuitively, it can be established in the
following way. Recall that in Proof E.3.2, r and s remains same
in both q0 and q1, as in binary representation all mkws and qs
have the same length n. However, the number of ws in q changes,
and consequently, number of mkws change. Hence, the range of
indices k0 and k1 are different for q0 and q1. This does not affect r
and s which are positions of keywords (not related to number of
keywords) in the binary representation of fixed length. Hence, the
same argument from the proof of Lemma E.2 holds. □

0.2 0.4 0.6 0.8 1

0

0.5

1

Fraction of Adversarially Chosen/Injected Files

Pr
ob
ab
ili
ty

of
Q
ue
ry

Re
co
ve
ry

Leakage-Abuse Attack [5]
File-Injection Attack[32]

Figure 11: Leakage Analysis of TWINSSEOXT: Two-Keyword

Conjunctive Searches in the “Chosen Files” Setting.

0.2 0.4 0.6 0.8 1

0

0.5

1

Fraction of Adversarially Chosen/Injected Files

Pr
ob
ab
ili
ty

of
Q
ue
ry

Re
co
ve
ry

Leakage-Abuse Attack [5]
File-Injection Attack[32]

Figure 12: Leakage Analysis of TWINSSEOXT: Two-Keyword

Disjunctive Searches in the “Chosen Files” Setting.

F CRYPTANALYSIS OF TWINSSEOXT
In this section, we present a leakage-based cryptanalysis of the
TWINSSEOXT scheme via experiments over the Enron email corpus.
Our experiments help substantiate that the leakages incurred by
the conjunctive and disjunctive search protocols in TWINSSEOXT
are benign in practice and are resistant to even the most powerful
leakage-based cryptanalysis techniques in the SSE literature over
real-world databases, such as leakage-abuse attacks [5] and file-

injection attacks [32]. In particular, we experimentally establish the
following claim:

Claim F.1 (Informal). The conjunctive and disjunctive search

protocols in TWINSSEOXT resist leakage-abuse attacks [5] and file-

injection attacks [32], and are benign in practice.

We substantiate this claim by leakage cryptanalysis experiments
targeting the conjunctive and disjunctive keyword search proto-
cols in TWINSSEOXT. We evaluate the probability that the adver-
sary guesses correctly the keywords w1 and w2 underlying a two-
conjunction query q = (w1 ∧ w2) (resp., a two-disjunction query
q = (w1 ∨ w2)) by one of two well-known and extensively studied
cryptanalysis methodologies in the SSE literature- the leakage-
abuse attack of Cash et al. [5] and the file-injection attack of Zhang
et al. [32]. The experiments were conducted over the same Enron
email corpus as was used for the performance evaluation experi-
ments in Section 5. The attacks operate in the chosen/injected file

134

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

model (the strongest possible attack setting where a certain frac-
tion of the files in the database are adversarially generated.) The
corresponding results are plotted in Figure 11 and Figure 12 for
conjunctive and disjunctive queries, respectively. Throughout, we
use a bucket size n′ = 10 (same as for the performance evaluation
experiments in Section 5) for the disjunctive experiments.

We note here that fortifying implementations of TWINSSEOXT
by using either ORAM-style data structures or adopting volume-
hiding techniques such as padding/encrypted multi-maps [20, 28]
may be useful in masking leakage even further. However, even
without such additional fortifications,TWINSSEOXT resists leakage-
abuse and file-injection attacks in the strongest possible attacker
setting, as demonstrated by the aforementioned experiments.

Volumetric Known-Data Attacks:We further evaluate TWINSSEOXT
against the known-data volume analysis attacks presented by Black-
stone et al. [2], wherewe analyseTWINSSEOXT against the SelVolAn
attack. These specific class of attacks exploits total volume pattern
of the queries to recover the keywords, assuming that a fraction
of the total data (quantified by “known data rate” δ) is available to
the adversary. More precisely, it tries to associate the queried tags
available to the server with known keywords. Since TWINSSEOXT
produces noisy volumes due to the presence of spurious ids, the
recovery rate is expected to be low in these evaluations. We use
the LEAKER12 framework to execute the SelVolAn attack.

We plot the attack results in Figure 13 which depicts the query
recovery accuracy for the SelVolAn attack with varying known
data rate δ . Note that, as stated earlier, the recovery rate for the
SelVolAn attack is significantly low for our construction due the
presence of spurious ids resulting in noisy volume pattern. Further-
more, the server receives the volume pattern information of the
meta-keywords - not the actual query keywords. From the adver-
sary’s perspective, this requires additional auxiliary information
to map recorded encrypted meta-keyword tags to probable meta-
keywords pre-computed by the adversary from a partial set of the
keyword universe (available as auxiliary data). Precise mapping
would require full set of keywords as auxiliary information (indicat-
ing a high δ value, an extremely strong assumption) to form actual
meta-keywords on the adversary’s side.

Search and Access Pattern (SAP) based Attack: We also evaluate
TWINSSEOXT against the state-of-the-art SAP attack by Oya et
al. [25]. The SAP attack exploits search pattern (the sequence in
which the queries are searched) and the access pattern (the par-
ticular address/elements that are “touched” by the server for each
queried tag) and combines these two to recover the association
among queried tags (recorded by the adversarial server) and the
probable keywords available from auxiliary information. Again,
in this case too, the server receives noisy access pattern which
prevents the adversary to precisely map a recorded tag to a proba-
ble keyword (meta-keyword in TWINSSEOXT) available as auxil-
iary data. We validate this through experimental evaluations with
TWINSSEOXT. We used the code available from the authors13 for
this evaluation.

The attack results are presented in Figure 14 which depicts the
attack accuracy (as a fraction of correct “recorded tag”–“probable
12https://github.com/encryptogroup/LEAKER
13https://github.com/simon-oya/USENIX21-sap-code

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 0.95

5 · 10−2

0.1

0.15

0.2

Known data rate δm
kw

re
co
ve
ry

ac
cu
ra
cy

(×
10

0%
)

|∆| = 103

Figure 13: Leakage Analysis of TWINSSEOXT - SelVolAn at-

tack. The amount of information available to the adversary

(as a fraction of the total data) is varied and plotted on the x-

axis. The volume pattern from meta-keyword queries were

supplied as the leaked information.

0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1

Combination coefficient αm
kw

re
co
ve
ry

ac
cu
ra
cy

(×
10

0%
)

|∆| = 103

|∆| = 1.5 × 103

|∆| = 3 × 103

Figure 14: Leakage Analysis of TWINSSEOXT - SAP attack. Ac-

cess pattern frommeta-keyword queries and auxiliary infor-

mation of keywords from Google Trends were provided as

the input data.

meta-keyword” associations to all such reconstructed associations)
with varying combination coefficient (α). At a high-level, α repre-
sents the fraction of frequency information of the total auxiliary
information available to the adversary used in the attack. In this
case, the adversary recovers the association among queried tags
and probable meta-keywords - not tags and actual keywords. Since
reconstructing the actual meta-keywords requires the exact same
keyword universe available to the adversary, it is unlikely that the
adversary would be successful in associating the recovered meta-
keywords with the subset of the keyword universe available to her
(as auxiliary information).

G GENERAL BOOLEAN QUERIES (CNF AND

DNF) IN TWINSSE AND TWINSSEOXT
In Section 4, we described how TWINSSE and its instantiation from
OXT, namely TWINSSEOXT, handle purely conjunctive and purely
disjunctive queries. In this section, we describe how TWINSSE can
be extended to address general Boolean queries in either the con-
junctive normal form (CNF) or the disjunctive normal form (DNF).

135

https://github.com/encryptogroup/LEAKER
https://github.com/simon-oya/USENIX21-sap-code

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

We note here that OXT does support Boolean queries beyond
simple conjunctions, albeit where the query must be in a restricted
searchable normal form (SNF) [7]; our transformation is significantly
more general in the sense that it extends to any CNF or DNF formula
over keywords, well beyond the scope of SNF queries.

We begin by describing how to handle DNF queries, because,
similar to its purely conjunctive and disjunctive counterparts, DNF
queries are also handled by TWINSSE (and hence, by extension,
TWINSSEOXT) by making fully black-box usage of the underlying
conjunctive SSE scheme. Subsequently, we show how to address
CNF queries. This is slightly more involved, and makes non black-
box usage of the underlying conjunctive SSE scheme (we describe
a specific strategy for TWINSSEOXT to handle CNF queries that
relies on a special data structure used by the OXT scheme).

G.1 Handling Boolean Queries in DNF Form

In Boolean logic, a disjunctive normal form (DNF) is a canonical
normal form of a logical formula consisting of a disjunction of
conjunctions (alternatively, OR of AND clauses). Formally, any
query q that is a Boolean formula over keywords in DNF takes the
form

q =
∨
ℓ∈[L]

qℓ =
∨
ℓ∈[L]

(wℓ,1 ∧ . . . ∧ wℓ,tℓ),

where each qℓ = (wℓ,1 ∧ . . . ∧ wℓ,tℓ) for ℓ ∈ [L] is a conjunc-
tive clause. Our approach to handle a DNF query is straightfor-
ward, and closely resembles, at a high level, our strategy for han-
dling disjunctive queries via query partitioning in TWINSSE. Let
CSSE = (CSSE.Setup,CSSE.Search) be any generic conjunctive
SSE scheme. The search algorithm processes q via the following
steps (the setup algorithm remains the same as TWINSSE.Setup
described in Algorithm 1, Section 4):
• Client: Parse a DNF query as q =

∨
ℓ∈[L] qℓ .

• Client + Server: For each ℓ ∈ [L] (either in parallel or in
uniformly random order), compute
DB(qℓ) = CSSE.Search(qℓ,�EDB),
where �EDB is the encrypted meta-database output by
TWINSSE.Setup.
• Client: Locally compute at the client

DB(q) =
⋃
ℓ∈[L]

DB(qℓ).

Correctness. Correctness of search follows immediately from the
correctness guarantees of the underlying conjunctive SSE scheme
CSSE.
Search Complexity. We present an (asymptotic) analysis of the
complexity of handling DNF search queries (more concretely, the
computational and communication requirements during DNF query
processing) when we instantiate TWINSSE using the OXT protocol
from [7], i.e., in TWINSSEOXT. Let q be a DNF query of the form

q =
∨
ℓ∈[L]

qℓ =
∨
ℓ∈[L]

(wℓ,1 ∧ . . . ∧ wtℓ ,ℓ),

where we assume, without loss of generality, that for each ℓ ∈
[L], wℓ,1 is the least frequent conjunct in the conjunctive clause
qℓ . When processing q using TWINSSEOXT, the computational
costs (at both the client and the server) as well as the communication

requirements between the client and the server scale linearly as
O(γDNF), where

γDNF =
∑
ℓ∈[L]

tℓ |DB(mkwℓ,1)|.

Note that this is very similar in flavor to the analysis of disjunctive
search query overheads for TWINSSEOXT in Section 4.
Leakage Analysis.We state the following theorems for the leak-
age from TWINSSE and TWINSSEOXT when processing Boolean
queries in DNF form.

TheoremG.1 (DNFQuery Processing in TWINSSE). Assuming

that CSSE is an (adaptively) secure SSE scheme with respect to the

leakage function LCSSE = (L
Setup
CSSE ,L

Search
CSSE), the leakage incurred

by TWINSSE when processing a DNF query as described above is

L
Search,DNF
TWINSSE), where for any DNF query q =

∨
ℓ∈[L] qℓ , we have

L
Search,DNF
TWINSSE (q) =

{
LSearch
CSSE (qℓ)

}
ℓ∈[L]

.

Theorem G.2 (DNF Query Processing in TWINSSEOXT). The
leakage incurred by TWINSSEOXT when processing a DNF query

as described above is LSearch,DNFTWINSSEOXT, where for any se-
quence of DNF queriesQ = (q1, . . . ,qM) such thatqm =

∨
ℓ∈[Lm] qm,ℓ

for eachm ∈ [M], we have

L
Search,DNF
TWINSSEOXT (Q) = [RP, SP, EP, IP]({{qm,ℓ}ℓ∈[Lm]}m∈[M]).

whereRP, SP, EP and IP leakages for conjunctive queries are as defined
in Appendix D.

The proofs of these theorems are very similar to the proofs of
Theorems D.1 and D.2 described earlier in Appendix E, and are
hence not detailed separately.

G.2 Handling Boolean Queries in CNF Form

In Boolean logic, a conjunctive normal form (CNF) is a canonical
normal form of a logical formula consisting of a conjunction of
disjunctions (alternatively, AND of OR clauses). Formally, any query
q that is a Boolean formula over keywords in the CNF form takes
the form

q =
∧
ℓ∈[L]

qℓ =
∧
ℓ∈[L]

(wℓ,1 ∨ . . . ∨ wℓ,tℓ),

where each qℓ = (wℓ,1 ∨ . . . ∨ wℓ,tℓ) for ℓ ∈ [L] is a disjunc-
tive clause. Our approach to handle a CNF query is slightly more
involved, and makes usage of some specific features of the OXT
protocol to ensure sub-linear search overheads in practice. Hence,
the subsequent description of how to handle CNF queries is specific
to TWINSSEOXT. We leave it as an interesting open question to
investigate a generic solution using any conjunctive SSE scheme in
a black-box manner.

We now describe our proposed strategy for handling CNF queries
in TWINSSEOXT. Before delving into the details, we need to recall
some details of the original OXT scheme due to Cash et al. [7]. We
refer the reader to [7] for details of the OXT scheme; however, we
will try to make the description here as self-contained as possible.
The OXT protocol maintains on the server (as part of the encrypted
database EDB) a special data structure called a “cross-tag set” (or
XSet in short). The XSet consists of several “cross-tags”, where each

136

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

cross-tag xtagid,w corresponds to a document identity-keyword
pair (id,w), where

xtagid,w ∈ XSet if and only if w ∈ DB(id).

In our handling of CNF queries in TWINSSEOXT, we make black-
box usage the following sub-functions provided by any implemen-
tation of the OXT protocol:
• OXT.GenXTag(sk, id,w) : The client can use the secret key
generated at setup by OXT.Search to generate xtagid,w for
any document identifier id and keyword w.
• OXT.SearchXTag(xtagid,w;XSet) : On receipt of a cross-
tag xtagid,w from the client, the server can look up the XSet
efficiently to return a bit β ∈ {0, 1}, where β = 1 if xtaдid,w ∈
XSet, and β = 0 otherwise.

Given these sub-routines, our proposal for processing a CNF
query q proceeds via the steps outlined below (the setup algo-
rithm again remains the same as TWINSSE.Setup described in
Algorithm 1, Section 4, albeit for CSSE = OXT). Note that un-
like purely conjunctive/disjunctive queries and DNF queries, all of
which required a single round search protocol, our processing of
CNF queries now requires two rounds of communication between
the client and the server.
• Client: Parse a CNF query as

q =
∧
ℓ∈[L]

qℓ =
∧
ℓ∈[L]

(wℓ,1 ∨ . . . ∨ wℓ,tℓ),

• Client: Identify the candidate disjunctive clause qℓ with the
smallest result set (this can be computed in a straightforward
manner from the client state st output byOXT.Setup, which
has the frequency of each keyword in the dictionary).
• Client+Server (Round-1): Compute the result-set corre-
sponding to the disjunctive clause qℓ as

DB(qℓ) = TWINSSEOXT.Search(qℓ,�EDB),
where �EDB is the encrypted meta-database output by
TWINSSEOXT.Setup, by directly using the disjunctive search
protocol described in Algorithm 3 (Section 4) with CSSE =
OXT.
• Client: For each id ∈ DB(qℓ) and each wi ,ℓ′ for ℓ′ , ℓ in
the query q, compute

xtagid,wi ,ℓ′
= OXT.GenXTag(sk, id,wi ,ℓ′).

• Client+Server (Round-2): For each id ∈ DB(qℓ) and each
wi ,ℓ′ (either in parallel or in uniformly random order), the
client sends xtagid,wi ,ℓ′

to the server and receives in response

βid,wi ,ℓ′
= OXT.SearchXTag(xtagid,wi ,ℓ′

;XSet).

• Client: For each id ∈ DB(qℓ), compute

βid =
∧

ℓ′∈[L]\{ℓ }

(
βid,wℓ,1 ∨ . . . ∨ βid,wℓ,tℓ

)
.

Output the final result set

Rq = {id ∈ DB(qℓ) such that βid = 1}.

Correctness. Correctness of search follows immediately from the
correctness guarantees of TWINSSEOXT (Theorem 4.1), and the
correctness guarantees of the OXT protocol itself.

Search Complexity.We now present an (asymptotic) analysis of
the complexity of handling CNF search queries (more concretely,
the computational and communication requirements during CNF
query processing) in TWINSSEOXT. Let q be a CNF query of the
form

q =
∧
ℓ∈[L]

qℓ =
∧
ℓ∈[L]

(wℓ,1 ∨ . . . ∨ wℓ,tℓ),

where we assume, without loss of generality, that q1 = (w1,2 ∨
. . . ∨wℓ,2) is the disjunctive clause with the smallest result set. Let
qmkw = ∨k ∈[nB]qmkw,k be the corresponding meta-query when
the disjunctive search query corresponding to q1 is processed using
TWINSSEOXT.Search, and assume without loss of generality that
mkw(k)ik , jk

is the least frequent meta-keyword within qmkw,k for
each k ∈ [nB] (such that qmkw,k is non-empty).

When processingq using TWINSSEOXT, the computational costs
(at both the client and the server) as well as the communication
requirements between the client and the server scale linearly as
O(γ0 + γ1),

γ0 =
∑

k ∈[nB]

|qk | |DB(mkw(k)ik , jk
)|,

where |qk | denotes the number ofmeta-keywords in the conjunctive
sub-meta-query qk (|qk | = 0 when qk is empty), and

γ1 = |DB(q1)| · (ℓ ∈ [2, L]tℓ) .

Note that the term γ0 is computed exactly as in the analysis of
disjunctive search query overheads for TWINSSEOXT in Section 4.
Moreover, the termγ1, which represents computational and commu-
nication complexities incurred as a result of the round-2 of the CNF
query processing (using OXT.GenXTag and OXT.SearchXTag),
is independent of the frequencies of any of the disjunctive clauses
other than the “least frequent clause” q1.
Leakage Analysis.We state the following theorems for the leak-
age from TWINSSEOXT when processing Boolean queries in CNF
form.

Theorem G.3 (DNF Query Processing in TWINSSEOXT). The
leakage incurred by TWINSSEOXT when processing a CNF query

as described above is L
Search,CNF
TWINSSEOXT , where for any sequence of CNF

queries Q = (q1, . . . ,qM) such that

qm =
∧

ℓ∈[Lm]

qm,ℓ =
∧
ℓ∈[L]

(wm,ℓ,1 ∨ . . . ∨ wm,ℓ,tm,ℓ
)

for eachm ∈ [M], with qm,1 being (without loss of generality) the

least frequent disjunctive clause for eachm ∈ [M], and for any pair
of bucketization parameters (n′,nB), we have

L
Search,DNF
TWINSSEOXT (Q) =

(
[RP, SP, EP, IP](Qmkw),L

∗
xtag

)
.

whereRP, SP, EP and IP leakages for conjunctive queries are as defined
in Appendix D, and where Qmkw,1 is a sequence of (sub-)meta-queries

of the form

Qmkw = {qmkw,k ,1}k ∈[nB],

where for each ℓ ∈ [M], we have

qmkw,ℓ =
©«

∨
k ∈[nB]

qmkw,k ,1
ª®¬ = GenMQuery(qℓ,1,n

′,nB),

137

Proceedings on Privacy Enhancing Technologies 2023(1) Bag et al.

20 35 50 100 150 200 650

0.5

1

2

3

5
7

10

Size of final result set (|Rq |)

En
d-
to
-e
nd

qu
er
y
tim

e
(s
)

(w1 ∧w2) ∨ (w3 ∧w4) ∨ (w4 ∧w6)

(w1 ∧w2) ∨ (w3 ∧w4)

Figure 15: TWINSSEOXT performance with result set size on

Enron dataset for DNF queries.

and, finally, we have

L∗xtag = {|DB(qm,1) ∩ DB(wm,ℓ,ℓ′)|}m∈[M],ℓ∈[Lm],ℓ′∈[tm,ℓ]
.

The proof of this theorem is again very similar to the proof of
Theorem D.2 described earlier in Appendix E, and is hence not
detailed separately.

G.3 Experimental Results over the Enron

Email Dataset

We provide experimental results for CNF and DNF queries using
TWINSSEOXT in this section. We experimented over the Enron
dataset on the same platform (discussed in Section 5) with our
implementation of TWINSSEOXT.

DNF queries. We considered multiple queries with two clauses and
three clauses with each clause having two keywords. The end-
to-end query time is plotted in Figure 15, where the blue curve
represents the query time for two clause queries and the red curve
represents the query time for three clause queries. Observe that
the query time for both two and three clause queries increase with
more number of ids in the final result set. This increment can be
attributed to large result size of the individual conjunctive clauses.
Also note that the query time increases for three-clause queries due
more conjunctive clauses and follows the same trend of increased
query time with the final result size.

CNF queries. For experimenting with CNF queries, we considered
two-clause queries with two keywords and three keywords per
clause. Since the Enron dataset is relatively sparse in nature, with
higher number of clauses in query it often results in small or empty
intersection. We plotted the end-to-end query time in Figure 16 for
both cases – two keyword clauses and three keyword clauses with
the size of the final result set. The blue curve represents the end-
to-end query time for the queries with two keywords per clause.
Similarly, the red curve represents the end-to-end query time for
queries with three-keyword clauses. Observe that, in CNF queries
also, the end-to-end query time increases with the final result size,
due to the increased size of the initial result set. For the three-
keyword clauses, the query time is higher than the two-keyword
clauses due to the increased size of the initial result set obtained by
disjunctive query.

1 2 3 4 5 9 12
0.3

0.4

0.5

0.7

1

1.3

2

Size of final result set (|R̄q |)

En
d-
to
-e
nd

qu
er
y
tim

e
(s
)

(w1 ∨w2 ∨w3) ∧ (w4 ∨w5 ∨w6)

(w1 ∨w2) ∧ (w3 ∨w4)

Figure 16: TWINSSEOXT performance with result set size on

Enron dataset for CNF queries.

6000 10000 20000 60000 80000

103

104

105

Total number of ws in DB (|∆|)

St
or
ag
e
(in

M
B)

TWINSSEOXT
IEX-2Lev

Figure 17: Server storage overhead with plain database size

(|DB|) for the Wikimedia dataset.

H EXPERIMENTAL RESULTS OVER THE

WIKIMEDIA DUMP

We present additional experimental results for TWINSSEOXT over
Wikimedia databases14 in this section. We varied the database size
from 6K keywords (60K w-id pairs in the plain index) to 80K key-
words (8.2 million w-id pairs in the plain index), and we plot the
server storage overhead in Figure 17 and performance figures in
Figure 18 and Figure 19.

The comparative storage overhead plot (in log scale) in Figure 17
illustrates the quadratic storage overhead for IEX-2Lev; whereas
it remains linear for TWINSSEOXT. This storage overhead profile
validates our primary contribution of our work, and also illustrates
the applicability towards different databases (results on the Enron
dataset is presented in the main text Section 5.)

I EVALUATION OF STORAGE OVERHEAD

WITH SYNTHETIC DATABASE

We discussed in Section 5 Figure 3 that TWINSSEOXT improves
significantly in terms of storage overhead than IEX-2Lev on the
Enron database.

Figure 20 compares the storage overhead of TWINSSEOXT and
IEX-2Lev on a synthetic database that follows Zipf’s law and Fig-
ure 21 compares the estimated storage overhead of TWINSSEOXT

14https://dumps.wikimedia.org/enwiki/latest/

138

https://dumps.wikimedia.org/enwiki/latest/

TWo-IN-one-SSE Proceedings on Privacy Enhancing Technologies 2023(1)

320 500 1000 1300

100

101

102

Frequency of the variable term (|v|)

En
d-
to
-e
nd

qu
er
y
tim

e
(s
ec
)

v ∧ a TWINSSEOXT
a ∧ v TWINSSEOXT

Figure 18:TWINSSEOXT end-to-end conjunctive query search
latency vs frequency of the variable term (|v|) for Wikime-

dia dataset.

20 50 100 150 200 500 1000 2000
0

5

10

15

20

Size of final result set (|R̄q |)

En
d-
to
-e
nd

qu
er
y
tim

e
(s
ec
)

|q | = 2
|q | = 3

Figure 19: TWINSSEOXT end-to-end disjunctive query search

latency vs final result size for Wikimedia dataset.

500 2000 5000 10000
10−1

101

103

Total number of ws in DB (|∆|)

St
or
ag
e
(G
B)

TWINSSEOXT
IEX-2Lev

Figure 20: Server storage overhead with number of key-

words in synthetic plain database (|∆|) (prepared following

Zipf’s distribution).

and IEX-2Lev on a synthetic database that follows a uniform dis-
tribution. These databases contain more documents per keyword
than the Enron database. This implies that size of the intersections
of keyword pairs is much more as compared to the Enron database.
Storage overhead of IEX-2Lev hence degrades even more.

To clarify this, the following example of a realistic database
can be considered as dense one (as we have described above and
in Section 5). Note that, any relational-database is dense if each
attribute is low-entropy (i.e., takes only a few values), and hence

each attribute-value pair (equivalent to keywords) occurs in a very
large number of records (equivalent to documents). Consider the
following Covid-19 patient-database (Table 2), where each attribute-
value-pair likely occurs in a large number of patient-records.

Table 2: Example of a dense database with possible attribute-

value pairs.

Attributes Values

Symptomatic Yes/No
Not-Vaccinated Yes/No

Dose 1 Yes/No
Dose 2 Yes/No

Booster Dose Yes/No

500 1000 3000 6000 10000 15000

101

103

105

Number of ws in DB (|∆|)

En
cr
yp

te
d
da
ta
ba
se

si
ze

(G
B)

TWINSSEOXT
IEX-2Lev

Figure 21: Server storage vs |∆| for synthetic DB (following

uniform distribution).

Observe that, querying any of the attributes would return a large
number of records from this example database. Our experimental
results show that IEX-2Lev incurs 70× higher storage overhead
than TWINSSEOXT for the synthetic database following Zipf’s law
(Figure 20) and approximately 150× higher storage overhead for the
database following uniform distribution (Figure 21). The search time
also increases for both the schemes; however, the main advantage of
TWINSSEOXT compared to IEX is in reduced storage, not in search
overheads (which still remains sublinear for TWINSSEOXT).

139

	Abstract
	1 Introduction
	1.1 Background and Related Work
	1.2 Our Contributions

	2 Preliminaries and Background
	2.1 Notations
	2.2 Searchable Symmetric Encryption

	3 TWINSSE: Simplified Version
	3.1 The Core Tool: Meta-Keywords
	3.2 Meta-Keywords as ``Covering'' Set
	3.3 TWINSSEBasic

	4 TWINSSE: Final Version
	4.1 Keyword Bucketization at Setup
	4.2 Updated Query Planning
	4.3 Instantiation from the OXT Protocol and Complexity Analysis
	4.4 Security of TWINSSE

	5 Experimental Results
	6 Supporting Dynamic Databases
	Acknowledgments
	References
	A Proof of Lemma 3.1
	B Proof of Theorem 4.1 (Correctness of TWINSSEBasic and TWINSSE)
	C Adaptive Security of SSE
	D Detailed Analysis and Discussion on the Leakage of TWINSSEOXT
	D.1 Security of TWINSSE
	D.2 Leakage Profile of TWINSSEOXT
	D.3 Discussion on the Leakage Profile of TWINSSEOXT

	E Security Proofs for TWINSSE and TWINSSEOXT
	E.1 Proof of Theorem D.1 (Security Analysis of TWINSSE)
	E.2 Proof of Theorem D.2 (Security Analysis of TWINSSEOXT)
	E.3 Proofs of the Lemmas

	F Cryptanalysis of TWINSSEOXT
	G General Boolean Queries (CNF and DNF) in TWINSSE and TWINSSEOXT
	G.1 Handling Boolean Queries in DNF Form
	G.2 Handling Boolean Queries in CNF Form
	G.3 Experimental Results over the Enron Email Dataset

	H Experimental Results over the Wikimedia Dump
	I Evaluation of Storage Overhead with Synthetic Database

